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Abstract. 3D Human Motion Indexing and Retrieval is an interest-
ing problem due to the rise of several data-driven applications aimed
at analyzing and/or re-utilizing 3D human skeletal data, such as data-
driven animation, analysis of sports bio-mechanics, human surveillance
etc. Spatio-temporal articulations of humans, noisy/missing data, differ-
ent speeds of the same motion etc. make it challenging and several of
the existing state of the art methods use hand-craft features along with
optimization based or histogram based comparison in order to perform
retrieval. Further, they demonstrate it only for very small datasets and
a few classes. We make a case for using a learned representation that
should recognize the motion as well as enforce a discriminative ranking.
To that end, we propose, a 3D human motion descriptor learned using a
deep network. Our learned embedding is generalizable and applicable to
real-world data - addressing the aforementioned challenges and further
enables sub-motion searching in its embedding space using another net-
work. Our model exploits the inter-class similarity using trajectory cues,
and performs far superior in a self-supervised setting. State of the art
results on all these fronts is shown on two large scale 3D human motion
datasets - NTU RGB+D and HDM05.

Keywords: 3D Human Motion Retrieval · Self-supervised learning ·
4D indexing · MoCap analysis

1 Introduction

3D Human Motion Retrieval is an emerging field of research due to several
attractive applications such as data-driven animation, athletic training, analysis
of sports bio-mechanics, human surveillance and tracking etc. Performing such
analysis is challenging due to the high articulations of humans (spatially and
temporally), noisy/missing data, different speeds of the same action etc. Recent
research in pose estimation, reconstruction [28,29], as well as the advancement in
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Fig. 1. Motivation of 3D Human Motion Retrieval. Given a query 3D skeletal motion
sequence, we retrieve the top-k most similar sequences. A major motivation is that
the corresponding videos of the retrieved results are view, appearance and background
invariant.

motion capture systems has now resulted in a large repository of human 3D data
that requires processing. Moreover, since the procurement of new motion data is
a time-consuming and expensive process, re-using the available data is of primary
importance. To that end, we solve the problem of 3D Human Motion Retrieval
and address several of the aforementioned challenges, using, a 3D human motion
descriptor learned using a deep learning model (Fig. 1).

While 3D human motion recognition is a commonly researched field, 3D
human motion retrieval is much less explored. The task of human motion
retrieval consists of two parts - building the feature representation and then
the retrieval algorithm. Therefore, it requires recognizing the action as well as,
importantly, enforcing a ranking i.e., a “low-dimensional” “recognition-robust”
and “discriminative” feature embedding that is capable of fast retrieval is
desirable.

Aiming at incorporating several of these properties, several hand crafted
features from skeleton sequences have been developed [8]. There has also been
considerable research in the direction of improving the retrieval algorithm [5]
and having better similarity metrics for comparison [10]. For retrieval purposes,
one common method is to solve an optimization problem, which is however slow
and susceptible to local minimas [12]. Alternatively, a few others perform a
histogram/code-book matching. However, these methods are affected by noisy
data, different lengths and variable frame rates of sequences, etc. Moreover, they
all demonstrate their retrieval accuracy over a very small number of sequences
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and classes. Hence, we would like to move towards learnable representations that
can account for several of these shortcomings, while still maintaining minimal
supervision.

A closely related problem to retrieval in which learnable representations have
been widely explored is 3D action/motion recognition. In the last few years,
several deep learning model innovations have been made to better exploit the
spatial and temporal information available in skeleton data [19–21]. While these
models do a respectable job in recognition, they perform poorly in retrieval
due to not having a discriminative enough embedding space. Further, several of
them highly depend on the availability of class labels. The number of class labels
available in existing datasets is fairly limited, and such supervised models are
incapable of exploiting similar sub-actions amongst various classes. Hence, the
requirement of a more generalized model is in order.

Therefore, in this paper, we would like to propose a discriminative learnable
representation, DeepHuMS, for retrieval, which produces instantaneous retrieval
with a simple nearest neighbour search in the repository. To summarize, our
contributions are:

– We propose a novel deep learning model that makes use of trajectory cues,
and optionally class labels, in order to build a discriminative and robust 3D
human motion descriptor for retrieval.

– Further, we perform sub-motion search by learning a mapping from sub-
sequences to longer sequences in the dataset by means of another network.

– Experiments are performed, both, with and without class label supervision.
We demonstrate our model’s ability to exploit the inter-class motion similar-
ity better in the unsupervised setting, thus, resulting in a more generalized
solution.

– Our model is learned on noisy/missing data as well as motions of different
speeds and its robustness in such scenarios indicates its applicability to real
world data.

– A comparison of our retrieval performance with the publicly available state
of the art in 3D motion recognition as well as 3D motion retrieval on 2 large
scale publicly available datasets is done to demonstrate the state-of-the-art
results of the proposed model.

2 Related Work

Most approaches on the 3D human motion retrieval have focused on develop-
ing hand crafted features to represent the skeleton sequences [8,12,17]. In this
section, we broadly categorize them by the method in which they engineer their
descriptors. Some existing methods use objective function [12], few others use
codebook or histogram comparisons [5,18] to obtain hand-crafted features. The
traditional frame based approaches extract out features for every frame. [10]
proposed a geometric pose feature to encode pose similarity. [18] used joints’
orientation angles and angles-forward differences as local features to create a
codebook and generate a Bag of Visual Words to represent the action. [7,22]
suggest hand drawn sketch based skeleton sequence retrieval methods. On the
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Fig. 2. Overview of our model - DeepHuMS. Given two skeleton sequences (a), we
first extract the 3D joint locations (i.e., skeletal features) and motion field between
consecutive frames (i.e., motion field features) to represent the spatio-temporal data
(b). The two are concatenated together and given to an RNN [19] to model the 4D data
(c). The resulting embeddings (d) are compared based using (e) contrastive loss (and
optionally classification loss) to make them “discriminative” and “recognition-robust”.
Similarity is enforced based on the full sequence’s motion distance and motion field.
At the time of retrieval, given a 3D sequence to the network (g), with the resultant
embedding, a nearest neighbour search is done in the embedding space (f) generated
from the training data.

other end of the spectrum, sequence based motion features utilize global prop-
erties of the motion sequence [3,6,11]. Muller et al. [11] presented the motion
template (MT) in which motions of the same class can be represented by an
explicit interpretable matrix using a set of boolean geometric feature. To toler-
ate the temporal variance in the training process, dynamic time warping (DTW)
was employed in their work. [13] created a temporal motion model using HMM
and a histogram of 3D joints descriptors after creating the dictionary. [9] applied
a Gaussian Mixture Model to represent character poses, wherein the motion
sequence is encoded, then they used DTW and a string matching to find simi-
larities between two videos. Recently many graph based models have been pro-
posed to exploit the geometric structure of the skeleton data [14–16]. The spatial
features are represented by the edges connecting the body joints and temporal
features are represented by the edges connecting the same body joint in adjacent
frames.
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For the task of retrieval, [27] proposed a simple auto-encoder that captures
high-level features. However, their model doesn’t explicitly use a temporal con-
struct for motion data. Primarily, learnable representations from 3D motion data
have been used for other tasks. [19,23] are a few amongst many who used deep
learning models for 3D motion recognition. Similarly, [26] adopts a unidirectional
LSTM to encode the skeleton frames within the hidden network states and learn
what subsequences of encoded frames belong to the specified action classes.

Broadly, the existing methods are affected by noisy data, the length and
variable frame rates of sequences, and are slow at retrieval. Further, they lack a
learned discriminative embedding which is capable of performing sub-sequence
retrieval.

3 DeepHuMS: Our Method

In order to build a 3D human motion descriptor, we need to exploit the spatio-
temporal features in the skeletal motion data. Briefly, we have three key compo-
nents - (i) the input skeletal location and joint level motion trajectories to the
next frame, (ii) an RNN to model this temporal data and (iii) a novel trajectory
based similarity metric (explained below) to project similar content together
using a Siamese architecture. We use two setups to train our model - (a) self-
supervised, with a “contrastive loss” given by Eq. 1 to train our Siamese model
and (b) supervised setup, with a cross entropy on our embedding, in addition to
the self-supervision. Refer to Fig. 2 for a detailed architecture explanation.

Lcontrastive = (1 − Y )
1
2
(D2

w) + (Y )
1
2
{max(0,m − Dw}2 (1)

In Eq. 1, Dw is the distance function (e.g., “Euclidean distance”), m is the
margin for similar and dissimilar samples and Y is if the label value (1 for similar
samples and 0 for dissimilar).

Lcrossentropy =
M∑

n=1

yo,clog(po,c) (2)

In Eq. 2, y indicates (0 or 1) if class label c is the correctly classified, given o,
the observation. M is the number of classes and p is the predicted probability,
given an observation o of class c.

Similarity Metric. Two 3D human motion sequences are said to be similar
if both the joint-wise “Motion Field” and joint-wise “Motion Distance” across
the entire sequence are similar. The motion field depicts the direction of motion
as well as the importance of the different joints for that specific sequence. The
motivation behind this is evident in Fig. 3 in which the hand and elbow joints
are more important for waving. However, the motion field can end up being zero
as shown in Fig. 3. Therefore, we couple it with the joint-wise motion distance
in order to build a more robust similarity metric. It is to be noted that having
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such a full video trajectory based similarity makes it difficult to directly retrieve
sub-sequences of similar content. We handle this scenario in Sect. 4.5 using a
second network.

Fig. 3. Hand and elbow are important joints while waving, due to higher motion
distance.

Equation 3 gives the motion field MF between two frames i and j. It is to be
noted that we used motion field in two ways - one between every pair of frames
on the input side, and the second between the first and last frame (whole video),
for the similarity loss in Siamese network. Here F [i] contains the 3D joints for
ith frame in the skeleton sequence. Similarly, Eq. 4 gives the motion distance of
the entire sequence. MD[j] is the total distance covered by jth joint and N is
the number of frames in the 3D skeleton sequence.

MF [i, j] = F [i] − F [j] (3)

MD[j] =
N−1∑

i=1

‖F [i + 1][j] − F [i][j]‖ (4)

Different Number of Frames. In case of sequences that have different speeds
of motion or sampling rate, but similar content, the information available at the
input is different, but, the resulting motion field and motion distance across
the entire sequence is the same. Hence, we augment our data and enforce such
sequences to be projected together in our embedding space using the contrastive
loss. In other words, we map sequences with less information to the same location
to sequences with more information, in the embedding space (See Sect. 4.5 for
more on implementation details).

4 Experiments

4.1 Datasets

We use two commonly used large scale public MoCap datasets to evaluate our
method for human 3D motion retrieval.
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NTU RGB+D [2]: This dataset provides RGB, depth, infra red images and 3D
locations of 25 Joints on the human body. It consists of around 56,000 sequences
from 60 different classes acted by 40 performers. We use the given performer
wise split for learning from this dataset.

HDM05 [1]: This dataset provides RGB images and 3D locations of 31 Joints
in human body. There are around 2300 3D sequences of 130 different classes per-
formed by 5 performers in this dataset. We follow [12] for evaluation and therefore
combine similar classes (for e.g. walk2StepsLstart and walk2StepsRstart) to get
a total of 25 classes. We follow a performer-wise split with the first 4 performers
for training and the last one for testing.

4.2 Implementation Details

All of the trained models, code and data shall be made publicly available, along
with a working demo. Please refer to our supplementary video for more results.

Data Pre-processing & Augmentation. In order to make it per-
former/character invariant, we normalized the 3D joint locations based on the
bone length of the performer. To diversify our datasets, for every 3D sequence,
we create two more sequences - a faster and a slower one. The faster sequence
is created by uniformly sampling every other frame, and the slower sequence is
created by interpolating between every pair of frames.

Network Training. We use Nvidias GTX 1080Ti, with 11GB of VRAM to
train our models. A batch size of 128 is used for NTU RGB+D dataset, and
a batch size of 8 is used for training the HDM05 dataset. We use the ADAM
optimizer with an initial learning rate of 10−3, to get optimal performance on
our setup. The training time for NTU RGB+D dataset is 6 h and HDM05 is 1 h.
Each dataset is trained individually from scratch.

4.3 Evaluation Metrics

Retrieval Accuracy. This is a class-specific retrieval metric. In “top-n”
retrieval accuracy, we find out how many of the “n” retrieved results belong
to the same class as the query motion.

Dynamic Time Warping (DTW) Distance. Inspired from [10], we use
Dynamic Time Warping as a quantitative metric to find out the similarity
between two sequences based on distance. Two actions with different labels can
be very similar, for example, drinking and eating. Likewise, the same class of
actions performed by two actors can have very different motion. Hence using
only the class-wise retrieval accuracy as metric doesn’t provide the complete
picture, and therefore, we use DTW as well.
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4.4 Comparison with State of the Art

Since all of the existing state of the art methods use supervision, we compare
our supervised setup with them in two ways - (a) with existing 3D Human
Motion Retrieval models and (b) with 3D Human Motion Recognition embed-
dings. Class-wise retrieval accuracy of the top-1 and top-10 results are reported
for the same.

3D Human Motion Retrieval. Most of the existing retrieval methods [6,24,
25] show results on only up to 10 classes, and on very small datasets. [12] uses
the same number of class labels as us, and we therefore, compare with them in
Fig. 4a. As shown in Fig. 4a, the area under the PR curve is far larger for our
method, and we have learned a much more robust 3D human motion descriptor.

Fig. 4. A comparison of retrieval accuracy using PR curves for (a) 3D Motion Retrieval
on HDM05 and (b) 3D Motion Recognition on NTU RGB+D

Table 1. Retrieval accuracy with 3D motion recognition on NTU RGB+D

Method Top 1 ret. acc. Top 10 ret. acc.

HCN [23] 0.61 0.56

IndRNN [19] 0.69 0.62

DeepHuMS (ours) 0.78 0.753
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3D Human Motion Recognition. We compare with learned representations
from 3D Motion recognition. The results for the recognition models in Table 1
and Fig. 4b are computed using their embeddings trained on our datasets.

Retrieval v/s Recognition. Figure 5 shows how our model produces a more
clustered and therefore, discriminative space, suitable for retrieval, in comparison
with the embedding space of [19], a state of the art 3D motion recognition algo-
rithm. Recognition algorithms only focus on learning a hyperplane that enables
them to identify limited motion classes. Adding a generalized similarity metric
enforces an implicit margin in the embedding space - a motion trajectory based
clustering.

Fig. 5. A comparison of the t-SNE representation of Motion Recognition [19] with our
method on NTU-RGB+D dataset [2]

4.5 Discussion

The results and inferences reported below are consistent for all datasets. For
more detailed results, please see our supplementary video. Given a query, we
show the top-2 ranked results in Figs. 6, 7, 9 and 11.

Results of Self-supervision. Going beyond class labels, we are able to exploit
inter-class information when trained with only self-supervision; therefore, the
resulting retrieved motions are more closer to the query motion than the super-
vised setup, in terms of per frame error after DTW - 34mm of supervised v/s
31mm of unsupervised. This is a promising result, particularly because existing
datasets have a very limited number of labels and it enables us to exploit 3D
sub-sequence similarity and perform retrieval in a label-invariant manner.
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Query: Drink Rank 1: Eat Rank 2: Brush Hair

Fig. 6. Retrieval results for self-supervised setup, which shows that we exploit inter-
class similarity

Query: Stand Up Rank 1 Rank 2

Fig. 7. Retrieval results on NTU-RGB+D dataset [2] using our supervised setup.

Sequences of Different Speeds. Irrespective of the sampling rate/speed of
motion, the motion field, and distance would be the same. So, we take care of
motions performed at different speeds by minimizing all to the same embedding.
We do this by simulating a sequence that is twice as slow and twice as short
by interpolation and uniform sampling respectively and training a Siamese over
them. Figure 8a and b shows that more the number of frames, more amount of
information is given to the network, and therefore, better the results. We handle
short to very long sequences ranging in length from 15 to 600 frames.

Noisy/Missing Data. To prove the robustness of our method towards noisy
data, we trained and tested out model with missing data - random 20% of joints
missing from all frames of each sequence. This scenario simulates sensor noise or
occlusions while detection of 3D skeletons. As shown in Fig. 8c, we still achieve
an impressive retrieval accuracy in scenarios where optimization based state of
the art methods would struggle.

Sub Motion Retrieval. Sub Motion retrieval becomes important when we
would like to search for a smaller action/motion in longer sequences. But it
is a very challenging task due to the variations in length and actions in sub
sequences. Moreover, our similarity metrics, in their current form can’t account
for sub sequences directly. To address this, we follow the model shown in Fig. 10.
Using this simple model, we retrieve the whole sequence it is a part of. This is a
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Fig. 8. A comparison of our precision recall curves (a) before training for different
speeds on HDM05 dataset, (b) after training for different speeds on HDM05 dataset
and (c) with noisy data.

Fig. 9. Retrieval results for noisy data

good starting point for the community and we believe that better solutions can
be developed that directly incorporate sub-sequence information in the motion
descriptor.

DeepHuMSRNN

L2-Loss

(a) (b) (c) (d) (e) (f)

Training

Weights Frozen

Fig. 10. Given a subsequence (a) as the input, we use another RNN (b) to learn an
embedding (c). This is minimized with L2 loss w.r.t the ground truth (d) generated
from DeepHuMS (e) trained on long sequences (f)

Retrieval Time. We have a fairly low dimensional embedding of size 512, and
perform a simple nearest neighbour search throughout the training dataset. This
yields an average retrieval time for the test set to be 18 ms for NTU RGB+D
and 0.8 ms for HDM05 dataset. The retrieval time is proportional to the dataset
size, and one could use more advanced algorithms such as tree based searching.
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Query: Raise Hand Rank 1 (Wave) Rank 2 (Salute)

Fig. 11. Retrieval results for sub sequence retrieval. Retrieved results are from different
classes but query is a sub part of both of the retrieved videos.

4.6 Limitations

Although our current model demonstrates impressive results, there exist some
shortcomings in terms of generalisability and design. Firstly, indexing the sub-
motion in the full sequence isn’t trivial. Secondly, sequences with repetitive
actions would be sub-optimal to handle with our full video-DeepHuMS descrip-
tor. Both of these are because of different motion fields/distances as well as the
lack of explicit temporal indexing of individual key-frames in the learned 3D
human motion descriptor. In other words, we need either better utilization of
the “semantic context” injected by the existing similarity metrics as well as need
additional constructs to incorporate a better semantic context. This extends to
a larger discussion about how to design models to learn in an unsupervised
manner.

5 Conclusion

In this paper, we make a case for using a learned representation for 3D Human
Motion retrieval by means of a deep learning based model. Our model uses trajec-
tory cues in a self-supervised manner to learn a generalizable, robust and discrim-
inative descriptor. We overcome several of the limitations of current hand-crafted
4D motion descriptors such as their inability to handle noisy/missing data, dif-
ferent speeds of the same motion, generalize to a large number of sequences
and classes etc, thus making our model applicable to real world data. Lastly,
we provide an initial model in the direction of 3D sub-motion retrieval, using
the learned sequence descriptor as the ground truth. We compare with state-of-
the-art 3D motion recognition as well as 3D motion retrieval methods on two
large scale datasets - NTU RGB+D and HDM05 and demonstrate far superior
performance on all fronts - class-wise retrieval accuracy, time and frame level
distance.
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