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Abstract. To generate a multi-faceted view, from a single image has
always been a challenging problem for decades. Recent developments in
technology enable us to tackle this problem effectively. Previously, Sev-
eral Generative Adversarial Network (GAN) based models have been
used to deal with this problem as linear GAN, linear framework, a gen-
erator (generally encoder-decoder), followed by the discriminator. Such
structures helped to some extent, but are not powerful enough to tackle
this problem effectively.

In this paper, we propose a GAN based dual-architecture model called
DUO-GAN. In the proposed model, we add a second pathway in addi-
tion to the linear framework of GAN with the aim of better learning
of the embedding space. In this model, we propose two learning paths,
which compete with each other in a parameter-sharing manner. Further-
more, the proposed two-pathway framework primarily trains multiple
sub-models, which combine to give realistic results. The experimental
results of DUO-GAN outperform state of the art models in the field.

Keywords: GAN · Multi-faceted face construction · Neural network ·
Machine learning

1 Introduction

Constructing a multi-faceted image from a single image is a well-investigated
problem and has several real-life applications. Essential applications of creating
a multi-posed image from a single image are its use for identification purposes,
detecting malicious, criminals in public, capturing the identity of people in gen-
eral etc. Constructing multi-posed image is a challenging task comprising of
imagining the objects might looking like, constructed from another pose [3]. It
requires the construction of unknown possibilities and hence requires a very rich
embedding space so that the constructed view of the object should have the
same identity and should be relevant in context.

Several research efforts have been made to address this problem using differ-
ent models like synthesis based models, and data-based models [16,19]. These
GAN based models consist of linear framework and encoder-decoder followed by
Discriminator to address this issue. Here, the main purpose of the encoder(E) is
to map the input images to the latent space(Z), which are fed into the decoder(G)
after some manipulation for generating multi-faceted images [1,2].
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But, it is found empirically that the linear framework isn’t powerful enough
to learn appropriate embedding space. The linear framework generates an output
for creating a multi-faceted image isn’t clear enough and doesn’t preserve iden-
tity across various posed images. Learning incomplete embedding space leads to
incomplete generalization on test images or unseen images. The primary reason
of incapability of linear frameworks in learning complete presentation is that
during training the encoder part of G only sees a fraction of Z and while test-
ing, very likely model come across samples corresponding to unseen embedding
space. This results in poor generalization.

In order to tackle this problem, Tian et al. [14] proposed a dual-pathway
architecture, termed as Complete-Representation (CR-GAN). Unlike linear
framework, the authors of CR-GAN have used dual pathway architecture.
Besides the typical re-construction path, they introduced another generation
path for constructing multi-faceted images from embeddings, randomly sampled
from Z. In the proposed architecture, they used the same G, which aids the
learning of E and discriminator (D). In their proposed model, E is forced to be
an inverse of G, which theoretically should yield complete representations that
should span the entire Z space.

However, the experiments conducted in this work demonstrate that one
encoder is not convincing to span the entire Z space. Therefore, in order to
address this challenge, we propose DUO-GAN with dual encoder to learn com-
plete representation for a multi-facet generation. The primary purpose is to
distribute the task of spanning the entire Z space, across two encoders instead
of one as proposed in the previous work. We empirically demonstrate that dual
encoder architecture produces many realistic results in comparison to prior work
in this field.

2 Related Work

Several researchers contributed to constructing a multi-faceted image from a
single image. The significant work in this field is presented as follows.

Goodfellow et al. [5] first introduced GAN to learn models with generative
ability via an adversarial process. In the proposed model, a two-player min-max
game is played between generator (G) and discriminator (D). Competing with
each other in the game, both G and D tend to improve themselves. GAN has
been used in various fields like image synthesis, super-resolution image generation
etc. Every model proposed with the help of GAN manipulates constraints on Z
and attempt to cover more and more embedding space for a better synthesis of
images.

Hassner et al. [8] proposed a 3D face model in order to generate a frontal
face for any subject. Sagonas et al. [13] used a statistical model for creating
joint frontal face reconstruction, which is quite useful. The reported results were
not very useful, as frontal face generation from a side view is a very challenging
task. Because of occlusion and variation in spatial feature from side view face
pictures.
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Yan et al. [16] solved the problem of multi-pose generation to a certain level
by using projection information by their Perspective Transformer Nets. Whereas,
Yang et al. [17] proposed a model which incrementally rotated faces in fixed yaw
angles. For generating multi-poses, Hinto et al. [9] tried generating images with
view variance by using auto-encoder. Tian et al. [14] proposed dual pathway
architecture CR-GAN for constructing multiple poses. However, all the above-
mentioned system fail to construct realistic images in an unseen wild condition.
In comparison, DUO-GAN spans embedding space in a much more exhaustive
manner using it’s multi-path architecture and produces higher-quality images
than previously proposed models.

Preserving identity synchronously across images with numerous positions is a
very active research area. Previously DR-GAN [15] attempted to solve this prob-
lem, by providing pose code along with image data, while training. Li et al. [12]
attempted this challenge by using Canonical Correlation Analysis for compar-
ing the difference between the sub-spaces of various poses. Tian et al. [14] tried
solving this problem with dual pathway architecture. We propose dual encoder
dual-pathway architecture, which results in a much better generation of multi-
faceted images.

3 The Proposed Method

Most of the previous research on this field involves a linear network, i.e.
an encoder-decoder generator network, followed by Discriminator network. As
empirically found, such linear network is incapable of spanning entire embed-
ding space, which leads to incomplete learning as a single encoder can only span
limited space, irrespective of the variance and quantity of data. So while testing,
when an unseen image is passed through the G, it is very likely that the unseen
input will be mapped to un-covered embedding space, which consequently leads
to the poor generation of images.

Yu et al. [14] proposed CR-GAN, which uses dual-pathway architecture to
cover embedding space more extensively than a linear framework. It’s primary
uses a second-generation path, with the aim to map the entire Z space to cor-
responding targets. However, we empirically found that single encoder used in
dual pathway architecture is not powerful enough to span the entire embed-
ding dimension. This fact motivates us to use dual encoder architecture for
spanning embedding space more extensively. Figure 1 illustrates the comparison
between our proposed model, CR-GAN and other linear networks. The proposed
model consists of two paths, namely Generator path, and Reconstruction path,
described in following subsections.

3.1 Generator Path

This path is similar to the Generator path proposed in CR-GAN [14]. Here both
the encoder are not involved, and G is trained to generate with random noise.
Here we give a view-label v and random noise z. Aim is to produce very realistic
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Fig. 1. Comparison of models: BiGAN, DR-GAN, TP-GAN, CR-GAN, and the pro-
posed model

image G(v, z) with view-label v. And like in GANs aim of D is to distinguish
the output of G ’s from real. G tries to minimize Eqs. 1 and 2.

E
z∼Pz

[Ds(G(v, z))] − E
x∼Px

[Ds(x)] +C1 E
x̂∼Px̂

[(|| ∇x̂D(x̂) ||)2 − 1)
2
] − C2 E

x∼Px
[P(Dv(x) = v)] (1)

Here, Px represents the distribution of data, and Pz represents the uniform
noise distribution. Further, Px̂ represents the interpolation between the data
constructed form different images. In the proposed model, we randomly pass
either vi or vk, as we want to learn G to generate high quality images either
from x̂ which is interpolation of xi and xk as further discussed in Sect. 3.2. We
also experimentally found that feeding in x̂ in first phase of training did not give
good results, possibly because of noise, formed due to interpolation.

E
z∼Pz

[Ds(G(v, z))] + C3 E
z∼Pz

[P(Dv(G(v, z)) = v)] (2)

The proposed algorithm for training our model in phase 1 and phase 2, with
batch-size b and time-steps t is described as below.

Algorithm

Input: Sets of images X.
Result: Trained architecture, G, D, E1, E2.

1. Sample z1 ∼ Pz, xi ∼ Px with vi and xk ∼ Px with vk;
2. x̂ ← G(vi, z)nG(vk, z);
3. Update DbyEq.1, andG with Eq. 2;
4. Sample xj with vj (where xj , xi and xk share the same identity);
5. (v̂i, ẑi) ← E1;
6. (v̂k, ẑk) ← E2;
7. x̂j ← G(vj, z);
8. Updated D by Eq. 3, and E by Eq. 4;
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3.2 Reconstruction Path

We train both the E1 and E2 and D but not the G. In reconstruction path we
make G generate image from the features extracted from E1 and E2 re-generate
images, which makes them both inverse of G. Passing different poses in both E1
and E2 makes sure they cover different embedding space, which in turns leads
to complete learning of latent embedding space. Further, the output generated
from the E1 and E2 is combined using the interpolation between the data points
from each of encoders, which are in spirit the same as x̂ in generation part.

For making sure the re-constructed images by G from the features extracted
from E1 and E2 share the same identity we use the cross reconstruction task,
in order to make E1 and E1 preserve identity. To be more precise, we pass in
image of same identity in both E1 and E2 having different poses. As primary
goal is to re-construct an image xj with interpolation of images xi and xk. So
in order to do this, E1 takes xi and E2 takes xk, both of these encoders output
an identity preserved z̄i and z̄k with respective view estimation v̄i and v̄k.

G takes z̄ and view vi as input, and is trained to reconstruct the image of
the same person with view vi with the help of interpolated z̄. Here z̄ should help
G to preserve identity and carry out essential latent features of the person. D
here is trained to differentiate between the fake image x̂j from the real one x̂i or
x̂k. Thus, D minimizes the Eq. 3.

E
xi,xj,xk∼Px

[2 × Ds(x̂j) − Ds(xi) − Ds(xk)] + C1 E
x̂∼Px̂

[(|| ∇x̂D(x̂) ||)2 − 1)2]

−C2 E
xi∼Px

[P(Dv(xi) = vi)]
(3)

Here, x̃ = G(vj ,Ez(xi)). E helps G to generate realistic image, with vj . Basi-
cally, E1 and E2 maximizes Eq. 4.

E
xi,xj,xk∼Px

[Ds(x̂j)+C3P(Dv(x̃j = vj)−C4Lj1(x̃j ,xj)−C5Lv(Ev(xi),vi)) (4)

Here, L1 is the loss to ensure x̃j is reconstructed property from xj . Lv is the
loss estimated from cross-entropy of the ground and estimated views, for E1 and
E2.

This dual-dual-pathway network efficiently spans complete embedding space.
In the first path of the algorithm, G learns how to better produce image, from
the random noise, which in time, when produced through the E1 leads to better
output.

In comparison to previously proposed linear-networks, the proposed double-
dual pathway network helps better solve the problem of multi-facet construction
in following ways:

– It leads to better covering of latent embedding space, which in turns leads to
better generation of multi-faceted pictures.

– Once trained on good quality images, model seems to work pretty well even for
low quality images, probably because of expansive embedding space covered.
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4 Experiments and Results

This section describes the experimental setup, benchmark dataset, experimental
results and compares the results with existing state of the art in the field. Also,
considering the fact that we can not separate just the encoder part of the model,
we can not just compare the feature encoding capability of respective models, so
we decided it would be better if we can just compare the output of the model,
and the ability to reconstruct images. So we’ve compared the output of images
by two models, and calculated root mean square value (RMSE) value for the
constructed images.

4.1 Experimental Settings

– Benchmark Dataset: In this experimental work, we used primary dataset
as, Multi-PIE [6] and 300wLP [18]. These datasets are labelled datasets col-
lected in an artificially constructed environment. The dataset consists of 250
subjects, with 9 poses within ±60◦, two expressions and twenty illuminations.
For the training purpose, we choose the first 200 for training and the remain-
ing 50 for test. 300wLP contains view labels that are used to extract images
with yaw angles from –60◦ to +60◦, dividing them into 9 intervals. So, they
can synchronize with Multi-PIE dataset after feeding into the model.

– Implementation Details: The network-implementation is modified from
CR-GAN, where each of E shares the dual-pathway architecture with the
G. The main structure for our model is adopted from the res-net (residual
networks) as proposed in WGAN-GP [7], where E shares a similar network
structure with D. During training v is set to 9 dimensional one-hot vectors
where z ∈ [−1, 1]119 in the latent embedding space. The batch-size we chose
for our model is 20. We used Adam optimizer [11] with the learning rate
of 0.0001 and momentum of [0.01, 0.89]. Choosing rest of the parameters of
CR-GAN as default, we have C1 = 10, C2 −C4 = 1, and C5 = 0.01. Finally,
we train the model for 50 epochs.

4.2 Results and Discussion

The primary aim of the proposed model - DUO-GAN is to learn complete rep-
resentation by using its dual-encoder architecture and dual-pathway architec-
ture to span entire embedding space. We conduct experiments to evaluate these
contributions with respect to CR-GAN. The comparative results are shown in
Table 1. We can see how the model performs in the wild settings in Fig. 2.

Table 1. Average RMSE(in mm) using dual encoder architecture, validated against
CR-GAN.

Values DUO-GAN CR-GAN

Female subject 2.342 (±0.501) 2.64 (±0.491)

Male subject 2.4757 (±0.143) 2.795 (±0.52)
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Fig. 2. Sample output on test images

In order to demonstrate the applicability of the proposed model, we com-
pare it with four GANs, namely, BiGAN, DR-GAN, TP-GAN, and CR-GAN
as depicted in Fig. 1. CR-GAN [14] used a dual-architecture for spanning
embedding space, and learning better representation. Authors used a second
reconstruction-pathway in order to make the encoder inverse of the generator.
However, in practice, the Encoder doesn’t seem to be powerful enough to span the
entire embedding space. Comparatively, DUO-GAN uses two encoders in order
to span the entire embedding space, which learns the representation compara-
tively more efficiently. The output produced by the proposed model is presented
in Fig. 3.

Fig. 3. Sample output on similar, but unseen images

DR-GAN [15] also tackled the problem of generating multi-view images
from a single image, through a linear network. Like in a linear network, input of
decoder is the output of encoder, the model is not very robust to images outside
the dataset. Comparatively, we use a second generation path, which leads to
better learning and generalization.

TP-GAN [10] also used a dual-architecture for solving this problem. How-
ever, unlike our model, it uses two separate structure, i.e. these two structures
don’t share parameter, unlike our architecture. Further, these two independent
architectures in TP-GAN aims to learn different set of features. Where as our
architecture aims to learn collectively.
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Bi-GAN [4] aims to learn collectively a G and an E. Theoretically, E should
be an inverse of G. Because of their linear network, Bi-GAN leads to poor
learning and doesn’t lead to good generation especially for unseen data.

5 Conclusion

In this paper, we investigated different models and compared them for construct-
ing multi-facet images from a single image. We propose a dual architecture model
called DUO-GAN, which uses double duo-pathway framework for better learn-
ing the representation. The proposed model leverages the architecture to span
latent embedding space in a better way and produces higher quality images in
comparison to existing models.
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