
A Factorization Strategy for Tensor
Robust PCA

Andong Wang1, Zhong Jin1,2(B), and Jingyu Yang1,2

1 School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing 210094, China

zhongjin@njust.edu.cn
2 Key Laboratory of Intelligent Perception and System for High-Dimensional

Information of Ministry of Education, Nanjing University of Science and Technology,

Nanjing 210094, China

Abstract. Many kinds of real-world data, e.g., color images, videos,
etc., are represented by tensors and may often be corrupted by outliers.
Tensor robust principal component analysis (TRPCA) servers as a tenso-
rial modification of the fundamental principal component analysis (PCA)
which performs well in the presence of outliers. The recently proposed
TRPCA model [12] based on tubal nuclear norm (TNN) has attracted
much attention due to its superiority in many applications. However,
TNN is computationally expensive, limiting the application of TRPCA
for large tensors. To address this issue, we first propose a new TRPCA
model by adopting a factorization strategy within the framework of ten-
sor singular value decomposition (t-SVD). An algorithm based on the
non-convex augmented Lagrangian method (ALM) is developed with
convergence guarantee. Effectiveness and efficiency of the proposed algo-
rithm is demonstrated through extensive experiments on both synthetic
and real datasets.

Keywords: Robust tensor principle component analysis · Tensor
SVD · Non-convex ALM

1 Introduction

PCA is arguably the most broadly applied statistical approach for high-
dimensional data analysis and dimension reduction. However, it regards each
data instance as a vector, ignoring the rich intro-mode and inter-mode cor-
relations in the emerging multi-way data (tensor data). One the other hand,
it is sensitive to outliers which are ubiquitous in real applications. By manip-
ulating the tensor instance in its original multi-way form and attempting to
work well against outliers, tensor robust PCA [5,11] is a powerful extension of
PCA which can overcome the above issues. TRPCA finds many applications

This work is partially supported by the National Natural Science Foundation of China
[Grant Nos. 61872188, U1713208, 61602244, 61672287, 61702262, 61773215, 61703209].

c© Springer Nature Switzerland AG 2020
S. Palaiahnakote et al. (Eds.): ACPR 2019, LNCS 12046, pp. 424–437, 2020.
https://doi.org/10.1007/978-3-030-41404-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41404-7_30&domain=pdf
https://doi.org/10.1007/978-3-030-41404-7_30

A Factorization Strategy for Tensor Robust PCA 425

likes image/video restoration, video surveillance, face recognition, to name a few
[5,11].

An idealized version of TRPCA aims to recover an underlying tensor L∗ from
measurements M corrupted by outliers represented by tensor S∗, that is,

M = L∗ + S∗. (1)

Obviously, the above decomposition is impossible without additional assump-
tions on the underlying tensor L∗ and the outlier tensor S∗. Thus, TRPCA
further assumes L∗ is “low-rank” and S∗ sparse. Mathematically, TRPCA tries
to solve a minimization problem as follows

min
L,S

rank(L) + λ‖S‖0 s.t. L + S = M, (2)

where rank(·) denotes the “rank function” of a tensor, ‖·‖0 is the tensor l0-norm
(used as a sparsity measure), and λ > 0 is a regularization parameter. Problem
(2) is numerically very challenging, since both the tensor rank function and l0-
norm are neither continuous nor convex, even in their simplest matrix versions.

A mainstream approach for tackling the numerical hardness of Problem (2)
is to respectively replace the rank function and l0-norm with their convex sur-
rogates conv-rank(·) and l1-norm, leading to the following convex version of
Problem (2)

min
L,S

conv-rank(L) + λ‖S‖1 s.t. L + S = M. (3)

The l1-norm ‖·‖1 in Problem (3) is widely used as a convex envelop of the l0-norm
in compressive sensing and sparse representation to impose sparsity [3].

In the 2-way version of Problem (3) where L,S and Y are matrices, tensor
Robust PCA degenerates to the Robust PCA [1]. In RPCA, the matrix nuclear
norm ‖·‖∗ [2] is often chosen as the convex surrogate of matrix rank. However, for
general K-way (K ≥ 3) tensors, one may have multiple choices of conv-rank(·),
since a tensor has many definitions of rank function due to different extensions of
the matrix SVD. The most direct tensor extension of matrix rank is the tensor
CP rank [6] which is the smallest number of rank-one tensors that a tensor
can be decomposed into. Nevertheless, both the CP rank and its corresponding
version of nuclear norm are NP hard to compute [4,7]. Due to its computational
tractability, the Tucker rank [15] defined as a vector of ranks of the unfolding
matrices along each mode, is the most widely used tensor rank. Its corresponding
nuclear norm (denoted by SNN in this paper) [10] is defined as the (weighted)
sum of nuclear norms of the unfolding matrices along each mode, and has been
used in TRPCA [5]. However, SNN is not a tight convex relaxation of sum of
the Tucker rank [14], and it models the underlying tensor as simultaneously low
rank along each mode, which may be too strong for some real data tensors.

Recently, the low tubal rank models have achieved better performances than
low Tucker rank models in many low rank tensor recovery tasks, like tensor com-
pletion [17,18,23], tensor RPCA [11,23], sample outlier robust tensor PCA [24]

426 A. Wang et al.

and tensor low rank representation [19,20], etc. At the core of these models is the
tubal nuclear norm (TNN), a version of tensor nuclear norm defined within the
framework of t-SVD [9]. Using TNN as the low-rank regularization in Problem
(3), the recently proposed TNN-based TRPCA model has shown better perfor-
mances than traditional models [11,12,23]. The rationality behind the superior
performance of TNN-based models lies in that TNN is the tight convex relax-
ation of the tensor average rank, and the low average rank assumption is weaker
than the low Tucker rank and low CP rank assumption [12].

Despite its broad use, TNN is computationally expensive since it requires
full matrix SVDs. The high computational complexity limits the application
of TNN-based models to scale to emerging high-dimensional tensor data. By
exploiting the orthogonal invariance of TNN, we come up with a factorization
based model for TRPCA which can powerfully accelerate the original TNN-based
TRPCA model. Extensive experiments show the superiority and efficiency of the
proposed algorithm. The main contributions of this paper are as follows:

• A new model for TRPCA named TriFac is proposed in Model (11).
• An ALM algorithm (Algorithm1) is designed to efficiently solve it.
• Convergence of the proposed algorithm is shown in Theorem 2.

The rest of the paper proceeds as follows. In Sect. 2, some preliminaries of
t-SVD are introduced. The problem formulation and the algorithm are presented
in Sect. 3. Experimental results are shown in Sect. 4. Proofs of the theorems and
lemmas are in the supplementary material1.

2 Notations and Preliminaries

Notations. The main notations and abbreviations are listed in Table 1 for con-
venience. For a 3-way tensor, a tube is a vector defined by fixing indices of the
first two modes and varying the third one; A slice is a matrix defined by fix-
ing all but two indices; fft3(·) denotes the fast discrete Fourier transformation
(FFT) along the third mode of a 3rd order tensor, i.e., the command fft(·, [], 3) in
Matlab; similarly, ifft3(·) is defined. Let �a� denote the closest integer to a ∈ R

that is not smaller than a, and �a� denotes the closest integer to a ∈ R that is
not larger than a. Let 1(·) denote the indicator function which equals 1 if the
condition is true and 0 otherwise. The spectral norm ‖·‖ and nuclear norm ‖·‖∗
of a matrix are the maximum and the sum of the singular values, respectively.

Tensor SVD. Some preliminaries of tensor SVD will be introduced.

Definition 1 (T-product [22]). Let T1 ∈ R
d1×d2×d3 and T2 ∈ R

d2×d4×d3 . The
t-product of T1 and T2 is a tensor T of size d1 × d4 × d3:

T := T1 ∗ T2, (4)

whose (i, j)th tube is given by T (i, j, :) =
∑d2

k=1 T1(i, k, :) • T2(k, j, :), where •
denotes the circular convolution between two fibers [9].
1 The supplementary material is available at https://github.com/pingzaiwang/

hitensor/blob/master/supp-ACPR2019-25.pdf.

https://github.com/pingzaiwang/hitensor/blob/master/supp-ACPR2019-25.pdf
https://github.com/pingzaiwang/hitensor/blob/master/supp-ACPR2019-25.pdf

A Factorization Strategy for Tensor Robust PCA 427

Table 1. List of notations and abbreviations

Notations Descriptions Notations Descriptions

T A matrix L∗ True low-rank tensor

T A tensor S∗ Outlier tensor

˜T fft3(T) ‖T ‖ ‖T ‖
T or T Block-diagonal matrix of ˜T ‖T ‖� ‖T ‖∗/d3

Tijk (i, j, k)th entry of T ‖T ‖F

√

∑

ijk T 2
ijk

T (i, j, k) Tijk ‖T ‖1

∑

ijk |Tijk|
T (i, j, :) (i, j)th tube of T ‖T ‖∞ maxijk |Tijk|
T (:, :, k) kth frontal slice of T ‖T ‖0

∑

ijk 1(Tijk �= 0)

rt(·) Tensor tubal rank 〈A, B〉
∑

ijk AijkBijk

Definition 2 (Tensor transpose [22]). Let T be a tensor of size d1 × d2 × d3,
then T � is the d2 × d1 × d3 tensor obtained by transposing each of the frontal
slices and then reversing the order of transposed frontal slices 2 through d3.

Definition 3 (Identity tensor [22]). The identity tensor I ∈ R
d1×d1×d3 is a

tensor whose first frontal slice is the d1 ×d1 identity matrix and all other frontal
slices are zero.

Definition 4 (F-diagonal tensor [22]). A tensor is called f-diagonal if each
frontal slice of the tensor is a diagonal matrix.

Definition 5 (Orthogonal tensor [22]). A tensor Q ∈ R
d1×d1×d3 is orthogo-

nal if Q� ∗ Q = Q ∗ Q� = I.
Based on the above concepts, the tensor singular value decomposition (t-SVD)

can be defined as follows.

Definition 6 (T-SVD, Tensor tubal-rank [22]). For any T ∈ R
d1×d2×d3 ,

the tensor singular value decomposition (t-SVD) of T is given as follows

T = U ∗ Λ ∗ V�, (5)

where U ∈ R
d1×d1×d3 , Λ ∈ R

d1×d2×d3 , V ∈ R
d2×d2×d3 , U and V are orthogonal

tensors, Λ is a rectangular f-diagonal tensor.
The tensor tubal rank of T is defined to be the number of non-zero tubes of

Λ in the t-SVD factorization, i.e.,

rt(T) :=
∑

i

1(Λ(i, i, :)
= 0). (6)

The definitions of TNN and tensor spectral norm will be given. The former has
been applied as a convex relaxation of the tensor tubal rank in [11,23,24].

Definition 7 (Tubal nuclear norm, tensor spectral norm [12,22]). For
any T ∈ R

d1×d2×d3 , let T denote the block-diagonal matrix of the tensor T̃ :=
fft3(T), i.e.,

428 A. Wang et al.

T :=

⎡

⎢
⎣

T̃ (:, :, 1)
. . .

T̃ (:, :, d3)

⎤

⎥
⎦ ∈ C

d1d3×d2d3 .

The tubal nuclear norm ‖T ‖� and tensor spectral norm ‖T ‖ of T are respec-
tively defined as the rescaled matrix nuclear norm and the (non-rescaled) matrix
spectral norm of T , i.e.,

‖T ‖� :=
‖T ‖∗
d3

, and ‖T ‖ := ‖T ‖. (7)

It has been shown in [12] that TNN is the dual norm of tensor spectral norm.

3 TriFac for Tensor Robust PCA

3.1 Model Formulation

TNN-Based TRPCA. The recently proposed TNN-based TRPCA model2 [12]
adopts TNN as a low rank item in Problem 3, and is formulated as follows

min
L,S

‖L‖� + λ‖S‖1 s.t. L + S = M. (8)

In [11,12], it is proved that when the underlying tensor L∗ satisfy the tensor inco-
herent conditions, by solving Problem (8), one can exactly recover the underlying
tensor L∗ and S∗ with high probability with parameter λ = 1/

√
max{d1, d2}d3.

To solve the TNN-based TRPCA in Eq. (8), an algorithm based on the alter-
nating directions methods of multipliers (ADMM) is proposed [11]. In each itera-
tion, it computes a proximity operator of TNN, which requires FFT/IFFT, and
d3 full SVDs of d1-by-d2 matrices when the observed tensor M is in R

d1×d2×d3 .
The one-iteration computation complexity of the ADMM-based algorithm is

O
(
d1d2d3(log d3 + min{d1, d2})

)
, (9)

which is very expensive for large tensors.

Proposed TriFac. To reduce the cost of computing TNN in Problem (8), we
propose the following lemma, indicating that TNN is orthogonal invariant.

Lemma 1 (Orthogonal invariance of TNN). Given a tensor X ∈ R
r×r×d3 ,

let P ∈ R
d1×r×d3 and Q ∈ R

d2×r×d3 be two semi-orthogonal tensors, i.e., P� ∗
P = I ∈ R

r×r×d3 and Q� ∗ Q = I ∈ R
r×r×d3 , and r ≤ min{d1, d2}. Then, we

have the following relationship: ‖P ∗ X ∗ Q�‖� = ‖X‖�.

Equipped with Lemma1, we decompose the low rank component in Problem 8
as follows:

2 Following [12], when saying “TRPCA”, we refer to the TNN-based TRPCA (8).

A Factorization Strategy for Tensor Robust PCA 429

L = P ∗ C ∗ Q�, s.t. P� ∗ P = Ir, Q� ∗ Q = Ir, (10)

where Ir ∈ R
r×r×d3 is an identity tensor. Further, we propose the following

model based on triple factorization (TriFac) for tensor robust PCA

min
P,Q,C,S

‖C‖� + λ‖S‖1

s.t. P ∗ C ∗ Q� + S = M, P� ∗ P = Ir, Q� ∗ Q = Ir,
(11)

where Ir := I ∈ R
r×r×d3 , r is an upper estimation of tubal rank of the underly-

ing tensor r∗ = rt(L∗) and we set λ = 1/
√

max{d1, d2}d3 as suggested by [12].
Different from Problem8, the proposed TriFac is a non-convex model which

may have many local minima. We establish a connection between the proposed
model TriFac in Problem (11) with the TNN-based TRPCA model (8) in the
following theorem.

Theorem 1 (Connection between TriFac and TRPCA). Let (P∗, C∗,
Q∗,S∗) be a global optimal solution to TriFac in Problem (11). And let (L�,S�)
be the solution to TRPCA in Problem (8), and rt(L�) ≤ r, where r is the initial-
ized tubal rank. Then (P∗∗C∗∗Q�

∗ ,S∗) is also the optimal solution to Problem (8).

Theorem 1 asserts that the global optimal point of the (non-convex) TriFac
coincides with solution of the (convex) TNN-based TRPCA which is guaranteed
to exactly recover the underlying tensor L∗ under certain conditions. This phe-
nomenon means that the accuracy of the proposed model cannot exceed TPRCA,
which will be shown numerically in the experiment section.

3.2 Optimization Algorithm

The partial augmented Lagrangian of Problem (11) is as follows:

Lμ(P, C,Q,S,Y)

= ‖C‖� + λ‖S‖1 +
〈
Y,P ∗ C ∗ Q� + S − M

〉
+

μ

2
‖P ∗ C ∗ Q� + S − M‖2F,

s.t. P� ∗ P = Ir, Q� ∗ Q = Ir,
(12)

where μ > 0 is a penalty parameter, and Y ∈ R
d1×d2×d3 is the Lagrangian

multiplier. Based on the Lagrangian in Eq. (12), we update each variable by
fixing the others.

The P-subproblem. We update P by fixing other variables and minimize Lμ(·):

Pt+1 = argmin
P�∗P=Ir

Lμt
(P, Ct,Qt,St,Yt) = argmin

P�∗P=Ir

μt

2
‖P ∗ A − B‖2F (13)

where A = Ct ∗ Q�
t and B = M − St − Yt/μt. We need the following lemma to

solve Problem (13).

430 A. Wang et al.

Lemma 2. Given any tensors A ∈ R
r×d2×d3 ,B ∈ R

d1×d2×d3 , suppose tensor
B ∗ A� has t-SVD B ∗ A� = U ∗ Λ ∗ V�, where U ∈ R

d1×r×d3 and V ∈ R
r×r×d3 .

Then, the problem
min

P�∗P=Ir

‖P ∗ A − B‖2F (14)

has a closed-form solution as

P = P(B ∗ A�) := U ∗ V�. (15)

The Q-subproblem. By fixing other variables, we update Q as follows

Qt+1 = argmin
Q�∗Q=Ir

Lμt
(Pt+1, Ct,Q,St,Yt)

= argmin
Q�∗Q=Ir

μt

2
‖A′ ∗ Q� − B‖2F

= argmin
Q�∗Q=Ir

μt

2
‖(Q ∗ A′�) − B�‖2F

=
(
P(B� ∗ A′)

)�,

(16)

where A′ = Pt+1 ∗ Ct and B = M − St − Yt/μt, and P(·) is defined in Lemma 2.
The last equality holds because of Eq. (15) in Lemma 2.

The C-subproblem. We update C as follows

Ct+1 = argmin
C

Lμt
(Pt+1, C,Qt+1,St,Yt)

= argmin
C

‖C‖� +
μt

2
‖Pt+1 ∗ C ∗ Q�

t + St − M + Y/μt‖2F

= argmin
C

‖C‖� +
μt

2
‖C − Pt+1

� ∗ (M − St − Y/μt) ∗ Qt+1‖2F

=S1/μt
(Pt+1

� ∗ (M − St − Y/μt) ∗ Qt+1)

(17)

where Sτ (·) is the proximity operator of TNN [16]. In [16], a closed-form expres-
sion of Sτ (·) is given as follows:

Lemma 3 (Proximity operator of TNN [16]). For any 3D tensor A ∈
R

d1×d2×d3 with reduced t-SVD A = U ∗ Λ ∗ V�, where U ∈ R
d1×r×d3 and

V ∈ R
d2×r×d3 are orthogonal tensors and Λ ∈ R

r×r×d3 is the f-diagonal tensor
of singular tubes, the proximity operator Sτ (A) at A can be computed by:

Sτ (A) := argmin
X

τ‖X‖� + 1
2‖X − A‖2F = U ∗ ifft3(max(fft3(Λ) − τ, 0)) ∗ V�.

The S-subproblem. We update S as follows

St+1 = argmin
S

Lμt
(Pt+1, Ct+1,Qt+1,S,Yt)

= argmin
S

λ‖S‖1 +
ρ

2
‖Pt+1 ∗ Ct+1 ∗ Q�

t+1 + S − M +
Yt

μt
‖F

=Tλ/ρ(M − Pt+1 ∗ Ct+1 ∗ Q�
t+1 − Yt

μt
)

(18)

A Factorization Strategy for Tensor Robust PCA 431

Algorithm 1. TriFac implemented by inexact non-convex ALM
Input: Observation M ∈ R

d1×d2×d3 , initialized rank r, and parameter λ.
1: Initialize t = 0, ρ = 1.1, ε ≤ 1e − 7, μ0 = ‖M‖−1, P0 = 0 ∈ R

d1×r×d3 , C0 = 0 ∈
R

r×r×d3 , Q0 = 0 ∈ R
r×d2×d3 , S0 = 0 ∈ R

d1×d2×d3 , Y0 = Y1
0 = Y2

0 = Y3
0 = 0 ∈

R
d1×d2×d3 .

2: while not converged do
3: Update Pt+1 by Eq. (13);
4: Update Qt+1 by Eq. (16);
5: Update Ct+1 by Eq. (17);
6: Update St+1 by Eq. (18);
7: Update the following variables Yt+1, Y1

t+1, Y2
t+1, Y3

t+1:

Yt+1 = Yt + μt(Pt+1 ∗ Ct+1 ∗ Q�
t+1 + St+1 − M); (19)

Y1
t+1 = Yt + μt(Pt+1 ∗ Ct+1 ∗ Q�

t+1 + St − M);

Y2
t+1 = Yt + μt(Pt+1 ∗ Ct ∗ Q�

t+1 + St − M);

Y3
t+1 = Yt + μt(Pt+1 ∗ Ct ∗ Qt

� + St − M).

8: Update the penalty parameter μt+1 = ρμt;
9: Check the convergence conditions μ−1

t ‖Yt+1 − Yt‖∞ ≤ ε, μ−1
t ‖Yt+1 − Y1

t+1‖∞ ≤
ε, μ−1

t ‖Y1
t+1 − Y2

t+1‖∞ ≤ ε.
10: t = t + 1.
11: end while

where Tτ (·) is the proximity operator of tensor l1-norm given as follows:

Tτ (A) := argmin
X

τ‖X‖1 +
1
2
‖X − A‖2F = sign(A) � max{(|A| − τ, 0},

where � denotes the element-wise tensor product.

Complexity Analysis. In each iteration, the update of P involves com-
puting FFT, IFFT and d3 SVDs of r × d2 matrices, having complexity of
order O

(
rd2d3 log d3 + r2d2d3

)
. Similarly, the update of Q has complexity

of order O
(
rd1d3 log d3 + r2d1d3

)
. Updating C involves complexity of order

O
(
r2d3(r + log d3)

)
. Updating S costs O

(
d1d2d3

)
. So one iteration cost of Algo-

rithm1 is

O
(
d3

(
d1d2 log d3 + r2(r + d1 + d2 + log d3) + r(d1 + d2) log d3

))
.

When r � min{d1, d2}, the above cost is significantly lower than the one-
iteration cost of ADMM-based TRPCA [12] in Eq. (9). Consider an extreme
case in high dimensional settings where rt(L∗) = O(1), i.e., the tubal rank of
the underlying tensor L∗ scales like a small constant. By choosing the initialized
rank r = 2rt(L∗) = O(1), the one-iteration cost of Algorithm1 scales like

O(d1d2d3 log d3), (20)

432 A. Wang et al.

which is much cheaper than O(d1d2d3 min{d1, d2}) of ADMM-based algorithm
in high dimensional settings.

Convergence Analysis. The following theorem shows that Algorithm 1 is con-
vergent.

Theorem 2. Letting (Pt, Ct,Qt,St) be any sequence generated by Algorithm1,
the following statements hold

(I) The sequences (Ct,Pt ∗ Ct ∗ Qt
�,St) are Cauchy sequences respectively.

(II) (Pt, Ct,Qt,St) is a feasible solution to Problem (11) in a sense that

lim
t→∞ ‖Pt ∗ Ct ∗ Q�

t + St − M‖∞ ≤ ε. (21)

4 Experiments

In this section, we experiment on both synthetic and real datasets to verify the
effectiveness and the efficiency of the proposed algorithm. All codes are written
in Matlab and all experiments are performed in Windows 10 based on Intel(R)
Core(TM) i7-8565U 1.80-1.99 GHz CPU with 8G RAM.

4.1 Synthetic Data Experiments

In this subsection, we compare Algorithm 1 (TriFac) with the TNN-based
TRPCA [11] in both accuracy and speed on synthetic datasets. Given ten-
sor size d1 × d2 × d3 and tubal rank r∗ � min{d1, d2}, we first generate
a tensor L0 ∈ R

d1×d2×d3 by L0 = A ∗ B, where the elements of tensors
A ∈ R

d1×r∗×d3 and B ∈ R
r∗×d2×d3 are sampled from independent and iden-

tically distributed (i.i.d.) standard Gaussian distribution. We then form L∗ by
L∗ =

√
d1d2d3L0/‖L0‖F. Next, the support of S∗ is uniformly sampled at ran-

dom. For any (i, j, k) ∈ supp (S∗), we set S∗
ijk = Bijk, where B is a tensor

with independent Bernoulli ±1 entries. Finally, we form the observation tensor
M = L∗ + S∗. For an estimation L̂ of the underlying tensor L∗, the relative
squared error (RSE) is used to evaluate its quality [11].

Effectiveness and Efficiency of TriFac
We first show that TriFac can exactly recover the underlying tensor L∗

from corruptions faster than TRPCA. We first test the recovery performance
of different tensor sizes by setting d1 = d2 ∈ {100, 160, 200} and d3 =
30, with (rt(L∗), ‖S∗‖0) = (0.05d, 0.05d2d3). Then, a more difficult setting
(rt(L∗), ‖S∗‖0) = (0.15d, 0.1d2d3) is tested. The results are shown in Table 2.
It can be seen that TriFac can perform as well as TRPCA in the sense that both
of them can exactly recover the underlying tensor. However, TriFac is much
faster than TRPCA.

To further show the efficiency of the proposed TriFac, we consider a special case
where the size of the underlying tensor L∗ increases while the tubal rank is fixed
as a constant. Specifically, we fix rt(L∗) = 5, and vary d ∈ {100, 150, · · · , 500}

A Factorization Strategy for Tensor Robust PCA 433

Table 2. Comparison with TRPCA in both accuracy and speed for different tensor
sizes when the outliers follow i.i.d. Bernoulli distribution.

Outliers from Ber(1, −1), observation tensor M ∈ R
d×d×d3 , d3 = 30

rt(L∗) = 0.05d, ‖S∗‖1 = 0.05d2d3, r = max
{

	2rt(L∗)
, 15
}

d rt(L∗) ‖S∗‖0 Algorithm rt(L̂) ‖L̂−L∗‖F
‖L∗‖F

‖Ŝ−S∗‖F
‖S∗‖F

Time

100 5 1.5e4 TRPCA 5 8.39e−9 3.75e−8 20.45

TriFac 5 1.10e−8 2.44e−8 2.37

160 8 3.84e4 TRPCA 8 8.06e−9 3.58e−8 53.88

TriFac 8 1.26e−8 2.82e−8 6.65

200 10 6e4 TRPCA 10 7.97e−9 3.56e−8 103.14

TriFac 10 1.81e−8 3.99e−8 9.16

Outliers from Ber(1, −1), observation tensor M ∈ R
d×d×d3 , d3 = 30

rt(L∗) = 0.15d, ‖S∗‖1 = 0.1d2d3, r = 	1.5rt(L∗)

d rt(L∗) ‖S∗‖0 Algorithm rt(L̂) ‖L̂−L∗‖F

‖L∗‖F

‖Ŝ−S∗‖F
‖S∗‖F

Time

100 15 3e4 TRPCA 15 1.08e−7 7.28e−8 23.46

TriFac 15 9.56e−8 4.87e−8 7.16

160 24 7.68e4 TRPCA 24 1.06e−7 6.85e−8 63.64

TriFac 24 6.12e−8 4.97e−8 21.86

200 30 1.2e5 TRPCA 30 1.02e−7 6.30e−8 106.14

TriFac 30 1.21e−8 6.01e−10 34.57

with d3 = 20. We set the parameter of initialized rank r of TriFac in Algorithm1
by r = 30. We test each setting 10 times and compute the averaged time. In all the
runs, both TRPCA and TriFac can recover the underling tensor with RSE smaller
than 1e−6. The plot of averaged time versus the tensor size (shown in d) is given in
Fig. 1. We can see that the time cost of TRPCA scales super-linearly with respect
to d, whereas the proposed TriFac has approximately linear scaling.

Fig. 1. Computation time of TRPCA [12] and the proposed TriFac versus d ∈
{100, 150, · · · , 500} with d3 = 20, when the tubal rank of the underlying tensor is
5. The RSEs of TNN and TriFac in all the setting are smaller than 1e−6.

434 A. Wang et al.

Fig. 2. Effects of initialized tubal rank r in Algorithm 1 on the recovery performance
of the underlying tensor L∗ ∈ R

100×100×30. (a): RSE of L̂ versus r in log scale; (b):
tubal rank of L̂ versus r.

Fig. 3. Effects of initialized tubal rank r in Algorithm 1 on the estimation performance
of the outlier tensor S∗ ∈ R

100×100×30. (a): RSE of Ŝ in log scale versus r; (b): l0-norm
of Ŝ versus r.

Effects of the Initialized Tubal Rank r. The performance of TriFac heav-
ily relies on the choice of initialized tubal rank r in Model (11). Here, we
explore the effects of initialized tubal rank on the accuracy and speed of Tri-
Fac. Specifically, we consider tensors of size 100 × 100 × 30 with four differ-
ent settings of tubal rank r∗ = rt(L∗) and sparsity s∗ = ‖S∗‖0 as (r∗, s∗) ∈
{(10, 1.5e4), (10, 3e4), (15, 1.5e4), (10, 3e4)}, where the elements outliers follow
i.i.d. N (0, 1). By varying the initialized r ∈ {5, 10, · · · , 50}, we test the effects
of the initialized tubal rank r on the accuracy and speed of TriFac.

We first report the effects of initialized tubal rank r on the recovery accuracy
of the underlying tensor L∗, in terms of RSE and tubal rank of the final solution
L̂. The results are shown in Fig. 2. As can be seen, there exists a phrase transition
point rpt that once the initialized rank r is larger than it, the RSE of L̂ will
decrease rapidly. Then, the effects of initialized tubal rank r on the estimation
performance of the outlier tensor S∗, in terms of RSE and l0-norm of the final
solution Ŝ are shown in Fig. 2. We can also see that when the initialized rank
r gets larger than the same phrase transition point rpt, the RSE of Ŝ will soon
vanishes. Finally, we show the effects of initialized tubal rank r on the running
time of TriFac in Fig. 4. We can see that the running time will increase, if the
initialized rank r gets larger, the underlying tensor gets more complex (i.e.,

A Factorization Strategy for Tensor Robust PCA 435

r∗ gets greater), or the corruption gets heavier (i.e., s∗ gets larger). That is
consistent with our intuition (Fig. 3).

Fig. 4. Effects of initialized tubal rank r on the running time of TriFac for problem
size 100 × 100 × 30.

4.2 Real Data Experiments

In this section, the efficiency of the proposed TriFac compared with TRPCA [12]
is evaluated on real-world datasets. Specifically, we carry out tensor restoration
experiments on point cloud data and brain MRI data. For an estimation L̂ of
the underlying tensor L∗, the peak signal-to-noise ratio (PSNR) [11] is applied
to evaluate the quality of L̂.

Point Cloud Data. We conduct experiments on a point cloud data set acquired
by a vehicle-mounted Velodyne HDL-64E LiDAR3 [13]. We extract the first 32
frames, transform and upsample the data to form two tensors in R

512×800×32

representing the distance data and the intensity data, respectively. Given a data
tensor, we uniformly choose its indices with probability ρs ∈ {0.2, 0.4}. We then
corrupt the chosen positions with element-wise outliers from i.i.d. symmetric
Bernoulli Ber(−1,+1) or N (0, 1). The proposed algorithm is also compared with
SNN [8] and RPCA [1]. RPCA works on each frontal slice individually. The
parameters of RPCA is set by λ = 1/

√
max{d1, d2} [1]. The weight parameters

λ of SNN are chosen by λk =
√

max{dk,
∏

k′ �=k dk′}/3. We set the initialized
tubal rank r = 196 in Algorithm 1.

We report the PSNR values and running time of each algorithm on the dis-
tance and intensity data in Fig. 5. It can be seen that TNN-based TRPCA has
the highest PSNR values in all the settings, which is consistent with the results
of tensor completion on this data that TNN outperforms SNN [17]. The pro-
posed TriFac algorithm performs slightly worse than TNN, but it has the lowest
running time. As is shown in Theorem1, the proposed model in Eq. 11 can not
outperform TNN-based RPCA model in Eq. (8) since they have the same global
optimal solutions but the proposed model is non-convex. This explains why Tri-
Fac cannot achieve better performances than TRPCA.
3 http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html.

http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html

436 A. Wang et al.

Fig. 5. Quantitative comparison of algorithms in PSNR and running time on point
cloud data. (a): PSNR values of algorithms on the distance data; (b): running time
of algorithms on the distance data; (c): PSNR values of algorithms on the intensity
data; (d): running time of algorithms on the intensity data. (‘0.2, B’ means 20% of the
positions are corrupted by Ber(−1, +1) outliers, and ‘0.4,G’ means 40% of the positions
are corrupted by N (0, 1) outliers).

Brain MRI Data. To show the efficiency of the proposed TriFac, we also use
the 3-way MRI data set analyzed in [21] which has good low-rank property. We
extract the first 15 slices, each having a size of 181 × 217. To further show the
efficiency of TriFac, we resize the data with scale parameter κ ∈ {1, 1.5, 2, 2.5, 3}
to form tensors in R

	181κ
×	217κ
×15. Then, we randomly choose 20% of the ele-
ments in the rescaled tensor, and corrupts them by elements from i.i.d. Bernoulli
distribution Ber(−1,+1). We compare TriFac with TRPCA in both running time
and recovery performance with respect to different sizes. The results are shown
in Table 3. It can be seen that the proposed TriFac works almost as well as
TRPCA but has faster speed.

Table 3. Comparison of TriFac with TRPCA in both PSNR values and running time
on rescaled MRI data in R

�181κ�× �217κ� ×15 with κ ∈ {1, 1.5, 2, 2.5, 3}.

Algorithm κ = 1 κ = 1.5 κ = 2 κ = 2.5 κ = 3

TRPCA PSNR 44.31 50.11 54.62 57.83 59.82

Time/s 20.02 42.86 106.97 174.12 262.53

TriFac PSNR 44.31 50.09 54.62 57.76 59.77

Time/s 11.14 22.1 52.33 88.57 121.41

Initial r 70 70 120 220 300

5 Conclusion

In this paper, a factorization-based TRPCA model (TriFac) is first proposed
to recover a 3-way data tensor from its observation corrupted by sparse outliers.
Then, we come up with a non-convex ALM algorithm (Algorithm1) to efficiently
solve it. Further, the convergence of the proposed algorithm is analyzed in Theo-
rem 2. The effectiveness and efficiency of the proposed algorithm is demonstrated
in experiments on both synthetic and real datasets.

A Factorization Strategy for Tensor Robust PCA 437

References

1. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis?
JACM 58(3), 11 (2011)

2. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford Uni-
versity (2002)

3. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing, vol.
1. Birkhäuser, Basel (2013)

4. Friedland, S., Lim, L.: Nuclear norm of higher-order tensors. Math. Comput.
87(311), 1255–1281 (2017)

5. Goldfarb, D., Qin, Z.: Robust low-rank tensor recovery: models and algorithms.
SIAM J. Matrix Anal. Appl. 35(1), 225–253 (2014)

6. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions
for an “explanatory” multi-modal factor analysis (1970)

7. Hillar, C.J., Lim, L.: Most tensor problems are NP-hard. J. ACM 60(6), 45 (2009)
8. Huang, B., Mu, C., Goldfarb, D., Wright, J.: Provable models for robust low-rank

tensor completion. Pac. J. Optim. 11(2), 339–364 (2015)
9. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as opera-

tors on matrices: a theoretical and computational framework with applications in
imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

10. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing
values in visual data. IEEE TPAMI 35(1), 208–220 (2013)

11. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal compo-
nent analysis: exact recovery of corrupted low-rank tensors via convex optimization.
In: CVPR, pp. 5249–5257 (2016)

12. Lu, C., Feng, J., Liu, W., Lin, Z., Yan, S., et al.: Tensor robust principal component
analysis with a new tensor nuclear norm. IEEE TPAMI (2019)

13. Moosmann, F., Stiller, C.: Joint self-localization and tracking of generic objects in
3D range data. In: ICRA, pp. 1138–1144. Karlsruhe, Germany, May 2013

14. Romera-Paredes, B., Pontil, M.: A new convex relaxation for tensor completion.
In: NIPS, pp. 2967–2975 (2013)

15. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (1966)

16. Wang, A., Jin, Z.: Near-optimal noisy low-tubal-rank tensor completion via singular
tube thresholding. In: ICDM Workshop, pp. 553–560 (2017)

17. Wang, A., Lai, Z., Jin, Z.: Noisy low-tubal-rank tensor completion. Neurocomput-
ing 330, 267–279 (2019)

18. Wang, A., Wei, D., Wang, B., Jin, Z.: Noisy low-tubal-rank tensor completion
through iterative singular tube thresholding. IEEE Access 6, 35112–35128 (2018)

19. Wu, T., Bajwa, W.U.: A low tensor-rank representation approach for clustering of
imaging data. IEEE Signal Process. Lett. 25(8), 1196–1200 (2018)

20. Xie, Y., Tao, D., Zhang, W., Liu, Y., Zhang, L., Qu, Y.: On unifying multi-view self-
representations for clustering by tensor multi-rank minimization. Int. J. Comput.
Vis. 126(11), 1157–1179 (2018)

21. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor
completion. Inverse Prob. Imaging 9(2), 601–624 (2015)

22. Zhang, Z., Aeron, S.: Exact tensor completion using T-SVD. IEEE TSP 65(6),
1511–1526 (2017)

23. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear
data completion and de-noising based on tensor-SVD. In: CVPR, pp. 3842–3849
(2014)

24. Zhou, P., Feng, J.: Outlier-robust tensor PCA. In: CVPR (2017)

	A Factorization Strategy for Tensor Robust PCA
	1 Introduction
	2 Notations and Preliminaries
	3 TriFac for Tensor Robust PCA
	3.1 Model Formulation
	3.2 Optimization Algorithm

	4 Experiments
	4.1 Synthetic Data Experiments
	4.2 Real Data Experiments

	5 Conclusion
	References

