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Abbreviations

3D	 Three-dimensional
3TP 	 Three-time-point
ANN	 Artificial neural network
ASM 	 Angular second moment
AUC 	 Area under the curve
BI-RADS 	 Breast Imaging Reporting and Data 

System
CAD	 Computer-aided detection/diagnosis
CADD 	 Computer-aided detection and 

diagnosis
CADe 	 Computer-aided detection
CADx 	 Computer-aided diagnosis
CAE 	 Computer-aided evaluation
CNN	 Convolutional neural networks
DCE 	 Dynamic contrast-enhanced
LDA	 Linear discriminant analysis
LOO 	 Leave-one-out
MRI 	 Magnetic resonance imaging
PK 	 Pharmacokinetic
ROC 	 Receiver operating characteristic
ROI 	 Region of interest
SER	 Signal enhancement ratio
SVM	 Support vector machines

7.1	 �Introduction

Computerized support systems for mammogra-
phy have been commercially available for many 
years and are used widely for diagnostic support 
and as a second reader. For mammographic sys-
tems, the term computer-aided detection (CADe) 
is typically used to denote a system that detects 
suspicious lesions while the term computer-
aided diagnosis (CADx) is used to describe sys-
tems that provide an estimate of the probability 
that a detected lesion is cancer. The acronym 
“CAD” can indicate computed-aided detection, 
computed-aided diagnosis, or both. For breast 
MRI, the challenges are somewhat different. A 
typical MRI breast exam can result in thousands 
of image slices being acquired; images are volu-
metric and can be acquired in different planes; 
and there are multiple sequences, each of them 
resulting in a different tissue contrast, while 
dynamic contrast-enhanced (DCE) sequences 
provide additional temporal information. 
Computerized support systems are needed to 
help the radiologist to navigate through these 
images effectively. The high signal intensity in 
cancerous lesions that results from contrast 
enhancement provides excellent sensitivity, but 
the presence of many enhancing benign lesions 
and, in some cases, enhancing parenchymal tis-
sue means that the differentiation between 
malignant and benign lesions is a difficult task. 
This chapter divides computerized decision sup-
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port systems for breast MRI into three main cat-
egories: computer-aided evaluation (CAE) 
systems, which provide improved visualization 
of the image data and support the radiologists 
workflow; computer-aided diagnosis (CADx) 
systems, which provide an estimate of the prob-
ability of a specific lesion being a cancer; and 
computer-aided detection and diagnosis 
(CADD) systems, which first identify possible 
lesions and then classify them in terms of prob-
ability of being malignant or benign.

7.2	 �Computer-Aided Evaluation 
(CAE) Systems

There are several commercially available soft-
ware packages that are designed to provide sup-
port to the breast radiologist evaluating a 
magnetic resonance imaging (MRI) examination 
of the breast.

The main function of these packages is to pro-
vide a color-coded parametric map of the breast 
based on the Breast Imaging Reporting and Data 
System (BI-RADS) scheme [1] where enhance-
ment kinetics are classified as persistent, plateau, 
or washout of contrast material. For each pixel in 
the image, a signal intensity curve is generated 
and the classification is performed as follows. 
First, an enhancement threshold is set based on 
the percentage increase in the signal in the first 
post-contrast image and only pixels that exceed 
this threshold are retained. Next, the software 
calculates the change in intensity in a delayed 
post-contrast image relative to the first post-
contrast image. Finally, it determines whether 
each pixel intensity curve increases, decreases, or 
remains constant and assigns the corresponding 
color coding to an overlay map. The precise 
details of which time points are used, what the 
initial enhancement threshold should be, and 
which metric is used to distinguish between pix-
els that show washout, plateau, or continuous 
enhancement vary from platform to platform; but 
the essential principles are the same. In Fig. 7.1, 
signal enhancement ratio (SER) pixel-by-pixel 
maps are shown for a malignant and a benign 
lesion, together with the corresponding relative 

signal curves in Fig. 7.2. Here the signal enhance-
ment ratio is defined as SER  =  (Sfirst  −  S0)/
(Slast −  S0) where S0, Sfirst, and Slast are the pre-
contrast, first post-contrast, and last post-contrast 
signal intensities, respectively.

Changes in magnet field strength, equipment 
vendor and model, software version, image 
acquisition protocols, contrast type, dose, and 
rate of administration, flushing with saline solu-
tion, and threshold values used to generate the 
color maps mean that overlay maps produced in 
one breast imaging center cannot be directly 
compared with those generated elsewhere. 
Pharmacokinetic (PK) models attempt to over-
come this variability by estimating physiologi-
cally meaningful parameters such as the rate of 
exchange between capillaries and the extracellu-
lar space by fitting mathematical models to signal 
intensity curves [2]; however, these models 
require that images are acquired at a much higher 
temporal resolution than is common in clinical 
practice. The three-time-point (3TP) method [3] 
proposes a solution where just three images are 
acquired at specified time points and then a 
calibration scheme is used to estimate the phar-
macokinetic parameters.

In addition to an overlay that color codes each 
pixel according to enhancement kinetics, some 
CAE systems provide tools for radiologists to 
identify and outline lesions of interest. The aver-
age signal intensity curve over the whole lesion 
can then be assessed, which reduces the effect of 
noise. Summary statistics that describe the area 
and extent of the lesion can also be produced 
from the segmented region of interest (ROI). 
Although CAE systems do provide some quanti-
tative information, they are not designed to assign 
probabilities of malignancy to lesions in the 
image.

Several studies have evaluated commercially 
available CAE systems, including CADstream 
(Confirma, Bellevue, WA, USA) [4], Aegis 
(Sentinelle Medical, Toronto, Canada) [5], 
dynaCAD (Invivo, Pewaukee, WI, USA) [6], and 
3TP [7]. Monique D. Dorrius and coworkers [8] 
carried out a systematic review and meta-analysis 
considering ten publications referencing com-
mercially available systems. They reported that 
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Fig. 7.1  On the top row 
are images showing an 
invasive lobular 
carcinoma and on the 
bottom row images 
show a fibroadenoma. 
The left column shows 
the sagittal sections 
through the center of the 
lesions obtained as the 
first post-contrast frame 
using a fat-saturated 
gradient-echo sequence. 
On the right column, the 
signal enhancement ratio 
(SER) values are 
displayed as a color 
overlay on a pixel-by-
pixel basis. Note the 
inhomogeneous color 
distribution with 
multiple yellow-red 
pixels in the malignant 
lesion and the 
homogeneous light blue 
color of the benign 
lesion

0
0

50

100

150

200

250

1 2 3 4 5 6

time (min)

%
 e

nh
an

ce
m

en
t

Fig. 7.2  The signal 
enhancement curves 
corresponding to the 
lesions shown in 
Fig. 7.1. The malignant 
carcinoma (red) shows a 
more rapid initial 
enhancement followed 
by a slight late washout 
phase. The benign lesion 
has a slower initial 
enhancement without 
washout; i.e., it shows a 
continuous increase 
curve. These curves 
were obtained by 
considering the pixels 
showing the highest 
initial enhancement

for experienced radiologists the sensitivity was 
unchanged by the use of a CAE system and there 
was a small but non-significant decrease in speci-

ficity. For residents with less than 6  months’ 
breast MRI experience, there was a significant 
improvement in sensitivity with CAE and no 
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significant change in specificity. The authors 
concluded that CAE systems had little impact on 
accuracy overall and that inexperienced radiolo-
gists and residents benefitted the most from their 
use [8].

7.3	 �Computer-Aided Diagnosis 
(CADx) Systems

CAE systems can be very helpful in highlighting 
enhancing regions of the breast so that the radi-
ologist can quickly direct their attention to these 
suspicious areas; however, they do not make use 
of other information such as the texture and the 
morphology of the lesion. CADx systems pro-
vide further support to the radiologist by combin-
ing kinetic, morphological, and textural 
information to predict whether a particular lesion 
is malignant or not. This is achieved by first 
delineating the suspicious lesion, then extracting 
multiple image features from the DCE sequence, 
and finally using a trained classifier to assign a 
probability of malignancy to the lesion. This is 
achieved using a machine learning algorithm, 
which is trained on previously labeled examples 
of malignant and benign lesions. Each of these 
components will be described in more detail 
below.

7.3.1	 �Lesion Segmentation

The accurate delineation of enhancing lesions is 
essential as it allows us to quantify the variation 
in contrast enhancement kinetics within the 
lesion and to extract morphological features that 
can represent its shape. Manual segmentation is a 
time-consuming and subjective process. Semi-
automated methods have been shown to be faster 
and to reduce inter-observer variability [9]. 
Typically, such methods require the radiologist to 
mark a point at the center of the enhancing lesion 
or to draw a crude boundary or bounding box 
around the lesion. Upper and lower intensity 
thresholds are then set by the user, and pixels 
within the defined range, which are either con-

nected to the seed point or lie within the bound-
ing box, are defined as belonging to the lesion 
ROI.  Usually the subtraction images or the 
enhancement maps are used to define the ROI as 
they have higher contrast between the lesion and 
the background.

More sophisticated approaches remove the 
need to manually define intensity threshold val-
ues and make use of all the DCE information 
available to improve the contrast between lesion 
and background. Weijie Chen and coworkers [10] 
developed an improved lesion segmentation 
algorithm based on fuzzy clustering that used the 
difference in contrast enhancement dynamics to 
identify pixels belonging to the foreground 
lesion. Yunfeng Cui and coworkers [11] used a 
Gaussian mixture model to automatically esti-
mate threshold values that are used to identify 
pixels lying inside and outside of the lesion. A 
marker-controlled watershed method is then used 
to further refine the boundary. Other authors [12] 
described a system where the operator places two 
ellipses on the image, one identifying pixels 
inside the lesion the other containing back-
ground; and this information is used to classify 
all the remaining pixels. Alternative methods are 
those using a graph-cut-based algorithm that 
incorporates a spatial smoothness constraint [13].

Fully automated systems that carry out both 
detection and segmentation of lesions are dis-
cussed separately in Sect. 7.4.

7.3.2	 �Feature Extraction

Radiologists use well-defined descriptors [1] to 
characterize lesions, and these help to discrimi-
nate between malignant and benign lesions. 
Although there have been some attempts to build 
CADx systems based on categorical descriptors 
provided by radiologists [14], it is more common 
to extract continuous quantitative values that cap-
ture the same information. There are many papers 
describing different feature sets for use in CADx 
systems, and they can be grouped into three 
groups: kinetic (also called dynamic), morpho-
logical, and texture features.
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7.3.2.1	 �Kinetic Features
There are many different ways of quantifying 
contrast enhancement in a lesion, but model-free 
methods, which attempt to characterize the shape 
of the signal enhancement curve, are the most 
commonly used. Features include the maximum 
enhancement, the time-to-peak enhancement, the 
rate of contrast uptake, and the rate of washout 
[15]. The normalized signal intensity values have 
been used directly [16]; however, when Jacob 
Levman and coworkers [17] compared several 
feature vectors, including one that used relative 
signal intensity alone and another that combined 
relative signal enhancement with the derivatives 
of the enhancement curve, they found that the 
more conventional feature vector based on the tra-
ditional parameters of maximum signal intensity 
enhancement, time of maximum enhancement, 
and maximum washout gave the most accurate 
results. Pharmacokinetic models require high 
temporal resolution and therefore are not suitable 
for most breast MRI exams, which typically only 
have 3–5 post-contrast images acquired at a lower 
temporal resolution, typically not lower than 60 s. 
Sanaz A. Jansen and coworkers [18] describe an 
empirical model that has just three parameters to 
fit and does not require an arterial input function. 
This approach may help to standardize kinetic 
parameters extracted from studies acquired at dif-
fering temporal resolutions, and features obtained 
using this model have been found to be relevant in 
lesion classification [19].

The contrast enhancement curve generated 
over an entire lesion will result in the averaging 
of pixel signal intensity curves. Several groups 
have attempted to cluster together pixels that 
show similar enhancement patterns in order to 
capture regions that show the greatest wash in 
and wash out of contrast. These include the 
mean-shift algorithm [20], vector quantization 
[21], and fuzzy c-means clustering [22]. Another 
approach is to differentiate between the signal 
enhancement in the center of the lesion and at the 
edge of the lesion [19].

7.3.2.2	 �Morphological Features
Radiologists use several morphological features 
such as the shape of the lesion, and the unifor-

mity (i.e., pattern of internal distribution) of con-
trast enhancement to describe a lesion. Certain 
characteristics are associated with benign lesions 
while others tend to suggest a malignant lesion. 
For example, a stereotypical benign lesion may 
have a smooth margin, with an oval shape and 
internal septations, whereas a malignant lesion 
might have a speculated appearance with an 
irregular shape and rim enhancement. In order to 
use this information in a CADx system, it is nec-
essary to quantify these findings. Various formula 
have been derived to capture information about 
circularity, convexity, irregularity, solidity, 
perimeter, compactness, etc. [9, 15, 23]. The 
sharpness of the lesion boundary, and the change 
in edge sharpness over the duration of the 
dynamic study are also useful morphological fea-
tures [24, 25].

7.3.2.3	 �Texture Features
Texture features provide information about the 
heterogeneity of the contrast enhancement in the 
lesion. Since the mean signal intensity curve gen-
erated over the whole lesion region of interest 
does not reflect inhomogeneities within the 
lesion, many CADx algorithms also include the 
variance, skew, and kurtosis of each of the kinetic 
parameters measured from individual pixels 
within the ROI [15, 19]. However, features based 
purely on the statistical distribution of intensity 
values cannot capture spatial patterns. In 1973 
Robert M. Haralick [26] introduced a method of 
mathematically describing textures in images 
that uses spatially dependent intensity informa-
tion. Haralick features are based on a co-
occurrence matrix Pij, which records the number 
of times that two pixels with values i and j occur 
in the region of interest separated by a distance d 
and an angle θ. Fourteen feature values can be 
derived from this matrix, including the angular 
second moment (ASM), energy, entropy, and 
contrast. Even more features can be obtained by 
varying values for d, θ, and the number of gray 
levels used to generate the matrix. Peter Gibbs 
and coworkers [27] showed that a combination of 
texture features could produce very accurate 
results, and Weijie Chen and coworkers [28] 
extended the method to three-dimensional (3D) 
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volumetric regions of interest. Other texture fea-
tures have also been used to discriminate between 
malignant and benign lesions, such as Gabor fil-
ters [13] or entropy of enhancement assessed by 
moving a 3 × 3 window over the lesion ROI [29].

7.3.3	 �Lesion Classification

Individual features rarely achieve high accuracy 
in isolation. However, when several features are 
combined, it is possible to achieve a better sepa-
ration between malignant and benign lesions. 
Classification algorithms work by finding a 
boundary in multi-dimensional feature space that 
best separates two sets of labeled data points; 
once this boundary has been identified using 
training data, a new test case is projected into the 
feature space and, depending on which side of 
the decision boundary it falls, it is classified as 
malignant or benign. There are many different 
classifiers available that can take a set of features 
and return either a binary decision or a probabil-
ity of malignancy.

7.3.3.1	 �Classifiers
Simple linear classifiers, such as linear discrimi-
nant analysis (LDA), have the advantage that 
they are easily understood and the contribution 
that each individual feature makes to the final 
decision can be calculated [27]. The disadvan-
tage is that they cannot cope with data where the 
decision boundary is non-linear.

Support vector machines (SVMs) are more 
robust than LDA with small training datasets as 
they identify the decision boundary that maxi-
mizes the distance to the data points on either 
side. They can be extended to produce non-linear 
boundaries using different kernel functions and 
provide a mechanism for coping with misclassi-
fied points. The disadvantage of SVMs is that 
understanding the contribution of individual fea-
tures to the classifier becomes much more diffi-
cult [17].

Decision trees are simple to understand, and 
Pascal Baltzer and coworkers achieved excellent 
results on a dataset of over 1,000 patients [14] 
using categorical features. The resulting tree 

could be represented by a series of simple deci-
sion rules; however, this approach is known to be 
prone to overfitting. Random forests, which are 
ensembles of many individual decision trees, are 
more robust [30] and have been used successfully 
to train breast CAD systems [19, 31]. It is possi-
ble to extract useful information about the impor-
tance of individual features using random forests, 
and methods of interpreting random forest mod-
els have also been explored [32].

Artificial neural networks (ANNs) attempt to 
mimic the way in which a human brain processes 
information. The features are connected to a layer 
of hidden nodes, and then these hidden nodes are 
connected to output nodes that represent the 
classes. A back-propagation method is used to 
learn the weights that connect the nodes together. 
Several groups have used neural networks for 
lesion characterization on breast MRI in the past 
[16, 33, 34], but the small size of the labeled 
training datasets that were available meant that 
these ANNs were restricted to a single hidden 
layer with just a few nodes. More recently there 
has been an explosion of interest in the use of 
deeper neural networks and more advanced net-
works that are specifically designed for images—
these will be mentioned in later sections.

7.3.3.2	 �Feature Selection
Hundreds of quantitative features can be extracted 
from a DCE-MRI study, but using too many fea-
tures increases computational complexity and 
may lead to overfitting. In practice, therefore, it is 
usually better to train a classification algorithm 
using a subset of the most discriminative fea-
tures. Many methods of feature selection exist in 
the literature, and the simplest approach is to 
identify the top-ranking features individually. 
The discriminative power of a single feature can 
be quantified by using the receiver operating 
characteristic (ROC) analysis and calculating the 
area under the curve (AUC). Looking at one fea-
ture at a time, however, does not take into account 
the correlations between features, so methods 
that attempt to find the best combination of fea-
tures have been proposed. Sequential forward 
search methods find the most discriminating fea-
ture first, and then search for a second feature that 
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results in the greatest improvement in accuracy, 
and so on until the required number of features 
has been identified [34, 35]. Silvano Agliozzo 
and coworkers [23] used a genetic algorithm to 
identify the best subset of features. Some classifi-
cation algorithms are able to automatically deter-
mine the relevance of features, for example, 
random forests [19] and Bayesian neural net-
works with automatic relevance determination 
[33].

7.3.3.3	 �Training and Evaluation 
of Classifiers

When a classifier is trained on labeled data, it is 
important to use a separate testing dataset to eval-
uate performance; otherwise the calculated accu-
racy will be overly optimistic. Overfitting of a 
classifier is said to occur when predictions made 
on the training set are very accurate but the per-
formance on new unseen data is poor; i.e., the 
classification model fails to generalize. This can 
be avoided by careful attention to the way the 
labeled training data is used to create and test 
predictive models. Figure 7.3 illustrates a general 
framework for selecting the model parameters 
(for example, the number of trees in a random 
forest, hidden nodes in a neural network, or fea-
ture selection) using a labeled data set.

The best test of generalizability is obtained by 
using a completely independent testing dataset. 
This should be separated from the training data 
before any experiments are started to ensure that 
the choice of parameters or features is not biased. 
The remaining data is then split into a training set 
and a tuning set (often referred to as the valida-
tion set in the computer science literature). The 
training set is used to create the predictive model, 
and the tuning set is used to estimate perfor-
mance. This process can then be repeated by 
switching cases in the training and tuning sets 
using a process known as cross-fold validation. 
The number of cases in the training, tuning, and 
testing datasets and the number of folds used will 
depend on the size of the available labeled dataset 
and the number of classes. For very small datas-
ets, it is common to carry out a leave-one-out 
(LOO) experiment where all of the cases except 
one are used to train a classifier that is then used 

to predict the label on the remaining case. This 
process is repeated until each case has been held 
out and the reported accuracy is calculated. This 
procedure usually yields overly optimistic results. 
If the research then uses repeated LOO experi-
ments to select model parameters and then reports 
on the most accurate configuration, then the 
results are also biased.

The independent testing set cannot be too 
small, or it will fail to capture the variability of 
the data and there will be a high variance in the 
error accuracy. In many cases, researchers will 
attempt to increase the number of labeled cases 
by using several lesions from a single patient. If 
this is done, then it is important to ensure that all 
of the lesions from a single patient are in the 
same dataset; i.e. it is incorrect to include lesions 
from the same patient in both the training set and 
the tuning or testing set.

Most classifiers return a numerical score 
between zero (definitely negative) and 1 (defi-
nitely positive). For a simple binary classifier, it 
is common to set a threshold of 0.5: everything 
with a higher score is considered to be positive 
and everything with a lower score is considered 
to be negative. Lowering this threshold results in 
a higher sensitivity (true positive fraction) and a 
lower specificity (true negative fraction) while 
raising the threshold produces a lower sensitivity 
and a higher specificity. The optimum setting for 
this threshold, which is also referred to as the 
decision point, will depend on the clinical con-
text. The effect of changing the threshold can be 
visualized using the ROC curve, which plots sen-
sitivity against (1-specificity) for different deci-
sion points. The AUC is often used to evaluate the 
performance of different CADx systems because 
it is independent of the single threshold.

7.4	 �Fully Automated Lesion 
Detection

In Sect. 7.3, it is assumed that a lesion has already 
been detected. A system that is capable of detect-
ing suspicious lesions automatically, i.e., a CADe 
system, has the potential to speed up radiologists’ 
workflow and also to improve sensitivity by 
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detecting otherwise overlooked cancers. In breast 
MRI, however, there are many regions of non-
specific enhancement that may also be identified 
as lesions, and if a CADe system is to be useful, 
it is essential that the number of false positive 
detections is minimized. This makes the com-
bined task of detection and diagnosis very 
challenging.

Several attempts to automatically detect 
lesions have been described in the literature. 
Mayer et al. [36] automatically segmented images 
into clusters of similar pixels using a hierarchical 
Gaussian pyramid and identified clusters with the 

highest local intensity values. This process led to 
the creation of about 2,500 objects for each breast 
exam from which morphological and dynamic 
features were extracted. After removing most of 
these objects using size and volume criteria, the 
remaining objects were classified as lesions or 
artifacts by a first ANN and then the lesions were 
classified as malignant or benign by a second 
ANN.  Malignant lesions were detected with a 
sensitivity of 95% and a specificity of 92%. Diane 
M.  Renz and coworkers [37] used the same 
approach on an independent dataset and reported 
a sensitivity of 97% and a specificity of 76%.

Data (p labeled cases)

Repeat k times
n cases p-n cases

Training data Tuning

Set Model
Parameters

Evaluate model
on tuning data

Train Model

n cases

n(k–1)/k n/k

Select best
parameters

Train Model

p-n cases

Testing data

Evaluate model
on testing data

Report performance

Fig. 7.3  Flow diagram 
for the training, tuning, 
and testing of a 
classification algorithm
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Anna Vignati and cowokers [38] proposed a 
lesion detection pipeline that included breast seg-
mentation, image registration, and the normaliza-
tion of contrast using the signal intensity in the 
blood vessels. In order to reduce the number of 
false-positive detections, they used a number of 
heuristically derived rules, which included a min-
imum size criteria of 20 mm3 and the rejection of 
any lesions where variation in signal intensity 
exceed a certain threshold. They were able to 
detect 89% of all lesions with a false detection 
rate of 4 false detections per breast. Most of the 
false-positive detections were due to blood ves-
sels. The lesions detected were then classified as 
malignant or benign using a support vector 
machine [23].

Yan-Hao Huang and coworkers [39] used a 
thresholding method to isolate the enhancing tis-
sue from background and then subdivided the 
enhancing regions into four groups using fuzzy 
clustering. This process still tended to identify 
background enhancement and vessels as suspi-
cious, so a multi-scale Hessian filter was used to 
identify mass lesions. Morphological, texture, 
and enhancement features were extracted from 
the detected lesions; and logistic regression was 
used to classify malignant lesions. They reported 
a sensitivity of 92% with 4.6 false positives per 
case.

Albert Gubern-Merida and coworkers [31] 
used both Laplacian and Hessian filters to iden-
tify bright blob-like structures as potential 
lesions. Their patient population included 
women with both mass and non-mass malignant 
lesions and women with negative screening 
examinations and no breast cancer. Women with 
biopsy-proven benign lesions were not included 
in this study. They then compared several differ-
ent classification methods and found that a ran-
dom forest classifier gave the best performance 
with 7 false-positive lesions per patient at a sen-
sitivity of 95%.

Hongbo Wu and coworkers [40] used an ANN 
with two hidden layers to classify small patches 
of the dynamic image as either lesion or non-
lesion. In order to overcome the problem of 
insufficient labeled data to train a deep neural 
network, they used a denoising autoencoder [41], 
which allows features to be learned directly from 

unlabeled data. Once the network was pre-trained 
using unlabeled data, a smaller number of labeled 
patches were used to train the classifier to differ-
entiate between lesions and non-lesions and a 
sensitivity of 92% with 17 false candidate lesion 
regions per volume was obtained. Once the 
lesions have been identified, it is possible to 
extract more conventional morphological and 
textural features and Hongbo Wu [42] found that 
adding a cascade of random forest classifiers, one 
to remove false-positive detections and one to 
differentiate between malignant and benign 
lesions, gave a final sensitivity of 94% at 0.12 
false-positive detections per normal study. 
Figure 7.4 illustrates the work flow for the final 
classification algorithm.

It is difficult to directly compare the results 
from these studies as the patient population dif-
fers in each case. In most studies, patients with 
biopsy-proven malignant or benign lesions are 
selected, but this does not assess the false-positive 
rate in examinations that do not contain any 
lesions at all. In the study by Albert Gubern-
Mérida and coworkers [31], the false-positive 
rate is assessed on negative screening exams 
where 2  years’ follow-up confirmed that there 
was no breast cancer but no biopsied benign 
lesions were included in the study. In the master’s 
thesis by Hongbo Wu [42], the false-positive rate 
was also assessed on negative screening exams 
but benign lesions were present in the data used 
to train the classifiers.

7.5	 �Preprocessing: Motion 
Correction (Image 
Co-registration) and Breast 
Segmentation

In all CAD systems, features that quantify the 
change in intensity over time are used to 
differentiate between normal, benign, and malig-
nant regions. Any motion between the pre- and 
post-contrast images will have an impact on these 
quantitative measures; therefore, motion correc-
tion, also referred to as image co-registration, is 
frequently carried out as a pre-processing step. 
The registration of contrast-enhanced breast MRI 
is challenging for two main reasons: the breast tis-
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Lesion/non-lesion classification

Lesions Non-Lesions

Preprocessing Lesion probability map

Feature extraction

Malignant/benign classification

a b

d c

e

Fig. 7.4  Example of a processing pipeline for a breast 
MRI CADD system. (a) Preprocessing of the data typi-
cally involves motion correction. (b) An ANN is used to 
assign a lesion probability to each pixel in the image. (c) 
Once the lesion is identified, features can be extracted 

relating to enhancement, morphology, and texture.  
(d) A random forest classifier then uses these features to 
reduce false-positive detections. (e) A final classifier 
then differentiates between malignant and benign lesions

A. L. Martel



107

sue is highly deformable and the changing inten-
sity in enhancing regions can affect the accuracy 
of registration. Several methods have been evalu-
ated motion correction for breast imaging [43–46]. 
Additional constraints on the deformable registra-
tion in order to prevent non-physiological changes 
in tumor volume have been described [46]. A 
framework for decoupling the effects of intensity 
changes due to motion and due to contrast enhance-
ment has also been proposed [47]. Validation of 
motion correction is very difficult as the breast 
lacks anatomical landmarks that can be accurately 
localized in 3D images, and many landmarks are 
needed to assess a deformable registration algo-
rithm. Some groups have used simulation studies 
based on finite element models of breast deforma-
tion [44, 48, 49] whilst others have attempted to 
carry out a subjective evaluation [43]. Albert 
Gubern-Mérida and coworkers [31] assessed the 
effect of motion correction on the final CAD out-
come: the impact on overall accuracy was small 
but significant and that there was a greater 
improvement in accuracy for non-mass lesions. 
Figure 7.5 illustrates how motion correction can 
improve the quality of subtracted MRI images.

Another useful preprocessing step for systems 
that perform both detection and diagnosis is 
breast segmentation. The areas of image artifact 

and high contrast enhancement in the chest can 
be misclassified as suspicious lesions, and, 
although radiologists are not affected by these 
errors, they do cause problems when evaluating 
automated systems. Processing time may also be 
affected as image features have to be calculated 
for every lesion identified by the system. Several 
breast segmentation algorithms have been devel-
oped for the purpose of assessing breast density 
with MRI [50–55], but Albert Gubern-Mérida 
and coworkers [31] noted that two lesions were 
missed due to segmentation errors, so there is still 
a need for improvements in this area.

7.6	 �Challenges

The use of CAD systems for mammography is 
widespread, but this is not true for MRI CAD 
despite over 15 years of research in this area. The 
computer-aided evaluation tools described in 
Sect. 7.2 are available on many commercial 
workstations, but these do not attempt to detect or 
diagnose lesions and cannot be used as a second 
reader.

One of the main differences between breast 
MRI and digital mammography is that there is 
much more variation in imaging protocols with 

a b c

Fig. 7.5  Motion correction. (a) Post-contrast image. (b) 
Result of subtracting the pre-contrast image from the 
post-contrast image. The effect of motion between the 

acquisition of these two images is well visible. (c) 
Subtracted image after motion correction [43]
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MRI.  Some differences—such as the use of 
1.5 T or 3 T field strengths, the use of fat sup-
pression, the type and dose contrast material and 
its injection protocol, or the timing of post-con-
trast images—will affect the relative signal 
intensity in the lesion compared with the back-
ground. Other differences—such as the choice of 
acquisition plane and the pixel size used—will 
affect the morphological features. A few studies 
have evaluated the accuracy of CAD systems 
that have been trained using data acquired using 
one protocol and then tested using data acquired 
using a different protocol, scanner or from a dif-
ferent institution. Weijie Chen and coworkers 
[33] compared datasets acquired on scanners 
from two different manufacturers and found that 
there was no significant difference in accuracy 
between a classifier trained on dataset 1 and 
tested on dataset 2 or vice versa. However, the 
protocols for the two datasets were very similar; 
both carried out acquisition in the coronal plane, 
no fat suppression was used, and the temporal 
resolution only differed by one second. Anna 
Vignati and coworkers [38] designed their lesion 
detection algorithm to work with both fat-satu-
rated and non-fat saturated images, and their 
algorithm was trained and tested using images 
acquired using both protocols. Their two datas-
ets also had very different temporal resolutions, 
and the effect of this was minimized by taking 
the mean signal intensity over the sequence of 
images and then normalizing intensity values 
using the intensity in the mammary blood ves-
sels. These studies suggest that it is possible to 
design a CAD algorithm to work across different 
datasets from different institutions, but so far no 
authors have evaluated a fully automatic detec-
tion and classification algorithm in a clinically 
realistic scenario, where the software is tested 
on totally unseen images acquired using differ-
ent protocols to those represented in the data 
used to train the algorithm.

The lack of standardization of imaging proto-
cols is not the only reason that comparing the 
results of different breast MRI CAD studies is 
difficult. The patient populations also vary greatly 
from study to study, and this has an impact on the 
size and types of lesions used to train and test the 

algorithms. In most of the earlier studies, patients 
were undergoing MRI as a follow-up examina-
tion after mammography to either provide addi-
tional diagnostic information or to exclude the 
presence of additional lesions before surgery. In 
later studies, an increasing number of high-risk 
patients undergoing MRI screening have been 
included and, as a result, such studies may con-
tain a greater proportion of very small lesions.

It is important to determine how best to incor-
porate CAD into breast radiologists’ workflow. 
For example, should the automated method be 
run before the radiologist reviews the images in 
order to speed up the work flow, or should it only 
be applied as a second look after the initial assess-
ment has been made? The true impact of a breast 
MRI CAD system on sensitivity, specificity, and 
reporting times can only be evaluated in the con-
text of the clinical workflow, which includes the 
breast radiologist; and only a few small studies 
[6, 56] have attempted this so far.

7.7	 �Opportunities

The use of additional MRI sequences to the DCE 
acquisition could improve discrimination 
between malignant and benign breast lesions. 
Although T2-weighted imaging is widely used in 
clinical breast MR, only a few studies have 
looked at the effect of adding T2 image features 
to classification [57, 58]. Diffusion-weighted 
imaging [59] and DCE-MRI with higher tempo-
ral resolution [60, 61] could also provide more 
discriminative features, but these sequences, 
especially the latter, are less commonly 
performed.

Incorporating information from previous MRI 
studies could also improve the accuracy of CAD 
systems. Women enrolled on MRI breast 
screening programs typically have annual exami-
nations, and incorporating information from pre-
vious visits could improve specificity. Similarly, 
it could be advantageous to incorporate informa-
tion derived from mammography.

Recent advances in machine learning have the 
potential to further improve the accuracy of 
breast MRI CAD. There has recently been a great 
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deal of excitement over the use of convolutional 
neural networks (CNNs), which are capable of 
learning features directly from imaging data [62], 
and this approach has already been used to seg-
ment fibroglandular tissue in breast MRI images 
[53] and to classify lesions in mammography 
[63]. The performance of a CNN usually 
improves as the number of labeled training cases 
increases. Large databases of labeled images 
have been made available for several other CAD 
applications including mammography and nod-
ule detection in chest computed tomography, and 
these have facilitated research and development 
in these areas. The creation of a large, publicly 
available, well-annotated, multi-institutional 
database for breast MRI would likely accelerate 
progress toward clinical CAD systems for breast 
MRI.

Significant progress has been made in the 
accuracy of breast MRI CAD, but in order to 
move this work into the clinical domain, it is 
essential that CAD platforms are tested in the 
context of the radiologist’s work flow and it is 
also essential that large-scale, multi-institutional 
studies are carried out to determine how robust 
these methods are when data is acquired on mul-
tiple scanners and with different protocols.
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