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Abstract. Video object detection plays a vital role in a wide variety of computer
vision applications. To deal with challenges such as motion blur, varying view-
points/poses, and occlusions, we need to solve the temporal association across
frames. One of the most typical solutions to maintain frame association is exploit-
ing optical flow between consecutive frames. However, using optical flow alone
may lead to poor alignment across frames due to the gap between optical flow
and high-level features. In this paper, we propose an Attention-Based Temporal
Context module (ABTC) for more accurate frame alignments. We first extract two
kinds of features for each frame using the ABTCmodule and a Flow-Guided Tem-
poral Coherence module (FGTC). Then, the features are integrated and fed to the
detection network for the final result. The ABTC and FGTC are complementary
to each other and can work together to obtain a higher detection quality. Experi-
ments on the ImageNet VID dataset show that the proposed framework performs
favorable against the state-of-the-art methods.
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1 Introduction

Object detection, aiming at locating and classifying particular objects in an image or
throughout an entire video sequence, is a fundamental task in computer vision. In recent
years, the development of deep neural networks has contributed a lot to the progress of
this task. Yet, many existing object detection methods [1–5] are specially designed for
images. Directly applying image-level detecting techniques to the video domain usually
fails to get satisfactory performance, since frames tend to be deteriorated by issues
such as motion blur, rare poses, and occlusions. Beyond the object detection method
for images, temporal information in videos can be exploited to improve the detection
performance.

So far, existing video object detection methods [6–12, 17] can be roughly divided
into two categories. One category depends on manually-designed post-processing rules
[6–9, 12]. These methods first detect each frame independently on a still image detector
and then apply hand-crafted rules across the time dimension to refine the final detection
results. Generally, the association rules are enforced independently of training. Methods
of this type are neither end-to-end nor optimal. By contrast, methods such as FGFA [10]
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and MANet [11] learn to establish temporal consistency by multi-frame aggregation in
both training and testing stages. Moreover, they can be trained in an end-to-end manner.
In these methods, optical flow is applied to capture temporal information to enhance
features in the current frame. However, the optical flow only predicts the displacement
of pixels between the original images. Directly applying it to high-level feature may lead
to inaccurate spatial correspondences.

To alleviate the issue mentioned above, in this work, we propose an Attention-
Based Temporal Context module (ABTC) to enhance frame temporal consistency. This
module models pixel-level consistency across frames. Specifically, given features Ft
and Ft+τ (or Ft−τ ) of a reference frame and a neighboring frame, ABTC first computes
corresponding weights based on the similarity between any two locations across the
two frames. Then, it selectively extracts neighboring spatial information based on the
temporal context information. Compared to optical flow-based methods, ABTC can
obtain relevant information from high-level features of neighboring frames and bridge
the gap between the original frames and high-level features. Finally, the output of the
ABTC module is integrated with the output of an optical flow module to form a more
effective representation for each frame. This representation is then fed to a detector to
get the final detection result.

By incorporating rich temporal information, our model can deal with the challenging
issues including appearance changes and occlusions. Extensive experiments conducted
on the ImageNet VID dataset demonstrate that our method outperforms state-of-the-art
methods in detection accuracy.

2 Related Work

2.1 Object Detection for Still Images

It has been over two decades since the academic community studied object detection.
Recently, deep convolutional neural networks have achieved great success on the task of
video object detection. Existing object detectors mainly fall into two streams, namely,
one-stage methods and two-stage methods. One-stage methods such as YOLO [4] and
SSD [5] directly utilize features produced from a feature extraction network to predict
class labels and the corresponding locations of objects. On the other hand, two-stage
methods such as Fast R-CNN [1], Faster R-CNN [2], and R-FCN [3] need to extract pro-
posals in the first stage and then perform fine-grained object classification and regression
based on the proposals. These methods are more flexible for integration and extension.
Therefore, we take R-FCN as the basic framework and then extends it for video object
detection.

2.2 Object Detection for Videos

Video object detection is increasingly popular in the literature since the introduction of
the ImageNet VID dataset. Comparing with images, ample temporal information can
be employed to assist object detection in videos. Building relationships in both space
and time of objects properties across frames is key to accurate video object detection.
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Researchers have designed several video object detectors [6–12, 17] that can be divided
into two settings, namely, box-level methods [6–9, 12] and feature-level methods [10,
11, 17]. Seq-NMS [6] links boxes if the IOU of two boxes from consecutive frames is
higher than a certain threshold. Then, boxes within the sequences constructed before
are rescored and re-ranked through a method named “Seq-NMS”. TPN [7] proposes a
novel network to generate high-quality tubelet proposals efficiently and exploits LSTM
to construct temporal coherence. TCNN [9] utilizes optical flow to propagate bounding
boxes from neighbor frames and also adopts a different strategy for tubelet classification
and rescoring.

In feature-level methods, FGFA [10] combines the warped features from adjacent
frames to enhance the features of the current frame by using optical flow. MANet [11]
employs optical flow information for both pixel-level aggregation and instance-level
aggregation to incorporate temporal information in an end-to-end manner. However, the
optical flow based feature propagation may fail to align the frames in some cases. To
alleviate this issue, we introduce a novel module for dense frame matching in feature
space.

2.3 Self-attention Mechanism

The self-attention mechanism has become a hot topic in academia and achieved remark-
able success in various tasks since the introduction of [13]. The inspiration of attention
mechanism comes fromhowhuman perceptionworks to recognize objects across videos.
Humans focus attention selectively on parts of the visual space to acquire information
when and where they needed other than the whole scene. Specifically, a self-attention
module computes the response at a position in a sequence (e.g., a sentence) by attending
to all positions and taking their weighted mean values of all positions. [14] aligns the
source and the target words by applying soft attention to the task of machine learning.
The work [18] applies self-attention to the task of scene segmentation. It aims to capture
rich context for powerful feature representation. The work [19] introduces a non-local
operator based on self-attention mechanism. Experimental results in [19] show that the
performance of both video classification and object detection can be improved via the
non-local operator. Unlike previous works, we apply self-attention to the task of video
object detection and design a module to select temporal context information for better
cross-frame alignment.

3 Approach

3.1 Overview

The full architecture of the proposed approach is shown in Fig. 1. Specifically, given a
video sequence X = {X1, . . . , Xi , . . .}, we aim to use the proposed model to generate
the detection results S = {S1, . . . , Si , . . .}, where Si is the detection results correspond-
ing to Xi . All frames are fed forward into a convolutional network N f eat to extract
the intermediate features F = {Fi , . . . , Fi , . . .}. To find an effective representation of
current time t, the intermediate features Ft , Ft−τ (or Ft+τ ) are taken as the input of
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two modules, i.e., the Flow-Guided Temporal Coherence module (FGTC) as well as
the Attention-Base Temporal Context module (ABTC) to capture temporal information.
FGTC exploits optical flow information to propagate features and maintain the tempo-
ral coherence across frames. Meanwhile, ABTC learns to selectively extract temporal
context information based on self-attention mechanism. The combination of two kinds
of features obtained from the two modules is taken as the input of the detection network
described in MANet [11]. Both of the two modules allow us to better handle the chal-
lenging deteriorated frames commonly seen in videos.Wewill describe the twomodules
in detail in the following sections.

Fig. 1. The full architecture of the proposed approach. Only a neighboring frame Xt−τ and the
reference frame Xt are shown for simplicity. Intermediate feature maps Ft−τ and Ft are extracted
from a convolutional network and fed to both the FGTC andABTCmodules. Their outputs are then
aggregated to obtain the representation of the current frame for the following detection module.
The detector is standard but an extra module is added to enhance the features of the region of
interests. The output of the Fusion module is fed into the specially designed detector to produce
the final results.

3.2 Flow-Guided Temporal Coherence Module

We next explain how the Flow-Guided Temporal Coherence module (FGTC) establishes
temporal consistency by using optical flow information. This design is motivated by
FGFA [10]. Specifically, at each time step, FGTC takes current frame Xt and a neighbor
frame Xt−τ (or Xt+τ ) as input and computes as follows:

Ft = N f eat (Xt ) (1)

Ft−τ = N f eat (Xt−τ ) (2)

Ft−τ→t = W
(
Ft−τ , N f low(Xt−τ , Xt )

)
(3)

Fe
t−τ→t , F

e
t = ε(Ft−τ→t , Ft ) (4)

ct−τ→t = exp

(
Fe
t−τ→t (p) · Fe

t (p)
∣∣Fe

t−τ→t (p)
∣∣ · ∣∣Fe

t (p)
∣∣

)

(5)
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∑i+τ

j=i−τ
c j→t = 1 (6)

Fi =
∑i+τ

j=i−τ
c j→t Fj→t (7)

Here Ft and Ft−τ denote the intermediate features of the reference frame and a neigh-
boring frame extracted from a convolutional network N f eat . While N f low(Xt−τ , Xt )

indicates a flow field from Xt−τ to Xt estimated by an optical flow network N f low. W(·)
is a bilinear warping function exploited on each location of Ft−τ . The warped features
Ft−τ→t are computed based on the flow field obtained before as Eq. (3) shows. Next, we
embed the two features Ft and Ft−τ→t with a tiny neural network for similaritymeasure-
ment. ε(·) in Eq. (4) denotes the embedding function. Then, as Eqs. (5) and (6) shows
the cosine similarity metric is applied to measure the relationship between the warped
features and the reference features and the measurement result is then normalized and
exploited for adaptive feature aggregation. As Eq. (7) shows, Fi is the final flow-guided
enhanced feature that incorporates temporal information from time t − τ to time t + τ.

Fig. 2. The detail of Attention-Based Temporal Context module (Color figure online)

3.3 Attention-Based Temporal Context Module

The Flow-Guided Temporal Coherence module propagates temporal information by
estimating flow filed between frames. However, only exploiting flow field for feature-
level calibration may lead to unsatisfactory spatial correspondence. The reason is that
optical flowpredicts the displacement of raw pixels and directly using it for the alignment
of high-level features may introduce interference. To alleviate this issue, in this section,
we introduce a novel ABTC module for feature alignment and enhancement which
covers all the space-time pixel locations of feature space. Next, we explain how ABTC
incorporates temporal context information using the attention-based temporal context
clues.

To capture context information in the time axis, the proposedmodule compares every
space-time locations across frames. Then, the comparison result is utilized to generate
a temporal context feature for aligning with the feature of the reference frame. Figure 2
shows the details of the proposed ABTCmodule. The operation can be summarized into
three steps as follows.
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The orange lines in the figure represent the first step. This is to generate weights
based on feature similarities. Just as Fig. 2 shows, supposing Ft and Ft−τ ∈ RC×H×W

are the intermediate features of the reference frame and a neighbor frame, we first embed
them into separate convolutional layers to get features with reduced dimensions. Thus
we can get g(Ft ) ∈ RC ′×H×W and f (Ft−τ ) ∈ RC ′×H×W . Then, we perform reshape
and transpose operations in turn on f (Ft−τ ) to R(H×W )×C ′

. Meanwhile, we reshape
g(Ft ) to RC ′×(H×W ), where (H × W) is the number of pixels. The multiplication of
the two matrices is the similarity between two feature cells. The above process can be
formulated as follows:

si j = [ f (Fi
t−τ ), g(F

j
t )], (8)

where i and j are the locations of the two intermediate feature maps. [·] represents the
operation to get similarities si j between any two cells across features.

Then, we can get normalized correspondence weights by applying a softmax layer:

ŝi j = exp
(
si j

)

∑H×W
i=1 si j

, (9)

where ŝi j ∈ R(H×W )×(H×W ) measures the ith position’s impact on jth position. This
self-attention calculation process simulates the attention mechanism. After that, spatial
relations between the two feature maps is established. The resulting ŝi j can be seen as
attention maps.

The blue lines indicate the second step. A temporal context feature Ft−τ→t is pro-
duced from step 2. We embed Fi

t−τ to a space that shares the same dimension with Ft−τ

and perform reshape on it to get w(Fi
t−τ ). Equation (9) shows how to get the temporal

context feature maps Ft−τ→t . We can infer from the formula that the temporal context
feature Ft−τ→t is a weighted sum of across all positions of the map w(Fi

t−τ ):

F j
t−τ→t =

∑

i

ŝi jw(Fi
t−τ ) (10)

Ft−τ→t is the feature that incorporates temporal context to align with the reference
feature Ft .

Then, the procedure of aligning features is represented with green lines as follows:

F∗
t−τ→t = Agg(Ft−τ→t , Ft ) (11)

Here, Agg(·) is the function for feature aggregation between F∗
t−τ→t and Ft . Specif-

ically, the two features are taken as input to a tiny neural network to produce adaptive
weights for feature fusion:

Agg(Ft−τ→t , Ft ) = Wt−τ→t · Ft−τ→t + Wt · Ft (12)

Similarly, the output of this module which absorbs temporal context clues from time
t − τ to time t + τ can be formulated as follows:

F∗
i =

∑i+τ

j=i−τ
s j→t Fj→t (13)
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The outputs of the FGTC and ABTC are summed on element-wise:

Ft
f inal = Fi + F∗

i (14)

Finally, Ft
f inal is fed into the detection network like detector for the final result.

We name the detector used in the proposed method TR-FCN. R-FCN [3] is a fully
convolutional detector. It achieves excellent performance both on speed and accuracy.
Based on R-FCN, a tiny neural network is introduced to predict the movement between
the proposals among nearby frames to the current frame. We use Nr f cn→ represents
the proposals of frame Xt−τ . Similar to FGTC described in Sect. 3.2, TR-FCN aligns
proposal features by optical flow propagation. The warp operation shows in Fig. 1 indi-
cate the propagation procedure. Such instance-level aggregation further builds temporal
information in the detection network, ablative study shows the effectiveness of this
detector. Details of the two modules will be further clarified in Sect. 3.4.

3.4 Implementation Details

We take the pre-trained ResNet-101 model [20] as the feature extraction network and
make somemodifications to it. The specific changes follow the practice of [10]. FlowNet
[15] is exploited as the network for optical flow, which is the pioneer of applying deep
convolutional networks to optical flow estimation. In order to match the dimension of
the intermediate feature, the output of the flow network needs to be downscaled to half.

Weuse 1×1 convolution layerswith 256filters to implement the embedding function
f(·) and g(·). For the realization of Agg(·), we use 1 × 1 convolution with 256 filters
followed by two 1 × 1 convolution layers with 16 and 2 filters, respectively. The design
of the detection network follows MANet [11]. The main difference from a standard
detector is that it adds an additional instance-level aggregation module by use of optical
flow to make temporal consistency.

4 Experiments

4.1 Dataset and Setup

We evaluate the proposed approach against state-of-the-art video object detectors on
the ImageNet VID [13] dataset. ImageNet VID is one of the most popular benchmark
datasets for video object detection. It contains 3862 training videos, 555 validation videos
and 937 test videos for 30 categories. The annotations for the test set is not released.
We report all results on the validation set following the protocols of FGFA [10] and
performance is measured in terms of the mean average precision (mAP).

In addition to the ImageNet VID training set, the ImageNet DET training set is also
used for training. Note that we only use the 30 categories shared by both of the two
datasets. Our model is trained in three stages. We set the frame sampling interval to 15
in the first two stages and 10 in the third stage. The method is implemented with MXNet
and trained on a single NVIDIA P40 GPU.
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4.2 Ablation Study

First of all, to analyze the effectiveness of various components in the proposed method,
we conducted four modifications of our approach in our ablative experiments, the
experimental results are shown in Table 1.

Version (a) is the baseline R-FCN with ResNet-101. It obtains a test mAP of 70.9%.
For purer analysis, the models listed in Table 2 are all evolved from this strong baseline
by applying corresponding temporal module.

Comparing with the baseline R-FCN, version (b) employs FGTC, this module effec-
tively renders temporal information from neighbor frames. It achieves a result of 73.2%,
which brings 2.3% improvement.

We then investigate the contribution of ABTC in version (c). When we add it to
version (b), we can obtain a 3.5% improvement of test mAP comparing to the single
baseline. This module compares every space-time locations across frames in feature
space to capture temporal context information.

Table 1. Ablation studies on the ImageNet VID validation set. FGTC represents Flow-Guided
Temporal Coherence module, ABTC represents Attention-Based Temporal Context module, and
TR-FCN refers to the standard R-FCN with temporal information rendered by instance-level
aggregation.

Feature extractor ResNet-101

Versions (a) (b) (c) (d) (e)

FGTC
√ √ √ √

ABTC
√ √

TR-FCN
√ √

mAP (%) 70.9 73.2 74.1 76.2 77.8

Version (d) exploits TR-FCN instead of R-FCN as the detector. The main difference
is that TR-FCN incorporates temporal information by use of optical flow. Specifically,
it predicts movements of proposals among nearby frames and aligns them with the
proposals obtained from the reference frame.

Version (e) is the proposed method. Comparing to version (d), it improves mAP by
1.6%, indicating that these components are complementary and they can work together
to obtain a higher detection quality.

To sumup, the two features produced frombothmodules can represent useful spatial-
temporal information from neighbor frames, and the combination of them is quite nec-
essary for the detection performance. With all the above modules, the overall mAP is
improved from 70.9% to 77.8%.

4.3 Detection Results

We compare the proposed method against several existing state-of–the-art methods on
the task of video object detection, including Seq-NMS [6], TPN [7], TCN [8], TCNN
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[9], FGFA [10], MANet [11] and D&T [12]. The results of Seq-NMS [6], TPN [7],
TCN [8], TCNN [9] and D&T [12] are obtained from the original papers. The remaining
methods are implemented using the code provided by the authors on a platform with
NVIDIA P40 GPU.

As we can see from Table 2, compared with the existing methods for video object
detection, the proposed method achieves the best performance. It surpasses the R-FCN
based detector by a large margin of ~7 points, proving the effectiveness of our model.
Comparing with box-level methods [6–9, 12], feature-level methods [10, 11, 17] exploit
temporal information during both training and testing and can be trained end-to-end.
Therefore, they usually perform better on accuracy. Comparing with FGFA [10] and
MANet [11]which establish temporal information by exploiting optical flow, ourmethod
outperforms these methods via the adoption of multi-module collaboration strategy,
which greatly improves the results.

Table 2. Quantitative results of our proposed method, comparing with state-of-the-art solutions
on ImageNet VID validation set.

Methods mAP (%) Backbone

Seq-NMS [6] 52.2 VGGNet

TCN [8] 47.5 GoogLeNet

TPN [7] 68.4 GoogLeNet

R-FCN [3] 70.9 ResNet101

TCNN [9] 73.8 GoogLeNet

DFF [17] 69.9 ResNet101

D(&T loss) [12] 75.8 ResNet101

FGFA [10] 73.2 ResNet101

MANet [11] 76.2 ResNet101

Ours 77.8 ResNet101

5 Conclusions

In this paper, we present a unified, end-to-end trainable spatiotemporal CNN model for
video object detection. The key components are two modules FGTC and ABTC that
extracts two kinds of features for each frame respectively. Specifically, FGTC adap-
tively propagates features over time via optical flow. To align the frame features more
precisely, we propose the ABTC module which aims to render the temporal context for
spatial correspondence between features across frames. The two features are combined
for the benefit of their complementarity. Experimental results show that the proposed
framework achieves 77.8% mAP on ImageNet VID, which outperforms existing state-
of-the-art methods. The ablative results show ABTC is complementary to flow-based
feature propagation modules, demonstrating the generalization ability of our method.
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