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Abstract. This paper introduces the design and usage of a multi-person
pose estimation system. The system is developed targeting some chal-
lenging issues in real-world surveillance such as (i) low image resolution,
and (ii) people captured in crowded situation. Under such conditions,
we evaluated the system’s performance on human detection by compar-
ing to other state-of-art algorithms. The leading results by using the
proposed system are accomplished by several features in the system’s
design: (i) training and inference of mid-point, which is the center of
two body region points defined in human pose, (ii) core-of-pose which is
association of a plurality of body region points, and used as root of each
individual person during parsing multiple people under crowded situa-
tion. The proposed system is also fast and has the potential for industrial
use.

Keywords: Industrial image analysis · Pose estimation · Human
detection · Real-world surveillance

1 Introduction

Human pose estimation is recently attracting a great attention and has been
studied extensively in action recognition [2,3,25], online human tracking [16,23],
person re-identification [20], human-object interaction [6] and human parsing [4].
As to human detection, which is an important task in real-world surveillance,
using pose estimation to determine the human bounding area is becoming a
more practical way, compared to directly using a human detector such as faster
R-CNN [18], SSD [13] or YOLO [17]. This is because in real-world surveillance,
especially in public spaces where people often appear in a crowd, (i) some peo-
ple’s bodies are under partial occlusion, and (ii) because of the distance between
camera and people, and the requirements of real-time data processing, images
and people captured are often with low resolution. These two facts would lead
to inaccuracy when using human detector [7]. For example, in the task of rec-
ognizing suspicious persons near two countries’ border (Fig. 1(left)), animals or
even shaking trees are often recognized as human; In surveillance of a pedestrian
crossing like Fig. 1(right), it happens a lot that multiple people in a crowd are
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Fig. 1. Examples of real-world surveillance: The left one shows a wide-range surveil-
lance near two countries’ border (Getty image). The right one is surveillance of a
pedestrian crossing (MOT dataset [14]).

recognized as a single person. To solve such problems, a practical way is to imple-
ment bottom-up approach, which means to first detect body region points (each
region point represents a certain part of human body), then to build associa-
tion among those region points in order to get a pose vector for each individual
person.

State-of-the-art bottom-up approach include recent works such as Open-
Pose [1], Art-Track [15] and Associative Embedding [10]. OpenPose uses a part-
affinity-field to train the area between each pairwise body region points. Art-
Track trains the geometric relationship between head and each of other body
regions. Associative Embedding uses a neural network to estimate a person-
index-number for each detected body region. In this paper, we designed a
bottom-up pose estimation system called NeoPose, and compared NeoPose to
those state-of-the-art algorithms for human detection task. The comparisons
were conducted on MHP (Multi-Human Parsing) dataset [11], which contains
many cases of dense people in the images. We resized all images to smaller size
to make the test under low image resolutions. NeoPose gained leading results in
the task.

The design of NeoPose is featured by two concepts: mid-point and core-of-
pose. Mid-point is the center of two body region points defined in human pose
(Fig. 2). We trained and inferred mid-points to help in the association of body
region points. In OpenPose [1], the idea of mid-point was mentioned but denied
due to concerns of crowded situation. In this paper, we explained when and
how to use mid-points. Firstly, we point out that mid-point would be suitable
for pose estimation under low image resolution. This was referred to a problem
of part-affinity-field, which was used in OpenPose. Second, we used mid-point
after human parsing, and supplemented it with a reference of body size. The
human parsing and the estimation of body size were realized by what we called
core-of-pose.

Core-of-pose is the combination of a plurality of upper body’s region points
and the links among them (Fig. 5(a)). It is defined on each individual person,
and used as root to associate other body region points of the person. What’s
more, body size of a person could be estimated by referring to the length of
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links in core-of-pose, and could be used as a criterion for other region points’
association. Such criterion helps to reduce the region points’ association that
crosses different persons. In this paper, we explained the algorithm of building
core-of-pose. Compared to a previous work [21] that used a single region point
(the head point) as root of each person, and length of head as reference size of
human body, our algorithm, using multiple links to build the core, and functioned
with the help of mid-points, would thereby reduce the risk of errors under low
image resolution and crowded situation.

Overall, targeting real-world surveillance, this paper provides two directions
for the design of bottom-up pose estimation and human detection system. (i)
training mid-points in order to better support the association of body region
points under low image resolution, (ii) using core-of-pose which consists of upper
body’s region points to parse multiple persons, and to estimate a reference size of
each person’s body in order to supplement the region points’ association among
multi-person under crowded situation.

2 Methodology

In this research, human pose is defined as in Fig. 2. Totally 18 body region points
are associated to build up one person’s pose. During pose estimation, there might
be some region points which are not detected, thereby we defined the pose vector
of one person as a subset of the 18 body region points. The 10 mid-points are
defined according to 10 pairs of region point, each pair of which are physically
connected on human body. Mid-points are not involved in pose vector, but help
to associate the body region points and to determine the pose vector.

N1 ~ N17:
body region points following 
COCO format[19]

M0 ~ M9:
mid-points
(i.e. M0 is the center of N1 and N12)

N0:
region point of neck

Pose vector:
A subset of {N0 ~ N17}

Fig. 2. Human pose defined by body region points and mid-points. N0:neck, N1:right
shoulder, N2:left shoulder, N3:right ear, N4:left ear, N5:nose, N6:right eye, N7:left eye,
N8:right elbow, N9:right wrist, N10:left elbow, N11:left wrist, N12:right hip, N13:left
hip, N14:right knee, N15:left knee, N16:right ankle, N17:left ankle.
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Given an image that contains one or multiple persons, pose estimation and
human detection by NeoPose are achieved through three steps: (i) generating
body region points and mid-points, (ii) generating core-of-pose, and (iii) gener-
ating pose vectors and human bounding boxes.

2.1 Generating Body Region Points and Mid-Points

Based on COCO dataset [12], we trained 18 body region points, 10 mid-points
as well as a background channel using the deep network defined in Fig. 3(a).
Ground truth of body region points except the region point of neck (defined as
center of two shoulders) were provided by COCO dataset, and they were used to
calculate the ground truth for the region point of neck as well as 10 mid-points.
The network starts with a pre-defined VGG-19 [19], followed by two branches,
each of which consists of three stages. The output of each stage in the first branch
includes 19 channels (18 region points and one for background), while the second
branch generates 10 channels for the mid-points after each stage. Concatenation
layers between the stages share the features from VGG to the first branch, and
from the first to the second branch. After the second and the third stages, all 29
feature maps from two branches are concatenated and used to calculate loss:

Loss =
∑

T

∑
C

∑
P

W (P )· ‖ ST
P (P ) − SG

P (P ) ‖22
In the loss function, T stands for the second and the third stages, C refers to

the 29 channels, and P represents all pixels in the feature map. ST
P is the score

generated from the deep network and SG
P is the ground truth. W is a binary

weight, which returns a value 0 when the annotation is missing at the current
location in an image. After training the deep network, body region points and
mid-points in an image can be extracted from the 29 feature maps.

Compared to the deep network of OpenPose, NeoPose made three changes:
(i) The branch for training part-affinity-field (PAF) was replaced by training
mid-points. This is a crucial change to make the network better support images
with low resolution. Figure 4 shows that PAF would involve too much unreliable
information when the image resolution is low. In such cases, utilizing a simple
mid-point would help in reducing the risk of errors. (ii) In the design of concate-
nation layers of NeoPose, the feature sharing goes along a single direction from
the branch of region points to that of mid-points, compared to the interactive
structure in OpenPose that PAF’s features are also shared with body region
points. Such a design was made because mid-points were calculated based on
region points, and sharing mid-points’ feature with region points would lead to
multiple detections on each body region. (iii) The number of stages after VGG-
19 was reduced from 6 in OpenPose to 3 in NeoPose in order to speed up the
inference of region and mid-points. We also found that by reducing the number of
stages, the network could recognize more region and mid-points under crowded
situation. Such phenomenon was studied in [24], which suggested that repeating
the process of convolution would make the network focus more on features of
the whole scene rather than individual object/person.
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Fig. 3. Architecture of NeoPose. (a) the deep network, (b) the flowchart of data pro-
cessing after the deep network.

(a) (b) (c)

(d) (e)

ankle

knee

ankle

knee
mid-point

PAF

Fig. 4. Description of mid-point. (a, b, c) image, person and body region with low
resolution, (d) part-affinity-field (PAF), which is used by OpenPose [1], (e) concept of
mid-point used in this research.

2.2 Generating Core-of-Pose

Core-of-pose is defined based on region points of neck, shoulder and ear. These
body parts are selected because they are highly spatially correlated on human
body, and they are more likely to be captured in real-world surveillance even
if people are in a crowd. Six types of link can be included in the core: neck
and left shoulder, neck and left ear, left shoulder and left ear, neck and right
shoulder, neck and right ear, right shoulder and right ear. Figure 5(a) shows the
four types of core (TA, TB, TC, TD) and one midterm format (TE). TA is the
full core which has two triangles corresponding to the neck. TB, TC and TD
has one triangle. TE is a midterm format and can be converted to TB and TC
by excluding the link in the middle of the path between two neck points.

The algorithm for generating core-of-pose (Fig. 5(b)) starts with a graph G
and V . G includes all detected body region points of neck, shoulders and ears
in the image. V is called full mapping links that consists of all allowable types
of link among the region points in G. A pairwise matching algorithm (PMA)
is then performed on G and V to filter each type of the link. Assuming that
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G={ Ni | i in {0,1,2,3,4} }
V={ (Ni, Nj) | (i,j) in {(0,1), (0,2), 

(0,3), (0,4), (1,3), (2,4)} }

G
V-sub

Connected components
that have triangle(s) on 

each neck

Filtered by 
PMA

TA

TB

TC

TD

TE

TB

TC

TA TA

TB

TC

TD

Core-
of-poseCore- Optimization

TD

excluded

TA

TB

TC

TD

Base
length

TB

TD

TC
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ear ear

neckshoulder shoulder

ear

neck shoulder

ear ear

neck shoulder

ear TE
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ear ear

neckshoulder shoulder

ear

TA

(a)

(b)

Fig. 5. (a) The four types of core-of-pose TA, TB, TC, TD, and one midterm format
TE. (b) Algorithm of generating core-of-pose from the detections of neck, shoulder and
ear region points.

a type of link is between two kinds of region points RX and RY , the PMA
first accepts only the shortest link for each of RX among its multiple links and
removes all other links. Then for each of RY , PMA also accepts the shortest
link from its remaining links and removes other links. After performing PMA,
the graph G with the filtered links (V -sub) will contain a plurality of connected
components. Among all connected components, those which include at least one
triangle according to each neck point are accepted and called core-α. TA, as well
as TB, TC, TD and TE, are the only five possible types of core-α.

Core-α is not the completed format of core-of-pose. Two steps of optimization
are performed on core-α. (Step 1) TE is converted to TB and TC by excluding
the link in the middle of the path between two neck points. By doing this, all
core-α are aligned with having one neck point. (Step 2) A base length for each
core-α is calculated:

La =

⎧
⎪⎨

⎪⎩

min(|(N0, N1)|, |(N0, N2)|) (N1 and N2 exist)
|(N0, N1)| (N2 does not exist)
|(N0, N2)| (N1 does not exist)

Lb =

⎧
⎪⎨

⎪⎩

min(|(N0, N3)|, |(N0, N4)|) (N3 and N4 exist)
|(N0, N3)| (N4 does not exist)
|(N0, N4)| (N3 does not exist)



Pose-Based Human Detection for Real-World Surveillance 245

Lc =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(|(N0,M0)|, |(N0,M1)|) (M0 and M1 exist)
|(N0,M0)| (M1 does not exist)
|(N0,M1)| (M0 does not exist)
La + Lb + 1 (M0 and M1 do not exist)

Among multiple detections of M0 and M1, we used the closest ones to N0 for
calculating Lc.

Base length =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lc (Lc ≤ La + Lb, Lb ≤ La × 2)
Lc × 1.17 (Lc ≤ La + Lb, Lb > La × 2)
La + Lb (Lc > La + Lb, Lb ≤ La × 2)
Lb × 1.7 (Lc > La + Lb, Lb > La × 2)

1.17 and 1.7 are fixed referring to 1/ sin 60◦ and tan 60◦, assuming that in the
core-of-pose of a front-view person, each triangle is an equilateral triangle.

The base length is used to exclude some region points and links in core-α.
In a core-α, when the distance between a region point R and the neck point
N is over the base length of the current core-α, point R as well as any link
associated to it will be excluded from the current core-α. With such process,
some of TA will be converted to TB or TC, and some of TB, TC and TD will
lose their triangle. Those core-α without a triangle will be excluded and not
be used anymore. Throughout two steps of optimization, a plurality of core-of-
pose are obtained. We assume that all body region points included in the same
core-of-pose are located on the same person.

2.3 Generating Pose Vectors and Human Bounding Boxes

Having core-of-pose, the next step is to associate other types of body region point
detected in the image to each core. The association follows an order described in
Table 1. Each step of association shares the same algorithm as shown in Fig. 6.
Taking the “right shoulder-right elbow” link as an example, PX in Fig. 6 corre-
sponds to right shoulder which is already associated (in core-of-pose), and PY
represents right elbow which is to be associated. The algorithm first generates
full mapping links between all associated region points of right shoulder and all
detected region points of right elbow. The full mapping links are then filtered by
two criteria. (i) Length of link should be no more than the allowable maximum
length of the current type of link. The allowable maximum length is related to
the base length calculated from core-of-pose, and varies according to each type
of link (Table 1). The varied length according to type of link is determined based
on human’s body context [9]. (ii) A mid-point with its type corresponding to the
link should be detected in a middle area of the link. As shown in Fig. 7, the mid-
dle area is an ellipse area centered on a mid-point M ′ between two region points
Ni and Nj . In this research, Rmajor of the middle area is set to |(Ni, Nj)|×0.35,
and the Rminor is set to Rmajor × 0.75. The algorithm excludes the links in
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which no mid-point exists in the middle area. Note that for those links located
on the head, filtering by mid-point is not required. After filtering the links by
maximum length and mid-point, the pairwise matching algorithm is performed
to optimize the association. As a result, the region points of right elbow on the
remaining links are accepted and associated to the right shoulders.

Following the order of region points’ association described in Table 1, the full
association is completed after hands, feet and eyes are associated to core-of-pose.
In case that some types of region point are not detected or not satisfying the
proposed criteria, the full association may not be completed. Figure 8 shows some
examples of multi-person pose estimation using NeoPose. For each person, body
region points, mid-points and core-of-pose are rendered on the image. Having
estimated the pose, the human bounding box could be created by enclosing all
the region points of a person.

Table 1. Rules for association of body region points based on core-of-pose

Order Association Requiring mid-point Maximum length

1 Shoulder and elbow Yes 1.5 × base length

2 Elbow and wrist Yes 1.5 × base length

3 Shoulder and hip Yes 2.0 × base length

4 Hip and knee Yes 2.0 × base length

5 Knee and ankle Yes 2.0 × base length

6 Neck and nose No 1.0 × base length

7 Nose and eye No 0.5 × base length

Full mapping links Link on head
Associated PX

Associated PYY

N

Filtered by 
PMA

Filtered by 
mid-point

Filtered by 
base length

Associated body region 
points (PX)

Body region points to 
be associated (PY)

Fig. 6. Algorithm of associating two types of body region point which are physically
connected on human body. (e.g. PX is right shoulder and PY is right hip)

M’

M

Ni

Nj

Rmajor

Rminor

Fig. 7. Mid-point and the middle area. M ′: ground-truth of mid-point. M : detected
mid-point. Ni and Nj : two body region points.
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Fig. 8. Multi-person pose estimation by NeoPose on images in MHP dataset [11]. Body
region points, mid-points and core-of-pose are rendered for each person.

Fig. 9. Three categories of human detection: (left) correct association, (middle) false
association, (right) ghost association.

3 Evaluation

To evaluate the quality of NeoPose’s human detection function, we performed a
quantitative analysis on MHP dataset [11]. MHP dataset contains many cases
of dense people in the images, and a variety of different poses in real-life scenes.
Its original mission is for testing human parsing algorithms. We considered that
MHP is a good dataset to simulate the situation of crowded people in real-world
surveillance. What’s more, before evaluation, we resized all images in the dataset
to a fixed height (120 pixels) without changing the aspect ratio, and used the
resized images as input to NeoPose’s deep network. By doing this, we simulated
the situation of analyzing low resolution images.

We used NeoPose to perform pose estimation on all images in MHP dataset
(merging training set with validation set). Figure 8 shows some images in MHP
dataset rendered with estimated poses. To evaluate human detection function,
we extracted those estimated pose vectors which have at least 10 body region
points associated (including the region points in core-of-pose), rendered the
region points on the image with color according to different type, and extracted
the person’s image along with his/her bounding box. We asked two data anno-
tators to manually check those extracted images and classify them into three
categories as shown in Fig. 9: (i) correct association, which means all associated
region points are located on one person’s body without an obvious position error,



248 Y. Pan and S. Nishimura

(ii) false association, which means associated region points are located on differ-
ent persons, or some region points are located on the background rather than
human body, and (iii) ghost association, which stands for the situation that all
associated region points are located on background rather than human body.

Assuming that the position error (PE) of a region point is defined like:

PE = |(PDT , PGT )|/Hp

DT stands for detection and GT for ground-truth. Hp is height of the person.
Since the fluctuation of PE on person with low resolution would be more

violent than that on person with larger resolution, it is difficult to fix a threshold
of position error for evaluation. In this research, we ask data annotators to
manually judge whether the body region points are correctly located or not.

We also performed the same evaluation using state-of-art algorithms includ-
ing OpenPose, Art-Track [10] and Associative Embedding (AE) [15] under the
same criteria. Based on the results of three categories, we computed precision
and recall for each algorithm. For NeoPose and OpenPose, we also compared the
system’s processing speed on MHP since they were implemented under the same
framework (assuming OpenPose’s speed is 1). Table 2 summarizes the results.
The results suggests that OpenPose and Art-Track’s precisions are close to Neo-
Pose (difference within 1%). However, NeoPose’s recall is much higher than
OpenPose and Art-Track. On the other hand, AE and NeoPose’s recalls are
on the same level (with a 0.7% difference), but AE’s precision is 2.4% less than
NeoPose. Overall, NeoPose performs the best in the evaluation.

Table 2. Results of human detection on MHP dataset using different algorithms

GT Correct False Ghost Precision Recall Speed

OpenPose 12319 8762 1499 5 85.3% 71.1% 1

Art-Track 12319 6878 1190 2 85.2% 55.8% –

AE 12319 9372 1738 125 83.4% 76.0% –

NeoPose 12319 9284 1516 9 85.8% 75.3% 1.6

4 Discussion

4.1 Associating Parts Rather Than Detecting the Whole Target

In the evaluation of NeoPose, we focused on how it can succeed in correctly asso-
ciating more than 10 region points for each individual person. This is a practical
way of evaluation especially for industrial use. Taking the task in Fig. 1(left) as
an example, when the task is to recognize suspicious persons near two countries’
border, what is the most important is to confirm that the target recognized is
indeed a person. With low resolution of person in the image and a complex envi-
ronment around the person, human detection directly using a human detector
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often fails because of the existence of animals, the texture of ground, or even
the shaking trees. For such tasks, to first recognize parts of human body as a
plurality of distributed evidence, and to check whether they could be associated
together, helps in generating more reliable detection result.

4.2 Training Mid-Points

In the deep network of NeoPose, mid-points use the shared features from body
region points, which include information of both appearance and location in the
image. Considering that the appearance of a mid-point may not have significant
difference compared to its nearby points, we assume that the location information
of body region points is the dominant factor learnt by the network for inference
of mid-points. Such theory of training might have extensions on machine learning
of human-object/human-human interaction.

4.3 Triangles in Core-of-Pose

The process of generating core-of-pose contains a criterion that at least one
triangle corresponding to the region point of neck should exist. Since each link
in the triangle is obtained by performing pairwise matching algorithm that scans
all the links of that type in the image, a triangle could thereby suggest that each
pair of the three region points are spatially close to each other. Based on such
strong spatial correlation, we could assume that the three region points are
located on a same person, and use such spatial correlation to parse multiple
persons before associating other body region points.

5 Conclusion and Future Work

In this paper, we introduced the design, field-of-use and evaluation of NeoPose.
The design of NeoPose - implementing mid-points and core-of-pose - helps the
system deal with the difficulties under real-world surveillance. Firstly, train-
ing mid-points reduces the risk of errors compared to training part-affinity-field
under low image resolution. Secondly, core-of-pose benefits in two ways: (i) using
upper body’s information - which is more likely to be captured even under
crowded situation - to parse multiple persons, (ii) providing a reference size
of each individual person’s body, and utilizing the size to supplement the associ-
ation of body region points. These features of NeoPose provide good directions
in designing systems for pose estimation and human detection under real-world
surveillance.
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Using pose estimation for human detection is a practical way for industrial
problems. In this paper, the evaluation of human detection on MHP dataset
attempted to simulate a variety of different poses under low image resolution
and crowded situation. The leading results by using NeoPose compared to other
state-of-art methods also suggests that NeoPose has potential industrial use.
Currently the use of NeoPose is limited to general road surveillance cameras
which are not 360-degree vision or drone-based.

Future work is to test the system in a wide scope of industrial issues depend-
ing on customers’ need, such as recognizing suspicious person/behavior in public
spaces, sports training, worker’s skill assessment on production line, animals’
behavior analysis on the farm, etc.

Appendix: Human Detection and Pose Estimation
on Industrial Scene

As an early result of future work, we tested NeoPose’s performance on the surveil-
lance of a pedestrian crossing(from MOT dataset [14]), and compared it to using
OpenPose and a human detector Faster-RCNN. Besides human detection, we
compared the quality of pose estimation by using the three algorithms as well.
For pose estimation, Faster R-CNN was used together with a pose detector called
MS Pose [22]. Such kind of approach that estimates pose based on human detec-
tion was implemented in some recent researches [5,8]. For both the tasks, the
resolution of the image input to the deep network was (width: 768 pixels, height:
576 pixels), and the height of each person was less than 120 pixel as we did in
the evaluation based on MHP dataset.

Figure 10 shows some typical examples of the results. Regarding human detec-
tion, there happened a lot in cases of using OpenPose or Faster-RCNN that mul-
tiple persons who were in a crowd were recognized as an individual person, or an
object that occluded a person was recognized as part of the person (Fig. 10(a)),
while such mistakes were much fewer in case of NeoPose. A second issue is
that OpenPose generated lots of false detection of region point especially on the
ground (Fig. 10(b)). Those false detections would make the association of region
points much slower. Another issue in MS Pose is that under crowded situation
and with low resolution, many body region points were not correctly located
(Fig. 10(b)). Similar issues also happened in other surveillance scenes in MOT
dataset. These early results reveal NeoPose’s potential in solving both human
detection and pose estimation under low resolution and crowded situation.
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Fig. 10. Comparisons of human detection and pose estimation on surveillance images
of a pedestrian crossing (MOT dataset) using different algorithms. (a) and (b) are two
representative moments.
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