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Abstract. Planning systems use a variety of heuristic search or control
knowledge in order to enhance the performance. Control knowledge is
often described in a specific formalism, e.g. temporal logic, automata, or
HTN (Hierarchical Task Network) etc. Heuristic search exploits heuris-
tic functions to evaluate potential feasible moves. Control knowledge
constraints the search space by pruning the states which violate the
knowledge. In this paper, we propose a general heuristic algorithm that
combines control knowledge specified by a spatio-temporal logic named
PPTLSL. Both heuristic search and control knowledge are handled in
a forward chaining manner. Our approach involves the evaluation of
PPTLSL formulas using a variant of the traditional progression technique
during heuristic search. Consequently, we are enabled to take advantage
of the two methods together to further reduce the search space.

Keywords: Planning · Control knowledge · Heuristic search · Forward
chaining

1 Introduction

The planning problem in Artificial Intelligence is about the decision making
performed by intelligent creatures like robots, humans, or computer programs
when trying to achieve some goal. In particular, the most basic form of classical
planning tries to find a sequence of actions leading from the initial state to a
state which includes all goal constraints. Since the search space usually grows
exponentially when the number of actions increases [8], search algorithms should
be enhanced in order to guide the search appropriately. One of the best known
method is using heuristic functions which estimate the distance from a given
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state to the nearest (or optimum) goal state. Another one is adopting control
knowledge which describes additional information of a specific planning problem
to constrain the search space.

On one hand, although a number of heuristic search algorithms are pro-
posed for the last two decades, these algorithms are limited in that they are
only suitable for certain kinds of planning problems. On the other hand, it is
proved practically that even with rather basic search strategy and proper control
knowledge, planners can achieve surprising effectiveness. We believe that control
knowledge can be benefit in improving the performance of heuristic search. In
this paper we will show how to combine heuristic search and control knowledge
in the same framework.

A promising way of specifying control knowledge is to use temporal logic. For
example, the “next” operator from LTL (Linear Temporal Logic) allows one to
specify what can and cannot be held at the next time step, while the “always”
operator can assert the invariants holding in any state reachable from the initial
state. Bacchus et al. develop a planner TLPlan [1], where domain-dependent con-
trol knowledge encoded in bounded first-order LTL to prune the search space via
standard forward-chaining search. Kvarnström introduces a complex logic, called
TAL (Temporal Action Logic), which encodes actions into logical formulas, and
also employs this kind of domain-dependent control knowledge in the forward-
chaining planner named TALplanner [11]. TLPlan can only generate sequential
plans, while TALplanner is capable of producing parallel plans (actions exe-
cuted concurrently). Baier and McIlraith convert LTL formulas into automata
with infinite loops which can be added to a planning task, where additional vari-
able for each state of the automata is introduced in the search space [2]. In their
work, LTL is used for expressing the temporally extended goals, not for pruning
the search space. Wang et al. present a method to describe landmarks and their
associated orderings in LTL [20]. They translate LTL formulas into automata
and augment the famous FF heuristic [10] by including the automata variables
in the relaxed planning graph, and show such “landmarks” are effective in com-
puting high-quality plans quickly. HTN (Hierarchical Task Network) [6] based
planning planners, e.g., SHOP2 [14], in which the dependency among actions is
given in advance by hierarchically structured networks. The network represents
a hierarchy of tasks each of which can be executed. The task is either primi-
tive, or can be decomposed into refined subtasks. The planning process starts
by decomposing the initial task network and continues until all compound tasks
are decomposed into primitive ones.

We find the above mentioned work are encountered a challenge in common: it
is difficult to solve the planning problem with spatial and temporal constraints,
e.g., the CityCar domain in IPC 20141, or the DataNetwork domain in IPC
20182. Since the control knowledge formalism is mainly temporal logic or task
networks which can only express temporal constraints. Additionally, the cur-
rent dominant heuristic approaches also solve such problems inefficiently due to

1 https://helios.hud.ac.uk/scommv/IPC-14/domains sequential.html.
2 https://ipc2018-classical.bitbucket.io/#domains.
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the lack of useful guiding information. In this paper, in order to enhance the
performance of planning systems, we propose an approach based on a forward-
chaining heuristic search framework, in which we combine a spatio-temporal
logic PPTLSL for the sake of describing the control knowledge. PPTLSL uses
separation logic [15] as the spatial dimension and PPTL (Propositional Projec-
tion Temporal Logic) [4,5,23] as the temporal dimension. Separation logic is a
spatial logic for reasoning about heap-manipulating programs. PPTL, an expres-
sive temporal logic [17,18], has already been successfully applied to planning [21],
real-time system verification [3], efficient temporal properties verification [22] etc.
We illustrate how PPTLSL formulas can be integrated into the heuristic search
in the sequel. In words, this can be done by a progression technique specialized
on PPTLSL formulas.

This paper is organized in the following way: Sect. 2 gives some background
about the relevant formalism used in this paper. We explain the novel algorithm
combing heuristic search and PPTLSL in Sect. 3. In Sect. 4, experiments and
evaluations are illustrated and analyzed. Finally, we give conclusions and list
future work in Sect. 5.

2 Preliminaries

In this section we give the definitions of planning and PPTLSL formalisms used
in this paper.

2.1 Planning Representation

We consider classical planning tasks or planning problems as the following stan-
dard definition:

Definition 1 (Planning Task). A planning task is a tuple P = (Π,A, I,G),
where

– Π is a finite set of propositional variables.
– A is a finite set of actions, and for each action a ∈ A, a =

(pre(a), add(a), del(a), cost(a)), where pre(a) ⊆ Π, add(a) ⊆ Π, del(a) ⊆ Π
and cost(a) ∈ N0.

– I ⊆ Π is the initial state.
– G ⊆ Π is the set of goal constraints.

A state s is defined as a set of propositional variables, i.e., the set of facts,
the variables which do not appear in s are assumed to be false (closed world
assumption). An action a is applicable to a state s if pre(a) ⊆ s. When a is
applied to s, the successor state is defined as: succa(s) = (s\del(a)) ∪ add(a). A
sequence of actions ρ = 〈a0, a1, . . . , an〉 is applicable to s0 if a0 is applicable to
s0, and ai is applicable to succai−1(si−1), 1 ≤ i ≤ n. We abbreviate the nota-
tion succan

(. . . (succa0(s)) . . .) as succ〈a0,...,an〉(s). When applying a sequence of
actions ρ to a state s, a sequence of states from s to succρ(s) is obtained. If
s = I and G ⊆ succρ(s), ρ is called a plan. The cost of a plan is obtained as the

sum of the cost of each action in the plan, i.e.,
n

Σ
i=0

cost(ai).
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2.2 Spatio-Temporal Logic PPTLSL

Since there are many planning tasks involving spatial and temporal constraints,
we choose to use the spatio-temporal logic PPTLSL as the control knowledge. Let
V ar and Loc be the set of spatial variables and spatial locations respectively. nil
is employed to represent the inactive location. The syntax of PPTLSL is defined
by the following grammar:

e ::= nil | l | x

φ ::= p | GOAL(p) | e1 = e2 | e0 �→ { e1, . . . , en } | ¬φ | φ1 ∨ φ2 | φ1#φ2 | ∃x : φ

P ::= φ | ¬P | P1 ∨ P2 | ©P | (P1, . . . , Pm) prj P0 | P ∗

where p ∈ Π is a propositional variable, x ∈ V ar a spatial variable, and l ∈ Loc
a location, φ denotes separation logic formulas and P PPTLSL formulas.

Let Val = Loc ∪ {nil } be the spatial values, and B = { true, false } the
boolean domain. A state s is a triple (Ip, Iv, Il), where Ip : Π → B, Iv : Var →
Val and Il : Loc ⇀

⋃n
i=1 Val

i . Intuitively, in our spatial model, Il(l) = (l1, l2)
denotes a spatial cell labeled by l and with (l1, l2) stored in. We will refer to the
domain of Il by dom(Il). We say Il1 and Il2 are disjoint, written as Il1 ⊥ Il2 , if
dom(Il1)∩dom(Il2) = ∅. The operation Il1 •Il2 is defined for the union of Il1 and
Il2 . The notation s[e] indicates the evaluation of e with respect to s. Given G as
the goal constraints of a planning task, semantics of separation logic formulas is
defined by the satisfaction relation |=SL below.

s |=SL p iff p = true.

s |=SL e1 = e2 iff s[e1] = s[e2].
s |=SL e0 �→ {e1, . . . , en } iff dom(Il) = {s[e0]} and Il(s[e0]) = (s[e1], . . . , s[en]).
s |=SL ¬φ iff s �|=SL φ.

s |=SL φ1 ∨ φ2 iff s |=SL φ1 or s |=SL φ2.

s |=SL φ1#φ2 iff ∃Il1 , Il2 : Il1 ⊥ Il2 , Il = Il1 • Il2 , (Ip, Iv, Il1) |=SL φ1, and
(Ip, Iv, Il2) |=SL φ2.

s |=SL ∃x : φ iff ∃l ∈ Val : (Ip, Iv(x/l), Il) |=SL φ.

s |=SL GOAL(p) iff ∀s : if G is true in s, then s |=SL p.

The following shows some useful derived formulas. Formula e �→ ei denotes
there is a link between e and ei. lsn(e1, e2) precisely describes a path from e1 to
e2 of length n without any other locations (e2 is also excluded). e1 →+ e2 and
e1 →∗ e2 indicate that e2 is reachable from e1.

e �→ ei
def= e �→ { e1, . . . , ei, . . . , en }

ls1(e1, e2)
def= e1 �→e2 lsn+1(e1, e2)

def= ∃x : e1 �→x#lsn(x, e2)

e1→+ e2
def=

n∨

i=1

lsi(e1, e2)#true e1→∗ e2
def= e1=e2∨e1→+ e2
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An interval σ = 〈s0, s1, . . .〉 is a nonempty sequence of states, possibly finite
or infinite. The length of σ, denoted by |σ|, is ω if σ is infinite, otherwise it is the
number of states minus one. We consider the set N0 of non-negative integers,
define Nω = N0 ∪ {ω } and � as ≤ \{ (ω, ω) }. σ(i...j)(0 ≤ i � j ≤ |σ|) denotes
the sub-interval 〈si, . . . , sj〉. The concatenation of σ with another interval σ′ is
denoted by σ · σ′. Let σ = 〈sk, . . . , s|σ|〉 be an interval and r1, . . . , rn be integers
such that 0 ≤ r1 ≤ · · · ≤ rn � |σ|. The projection of σ onto r1, . . . , rn is the
interval, σ ↓ (r1, . . . , rn) = 〈st1 , . . . , stm〉, where t1, . . . , tm are obtained from
r1, . . . , rn by deleting all duplicates.

An interpretation of a PPTLSL formula is a triple I = (σ, k, j) where σ =
〈s0, s1, . . .〉 is an interval, k a non-negative integer and j an integer or ω such
that 0 ≤ k � j ≤ |σ|. We write (σ, k, j) |= P to mean that a formula P is
interpreted over a sub-interval σ(k...j) of σ with the current state being sk. The
precise semantics of PPTLSL built upon σ is given below.

I |= φ iff sk |=SL φ.

I |= P1 ∨ P2 iff I |= P1 or I |= P2.

I |= ¬P iff I �|= P.

I |= ©P iff k < j and (σ, k + 1, j) |= P.

I |= (P1, . . . , Pm )prj P iff ∃r0, . . . , rm and k = r0 ≤ r1 ≤ · · · ≤ rm � j such that

(σ, ri−1, ri) |= Pi for all 1 ≤ i ≤ m and (σ′, 0, |σ′|) |= P for one of the following σ′ :

(a) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1...j)

(b) rm = j and σ′ = σ ↓ (r0, . . . , ri′ ) for some 0 ≤ i′ ≤ m.

I |= P ∗ iff ∃r0, . . . , rn and k = r0 ≤ r1 ≤ · · · ≤ rn−1 � rn = j(n ≥ 0) such that

(σ, ri−1, ri) |= P for all 1 ≤ i ≤ n; or ∃r0, . . . , and k = r0 ≤ r1 ≤ r2 ≤ · · · such that

lim
i→∞

ri = ω and (σ, ri−1, ri) |= P for all i ≥ 1.

A formula P is satisfied over an interval σ, written as σ |= P , if (σ, 0, |σ|) |= P
holds. We also have some derived temporal formulas:

ε
def= ¬ © true P1;P2

def= (P1, P2) prj ε

♦P
def= true;P �P

def= ¬♦¬P

Here, ε denotes an interval with zero length, � and ♦ have the standard meanings
as in LTL. Formula P1;P2 asserts that P1 holds from now on until some point
in the future, and from that point on, P2 holds.

Example 1 (Example of Control Knowledge). The CityCar domain simu-
lates the impact of road building/demolition in traffic networks. Some cars need
to move to their destinations, while roads may be built and removed dynamically
(the most costly actions). CityCar domain is the second hardest problem in the
8th IPC for the reason that the roads can shape in a variety of ways (most of
which are infeasible). Consider the following control knowledge which is useful
for the CityCar domain:
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�(∀j1, j2, j3, j4 : (∃r1, r2 : road connect(r1, j1, j3) ∧ road connect(r2, j1, j4)) →
¬(j3 →∗ j2#j4 →∗ j2))

The above formula can be read as “for any locations j1, j2, j3, j4, if there exist
two road r1 and r2 sharing the same starting location j1, any two paths between
j1 and j2 should not be disjoint”. road connect(r, j1, j2) denotes that there is a
road r from j1 to j2. # is able to express the disjointness of two paths. Since all
variables are bounded, we can use quantifiers to obtain concise formulas. Note
that all predicates can be replaced by propositional variables.

Since roads are limited resource, we should keep at most one path from a
location to another to reduce the usage of roads. This knowledge provides valuable
information for reducing the cost a plan, as well as the search space.

3 Combining PPTLSL with Heuristic Search

Our aim is to exploit PPTLSL style control knowledge in heuristic search. We
assume control knowledge is given at the beginning of the search in terms of a
“global” PPTLSL formula. We will show how control knowledge can be added
into the search process in this section.

3.1 Progression of PPTLSL

We can rewrite PPTLSL formulas in a special form of what has to be held in the
current state and the following states. This can be accomplished by Theorems 1
and 2 [12,13].

Theorem 1 (Equisatisfiable Translation). For any PPTLSL formula P ,
there exists an equisatisfiable RPPTLSL formula R which is defined as,

R ::= p | GOAL(p) | e1 = e2 | ¬R | R1 ∨ R2 | ©R | (R1, . . . , Rm) prj R | R∗

RPPTLSL has no formulas describing spatial states. The translation process
from PPTLSL to RPPTLSL is omitted here for reasons of brevity, please refer to
[12,13] for more detail.

Theorem 2 (Normal Form Translation). Any RPPTLSL formula R can be
rewritten into its normal form which is defined as,

R ≡
m∨

j=1

(φj ∧ ε) ∨
n∨

i=1

(φ′
i ∧ ©Ri)

where φj and φ′
i are separation logic formulas, and Ri is a general RPPTLSL

formula.

We borrow the basic idea of progression technique from [1]. A RPPTLSL

formula R can be evaluated progressively over a sequence of states 〈s0, s1, . . .〉.
Intuitively, progressing R with 〈s0, s1, . . .〉 means that we obtain a new formula
R′ which is satisfied by 〈s1, . . .〉, where the original sequence of states satisfies
R. The following definition includes all progression rules required by RPPTLSL.
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Definition 2 (Progression Rules). Let P be a PPTLSL formula, we can first

translate P to a RPPTLSL formula R, then rewrite R in its normal form
m∨

j=1

(φj ∧

ε) ∨
n∨

i=1

(φ′
i ∧ ©Ri). R is evaluated over a sequence of states starting with state

s. progress(R, s) is recursively defined as follows:

– progress(ε, s) = ε
– progress(φ, s) = true if s |=SL φ, false otherwise
– progress(R1 ∨ R2, s) = progress(R1, s) ∨ progress(R2, s)
– progress(R1 ∧ R2, s) = progress(R1, s) ∧ progress(R2, s)
– progress(©R1, s) = R1

Theorem 3 (Progression). Given an interval σ = 〈s0, s1, . . .〉, for any
RPPTLSL formula R, progress(R, si) �= ε, the following condition must hold:

(σ, i + 1, |σ|) |= progress(R, si) iff (σ, i, |σ|) |= R

Proof. The proof proceeds by induction on R. Since we can translate R into its
normal form, there exists the following cases:

– R ≡ φ. If R is a state formula φ, (σ, i, |σ|) |= R if and only if si |=SL φ.
By Definition 2, progress(φ, si) = true or false dependents on whether si

satisfies φ. Any state satisfies true, falsifies false. Hence, this case holds.
– R ≡ ε. If R is ε, progress(R, si) = ε which violates the precondition. Hence,

this case holds.
– R ≡ R1 ∨ R2. (σ, i, |σ|) |= R if and only if (σ, i, |σ|) |= R1 or (σ, i, |σ|) |=

R2. By inductive hypothesis, (σ, i, |σ|) |= R1 if and only if (σ, i + 1, |σ|) |=
progress(R1, si), and (σ, i, |σ|) |= R2 if and only if (σ, i + 1, |σ|) |=
progress(R2, si). Hence, (σ, i, |σ|) |= R if and only if (σ, i + 1, |σ|) |=
progress(R1, si) ∨ progress(R2, si). By Definition 2, progress(R1, si) ∨
progress(R2, si) = progress(R1 ∨ R2, si).

– R ≡ R1 ∧ R2. Similar to the proof of the case R ≡ R1 ∨ R2.
– R ≡ ©R1. Based on the semantics of ©, (σ, i, |σ|) |= R if and only if

(σ, i + 1, |σ|) |= R1. By Definition 2, (σ, i + 1, |σ|) |= progress(R, si). ��
As we will see later, the progression technique is the essential when using

PPTLSL in heuristic planning process.

3.2 Incorporation of Heuristic Search Framework with PPTLSL

In fact the planning search space is a tree with the root be the initial state. When
exploring the space, heuristic algorithms mainly compute heuristic functions to
choose which nodes to expand. The major difference or the key is the functions
they use according to different applications. The algorithms usually maintain
two queues to save nodes. One is a priority queue called open list in which saves
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Algorithm 1. Planning algorithm with heuristic search and PPTLSL control
knowledge
Input: Initial state I, goal G, actions A, PPTLSL formula P .
Output: Plan.
1: g(I) = 0;
2: h(I) = heuristic estimate for I;
3: priority(I) = g(I) + h(I);
4: open = { I };
5: closed = ∅;
6: Plan = 〈〉;
7: Translate PI to an equisatisfiable RPPTLSL formulas RI ;
8: RI = progress(R, I);
9: while open �= ∅ do

10: select s ∈ open which has the highest priority;
11: closed = closed ∪ { s };
12: if G ⊆ s then
13: return Plan;
14: end if
15: for action a ∈ A applicable to s do
16: s′ = succa(s);
17: Rs′ = progress(Rs, s

′);
18: if Rs′ is unsatisfiable then
19: continue;
20: end if
21: Plan = Plan · a;
22: g(s′) = g(s) + cost(a);
23: h(s′) = heuristic estimate for s′;
24: if �s′′ : s′′ ∈ open ∪ closed and s′′ = s′ then
25: open = open ∪ { s′ };
26: priority(s′) = g(s′) + h(s′);
27: else if ∃s′′ : s′′ ∈ open ∪ closed and s′′ = s′ and g(s′) < g(s′′) then
28: priority(s′) = g(s′) + h(s′);
29: if s′ ∈ closed then
30: closed = closed \ { s′ };
31: open = open ∪ { s′ };
32: end if
33: else
34: remove tail a of Plan;
35: end if
36: end for
37: end while
38: return no solution;

unexpanded nodes, and the other is called closed list to record expanded ones.
The node with the highest priority in the open list will be selected for the future
expansion.
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For example, the best-first search algorithm A* [7], examines which node n
in the open list has the lowest value with respect to f(n) = g(n) + h(n), which
means n possesses the highest priorities. g(n) represents the exact cost from the
initial node to the current node n, and h(n) represents the heuristic estimated
cost from n to the goal. Specifically, h(n) can be calculated in various ways for
different purpose. Our algorithm employs A* as the underlying heuristic search
framework, since A* is guaranteed to return an optimal plan if the heuristic
function h used by A* is admissible. A heuristic function is said to be admissible
if it never overestimates the cost of reaching the goal.

The corresponding pseudo code is shown in Algorithm 1. For simplicity, we
just use states to represent nodes. The algorithm takes the planning problem
and the control formula as input, and searches for a plan. At the beginning of
the algorithm, several initializations are done in line 1–8. The exact cost of the
initial state g(I) is assigned to 0, the heuristic estimate h(I) is also calculated
(depends on implementation). The open list is initialized with a single element I
with priority g(I) + h(I), the closed list and the action sequence Plan is empty.
The global formula P (control knowledge) is translated into an equisatisfiable
RPPTLSL formula R. Then R with the initial state is progressed, resulting in
RI . For each iteration of the main loop, we first select an element s which has
the highest priority from the open list and put it in the closed list. As long
as s satisfies the goal, i.e., G ⊆ s, a plan (Plan) is found and returned (line
12–14). Otherwise we try to execute an action a which is applicable to s, and
the successor state s′ is obtained. Then the current control knowledge Rs is
progressed with s′. If the progression result R′

s is unsatisfiable, node s′ will be
discarded by trying another applicable action (line 18–20). If not, from line 21 to
23, we add a to Plan, calculate the exact cost g(s′) for reaching s′, and estimate
the heuristic cost h(s′). After that, the algorithm checks if s′ is in the open list or
the closed list. There exists three different cases. First, if s′ is a new state, it will
be inserted into the open list with priority g(s′)+h(s′). Second, if s′ is not a new
state, but g(s′) is lower than before, we simply updates the g value of s′. Note
that we do not need to recalculate the heuristic estimate since it is only state
dependent. Moreover, if s′ is already in the closed list, we should take it from the
closed list and insert it into the open list again. Third, if s′ is not new and has
a higher g value, we do nothing but only remove the tail of the Plan since the
existing g value is at least good or even better than the newly found one. Finally,
if the main loop ends without finding a solution, the algorithm will report that
the problem is unsolvable. In the algorithm, the progression technique will be
helpful to prune more state space by giving additional restrictions together with
heuristics.

We often hope to find a plan with the cost as low as possible. To this end,
we can slightly modify the algorithm by providing a bound cost initially, thus
any plan over cost will not be returned.
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4 Experiment

The above mentioned framework has been implemented on top of S-TSolver
[12,13], a domain-dependent planner using basic search (e.g., depth first search).
Note that we do not specify any heuristic strategy in Algorithm 1. In the imple-
mentation, a traditional heuristic method is employed via relaxed planning task
exploration.

Definition 3 (Relaxed Planning Task). Given a planning task P = (Π,A,
I,G), the relaxation P ′ of P is defined as P ′ = (Π,A′, I, G), with

A′ = { (pre(a), add(a), ∅, cost(a)) | (pre(a), add(a), del(a), cost(a)) ∈ A }
In words, one obtains the relaxed planning task by ignoring the delete effects

of all actions. The basic idea behind the relaxed planning task is that the number
of facts in a state during search is guaranteed to be increased or stable compared
with the previous state. Given a planning task P = (Π,A, I,G) and a state s,
we estimates the cost of a relaxed plan that achieves the goals starting from s
for the task P ′ = (Π,A′, s,G). More concretely, the base heuristic estimates a
rough approximation as the following cost values:

hcosts(p) =

⎧
⎨

⎩

0 if p ∈ s
n + cost(a) if min{Σq∈pre(a)hcosts(q)) | a ∈ A′, p ∈ add(a) } = n
∞ otherwise

Given a set of facts, we assume they are achieved independently in the sense
that the hcost of the facts is estimated as the sum of the individuals. The heuris-
tic estimate for a state is:

h(s) = hcosts(G) = Σg∈Ghcosts(g)

The assumptions that each fact is achieved independently ignores positive
interactions of actions. In fact, two facts may be achieved exclusively. However,
it can be proved that relaxed planing task is solvable in polynomial time.

Example 2 (An Example of Heuristic Estimate). Consider the following
example of a simple planning task, where G = { g1, g2 } and three actions a1 =
({ p }, { g1 }, ∅, 1), a2 = ({ q }, { g2 }, ∅, 1), a3 = ({ p }, { q }, ∅, 1). Given two states
s1 = { p }, s2 = { q }, the heuristic estimate for s1 and s2 are:

h(s1) = hcosts1(G)
= hcosts1(g1) + hcosts1(g2)
= hcosts1(p) + cost(a1) + hcosts1(q) + cost(a2)
= 0 + 1 + hcosts1(p) + cost(a1) + 1
= 1 + 2 = 3
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h(s2) = hcosts2(G)
= hcosts2(g1) + hcosts2(g2)
= ∞ + hcosts2(q) + cost(a2)
= ∞ + 1 = ∞

Obviously, s1 has better heuristic value than s2.

We extend the planner, S-TSolver, by replacing the basic forward search
with heuristic mechanism. Two standard input files (written in PDDL) namely
the domain file and problem file are needed, the former gives the definitions of
actions and the latter lists the initial state and the goal constraints. At each
step, the heuristic value of every new reachable state (after applying an action)
is calculated, while only the states satisfy the control knowledge are maintained.

Experiment has been carried out on S-TSolver. We compare S-TSolver of
two modes, one with basic search and the other with heuristic search. We use
a timeout of 10 min per run. To evaluate the plans found by the search, the
search time and cost for each plan are considered as metrics. Table 1 shows the
result of running S-TSolver for the CityCar domain. In the table, the column
“cost” indicates the minimum plan cost found by the planner, “time” the search
time and “len” the length of the plan. The column S-TSolver shows the result
with basic search and control knowledge, and S-TSolver(heuristic) shows the
result with both heuristic search and control knowledge. We do not compare the
mode that S-TSolver uses only heuristic search without control knowledge. The
reason is that the heuristic is so weak that only several solutions can be given
for few instances. Even Fast Downward [9], one of the best heuristic planner so
far, adopting complex and delicate heuristics only gives solutions for five simple
instances3.

The minimum cost and least time for each instance are in bold. In gen-
eral, the higher the cost, the longer the length. Heuristic really helps the
planner to improve the quality of a plan. In particular, all plans found by
S-TSolver(heuristic) have better quality than those by S-TSolver. However,
S-TSolver takes the advantage of search time, i.e., mostly the plans’ search
time is less since S-TSolver(heuristic) spends additional time to compute the
heuristic estimates. But this is not all the cases, sometimes heuristic enables the
search to move closer towards goals as soon as possible. Instead, the search time
is not affected (increased) by computing heuristics, especially for some difficult
instances (e.g., p17–p19).

3 https://helios.hud.ac.uk/scommv/IPC-14/resDoc.html.

https://helios.hud.ac.uk/scommv/IPC-14/resDoc.html
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Table 1. Performance of S-TSolver with (without) heuristic: CityCar domain

Problem instance S-TSolver S-TSolver(heuristic)

cost time len cost time len

p01 70 0.50 17 70 0.08 17

p02 126 6.03 27 122 57.18 33

p03 106 0.79 27 100 4.24 32

p04 136 4.92 41 136 11.10 41

p05 94 1.60 37 86 4.52 39

p06 154 4.22 23 138 4.34 28

p07 154 3.69 23 134 23.28 23

p08 114 1.98 22 114 1.22 22

p09 108 5.77 28 102 18.12 32

p10 176 16.01 38 152 15.10 34

p11 184 8.88 36 184 3.46 38

p12 202 5.00 36 158 31.88 40

p13 350 26.31 62 206 27.02 52

p14 164 11.63 48 126 13.64 38

p15 260 21.22 48 239 21.12 47

p16 150 12.00 44 136 22.24 39

p17 304 33.06 56 230 19.74 48

p18 180 19.43 56 144 14.20 49

p19 416 38.29 84 240 1.18 60

p20 280 44.14 82 204 110.54 62

5 Conclusion

This paper introduces an algorithm that combines control knowledge and heuris-
tic search in the same framework. PPTLSL formulas representing control knowl-
edge are evaluated at each planning step by progression technique. Then we
incorporate progression of PPTLSL formulas with a general forward heuristic
search. The experiment demonstrates that the effectiveness and efficiency of
heuristic search can be further improved by exploiting domain specific knowl-
edge. Generally speaking, our approach belongs to model checking framework.
In the future, we will plan to exploit some existing efficient model checking tech-
niques, e.g., abstract model checking [16,19], logic based model checking [24], in
our work. We believe that one will obtain better results in this way.
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