
Cognitively-Inspired Inference for
Malware Task Identification

Eric Nunes, Casey Buto, Paulo Shakarian, Christian Lebiere, Stefano Bennati,
and Robert Thomson

Abstract Malware reverse-engineering, specifically, identifying the tasks a given
piece of malware was designed to perform (e.g., logging keystrokes, recording
video, establishing remote access) is a largely human-driven process that is a
difficult and time-consuming operation. In this chapter, we present an automated
method to identify malware tasks using two different approaches based on the ACT-
R cognitive architecture, a popular implementation of a unified theory of cognition.
Using three different malware collections, we explore various evaluations for each
of an instance-based and rule-based model—including cases where the training data
differs significantly from test; where the malware being evaluated employs packing
to thwart analytical techniques; and conditions with sparse training data. We find
that our approach based on cognitive inference consistently out-performs the current
state-of-the art software for malware task identification as well as standard machine
learning approaches—often achieving an unbiased F1 score of over 0.9.

1 Introduction

Identifying the tasks a given piece of malware was designed to perform (e.g. logging
keystrokes, recording video, establishing remote access, etc.) is a difficult and time
consuming task that is largely human-driven in practice [1]. The complexity of this
task increases substantially when you consider that malware is constantly evolving,
and that how each malware instance is classified may be different based on each

E. Nunes (�) · C. Buto · P. Shakarian
Arizona State University, Tempe, AZ, USA
e-mail: enunes1@asu.edu; cbuto@asu.edu; shak@asu.edu

C. Lebiere · S. Bennati
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: cl@cmu.edu

R. Thomson
United States Military Academy, West Point, NY, USA
e-mail: robert.thomson@westpoint.edu

© Springer Nature Switzerland AG 2020
M. A. Tayebi et al. (eds.), Open Source Intelligence and Cyber Crime, Lecture Notes
in Social Networks, https://doi.org/10.1007/978-3-030-41251-7_7

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41251-7_7&domain=pdf
mailto:enunes1@asu.edu
mailto:cbuto@asu.edu
mailto:shak@asu.edu
mailto:cl@cmu.edu
mailto:robert.thomson@westpoint.edu
https://doi.org/10.1007/978-3-030-41251-7_7


166 E. Nunes et al.

cyber-security expert’s own particular background. Automated solutions for this
problem are highly attractive as they can significantly reduce the time it takes to
conduct remediation in the aftermath of a cyber-attack.

Earlier work has sought to classify malware by similar “families”, something
which has been explored as a supervised classification problem [2–4]. However,
differences over determining “ground truth” for malware families (i.e. Symantec and
McAfee cluster malware into families differently) and the tendency for automated
approaches to only succeed at “easy to classify” samples [5, 6] are two primary
drawbacks of malware family classification. More recently, there has been work on
directly inferring the tasks a malware was designed to perform [7]. This approach
leverages static malware analysis (i.e. analysis of the malware sample conducted
without execution, such as decompilation) and a comparison with a crowd-source
database of code snippets using a proprietary machine learning approach. However,
a key shortcoming of the static method is that it is of limited value when the malware
authors encrypt part of their code—as we saw with the infamous Gauss malware [8].
This work builds upon recent developments in the application of cognitive models to
intelligence analysis tasks [9] and our own preliminary studies on applying cognitive
models to identify the tasks a piece of malware was designed to perform [10, 11].
Specifically, in this chapter, we report

– Experimental results illustrating consistent and significant performance improve-
ments (in terms of precision, recall, and F1) of the instance-based cogni-
tive model approach when compared with various standard machine learning
approaches (including SVM, logistic regression and random forests) for two
different sandboxes and for three different datasets.

– Experimental results showing a consistent and significant performance improve-
ment of the instance-based cognitive model and several other machine learning
approaches when compared to the current state-of-the-art commercial technol-
ogy (based on static analysis).

– Experiments where we study cases where the malware samples are mutated,
encrypted, and use different carriers—providing key insights into how our
approach will cope with operational difficulties.

– Experimental results illustrating that a cognitively-inspired intermediate step
of inferring probability distribution over malware families provides improved
performance over the machine learning and rule-based cognitive model (though
no significant change to the instance-based cognitive model).

Cognitive models have proved to significantly outperform classical machine
learning approaches and state of the art products available in the market for
malware task prediction [10–12]. This chapter consolidates the results presented
in previous research by including additional results for the GVDG dataset, run-
time comparisons of the experiments and discussing the cognitive models in
terms of parameter selection and time complexity analyses. We also provide new
experimental results utilizing a dataset based on the MetaSploit framework [13]—
demonstrating how our framework adapts to features based on malware that utilizes



Cognitively-Inspired Inference for Malware Task Identification 167

the network protocol stack. We also explore the concept of predicting hacker
intentions on a host machine.

This chapter is organized as follows. In Sect. 2 we state the technical preliminar-
ies used in the chapter. In Sect. 3.1 we introduce our cognitive-based approaches,
describing the algorithms and explaining our selection of parameter settings. This
is followed by a description of the baseline approaches that we studied in our
evaluation in Sect. 4.1 and a description of the two different dynamic malware
sandbox environments we used in Sect. 4.2. In Sect. 5 we present our suite of
experimental results which include experiments involving samples discovered by
Mandiant, Inc. in their APT1 report [14], samples created using the GVDG [15]
tool, and samples created using the MetaSploit framework. Finally, related work is
discussed in Sect. 6.

2 Technical Preliminaries

Throughout this chapter, we shall assume that we have a set of malware samples
that comprise a historical corpus (which we shall denote M) and each sample
i ∈ M is associated with a set of tasks (denoted tasks(i)) and a set of attributes
(denoted attribs(i)). Attributes are essentially binary features associated with a
piece of malware that we can observe using dynamic and/or static analysis while the
tasks—which tell us the higher-level purpose of the malware—must be determined
by a human reviewing the results of such analysis. As M comprises our historical
knowledge, we assume that for each i ∈ M both tasks(i) and attribs(i) are known.
For a new piece of malware, we assume that we only know the attributes. We also
note that throughout the chapter, we will use the notation | · | to denote the size of a
given set. Tables 1 and 2 provide examples of the attributes and tasks based on the
malware samples from the Mandiant APT1 dataset (created from samples available
at [16], see also [14]). For instance, hasDynAttrib looks at the behavior section of
the analysis report and extracts all the activity of the malware on the host machine.
The attribute usesDll enumerates all the libraries that were used by the malware on
the host machine. The file activity and the registry activity is captured by fileAct
and regAct. Finally all the processes initiated and terminated by the malware are
captured by proAct. There is not a fixed number of any of these attributes for a

Table 1 Attributes extracted through automated malware analysis

Attribute Intuition

usesDll(X) Malware uses a library X

regAct(K) Malware conducts an activity in the registry, modifying key K.

fileAct(X) Malware conducts an activity on certain file X

proAct Malware initiates or terminates a process



168 E. Nunes et al.

Table 2 Sample of malware tasks

Task Intuition

beacon Beacons back to the adversary’s system

enumFiles Designed to enumerate files on the target

serviceManip Manipulates services running on the target

takeScreenShots Takes screen shots

upload Designed to upload files from the target

given malware. The number of attributes depends on the analysis report generated
from the sandbox. A full description of this dataset is presented in Sect. 5.

Throughout the chapter, we will also often consider malware families, using the
symbol F to denote the set of all families. Each malware sample will belong to
exactly one malware family, and all malware samples belonging to a given family
will have the same set of tasks. Hence, we shall also treat each element of F as a
subset of M.

3 Cognitively-Inspired Inference

While human inference has memory and attentional limitations, their cognitive pro-
cesses are powerful, where adaptive heuristic strategies are adopted to accomplish
the tasks under strong time constraints using limited means. An advantage of using
a cognitive model to describe inferential processes is that the underling architecture
provides the benefits of human-inspired inference while allowing for more flexibility
over constraints such as human working memory. We believe that there is a valid use
of cognitive architectures for artificial intelligence that makes use of basic cognitive
mechanisms while not necessarily making use of all constraints of the architecture.
In that case, it is arguably better to specifically state which aspects of the model
are not constrained by data, and rather than mock up those aspects in plausible
but impossible to validate manner, simply treat them as unmodeled processes. This
approach results in simpler models with a clear link between mechanisms used
and results accounted for, rather than being obscured by complex but irrelevant
machinery. For instance, while the models described in this chapter use activation
dynamics well-justified against human behavioral and neural data to account for
features such as temporal discounting, we do not directly model working memory
constraints to allow for more features of malware and more instances to be present
in memory.



Cognitively-Inspired Inference for Malware Task Identification 169

3.1 ACT-R Based Approaches

We propose two models built using the mechanisms of the ACT-R (Adaptive Control
of Thought-Rational) cognitive architecture [17]. These models leverage the work
on applying this architecture to intelligence analysis problems [9]. In particular,
we look to leverage our recently-introduced instance-based (ACTR-IB) and rule-
based (ACTR-R) models [10, 11]. Previous research has argued the ability of
instance-based learning in complex dynamic situations making it appropriate for
sensemaking [18]. On the other hand, the rule-based learning is a more compact
representation of associating samples in memory with their respective families. In
this section, we review some of the major concepts of the ACT-R framework that
are relevant to these models and provide a description of both approaches.

We leveraged features of the declarative memory and production system of the
ACT-R architecture to complete malware task identification. In ACT-R, recall from
declarative memory (c.f., identification, for our purposes) depends on three main
components: activation strengthening (i.e., the base-level activation of an element),
associative (i.e., spreading) activation, and inter-element similarity (i.e., partial
matching). These three values are summed together to represent an item’s total
activation. When a recall is requested from memory, the item with the highest total
activation is retrieved.

Declarative Knowledge Declarative knowledge is represented formally in terms
of chunks. Chunks have an explicit type, and consist of an ordered list of slot-value
pairs of information. Chunks are retrieved from declarative memory by an activation
process, and chunks are each associated with an activation strength which in turn
is used to compute a retrieval probability. In this chapter, chunks will typically
correspond to a malware family. In the version of ACTR-IB where we do not
represent families explicitly, the chunks correspond with samples in the training
data.

For a given chunk i, the activation strength Ai is computed as,

Ai = Bi + Si + Pi (1)

where, Bi is the base-level activation, Si is the spreading activation, and Pi is the
partial matching score. We describe each of these in more detail as follows.

Base-Level Activation (Bi) Technically, base-level for chunk i reflects both the
frequency and recency of samples in memory, even though we are not using recency
here but it could easily be applicable to weigh samples toward the more recent ones.
More important, base-level is set to the log of the prior probability (i.e., the fraction
of samples associated with the chunk) in ACTR-R; for instance-based (ACTR-IB),
we set it to a base level constant βi .

Spreading Activation (Si) Spreading activation is a measure of the uniqueness of
the attributes between a test sample i and a sample j in memory. The spread of



170 E. Nunes et al.

activation to sample i is computed by the summing the strengths of association
between sample j and the attributes of the current sample i being considered.
To compute the spreading activation we compute the fan of attribute a (i.e., the
number of samples in memory with attribute a) for each attribute. The strength of
association is computed differently in both approaches and, in some cognitive model
implementations, is weighted (as is done in ACTR-R of this chapter).

Partial Matching (Pi) A partial matching mechanism computes the similarity
between two samples. In this work, it is only relevant to the instance-based
approach. Given a test sample j , its similarity with a sample i in memory is
computed as a product of the mismatch penalty (mp, a parameter of the system)
and the degree of mismatch Mji . We define the value of Mji to be between 0 and
−1; 0 indicates complete match while −1 complete mismatch.

As common with models based on the ACT-R framework, we shall discard
chunks whose activation strength is below a certain threshold (denoted τ ). Once
the activation strength, Ai , is computed for a given chunk, we can then calculate the
activation probability, pi . This is the probability that the cognitive model will recall
that chunk and is computed using the Boltzmann (softmax) equation [19], which we
provide below.

Pri = (e
Ai
s )

∑
j (e

Aj
s )

(2)

Here, e is the base of the natural logarithm and s is momentary noise inducing
stochasticity by simulating background neural activation (this is also a parameter of
the system).

3.2 ACT-R Instance-Based Model

The instance based model is an iterative learning method that reflects the cognitive
process of accumulating experiences (in this case the knowledge base of training
samples) and using them to predict the tasks for unseen test samples. Each malware
instance associates a set of attributes of that malware with its family. When a new
malware sample is encountered, the activation strength of that sample with each
sample in memory is computed using Eq. 1. The spreading activation is a measure
of the uniqueness of the attributes between a test sample i and a sample j in memory.
To compute the spreading activation we compute the f an for each attribute a

(f an(a) finds all instances in memory with the attribute a) of the test sample i.
The Partial matching is computed as explained above. The degree of mismatch is
computed as the intersection between the attribute vector of the given malware and
each sample in memory normalized using the Euclidean distance between the two
vectors. The retrieval probability of each sample j in memory with respect to the



Cognitively-Inspired Inference for Malware Task Identification 171

test sample i is then computed using Eq. 2. This generates a probability distribution
over families. The tasks are then determined by summing up the probability of the
families associated with that task with an appropriately set threshold (we set that
threshold at 0.5 (indicates that the model should be more than 50% confident before
a task is predicted for a test malware sample)). Algorithm 1 shows the pseudo code
for the instance-based model.

Algorithm 1: ACT-R instance-based learning
INPUT: New malware sample i, historical malware corpus M.
OUTPUT: Set of tasks associated with sample i.
for query malware sample i do

for all j in M do
Bj = βj

Pj = mp × |attribs(i)∩attribs(j)|√|attribs(i)|×|attribs(j)|
for a ∈ attribs(i) do

if a ∈ attribs(j) then
sij += log(

|M|
|f an(a)

|)
else

sij += log( 1
|M| )

end if
end for
Sj =

∑
j

sij
|attribs(i)|

Calculate Aj as per Equation 1
end for
Calculate pj as per Equation 2
pf = ∑

j∈f s.t.Aj ≥τ pj

tp = {t ∈ T |pf ≥ 0.5}
end for

Time Complexity of Instance-Based Model The Instance based model has no
explicit training phase, so there are no training costs associated with it. For a given
test sample the model computes the activation function for each sample in the
knowledge base. Hence the time complexity increases linearly with the knowledge
base. Let n be the number of the samples in the knowledge base and m is the number
of attributes associated with the test sample, then the time complexity can be given
as O(nm) for each test sample, as we expect m to be relative small (n >> m), the
relationship is linear in n.

3.3 ACT-R Rule-Based Model

In this version of ACT-R model we classify the samples based on simple rules
computed during the training phase. Given a malware training sample with its set
of attributes a, along with the ground truth family value, we compute a pair of



172 E. Nunes et al.

conditional probabilities p(a|f ) and p(a|¬f ) for an attribute in a piece of malware
belonging (or not belonging) to family f . These probabilistic rules (conditional
probabilities) are used to set the strength of association of the attribute with a family
(sa,f ). The strength of association is weighted by the source activation w to avoid
retrieval failures for rule-based models. We use empirically determined Bayesian
priors p(f ) to set the base-level of each family as opposed to using a constant
base-level for instance based. Only two components of the activation Equation 1 are
used, namely the base-level and the spreading activation. Given the attributes for
current malware, we calculate the probability of the sample belonging to each family
according to Eq. 2, generating a probability distribution over families. The task are
then determined in a similar way to that of instance-based model. Algorithm 2 shows
the pseudo code for the rule-based model.

Algorithm 2: ACT-R rule-based learning
INPUT: New malware sample i, historical malware corpus M.
OUTPUT: Set of tasks associated with new sample i.
TRAINING:
Let X = ⋃

j∈M attrib(j)

for all a in X do
Compute the set of rules p(a|f ) and p(a|¬f )

(where p(a|f ) = |{i∈M∩f |a∈attrib(i)}|
|f |

and p(a|¬f ) = |{i∈M−f |a∈attrib(i)}|
|M|−|f | )

end for
TESTING:
for all f ∈ F do

Bf = log(p(f )) (where p(f ) = |f |
|M| )

for all a ∈ attrib(i) do
sa,f = log(

p(a|f )
p(a|¬f )

); Sf =+
w×sa,f

|attribs(i)|
end for
Af = Bf + Sf

end for
Calculate pf as per Equation 2
tp = {t ∈ T |pf ≥ 0.5}

Time Complexity of Rule-Based Model For Rule-based model computing the
rules for each attribute in the knowledge base significantly add to the com-
putation time. Let n be the number of samples in the training set, m be the
number of attributes in the new piece of malware, and m∗ be the cardinality of⋃

j∈M attrib(j). The resulting time complexity for training is then O(m∗n) for
training, which is significant as we observed m∗ >> m in our study. While
this is expensive, we note that for testing an individual malware sample, the time
complexity is less than the testing phase for the instance based O(|F |m)—though
the instance based model requires no explicit training phase (which dominates the
time complexity of the training phase for the rule-based approach).



Cognitively-Inspired Inference for Malware Task Identification 173

Table 3 Parameters for the cognitive models

Model Parameters

Instance based learning β = 20 (base-level constant)

s = 0.1 (stochastic noise parameter)

τ = −10 (activation threshold)

mp = 20 (mismatch penalty)

Rule based learning s = 0.1 (stochastic noise parameter)

w = 16 (source activation)

3.4 Model Parameter Settings

The two proposed models leverage separate components of the activation function.
Table 3 provides a list of parameters used for both the ACT-R models—we use
standard ACT-R parameters that have been estimated from a wide range of previous
ACT-R modeling studies from other domains [20] and which are also suggested in
the ACT-R reference manual [21].

The intuition behind these parameters is as follows. The parameter s injects
stochastic noise in the model. It is used to compute the variance of the noise
distribution and to compute the retrieval probability of each sample in memory.
The mismatch penalty parameter mp is an architectural parameter that is constant
across samples, but it multiplies the similarity between the test sample and the
samples in knowledge base. Thus, with a large value it penalizes the mismatch
samples more. It typically trades off against the value of the noise s in a signal-
to-noise ratio manner: larger values of mp lead to more consistent retrieval of the
closest matching sample whereas larger values of s leads to more common retrieval
of poorer matching samples.The activation threshold τ determines which samples
will be retrieved from memory to make task prediction decisions. The base level
constant β is used to avoid retrieval failures which might be caused due to high
activation threshold. The source activation w is assigned to each retrieval to avoid
retrieval failures for rule-based models.

4 Experimental Setup

4.1 Baseline Approaches

We compare the proposed cognitive models against a variety of baseline
approaches—one commercial package and five standard machine learning
techniques. For the machine learning techniques, we generate a probability
distribution over families and return the set of tasks associated with a probability
of 0.5 or greater while the commercial software was used as intended by the



174 E. Nunes et al.

manufacturer. Parameters for all baseline approaches were set in a manner to
provide the best performance.

Commercial Offering: Invencia Cynomix Cynomix is a malware analysis tool
made available to researchers by Invencia industries [7] originally developed under
DARPA’s Cyber Genome project. It represents the current state-of-the-art in the field
of malware capability detection. Cynomix conducts static analysis of the malware
sample and uses a proprietary algorithm to compare it to crowd-sourced identified
malware components where the functionality is known.

Decision Tree (DT) Decision tree is a hierarchical recursive partitioning algorithm.
We build the decision tree by finding the best split attribute i.e. the attribute that
maximizes the information gain at each split of a node. In order to avoid over-fitting,
the terminating criteria was set to less than 5% of total samples. Malware samples
are tested by the presence and absence of the best split attribute at each level in
the tree till it reaches the leaf node. When it reaches the leaf node the probability
distribution at the leaf node is assigned to the malware sample.

Naive Bayes Classifier (NB) Naive Bayes is a probabilistic classifier which uses
Bayes theorem with independent attribute assumption. During training we compute
the conditional probabilities of a given attribute belonging to a particular family. We
also compute the prior probabilities for each family; i.e., fraction of the training data
belonging to each family. Naive Bayes assumes that the attributes are statistically
independent hence the likelihood for a sample S represented with a set of attributes
a associated with a family f is given as, p(f |S) = P(f ) × ∏d

i=1 p(ai |f ).

Random Forest (RF) Ensemble methods are popular classification tools. They are
based on the idea of generating multiple predictors used in combination to classify
new unseen samples. We use a random forest which combines bagging for each
tree with random feature selection at each node to split the data, thus generating
multiple decision tree classifiers [22]. Each decision tree gives its own opinion on
test sample classification which is then merged to generate a probability distribution
over families. For all the experiments we set the number of trees to be 100, which
gives us the best performance.

Support Vector Machine (SVM) Support vector machines (SVM) are proposed
by Vapnik [23]. SVMs work by finding a separating margin that maximizes the
geometric distance between classes. The separating margin is termed as hyperplane.
We use the popular LibSVM implementation [24] which is publicly available. The
implementation has the option of returning the probability distribution as opposed
to the maximum probability prediction.

Logistic Regression (LOG-REG) Logistic regression classifies samples by com-
puting the odds ratio. The odds ratio gives the strength of association between
the attributes and the family like simple rules used in the ACT-R rule based
learning. We implement the multinomial logistic regression which handles multi-
class classification.



Cognitively-Inspired Inference for Malware Task Identification 175

4.2 Dynamic Malware Analysis

Dynamic analysis studies a malicious program as it executes on the host machine. It
uses tools like debuggers, function call tracers, machine emulators, logic analyzers,
and network sniffers to capture the behavior of the program. We use two publicly
available malware analysis tools to generate attributes for each malware sample.
These tools make use of a sandbox, which is a controlled environment to run
malicious software.

Anubis Sandbox Anubis [25] is an online sandbox which generates an XML
formatted report for a malware execution in a remote environment. It generates
detailed static analysis of the malware but provides less details regarding the
behavior of the malware on the host machine. Since it is hosted remotely we cannot
modify its settings.

Cuckoo Sandbox Cuckoo [26] is a standalone sandbox implemented using a
dedicated virtual machine and more importantly can be customized to suit our
needs. It generates detailed reports for both static as well as behavior analyses by
watching and logging the malware while its running on the virtual machine. These
behavior analyses prove to be unique indicators (behavior patterns common to a
single family) for a given malware for the experiments.

4.3 Performance Evaluation

In our tests, we evaluate performance based primarily on four metrics: precision,
recall, unbiased F1, and family prediction accuracy. For a given malware sample
being tested, precision is the fraction of tasks the algorithm associated with the
malware that were actual tasks in the ground truth. Recall, for a piece of malware,
is the fraction of ground truth tasks identified by the algorithm. The unbiased F1 is
the harmonic mean of precision and recall. In our results, we report the averages for
precision, recall, and unbiased F1 for the number of trials performed. Our measure
of family accuracy—the fraction of trials where the most probable family was the
ground truth family of the malware in question—is meant to give some insight into
how the algorithm performs in the intermediate steps.

5 Results

All experiments were run on Intel core-i7 operating at 3.2 GHz with 16 GB RAM.
Only one core was used for experiments. Except where explicitly noted, the ACT-R
parameters were fixed as per Table 3 for all experiments (across all datasets and
sandboxes).



176 E. Nunes et al.

5.1 Mandiant Dataset

Our first set of experiments uses a dataset based on the T1 cyber espionage group as
identified in the popular report by Mandiant Inc [14]. This dataset consisted of 132
real malware samples associated with the Mandiant report that were obtained from
the Contagio security professional website [16]. Each malware sample belonged to
one of 15 families including BISCUIT, NEWSREELS, GREENCAT and COOK-
IEBAG. Based on the malware family description [14], we associated a set of
tasks with each malware family (that each malware in that family was designed to
perform). In total, 30 malware tasks were identified for the given malware samples
(Table 2). On average, each family performed nine tasks.

We compared the four machine learning approaches with the rule-based and
instance-based ACT-R models (ACTR-R and ACTR-IB respectively). We also
submitted the samples to the Cynomix tool for automatic detection of capabilities.
These detected capabilities were then manually mapped to the tasks from the
Mandiant report. Precision and recall values were computed for the inferred
adversarial tasks. On average the machine learning approaches predicted nine tasks
per sample, ACTR-R predicted nine tasks per sample and ACTR-IB predicted ten
tasks. On the other hand, Cynomix was able to detect on average only four tasks.

Leave One Out Cross-Validation (LOOCV)
In leave one out cross validation, for n malware samples, train on n − 1 samples
and test on the remaining one. This procedure was repeated for all samples and
the results were averaged. We performed this experiment using both sandboxes and
compared the results (Table 4).

The average F1 increases by 0.03 when we use the attributes generated by the
Cuckoo sandbox instead of Anubis. The statistical significance results are as fol-
lows: for ACTR-IB (t (132) = 1.94, p = 0.05), ACTR-R (t (132) = 1.39, p = 0.16), RF
(t (132) = 0.56, p = 0.57), SVM (t (132) = 1.95, p = 0.05), LOG-REG (t (132) = 1.82,
p = 0.07), NB (t (132) = 1.79, p = 0.08) and DT (t (132) = 0.83, p = 0.4). But the sig-
nificant improvement was in the family prediction values with ACTR-IB improving
by 0.12 from 0.81 to 0.93 (t (132) = 3.86, p < 0.001) and ACTR-R by 0.15 from

Table 4 Performance comparison of Anubis and Cuckoo Sandbox (Bold values indicates best
performance)

Method Anubis (F1) Cuckoo (F1) Anubis (Family) Cuckoo (Family)

DT 0.80 0.80 0.59 0.63

NB 0.71 0.74 0.30 0.40

LOG-REG 0.82 0.85 0.65 0.84

SVM 0.86 0.90 0.85 0.86

RF 0.89 0.89 0.82 0.86

ACTR-R 0.85 0.88 0.73 0.89

ACTR-IB 0.93 0.96 0.81 0.93



Cognitively-Inspired Inference for Malware Task Identification 177

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB INVINCEA

Fig. 1 Average precision, recall, F1 and family prediction comparisons using cuckoo sandbox for
LOG-REG, RF, SVM, ACTR-R, ACTR-IB and INVINCEA

0.72 to 0.87 (t (132) = 3.78, p < 0.001) outperforming all other methods. Since
having behavior analysis helps in better task prediction as seen from the comparison
experiment, we use cuckoo sandbox for rest of our experiments.

Figure 1 compares the performance of the five best performing methods from
Table 1 and compares it with the Cynomix tool of Invincea industries. ACTR-
IB outperformed LOG-REG, SVM, RF and ACTR-R; average F1 = 0.97 vs 0.85
(t (132) = 7.85, p < 0.001), 0.9 (t (132) = 4.7, p < 0.001), 0.89 (t (132) = 5.45,
p < 0.001) and 0.88 (t (132) = 5.2, p < 0.001) respectively. Both the proposed
cognitive models and machine learning techniques significantly outperformed the
Cynomix tool in detecting the capabilities (tasks).

These three approaches (LOG-REG, SVM, RF) were also evaluated with respect
to predicting the correct family (before the tasks were determined). ACTR-IB out-
performed LOG-REG, SVM, RF and ACTR-R; average family prediction = 0.93 vs
0.84 (t (132) = 3.22, p < 0.001), 0.86 (t (132) = 3.13, p < 0.001), 0.86 (t (132) = 3.13,
p < 0.001) and 0.89 (t (132) = 2.13, p = 0.03) respectively. The Cynomix tool from
Invincea does not have the capability to predict families.

Task Prediction Without Inferring Families
In the proposed models we infer the malware family first and then predict the tasks
associated with that family. However, differences over “ground truth” for malware
families in the cyber-security community calls for a direct inference of tasks without
dependence on family prediction. In this section we adapt the models to predict tasks
directly without inferring the family.

Figure 2 shows the performance of the cognitive and machine learning models
without inferring the families. There is no difference in the performance of ACTR-
IB and ACTR-R approaches as compared to Fig. 2 where we use families. On the
other hand, direct task prediction reduces the F1 measure of machine learning
techniques on average by almost 0.1. This is due to the fact that, now instead



178 E. Nunes et al.

0.7

0.8

0.9

1

Precision Recall F1

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 2 Average precision, recall, and F1 comparisons for LOG-REG, RF, SVM, ACTR-R and
ACTR-IB for Mandiant without inferring families

0

50

100

150

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)ces(
e

mit
gniniarT

LOG-REG SVM RF ACTR-R

0

50

100

150

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)ces(
e

mit
gn iniar T

LOG-REG SVM RF ACTR-R

Fig. 3 Training time for LOG-REG, SVM, RF and ACTR-R with(left)/without(right) inferring
families

of having a single classifier for each family we have multiple classifiers for each
task that a malware sample is designed to perform. This not only degrades the
performance but also adds to the training time for these methods (including the
ACT-R rule-based approach). We compare the training time with increase in training
data for task prediction with/without inferring families. Inferring families first
reduces the training time (Fig. 3 (left)). On the other hand, predicting tasks directly
significantly increases the training time for the machine learning methods along
with the rule-based ACT-R approach (Fig. 3 (right)). Due to the issues with respect
to performance and training time, we consider inferring families first for the rest of
the experiments. An important point to note is that this has no effect on the Instance-
based model for both performance and computation time.

Parameter Exploration
We now discuss two system parameters that control the performance of the ACT-R
instance based model namely the stochastic noise parameter (s) and the activation
threshold (τ ). We use the mandiant dataset to perform this evaluation. The parameter
s takes values between 0.1 and 1 (typical values range from 0.1 to 0.3). The value



Cognitively-Inspired Inference for Malware Task Identification 179

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eulaV

Noise Parameter (s)

Family Prediction F1

(a)

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eulaV

Noise Parameter (s)

Family Prediction F1

(b)

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eulaV

Noise Parameter (s)

Family Prediction F1

(c)

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eulaV

Noise Parameter (s)

Family Prediction F1

(d)

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eulaV

Noise Parameter (s)

Family Prediction F1

(e)

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eulaV

Noise Parameter (s)

Family Prediction F1

(f)

Fig. 4 Family prediction and F1 value for different threshold and noise parameters values. (a)
τ = −20. (b) τ = −10. (c) τ = 0. (d) τ = 5. (e) τ = 10. (f) τ = 15

of the activation threshold depends on the application. Figure 4 shows the variation
of family prediction accuracy and F1 score with respect to different noise parameter
values and for different activation thresholds. The parameter s is used to compute
the variance of the noise distribution and retrieval probability of sample in memory.
Larger value of s triggers the retrieval of poor matching samples, which leads to
lower family prediction and F1 scores. As seen in Fig. 4, as the value of s increases
the performance decreases. On the other hand, the activation threshold dictates how
many closely matched samples will be retrieved from memory. For high values of
τ the performance decreases as many fewer samples are retrieved. For lower values
of τ we end up retrieving almost all the samples in the training data, hence the
performance does not decrease as τ decreases, but it adds to the computational
cost of retrieving high number of samples which is not desirable. We get the best



180 E. Nunes et al.

performance for τ = −10 and s = 0.1. Even s = 0.2 is almost as good as 0.1
providing some advantages in terms of stochasticity ensuring robustness.

We keep the base-level constant (β) and mismatch penalty (mp) values constant.
As explained earlier the base-level constant trades off directly against the retrieval
threshold, and the mismatch penalty against the activation noise, respectively, so it
makes sense to vary only one of the pair.

5.2 GVDG Dataset

GVDG is a malware generation tool designed for the study of computer threats [15].
It is capable of generating the following malware threats:

– File-virus
– Key-Logger
– Trojan-Extortionist
– USB-Worm
– Web Money-Trojan

Figure 5 shows the GVDG user interface used for the generation of malware
samples. We can select the carrier type and the tasks that we want the malware
sample to perform on the host machine. The tasks are represented as payloads, while
carrier is a functional template which can be modified to execute the tasks desired
by the user on the host system. In generating datasets with GVDG, we specify

Fig. 5 GVDG user interface



Cognitively-Inspired Inference for Malware Task Identification 181

families based on sets of malware with the same tasks. Whether or not a family
consists of malware with the same carrier depends on the experiment. Further,
GVDG also has an option to increase “mutation” or variance among the samples.
We perform experiments analyzing the performance of the proposed methods when
the generated samples belong to different carrier and same carrier types, as well as
when the samples are encrypted and mutated making task prediction difficult. In all
the experiments we consider 60% of the data for training and 40% for testing. The
results are averaged across ten trials. The Cynomix tool from Invencia was unable
to detect any tasks for the GVDG dataset, primarily due to its inability to find public
source documents referencing GVDG samples and also unable to generalize from
similar samples.

Different Carriers
In this experiment, we generated 1000 samples for each carrier type with low
mutation. On average each carrier type performs seven tasks (payloads). Hence
each carrier represents one family for this experiment. Both random forest and
ACTR-IB model were able to predict the tasks and family with F1 measure of 1.0
outperforming LOG-REG 1 vs 0.91, SVM 1 vs 0.95 and ACTR-R 1 vs 0.95. All
results are statistical significant with (t (1998) ≥ 8.93, p < 0.001) (Fig. 6). Also for
family prediction ACTR-IB and RF outperformed LOG-REG 1 vs 0.92, SVM 1 vs
0.92 and ACTR-R 1 vs 0.95 (t (1998) ≥ 8.93, p < 0.001).

These results are not surprising given that different carrier(family) types have
high dissimilarity between them. Also, samples belonging to the same carrier have
on average 60% of similar attributes. Figure 7 shows the similarity between the
carrier types. The similarity between families is calculated in the same way as
ACTR-IB partial matching with 0 indicating complete match while −1 complete
mismatch.

0.8

0.9

1

Precision Recall F1 Family
Prediction

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 6 Average precision, recall, F1 and family prediction comparisons for LOG-REG, SVM, RF,
ACTR-R and ACTR-IB for different carrier samples



182 E. Nunes et al.

Fig. 7 Similarity matrix for five different carriers

Different Carriers-Mutation
For this case, we generate the same samples as in the previous experiment but with
maximum mutation between samples belonging to the same carrier. We generated
1000 samples for each carrier with maximum mutation. In this case ACTR-IB had
an average F1 of 1 outperforming LOG-REG 1 vs 0.83, SVM 1 vs 0.88, RF 1 vs 0.96
and ACTR-R 1 vs 0.92 (t (1998) ≥ 7, p < 0.001) (Fig. 8). Also for family prediction
ACTR-IB outperformed LOG-REG 1 vs 0.85, SVM 1 vs 0.88, RF 1 vs 0.95 and
ACTR-R 1 vs 0.92 (t (1998) ≥ 7, p < 0.001).

High mutation induces high variance between samples associated with the same
carrier making the classification task difficult. High mutation samples belonging
to same carrier have only 20% of common attributes as compared to 60% for low
mutation.

Less Training Data
In order to see how the cognitive models perform with less training data, we repeated
the different-carrier mutation experiment with 10% of the training data selected
uniformly at random (300 samples). Even with less training data ACTR-IB had
an average F1 of 0.93 outperforming LOG-REG 0.93 vs 0.71, SVM 0.93 vs 0.6, RF
0.93 vs 0.83 and ACTR-R 0.93 vs 0.88 (t (1998) ≥ 2.89, p ≤ 0.001) (Fig. 9). Also for
family prediction ACTR-IB outperformed LOG-REG 0.91 vs 0.73 (t (1998) = 19.3,
p < 0.001), SVM 0.91 vs 0.58, RF 0.91 vs 0.79 and ACTR-R 0.91 vs 0.88 (t
(1998) ≥ 2.05, p ≤ 0.04).



Cognitively-Inspired Inference for Malware Task Identification 183

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 8 Average precision, recall, F1 and family prediction comparisons for LOG-REG, SVM, RF,
ACTR-R and ACTR-IB for different carrier mutated samples

0.4

0.6

0.8

1

Precision Recall F1 Family
Prediction

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 9 Average precision, recall, F1 and family prediction comparisons for LOG-REG, SVM, RF,
ACTR-R and ACTR-IB for less training data

Different Carriers: Low-High Mutation
For this case, we consider the low mutation samples as training data and the high
mutation samples as testing. Figure 10 shows the comparison results. ACTR-IB had
an average F1 of 0.96 outperforming LOG-REG 0.96 vs 0.83, SVM 0.96 vs 0.92,
RF 0.96 vs 0.93 and ACTR-R 0.96 vs 0.88 (t (2498) ≥ 15.7, p < 0.001) (Fig. 10).
Also for family prediction ACTR-IB outperformed LOG-REG 0.96 vs 0.81, SVM
0.96 vs 0.92, RF 0.96 vs 0.94 and ACTR-R 0.96 vs 0.88 (t (2498) ≥ 7, p < 0.001).

Leave One Carrier Out Cross-Validation
To see how the models generalize to unseen malware family(carrier), we performed
a leave-one-carrier-out comparison, where we test the models against one previously
unseen malware carrier. ACTR-IB performs better or on par with all other baseline



184 E. Nunes et al.

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 10 Average precision, recall, F1 and family prediction comparisons for LOG-REG, SVM,
RF, ACTR-R and ACTR-IB for low-high mutated samples

0.1
0.2
0.3
0.4
0.5

File-virus Key-logger Trojan-E USB-worm Web-T

F1

0.1

0.2

0.3

0.4

0.5

Precision Recall F1

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 11 Average F1 values for five malware carriers (above) and the average precision, recall and
F1 across all carriers (below) for LOG-REG, SVM, RF, ACTR-R and ACTR-IB for leave-one-
carrier-out

approaches for all the carriers. It clearly outperforms all the approaches in recalling
most of the actual tasks (40%) (Fig. 11). ACTR-IB has shown to generalize for
unseen malware families [10]. This case is difficult given the fact that the test family
is not represented during training, hence task prediction depends on associating the
test family with the training families that perform similar tasks.

Same Carrier
As seen in the previous experiments, different carrier types makes the task easier
because of less similarity between them. We now test the performance, on same
carrier type performing exactly one task. Since there are 17 tasks in the GVDG



Cognitively-Inspired Inference for Malware Task Identification 185

0.8

0.9

1

Precision Recall F1 Family
Prediction

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 12 Average precision, recall, F1 and family prediction comparisons for LOG-REG, SVM,
RF, ACTR-R and ACTR-IB for unencrypted same carrier samples

tool, we generate 100 samples for each task for carrier type File-virus. In this
experiment each task represents one family. Thus in total we have 1700 samples.
We do the 60–40 split experiment. From Fig. 12 ACTR-IB had an average F1 of
0.95 outperforming LOG-REG 0.95 vs 0.84, SVM 0.95 vs 0.87, RF 0.95 vs 0.90
and ACTR-R 0.95 vs 0.92 (t (678) ≥ 1.52, p ≤ 0.13). Since each family performs
exactly one task the family prediction is similar to F1. Using the same carrier for
each payload makes the task difficult as can be seen from the similarity matrix for
the 17 payloads (Fig. 13).

Same Carrier-Encryption
The GVDG tool provides the option for encrypting the malware samples for the File-
virus carrier type. We use this option to generate 100 encrypted malware samples for
each task(payload) and use them as test data with the unencrypted versions from the
same carrier experiment as training samples. From Fig. 14 ACTR-IB had an average
F1 of 0.9 outperforming LOG-REG 0.9 vs 0.8, SVM 0.9 vs 0.8, RF 0.9 vs 0.74
and ACTR-R 0.9 vs 0.88 (t (1698) ≥ 2.36, p ≤ 0.02). Encrypting malware samples
morphs the task during execution making it difficult to detect during analysis. Hence
the drop in performance as compared to non-encrypted samples. We note that SVM
performs better than RF likely because it looks to maximize generalization.

Runtime Analysis
Table 5 shows the classifier run times for the experiments. Machine learning
techniques are faster but have large training times, which increase almost linearly
with the size of the knowledge base. Hence updating the knowledge base is
computationally expensive for these methods, as it has to re-estimate the parameters
every time. The same notion holds true for ACTR-R, since computing the rules
during training phase is expensive as can be seen from the large training times.
ACTR-IB on the other hand, has no explicit training phase, so the only time cost



186 E. Nunes et al.

Fig. 13 Similarity matrix for 17 versions of the same carrier

0.6

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 14 Average precision, recall, F1 and family prediction comparisons for LOG-REG, SVM,
RF, ACTR-R and ACTR-IB for encrypted same carrier samples

is during testing. In fact ACTR-IB is faster than SVM and RF for same/encrypted
carrier experiments.

Scaling of Instance-Based Model
Finally to conclude the GVDG experiments, we run ACTR-IB on a combination
of all the above variations of dataset to highlight the space requirements for the
learning model. The dataset comprises of five different carriers with low/high muta-



Cognitively-Inspired Inference for Malware Task Identification 187

Table 5 Classifier run times Experiment Model Train (s) Test (s)

Different carriers LOG-REG 202 7

SVM 250 50

RF 280 30

ACTR-R 6443 143

ACTR-IB – 453

Mutated carriers LOG-REG 214 18

SVM 260 63

RF 303 85

ACTR-R 7223 185

ACTR-IB – 465

Same carriers LOG-REG 152 4.22

SVM 270 38

RF 290 55

ACTR-R 4339 120

ACTR-IB – 205

Encrypted carriers LOG-REG 180 15

SVM 300 80

RF 353 110

ACTR-R 6103 180

ACTR-IB – 365

tion (10,000 samples) and same carrier encrypted/non-encrypted (3400 samples).
Based on the tasks they perform we have in total 22 families represented by 13,400
samples. The analysis reports generated by cuckoo take up 4 GB of disk space for
the samples. We significantly reduce the size to 600 MB by parsing the analysis
reports and extracting attributes. We set aside 10% of the samples for testing
(1340) and iteratively add 10% of the remaining data for training. Table 6 gives
a summary of the average F1 measure and testing time for ACTR-IB. The results
are averaged across ten trials. There is a steady increase in performance till we
reach 40% of the training data, after that the F1 measure remains almost constant.
This experiment clearly indicates the ability of the ACTR-IB to learn from small
amount of representation from each family, significantly reducing the size of the
knowledge base required for training. We are also looking into techniques to reduce
the time requirements of instance-based learning algorithm (e.g., Andrew Moore
explored efficient tree-based storage). There are also techniques for reducing space
requirements, [27] merged training instances in the ACT-R-Gammon model and
obtained considerable space savings at little performance cost.



188 E. Nunes et al.

Table 6 Summary of
ACTR-IB results

Fraction of training data F1 measure Test time (s)

0.1 0.77 418

0.2 0.82 839

0.3 0.90 1252

0.4 0.97 1676

0.5 0.97 2100

0.6 0.97 2525

0.7 0.97 2956

0.8 0.98 3368

0.9 0.98 3787

1.0 0.98 4213

5.3 MetaSploit

MetaSploit is a popular penetration testing tool used by security professionals to
identify flaws in the security systems by creating attack vectors to exploit those
flaws [28]. Penetration testing may also be defined as the methods an attacker would
employ to gain access to security systems. Hence identifying the tasks the exploit
was designed to perform is important to counter the exploit.

For this experiment we generate exploits that attacks windows operating systems.
Each exploit has a set of tasks associated with it. The tasks include setting up tcp &
udp back-door connections, adding unauthorized users to the system, modifying root
privileges, download executables and execute them on the local machine, prevent
writing of data to disk, deleting system folders, copying sensitive information etc.
We generated 4 exploit families with 100 samples each performing on average 4
tasks. We induced mutation between samples belonging to the same family making
the classification task difficult. We perform a 60–40 split training-testing experiment
and average the results across ten trials. From Fig. 15, ACTR-IB had an average F1
of 0.86 outperforming LOG-REG 0.86 vs 0.62, SVM 0.86 vs 0.82, RF 0.86 vs 0.82,
ACTR-R 0.86 vs 0.81 and INVINCEA 0.86 vs 0.8 (t (158) ≥ 1.94, p ≤ 0.05). Also
for family prediction ACTR-IB outperformed LOG-REG 0.8 vs 0.7, SVM 0.8 vs
0.72, RF 0.8 vs 0.72 and ACTR-R 0.8 vs 0.71 (t (158) ≥ 2.53, p ≤ 0.01).

5.4 Discussion

We evaluated the two proposed cognitive models on three different datasets under
various operational conditions (mutated and encrypted malware samples). The
instance based model performs on par or better than the rule-based model and
standard machine learning approaches. The performance improvement can be
attributed to different ACT-R modules (partial matching and spreading activation)
that model different aspects of the malware sample. Partial matching computes the



Cognitively-Inspired Inference for Malware Task Identification 189

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

egarevA

LOG-REG SVM RF ACTR-R ACTR-IB INVINCEA

Fig. 15 Average precision, recall, F1 and family prediction comparisons for LOG-REG,SVM, RF,
ACTR-R and ACTR-IB for metasploit samples

similarity between malware samples, while spreading activation identifies attributes
that are indicative of a given malware family and the tasks that it is designed to
perform. Hence, in cases where the training data is significantly less (as in one of the
GVDG experiments), the proposed model is able to identify attributes representative
of a particular malware family making the goal of correct task prediction better as
compared to standard machine learning approaches which do require more training
data for better generalization.

Experiments on the GVDG dataset under conditions of mutation and encryption
provide further insights in the working of the cognitive models. For mutation, the
malware samples used for training differ significantly from the ones used for testing.
In this case the partial matching module does not contribute much towards the
activation function but in turn the spreading activation is able to identify attributes
that represent tasks that the malware sample is designed to perform thus making the
correct task prediction in majority of the test cases. A similar behavior is observed
for the encryption experiment as well. For the GVDG experiment with less training
data shows how well the cognitive models are able to generalize with less training
data which is difficult for standard machine learning approaches.

5.5 Task Prediction from Hacker Activities

In all the experiments discussed so far, the tasks associated with a given piece of
malware are predefined and do not change with time. In this section, we try to
map the tasks that a hacker is trying to achieve from the activities it performs on
a compromised system. For the entire experiment only one malware is used whose
sole purpose is to create a tcp backdoor connection to let the hacker have access to
the system. We evaluate the test samples only using ACTR-IB and not other machine



190 E. Nunes et al.

Table 7 Summary of
ACTR-IB results

Subject Average precision Average recall Average F1

Hacker-1 0.8 0.85 0.83

Hacker-2 0.85 0.85 0.85

learning methods. The goal of this experiment is to demonstrate how the system can
deal with real time hacker activities on a compromised system.

The experimental setup is as follows. We keep the Cuckoo sandbox running on
the system by executing the malware. This will create a connection between the
hacker and the system. Once the hacker gains control of the machine, he can perform
operations in order to achieve his objectives. We treat these objectives as the tasks
that the hacker wants to complete on the system. Once these tasks are completed,
Cuckoo generates an analysis report detailing the behavioral analysis of the hacker.
However, these analysis are too detailed and do not provide a clear picture of the
main tasks of the hacker on the machine. Hence, traditionally, this will often require
an expert security analyst to go through large analysis results to determine the task,
which is often time consuming. But instead we can feed the analysis report to the
ACTR-IB model to get a prediction of the hacker tasks. For this experiment we use
the Metasploit dataset discussed in Sect. 5.3 as the knowledge base for the instance
based approach. For the test set we generate samples in real time with hackers
trying to achieve their goals (tasks) on the compromised system. This test also
illustrates how well our model generalizes, as we are identifying hacker behavior
using historical data that was not generated by the hacker—or even a human in
this case. We consider two hackers, who are given a list of the payloads (tasks) to
complete from the list mentioned in Sect. 5.3. They always perform a fraction of
the tasks assigned to them at a given time instance and then the model is tested on
predicting these tasks.

We generate ten such attacks, five from each hacker. Each attack consists of
achieving five tasks on average. We note that for each of the test sample the
malware used is the same. ACTR-IB results are presented in Table 7. The results are
averaged for each hacker across test samples. Table 8 shows the actual and predicted
tasks for Hacker-1 for five different attack instances. The results for Hacker-2 were
analogous.

6 Related Work

Identification of Malicious Software The identification of whether or not binary is
malicious [29, 30] is an important related, yet distinct problem from what we study
in this chapter and can be regarded as a “first step” in the analysis of suspicious
binaries in the aftermath of a cyber-attack. However, we note that as many pieces of
malware are designed to perform multiple tasks, that successful identification of a



Cognitively-Inspired Inference for Malware Task Identification 191

Table 8 Actual and predicted Hacker-1 attacks

Attack instance Actual tasks Predicted tasks

1 Setup backdoor connection
modify root privileges uninstall
program copy files

Setup backdoor connection modify
root privileges uninstall program delete
system files prevent access to drive

2 Setup backdoor connection
modify root privileges download
executables execute files copy
files

Setup backdoor connection modify
root privileges download executables
execute files delete files

3 Setup backdoor connection
modify root privileges add
unauthorized users start
keylogging uninstall program
delete files prevent access to
drives

Setup backdoor connection modify
root privileges add unauthorized users
start keylogging uninstall program
delete files

4 Setup backdoor connection add
unauthorized users prevent
writing data to disk delete files
copy files

Setup backdoor connection add
unauthorized users prevent writing data
to disk delete files modifying root
privileges prevent access to drives

5 Setup backdoor connection
download executables execute
files start keylogging

Setup backdoor connection download
executables execute files start
keylogging

binary as malicious does not mean that the identification of its associated tasks will
be a byproduct of the result.

Malware Family Classification There is a wealth of existing work on malware
family identification [2–4, 6, 31–33]. The intuition here is that by identifying the
family of a given piece of malware, an analyst can then more easily determine what
it was designed to do based on previously studied samples from the same family.
However, malware family classification has suffered from two primary drawbacks:
(1) disagreement about malware family ground truth as different analysts (e.g.
Symantec and McAfee) cluster malware into families differently; and (2) previous
work has shown that some of these approaches mainly succeed in “easy to classify”
samples [5, 6], where “easy to classify” is a family that is agreed upon by multiple
malware firms. In this chapter, we infer the specific tasks a piece of malware was
designed to carry out. While we do assign malware to a family as a component
of our approach, it is not the focus of our comparison (though we show family
prediction results as a side-result). Further, we also describe and evaluate a variant of
our instance-based method that does not consider families and yields a comparable
performance.

Malware Task Identification With regard to direct inference of malware tasks,
the major related work includes the software created by the firm Invincea [7] for
which we have included a performance comparison. Additionally, some of the ideas
in this chapter were first introduced in [10–12]. However, these work primarily
focused on describing the intuitions behind the cognitive modeling techniques and



192 E. Nunes et al.

only included experimental evaluation on two datasets (the Mandiant APT1 and
GVDG datasets). The experimental evaluation in this chapter includes additional
experiments for the GVDG dataset to consolidate the previous experiments. Also
algorithm analysis and parameter exploration are provided for the cognitive models.
In addition we introduce a popular penetration tool used by security analyst
Metasploit and present new results on this tool.

7 Conclusion

In this chapter, we introduced an automated method that combines dynamic malware
analysis with cognitive modeling to identify malware tasks. This method obtains
excellent precision and recall—often achieving an unbiased F1 score of over 0.9—
in a wide variety of conditions over three different malware sample collections and
two different sandbox environments—outperforming a variety of baseline methods.

Currently, our future work has three directions. First, we are looking to create a
deployed version of our approach to aide cyber-security analysts in the field. Second,
we look to enhance our malware analysis to also include network traffic resulting
from the sample by extending the capabilities of the sandbox. Finally, we also look
to address cases of highly-sophisticated malware that in addition to using encryption
and packing to limit static analysis and employ methods to “shut down” when run
in a sandbox environment [34]. We are exploring multiple methods to address this
such as the recently introduced technique of “spatial analysis” [35] that involves
direct analysis of a malware binary.

References

1. M. Sikorski, A. Honig, Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software, 1st edn. (No Starch Press, San Francisco, 2012)

2. U. Bayer, P.M. Comparetti, C. Hlauschek, C. Kruegel, E. Kirda, Scalable, behavior-based
malware clustering, in NDSS, vol. 9 (Citeseer, 2009), pp. 8-11

3. J. Kinable, O. Kostakis, Malware classification based on call graph clustering. J. Comput.
Virol. 7, 233–245 (2011)

4. D. Kong, G. Yan, Discriminant malware distance learning on structural information for
automated malware classification, in Proceedings of the 19th ACM SIGKDD. KDD ’13, New
York (ACM, New York, 2013), pp. 1357–1365

5. P. Li, L. Liu, D. Gao, M.K. Reiter, On challenges in evaluating malware clustering, in
International Workshop on Recent Advances in Intrusion Detection (Springer, Berlin, 2010),
pp. 238–255

6. R. Perdisci, ManChon, Vamo: towards a fully automated malware clustering validity analysis,
in Proceedings of the 28th Annual Computer Security Applications Conference (ACM, New
York, 2012), pp. 329–338

7. Invencia, Crowdsource: crowd trained machine learning model for malware capability
detection (2013). http://www.invincea.com/tag/cynomix/

http://www.invincea.com/tag/cynomix/


Cognitively-Inspired Inference for Malware Task Identification 193

8. Kaspersky, Gauss: abnormal distribution (2012). https://media.kasperskycontenthub.com/wp-
content/uploads/sites/43/2018/03/20134940/kaspersky-lab-gauss.pdf

9. C. Lebiere, P. Pirolli, R. Thomson, J. Paik, M. Rutledge-Taylor, J. Staszewski, J.R. Anderson,
A functional model of sensemaking in a neurocognitive architecture. Comput. Intell. Neurosci.
5:5–5:5 (2013)

10. C. Lebiere, S. Bennati, R. Thomson, P. Shakarian, E. Nunes, Functional cognitive models of
malware identification, in Proceedings of ICCM, ICCM 2015, Groningen, April 9–11 (2015)

11. R. Thomson, C. Lebiere, S. Bennati, P. Shakarian, E. Nunes, Malware identification using
cognitively-inspired inference, in Proceedings of BRIMS, BRIMS 2015, Washington DC,
March 31–April 3 (2015)

12. E. Nunes, C. Buto, P. Shakarian, C. Lebiere, R. Thomson, S. Bennati, J. Holger, Malware
task identification: a data driven approach, in Proceedings of International Symposium
on Foundation of Open Source Intelligence and Security Informatics (FOSINT-SI) (IEEE,
Piscataway, 2015)

13. Rapid7, Metasploit: penetration testing software (2003). http://www.metasploit.com/
14. D. McWhorter, APT1: exposing one of China’s cyber espionage units (2013). http://Mandiant.

com
15. GVDG, Generator malware GVDG (2011)
16. Mandiant, Mandiant APT1 samples categorized by malware families. Contagio Malware

Dump (2013)
17. J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, Y. Qin, An integrated theory

of mind. Psychol. Rev. 111, 1036–1060 (2004)
18. C. Gonzalez, J.F. Lerch, C. Lebiere, Instance-based learning in dynamic decision making.

Cogn. Sci. 27(4), 591–635 (2003)
19. R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, 1st edn. (MIT Press,

Cambridge, 1998)
20. T.J. Wong, E.T. Cokely, L.J. Schooler, An online database of ACT-R parameters: towards

a transparent community-based approach to model development, in Proceedings of the 10th
International Conference on Cognitive Modeling (Citeseer, 2010), pp. 282–286

21. D. Bothell, Act-r 6.0 reference manual (2004). http://act-r.psy.cmu.edu/actr6/reference-
manual.pdf

22. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)
23. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20, 273–297 (1995)
24. C.C. Chang, C.J. Lin, Libsvm: a library for support vector machines. ACM Trans. Intell. Syst.

Technol. 2(3), 27:1–27:27 (2011)
25. ISEC-Lab, Anubis: analyzing unknown binaries (2007). http://anubis.iseclab.org/
26. C. Guarnieri, A. Tanasi, J.B.M.S., Cuckoo sandbox (2012). http://www.cuckoosandbox.org/
27. S. Sanner, J.R. Anderson, C. Lebiere, M. Lovett, Achieving Efficient and Cognitively Plausible

Learning in Backgammon (Carnegie Mellon University, Pittsburgh, 2000)
28. J. O’Gorman, D. Kearns, M. Aharoni, Metasploit: The Penetration Tester’s Guide (No Starch

Press, San Francisco, 2011)
29. I. Firdausi, C. Lim, A. Erwin, A.S. Nugroho, Analysis of machine learning techniques

used in behavior-based malware detection, in Proceedings of the 2010 Second International
Conference on ACT. ACT ’10, Washington, DC (IEEE Computer Society, Philadelphia, 2010),
pp. 201–203

30. A. Tamersoy, K. Roundy, D.H. Chau, Guilt by association: large scale malware detection by
mining file-relation graphs, in Proceedings of the 20th ACM SIGKDD. KDD ’14 (ACM, New
York, 2014), pp. 1524–1533

31. S.S. Hansen, T.M.T. Larsen, M. Stevanovic, J.M. Pedersen, An approach for detection
and family classification of malware based on behavioral analysis, in 2016 International
Conference on Computing, Networking and Communications (ICNC) (IEEE, Piscataway,
2016), pp. 1–5

32. K. Sanders, X. Wang, Malware family identification using profile signatures. US Patent
9,165,142, 20 Oct 2015

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/20134940/kaspersky-lab-gauss.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/20134940/kaspersky-lab-gauss.pdf
http://www.metasploit.com/
http://Mandiant.com
http://Mandiant.com
http://act-r.psy.cmu.edu/actr6/reference-manual.pdf
http://act-r.psy.cmu.edu/actr6/reference-manual.pdf
http://anubis.iseclab.org/
http://www.cuckoosandbox.org/


194 E. Nunes et al.

33. C. Annachhatre, T.H. Austin, M. Stamp, Hidden Markov models for malware classification. J.
Comput. Virol. Hacking Tech. 11(2), 59–73 (2015)

34. M. Lindorfer, C. Kolbitsch, P. Milani Comparetti, Detecting environment-sensitive malware, in
Proceedings of the 14th International Conference on RAID. RAID’11 (Springer, Berlin, 2011),
pp. 338–357

35. D. Giametta, A. Potter, There and back again: a critical analysis of spatial analysis (2014).
https://archive.org/details/ShmooCon2014_A_Critical_Review_of_Spatial_Analysi

https://archive.org/details/ShmooCon2014_A_Critical_Review_of_Spatial_Analysi

	Cognitively-Inspired Inference for Malware Task Identification
	1 Introduction
	2 Technical Preliminaries
	3 Cognitively-Inspired Inference
	3.1 ACT-R Based Approaches
	3.2 ACT-R Instance-Based Model
	3.3 ACT-R Rule-Based Model
	3.4 Model Parameter Settings

	4 Experimental Setup
	4.1 Baseline Approaches
	4.2 Dynamic Malware Analysis
	4.3 Performance Evaluation

	5 Results
	5.1 Mandiant Dataset
	5.2 GVDG Dataset
	5.3 MetaSploit
	5.4 Discussion
	5.5 Task Prediction from Hacker Activities

	6 Related Work
	7 Conclusion
	References


