
Metadata Application Profile Provenance
with Extensible Authoring Format

and PAV Ontology

Nishad Thalhath1(B) , Mitsuharu Nagamori2 , Tetsuo Sakaguchi2 ,
and Shigeo Sugimoto2

1 Graduate School of Library, Information and Media Studies, University of
Tsukuba, Tsukuba, Japan

nishad@slis.tsukuba.ac.jp
2 Faculty of Library, Information and Media Studies, University of Tsukuba,

Tsukuba, Japan
{nagamori,saka,sugimoto}@slis.tsukuba.ac.jp,

https://www.slis.tsukuba.ac.jp

Abstract. Metadata application profiles (MAP) serve a critical role in
the of metadata interoperability. Singapore framework recommends pub-
lishing the application profiles as documentation, with detailed usage
guidelines aimed to maximize reusability and interoperability. Author-
ing, maintenance, versioning, and ensuring the availability of previous
versions along with changelogs are vital steps involved in MAP publish-
ing. The longevity of the schema is a critical part of metadata longevity.
MAP should provide sufficient administrative information and version-
ing to ensure the provenance and longevity as a record of changes of the
metadata instance. The authors propose to include actionable changelogs
and provenance information within an extensible MAP authoring format.
The proposal also includes a recommendation on MAP versioning and
publishing with PAV, a lightweight ontology for Provenance, Authoring,
and Versioning.

Keywords: Metadata · Metadata schema · Application profiles ·
Schema versioning · Semantic web · Linked data · PAV Ontology

1 Introduction

Metadata application profiles (MAP) are data element schemas from various
namespaces mixed and customized for a specific application [9]. MAPs are the
best mechanism to express consensus of any metadata instance by documenting
the elements, policies, guidelines, and vocabularies for that particular implemen-
tation along with the schemas, and applicable constraints. Application profiles
also provide the term usage specifications and support interoperability by rep-
resenting domain consensus, alignment, and the structure of the data [1,10].

c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): JIST 2019, LNCS 12032, pp. 353–368, 2020.
https://doi.org/10.1007/978-3-030-41407-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41407-8_23&domain=pdf
http://orcid.org/0000-0001-9845-9714
http://orcid.org/0000-0002-9545-7825
http://orcid.org/0000-0002-2055-5594
http://orcid.org/0000-0002-5341-7016
https://doi.org/10.1007/978-3-030-41407-8_23


354 N. Thalhath et al.

Provenance information is vital for application profiles. Changelogs of appli-
cation profile versions help to ensure the metadata instance’s longevity. The
longevity of the schema is essential for metadata longevity. Metadata schema
provenance should be documented and maintained for the preservation of meta-
data [13]. Application profile should provide sufficient administrative informa-
tion, such as creator, date of release, version, and usage rights. Versioning of the
application profile is crucial as it is a record of the application profile as well as
metadata changes. Keeping changelogs might help to migrate data-sets to new
profiles or create crosswalks to upgrade the instances. For Linked Open Data
(LOD), changelogs help to update linked datasets as well.

Through this paper, the authors are attempting to:

1. Extend and clarify a previously proposed [25] extensible authoring format
[24] to include structured and actionable changeset with a notion that the
source of the MAP can include an actionable timeline of its development.

2. Use a lightweight ontology to distinguish and point the source of the MAP
as well as the published MAP resources [4].

3. Use the same ontology to notate the provenance information with identifi-
able roles on authoring, publishing, and contributing for collaborative MAP
development.

The anticipated outcomes of these proposals are:

1. Distinguish the source of the application profile from the published versions
to baseline the concepts of authoring formats and expression formats for
application profiles.

2. Identifying and retrieving application profiles and its versions, including
changelogs, can be automated with the help of semantic linking of MAP
resources.

3. A source of MAP with an interoperable authoring format consists of an action-
able timeline can help to maintain the longevity of the schema. Declared roles
of contribution can act as a means of provenance for MAP resources.

1.1 Application Profile Expression Formats

Dublin Core Metadata Initiative (DCMI) defines one of the earliest guidelines
to express application profiles, which can be in various formats, as Description
Set Profiles (DSP). DSP is a constraint language for Dublin Core Application
Profiles (DCAP) based on the Singapore framework for application profiles [18].
XML or RDF can be used as an expression format for DSP.

Singapore framework recommends publishing the application profiles in
human- readable expression formats as a documentation, with detailed usage
guidelines aimed to maximize reusability and interoperability. Expressing appli-
cation profile in human readable formats require much more components than
textual descriptions of first-order elements such as properties and classes. As
a result, the expression of an application profile in human readable formats is



MAP Provenance with Extensible Authoring Format and PAV 355

expected to have schematic representation, changelogs as well as detailed admin-
istrative information.

For the machine-actionable expressions, other than the XML and RDF, new
standards are emerging and being widely accepted. Evolution of Linked Data
encourages to express the application profiles in semantic web friendly formats
like JSON-LD and OWL. Considering the developments in data linking and
reuse, compelling use cases for expressing application profiles in promising data
validation formats like ShEx or SHACL is increasing. Including these futuristic
expression formats in application profile publishing will expand the scope of its
usage as well as assures long-term usability.

1.2 Current Status and Availability of Application Profiles

Application profiles are not standardized in terms of availability, maintenance,
and distribution. It requires human involvement to identify MAPs [15]. Because
of this manual effort, curating and archiving MAPs is difficult and costly. In
addition to automated methods, numerous registry initiatives also rely on man-
ual contributions. Most of the application profiles are available only in human-
friendly formats, and to distinguish them from other types of documents; this
requires human involvement in the identification process. It is challenging to
extract structured application profile data from spreadsheets or PDF documents.
Lack of versioning, changes logs, and access to previous versions have a substan-
tial impact on metadata information’s longevity and provenance. The absence
of unified publication formats limits the automated processing of application
profiles, thereby limiting the number of application profiles accessible in vari-
ous attempts to register and curate them. The limited number of application
profiles also restricts the primary purpose of metadata registries in using appli-
cation profiles to promote interoperability and reuse [17]. There is also a lack of
a standardized way to link data to the MAP it is based on [21,22].

1.3 Challenges in Application Profile Development

To develop and manage application profiles, there are recommendations such as
Me4DCAP which provides a set of guidelines to define, construct, and validate
MAPs [14]. However, authoring tools and formats which are dedicated to MAP is
less in number. Usually, application profile maintainers have to use different tools
to create different expression formats, and this makes the whole process tedious
for most of the domain experts. As a result, a large number of application profiles
were authored and published only in the human-readable document formats.
Availability of previous versions is not ensured and most of the MAPs doesn’t
maintain older versions in a publicly accessible format.

Different communities have different levels of experience in the technical
aspects of application profile expression formats. There is a severe lack of guid-
ance for developing and publishing metadata application profiles. The barrier
is the limited number of well-defined samples and initiatives for archiving and



356 N. Thalhath et al.

curating application profiles. For creating application profiles, there are not many
well-accepted authoring formats or pre-processors.

1.4 Yet Another Metadata Application Profile (YAMA) as an
Application Profile Authoring Format

Source formats used for application profile publication can be considered as an
authoring format. This source formats can be processed with the help of pro-
cessing tools such as a format converter or a parsing system to generate different
expression formats of that application profile. A format to author the applica-
tion profile cannot be considered as an expression of the application profile in all
situations if the format is not a standard expression. The expression capabilities
of such formats are dependable to its processors or conversion tools. This clear
separation between authoring and expression formats is illustrated in Fig. 1.

Fig. 1. Authoring formats and expression formats for application profiles

For application profile, authors proposes Yet Another Metadata Application
Profile (YAMA) as an extensible authoring format to address shortcomings of
previous proposals [23]. Despite extensive knowledge of MAP, YAMA is meant
to be simple enough that domain experts can use it. YAMA uses YAML Ain’t
Markup Language (YAML), a robust human-friendly data serialization format
with various implementations in most popular programming languages and con-
sidered to be JSON’s superset [2]. Basic structure of YAMA MAP section is
explained in Fig. 2.

YAMA is also an attempt to resolve the lack of a workflow in authoring meta-
data application profiles. Given the increasing popularity of workflows based on
GitHub, different output formats, and extensibility to various proposals such as
ShEx, DCAT, PROV removes the need for repetitive tasks in the maintenance of
metadata application profiles. YAMA is an intermediate MAP format to produce
or convert different standard application profile expression formats.

YAMA is extensible with custom elements and structure. For example, cus-
tom elements can be added to the document tree, as per the demand of the
use case. The only restriction is that custom elements cannot be from reserved
element sets. Capabilities of YAMA could be extended without any large-scale



MAP Provenance with Extensible Authoring Format and PAV 357

Fig. 2. Structure of YAMA MAP

implementation changes within the scope of YAML specification. YAMA is based
on DC-DSP, and a minimal DC-DSP is mandatory to express a MAP in YAMA.
YAMA also includes a structured syntax to record modifications of a YAMA
document named as change-sets, in addition to extensible key-values and struc-
ture. YAMA change-sets can be used to record changes of a MAP over any other
versions. Change-sets are adapted from RFC 6902 JavaScript Object Notation
(JSON) Patch [19], with the changes marked as an action to a path. Every change
use ‘status’ as a reserved value to indicate status changes like ‘deprecation.’ This
extensible nature of YAMA documents is explained in Fig. 3.

Fig. 3. Extensibility of a YAMA application profile



358 N. Thalhath et al.

2 Related Work

As an application format, DCMI proposed a constrained language for Dublin
Core Application Profiles named Description Set Profile (DSP). As an author-
ing format for DSP, a MoinMoin wiki syntax was introduced to embed Appli-
cation Profiles in web pages. Later, Simple DSP (SDSP) [7]. A simplified form
of DSP using spreadsheets as an authoring format was developed as part of the
Metabridge project [17]. Recently, the DCMI application profile Special Inter-
est Group is working on improving DSP [6]. Library of Congress BIBFRAME
project developed a web-based editor for BibFrame Profiles [5]. Linked Data
for Production 2 (LD4P2) project modified and released BIBFRAME editor for
general application profile creation named Sinopia Profile Editor [11].

There is no extensibility of all these stated authoring formats. A format’s
extensibility is critical to its acceptance, which helps different communities to
adopt a simple base format and introduce specific domain requirements. It will
also help to create different standard formats from the same source document
without relying on the common elements. The authors previously proposed an
extensible authoring format named Yet Another Metadata Application Profile
(YAMA) [25] using YAML1 syntax and validated its extensibility over existing
similar proposals [24].

Li and Sugimoto proposed a provenance model named DSP-PROV [13] to
keep track of structural changes of metadata schemas. The DSP-PROV model
applies PROV to the Dublin Core Application Profile. Different from the above
proposal, this paper is treating application profile documents as a digital resource
and attempting to use a lightweight ontology to map different versions of the
published MAP and its provenance.

3 Methodology

The authors are attempting to extend a previously proposed MAP authoring
format with an actionable timeline [23]. With the consideration that the format is
to be a complete source of MAP authoring and versioning, a lightweight ontology
is introduced to notate the authoring and versioning of MAP. The ontology is
introduced with a notion that it can express different versions of the MAP as
well as stakeholders and authoring source of the MAP.

3.1 Actionable Changesets as Timeline of MAP

YAMA is extended with two different sets of change mapping options. An action-
able change record named ‘changesets’ - a collection of changes declared using a
custom adaptation of JSON-PATCH - along with minimal metadata for the set
of changes. Changesets are declared within the ‘changes’ path of the YAMA doc-
ument. JSON patch is originally intended to use as HTTP-PATCH method for

1 https://yaml.org.

https://yaml.org


MAP Provenance with Extensible Authoring Format and PAV 359

JavaScript Object Notation (JSON) [RFC4627]2 - a standard format for storing
and exchanging structured data. HTTP PATCH [RFC5789]3 method extends
the Hypertext Transfer Protocol (HTTP) [RFC2616]4 as a method to perform
partial modifications to resources. A simple JSON patch is shown in Fig. 4.

Adaption of JSON-Patch as a possible means of recording changes within the
application profile authoring environment helps to makes the changes action-
able without any lock-in as JSON-Patch is widely adapted and there are plenty
of implementations in every popular programming languages. This acceptance
helps the implementors to keep the format open for independent development
and tooling within the workflow of MAP development.

A JSON Patch consists of sequential operations applied to a JSON object
with one operation (op) element. As per RFC6902, valid operations are - add,
remove, replace, move, copy, and test. Each operation must declare one path
element which is a JSON Pointer - defined as per RFC6901 - points to a location
to modify within the given JSON document. A JSON Pointer composed of a
string of tokens separated by ‘/’ characters. These tokens can be a specific key
in objects or indexes of arrays.

The remaining part of a JSON Patch operation consists of more elements
depends on the specific type of operation.

1 {
2 "op": "remove",

3 "path": "/ statements/statement_id /"

4 }

Fig. 4. A basic JSON-Patch object indicating a removal operation

In theory, a YAMA document is a constrained YAML expression of a MAP
which can be abstracted or converted into a valid JSON structure. The JSON
patch is applied to this JSON structure instead of the YAML document. In order
to make the JSON patch actionable for generating the pre or post-change ver-
sions of a MAP, authors extended the JSON patch by including a new optional
elements previous_value which is applicable only for remove and replace oper-
ations. Another proposed additional element in the context of an application
profile is status - which can notate the changes in status, such as deprecation,
proposed, reserved, and obsolete. An example changeset expressed within YAMA
is shows in Fig. 5. Minimal mandatory metadata elemets for YAMA changeset
is given in Table 1.

Along with changesets, YAMA is extended with an optional changelog
section, which is a human-readable list of changes with minimal metadata.

2 https://tools.ietf.org/html/rfc6902.
3 https://tools.ietf.org/html/rfc5789.
4 https://tools.ietf.org/html/rfc2616.

https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc2616


360 N. Thalhath et al.

1 # YAMA

2 changes:

3 cs_20181108_01:

4 version: 1.2

5 previous_version : 1.1

6 date: 2018-11-08

7 changeset:

8 ch_20181108_01:

9 op: replace # remove, add, replace, copy, test

10 path: /statements/pr_type/max

11 value: n

12 previous_value: 0

Fig. 5. Example of YAMA ChangeSet

Table 1. Metadata for the changeset

Element Usage

version Version of the MAP after the change

previous_version Version of the MAP, to which the change is applied

date Date of change in ISO 8601 (not the date of release)

Changelogs are not meant to be actionable but act as a structured collection
of human-readable descriptions of changes, which can be changes intended to be
documented but does not have any impact on the structure of the MAP docu-
ment. Also, this section can serve as an alternate but meaningful textual rep-
resentation of changes instead of utilizing the changeset. This changelog section
is proposed for authors prefer to utilize another means of change management,
such as a version control systems, or authors with minimal technical expertise
on creating an actionable JSON-patch. A schematic representation of YAMA’s
provenance components and their outcome is expressed in Fig. 6.

3.2 PAV Ontology as a Means of MAP Provenance

Provenance, Authoring and Versioning ontology (PAV)5 [4] is developed as a
lightweight ontology for notating minimal information which is essential for doc-
umenting the provenance, authoring, and versioning of resources published in
the web. PAV clearly distinguishes between contributors, authors and publishes
of digital resources. PAV is capable of representing the provenance of originating
resources that have been accessed, transformed, and consumed.

PAV utilizes the W3C provenance ontology PROV-O, in order to describe
authoring, publishing, and digital maintenance of online resources. PAV does not
define any explicit classes, domain, or ranges; instead, every property is meant to
be directly used in describing an online resource. This direct usage minimalizes

5 http://purl.org/pav.

http://purl.org/pav


MAP Provenance with Extensible Authoring Format and PAV 361

Fig. 6. YAMA with actionable changesets and changelogs mapped to their expected
outputs

the efforts required for expressing resources using an ontology. Being lightweight
over PROV-O is the main reason for considering PAV to be a means of expressing
MAP resources [4].

There are vocabularies similar to PAV such as Dublin Core Terms (DC
Terms) [3], PROV-O [12], OPM [16], and Provenance Vocabulary [8]. Among
that PROV-O is the most suitable and previously considered in many other
studies to express MAP provenance. PROV-O is similar to a generic framework
for describing provenance in a different range of applications. However, using
PROV-O alone may not be suitable in expressing necessary details for the spe-
cific provenance involving authoring and versioning. PAV can be considered as
a specialization of PROV-O by facilitating more straightforward relationships
for expressing common provenance for digital resources in the web [4]. PROV-O
implements terms useful in tracing the origin of a resource, its derivations, and
the relationship between these different resources. PROV-O is also capable of
expressing the different entities contributed to the resource. In short, PROV-O
can be considered as a general provenance data model extendable for domain-
specific provenance information. For example, PROV-O does not distinguish
between authors, editors, and contributors - which is a noticeable distinction
in use-cases like collaborative MAP authoring and publishing based on public
repositories such as GitHub.

PAV based framework is proposed in the context of MAP authoring and
publishing with these intentions.

1. Identify the persons and organizations or agents involved in the application
profile development. Also, distinguish their roles as contributor or creator of
the published MAP.



362 N. Thalhath et al.

Table 2. Subset of PAV authoring properties mapped to YAMA MAP metadata ele-
ments

YAMA PAV element Description

creator pav:authoredBy The author of the MAP (person or agent)

creator pav:createdBy The author of the MAP (person or agent)

publisher pav:curatedBy The Publisher, generally the organisation

contributors pav:contributedBy The collaborative agents, such as people who
are not a part of the authors but contributed
through GitHub etc

date pav:authoredOn The date of authoring the MAP

date pav:curatedOn The date of publishing the MAP

date pav:contributedOn Same as the date of publishing

Table 3. Subset of PAV provenance properties mapped to YAMA MAP metadata
elements

YAMA metadata PAV element Description

creator pav:createdBy The author of the MAP (person or agent)

publisher pav:createdWith The tool, software or authoring format of the
MAP. eg YAMA, Sinopia

date pav:createdOn The date of authoring the MAP

URL pav:retrievedFrom The published URL of the MAP

source pav:importedFrom The source of the MAP, eg: GitHub repository
URL, Google Docs URL etc

Table 4. Subset of PAV versioning properties mapped to YAMA MAP metadata
elements

YAMA metadata PAV element Description

version pav:version The version identifier of the MAP. A
semantic version (SemVer) is
recommended

previous_version pav:previousVersion Previous version identifier of the MAP.
Current version is assumed to be a
derived from this version

based_on pav:derivedFrom The base schema that the application
profile is derived from. Example, DCAP,
BibFrame, SDSP etc.

date pav:lastUpdatedOn The last updated date is expected, but
this update is meant for changes that
doesn’t break the MAP structure, such as
fixing a spelling

version pav:hasVersion MAP has accessible versions

version pav:hasCurrentVersion Current version of the MAP

version pav:hasEarlierVersion Earlier versions of the MAP



MAP Provenance with Extensible Authoring Format and PAV 363

2. Mapping of MAP versions, release, and updates by distinguishes between
published and last modified dates.

3. Track and distinguish the versions and source of the MAP, such as differenti-
ating the provenance for the published versions of the application profiles and
source repositories, the version control systems or authoring environment.

A detailed schematic explanation MAP versioning expression with PAV is
narrated in Fig. 7. Tables 2, 3 and 4 shows the possible mapping of YAMA meta-
data elements a subset of PAV ontology.

4 Validation

To validate the proposal, a popular public application profile, The DCAT Appli-
cation profile for data portals in Europe (DCAT-AP) can be used. DCAT-AP
an application profile based on W3C’s Data Catalogue vocabulary (DCAT).
DCAT is implemented for describing public sector datasets in Europe to enable
a cross-data portal search for open data sets and make them searchable. DCAT-
AP is published in Joinup portal6, but the sources are maintained in a GitHub
repository7. DCAT-AP repository does not use any authoring format or prepro-
cessors but maintains and releases the MAP in individual expression formats.

Fig. 7. MAP publication is expressed in PAV ontology

6 https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe.
7 https://github.com/SEMICeu/DCAT-AP.

https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe
https://github.com/SEMICeu/DCAT-AP


364 N. Thalhath et al.

As a well-maintained MAP, the repository holds three different versions - v1.1,
v1.2, and v1.2.1. RDF expression of the MAP points to the previous version, but
the whole versioning is not mapped within the RDF [20]. A minimal expression
of DCAT-AP provenance with PAV in RDF is demonstrated below.

1 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

2 @prefix pav: <http :// purl.org/pav/> .

3 @prefix foaf: <http :// xmlns.com/foaf /0.1/> .

4

5 <https :// joinup.ec.europa.eu/solution/dcat -application -

profile -data -portals -europe >

6 pav:createdBy [

7 foaf:name "DCAT -AP Working Group" ;

8 foaf:homepage <https :// joinup.ec.europa.eu/node /64331 >

9 ] ;

10 pav:authoredBy [

11 foaf:name "Makx Dekkers" ;

12 foaf:homepage <http :// makxdekkers.com/>

13 ], [

14 foaf:name "Vassilios Peristeras" ;

15 foaf:homepage <http :// www.deri.ie/users/vassilios -

peristeras/>

16 ], [

17 foaf:Name "Nikolaos Loutas" ;

18 foaf:homepage <http :// nikosloutas.com/>

19 ];

20 pav:curatedBy <https :// joinup.ec.europa.eu/> ;

21 pav:providedBy [

22 foaf:name "European Commission" ;

23 foaf:homepage <http ://ec.europa.eu/>

24 ] ;

25

26 # GitHub contributors , need not to be authors or

editors

27 pav:contributedBy <https :// github.com/SEMICeu/DCAT -AP/

graphs/contributors >;

28

29 pav:version "1.2.1"^^xsd:string;

30 pav:hasCurrentVersion <https :// joinup.ec.europa.eu/

release/dcat -ap/121>;

31 pav:previousVersion <https :// joinup.ec.europa.eu/

release/dcat -ap/12>;

32 pav:hasErlierVersion <https :// joinup.ec.europa.eu/

release/dcat -ap/11>;

33 pav:hasVersion <https :// joinup.ec.europa.eu/release/

dcat -ap/121>;

34 pav:hasVersion <https :// joinup.ec.europa.eu/release/

dcat -ap/12>;

35 pav:hasVersion <https :// joinup.ec.europa.eu/release/

dcat -ap/11>;



MAP Provenance with Extensible Authoring Format and PAV 365

36 pav:hasVersion <https :// joinup.ec.europa.eu/node

/69559 >;

37 pav:wasDerivedFrom <https :// www.w3.org/TR/vocab -dcat

-2/>;

38 # GitHub main repository

39 pav:importedFrom <https :// github.com/SEMICeu/DCAT -AP >.

40

41 <https :// joinup.ec.europa.eu/release/dcat -ap/121>

42 pav:version "1.2.1"^^xsd:string;

43 pav:createdOn "2019 -05 -28"^^xsd:date;

44 pav:authoredOn "2019 -05 -28"^^xsd:date;

45 pav:importedOn "2019 -05 -28"^^xsd:date;

46 # GitHub repository versioned branch

47 pav:wasDerivedFrom <https :// github.com/SEMICeu/DCAT -AP

/tree /1.2.1 >;

48 # GitHub repository draft version branch

49 pav:sourceAccessedAt <https :// github.com/SEMICeu/DCAT -

AP/tree /1.2.1 - draft >;

50 pav:previousVersion <https :// joinup.ec.europa.eu/

release/dcat -ap/12>;

51 pav:hasErlierVersion <https :// joinup.ec.europa.eu/

release/dcat -ap/11>.

52

53 <https :// joinup.ec.europa.eu/release/dcat -ap/12>

54 pav:version "1.2"^^xsd:string;

55 pav:authoredOn "2018 -11 -08"^^xsd:date;

56 pav:wasDerivedFrom <https :// github.com/SEMICeu/DCAT -AP

/tree /1.2>;

57 pav:importedFrom <https :// github.com/SEMICeu/DCAT -AP/

tree/1.2-draft >;

58 pav:previousVersion <https :// joinup.ec.europa.eu/

release/dcat -ap/11>;

59 pav:hasErlierVersion <https :// joinup.ec.europa.eu/node

/69559 >.

60

61 <https :// joinup.ec.europa.eu/release/dcat -ap/11>

62 pav:version "1.1"^^xsd:string;

63 pav:authoredOn "2016 -06 -08"^^xsd:date;

64 pav:wasDerivedFrom <https :// github.com/SEMICeu/DCAT -AP

/tree /1.1>;

65 pav:previousVersion <https :// joinup.ec.europa.eu/node

/69559 >.

66

67 <https :// joinup.ec.europa.eu/node /69559 >

68 pav:version "1"^^xsd:string.



366 N. Thalhath et al.

5 Limitations and Future Work

As an authoring format, YAMA can be extended to include the actionable
changesets and parsable changelog. And PAV ontology can be used to point the
source of the MAP, in which the YAMA changeset can be exposed as the timeline
of the application profile. The main limitation of this approach is its inability in
pointing to a standard format of the actionable changeset. A processor or sys-
tem capable of understanding YAMA’s YAML format as well as JSON-Patch is
required to parse the changeset and develop the timeline of the application pro-
file from it. So it is recommended that the authors or publishes tender required
efforts to properly expose the changesets in other standard actionable formats
as well. Even though YAML and JSON-Patch are comparatively more uncom-
plicated concepts for structured data, they demand the authors to have the skill
sets and capabilities to deal with these formats. Mainly these formats need to
be generated or modified using a ‘real text editor’ as there is not yet any known
dedicated graphical editor implementation for YAMA.

PAV ontology is capable enough to point to versions and sources of the appli-
cation profiles. The authors made this recommendation purely on the notion that
MAPs are published as a package of expression formats and documentation. PAV
is not directly usable in differentiating these formats within the application pro-
file package or even pointing to individual format. For example, PAV may not
be sufficient enough in distinguishing and pointing to the individual files rep-
resenting the human-readable documentation or machine-actionable expressions
like RDF and ShEx. Also, PAV mapping needs to implemented in templates or
generators, used in producing expression formats from YAMA. Webpages liked
to the application profiles requires to use RDFa or JSON-LD to include the
ontology in expressing the versions and source with PAV.

The future work is to adopt ontologies to cover YAMA changesets with the
capability of mentioning changes within an actionable and semantic approach.
Notating the relation between individual expressions formats inside the publish-
able application profile package is also being investigated.

6 Conclusion

Providing a simplified authoring format can substantially promote the appli-
cation profile creation efforts. Utilizing extensibility of this authoring format
to include actionable changelog as the timeline of MAP creation can help in
ensuring longevity. The authors are attempted to explain the possibility of a
previously proposed extensible authoring format for application profiles with an
advanced changeset. This paper also demonstrates adopting a lightweight ontol-
ogy to notate the versioning of this application profiles with distinguishing its
source from the published expressions. Any attempts to ensure the provenance
and longevity of the metadata application profile will also help to ensure the
provenance of the schema. Schema maintenance will help to achieve better goals
in data interoperability and seamless linking of data with automated techniques.



MAP Provenance with Extensible Authoring Format and PAV 367

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
JP18K11984.

References

1. Baca, M.: Introduction to Metadata, July 2016. http://www.getty.edu/
publications/intrometadata

2. Ben-Kiki, O., Evans, C., döt Net, I.: YAML Ain’t Markup Language (YAMLTM)
Version 1.2, October 2009. https://yaml.org/spec/1.2/spec.html

3. Board, D.U.: DCMI: DCMI Metadata Terms. https://www.dublincore.org/
specifications/dublin-core/dcmi-terms/2012-06-14/

4. Ciccarese, P., Soiland-Reyes, S., Belhajjame, K., Gray, A.J., Goble, C., Clark, T.:
PAV ontology: provenance, authoring and versioning. J. Biomed. Semant. 4(1), 37
(2013). https://doi.org/10.1186/2041-1480-4-37

5. Library of Congress, L.: BIBFRAME Profile Editor (2018). http://bibframe.org/
profile-edit/

6. Coyle, K.: RDF-AP, January 2017. https://github.com/kcoyle/RDF-AP, original-
date: 2017–01-12T15:38:41Z

7. Enoksson, F.: DCMI: A MoinMoin Wiki Syntax for Description Set Profiles, Octo-
ber 2008. http://www.dublincore.org/specifications/dublin-core/dsp-wiki-syntax/

8. Hartig, O., Zhao, J.: Publishing and consuming provenance metadata on the web of
linked data. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010.
LNCS, vol. 6378, pp. 78–90. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-17819-1 10

9. Heery, R., Patel, M.: Application profiles: mixing and matching metadata schemas.
Ariadne (25) (2000). http://www.ariadne.ac.uk/issue/25/app-profiles/

10. Hillmann, D.: Metadata standards and applications (2006). http://
managemetadata.com/, publisher: Metadata Management Associates LLC

11. LD4P2: Sinopia Profile Editor (2019). https://profile-editor.sinopia.io/
12. Lebo, T., et al.: Prov-o: The prov ontology. W3C recommendation 30 (2013)
13. Li, C., Sugimoto, S.: Provenance description of metadata application profiles

for long-term maintenance of metadata schemas. J. Documentation 74(1), 36–61
(2018). https://doi.org/10.1108/JD-03-2017-0042

14. Malta, M.C., Baptista, A.A.: A method for the development of Dublin core appli-
cation profiles (Me4dcap V0.2): detailed description. In: Proceedings of the Inter-
national Conference on Dublin Core and Metadata Applications, p. 14 (2013)

15. Malta, M.C., Baptista, A.A.: A panoramic view on metadata application profiles
of the last decade. Int. J. Metadata Semant. Ontol. 9(1), 58 (2014). https://doi.
org/10.1504/IJMSO.2014.059124

16. Moreau, L., et al.: The open provenance model core specification (v1.1). Futur.
Gener. Comput. Syst. 27(6), 743–756 (2011). https://doi.org/10.1016/j.future.
2010.07.005

17. Nagamori, M., Kanzaki, M., Torigoshi, N., Sugimoto, S.: Meta-bridge: a develop-
ment of metadata information infrastructure in Japan. In: Proceedings Interna-
tional Conference on Dublin Core and Metadata Applications, p. 6 (2011)

18. Nilsson, M., Baker, T., Johnston, P.: DCMI: The Singapore Framework for Dublin
Core Application Profiles, January 2008. http://dublincore.org/specifications/
dublin-core/singapore-framework/

19. Nottingham, M., Bryan, P.: JavaScript Object Notation (JSON) Patch, April 2013.
https://tools.ietf.org/html/rfc6902

http://www.getty.edu/publications/intrometadata
http://www.getty.edu/publications/intrometadata
https://yaml.org/spec/1.2/spec.html
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/
https://doi.org/10.1186/2041-1480-4-37
http://bibframe.org/profile-edit/
http://bibframe.org/profile-edit/
https://github.com/kcoyle/RDF-AP
http://www.dublincore.org/specifications/dublin-core/dsp-wiki-syntax/
https://doi.org/10.1007/978-3-642-17819-1_10
https://doi.org/10.1007/978-3-642-17819-1_10
http://www.ariadne.ac.uk/issue/25/app-profiles/
http://managemetadata.com/
http://managemetadata.com/
https://profile-editor.sinopia.io/
https://doi.org/10.1108/JD-03-2017-0042
https://doi.org/10.1504/IJMSO.2014.059124
https://doi.org/10.1504/IJMSO.2014.059124
https://doi.org/10.1016/j.future.2010.07.005
https://doi.org/10.1016/j.future.2010.07.005
http://dublincore.org/specifications/dublin-core/singapore-framework/
http://dublincore.org/specifications/dublin-core/singapore-framework/
https://tools.ietf.org/html/rfc6902


368 N. Thalhath et al.

20. The DCAT Application profile for data portals in Europe (DCAT-AP), April 2019.
https://github.com/SEMICeu/DCAT-AP, original-date: 2017–09-13T07:53:27Z

21. Svensson, L.A.R.V.: Negotiating Profiles in HTTP, March 2017. https://
profilenegotiation.github.io/I-D-Accept-Schema/I-D-accept-schema

22. Svensson, L.G., Atkinson, R., Car, N.J.: Content Negotiation by Profile, April
2019. https://www.w3.org/TR/dx-prof-conneg/

23. Thalhath, N., Nagamori, M., Sakaguchi, T.: YAMA: Yet Another Metadata Appli-
cation Profile (2019). https://purl.org/yama/spec/latest

24. Thalhath, N., Nagamori, M., Sakaguchi, T., Sugimoto, S.: Authoring formats
and their extensibility for application profiles. In: Jatowt, A., Maeda, A., Syn,
S.Y. (eds.) ICADL 2019. LNCS, vol. 11853, pp. 116–122. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34058-2 12

25. Thalhath, N., Nagamori, M., Sakaguchi, T., Sugimoto, S.: Yet another meta-
data application profile (YAMA): authoring, versioning and publishing of appli-
cation profiles. In: International Conference on Dublin Core and Metadata Appli-
cations, pp. 114–125 (2019). https://dcpapers.dublincore.org/pubs/article/view/
4055. ISSN 1939-1366

https://github.com/SEMICeu/DCAT-AP
https://profilenegotiation.github.io/I-D-Accept-Schema/I-D-accept-schema
https://profilenegotiation.github.io/I-D-Accept-Schema/I-D-accept-schema
https://www.w3.org/TR/dx-prof-conneg/
https://purl.org/yama/spec/latest
https://doi.org/10.1007/978-3-030-34058-2_12
https://dcpapers.dublincore.org/pubs/article/view/4055
https://dcpapers.dublincore.org/pubs/article/view/4055

	Metadata Application Profile Provenance with Extensible Authoring Format and PAV Ontology
	1 Introduction
	1.1 Application Profile Expression Formats
	1.2 Current Status and Availability of Application Profiles
	1.3 Challenges in Application Profile Development
	1.4 Yet Another Metadata Application Profile (YAMA) as an Application Profile Authoring Format

	2 Related Work
	3 Methodology
	3.1 Actionable Changesets as Timeline of MAP
	3.2 PAV Ontology as a Means of MAP Provenance

	4 Validation
	5 Limitations and Future Work
	6 Conclusion
	References




