
A New Mutant Generation Algorithm
Based on Basic Path Coverage

for Mutant Reduction

Xu Qin1,2(B), Shaoying Liu1, and Zhang Tao2

1 Faculty of Computer and Information Sciences, Hosei University, Tokyo, Japan
qin.xu.6d@stu.hosei.ac.jp

2 School of Software Northwestern, Polytechnical University, Xi’an, China

Abstract. Mutation testing is a fault-based testing technique that can
be used to measure the adequacy of a test set, but its application usu-
ally incurs a high cost due to the necessity of generating and executing
a great number of mutants. How to reduce the cost still remains a chal-
lenge for research. In this paper, we present a new mutant generation
algorithm based on a basic path coverage that can help reduce mutants.
The algorithm is characterized by implementing a basic path segments
identification criterion for determining appropriate program points at
which faults are inserted and a mutant generation priority criterion for
selecting proper mutant operators to make a fault for insertion. We dis-
cuss the algorithm by analysing how the two criteria are realized based
on analysing the control flow graph of the program and applying effec-
tive mutation operators on the appropriate statements in the relevant
path segments. We also present an automated mutation testing tool that
supports the proposed approach, and a small experiment to evaluate
our tool by comparing it with a traditional mutation testing method on
six programs. The result of the experiment suggests that the proposed
method can significantly reduce the number of mutants and improve the
efficiency of mutation testing.

Keywords: Mutation testing · Path coverage · Mutant reduction

1 Introduction

Mutation testing [1] is a effectively white-box testing technique which can be
used to evaluate and improve test suite’s adequacy, and predict the possible
faults present in our system. As a testing technique, mutation testing can truly
reveal various flaws of software. But in industry the mutation testing technique
has not been widely applied [2,3]. The main reason is that mutation testing is
so time-consuming (a large number of mutants and long execution time).

In recent years, many researches have been carried out in order to apply
mutation testing in practical application, including mutant random selection
[10], high-order mutant [12], mutant clustering methods [13], selective mutation
c© Springer Nature Switzerland AG 2020
H. Miao et al. (Eds.): SOFL+MSVL 2019 Workshop, LNCS 12028, pp. 167–186, 2020.
https://doi.org/10.1007/978-3-030-41418-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41418-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-41418-4_13


168 X. Qin et al.

operators [11], mutant detection optimization [18], mutant compilation optimiza-
tion [19], and parallel execution of mutants [20].

Although the above mutant reduction methods have been used, there is little
work on combining the mutation testing with the conventional path coverage
testing. In our research, an algorithm for generating mutants based on the basic
path coverage is proposed. We first introduce the criteria for identifying the path
segments where faults need to be inserted and the mutant generation priority
criteria for producing mutants. We then present a mutant generation algorithm
under the constraint of these criteria. The main idea is to insert simple syntactic
changes on each basic path of the given program to produce mutants. Com-
bining the traditional path testing coverage with the mutation testing can not
only assess the efficiency of the ability of test suite for detecting some possible
faults, but also achieve basic path coverage which can effectively improve the
effectiveness of given test case set.

It is difficult to do mutation testing without a software tool. So we present
an a mutation testing tool that supports the proposed approach, which can
generates and executes the mutants automatically. We design three components
for our tool: the mutant generator, the mutant viewer, and the test executor.
The mutant generator component generates mutants automatically by using the
effective mutation operators. It takes Java files as input and a set of mutants
as output. The mutant viewer lists the information of our generated mutants.
And it also show the original code and the code of each mutant, which can help
us to know which part was changed. The test executor run the test case set on
generated mutants and shows the test result by analyzing the mutation score
of our test case set. All this three components provide GUI for testers to use.
We have carried out an experiment on the tool for validating the effectiveness
of our proposed approach. From the result we can see that our method can
significantly improve the efficiency of mutation testing by reducing mutants but
also with high mutation score.

Here lists our contributions:

– Proposing a new mutant generation algorithm by combing the mutation test-
ing and basic path coverage testing for reducing generated mutants.

– Designing and implementing a mutation testing tool to validate our proposed
method.

The rest of the paper has the following organization. Section 2 introduces the
related work on reducing the mutation testing cost. Section 3 gives some defini-
tions and discuses the implementation process of our proposed mutant genera-
tion algorithm based on basic path coverage. Section 4 designs and implements
a mutation testing tool to support the proposed approach. Section 5 presents
an empirical research to evaluate the efficiency of our proposed method. The
conclusion of this paper and the future direction of our research are shown in
Sect. 6.



A New Mutant Generation Algorithm Based on Basic Path Coverage 169

2 Background on Mutation Testing and Program Control
Flow Graph

In this section, we introduce some basic concepts used in our discussions through-
out this paper. They are known as mutation testing, program control flow graph,
and independent path.

2.1 Mutation Testing

The mutation testing is a fault-based software testing technique with two steps.
The first step is to use a specific mutation operator to simulate a particular type
of error and implant the error into the source program. The second step is to
explore the source program with a given test set, and assess the adequacy of the
test set by the mutation score.

The traditional mutation testing process is described below, Fig. 1 graphically
shows a traditional mutation process.

Fig. 1. Traditional mutation testing process

– Input the original program P and use the mutation operators to generate
mutants M.

– Input the given test cases and then run the test case on P to get a expected
result.



170 X. Qin et al.

– Run the test case T on each generated mutant. And then compare the result
with expected result. If the two is different, we can say the mutant is killed,
else the mutant is marked as being alive.

– After running all test cases on mutants, we compute a mutation score. The
mutation score is the ratio of killed mutants as a percentage of all mutants.
The higher mutation score is, the more mutants are killed. So we need to
improve the mutation score to 1.00, suggesting that we killed all the generated
mutants. If the test case set can kill all the mutants, we can say it is enough
for our testing.

– If the mutation score meets the requirements, the mutation testing ends.
Otherwise, the tester need to add more test cases to kill the live mutants.
Then we repeat adding new test cases, run the test case and compute a new
mutation score until we get a high mutation score.

2.2 Program Control Flow Graph

Program control flow graph is an abstract representation of a process or program.
In computer science, a control-flow graph lists all the control flows and shows all
the possible path when we execute the program. It was first proposed by Frances.
E. Allen in 1970 [5]. The program control flow graph is defined as follows:

A control flow graph, can be represented by CFG = (B, E, nentry, nexit)
where B is a node (represents some statements of program P) in the graph and
E is edges in CFG [5]. If there is a directed edge goes from node bi to node bj ,
we can say the ordered pair (bi, bj) of nodes is an edge. Nentry and nexit are
the entry and exit node of the program, respectively. It has a unique starting
node START and a unique ending node STOP. There can be at most two direct
successors for each node in the CFG. For a node with two direct successors,
its outgoing edge has the attribute ‘T’ or ‘F’, for a node with only one direct
successor, its outgoing edge has the default attribute ‘T’. And any node N in
the CFG has a path from START to N to STOP.

Fig. 2. The CFG of the basic program structures



A New Mutant Generation Algorithm Based on Basic Path Coverage 171

A node is a linear sequence of program statements, which may have some
predecessor nodes and many successor nodes. A START node doesn’t have pre-
decessor node and a STOP node doesnt have successor node.

The CFG of the basic program structures are shown in Fig. 2: each statements
in our program under test is represented by a node in CFG. Then, we can get
all the independent paths (basic paths) of our program by tracing the flow.
An independent path or basic path means that at least one new processing
statement or a newly determined program path is introduced compared to other
independent paths. If we go thorough each basic path, we can say that we have
executed all the statement in our program at least once and each basic path has
been judged to ‘TRUE’ or ‘FALSE’.

3 Our Proposed Mutant Generation Algorithm

In this part, we propose a new mutant generation algorithm, which aims to
generate a less mutants that can simulate software defects. Based on the selective
mutation technique, this algorithm uses mutation points as research objects and
selects appropriate program path segments and target sentences for mutation on
each basic path. The proposed algorithm combines mutation testing and basic
path coverage testing.

3.1 Preliminary

In order to facilitate the description of the algorithm, we first give the following
definitions:

Definition 1 (Immediate predecessor node and successor node). A immedi-
ate predecessor node nh of a node ni in is a node that satisfy PG(ni) =
nh|(nh, ni) ∈ E. (PG(ni) means the immediate predecessor node of node ni; E
is a set of directed edges in G.)

A immediate successor node nj of a node ni in is a node that satisfy SG(ni) =
nj |(ni, nj) ∈ E. (SG(ni) means the immediate successor node of node ni.)

Definition 2 (Leaf node, sequence node and selection node). A leaf node ni is
a node that satisfy SG(ni) = Ø and ∃!PG(ni). It means a leaf node only have
one input edge and no output edge.

A sequence node ni is a node that satisfy ∃!PG(ni) and ∃!SG(ni). It means
a sequence node only has one input edge and one output edge.

A selection node ni is a node containing a condition. It means a selection
node have more than one output edge. Note that compound Boolean expressions
generate at least two predicate node in control flow graph.

Definition 3 (Sequence path-segment, Unique path-segment). A sequence
path-segment sp = (n1, n2, ...nn) is a path segment that the first node is a
selection node and the other nodes ni of sp is either a sequence node or a leaf
node.



172 X. Qin et al.

A unique path-segment is a path-segment that satisfy upsi = (Ni, Ei)|Ei �∈
∀upsj . It means that any edges of a ups is unique from other unique path-
segments.

3.2 Recognition of Target Path Segments to Be Mutated

In order to generate mutants, we need to find the target mutation path segments
and then select the target mutation sentence in these segments to generate the
mutant using the appropriate mutation operator. Here, we propose a identifica-
tion criterion for path segments to be inserted into error. The purpose is to select
the unique path segments in the basic path for error insertion, ensure the basic
path coverage, and make the mutation of each path as independent as possible.
And also a mutation sentence selection priority criteria is proposed to select the
node with high importance as the target sentence, which choose the sentence
that has a greater impact on the execution result of each path in the basic path.
For each criterion, a simple example will be given.

Fault Insertion Path Segments Identification Rule 1 (R1)
If there exists a leaf node ni in the control flow graph, then trace back to its
immediate predecessor node nh, if nh is a sequence node, then continue to trace
back to its immediate predecessor node until we meet a non sequence node na,
and mark this sequence-path segment sp = (na, ..., nh, ni) as a path segment to
be inserted into fault.(a fault is a simple syntactic change).

The following figure Fig. 3 illustrates the application of R1: node 5 is a leaf
node and trace back to its immediate predecessor node 4 and continue to trace
back to the non sequence node 2. Then marks the sequence-path segment sp =
(n2, n4, n5) as a path segment for fault insertion.

Fig. 3. A example for identification rule 1

Fault Insertion Path Segments Identification Rule 2 (R2)
Find all the unique path-segment ups upsi = (Ni, Ei)|Ei �∈ ∀upsj in each basic
paths in the control flow graph CFG and mark this ups as a path segment. If



A New Mutant Generation Algorithm Based on Basic Path Coverage 173

there is a loop structure in the program, the basic path only includes no loop
and one loop.

Figure 4 illustrates the application of the rule R2: we can find all the basic
paths, path1:1-7; path2:1-2-3-6-7; path3:1-2-4-6-7; path4:1-2-4-5-6-7, and then
find the unique path-segment ups1:1-7; ups2:2-3-6; ups3:4-6; ups4:-4-5-6. These
unique path-segments are path segments suitable for fault insertion.

Fig. 4. A example for identification rule 2

3.3 Recognition of Target Path Segments to Be Mutated

The statements in a program are not purely independent, they have a certain
relationship. Each statement has different effects on the execution of different
paths. Using the relationship between them, selecting important sentences for
mutation testing to generate mutants can reduce testing cost and improve testing
efficiency.

This part proposes a criterion for selecting target sentences to be mutated
based on our mutation sentence selection priority criteria. Different from the
traditional mutation test method, we first analyze the sentence corresponding
to each node in the basic path, and select the node with high importance as
the target sentence. First establish the evaluation index, then set the sentence
priority, and finally propose our mutation sentence selection priority criteria to
generate mutants for the target mutation path segments in the previous section.

Evaluation Index: First, consider whether the node where the statement is
located will cause a change in the execution path. Based on our previous def-
inition of different nodes in the path. Different nodes have different effects on
each path. Among them, the sequence node (expression statement) has the least
impact on the execution path. It only affects the execution results of this path
and has no effect on other paths. The second is the single node (return value



174 X. Qin et al.

statement), which mainly affects the return value. Finally, the selection node
(loop statements, conditional statements) have the greatest impact on the pro-
gram, it may cause the execution path to change.

Next consider the number of variables in the statement. In general, more
variables have a greater impact on program execution. So it makes sense to
consider how many variables the target statement contains.

Set the Statement Priority: Our goal is to select the statements that will
affect the execution results of this path but have less impact on the execution
results of other paths. Through the analysis of the above evaluation indicators,
we can know that evaluation index 1 is negatively correlated with our goal,
so our priority setting should be: sequence node >single node >select node.
Evaluation index 2 is positively correlated with our goal, so the priority should
be: statements include with more variables >statements with less variables.

Then propose our mutation sentence selection priority criteria:

Mutation Sentence Selection Priority Criteria 1 (P1)
For each path-segment of path-segments set ps = (ps1, ps2, ..., psn), if there is a
sequence node ni at the psi, we insert the fault at the statement of ni. And if
ni = (s1, s2, ..., sn) (s means statement), we insert a fault at the first statement.

As shown in Fig. 4: for the path segment ps1:2-3-6, using P1 we find a single
node 3, and use the appropriate mutation operator AOM to generate the mutant
,the statement ‘y = y + x’ of the node3 will be mutated to ‘y = y− x’.

Mutation Sentence Selection Priority Criteria 2 (P2)
For each path-segment of path-segments set ps = (ps1, ps2, ..., psn), if there is
no sequence node and there is a selection node (predicate operation) ni at the
psi, use the appropriate mutation operator to insert the simple syntactic change
(fault) at the selection node ni.

As shown in Fig. 4: for the path segment ps2:4-6, using P2 we find a selection
node 4, and generate the mutant ‘if(y ≤ 4)’ for the node 4 statement ‘if(y < 4)’
using the appropriate mutation operator CBM.

Mutation Sentence Selection Priority Criteria 3 (P3)
If there is no sequence node and no selection node in the psi, inserted fault in
the first statement of remaining nodes which are suitable to be inserted fault.

3.4 The Mutant Generation Algorithm

Applying the Fault Insertion basic path segments Identification Criterion for
deter- mining appropriate program segments at which faults are inserted and a
Mutation Sentence Selection Priority Criterion for selecting proper statements
to make a fault for insertion above, we propose an algorithm whose input is a
program and the output is a mutant set.

The algorithm is shown as follows: first, draw the control flow graph CFG of
the original program. Then, using the Fault Insertion basic path segments Iden-
tification Criterion to determine appropriate program points at which faults are



A New Mutant Generation Algorithm Based on Basic Path Coverage 175

Algorithm 1. Basic Path Coverage based on Mutant Generation Algorithm
Input:

Original program, P ;
Output:

Mutant set, M ;
1: Function mutant-generation(program p) {
2: Draw CFG for each functions in original program p;
3: Set FPS=Ø;
4: for each CFGi ∈ CFG do
5: initialize FPSi = Ø ;
6: if ∃SPinCFGi then
7: add sp into FPSi, FPSi → FPSi + sp;
8: end if
9: for each CFGiinCFG do

10: find all the unique path-segment ups;
11: add ups into FPSi, FPSi → FPSi + ups;
12: end for
13: end for
14: add FPSi into FPS, FPS = (FPS1, FPS2, ..., FPSn);
15: for each ps in EPS do
16: Set M=Ø;
17: if ∃sequencenode then
18: generate mutant mi from the sequence node statement si for fault insertion;
19: add mi into M , M → M + mi;
20: else if ∃selectionnode then
21: generate mutant mj from the selection node statement sj for fault insertion;
22: add mj into M , M → M + mj ;
23: else
24: generate mutant mk from the selection node statement sk for fault insertion;
25: add mk into M , M → M + mk;
26: end if
27: end for
28: Return M;
29: }

inserted by analyzing the program control flow graph(CFG) and find the appro-
priate fault insertion path segments in the CFG. Finally, using the Mutation
Sentence Selection Priority Criterion to generate a mutant at the appropriate
statement of the path segments we marked above. The steps of this algorithm
are shown as follows:

Step 1. For the original program p, we divide it into some program modules
or functions p = (f1, f2, ..., fn) and draw a CFG for each module or function
CFG = (CFG1, CFG2, ..., CFGn).

Step 2. Do analysis for CFGi, find the appropriate fault insertion basic path-
segments FPSi in the CFG.



176 X. Qin et al.

– First Initialize FPSi to empty, if the CFG have leaf node, apply the Fault
Insertion basic path segments Identification Rule 1 (R1) to find a sequence
path-segment sp, add sp into FPSi;

– Then apply the rule 2 to find unique path-segments ups on the CFG, add
each ups into FPSi;

– Then we can get a fault insertion path-segment set FPSi =
(sp1, ups1, ups2, ..., upsn).

Step 3. Repeat step 2 for each CFGi to get the total fault insertion path-
segment set FPS = (FPS1, FPS2, ..., FPSn) for the original program.

Step 4. Do analysis for each path-segment psi in the fault insertion path-
segment set FPS using the Mutation Sentence Selection Priority Criterion above
and get a mutants set Mi.

– apply P1, generate mutant for a sequence node statement using appropriate
mutation operator. For example, MAO, BOC, VMC;

– apply P2, generate mutant for a predicate node statement;
– apply P3, generate mutant for the first statement of remaining node that can

be inserted into fault.

Step 5. For each path-segment psi in the fault insertion path-segments set
FPS, Repeat the above step (4) to get the mutants set M = M1,M2, ...,Mn of
the original program P.

4 Tool Design and Implementation

Our proposed algorithm is aiming at reducing the cost of mutation testing by
generating less but effectively mutants. In order to validate the efficiency and
effectiveness (accuracy of mutation score), we implement an automated mutation
testing tool to support our algorithm. It takes the program and test case set as
input, does the mutation testing automatically, and finally produces a analysis
report to show the test result.

The main functions of this automated mutation testing tool are using effec-
tive mutation operators to generate mutants (mutant generation), executing the
given test case set on the mutants (mutant execution), showing the result and
report of mutation testing (result analysis). Figure 5 shows the overall structure
of our mutation testing tool. It is composed of 3 components.

The mutant generator generates mutants by using the effective mutation
operators. It generate mutants for selected java files. The GUI for the mutant
generator can help us to choose which project and which files under test. The
mutant viewer component lists the detailed information for each generated
mutant including operatorType, lineNumber, description and so on. And it also
shows the code of original program and mutant which help us to know which
statement of program under test is mutated and design test cases to kill the gen-
erated mutants. The test executor runs the test case set on generated mutants
and reports the testing result by computing the mutation score of given test case
set.



A New Mutant Generation Algorithm Based on Basic Path Coverage 177

Fig. 5. The overall structure of the automated mutation testing tool.

4.1 Mutants Generator

According to the above design, we implement the tool using Java Swing and the
user interface are shown as follows. Figure 6 shows how the Mutants Generator
works. We can select the project and a set of Java files under test to create
mutants, view the description of applied mutation operators, and press the Gen-
erate button to prompt the tool to generate mutants. The Mutants Viewer panel
will show the information for each mutant after generation.

The specific steps are as follows:

– Step1, push the ‘search’ button to select the java project to be tested.
– Step2, view mutation operators description.
– Step3, select the Java files to test and the user can push the ‘ALL’ button to

choose all the files listed.
– Step4, push the ‘Generate’ button to generate mutants for the selected java

files.

4.2 Mutants Viewer

When generating a mutant, we produce a mutant description, including the
operator type, className, description, lineNumber. This description details the
alternate operations applied in each fault insertion statement we marked before.
Using this, the tester can easily position the mutation statement and the muta-
tion operator type which is beneficial to the later mutant viewing and result
statistics.

The Mutants Viewer pane in Fig. 7 lists all the generated mutants and shows
some detailed description of each mutant. It help us to analyze mutants by
displaying the information of each mutant and which statement of given program



178 X. Qin et al.

Fig. 6. The Mutants Generator GUI.

is changed by the mutant. It is divided into two parts. The upper part is a
mutants list which shows a brief descriptions of the each mutant including a
operatorType, className, description and lineNumber. The lower part shows
the original code and the mutant. By choosing a mutant in the mutants list of
the upper part, the lower part will show the original java file and the mutant,
which helps testers to know which statement is mutated, design test cases to kill
mutants which are difficult to kill.

4.3 Test Executor

Figure 8 shows the GUI of the Test Executor pane. It runs the test case set on
mutants and reports the testing result by analysing the mutation score. Lower
left part shows the number of mutants generated by each operator. The lower
right part shows the results of mutation testing and the number of live mutants
and dead mutants. The test case can be created or provided by testers. The
specific step is as follow:

First, the testers need to select the class and the test case set and then push
the ‘Run’ button to run the test cases on the mutants.

When the test is finished, the OP Number panel will show the mutants
number of each operator and the mutants result panel will show the mutation
testing result including the mutation score and the number of killed mutants,
live mutants and the total mutants. Also, the tester can export the result into a



A New Mutant Generation Algorithm Based on Basic Path Coverage 179

Fig. 7. The Mutants Viewer GUI.

Fig. 8. The Test Executor GUI.

HTML file, which shows test results more clearly and can be saved as important
test document. Push the ‘export’ button in the test executor panel, a test report
will be generated. Figure 9 shows the report.



180 X. Qin et al.

The mutation testing report shows the generated mutants list, the number of
each operator type, the number of live mutants, the number of killed mutants,
and the mutation score. Lower left part shows the number of mutants generated
by different operator type.

Fig. 9. The testing report in a HTML file.

5 Experiment for Evaluation

In order to assess the performance of our method, 6 benchmark programs were
selected as the tested programs, all of which were written in JAVA language. Fea-
sibility and effectiveness were assessed using empirical and comparative studies.

5.1 Research Questions

The experiment described here mainly focuses on the following Research Ques-
tions (RQs):

RQ 1. Can our algorithm proposed in this paper effectively reduce the number
of mutants? (by calculating the reduction rate of mutants)

The effectiveness of this method in reducing mutants was evaluated by com-
paring the number of mutants in the proposed algorithm of the selected programs



A New Mutant Generation Algorithm Based on Basic Path Coverage 181

with the number of mutants in traditional method and selective mutation tech-
nique using the same mutation operators. We proposed a mutant reduction rate
to assess the ability of the mutant reduction. The mutant reduction rate is:

MRR =
Mt − Mp

Mt
(1)

Mt: mutant’s number generated by traditional method, Mp: mutant’s number
generated by other methods. The MRR shows that the higher the reduction rate
is, the better the effectiveness of this method in reducing mutants becomes.

RQ 2. Can a test case set that kills mutants generated by the proposed
algorithm be able to kill mutants of traditional methods?

The set of traditional mutants was tested with the test cases that killed the
mutants generated by this algorithm, and the results were expressed as mutation
score:

MS =
MK

Ma − Me
∗ 100 (2)

Mk: killed mutant’s number, Ma: all generated mutant’s number, Me: all equiv-
alent mutant’s number.

The test case set used in this paper’s experimental evaluation is constructed
using traditional test case generation algorithms, such as boundary value anal-
ysis, statement coverage, and branch coverage.

5.2 Experiment Subjects

Table 1 shows the detailed description of each experiment subjects. We choose
those programs which are popular used in other mutation testing researches.
The ‘ID’ and ‘Test Subject’ show the names of each experiment subjects and
the ‘line of code’ shows the line number of each code and ‘function program’
record the function of each program.

Table 1. The description of each experiment subject.

ID Test subjects Line of
code

Program function description

J1 Trityp 36 Judge the triangle type

J2 Mid 26 Calculate the median of three integers

J3 Quadratic 25 Finding the root of a quadratic equation

J4 Bubble sort 19 Bubble Sorting

J5 Cal 46 Compute days between two days

J6 MyCalendar 50 Ask for a calendar of a certain month



182 X. Qin et al.

5.3 Experiment Result Analysis

As shown in Table 2 below, by comparing the number of mutants generated by
this algorithm and number of mutants generated by selective mutation (SM)
with the number of mutants generated by traditional non-optimized methods,
we clearly see that the both the number of mutants generated by our proposed
method and the number of mutants generated by selective mutation were signif-
icantly reduced. For example, the J2 program is reduced from 63 to 35 and 18,
and the J6 program is reduced from 66 to 31 and 19.

Table 2. The reduction rate of selective mutation and our algorithm.

ID Number of mutants in
traditional method

Number of
mutants in
SM

Reduction
rate of SM

Number of
mutants in
our method

Reduction
rate of our
method

J1 39 23 43.6% 9 76.9%

J2 63 35 44.4% 18 71%

J3 67 34 49.3% 17 74.6%

J4 42 26 38.1% 9 78.6%

J5 40 25 37.5% 9 77.5%

J6 66 31 53.3% 19 71.2%

Average 44.4% 74.96%

In the selective mutation, J6 has the largest reduction rate of 53.3% in 6
programs, and the average reduction rate of 6 programs is 44.4%. In our algo-
rithm, J4 has the largest reduction rate of 78.6% in 6 programs, and the average
reduction rate of 6 programs is 74.96%. We can see that all the procedures using
our proposed algorithm achieve higher reduction rates, and the reduction rates
are higher than the reduction rate of selective mutation, which indicates that
our proposed method is better than selective mutation in reducing the number
of mutants.

The sufficient test case set for the algorithm proposed in this paper is applied
to all the mutants generated in traditional mutation method and the mutation
score is calculated. The calculated mutation score finally indicates the effective-
ness of the proposed method. The following Table 3 shows the detection results of
the test case set that can detect the mutants generated by the proposed method
on the traditional mutants set. The mutation score is used as the evaluation
index.

From Table 3, we can see that the mutation score of the test case set that is
100% sufficient for the proposed algorithm can reach 90.6% on average, and the
lowest one is 87.5%. The J2 program has the highest mutation score of 93.7%,
and the J5 program has the lowest mutation score of 87.5%. The experimental
results show that for all test subjects, the average mutation score exceeds 90.6%,
and we only use a small number of mutants (74.96%).

We also analyzed the number of mutants per mutation operator. From the
result we can see that the number of MAO replacement mutants is relatively



A New Mutant Generation Algorithm Based on Basic Path Coverage 183

Table 3. The reduction rate of each experimental subject.

ID Number of mutants
in traditional
method

Number of
mutants in
proposed method

Reduction rate

J1 39 35 89.7%

J2 63 59 93.7%

J3 67 62 92.5%

J4 42 37 89%

J5 40 35 87.5%

J6 66 60 91%

Average 90.6%

large, while others are relatively small. For the program J1, the number of BOC,
NCO is very large and number of the RVO, VMC is zero. Although some oper-
ators is used less but we can not say it is useful because those operators are
designed to find specific faults which are not shown in our experiment subjects.

The proposed algorithm optimizes traditional mutation method by selecting
the appropriate mutation point. Through the analysis of the above results, it
can be seen that our algorithm can generate a less number of mutants with a
high mutation score, which can significantly reduce the cost of mutation testing
while maintaining the effectiveness.

5.4 Result Validity Analysis

As with other case studies, when discussing the validity of the experimental
results in this paper, some restrictive factors in the experimental process must
be considered, including the following three cases:

– In this experiment, only 6 tested instances were selected, and it is not certain
that all the tested instances will have the same experimental results;

– The number of test cases for elections is less than 100. It is uncertain whether
the reduction efficiency of test cases will increase for a larger number of test
cases;

– All the mutation operators were not selected in the experiment, and there was
no manual analysis of whether there were equivalent mutants in the unkilled
mutant, so the calculated MS value may be too small.

6 Related Work

In recent years, in order to apply mutation testing in industry and improve the
efficiency of mutation testing, many research have been carried out. Here, we
briefly show the research progress of test optimization techniques about reducing
mutant’s number.



184 X. Qin et al.

Acree [10] proposed a method called mutant sampling, which select a certain
proportion of mutants randomly from all mutants generated for mutation testing.
This way can effectively reduce the mutant but with lower mutation score.

Hussian [13] proposed a method called the method of Mutant Clustering
which classify mutants with similar characteristics, and then randomly select a
part of variants from each class for mutation testing. Experiment shows that the
clustering method can achieve a good reduction of mutants without affecting the
validity of the mutation testing.

Mathur [11] proposed a method which select partial mutation operators
applied for mutation testing. This method of generating fewer mutants using
a small number of mutation operators is called constraint mutation. Offutt et
al. further proposed a method of “selective mutation”.

Jia and Harman [12] introduced a Higher Order Mutation method. That is,
a high-order mutation consists of multiple single-order mutations, and the use
of higher-order mutants can effectively speed up mutation testing.

Delamaro et al. [16] studied the validity of a mutation testing using only
one mutation operator. The experimental results show that the SDL operator is
probably the most useful mutation operator among all the mutation operators.

Yao et al.’s [15] research shows that some mutation operators are very possi-
ble to create equivalent mutants, but the resulting stubborn mutants (which are
difficult to detect, but not equivalent mutants) are rare; others are susceptible
to stubborn mutants and the generated equivalent mutants are few, so when
generating mutants, different selection priorities can be set for the mutation
operators.

Although the above mutant reduction technology can reduce the number of
mutants, it can not guarantee the path coverage of the program, which affects
the sufficiency evaluation ability of the test case set. In our research, a mutant
generation algorithm based on basic path coverage and control flow analysis
is used to select the appropriate sentence segment to be inserted into error of
the basic path, which reduce the number of mutants and realize the basic path
coverage. It not only assess whether the test case set can kill the mutants, but
also assess whether the test case set can achieve basic path coverage.

7 Conclusion

Mutation testing is widely used to evaluate test case sufficiency and evaluate the
effectiveness of software testing techniques. However, a large number of mutants
affect the efficiency of mutation testing and limit the application of mutation
testing in software testing practice.

In this paper, a mutant generation method based on basic path coverage is
proposed for reducing generated mutant’s number in mutation testing. Different
from the previous methods, by analyzing the control flow structure and basic
path of the source program, an identification of path segments suitable for fault
insertion and a priority criteria for generating mutants are proposed. By using
these criteria to select some appropriate statements for mutation operation, the



A New Mutant Generation Algorithm Based on Basic Path Coverage 185

mutants needed to kill is reduced and the coverage of the basic path is achieved,
which improves the effectiveness of the mutation testing. In order to evaluate
the efficiency (mutant’s number) and effectiveness (accuracy of mutation score)
of our proposed method, we implement an automated mutation testing tool to
support our algorithm. Our method was applied to 6 tested programs, and the
results showed that using the method of this paper, the high mutation score can
be maintained while reducing the number of mutants.

This work has opened up a research direction of mutation test optimization
technology. The next steps include using more efficient mutation operators to
generate mutants, using a larger industrial application sample program to eval-
uate the effectiveness of the method, and exploring other more efficient mutant
reduction techniques.

References

1. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

2. Offutt, A.J., Untch, R.H.: Mutation 2000: Uniting the Orthogonal. Mutation Test-
ing for the New Century. Kluwer Academic Publishers, Berlin (2001)

3. Just, R., Ernst, M.D., Fraser, G.: Efficient mutation analysis by propagating and
partitioning infected execution states (2014)

4. Namin, A.S., Andrews, J.H., Murdoch, D.J.: Sufficient mutation operators for mea-
suring test effectiveness. In: ACM Press the 13th International Conference on Soft-
ware Engineering - ICSE 2008 - Leipzig, Germany, 10–18 May 2008, p. 351 (2008)

5. Allen, F.E.: Control flow analysis. ACM Sigplan Not. 5(7), 1–19 (1970)
6. Zapata, F., Akundi, A., Pineda, R., Smith, E.: Basis path analysis for testing

complex system of systems. Procedia Comput. Sci. 20(Complete), 256–261 (2013)
7. Papadakis, M., Malevris, N.: Automatically performing weak mutation with the

aid of symbolic execution, concolic testing and search-based testing. Softw. Qual.
J. 19(4), 691–723 (2011)

8. Eason, G., Noble, B., Sneddon, I.N.: On certain integrals of Lipschitz-Hankel type
involving products of Bessel functions. Phil. Trans. Roy. Soc. London A247, 529–
551 (1955)

9. Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and Oracles. IEEE
Trans. Softw. Eng. 38(2), 278–292 (2012)

10. Acree, A.T.: On mutation. Ph.D. Dissertation, Georgia Institute of Technology
(1980)

11. Mathur, A.P.: Performance, effectiveness, and reliability issues in software testing.
In: International Computer Software & Applications Conference. IEEE (1991)

12. Jia, Y., Harman, M.: Constructing Subtle Faults Using Higher Order Mutation
Testing. In: 2008 Eighth IEEE International Working Conference on Source Code
Analysis and Manipulation. IEEE (2008)

13. Hussain, S.: Mutation clustering. Ph.D. Dissertation, King’s College, London, UK
(2008)

14. Zhang, J.: Scalability studies on selective mutation testing. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering (ICSE), Florence,
Italy, 5–24 May 2015, pp. 851–854 (2015)



186 X. Qin et al.

15. Yao, X., Harman, M., Jia, Y.: A study of equivalent and stubborn mutation opera-
tors using human analysis of equivalence. In: Proceedings of the 36th International
Conference on Software Engineering - ICSE 2014, Hyderabad, India, 31 May–07
June 2014, pp. 919–930 (2014)

16. Delamaro, M.E., Li, N., Offutt, J., et al.: Experimental evaluation of SDL and
one-op mutation for C. In: IEEE Seventh International Conference on Software
Testing. IEEE (2014)

17. Hutchins, M., Foster, H., Goradia, T., et al.: Experiments on the effectiveness of
dataflow- and control-flow-based test adequacy criteria. In: International Confer-
ence on Software Engineering. IEEE (1994)

18. Harman, M., Jia, Y., Mateo, R.P., et al.: Angels and monsters: an empirical inves-
tigation of potential test effectiveness and efficiency improvement from strongly
subsuming higher order mutation. In: Proceedings of the 29th ACM/IEEE Inter-
national Conference on Automated Software Engineering. ACM (2014)

19. Girgis, M.R., Woodward, M.R.: An integrated system for program testing using
weak mutation and data flow analysis. In: International Conference on Software
Engineering. IEEE Computer Society Press (1985)

20. Krauser, E.W., Mathur, A.P., Rego, V.J.: High performance software testing on
SIMD machines. IEEE Trans. Softw. Eng. 17(5), 403–423 (2002)

21. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Commun. ACM
19(3), 137 (1976)


	A New Mutant Generation Algorithm Based on Basic Path Coverage for Mutant Reduction
	1 Introduction
	2 Background on Mutation Testing and Program Control Flow Graph
	2.1 Mutation Testing
	2.2 Program Control Flow Graph

	3 Our Proposed Mutant Generation Algorithm
	3.1 Preliminary
	3.2 Recognition of Target Path Segments to Be Mutated
	3.3 Recognition of Target Path Segments to Be Mutated
	3.4 The Mutant Generation Algorithm

	4 Tool Design and Implementation
	4.1 Mutants Generator
	4.2 Mutants Viewer
	4.3 Test Executor

	5 Experiment for Evaluation
	5.1 Research Questions
	5.2 Experiment Subjects
	5.3 Experiment Result Analysis
	5.4 Result Validity Analysis

	6 Related Work
	7 Conclusion
	References




