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Abstract Automated social media bots have existed almost as long as the social
media platforms they inhabit. Although efforts have long existed to detect and
characterize these autonomous agents, these efforts have redoubled in the recent
months following sophisticated deployment of bots by state and non-state actors.
This research will study the differences between human and bot social communica-
tion networks by conducting an account snow ball data collection, and then evaluate
network, content, temporal, and user features derived from this communication
network in several bot detection machine learning models. We will compare this
model to the other models of the bot-hunter toolbox as well as current state of the
art models. In the evaluation, we will also explore and evaluate relevant training
data. Finally, we will demonstrate the application of the bot-hunter suite of tools in
Twitter data collected around the Swedish National elections in 2018.

1 Introduction

Automated and semi-automated social media accounts have been thrust into
the forefront of daily news as they became associated with several publicized
national and international events. These automated accounts, often simply called
bots (though at times called sybils), have become agents within the increasingly
global marketplace of beliefs and ideas. While their communication is often less
sophisticated and nuanced than human dialogue, their advantage is the ability to
conduct timely informational transactions effortlessly at the speed of algorithms.
This advantage has led to a variety of creative automated agents deployed for
beneficial as well as harmful effects. While their purpose, characteristics, and
“puppet masters” vary widely, they are undeniably present and active. Their effect,
while difficult if not impossible to measure, is tangible.
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Automated and semi-automated accounts are used for a wide variety of reasons,
creating effects that can be positive, nuisance, or malicious. Examples of positive
bots include personal assistants and natural disaster notifications. Nuisance bots are
typically involved in some type of ‘spam’ distribution or propagation. The spam
content ranges from commercial advertising to the distribution of adult content.
Malicious bots are involved in propaganda [52], suppression of dissent [64], and
network infiltration/manipulation [8].

Malicious bots have recently gained wide-spread notoriety due to their use in
several major international events, including the British Referendum known as
“Brexit” [43], the American 2016 Presidential Elections [13], the aftermath of
the 2017 Charlottesville protests [35], the German Presidential Elections [55], the
conflict in Yemen [7], and recently in the Malaysian presidential elections [4]. These
accounts attempt to propagate political and ideological messaging, and at times
accomplish this through devious cyber maneuver.

As these bots are used as one line of effort in a larger operation to manipulate
the marketplace of information, beliefs, and ideas, their detection and neutralization
become one facet of what is becoming known as social cyber security. Carley et al.
is the first to use this term, and defines it as:

Social Cyber-security is an emerging scientific area focused on the science to characterize,
understand, and forecast cyber-mediated changes in human behavior, social, cultural and
political outcomes, and to build the cyber-infrastructure needed for society to persist in its
essential character in a cyber-mediated information environment under changing conditions,
actual or imminent social cyber-threats. [18]

Within social cyber security, bot detection and neutralization are quickly becom-
ing a cat and mouse cycle where detection algorithms continuously evolve trying to
keep up with ever-evolving bots. Early detection algorithms exploited the automated
timing, artificial network structure, and unoriginal meta-data of automated accounts
in order to identify them. These features are relatively easy for bot puppet-masters to
manipulate, and we are now seeing automated accounts that have meaningful screen
names, richer profile meta-data, and more reasonable content timing and network
characteristics.

We are also seeing an increasing number of accounts that we call “bot assisted”
or “hybrid” accounts (also at times called “cyborg” accounts). Although researchers
often attempt a binary classification of bot or human, the reality is that there is a
spectrum of automated involvement with an account. Many accounts are no longer
strictly automated (all content and social transactions executed by a computer).
These accounts will have human intervention to contribute nuanced messaging to
two-way dialogue, but will have a computer executing a variety of tasks in the
background. Grimme et al. [38] discusses this spectrum in detail, describing how
‘social bots’ are created, used, and how ‘hybridization’ can be used to bypass
detection algorithms (in their case successfully bypassing the ‘Botornot’ algorithm
discussed later in this paper).

We hypothesize that bots are not involved in social networks and social commu-
nication in the same way that humans are, and that this difference is measurable.
Like other complex systems (natural ecosystems, weather systems, etc), social

https://twitter.com/DearAssistant 
https://twitter.com/earthquakeBot 
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interaction and relationships are the result of myriads of events and stimuli in both
the real and virtual worlds. Because bots lack real world engagement and social
environments, they embed in different networks than humans.

Many bots are programmed to interact with each other as a bot network, and
attempt to interact with humans, but many features of these interactions will be
‘robotic’. Even ‘hybrid’ accounts will have some level of artificial and inorganic
structure and substance in their communications. This area of bot detection in
Twitter is largely unexplored, primarily because the rich network data (both the
friends/followers network as well as their conversational network) are very time
consuming to collect. We therefore set out to collect the data to characterize the
social network(s) and social conversation(s) that a twitter account participates in,
describe these networks with various network metrics, leverage these rich network
metrics in traditional machine learning models, and evaluate whether the time
involved creates substantial value.

1.1 Research Questions

1. Do bot Twitter accounts have fundamentally different conversational network
structures than human managed accounts?

2. Do the conversations that surround bot accounts diverge from human conversa-
tions in general substance and timing?

3. Can the measured differences between bot and human conversation networks
lead to increased accuracy in bot detection?

This paper will begin by discussing past bot detection techniques, as well as
summarize historical techniques for extracting features from network structures.
Next we discuss our data collection, data annotation, and methodology for creating
ego-network metrics. We describe training and testing our bot-hunter machine
learning algorithms and present our results. We construct an evaluation to compare
all bot-hunter models against the state of the art. Finally, we will demonstrate the
application of the bot-hunter suite of tools in the 2018 Swedish National elections,
providing a possible workflow to open source intelligence practitioners.

This chapter is an extension of [10], with a focus of extending the feature space
beyond network metrics to include content and temporal metrics of the larger ego
network. Several of these features are novel, including a cascaded classifier that
identifies portion of alters that are likely bots, portion of alters that don’t have normal
daily rhythms, as well as portion of ego network that produces tweets that are more
popular than the account itself. All of these have been documented as attributes of
bots, and we’ve coded them into features in this algorithm. Additionally, we used
the larger models to explore several new bot data sets. Finally, this extension will
compare all of the bot-hunter suite of tools against state of the art models.
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2 Related Work

2.1 Understanding Data Tiers

In earlier research our team proposed a tiered approach to bot detection [11] that
mirrors the data tiers introduced below. This tiered approach creates a flexible
bot-detection “tool-box” with models designed for several scenarios and data
granularities. Tier 0 builds models on a single entity (usually a tweet text or user
screen name). Tier 1 builds models based on features extracted from the basic
Tweet object (and associated user object). Tier 2 extracts features from a users’
timeline, and Tier 3 (explained in this paper) builds features from the conversation
surrounding a user. Higher tier models are generally more accurate, but consume
more data and are therefore computationally expensive. Some research requires bot
detection at such a scale, that models based on Tier 0 or Tier 1 are the only feasible
option. At other times, highly accurate classification of a few accounts is required. In
these cases, models based on Tier 2 or Tier 3 data are preferred. This paper proposes
an approach to Tier 2–3 bot detection that builds on the previous Tier 0 [12] and Tier
1 [11] research and relies heavily on network metrics collected through single seed
snowball sampling. We will view past research in bot detection through the lens of
these Tiers (Table 1).

Since the early efforts to conduct bot/spam detection, numerous teams have
developed a variety of models to detect these. While similar, these models will differ
based on the underlying data they were built on (for example many community
detection and clickstream models were developed for Facebook, while the over-
whelming majority of models built on Twitter data use Supervised and Unsupervised
Machine learning [1]). Even in Twitter bot detection, these models can be grouped
by either the models/methods or by the data that they use. We have provided Table 2
to outline the connection between past models and the data that they use.

Adewole et al. [1] reviewed 65 bot detection articles (articles from 2006–2016)
and found that 68% involved machine learning, 28% involved graph techniques
(note that these include some machine learning algorithms that rely heavily on

Table 1 Four tiers of Twitter data collection to support account classification (originally pre-
sented in [11])

Tier Description Focus

Collection
time per 250
accounts

# of Data
entities
(i.e. tweets)

Tier 0 Tweet text only Semantics N/Aa 1

Tier 1 Account + 1 Tweet Account meta-data ∼1.9 s 2

Tier 2 Account + Timeline Temporal patterns ∼3.7 min 200+
Tier 3 Account + Timeline + Friends Timeline Network patterns ∼20 h 50,000+

aThis tier of data collection was presented by Kudugunta and Ferrara [47] and assumes the status
text is acquired outside of the Twitter API
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Table 2 Table of Twitter Bot detection models and the data that they use

Machine learning
Data Community detection Supervised Unsupervised Crowd sourcing
Tier 0 Text [12, 47] [48]

Tier 1 + Profile [22, 49] [33]

Tier 2 + History [63] [20]

Tier 3 + Snowball [8] No known research [66]

Stream [3, 14]

network metrics), and 4% involved crowd-sourcing. Below we will summarize the
salient works under each of these modeling techniques.

2.2 Machine Learning Techniques

As noted above, Twitter bot detection has primarily used Machine Learning models.
The supervised machine learning models used for bot detection include Naïve Bayes
[22], Meta-based [49], SVM [48], and Neural Network [47]. The unsupervised
machine learning models used include hierarchical [48], partitional [33], PCA-
based [65], Stream-based [53], and correlated pairwise similarity [20]. Most of these
efforts leverage data collected from the basic tweet object or user object ( what we
would define as a Tier 0 or Tier 1 model).

In 2014, Indiana University launched one of the more prominent supervised
machine learning efforts with the Bot or Not online API service [25] (the service
was recently rebranded to Botometer). This API uses 1150 features with a random
forest model trained on a collage of labeled data sets to evaluate whether or not an
account is a bot. Botometer leverages network, user, friend, temporal, content, and
sentiment features with Random Forest classification [28].

In 2015 the Defense Advanced Research Projects Agency (DARPA) sponsored a
Twitter bot detection competition that was titled “The Twitter Bot Challenge” [59].
This 4 week competition pitted four teams against each other as they sought to
identify automated accounts that had infiltrated the informal Anti-Vaccine network
on Twitter. Most teams in the competition tried to use previously collected data
(mostly collected and tagged with honey pots) to train detection algorithms, and
then leverage tweet semantics (sentiment, topic analysis, punctuation analysis, URL
analysis), temporal features, profile features, and some network features to create a
feature space for classification. All teams used various techniques to identify initial
bots, and then used traditional classification models (SVM and others) to find the
rest of the bots in the data set.



58 D. M. Beskow and K. M. Carley

2.3 Other Techniques

Several other novel bot detection methods exist outside of machine learning and
network based approaches. Wang et al. [66] investigated the idea of Crowd Sourcing
bot detection. While showing limited success, it was costly at scale, and usually
required multiple workers to examine the same account. Another unique type of
unsupervised learning involves algorithms that find and label correlated accounts.
Most bots are not deployed by themselves. Even if not deployed as a united bot-net,
many bot herders often task multiple bots to perform the same operations. Chavoshi
et al. [20] has leveraged the semantic and temporal similarity of accounts to identify
bots in an unsupervised fashion, creating the Debot model which we will compare
against in our results section.

2.4 Network Based Techniques

Networks are an extremely important part of bots, bot behavior and bot detection.
Aiello et al. [2] discusses the impact of bots on influence, popularity, and network
dynamics. Adewole et al. [1] highlights that network features are robust to criminal
manipulation.

One approach to leveraging network structure involves community based
bot/sybil detection. While community detection has been effectively implemented
on Facebook [67] and Seino Weibo [51], it has only recently been used on Twitter
Data due the strict friend/follower rate limiting discussed above. Only recently
has Benigni et al. [9] used dense subgraph detection to find extremists and their
supporting bots in Twitter.

Most research that uses networks for bot detection with Twitter Data are in fact
creating network based metrics and introducing these features in traditional machine
learning models. As discussed below, the most challenging part of this type of
research is focused on how to build networks from limited data. The closest works
to ours were performed by Bhat and Abulaish [14] in 2013 and [3] in 2016. Both
research efforts used network features along with profile and temporal features from
a Twitter Sample Stream without any snowball sampling enrichment. They created
an egocentric network that involved ego, alters, with links between alters for both
following and mention ego centric networks. Having done this, they calculated con-
tent, profile, and social interaction features. Their network features were restricted
to centrality measures, density measures, and weak and strongly connected compo-
nents. A similar earlier work by Bhat and Abulaish [14] attempts to use community
features (number of communities, core/periphery, foreign in/out degree, etc). This
was applied to both Facebook data and the Enron email data (not to Twitter).

Additionally, the Botometer algorithm leverages some network features extracted
from the user timeline. This includes metrics on the retweet network, mention
network, and hashtag co-occurrence network. The metrics include density, degree
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distributions, clustering coefficient, and basic network characteristics. The Botome-
ter algorithm does not conduct a snowball collection of friends or followers, but
does appear to collect user objects for accounts found in the timeline as a retweet or
mention [28].

2.5 Building Networks with Twitter Data

As noted above, however, it is difficult to quickly build comprehensive network
structure with Twitter data due the Twitter API rate limits, primarily associated with
collecting friend/follower ties. Researchers have generally used one of two methods
to build limited networks.

The first method is used if the research team has a large sample or stream. These
samples may be random (collected from the 1% Twitter Sample) or they may be
associated with an event or theme (i.e. collecting all Tweets that have a given
hashtag like #hurricanesandy). These researcher then build ego-centric networks
from this stream, without collecting any additional data from the Twitter API. This
has the advantage of speed, and doesn’t suffer from issues getting data for suspended
accounts. This method, however, will only model a small portion of an account’s
activity and network. A 1% sample will arguably contain marginal activity for given
account, and even topical streams will only contain a small part of an account’s
activity, given that they are involved in multiple topics and discussions. These small
samples may not be rich enough to serve as strong features for machine learning.

The second method that researchers use is to only collect the users timeline
(history of tweets, up to last 3200). They then build an ego-centric network from
this data (variously using replies, retweets, hashtags, urls, and mentions to build
networks). This is much richer than the first method, contain all of the users activity,
but still lacks any information beyond that individual, providing the limited star
graph illustrated in Fig. 1. It doesn’t contain the larger conversation(s) that they are
participating in. Additionally, a bots’s timeline is completely managed by the bot
puppet master, and therefore can be manipulated to avoid detection.

To date our team has not found supervised learning bot detection research that
leverages extensive snowball sampling to build ego networks.

2.6 Extracting Features from Social Networks

Evaluating network centrality measures, started by Bavelas in 1948 [6] and effec-
tively clarified by Freeman in 1978 [31], has long been an important metric
for evaluating both nodes and networks. According to Freeman, network-level
centrality metrics measure the “compactness” of the network. Our model includes
several network centrality measures: degree centrality, k-betweenness [5], and
eigenvector centrality [45] are used to measure differing “compactness” between
human and bot conversation networks.
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Several seminal works describe the importance of triadic relationships in social
networks [19, 40] and as a foundation for measuring network clustering and groups
[42]. The fact that the study of triadic relationship has almost exclusively been con-
tained within the study of social interaction provides evidence that these observed
triadic relationships are unique to human behavior. We have therefore included
several features based on these triadic relationships, including the full triadic census
[41], number of Simmelian Ties [26, 46], and clustering coefficient. We also
included reciprocity based on Mislove et al.’s [54] examination of reciprocity in
online social networks.

In addition to finding network centrality and triadic structures, network com-
munity detection has been an important aspect of network characterization, and
is still an active research area. Current group detection techniques generally fall
into traditional methods, divisive methods, modularity based methods, statistical
inference methods, and dynamic methods [29]. Our community detection features
leverage Louvain Clustering [16], which is based on modularity optimization.

Our approach uses network sampling in order to restrict the time of computation.
While research in network sampling started in the 1970s with work from [30] and
others, the emergence of Online Social Networks (OSN’s) increased the size of
networks and the need for sampling. Our approach to sampling ego networks was
informed by Gjoka [34]. Our sampling uses breadth-first-search (BFS) on the target
node. The known bias of BFS is eliminated because we are only conducting two
hops from the target (only includes friends of alters).

Finally, the study of ego networks is a special branch of social network analysis
that is relevant to our study. In 1972, [37] presented the classic concept of the
“Strength of Weak Ties” in ego networks, which [17] clarified is more due to the
structural location of ties, and can be measured by effective size, efficiency, and
constraint. This informed our use of ego network effective size in our features space.
Additionally, Centrality of ego-networks was explored by Freeman [32] in 1982
informing our use of betweenness in the feature space.

2.7 Contributions of This Work

While we discuss above several other research attempts to use network metrics in
a bot detection feature space, these have largely relied on the mention network
extracted from any Twitter query/stream. Ego-centric networks built on a single
stream/query arguably contain only a small subset of the overall account ego
network. Researchers have not attempted to build this ego network based on
snowball sampling [36] with a seed node since this requires significant time given
the extent of the data and the strict API rate limits that Twitter imposes on
friend/follower data. Our research has taken the time to build this rich conversational
network in a novel way, and then evaluate whether the time and effort render
sufficient value.

Having built this extensive network for every account in question, this work
attempts to fully exploit all available features, going above and beyond just
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structural features. These additional features include content, temporal, and user
summary features. Adding the full range of additional features allows us to fully
evaluate the increased accuracy against the additional computational cost.

This work additionally creates and explores bot detection metrics that require
greater effort and sophistication to circumvent. Currently, bot-herders can circum-
vent current algorithms by changing their screen name, adding account meta-data,
spending additional time selecting a unique profile picture, and creating a more
realistic tweet inter-arrival time. They can also deploy bots in bot networks,
therefore artificially manipulating friend/follower values to appear like they are
popular. However, it will arguably require significantly more sophistication to
change the centrality, components, or triadic relationships in the conversations
that they participate in. By increasing the cost to deploy and operate bots, it may
economically force “bot-herders” out of their devious market.

Finally, the bot-hunter framework builds on the multi-tiered bot detection
approach that we introduced in [11]. This multi-tiered approach provides
researchers and government or non-governmental agencies with a “tool-box” of
models designed for different classes of bots as well as different scales of data
(designed for either high volume of high accuracy). This multi-tiered approach
acknowledges that there is not a one-size fits all model/approach that will work for
all bot detection requirements. By merging and expanding on past bot detection
research, we can create an easy to use “tool box” that can address several bot-
detection requirements. The evaluation provided later in this paper will demonstrate
that key models in the bot-hunter suite of tools are equivalent or better than state of
the art models.

3 Data

Our team used the Twitter REST and Streaming API’s to access the data used in this
research effort. Details of this process are provided below.

3.1 Overview of Available Data

Research is loosely divided between account-focused data collection strategies and
topical or stream based collection strategies. Account based approaches will only
use data objects directly tied to the user (user JSON object, user time-line object,
etc). Stream-based approaches extract features from a given topical stream or twitter
stream sample. These stream based features are often network features, but represent
a small fraction of the ego-centered network of a given account. Our research
therefore pursues an account based approach to build a fuller representation of the
account’s ego network.
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Researchers must find a balance between speed and richness of data. Past account
focused research generally falls into four tiers. Table 1 provides a description for
each tier of data collection, the estimated time it would require to collect this data for
250 accounts, and the amount of data that would be available for feature engineering
per account.

3.2 Data Required for Account Conversation Networks

Detailed ego network modeling of a Twitter account’s social interactions requires
Tier 3 data collection, but to date our team has not found any research that has
conducted that level of data collection to model the network structures and social
conversations that an automated Twitter account interacts with. In fact, few teams
go beyond basic in-degree (follower count) and out-degree (friend count) network
metrics found in Tier 1 meta-data. The closest effort to date is the Botometer model,
which arguably operates at Tier 2. By adding the user timeline, Tier 2 provides
limited network dynamics, to include being able to model hashtag and URL co-
mentions in a meta-network (see Fig. 1). The resulting timeline based network,
however, lacks comprehensive links between alters. While the time-line can provide
rich temporal patterns, we found that it lacked sufficient structure to model the ego
network of an actor.

Agent

Tweet

Hashtag

Url
powered by ORA

Fig. 1 Leveraging only user timeline provides limited network features in a star graph
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We set about to build the social network and social conversations that a twitter
account is interacting with. We also tried to do this in a way that would expedite
the time it takes to collect the data and measure network metrics. Our initial goal
was to collect data, build the feature space, and classify an account within 5 min.
We selected the 5 min limit in an attempt to process ∼250 accounts per day with a
single thread

To collect the necessary data, we executed the following steps sequentially:

1. Collect user data object
2. Collect user timeline (last 200 tweets)
3. Collect user followers (if more than 250, return random sample of 250 followers)
4. Collect follower timelines (last 200 tweets)

When complete, this data collection process (illustrated in Fig. 2) creates up to
50,000 events (tweets) that represent the conversation and virtual social interaction
that the user and their followers participate in.

The resulting network, while partially built on social network structure (the
initial following relationship), is primarily focused on the larger conversation they
participate in. We initiated the single seed snowball by querying followers rather

Seed Node 1 Hop Snowball 2 Hop Snowball

following
retweet
mention
reply

1

Get user data
and time-line

2
Get followers
(max 250)

3 Get alter
time-lines

1

Get user data
and time-linee

2
Get followers
(max 250)

3 Get alter
time-lines

Fig. 2 Illustration of 2-hop snowball sampling: conversation of target node and followers. First
get followers of target node (if more than 250, sample followers). Then get timelines of alters. Use
timelines to draw connections to accounts that alters retweet, reply, and mention
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than friends since followers are much less controlled by the bot-herder, and contain
fewer news and celebrity accounts. We conducted a timeline rather than followers
search for the 2nd hop of the snowball to overcome rate-limiting constraints and to
model the conversation network rather than directly model the social network. This
single seed snowball process conducts a limited breadth-first-search starting with a
single seed and terminating at a depth of 2.

Artificially constraining the max number of alters at 250 was a modeling
compromise that facilitates the self-imposed 5 min collect/model time horizon. The
choice of 250 allows our process to stay under 5 min, and also represents the upper
bound of Dunbar’s number (the number of individuals that one person could follow
based on extrapolations of neocortex size) [27]. Additionally, in evaluating a sample
of 22 million twitter accounts, we found that 46.6% had less than 250 followers.
This means that approximately 50% of accounts will have their entire ego network
modeled. Bots tend to have fewer followers than human accounts and from the
297,061 annotated bot accounts that we had available for this research, 72.5% of
them had fewer than 250 followers. Given that this compromise will only affect
25% of the bot accounts and 50% of all accounts, we felt that it was appropriate.

We used this data to create an agent to agent network where links represent one
of the following relationships: mention, reply, retweet. These collectively represent
the paths of information and dialogue in the twitter “conversation”. We intentionally
did not add the follow/friend relationships in the network (collected in the first
hop of the snowball) since follow/friend relationships are an easy metric for bot
herders to simulate and manipulate with elaborate bot nets. Complex conversations,
however, are much harder to simulate, even in a virtual world. Additionally, adding
the following links between the ego and alters would have created a single large
connected graph. By leaving them out, we were able to easily identify the natural
fragmentation of the social interaction.

3.3 Visualizing Conversations

During our initial exploration, we visualized these conversations for both human
accounts and bot accounts. A comparison of these conversations is provided in
Fig. 3. Note that bots tend to get involved in isolated conversations, and the followers
of the bot are very loosely connected. The network created from a human virtual
interaction on Twitter, is highly connected due to shared friendship, shared interests,
and shared experiences in the real world.

3.4 Annotated Data

For annotated bot data, we combined several legacy annotated bot data sets as well
as some that our team has annotated during the development of the bot-hunter
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Fig. 3 Differences between a human Twitter conversation(s) and a bot Twitter interactions
(networks colored by Louvain group) [10]. (a) Human conversation. (b) Bot conversation

toolbox. Note that Tier 3 model requires additional collection of friends, followers,
and followers timeline, and therefore requires accounts that are not suspended.
Several rich annotated bot data sets were used for our Tier 1 and Tier 2 models
have a high number of suspended accounts, and therefore were not used for the
development of a Tier 3 model. These datasets will still be discussed in the results
and evaluation sections since they were used in the development of Tier 1 and Tier
2 models.

The first data set used for Tier 3 training data is a large diverse bot data set that
was annotated by detecting 15 digit random alpha-numeric strings as indicated in
[12] (a data annotation method using a Tier 0 model). This method provided 1.7
million annotated bot accounts. From this data we built network metrics on 6874
of these accounts. The second data set is from the Debot bot detection system [21]
which includes bots that were found due to correlated activity. Using the Debot API,
our team extracted 6949 of these accounts, from which we built network metrics on
5939 accounts. Additionally, we used the bot data manually annotated by Cresci et
al. in 2015 [23] and again in 2017 [24].

In the results section we will discuss several other data sets that were used to train
our Tier 1 and Tier 2 models. These include the annotated data our team captured
in a bot attack on the NATO and the Digital Forensic Labs [11]. This data will
be referred to as NATO in the results. We also used the suspended Russian bot
data set that Twitter released in October 2018 [62]. This data set primarily contains
bot/cyborg/troll activity generated by the Russian Internet Research Agency (IRA)
during the 2016 US National Elections. In our results sections, this data set is
referred to as the IRA data. Finally, we used a large data set of suspended accounts.
To acquire this data, our team streamed the 1% Twitter Sample for 7 months, and
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Table 3 Data description

Training data Description Tier1 Tier2 Tier3

Cresci 2017 Manually annotated by Cresci et al. in 2017
[24]

X X X

Cresci 2015 Manually annotated by Cresci et al. in 2015
[23]

X X X

Debot data Accounts labeled as bots by the Debot bot
detection system [21]

X X X

NATO Data our team captured in a bot attack on the
Digital Forensic Labs and NATO [11]

X X

Suspended accounts These are accounts that were suspended by
Twitter

X

Random string
accounts

Accounts with 15 digit random alpha-numeric
strings as screen names [12]

X X X

IRA data Suspended Russian bot dataset that Twitter
released in October 2018

X

Combined data Combination of data listed above X

then went back to discover which of the accounts had been suspended. A similar
data collection technique was used by Thomas et al. in [61].

The IRA and suspended data sets were only used for Tier 1, since timeline and
followers were not available for Tier 2 and Tier 3. For the NATO accounts, 96% of
the accounts in this dataset have been suspended. We were able to collect sufficient
data for Tier 2, but not Tier 3. A summary of each data set is provided in Table 3 and
cross walked with the models that it was used with. Note that the Varol data set is
not provided here and was not used in our latest bot-hunter models since it is dated
and did not perform well.

These data sets contain a wide variety of bots. The Varol data set was founded
on the original 2011 Caverlee [50] Honey Pot data, but was supplemented with
manual annotations (we leveraged only the manually annotated data). The Cresci
data contains both traditional spambots (largely commercial spambots) as well as
social spambots (both commercial and political). The random string data contains
a large variety of bots ranging from political bots focused on the Middle East to
hobby bots focused on Japanese Anime. The Debot data is also fairly diverse,
with the one unifying feature that they are all have content and timing correlated
with other accounts. The differences in these bots are demonstrated in the t-
Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction that
we conducted on 2000 randomly sampled accounts from the combined data set (see
Fig. 4). Here we see that the Debot Data appears to be separate and different from
the Varol, Cresci, and Random String data, which appear to be more uniformly
distributed in this 2 dimensional representation of the data.
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Fig. 4 t-SNE dimentsionality reduction of Tier 3 feature space (by bot dataset)

In order to train a model, we also needed accounts annotated as human. We used
the Twitter Streaming API to collect a sample of normal Twitter data, intentionally
collecting both weekend and weekday data. This provided 149,372 accounts to tag
as human Twitter accounts. Of these accounts, we were able to collect/measure
network metrics on 7614 accounts.

Past research has estimated that 5–8% of twitter accounts are automated [63].
If this is true, then we mis-labeled a small amount of our accounts as human.
We believe this is acceptable noise in the data, but will limit the performance of
supervised machine learning models.

Many other research efforts attempt to annotate human accounts. We chose not
to do this because, in the process, these efforts create a biased sample of Twitter,
heavily skewed toward average users and under sampling Celebrity, Organizational,
Political, Commercial, and other accounts that make up a sizable portion of Twitter
discourse. We want our ‘human’ annotated data to match all non-bot accounts,
without biasing it towards any part of this space. Our classification is binary, and the
model will be forced to classify all accounts, even those that are under-represented
in training data. Our approach therefore attempts to create a truly random sample of
Twitter, at the cost of having some bot accounts labeled as ‘human’.
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4 Feature Engineering

In this section we will introduce our feature engineering for user, content, temporal,
and network features. We extracted features from Tier 0 through Tier 3, with a
focus on measuring the importance of features extracted from Tier 3. The table of
proposed features is provided in Table 4. All new features (beyond the features we
presented in [10]) are in bold, and from our research most of these have not been
used with an ego-network collected with snowball sampling.

Note that our Tiered approach is cumulative, meaning Tier 3 feature space
includes features from Tier 0, Tier 1, and Tier 2. The Tier 3 model therefore includes
the Tier 2 network features created by building an entity (mention, hashtag, and
URL) co-mention network based only on the user’s time-line (last 200 tweets).
These Tier 2 network features are distinguished in our results section by the entity
prefix.

Table 4 Features by data collection tier (new features not presented in [10] highlighted in bold)

Source User attributes Network attributes Content Timing

User object
(Tier 1)

Screen name
length

Number of
friends

Is last status
retweet?

Account age

Default profile
image?

Number of
followers

Same language? Avg tweets
per day

Default profile
image?

Number of
followers

Same language? Avg tweets
per day

Entropy screen
name

Number of
favorites

Hashtags last
status

Has location? Mentions last
status

Total tweets Last status
sensitive?

Source (binned) ‘bot’ reference?

Timeline
(Tier 2)

Number nodes
of E

Mean/max
mentions

Entropy of
inter-arrival

Number edges Mean/max hash Max tweets
hour

Density Number of
languages

Max tweets
per day

Components Fraction retweets Max tweets
per month

Largest compo

Degree/between
centrality

(continued)
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Table 4 (continued)

Source User attributes Network attributes Content Timing

Snowball
sample
(Tier 3)

% w/ default
image

# of bot friends # of languages Mean
tweets/min

Median # tweets Number of
nodes

Mean emoji per
tweet

Mean
tweets/hour

Mean age Number of links Mean mention
per tweet

Mean
tweets/day

% w/ description Density Mean hash per
tweet

% don’t
sleep

% many likes
and Few
followers

Number of
isolates

% retweets

Number of dyad
isolates

Mean jaccard
similarity

Number of triad
isolates

Mean cosine
similarity

Number of
components >4

Clustering
coefficient

Transitivity

Reciprocity

Degree
centrality

K-betweenness
centrality

Mean eigen
centrality

Number of
simmelian ties

Number of
Louvain groups

Size of largest
Louvain group

Ego effective
size

Full triadic
census

Median
followers

Median friends
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We hypothesize that the network metrics for human conversations will have
different distributions than those made by bot accounts. We also believe that these
differences would provide increased performance in traditional machine detection
algorithms.

We have not found research that has built a snowball sampling network for bot
detection, and believe that all of the Snowball Sampling ego network features in
our model are novel. To collect these at scale, our team built a Python package that
wrapped around the networkx package [39]. We leveraged known network metrics,
which are provided in Table 4 with references.

4.1 Network Features

We constructed an ego network from the data collected from snowball sampling,
extracting metrics from this network in an effort to develop robust features for
bot detection. As discussed earlier, this network consisted of the conversation
of the account in question and up to 250 of their followers. All nodes were
Twitter accounts, and links were means of directed communication in the Twitter
ecosystem (retweet, mention, reply). From this network we developed basic network
metrics, component level statistics, centrality metrics, triadic relationship metrics,
and clustering related metrics. The basic network metrics are widely used and listed
in Table 4. The other categories of metrics are described below.

Given that we did not include the following link in our network construction,
these networks were not fully connected. As seen in Fig. 5, information from these
disconnected components could be valuable in distinguishing real human networks
from networks dominated by bots. Our features therefore contain multiple metrics
measuring number and size of network components.
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Fig. 5 Differences between a human and bot 24 h circadian rhythms. (a) Human circadian
rhythms. (b) Bot without circadian rhythms
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We included several network centrality metrics in our feature space, and found
that they were routinely strong bot predictors. These metrics included mean degree
centrality, mean eigenvector centrality, and mean K-betweenness centrality where
K = min(500, Nnodes).

In addition to analyzing the components, we also computed Louvain grouping
and developed metrics based on these groups. We chose the Louvain grouping
algorithm given its proven performance on larger data sets. Having computed the
Louvain groups, we included metrics such as number of groups and size of largest
Louvain group.

Given the importance of triadic relationships in social networks discussed above,
we have included several features based on these relationships. These include a full
triadic census, number of Simmelian ties, and the clustering coefficient. Calculation
of Simmelian ties [46] was not available in the networkX package. Our team
therefore created a Python implementation of Dekker’s version [26] of the original
algorithm [46].

4.2 Content Features

We felt we could leverage the large amount of content available from the snowball
sample to develop predictive features. This was not done in [10], and was added in
recent version of the bot-hunter framework.

These features include the number of languages used in the network, as well
as some key summary statistics on entities, including mean emojiis, mentions, and
hashtags per tweet, as well as the percentage of retweets.

We also wanted to have several measures of similarity of text between the various
communicators in the network. This search for similarity measures was motivated
by the fact that many bot networks post very similar or conversely very diverse
content, and we felt that these measures of similarity may be distinguishing.

To compute similarity, tweet content in the network was aggregated by user. Once
aggregated, the content was cleaned and parsed (cleaning included conversion to
lower case and removal of punctuation). We did not remove stopwords. The parsed
data was then converted to a document term matrix with raw counts (we chose not
to normalize the data since the variance on tweet length is artificially constrained
to 280 characters). The document term matrix was then used to compute both the
Jaccard and Cosine Similarity, which were used as features.

4.3 User Features

The newest version of the Tier 3 classifier also includes several aggregate user
attributes that were not leveraged in earlier versions. While many of these are self
explanatory, we did want to describe two novel metrics that have not been used
before.
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Recently, several experts in online disinformation have highlighted how recent
online bots seem to produce tweets that are far more popular than the account
itself [56]. This phenomena is the result of accounts in large bot-nets that create
messages that are then pushed by the entire network, resulting in reach that far
exceeds expectations given its modest beginning.

To find this phenomena, we devised a simple heuristic that determines if any
original (non-retweet) tweet is more popular than its account. This heuristic is
defined as:

Puser = retweets > 2 × max(f ollowers, f riends)

where the Boolean measure for a user is defined as T rue if any tweet receives two
time more retweets than the highest value of its in-degree or out-degree. This metric
is leveraged in two new features, one at the user level (Tier 2) and one at the Network
Level (Tier 3). The user level flags the user if any tweet is flagged as True, and the
network metric measures the fraction of tweets produced by the network that are
flagged by this heuristic.

4.4 Timing Features

Like user features, most of the temporal features listed in Table 4 are self
explanatory. We did develop a heuristic method that measures whether or not an
account has daily rhythms. Most human users will have surges in activity based on
their daily routines, and will have a measurable drop in activity that aligns with their
sleep activity. Bots, on the other hand, do not require these circadian rhythms, and
some bots are programmed to produce content spread uniformly across the hours of
the day. We developed the heuristic described below to flag these accounts.

To measure whether an account has human circadian rhythms, we first aggregate
their tweets by hour of day after ensuring that the account has produced enough data
(at least 50 tweets). Given there is sufficient data, we next determine whether this
hourly distribution is uniformly distributed by normalizing it and conducting the
Kolmogorov-Smirnov non-parametric test for uniformity. A p-value greater than
0.5 provides strong evidence of non-human circadian rhythms.

It is important to note that, while some bots exhibit this lack of circadian rhythm,
it only takes a few lines of code for a bot manipulator to give a more realistic
temporal pattern. Nonetheless, this remains a strong indicator of bot activity.

5 Modeling

As indicated above, all feature engineering was conducted in Python using several
custom Python packages that were developed for the bot-hunter framework. These
packages build the feature space for Tier 1, Tier2, and Tier 3 models, which is then
trained using the steps outlined below.
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Table 5 Comparing algorithms for Tier 3 Bot detection

Model Accuracy Precision Recall AUC F1

Naïve Bayes 0.562 0.541 0.864 0.563 0.665

Decision tree 0.950 0.949 0.952 0.950 0.951

SVM 0.952 0.969 0.933 0.952 0.952

Logistic regression 0.951 0.940 0.965 0.983 0.952

Random forrest 0.955 0.955 0.956 0.986 0.956

Table 6 Table of results for combined data (Tier 3)

Tier Accuracy F1 Precision Recall ROC AUC

Tier 1 0.7964 0.7729 0.8677 0.6969 0.8680

Tier 2 0.8335 0.8181 0.8970 0.7522 0.9179

Tier 3 0.8577 0.8478 0.9042 0.7983 0.9410

For training all data sets, human data was sampled so that the classes were bal-
anced. The random forest algorithm was used because of its superior performance
on Tier 1 data [11] and its use in other bot detection algorithms [63]. In Table 5
we revisit model comparison in order to verify that the random forest model is
still appropriate for Tier 3 feature space. We see that random forest still provides
superior performance, and in general is not as computationally expensive as some
of the other models. Training, evaluation, and testing were conducted in the scikit-
learn Python package [57]. Tuning of the Random Forest algorithm was conducted
through random search of parameter options while using three fold cross-validation.

The bot-hunter behavior returns both a binary classification and an estimate
of probability. The estimate of probability is provided by the Random Forest
classifier by measuring the proportion of votes by trees in the ensemble. The binary
classification result is evaluated by classifying accounts based on a probability
threshold of 0.5. The binary classification feature of the results allows researchers
to have a consistent threshold to compare results, while the probability allows users
to tune a threshold for a given use case.

6 Results

After building the network metrics for all bot data sets as well as the annotated
human data, we built and evaluated Random Forest models for each of the data
sets. Training, evaluating, and testing were conducted at Tier 1, Tier 2, and Tier 3
where possible. We evaluated in-sample performance with 10 fold cross-validation
measuring multiple evaluation metrics, which are provided in Table 6 and Fig. 6.

From the results presented in Table 6 and Fig. 6, we see that Tier 1 models
continue to provide solid performance, even with basic features extracted from
the user profile and last status. We also observe improvement between Tier 1
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Fig. 6 Results by training data and by Tier

and Tier 2 and between Tier 2 and Tier 3 for all models. Using a combined data
model we found that the Tier 2 improvement over Tier 1 is statistically significant
(p−value = 1.303e − 10), as is the Tier 3 improvement over Tier 2 (p−value =
1.101e − 06). In Fig. 6 we also see that the Random, NATO, and IRA data provide
the highest in sample cross validation performance, while models trained on Debot
Data and Suspended data offer lower in data cross validation performance. This
likely indicates a wider variety of bot types in the Debot and Suspended data.

Further, in Fig. 7 we see the top features for all Tier 1, Tier 2, and Tier 3 models
in the bot-hunter suite of tools. These figures represent the percentage that each
feature contributed to the model predictions. We see that network features provide
strong features in the model. This demonstrates that these values, while tedious to
collect, transform, and model, provide strong predictive features that are difficult
for bot puppet master to manipulate. In these data sets network centrality, network
connection, network timing, and network content all provide predictive value.

7 Evaluating Against State of the Art

Given that this is the last Tier of the bot-hunter suite of tools, we wanted to evaluate
the models as well as various training data that is available. We also wanted to
compare the models in the bot-hunter suite of tools to existing models, namely the
Botometer and Debot models. To do this, we set out to find a test that wasn’t biased
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(a) (b)

(c)

Fig. 7 Comparison of top features for all three Tiers of bot-hunter. (a) Tier 1 Top Predictive
Features. (b) Tier 2 Top Predictive Features. (c) Tier 3 Top Predictive Features

toward any given model, meaning the test data could not be derived from the training
data of any of the models being compared.

To find an unbiased data set, we manually annotated 337 bot accounts. To do this,
we started by manually finding several seed bots related to the Swedish elections,
separate Russian propaganda bots, and bots found in Middle East conversations. We
then manually snowballed out on the followers and followers of followers, manually
identifying additional bots. In this evaluation we leveraged the visualizations and
metrics provided in the TruthNest tool to aid in making our determination. The
TruthNest Tool originally was an EU-funded Reveal project developed to evaluate
Twitter accounts for automated activity. While this tool was not evaluated in our
test, it was used to assist in labeling bot accounts. TruthNest has instituted a paywall
since our use of it. Human users were sampled from the Twitter stream and manually
verified. The test data was balanced (337 bots, 337 users).

In evaluating our Tier1, Tier2, and Tier3 models, we also wanted to evaluate
which training data and model combination generalizes to new data. Our models
were trained on the data and at the tiers described in Table 1. All bot-hunter and
Botometer thresholds were set at 0.5. F1 performance for all models is provided in
Fig. 8 and detailed results are provided in Table 7.
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Fig. 8 Results by training data and by Tier

Table 7 Detailed results by Tier and training data

Tier Training data F1 Accuracy Precision Recall ROC-AUC TN FP FN TP

Botometer model 0.524 0.657 0.858 0.377 0.587 256 55 200 108

Debot model 0.012 0.502 1.000 0.006 0.503 336 0 335 2

Tier1 NATO 0.584 0.634 0.678 0.513 0.635 254 82 164 173

Tier1 IRA 0.380 0.597 0.830 0.246 0.598 319 17 254 83

Tier1 Combined 0.524 0.657 0.858 0.377 0.657 315 21 210 127

Tier1 Cresci2015 0.559 0.404 0.444 0.754 0.404 18 318 83 254

Tier1 Cresci2017 0.576 0.419 0.454 0.789 0.418 16 320 71 266

Tier1 Debot 0.490 0.527 0.533 0.454 0.528 202 134 184 153

Tier1 Random 0.291 0.572 0.855 0.175 0.573 326 10 278 59

Tier1 Suspended 0.656 0.713 0.821 0.546 0.713 296 40 153 184

Tier2 IRA 0.315 0.567 0.903 0.191 0.584 305 7 276 65

Tier2 Random 0.288 0.547 0.800 0.176 0.564 297 15 281 60

Tier2 NATO 0.335 0.574 0.909 0.205 0.591 305 7 271 70

Tier2 Cresci2015 0.426 0.596 0.824 0.287 0.610 291 21 243 98

Tier2 Cresci2017 0.451 0.600 0.799 0.314 0.614 285 27 234 107

Tier2 Debot 0.687 0.675 0.691 0.683 0.675 208 104 108 233

Tier2 Random 0.286 0.550 0.831 0.173 0.567 300 12 282 59

Tier3 Debot 0.599 0.674 0.837 0.466 0.683 281 31 182 159

Tier3 Random 0.236 0.533 0.810 0.138 0.551 301 11 294 47

Tier3 Cresci2015 0.231 0.541 0.918 0.132 0.560 308 4 296 45

Tier3 Cresci2017 0.120 0.507 0.880 0.065 0.527 309 3 319 22
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In these results we first see Botometer demonstrates consistent solid performance
in predicting new bots across all metrics. The Debot algorithm provides high
precision but extremely low recall, resulting in a low F1 score overall. The value
of the Debot algorithm may indirectly lie in the data that it produces. Note that bot-
hunter algorithms trained on Debot data performed well at all three Tiers, meaning
that the Debot algorithm for finding correlated accounts produces great labeled data
for other supervised bot detection endeavors.

For the bot-hunter family of models, we see that Tier 1 consistently performs well
and seems to generalize to new data better than Tier 2 and Tier 3. Tier 2 still has
high performance, given its ability to identify anomalies in content and in temporal
statistics. Across the data sets, Tier 1 has a higher mean Accuracy and ROC AUC
than Tier 1. Tier 3 has very high precision but low recall. It therefore produces
predictions that are more reliable, but fails to find a large portion of the bots in the
data. Additionally, this model may become increasingly important in identifying
sophisticated emerging bots.

As we look at the various training data used for training these models, we see
that the models trained on suspended accounts or on data produced by the Debot
model had the highest performance. As indicated earlier, this is likely due to these
data sets containing a wide variety of bot “genres.” We also see that the NATO
data captured in the deliberate attack against NATO and the DFR labs continues to
provide strong performance across all metrics. We found that few of the annotated
data sets released by other researchers provided strong performance, especially
when considering accuracy and ROC-AUC metrics. The Cresci data (both 2015
and 2017) appears to have high recall but low precision, with many false negatives.
The models trained on the random string data also have low accuracy and ROC-
AUC metrics, in this case caused by high precision but low recall. These random
string accounts probably represent a limited band in the spectrum of bot types, and
therefore do not generalize well to new data and different bot types.

The Venn Diagram of predicted bots is provided in Fig. 9a. This diagram shows
the overlap of the predicted bots, but does not provide any information on predicted
humans. We see significant overlap for all three models. We also notice that the Tier
2 model predicted the most accounts (330 accounts), while Tier 1 predicted 260
accounts and Tier 3 predicted 183 bot accounts. The 95 accounts in the intersection
contain 20 false positives (78.9% precision).

The Venn Diagram of predicted bots for Tier 1 and 2 compared to the real labeled
bots is provided in Fig. 9b. This shows that Tier 2 is adding something to Tier 1,
finding 94 additional accounts while only missing 21 of the accounts that Tier 1
found.

Figure 9c provides an upset visualization to fully explore the intersection of sets.
This visualization demonstrates that our largest intersection is the intersection of
all four sets. We also see in the upset graph the Tier 1 and in Particular Tier 2 is
important to the prediction success, thought Tier 3 is also able to find 32 accounts
that neither Tier 1 or 2 could find. These visualizations illustrate the importance
of having a tool-box of models that can be used for predicting bots in any given
scenario.
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Fig. 9 Understanding the overlap of predicted Bots with Tier 1, 2, and 3 models trained on Debot
data. (a) Predicted Bots (Tier 1, 2, and 3) . (b) Predicted Bots (Tier 1 and 2) with Real Labeled
Bots. (c) Upset Plot with Predicted Bots (Tier 1, 2, and 3) and Real Labeled Bots

While we believe this evaluation is informative, there are several limitations
in our evaluation method. We aknowledge that we were not able to completely
remove bias, given that the mental heuristics we used to manually annotate accounts
may have unintentionally mirrored the bot-hunter algorithms. Additionally, we
acknowledge that the test set is still modest in size and, while somewhat diverse,
does not represent the full spectrum of bot types. Finally, we acknowledge that any
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given model may perform better if the threshold is tuned for a given data set. Even
with these limitations, we believe this test and evaluation is informative for our team
and for the greater community.

7.1 Evaluating Bot Classification Thresholds

The random forest model used in the bot-hunter suite of tools (and Botometer)
provides a probability estimate rather than just a label. This allows researchers to
estimate how strong a given prediction is. Every use case will require the analyst
to determine the best threshold for establishing whether or not an account is likely
a bot. To evaluate the best threshold for a given data set, a research team should
explore several thresholds, each time sampling 50–100 accounts and manually
labeling them to estimate a rate of true/false positives, true/false negatives. If
possible they should attempt to construct a precision recall curve and/or ROC Curve,
as demonstrated in Fig. 10 using the Suspended, NATO, and Botometer models.
Note that recall is always monotonically decreasing, but precision is not required to
monotonically increase.

As seen in Fig. 10, we generally recommend bot-hunter thresholds between 0.6
and 0.8. The exact choice in this range will need to be made by the research team,
and is dependent on the data as well as the team’s prioritization of precision vs.
recall.

8 Applying Bot Detection to Swedish Election

Having completed the bot-hunter suite of tools, we wanted to leverage this toolbox
in analyzing a stream of data from the 2018 Swedish elections. This is done as a
case study to illustrate that bot-detection is not a “turn-key” solution, and also to
provide practitioners with an example of an open source intelligence workflow.

Sweden held national elections on 9 September 2018 for its equivalent of a
Parliament, known as the Riksdag. Swedish elections have historically lacked much
drama or suspense, with the center-left Social Democrat Party dominating politics
since 1914. In the 2018 election, however, their dominance was challenged by
various nationalistic factions that capitalized on anti-immigrant sentiment.

Some of the political discourse surrounding the election transpired on Twitter,
as seen in many recent national elections across the world. As this discourse grew,
multiple researchers and news agencies saw rising disinformation and associated
bot activity [58]. Simultaneously, the Swedish Defence Research Agency reported
increased bot activity, primarily supporting right leaning, nationalistic, and anti-
immigrant views [60].

As these bots grew in activity in this marketplace of beliefs and ideas, our
team began collecting and analyzing streams from this discourse. To collect Twitter
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Fig. 10 Using precision-recall curves and ROC curves to determine threshold

data around the Swedish National elections discourse, our team leveraged a spiral
collection methodology, starting with content and geographic streaming, and then
‘spiraling’ into more thorough data collection around the important parts of the
discussion. All collection was done through the Twitter Streaming and REST API’s
using the Tweepy Python Package.

We started by identifying Swedish political hashtags through open source
research, eventually identifying #svpol, #Val2018, #feministisktInitiativ, #migpol,
#valet2018, #SD2018, #AfS2018, and #MEDval18. These hashtags were not
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selected because they cover the full spectrum of Swedish politics, but rather because
there was open source reporting of some bot campaigns using these hashtags. We
started collecting on these hashtags using both the Streaming and REST API’s (the
streaming API allows us to easily collect going forward while the REST API allows
us to retroactively collect past data). Simultaneously we collected data that was
‘geo-associated’ with the Scandinavian peninsula, using a bounding box search
method.

As we began to collect content and geo-referenced data, we monitored other
trending hashtags and added them to the collection query. After launching the
exploratory data analysis discussed below, we would also collect users friend and
follower relationships as well as user historical timelines for accounts of interest.
This continual return to the Twitter API creates the spiral nature of our collection
process.

For the Swedish Election Event we collected 661,317 tweets produced by 88,807
unique users. This creates a political conversation that contains 104,216 nodes,
404,244 links with a density of 0.000037.

For bot detection in the Swedish Election stream our team found that a 65%
probability was appropriate. Given that we were performing this evaluation on
104,216 nodes, we used the Tier 1 model. This model is our best model for getting
an accurate prediction on high volume of accounts.

Note that we usually conduct other data enhancement as well, including sen-
timent analysis with NetMapper as well as geo-inference based on [44]. All
enrichments are made available in easy formats that allow tools to merge them with
existing event data.

8.1 Exploratory Data Analysis

Our exploratory data analysis focuses on narratives, time, place, groups, and individ-
uals. Our analysis typically starts with some type of temporal analysis. This allows
us to see distributions over time. We try to look at overall temporal distribution, bot
activity over time, as well as changing narratives over time (Fig. 11).

Our exploration of content and narratives starts with analysis of words and
hashtags across the entire corpus, and then we explore narratives associated with
topic groups (these are groups that talk about the same thing but may not be
connected in the social network or conversational network) and social network
group (these are groups that are connected, but may not talk about the same
thing). We leverage latent dirichlet allocation [15] for topic group analysis, and
content analysis by Louvain group [16] as a way to “triage” network groups.
Table 8 provides the top 8 words by Louvain Group for the Swedish elections. In
this we already start to see groups that are focused on immigration, particularly
immigration from Muslim countries. We also see at least one group that is mixing
conversation about religious beliefs with political discourse. Finally and just as
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Fig. 11 Bots as a proportion of total volume over time

important, “triaging” the data like this allows us to identify groups like Group 0
that don’t appear to have any topics of interest.

Network analysis of groups and individuals is done almost exclusively in
the ORA Network Analysis Tool. We typically start by visualizing a reduced
conversational network. Nodes in this network represent Twitter accounts, and links
represent a conversational action in the Twitter ecosystem (reply, retweet, mention).
These network are typically too large to visualize, so we reduce the network by
taking the K-core so that we have the core 15,000–20,000 nodes. Once this is done,
we color the network by bot or human, by language, and by Louvain grouping (see
Fig. 12). This coloration helps us better understand the groups and their relationship
to each other. Finally, we reduce the network to only include reciprocal links. This
usually reduces the network significantly, and in Twitter provides the best proxy for
a true social network.

We then explore the influential accounts and influential bots in the network.
The ORA Network analysis tool provides several reports that analyze nodes by a
variety of centrality measures, and assists translating their role in the network. For
the Swedish network, we found several bots with high betweenness, indicating that
these bots were influential in that they connect individuals and groups. With further
exploration, it appeared that these bots, in connection with other accounts, were
trying to bridge several communities with nationalistic and anti-immigrant groups
and narratives.

We leverage the bot-hunter Tier 2 and Tier 3 models during this phase of analysis.
As we identify influential accounts, we check them in a Tier 2/3 bot-hunter web
application that allows us to thoroughly explore the account and conduct a more
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Table 8 Content analysis by Louvain group

Group # Tweets # Nodes Top 8 words by Louvain group

0 15,708 4675 Video Gillade Lade Spellista

2018 fortnite world part

1 31,059 5688 Country Voters Refugees 82

n number capita reported

2 102,146 14,538 Sweden Election epp sd

Swedish results left poll

3 306,352 17,600 m6aubkudbg Jesus Kristus Varnar

sverige gud namn fader

4 8353 3137 Sweden Swedish Muslim Election

amp vote democrats gang

5 40,585 9110 Sverige sd Svenska åkesson

valet jimmie år svt

7 82,708 12,300 sd Sverige Rösta åkesson

valet jimmie parti val

8 17,675 4000 sd Friend American Rösta

politik claeson tånkt frågar

9 7144 5217 Sverige Löfven sd Moderaterna

stefan kristersson amp rösta

10 7569 5214 Sverige Riks sd Alternativ

afs Sweden svenska hahne

accurate Tier 2 or Tier 3 bot prediction. These applications also allow us to explore
in depth visualizations of the activity of the account.

Bot-detection is therefore a part of the overall open source intelligence workflow,
trying to identify relevant information about how the world works to inform decision
maker situational understanding and decisive action. In this case, our research
validated research of large bot activity within the Swedish political discourse
on Twitter and provided identification of narratives (primarily nationalistic and
anti-immigrant, anti-Muslim, and some anti-Semitism). We were also able to
identify influential accounts that were attempting to connect individuals and online
communities with extremist content. This type of information informs leaders of
current dis-information strategies allowing them to better prepare their government
and their populace for similar disinformation campaigns in their country.
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Fig. 12 Exploring the Twitter conversational network surrounding online discourse on Swedish
politics. (a) Bots (red) in conversation. (b) Louvain Groups. (c) Language Distribution in Network

9 Conclusion and Future Work

In our pursuit of a multi-model bot detection toolbox, this paper builds on past
research by adding a model that leverages a feature space extracted from 50,000+
entities collected with single seed snowball sampling. This model is developed for
high accuracy but low volume applications. Our research shows that supervised
machine learning models are able to leverage these rich structural, content, and tem-
poral features associated with the target ego-network to increase model precision.
Additionally, these network features offer an approach for modeling and detecting
bot behavior that is difficult for bot puppet-masters to manipulate and evade.

Our evaluation of the bot-hunter suite of tools demonstrates that these models
provide performance equivalent to or better than the state of the art. The Tier
1 model in particular is valuable to the community because it is accurate and
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can scale to large data (meaning researchers aren’t required to sample their data).
Additionally, because the Tier 1 model was designed to predict existing data, there
isn’t a requirement to return to the Twitter API to re-collect account data. This also
means that it can be used to predict existing data sets that contain suspended or
otherwise missing accounts.

Our analysis of Swedish political discourse on Twitter illustrates how bot-
detection tools can support a typical open source intelligence workflow. The
bot-hunter suite provides a way to enrich the data which can then be imported
into other analysis tools for visualization and further analysis. Bot detection is
not a “turn-key” solution, and does require some work to set the right parameters,
particularly the appropriate threshold level.

Future work will focus on creating a labeling methodology that will allow us
to better characterize bot accounts and the various methods they employ. Binary
prediction assists in understanding fake versus real, but does not help us in triaging
the hundreds of thousands of bot accounts that exist. Some spam content, others
intimidate users. Developing heuristics to label these methods and attributes is
essential for characterizing these accounts and the disinformation campaigns they
propagate.
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