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Abstract. Object detection and tracking are vital for video analysis.
As the development of Deep Neural Network (DNN), multiple object
tracking is recently performed on the detection results from DNN. How-
ever, DNN-based detection is computation-intensive. In order to acceler-
ate multiple object detection and tracking for real-time application, we
present a framework to import the tracking knowledge into detection to
allow a less accurate but faster DNN for detection and recover the accu-
racy loss. By combining different DNNs with accuracy-speed trade-offs
using space-aware color information, our framework achieves significant
speedup (6.8x) and maintains high accuracy. Targeting NVIDIA Xavier,
we further optimize the implementation from system and platform level.
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1 Introduction

Multiple object detection and tracking is a key technology for video interpreta-
tion. Tracking-by-detection has become the leading paradigm in multiple object
tracking due to the recent progress in object detection. Objects are detected
each frame as bounding boxes and tracked by matching detections for the same
object across frames. Deep neural networks (DNN) for object detection proposed
in recent years, such as Faster-R-CNN [18], SSD [15], Yolo [17], Mask-R-CNN
[11], etc., provide highly accurate detections, and thus allow simpler but more
efficient tracking-by-detection approaches. However, such computation-intensive
large DNNs are not fast enough to satisfy the real-time processing, especially
when with limited computing power like in embedded systems. Therefore, in
addition to these large DNNs, smaller DNN structures are explored for high-
speed detection, such as Tiny-Yolo [17], Tiny-SSD [21], etc., although their accu-
racy is too low to satisfy the detection and tracking requirement.
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To simultaneously achieve high speed of the small DNN and high accu-
racy of the large DNN, we creatively combine both DNNs with different speed-
accuracy trade-offs in a time-interleaving way. Relying on the tracking knowl-
edge, the accurate information from large DNN is used to recover the accuracy
loss from small DNN. By importing tracking knowledge into detection, the accu-
racy requirement for detection is relaxed to allow the high-speed small DNN
used in most video frames. In this way, both good accuracy and high speed are
achieved simultaneously in our framework.

To match detections across frames for tracking, their similarity needs to
be measured. Intersection over union (IOU), feature description neural network
(NN), etc. are used in recent works [4-6,20,24] for similarity measurement. How-
ever, they are either not accurate enough or with high computation complexity.
We propose a space-aware color feature for more accurate similarity measure-
ment by extracting both color and space information with high accuracy and low
computation complexity. Such a distinguishable feature also allows re-identifying
the same object after occlusion and works well in recovering the accuracy of small
DNN detections. By combining many novel techniques in detection matching and
accuracy recovering, our framework achieves state-of-the-art detection and track-
ing accuracy at high speed. The framework can also be used in detection-only
case to speed up detection while maintaining high accuracy.

Our key contribution is combining hybrid DNNs with different speed-
accuracy trade-offs in a time-interleaving way and importing the tracking knowl-
edge into detection, which result in both high accuracy and high speed. The novel
usage of the space-aware color feature is another main contribution. In addition,
many new techniques are designed to fit these novel concepts. Besides algorithm
level, we also perform optimization at system and platform level for a higher-
speed implementation, by exploring architectural heterogeneity, multi-core par-
allelism, data precision, clock frequency, etc., targeting the underlying NVIDIA
Xavier. In summary, we design a complete detection and tracking framework
with both high accuracy and high speed, from the algorithm level to the system
and platform level, from software to hardware. We achieve a high speed at 55.2
FPS for the whole real-time multiple object detection and tracking task, which
is 6.8x faster with similar level high accuracy than the traditional large DNN
only method on NVIDIA Xavier.

2 Related Work

2.1 Multiple Object Tracking

MOT can be formulated as a global optimization problem that processes entire
video batches at once, which cannot be used in real-time applications, such as
flow network formulations-based [25] and probabilistic graphical models-based
MOT works [23]. Multiple Hypothesis Tracking (MHT) [13] and Joint Proba-
bilistic Data Association (JPDA) filters [9] used in traditional MOT are still
impractical for real-time processing due to the large delay from high combina-
torial complexity. Some tracking works build appearance models [3,22] through
online learning, which are quite complex. Relying on accurate DNN detection,
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recent works adopt simple IOU to match detections from frames using Hungar-
ian or greedy algorithm [4-6]. Although with high speed, these works show low
accuracy in many scenarios due to little object feature extraction. Further, some
works use additional DNNs to describe object feature for matching [20,24], where
the feature description NN brings high computation complexity and is hard to
train for different scenarios. We propose a simple but efficient space-aware color
feature with new matching algorithms to achieve simpler usage, higher speed
and even better accuracy. Moreover, current DNN detection-based MOT works
only consider one large detection DNN with low speed, which cannot satisfy real-
time requirement especially when with limited computing power as in embedded
applications. We creatively combine hybrid DNNs for detection to achieve both
superior speed and accuracy.

2.2 Color Feature

Color feature distinguishes object efficiently. Many works describe object for
tracking using color histogram [1,16]. More complex color features have been
proposed, like color naming [19], color attributes [7]. Color feature has also been
combined with other well engineered features like gradient [8], HOG [26], corre-
lation filters [7], etc. Due to the power of DNN detection in our work, color his-
togram is a good choice with simple computation to distinguish objects. Because
color feature is most discriminative for objects within the same class from DNN,
while other features like edges, etc., have already been included by DNN. Differ-
ent from existing color features, our novel space-aware color feature uses partial
histograms to include space information for better discrimination.

3 Whole Framework

SmallNet Synchronization Matching & Tracking

i

Match
&recall
&correct
&update,
etc.

frames Other frames feed

e
1 %
e i
PRy
% LargeNet
One from every N frames [> | i % E

Fig. 1. Whole framework
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The framework is based on NVIDIA DeepStream on Jetson Xavier platform. As
in Fig. 1, there are three stages, LargeNet, SmallNet and Matching& Tracking
(M&T). Each stage is implemented as a pipeline stage in DeepStream and han-
dled by different threads for high parallelism and full resource usage. The stages
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(a) LargeNet Detection (b) SmallNet Detection

Fig. 2. Detection example for ADL-Rundle-6 from 2D MOT15 benchmark

execute different video frames simultaneously in a pipeline fashion. A synchro-
nization mechanism ensures the frames from SmallNet and LargeNet enter M&T
in order. LargeNet uses a large DNN for object detection with low speed and
high accuracy, while SmallNet adopts a small DNN for detection with high speed
and low accuracy. Among every N frames, only the first frame goes to LargeNet
for detection, while the following N-1 frames all go to SmallNet. N is the network
switching interval. M&T receives the detection results for each frame in order
and performs the tracking. It matches current detections with existing tracks.
SmallNet and LargeNet execute on GPU while M&T executes on CPU to fully
utilize the heterogeneous architecture.

4 Detection

While LargeNet gives accurate detections, detections from SmallNet are usu-
ally with bad bounding boxes and imprecise positions. We use Yolo as the
LargeNet and Tiny-Yolo as the SmallNet. Other detection neural networks such
as SSD, Faster-RCNN, Mask-RCNN, etc. can also be used as LargeNet. Besides
changing the network structure, network compression techniques such as chan-
nel pruning [10], quantization [12], etc. can also be used to derive a SmallNet.
As shown in Fig. 2, LargeNet detects perfect bounding boxes for most objects.
While the bounding boxes from SmallNet usually only cover part of the object
with imprecise center point, and many of them are redundant. Some objects
cannot even be detected by SmallNet. However, SmallNet can be 6x faster than
LargeNet when running in DeepStream. By using LargeNet every N-th frame
while using SmallNet for remaining frames, high speed can be achieved in our
framework. The detections from SmallNet will be corrected using tracking knowl-
edge with previous LargeNet detections to recover the accuracy. Due to the low
quality of SmallNet, a high detection confidence threshold will lose detection
of many objects causing a high false negative number. Therefore in practice,
the confidence threshold for a valid detection in SmallNet should be set low to
provide more candidate SmallNet detections although imprecisely. More candi-
dates mean more opportunities to find the exact matching of the same object to
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existing tracks. And the imprecision can be corrected using tracking knowledge
with previous LargeNet detections.

5 Matching and Tracking

5.1 Similarity Sorting-Based Matching

The aim of tracking is to match the detections for current frame with existing
tracks. Unlike previous IOU based matching [4-6], we rely on both space-aware
color feature and IOU for matching. We denote the detections and tracks to be
matched as D and T, respectively. A similarity distance s;; is derived for every
pair of t; € T and d; € D based on the space-aware color feature and IOU, where
a smaller distance indicates a larger similarity between the detection and track.
The smaller the similarity distance is, the more likely the detection should be
matched to the track. Therefore, we propose a sorting-based matching to match
the most similar pairs with priority as in Algorithm 1. All s;; are sorted in
ascending order. From the smallest s;;, we match d; to t; if both have not been
matched before. Besides, matching is performed only if the similarity distance is
small enough (< Thg;nm ). Assign; reflects which detection is matched to track ;.
Assign; as —1 means no matched detection, while other value j means matching
detection d; to t;.

Algorithm 1. Similarity Sorting-based Matching

Input: D of size m, T of size n
Output: Assign of size n
Function SortMatching(D, T):
all Assign «— -1;
foreach t; € T do

foreach d; € D do

| si; «— SimilarityDistance(ti, d;);

end foreach
end foreach
sort {si;]/0 <4 < n,0<j < m} in ascending order;
foreach s;; in ascending order do
10 if Assgin; = —1 && VAssign # j && sij < Thsim then
11 ‘ Assign; «— j;
12 end if
13 end foreach
14 return Assign.
15 End Function

© 00N O s W N
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Space-Aware Color-Based Similarity Distance. The similarity distance
s;j between track ¢; and detection d; is defined as Eq.1. If the last bounding
box of ¢; and the bounding box of d; have no overlap (IOU=0) or the detec-
tion class of d; from LargeNet differs from the track class of ¢;, s;; is set to a
large value MAX to disable matching since ¢; and d; are unlikely to be the same
object. Otherwise, the color histograms of ¢; and d; will be used for calculating
;5 to check their similarity using space-aware color feature. Each detection or
track has 5 color histograms hg ~ hs and H. H is the color histogram of the
whole bounding box, while hg ~ hg are the color histograms of four partial boxes
0 ~ 3 as in Fig. 3, respectively. Lab color space is used for calculating the color
histograms by considering all three channels. For a track and a detection, cor-
relation distances between them for H and hg ~ hg are calculated, respectively,
before summed up with different weights ag (0.1) and «; (0.6). Correlation dis-
tance is 1 minus the correlation Corr between two histograms. In this way, both
color and space information are considered as a space-aware color feature to esti-
mate the similarity with much better accuracy. All 5 histograms of a track t; are
updated in the same way every time a LargeNet detection d; is matched to it as
in Eq.2, where part of history information is kept for stability. Since SmallNet
detection is inaccurate, it will not update the histograms of a track. The class of
a track is set as the class of its associated LargeNet detections because the class
prediction from LargeNet is usually true. We still check the color histograms
for a SmallNet detection even if its class differs from the track, since they are
still possible to be the same object due to the frequent wrong classification of
SmallNet.

MAX | it IOU(t;,d;) =0 || LargeNet class dif fers

Sij = 22:0 ag(1 = Corr(hi,,, hr,,)) + 01 (1 — Corr(Hy,, Ha,)), (1)
otherwise
Hy, = (1 - ﬁ)th + ﬁde (2)

(width or height);, = (1 — «)(width or height):, + y(width or height)q, (3)

SmallNet Detection Scaling. SmallNet detections usually hold wrong bound-
ing box scale (width and height), and thus we perform scaling to them. Each
track holds a scale, which is only updated when a LargeNet detection is matched
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to it since only scale from LargeNet detection is accurate. The scale is updated
as Eq.3 to consider the history information for stability. The scale can also be
updated using a Kalman filter although which performs not stably in real appli-
cations. When calculating the similarity distance between a SmallNet detection
and a track, only the center point of the detection is kept while the scale of the
detection is replaced by the scale of the track to form a new detection bound-
ing box as in Fig.4. The calculation for color histograms of the detection and
IOU will follow the new bounding box. Every SmallNet detection will perform
different scaling for calculating the similarity distance with different tracks. In
this way, the scale inaccuracy of SmallNet detections can be corrected by the
accurate scale from LargeNet detections.

5.2 Space-Aware Color-Based Bounding Box Refinement

Although the center point (position) of SmallNet detection is usually close to the
ground truth, but not highly precise. We use space-aware color feature to refine
the position of the SmallNet detections which have been matched to a track.
The bounding box of the SmallNet detection first performs scaling as in Sec.
SmallNet Detection Scaling to change its scale to the track scale. This bounding
box is the root bounding box By. We consider an Interesting Region centering
at center of By with larger scale (K'x width and height, K can be 2) as in
Fig. 5. Inside this region, we are aimed at finding a new bounding box position
with larger similarity to the matched track, which should be more precise than
Bg. The ground truth bounding box is usually near By, thus only the Interesting
Region needs to be considered. By is moved one small step to four directions, up,
down, left and right, respectively, to derive four new bounding boxes B; ~ By, as
in Fig. 6. By is parent and B; ~ By are child bounding boxes. One step for up or
down directions and for left or right directions are calculated as height g, /M and
widthp, /M, respectively. M is the granularity for refinement and using higher
M is more accurate with more computation. M can be set to 8. From each newly
derived bounding box, four child bounding boxes of it are further derived. In this
way, a graph can be formulated as in Fig.8. A bounding box stops deriving its
child bounding boxes if it is outside the Interesting Region or has appeared
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before, so it becomes the leaf node in the graph. If the similarity distance to
the matched track of a bounding box increases compared to the distance to
the track of its parent bounding box, it also becomes the leaf node; since it
indicates a bad direction with less similarity and thus any exploration along this
direction is no need and pruned. In this way, the space of the bounding boxes to
be searched is reduced for saving computation. Either breath-first-search (BFS)
or depth-first-search (DFS) is performed to traverse the graph. During traverse,
the similarity distance to the track of each bounding box is calculated as in
Sec. Space-aware Color-based Similarity Distance. After traverse, the bounding
box with the smallest similarity distance will be chosen as the refined bounding
box since it matches the track best. The bounding box of both the SmallNet
detection and the track at this frame will be updated as this refined bounding
box. The refinement is only performed to a SmallNet detection when its detection
confidence is less than Th,.s (0.8). The bounding box position is usually highly
precise for a SmallNet detection with very high confidence, thus we only refine
the detections with low confidence for saving computation. The refinement is only
performed for a completed matching while the scaling is needed for calculating
the similarity distance as the base of matching.

5.3 Retire-Recall Mechanism

Targeting the occlusion case, we propose a retire-recall mechanism. A newly
instantiated track is active and it will become retired if not matched with any
detection for Th,e; frames. A retired track is permanently deleted if not matched
with any detection for Thye; (Thger > Thyet) frames. Only active tracks are
valid and output for the detection and tracking task, while a retired track can
be recalled to become active if a detection without matching in active tracks has
large similarity to it.

Trajectory Prediction. For each track, the trajectory is recorded as {center
point.x, center point.y, frame number} for all its matched detections. Linear
regression is applied to the last L trajectory records to calculate the slope as the
velocity, in x and y directions, respectively. The center pointer of the track in one
frame can be predicted based on its last detected center point and the velocity,
and its bounding box can be predicted by combining the predicted center point
and the scale of the track. We found linear regression performs more stably than
Kalman filter or decay model for trajectory prediction in practice.

Similarity Distance for Retired Tracks. To recall a retired track to be
active, the similarity distance between each retired track and each detection
which cannot match to any active track is calculated. Then the sorting-based
matching algorithm is applied as in Algorithm 1. Calculation of similarity dis-
tance for retired tracks is basically the same as Eq.1, except that the IOU
between a retired track ¢; and a detection d; will be the IOU between the Effec-
tive Region of ¢; and the scaled bounding box of d;. As in Fig.7, the Effec-
tive Region of ¢; is the rectangle covering the bounding box of ¢; from its last
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matched detection and the linear regression-predicted bounding box for t; at
current frame. The object has high possibility to re-appear between its last
appeared position and its predicted current position, thus only the detections
in the Effective Region should be focused on. In this way, the number of detec-
tions requiring color histogram and correlation calculation is reduced for saving
computation.

5.4 'Whole Matching and Tracking Algorithm

Combining all above techniques, the whole matching and tracking algorithm for
M&T stage is as in Algorithm 2. First, the similarity sorting-based matching
guided by the space-aware color-based similarity distance as in Algorithm 1 is
performed to the detections from current frame and the existing active tracks
from last frame, for a largely improved tracking accuracy. Second, for remaining
unmatched detections and active tracks, IOU-based Hungarian matching similar
to previous works [4,5] is applied to find additional matchings with large over-
lap, where a matching is valid only if its IOU is large enough (> Thjey, ). In this
way, our new space-aware color guided matching is combined with IOU-based
matching to take advantages of both. Third, the space-aware color guided simi-
larity sorting-based matching as in Algorithm 1 is applied again to the remaining
unmatched detections and existing retired tracks to recall some retired tracks to
become active for the retire-recall mechanism as in Sect. 5.3 and match them with
corresponding detections. Next, a new active track is created for each remaining
unmatched detection from LargeNet, while a new active track is created for a
remaining SmallNet detection only if its detection confidence is larger than a
high threshold Th.,+ (0.8). Because only a SmallNet detection with high confi-
dence indicates an object accurately. Then, according to the number of frames
each track has not been matched with any detection for, some active tracks retire
and some retired tracks are deleted as in Sect. 5.3 for the retire-recall mechanism.
The bounding box at current frame of an matched active track will be updated
as the bounding box of its matched detection, after scaling and refinement if
necessary. Then, for an unmatched active track, traditional tracker such as KCF
is applied to decide its bounding box at current frame as a supplement. If KCF
fails, its current bounding box will be updated using the trajectory prediction
as in Sec. Trajectory Prediction as a further supplement. The updated bound-
ing boxes at current frame of all active tracks with their track IDs will finally
output from the whole framework. Algorithm 2 is performed for each frame. We
eliminate the re-calculation of the same color histogram and correlation if cal-
culated before by keeping them to reduce the computation. To better utilize the
multi-core CPUs, OpenMP is used in many steps along the execution for multi-
threading, including similarity distance calculation, bounding box scaling and
refinement, trajectory prediction, KCF, etc. The calculation for different tracks
or detections are mostly independent and thus suitable for multi-threading with
high parallelism.
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Algorithm 2. Whole Matching and Tracking Algorithm at Each Frame

Input: current frame detections D, existing active tracks T,, existing retired
tracks T

Output: updated active tracks T,, updated retired tracks T’

1 Similarity sorting-based matching to D & Ty;

2 IOU-based Hungarian matching to remaining unmatched D & T,;

3 Similarity sorting-based matching to remaining unmatched D & T;. to recall
some retired tracks to become active tracks (T, — Ty);

4 Initiate new active tracks in T, for remain unmatched D from SmallNet with
confidence > Thert or from LargeNet;

5 Delete tracks from 7). and move tracks from 7T, — T; according to the number
of frames a track has not been matched with any detection for;

6 Update T, using its matched D after necessary scaling and refinement;

Update T, without matching using KCF or trajectory prediction.

8 return 7,, T, for current frame.

~

Table 1. Overall MOT metrics

MOTA{ FPS{ IDsw||FM| FP| |FN| |MOTP]
Large-I0U 47.0 8.1 1733 1178 7663 11717 73.9
Large-Ours | 50.5 8.1 367 | 1168 | 766111715 74.0
Small-Ours | —17.3 | 46.3 | 85 | 407 | 10347 36401 75.8
Hybrid-Ours | 44.5 37.2 | 513 1308 | 4626 17024 71.1

6 Experiment Evaluation

The framework is implemented on NVIDIA Xavier platform based on Deep-
Stream, TensorRT, OpenCV, etc. We test the performance on diverse videos in
a real-time execution scenario, where 11 videos are generated from the training
set of 2D MOT15 benchmark [14]. Yolo-v3 pre-trained on COCO dataset is used
as LargeNet and Tiny-Yolo-v3 pre-trained on COCO dataset is used as Small-
Net. The neural network switching interval N is set to 10. All experiments are
performed on Xavier for a fair comparison.

6.1 Overall Performance

We use standard MOT metrics, whose details are in [2], to evaluate the perfor-
mance of the detection and tracking task as in Tablel. T in the table means
the larger is the better while | on the contrary. MOTA is the overall score to
evaluate the detection and tracking accuracy, while FPS reflects the speed. The
other MOT metrics are not important for the whole detection and tracking task
compared to MOTA and most of them have been covered in MOTA. Large-IOU
adopts LargeNet at each frame with IOU-based tracking, similar to previous
works [4-6]. Large-Ours applies LargeNet at each frame with all our proposed
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techniques except bounding box scaling and refinement. Small-Ours uses Small-
Net at each frame with our techniques. Hybrid-Ours is our proposed complete
framework using hybrid neural networks in a time-multiplexing way with all our
proposed techniques. All methods are implemented on Xavier for a fair com-
parison. Only using SmallNet gives an extremely bad accuracy but with a high
speed. While only using LargeNet achieves good MOTA accuracy but with low
speed, which cannot satisfy real-time requirement. Our framework with hybrid
networks achieves both good MOTA and high speed. It increases the speed by
4.6x to LargeNet-only case, but maintains the similar level MOTA. By importing
LargeNet information, it corrects the totally messy results of SmallNet-only case
but still maintains a high speed. Furthermore, Large-Ours increases MOTA by
3.5 than Large-IOU and reduces ID switches (IDsw) by 78.8%, which shows our
techniques, including space-aware color-based similarity, sorting-based matching,
retire-recall mechanism, etc., achieve better tracking ability. Because the space-
aware color feature used is more distinguishable and the retire-recall works well
for occlusion case. Although targeting on different videos, the MOTA we achieve
is at the similar level with other state-of-the-art works and even larger than the
best 2D MOT 2015 results on the MOT Challenge website. Our method achieves
state-of-the-art accuracy and high speed satisfying real-time requirement.

6.2 Technique Effect

Table 2. Effect of techniques

MOTAT FPST |IDsw| | FM| |FP| |[FN| |MOTP7
No-partial-color 38.5 38.2 |514 1733 | 6074 | 17942 | 70.1
No-refinement 40.5 38.3 | 600 1547 15369 | 17721 | 70.4
No-recall 44.0 37.3 | 660 1308 | 4627 | 17024 | 71.1
All(Hybrid-Ours) | 44.5 37.2 |513 1308 | 4626 | 17024 | 71.1
Merge 44.5 17.0 513 1308 | 4626 | 17024 | 71.1
No-OMP 44.5 31.2 | 513 1308 | 4626 | 17024 | 71.1

Algorithm Level. To see the effect of different algorithm level techniques we
propose, three variations are derived from the complete framework. No-partial-
color only uses one whole color histogram H to calculate the similarity distance.
No-refinement does not apply the bounding box refinement as in Sect.5.2. No-
recall does not recall any retired tracks. All, the same as Hybrid-Ours, means
our complete framework with all proposed techniques. As in Table2, MOTA is
decreased by 6, 4 and 0.5 without partial color histograms, bounding box refine-
ment and retire-recall, respectively. Our novel usage of partial color histograms
brings the largest benefit since both the space and color information can be
considered into similarity estimation. Bounding box refinement also brings large
benefit by correcting the SmallNet detection position. Retire-recall mechanism
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shows the largest effect in reducing ID switches, by 22.3% since it can recall
retired tracks with an existing ID. All these techniques benefit the accuracy but
with only little speed overhead and maintain the same level FPS.

System Level. At the system level, we design a highly pipelined structure as in
Fig. 1 for the whole framework. If we merge the LargeNet, SmallNet and M&T
into the same pipeline stage, the average speed will degrade to 17.0 FPS as
Merge in Table 2. Our highly pipelined design brings 2.2x speedup by exploring
the parallelism and fully utilizing all computing resources. In addition, we use
OpenMP for multi-threading in the CPU execution as in Sect. 5.4. After disabling
OpenMP, the average speed degrades to 31.2 FPS as No-OMP in Table 2. Using
OpenMP brings 19.2% speedup by fully utilizing multi-core CPUs.

6.3 Platform-Specific Exploration

Table 3. FPS regarding platform-specific exploration

GPU-FP32 (Default) GPU-INT8|GPU-FP16| DLA-FP16|Best-version|Default+HF-mode|Best-version+HF-mode

37.2 48.7 46.0 45.8 48.9 40.0 55.2

- e
oo -~ -

All are from our methods

gt 11 16 21 26 31 36 41 46 51 56

as L FPS |
I Large-IOU Large-Ours M Small-Ours M Hybrid-Ours @ Merge No-OMP @ No-recall
No-refinement @ No-partial-color A Best-version A HF-mode A Best-version + HF-mode

Fig. 9. Accuracy (MOTA) vs Speed (FPS)

Implementation Alternatives. TensorRT on Xavier platform provides dif-
ferent data precisions, including FP32, FP16 and INTS. Besides GPU, the neu-
ral network can also be implemented on the Deep Learning Accelerator (DLA)
although only some layers supported. For both LargeNet and SmallNet, we try
four implementations, GPU-FP32, GPU-FP16, GPU-INT8 and DLA-FP16. The
default implementation in previous sections is GPU-FP32. The TensorRT we
use only supports FP16 for DLA and the DLA-unsupported layers are executed
on GPU. Calibration is used in GPU-INTS8 to minimize the information loss.
MOTA maintains at the same level as the implementation changes. Because
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FP16 is enough to keep most information of the neural network and the calibra-
tion for INTS is effective to minimize the information loss. Using low precisions,
the speed is improved due to simpler computation. The highest achievable speed
when varying the network implementations for each video respectively is 48.9
FPS on average, denoted as Best-version case, increased by 31.5% compared to
the default GPU-FP32 case. The LargeNet is the speed bottleneck since varying
the SmallNet implementation does not change the speed obviously while vary-
ing the LargeNet does. The average speed of whole framework is 37.2, 46.0, 48.7
and 45.8 FPS, when LargeNet adopts GPU-FP32, GPU-FP16, GPU-INTS8 and
DLA-FP16, respectively, as in Table3. Using INT8 gives the largest speedup
and two FP16 cases also show large speedup. GPU-FP16 is slightly better than
DLA-FP16, since GPU executes faster than DLA and additional data transfer
between layers executed on DLA and GPU occurs in DLA-FP16. When only
using LargeNet at each frame, the average speed is 15.2, 15.4 and 16.8 FPS for
DLA-FP16, GPU-FP16 and GPU-INTS, respectively. When only using SmallNet
at each frame, the average speed is 47.9, 52.3, 59.3 FPS for DLA-FP16, GPU-
FP16 and GPU-INTS, respectively. Our LargeNet-SmallNet hybrid framework
achieves close speed to SmallNet-only case even for DLA-FP16, GPU-FP16 and
GPU-INTS. The highest average speed for LargeNet-only case is 16.8 FPS from
GPU-INTS, which is still outperformed by our hybrid framework by 2.9x.

High Frequency Mode. Xavier platform provides high frequency (HF) mode
with higher clock frequency for computing engines. At this mode, our framework
with default case, where both LargeNet and SmallNet adopt GPU-FP32, can
achieve 40.0 FPS with a 2.8 FPS improvement as in Table 3. The Best-version
case FPS can achieve 55.2 at HF mode with a 6.3 FPS improvement. Considering
HF mode and different implementations of the networks, our framework can
achieve 55.2 FPS while maintaining the MOTA of about 44.5, which is 6.8x
faster than the LargeNet-only baseline with similar level high MOTA. Such a
high FPS is beyond the real-time requirement and outperforms most existing
works. From the MOT Challenge website, the speed we achieve ranks 12% among
all state-of-the-art 2D MOT 2015 results and only 3 out of 89 state-of-the-art
MOT 2016 results are faster than us. And we achieve much better accuracy
than the works faster than us. Although targeting on different videos from these
results, we can conclude that our framework achieves both state-of-the-art speed
and accuracy.

6.4 Discussion

The detection and tracking accuracy in terms of MOTA and the speed in terms
of FPS for most above evaluated cases are plotted in Fig.9. All points in the
top right are from our methods, which means our proposed methods achieve
both high speed and accuracy, especially compared to the LargeNet-only and
SmallNet-only cases as Large-IOU, Small-Ours, etc. Even though disabling some
techniques, our framework still achieves a large improvement compared to the
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SmallNet-only and LargeNet-only cases considering both accuracy and speed, as
in No-recall, No-partial-color and No-refinement. Combining all proposed tech-
niques, our complete framework, Hybrid-Ours, achieves high accuracy at high
speed without typical drawbacks. Considering platform-specific optimizations as
in Sect. 6.3, our framework, as in Best-version+HF-mode, achieves even higher
FPS while maintaining the same level high MOTA. Our method, combining
hybrid neural networks using many novel and useful techniques, achieves both
state-of-the-art accuracy and speed.

The detection and tracking performance is highly dependent on the detection
network. Yolo series used here is less accurate than some networks such as Faster-
RCNN, Mask-RCNN, etc. Changing the networks is potential to further improve
the performance like MOTA. The key of our method is combining networks
with different accuracy-speed trade-offs in a time-interleaving way for both good
accuracy and high speed. The LargeNet and SmallNet choices are not limited.
The current network switching interval N is 10. Different N is allowed for speed-
accuracy trade-offs. A larger N can show larger FPS but lower MOTA. It is
also possible to not use any network at some frame to skip the detection and
tracking but directly keep the results from the last frame. Such frame skip can be
combined with our method to achieve a higher speed while sacrificing accuracy.
Moreover, our method is able to mitigate to other platforms than Xavier.

7 Conclusion

We present a novel framework to combine hybrid DNNs with different accuracy-
speed trade-offs in a time-multiplexing way for real-time multi-object detection
and tracking. By import the tracking knowledge into detection, we allow an
inaccurate but fast small DNN for detection in most frames and successfully
recover its accuracy loss. By combining different DNNs with space-aware color
information, we achieve both state-of-the-art high speed and accuracy. Targeting
NVIDIA Xavier, we further optimize the implementation from system and plat-
form level. We achieve 6.8 speedup with similar level high accuracy compared
to the traditional large DNN only method on Xavier.
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