Chapter 13 ®)
This is Just Metadata: From No greckie
Communication Content to User

Profiling, Surveillance and Exploitation

Constantinos Kapetanios, Theodoros Polyzos, Efthimios Alepis,
and Constantinos Patsakis

Abstract Mobile devices have become an indispensable part of our daily lives. Prac-
tically, most of our everyday communication is performed through mobile devices
which host third party apps and provide for various means of interaction with diverse
levels of security. Android is by far the most widely used mobile operating system,
with a user base in the scale of billions. However, while Android Open Source Project
(AOSP) is paving the way for all manufacturers, Android market is so fragmented
that those who are using the latest version are only a small minority. Moreover,
Android comes in several flavours as manufacturers tailor it to their needs. How-
ever, this tailoring often prevents users from getting the latest updates. In fact, as we
show, manufacturers may not follow the security and privacy guidelines of AOSP,
exposing their users to unexpected threats. In this work we study a yet unpatched vul-
nerability by most major manufacturers, and partially fixed in AOSP, which allows
for an adversary to extract important information from the victim’s device. To this
end, we showcase that unprivileged apps, without actually using any permissions,
can harvest a considerable amount of valuable user information. This is achieved
by monitoring and exploiting the file and folder metadata of the most well-known
messaging apps in Android, which have been hitherto considered secure, deriving
thereby usage statistics in order to elicit user profiles, social connections, credentials
or other sensitive information.

Keywords Android + Access control - Privacy + Smartphones + Metadata

C. Kapetanios - E. Alepis - C. Patsakis (<)
Department of Informatics, University of Piraeus, Piraeus, Greece
e-mail: kpatsak @unipi.gr

T. Polyzos
Department of Informatics, University of Athens, Athens, Greece

© Springer Nature Switzerland AG 2021 277
G. A. Tsihrintzis and M. Virvou (eds.), Advances in Core Computer

Science-Based Technologies, Learning and Analytics in Intelligent Systems 14,
https://doi.org/10.1007/978-3-030-41196-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41196-1_13&domain=pdf
mailto:kpatsak@unipi.gr
https://doi.org/10.1007/978-3-030-41196-1_13

278 C. Kapetanios et al.

13.1 Introduction

Back in 2013 when Edward Snowden started unravelling the story behind many
secret surveillance projects such as the PRISM, ' the agencies defended themselves by
responding that they were just collecting metadata and not actual content. Therefore,
many government agents were arguing that these surveillance actions could not
be considered as privacy invasive. For instance, Dianne Feinstein while she was
defending NSA phone records program declared [21]:

As you know, this is just metadata. There is no content involved. In other words, no content
of a communication. That can only be, these records, I’m not talking about content, the
records can only be accessed under heightened standards.

Consequently, other revelations that followed were far more indicative of the intrusive
methods employed in these projects; therefore, the “battle” for the “metadata” argu-
ment was soon forgotten. Nevertheless, in this paper we argue that there is far more
knowledge in such metadata information than one can even anticipate. Unfortunately,
users do not have to protect themselves only from the prying eyes of government
surveillance projects, since software companies have already shown similar rogue
behaviours under the pretext of user profiling designed towards offering better user
experience and personalised recommendations. In fact, the latest methods used for
user profiling are so privacy invasive that cannot be considered lightheartedly benign.
In the most sinister scenario, usage metadata can be exploited by rogue applications
to trick users into providing sensitive information like credentials.

13.1.1 Motivation

Android, having long ago surpassed the boundary of one billion users, is currently
by far the most widely used mobile platform [26]. However, Android is fragmented
in several aspects. Firstly, while there are many versions (API levels) of Android,
notably only a handful of users have access to its latest version. As illustrated in
Fig.13.1, almost half a year after its debut only 21.5% have installed the latest
Android version and 7.5% use the latest update (version 8.1). While this may indicate
that the vast majority of the users do not enjoy the new features of the platform, it
also suggests that not all of its users have the same security updates installed.
Apart from the versioning fragmentation, we also have the variety of Android
“flavours”, also known as the different Android versions that manufacturers ship
their devices with. The reason for these diverse flavours is the fact that manufacturers,
despite following AOSP, they actually tailor the OS to their needs, most commonly by
adding/removing apps and features to bind them with the firmware or by changing UI
elements. Furthermore, it is also debatable whether all of the vendors follow the AOSP

Thttps://www.washingtonpost.com/news/wonk/wp/2013/06/12/heres-everything-we-know-
about- prism-to-date/ 7utm/term=.2e201efd7097.

https://www.washingtonpost.com/news/wonk/wp/2013/06/12/heres-everything-we-know-about-prism-to-date/?utm/term=.2e201efd7097
https://www.washingtonpost.com/news/wonk/wp/2013/06/12/heres-everything-we-know-about-prism-to-date/?utm/term=.2e201efd7097

13 This is Just Metadata: From No Communication Content ... 279

Jelly Bean (3%)
KitKat (7.6%)

~

(@) Oreo (21.5%)

Jelly Bean (0.2%)
—
Lollipop (17.9%)

—

.

Ice Cream Sandwich (0.3%) T~

Nougat (28.2%)

Marshmallow (21.3%)

(b)

Samsung 457
Huawei
Xiaomi

Oppo

Motorola
LG

Vivo
Lenovo

Sony

Asus

0 10 20 30 40 50
% of devices

Fig. 13.1 a Android version statistics. Source Android Developer, b market share of Android
manufacturers. Source Appbrain

https://developer.android.com/about/dashboards/index.html
https://www.appbrain.com/stats/top-manufacturers

280 C. Kapetanios et al.

guidelines regarding security and privacy requirements when they modify the original
source code according to their needs. Google notifies them of already reported and
fixed vulnerabilities in several versions. Since vulnerabilities are accompanied by
Common Vulnerabilities and Exposures Identifiers (CVEs), it is easy to monitor
whether a specific patch has been pushed into the device. Although major vendors
usually report fixes of publicly known vulnerabilities,” updates not falling in line
with the CVE system may be disregarded by vendors or even deliberately omitted if
they happen to coincide with a provided functionality. Recently, using SnoopSnitch
[20] it was discovered that not only Android vendors fail to provide security updates
to their users or their updates are incomplete [17]. Finally, apps may target different
API levels which implies different targetted functionality, but also different security
standards. Note that the red vertical line indicates the API level 24 below which
apps are vulnerable to our attacks, regardless of manufacturer and installed Android
version.

13.1.2 Main Contributions

The main contribution of our paper is threefold. Firstly, we illustrate that a PRISM-
like surveillance project collecting only communication metadata could be easily
implemented through the distribution of seemingly benign apps that do not use any
dangerous permissions. These apps could exploit privacy leakages partially fixed in
AOSP, but not yet handled by the majority of smartphone vendors. More precisely,
in this work, we demonstrate that by simply monitoring metadata available from
the most well-known messaging apps in Android, “useful” and personal information
about social interactions can be extracted by non-privileged apps. Table 13.1 contains
the communication apps we examined. As a result, we show that the use of meta-
data bypasses the Android security mechanisms, allowing an adversary to extract
a lot of sensitive information about individuals without requesting any dangerous
permissions from the users. For instance, by simply exploiting inherent Android
mechanisms, and without interacting with service providers or backdooring any com-
munication app, one can determine with overwhelming probability not only when
users interact with messaging apps, but also whether two users communicate with
each other. The disclosure of this vulnerability aligns perfectly with the emerging
belief that preventing privacy leakages in mobile environments is far more complex
than one would expect [25].

Secondly, we discuss how the above approach can be used by unprivileged apps
to derive usage statistics to build valuable user profiles, a case that would otherwise
have required “system level” permissions. Beyond user profiling, these “monitoring”
events can be further exploited by malware to timely interfere with user interaction
resulting in a number of “unpleasant” situations, both for the users and also for the
companies involved. Notably, Google is well aware of such threats; therefore with

ZFor instance see Samsung: https://security.samsungmobile.com/securityUpdate.smsb.

https://security.samsungmobile.com/securityUpdate.smsb

13 This is Just Metadata: From No Communication Content ... 281

Table 13.1 Apps that are investigated and the reported installations according to Google Play

Application Installations

BBM 100,000,000-500,000,000
Facebook messenger 1,000,000,000-5,000,000,000
ICQ 10,000,000-50,000,000

imo 100,000,000-500,000,000
KakaoTalk 100,000,000-500,000,000
LINE 100,000,000-500,000,000
QQ international 5,000,000-10,000,000

Signal 5,000,000-10,000,000

Skype 1,000,000,000-5,000,000,000
Snapchat 500,000,000-1,000,000,000
Telegram 100,000,000-500,000,000
Viber 500,000,000-1,000,000,000
WeChat 100,000,000-500,000,000
Wire 1,000,000-5,000,000
WhatsApp 1,000,000,000-5,000,000,000

the introduction of Nougat, apart from pushing many changes into the Android, they
also tried to fix such leakages by further locking the contents of the corresponding
/data/data directory. More precisely, as stated in Android 7.0 Behavior Changes:

In order to improve the security of private files, the private directory of apps targeting
Android 7.0 or higher has restricted access (0700). This setting prevents leakage of metadata
of private files, such as their size or existence. [6]

Finally, our results indicate that these changes have not been implemented at all by
some major manufacturers or they have been implemented partially by others, creat-
ing thereby a non-uniform and inconsistent landscape of different implementations
with varying functionality, which exposes users’ security and privacy.

13.1.3 Vulnerable Audience

Quantifying the vulnerable audience is rather complicated due to the difficulties in
quantifying the constraints that have to be met to exploit the vulnerability. Therefore,
it is easier to identify who is definitely secure. In this regard, users who are running
AOSP since Nougat and whose applications are all running on API level above 23
are considered secure. In practice, this initially means that 70% of the devices are
vulnerable as they are not running Nougat, hence the proper permissions have not
been implemented. From the remaining 30% of the market we have no precise num-
bers, but qualitative data. First, most manufacturers have not implemented the “0700

282 C. Kapetanios et al.

policy”, consequently their users are exposed. Second, even in the cases where some
of the manufacturers have implemented this policy, the vast majority of apps does not
target API levels above 23. Therefore, users of such applications are also exposed.
Using Tacyt [11], we managed to identify developer trends since the beginning of
the year, based on the target API levels of the updates they pushed to Google Play.
We filtered the results to applications which have a tangible amount users, so our
results refer to apps having more than 100 K downloads. For finance apps, developers
pushed 38 (58%) of the 66 updates for secure API levels and 28 (42%) for insecure.
Similarly, for communication apps 41 (57%) of the 71 updates was made for secure
API levels and 30 (43%) for insecure. The above indicate that above 42% of the
updates that are currently pushed for apps which by definition handle sensitive data
are targeting insecure API levels. Notably, from all apps in Google Play having more
than 100K downloads which updated their APKs since the beginning of the year,
791 (39%) targeted insecure API levels, and 1229 (61%) targeted secure ones.

13.1.4 Organization of This Work

The rest of this work is organized as follows. In the next section, we provide an
overview of Android internals related to our work. More precisely, we discuss
Android app permissions and methods to derive the foreground app and usage statis-
tics. Then, in Sect. 13.3 we discuss our metadata collection methodology which we
use in Sect. 13.4 to showcase two different threat scenarios. In the first one, we illus-
trate how an unprivileged app can monitor the usage of the most well-known com-
munication apps to derive social connections. In the second use case, we present a UL
replication attack having Paypal as our reference. The article concludes in Sect. 13.5
where we summarize our contributions and findings and we propose remedies that
could be applied in all the aforementioned attacks to mitigate user profiling and
exploitation.

13.2 Related Work

13.2.1 Android Permissions

Although mobile devices may not compare with desktop computers in terms of
computational capacities, they can provide an augmented user experience as they
can quickly adapt to their context and interact with the user through various means
due to the plethora of embedded sensors they are equipped with. However, many
of these sensors such as microphone, camera and GPS can leak really sensitive
information and therefore access to these resources is only permitted upon user
consent. As of Android Marshmallow, the management of permissions has become
more fine-grained, thus allowing users to grant and revoke consent whenever deemed
necessary.

13 This is Just Metadata: From No Communication Content ... 283

. g RECEIVE MMS
SMs
— - 5

‘g‘\u\v RECE

Phone

ADD VOICEMAIL

Fig. 13.2 Dangerous permissions in Android

Depending on the risk the users are exposed to, the permissions are mainly cate-
gorised as normal and dangerous. In this regard, normal permissions include, among
others, access to the Internet, accelerometers and vibration while dangerous permis-
sions include access to the microphone, camera, GPS, phone calls etc. The full list of
dangerous permissions in Android is illustrated in Fig. 13.2. Apart from the level of
the risk exposure involved, another significant difference between these two groups
of permissions is in their management. While dangerous permissions can be revoked
or granted whenever the user wants, normal ones are automatically granted once the
app is installed and they cannot be revoked at all. Notably, if an app requires only
normal permissions to be granted, the latest versions of Android prevent the user
from even reading which these permissions are.

Apart from these two categories of permissions, Android has two more: Signature
and SignatureOrSystem. The signature permission is designed for interoperability
and enables applications which are signed with the same certificate to access the same
resources even though only one of them is granted this access. SignatureOrSystem is a
special permission designed for manufacturers to enable installing their applications
in the Android system image and pertains to many elevated permissions such as
rebooting the device or clearing caches. For a more detailed overview of Android
permissions the interested reader may refer to [3].

To further protect the Android ecosystem, Google requires the user to explic-
itly grant some app permissions through completely different permission manage-
ment screens (see Fig. 13.4b—d), which differ significantly from the traditional per-
mission screen supplied for handling dangerous permissions (seen in Fig. 13.4a).

284 C. Kapetanios et al.

SYSTEM ALERT WINDOW
631,050

BIND
ACCESSIBILITY
SERVICE

14,658

Fig. 13.3 Usage of some system permissions according to Tacyt. Numbers are reported in app
versions

In the former category, we have permissions such as SYSTEM_ALERT_WINDOW,
BIND_ACCESSIBILITY_SERVICE, WRITE_SETTINGS and PACKAGE_
USAGE_STATS. To prevent users from carelessly granting these permissions,
Android provides a completely different interface, and in principle, the correspond-
ing settings are well-hidden in the menus so that users will grant access only
when deemed necessary (see Fig.13.4 for comparison). Nevertheless, these per-
missions are used by thousands of apps, as reported by Tacyt and seen in Fig. 13.3.
To understand the extent of the risk that these permissions expose their users to,
one has to consider that the SYSTEM_ALERT_WINDOW allows an application
to overlay every Android activity and therefore can utterly deceive the user. The
BIND_ACCESSIBILITY_SERVICE permission allows an application to imitate
user tapping on the screen. Therefore, once granted to an app, it can perform any
action on the user’s device. Finally, the PACKAGE_USAGE_STATS will be discussed
in detail in the following paragraphs.

Beyond the aforementioned categorisation of permissions, Android has the same
Linux-based mechanism for UID/GID based access control. All users and groups
are assigned with an ID (see Listing 1). As implied by this code excerpt, apps are

https://www.elevenpaths.com/technology/tacyt/index.html

13 This is Just Metadata: From No Communication Content ... 285

(@ (b)

€ SPECIAL ACCESS

Q@ Allow Twitter to access
this device's location?

Fig. 13.4 Different interfaces for managing permissions in Android. a Granting a dangerous per-
mission, b managing some system permissions, ¢ allowing an app to track usage of other installed
apps, d managing the permission to overlay other apps

assigned an ID above 10000, referred to as AID. Once a user grants a permission to
an app, the app is added to the corresponding group, and it can access the particular
resource. Therefore, if an app belongs to groups 1006 and 1021, it can access camera
and GPS.

13.2.2 Android Foreground App

Android has an inherent problem regarding its UI: the lack of actual proofs of the
identity of the application running in the foreground. This stems from two reasons,
the size constraints of the devices which imply further constraints to UI, and also
user permissions. According to the first one, Ul components in Android, and mobile
devices as a whole are stacked one on top of the other to fit into the small monitor
of these devices. As a result, this size constraint prevents users from being able to
determine the “actual” foreground app successfully. As for the second, users do not
have many permissions, or even “high level” permissions, to determine themselves,
or even by installing additional apps, the list of open apps and services in AOSP.
Therefore, Android users blindly trust the Android UL

In previous API levels, applications could monitor open apps, e.g. using the
getRunningTasks method of ActivityManager asof APIlevel 1. Neverthe-
less, as of API level 21, this method is no longer available to third-party applications.
Google stated that:

...the introduction of document-centric recents means it can leak person information to the
caller.

286 C. Kapetanios et al.

#define AID ROOT 0 /*traditional unix root user*/
/*The following are for LTP and should only be used for testing*/

#define AID_DAEMON 1 /*traditional unix daemon owner*/
#define AID BIN 2 /*traditional unix binaries owner*/
#define AID _SYSTEM 1000 /*system server*/

#define AID RADIO 1001 /*telephony subsystem, RIL*/
#define AID BLUETOOTH 1002 /*bluetooth subsystem*/

#define AID_GRAPHICS 1003 /*graphics devices*/

#define AID_INPUT 1004 /*input devices*/

#define AID AUDIO 1005 /*audio devices*/

#define AID CAMERA 1006 /*camera devices*/

#define AID LOG 1007 /*log devices*/

#define AID_COMPASS 1008 /*compass device*/

#define AID_MOUNT 1009 /*mountd socket*/

#define AID WIFI 1010 /*wifi subsystem*/

#define AID ADB 1011 /*android debug bridge (adbd) */
#define AID INSTALL 1012 /*group for installing packages*/
#define AID_MEDIA 1013 /*mediaserver process*/

#define AID _DHCP 1014 /*dhcp client*/

#define AID SDCARD_RW 1015 /*external storage write access*/
#define AID VPN 1016 /*vpn system*/

#define AID_KEYSTORE 1017 /*keystore subsystem*/

#define AID USB 1018 /*USB devices*/

#define AID DRM 1019 /*DRM server*/

#define AID MDNSR 1020 /*MulticastDNSResponder (service discovery)*/
#define AID GPS 1021 /*GPS daemon*/

#define AID_UNUSED1 1022 /*deprecated, DO NOT USE*/

#define AID_APP 10000 /*TODO: switch users over to AID APP_START*/
#define AID APP START 10000 /*first app user*/
#define AID _APP_END 19999 /*last app user*/

Listing 13.1: Excerpt from available UIDs/GIDs in Android as defined in AOSP
source code [15].

However, security researchers managed to derive the foreground apps through leaks
from the procfs, as Android, like all Linux-based operating systems, uses it to
store information of the processes that are executed by the OS.

Towards this end, Chen et al. [10] monitored offline the memory consumption of
each activity in an application by tracking the memory allocation of the corresponding
/proc/ [pid]/statm file. They hypothesize that there is a specific footprint
when shifting from one activity to another which can be used to identify app and
activities. The latter can be further improved by monitoring network traffic through
/proc/net/tcpb.

Bianchi et al. in [8] also identify the foreground application by using procfs.
In this case, the leakage is from the file /proc/ [pid] /cgroups whose contents
change from /apps/bg_non_interactive to /apps when an app is sent to
the foreground.

Finally, Alepis and Patsakis [2] exploited the oom_adj_scorefileinprocfts,
a file used by Android to monitor resource allocation and release. Depending
on app usage, Android modifies this file which is stored under the directory
/proc/ [pid]/ of each app. By pruning all the system applications, the least
likely process to be killed is the foreground app.

13 This is Just Metadata: From No Communication Content ... 287

As of Android Nougat, access to /proc/ [pid]/ is prohibited to other apps;
therefore all the aforementioned attacks are not applicable to the two latest Android
versions. However, as of Android Lollipop, developers may use two additional meth-
ods to accomplish foreground app detection. Namely, either through the utilization of
the UsageStatsManager API which requires the PACKAGE_USAGE_STATS
permission and allows an app to collect statistics about the usage of the installed apps,
or through the AccessibilityService API which requires the
BIND_ACCESSIBILITY_ SERVICE permission. Regarding the first case, this
kind of information is presumably vital for the Android ecosystem, considering
that it requires system permission to be collected. Yet, Android does not intend
to allow an app to derive anything else apart from aggregated statistics about
the usage of the installed apps. Therefore, the app can get statistics but they
are not very fine-grained: the app can collect aggregated usage data for up to
7days for daily intervals, up to 4 weeks for weekly intervals, up to 6 months for
monthly intervals, and finally up to 2 years for yearly intervals, always depend-
ing on the chosen interval. Nevertheless, this service gives developers the abil-
ity to build a list of usage statistics per app, List<UsageStats>, and con-
sequently query each of its items through the built-in getLastTimeUsed ()
method, to derive the foreground app. The second option, utilizing the Accessi-
bilityService, includes handling the onAccessibilityEvent () callback and
checking whether the TYPE_WINDOW_STATE_CHANGED event type is present,
to determine when the current window changes. Finally, the target windows is
further checked to determine whether it is the case of an activity by the method
PackageManager .getActivityInfo () and the foreground app is revealed.
It is important to note that Google has warned developers about this permission,
that she will remove apps from the Play Store if they use accessibility services for
“non-accessibility purposes” [24].

In the following paragraphs, we discuss in detail why app usage statistic data
and also foreground application detection are actually considered such sensitive user
information, using concrete examples of their malicious usage.

13.3 Collecting App Metadata

13.3.1 Assumptions and Desiderata

In our threat model, we assume that the victim has been tricked into installing a
malicious app in his Android device. This assumption is considered standard in
most Android related attacks [12, 13, 27]. Therefore it is aligned with the current
literature. To relax possible constraints, we further assume that the device is not
rooted; therefore, the attack could be launched in every stock Android installation.
Finally, we assume that the application does not request any dangerous permissions
from the user. The latter is rather crucial as dangerous permissions require further

288 C. Kapetanios et al.

run-time user interaction in OS versions following Android Marshmallow and they
can also be revoked later, as already discussed. Moreover, dangerous permissions
can also deter users from installing an app.

Regarding code and library dependencies, we assume that the malicious app, apart
from listing the corresponding app files, it does not request any additional shared
library and does not make any suspicious API calls. To hide the actual filenames
from possible static code analysis, we consider that the adversary collects them on
runtime through a remote server. To this end, the app can use the Firebase or Azure
cloud infrastructure that would be utilized for all regular interaction tunnel all of its
traffic through legitimate servers, as used in [18] by social botnets, and hence to hide
its communication with the C&C server.

Having a “zero permission” app, that is an app requesting only normal permis-
sions, which communicates only with the Google servers not only makes the app
look benign for the user, but it also bypasses many static security controls such as per-
missions, API calls, and network connections, that many consider as key indicators
for identifying malicious apps [1, 7, 16, 23, 28, 30].

Finally, we make two weak assumptions to monitor whether two or more users are
communicating via a specific app. The first one is that the users are simultaneously
online, and thus there is no significant delay in message delivery between apps. This
is a common case when users are interacting with “instant” messaging apps since
by default these apps are used in real-time mode. The second weak assumption is
that both apps are synchronised with a remote clock for precise timing. The latter
is required for preventing errors due to time lags and for detecting whether user A
contacted user B or the other way round. This can also be achieved by sending instant
reports to the server once an activity has been recorded.

13.3.2 Basic Concept

While Android apps are isolated from each other, as they belong to different users,
specific metadata can be extracted from their corresponding files. As the underly-
ing filesystem of Android is ext4 [19], as in many Linux installations, the file
permissions are also similar to other Linux systems. Practically, depending on the
user permissions, a user is allowed to (r)ead, (w)rite or e(x)ecute a file. There-
fore, listing the contents of a directory or a file depends on the already assigned
user permissions. All user installed apps in Android are installed in a directory
/data/data/<package_name>, where package_name stands for the name
of the installed app’s package, and it is of the form com.xyz.

As in any system, misconfiguration of file permissions can leak much sensitive
information which may lead to full compromise. More specifically, apps store their
different “types” of stored data in corresponding subdirectories:

e databases/: Storage for the app’s databases
e lib/: Storage for libraries and app helpers

13 This is Just Metadata: From No Communication Content ... 289

e files/: Storage for app related files
e shared_prefs/: Storage for shared preferences and usually app settings
e cache/: Storage for caches

If an app does not want to share specific information with other apps, the contents
of the underlying files and directories under folder /data/data/com.xyz are
by default inaccessible by other apps, hence users. Nevertheless, if the permissions
of the corresponding files and folders are not properly set and “someone” knows the
absolute location of a file, even though he may not be able to access the contents of
the file, he might be able to derive evidence of its existence, or even metadata about
it. Typically, in Linux-based systems, this can be performed via various commands
like:

1ls -1 /data/data/com.xyz/secret_file
stat /data/data/com.xyz/secret_file

Both commands, among other data, contain the last modification time and size of
the file. Clearly, this seems only a small piece of information which can be collected
by any installed app in Android without requesting any permission from the user,
not even the most profound one: “Storage”. Correspondingly, the research question
in stake is whether this small leak of information can be used to derive sensitive
information about the user. As already discussed, Google as of Android Nougat
decided to remove all possible access from these files by setting the file permissions
to 0700. Nevertheless, this change was not assigned to any CVE and, to the best
of our knowledge, app permissions in file level do not follow a specific “default”
pattern. In fact, throughout our research, we found different permission patterns in
app files, discussed in more detail in the next section. It is worthy to notice that even
if a CVE had been assigned and a patch had been made available, as recently shown
by Lell and Nohl [17], manufacturers may often lie about their integration. Moreover,
applications do not follow a specific pattern in the way they store their data. Even
though, as already discussed, there are directories regarding libraries, caches, shared
preferences, databases and file storage, inside these “default” directories, there is no
specific rule to be followed. As a result, in many occasions related to data storage,
apps have their data spread among different local databases, most often SQL.ite.
Therefore, different user interactions correspond to changing different files which
can then be traced to reveal the interaction.

The obvious drawback of the aforementioned issues is that many vendors could
leak which applications are currently running or even the kind of interaction they are
performing. Although running applications can be considered as trivial information,
it is a considerably critical piece of information for the Android ecosystem since,
apparently, by monitoring running applications one can derive usage statistics, vital
information for user profiling and mobile targeted advertisement. In the most sinister
scenario, if one can derive which is the foreground app, he can easily proceed in trick-
ing the users into disclosing their credentials by pushing forward a forged Android
activity that imitates the UI of the user-initiated app, running in the foreground [2,
8, 10, 22].

290 C. Kapetanios et al.

According to the official source [5], in Android Nougat, API level 24 and above,
the private directory of apps has restricted access to improve the security of private
files. As a result, as of API level 24, apps cannot access the /proc/PID directory
for other PIDs, rendering all relevant to the “proc” directory approaches to detect
foreground apps useless. Nevertheless, as we are illustrating in this paper, other
directories and specific file metadata enable us to achieve the same result in the vast
majority of Android smartphones to date.

13.3.3 Methodology

We opted for a black box methodology to see the problem in its full extent. Therefore,
our goal was to determine how much information can be collected from an adversary
who does not have any access to the apps’ internals.

To bypass the restrictions of file access permissions in AOSP, we started our
experiments with two devices, a rooted smartphone and one using AOSP. First, we
installed the same apps and versions in both devices to have a common reference
point, and we created fake user profiles for each application when deemed necessary.
Then, we went through each application independently and started interacting with
it, keeping track in the rooted smartphone of which files were changing upon every
action. In this regard, the rooted phone can be considered as the “file change sensor”
module, while the non-rooted phone provided the necessary “triggers” to initiate
specific user actions.

Finally, after having noted all the involved files for the metadata exploitation,
we implemented an Android app which acts as a background service. The service
silently monitors in the background the metadata of specific files of the installed apps
and subsequently transmits any detected changes to a remote database. Apart from
this passive role, the app is also capable of presenting an Android activity whose Ul
is rendered from data that it fetches from the database when the proper trigger is sent.

The basic concept is illustrated in Fig. 13.5. Once the user installs the malicious
app X, it retrieves the specs of the device and the Android OS version and a list of all
installed apps from Android’s Package Manager system service. X communicates
this list to its server to obtain a list of files that it should monitor. Once received, X
running as a background service, monitors the aforementioned files at predetermined
intervals to derive the last modification time and size, which are then sent to the C&C
server (see Fig. 13.5a).

To efficiently monitor the filesystem changes in every directory recursively, we
used the inotifywait utility. The events that we monitored were: create, delete,
attrib and modify. Since inotify cannot be directly installed in Android, we
exploited the features of a well-known terminal emulator for Android devices, Ter-
mux.? The feature of Termux that we aimed is the apt integration that allows the
user to install Linux packages, in our case inotify-tools.

3https://termux.com/.

https://termux.com/

13 This is Just Metadata: From No Communication Content ... 291

' B EEEERTON . ——
— -
== @ =,
- pE = W
— e s —
(a) Collecting local information. The ma- (b) Correlating information from many de-
licious app periodically checks the modifi- vices in the C&C server and pushing com-
cation time of specific files. mands to specific devices.

Fig. 13.5 Basic concept

13.4 Experimental Results

As discussed, Google introduced in AOSP the 0700 permissions in Nougat, which at
the moment of writing means that officially 70% of all Android devices are vulnera-
ble. However, the number of the actually affected devices is, alarmingly, far bigger. In
our experiments we tested several devices from top major Android vendors running
Android API level> 24, that is devices running Nougat and Oreo. More precisely,
we experimented with devices from Samsung, LG, Xiaomi, Huawei and HTC. The
“pure” Android devices (Nexus and Pixel) were the only ones that did not present
any metadata leakages. On the contrary, devices which did not run pure Android,
even if they were from the same manufacturer, leaked file metadata. To leak this
information, we used the native os . stat method for each file we identified.

In what follows we present three different threat scenarios that stem from the
described metadata leakage. In the first two cases, we focus on surveillance, while
in the latter we focus on harvesting credentials.

13.4.1 Monitoring the Android Filesystem

In this scenario we try to derive usage statistics from the OS regarding the following
actions:

Add/Remove a user to contacts.
Send/receive an SMS.
Make/receive a call.
Enable/disable GPS

Shoot a photo.

292

Table 13.2 Identified Android actions

C. Kapetanios et al.

Version| Call Message GPS Contact Camera
Make |Receive Send | Receive] On Oft Add Delete

HMD Global 3.1.0 v v v v
TA-1024 (Nokia 5)
Huawei Nexus 6P |8.1.0 |V v v v v v v v v
LGE LG-H870 8.0.0 v v v v
Xiaomi Mi A1 8.0.0 v v v v
Xiaomi MI 6 8.00 |V v v v v v
HUAWEI 8.0.0 v v v v
VTR-L09
Xiaomi Redmi 4A |7.1.2 |V v v v v v v v
Xiaomi Redmi 7.1.2 v v v v v
Note 5A Prime
Samsung 711 |V v v v v v v v
SM-J510FN
Xiaomi Redmi 7.0 v v v v '
Note 4
Samsung 7.0 v v v v v v
SM-G930F
Samsung 7.0 v v v v v v
SM-G935F
Samsung 7.0 v v v v v v
SM-J710F
HUAWEI 7.0 v v v v
PRA-LX1
Samsung S6 7.0 v v v v v
Samsung 6.0.1 |V v v v v v v v
SM-A500FU
Xiaomi Redmi 6.0.1 v v v v v
Note 3
Xiaomi Redmi 6.0 v v v v v v
Note 4
Plaisio Computers | 6.0 v v v v v v v
SA Turbo-X_A2
Huawei P9 lite 6.0 v v v v v v
HUAWEI ALE-L21| 6.0 v v v v v
Sony D2303 5.1.1 v v v v v v
Motorola XT1032 | 5.1 v v v v v v
Samsung 5.1.1 v v v v v
SM-J320FN
Samsung 5.1.1 v v v v v v
SM-J320F
HTC One 5.0.2 v v v v v v

13 This is Just Metadata: From No Communication Content ... 293

without requesting any permission from the user, just by monitoring filesystem
changes. To this end, we monitored a series of files of Android, as seen in Table 13.4,
to determine the aforementioned actions. While several variations are depending on
the underlying Android flavour, it is evident that an adversary can easily determine
a wide set of actions as illustrated in Table 13.2.

13.4.2 Communication Apps

In this threat scenario, we try to derive usage statistics from communication apps.
Since locality plays a crucial role in their usage (see Fig. 13.6), we studied the most
well-known, secure and widely used communication apps in Google Play. The list
(see Table 13.1) contains 15 apps, all of which have at least one million installations
while their vast majority has more than 100 million downloads.

In our experiments, we aimed to detect more than the fact of using the apps. To this
end, we wanted to determine whether we could identify users communicating with
each other, when and how. Using the methodology detailed in the previous section,
we performed the following actions in each app and device:

. Facebook messenger . WeChat . Kakao . WhatsApp LINE

. Viber . Telegram

Fig. 13.6 Most popular apps per country. Source SimilarWeb

https://www.similarweb.com/blog/popular-messaging-apps-by-country

294 C. Kapetanios et al.

Add a user to contacts.
Remove/Ban a user from contacts.
Send a text message.

Initiate a call.

Initiate a video call.

The above actions were performed multiple times from each device to determine
the files affected each time, how fast these changes were made, and to prune any
coincidental file changes. It is worthwhile to note that most of these apps would
periodically change their files as they communicate with the corresponding service
and receive some status messages. While some of these changes created noise in
our samples, they were easy to be pruned based on simultaneous similar changes
made to other installed apps. Apparently, the changes were initially monitored only
in the rooted device. Then, knowing the locations of the altered files, we validated
our results with the non-rooted device too.

The results of our experiments are illustrated in Table 13.3. From the 15 apps,
only 6 were secure (their row is highlighted in gray), meaning that no metadata
could be extracted from them. Then, for three more we could detect that some app
interaction occurred, yet it could not be precisely identified (“Unidentified Action”
column in Table 13.3). The reason for the latter is that some apps used a small number
of databases, one or two. Thus, every interaction was mapped to the same files, not
giving us the opportunity to track “specific” actions. Yet, the most interesting results
are for the rest 6 apps, most of which have users on the scale of billions.

More precisely, for Facebook messenger, we can determine when the user blocks
someone. Moreover, we can ascertain when the user initiates a communication with
another user. While we cannot determine whether this occurs via a message or a call,
we can trace the communication and determine from the respective timestamps who
is sending and who is receiving if both devices have the monitoring app installed. In
the case of Line, we can only detect when the user receives a message. In Skype we
can tell that a user has performed one of the following actions: add/block a contact,
send a message or receive a call. In the case of Snapchat, we can determine when
a user receives or sends messages and, if both communicating users have installed
the monitoring app, we can determine from the timestamps which one is the sender
and the receiver. Additionally, we are able to trace an interaction which is either
the addition/removal of a contact or the sending/receipt of a snap. We argue that if
both parties have installed our monitoring app, the success rate of our approach is
further increased. For Wire we can determine when the user adds a new contact and
when the user interacts with others, but without being able to determine the mean
(distinguish between messages and calls). Finally, in the case of WhatsApp, we can
determine when a user initiates a phone call. However, we cannot determine exact
message receipt/sending, or call received in the same device. Again, if both parties
have installed our monitoring app, these results can be further fine-tuned.

The full list of the affected files for each application is illustrated in Table 13.4.
Figure 13.7 illustrates part of the problem in terms of file permissions. Files and
folders of WhatsApp have different file permissions, allowing an adversary to extract
a lot of metadata about them.

13 This is Just Metadata: From No Communication Content ... 295

Fig. 13.7 Partial structure

and permissions of the folder
that Whatsapp is installed as
recorded in the rooted phone

/
L, data

|—_ data

H | com.whatsapp

cache (771)

|—'___ com.android.opengl.shaders._cache

| code_cache (700)

L:' secondary-dexes (700)
I-'_ MultiDex.lock (600)

databases (771)

H | .jobqueue-WhatsAppJobManager (660)
K.l axolotl.db (660)

| chatsettings.db (660)

K llocation.db (660)

H. msgstore.db (660)

L wa.db

files (771)

Hilkey (600)

Holrc2 (600)

K |statistics (600)

L Logs (700)

lg | whatsapp.log (600)
lib (755)
L:__no_backup (700)

|—'__ com.google.android.gns.appid-no-backup (600)

| shared.prefs (771)

| com.google.android.gms.appid.xml (660)
" keystore.xml (660)
{Imultydex.version.xml (660)

{lregistration.RegisterPhone.xml (660)

Based on the above, it is apparent that unauthorized apps can derive a lot of valu-
able information from communication apps such as when they have been used and,
should the monitoring app has been installed in both devices, to whom is interacting

with whom, how and when.

296 C. Kapetanios et al.

Table 13.3 Actions that can be deduced from metadata per app. Cells marked with T in the same
row denote that an action has been identified and can be narrowed down to one of them. Same
applies for *. Snapchat does not enable calls, but “snaps”

Contact Message Call Unidentified
Add Delete Block Send Receive Make Receive Action
BBM
Facebook messenger v vt vt vt vt
ICQ v
imo v
Line v
KakaoTalk v
QQ International
Signal
Skype vt vt Vas Ve
Snapchat vt vt v v vt vt
Telegram
Viber
‘WeChat
Wire v vt vt vt vt
WhatsApp vt vt v vt

13.4.3 Forged Ul

Currently, there exist malware targeting bank applications which use overlays and UI
replication of numerous banking applications.* Malware of this kind include families
such as Bankbot, Bankun, Koler and SlemBunk, while there are other malware fam-
ilies like ransomware, e.g. Lockdroid, which also exploit these capacities. MazarBot
and Svpeng Malware are two malware families which are even worse as they man-
age, after obtaining administrator privileges on the infected device, to trick users to
give away their banking credentials. Moreover, new variants of Svpeng have keylog-
ger capacities thanks to Accessibility Services. To quantify the problem, it must be
highlighted that, according to CheckPoint [9], 74% of ransomware, 57% of adware,
and 14% of banker malware abuse the notorious SYSTEM_ALERT_WINDOW per-
mission.

While there are plenty of ways for the aforementioned malware to overlay the
actual UI such as those described in [2, 4, 14, 29], the key ingredient of all is
to timely present the overlay to the user. As discussed, these methods cannot be
applied for API levels >23; therefore, other methods could be used to trick the user
into disclosing the foreground app, e.g. forged shortcuts and notifications [2, 22].
However, since apps can retrieve the list of installed apps, they could try to use the
metadata to infer when a targeted app is used.

To showcase the issue, we used Paypal as our reference. Using the same methodol-
ogy, we monitored which files of Paypal are changed once the user logs in or logs out.
The exact list of data/data/com.paypal .android.p2pmobile/ direc-

“https://blog.avast.com/mobile-banking-trojan-sneaks-into- google- play-targeting- wells- fargo-
chase-and-citibank-customers.

https://blog.avast.com/mobile-banking-trojan-sneaks-into-google-play-targeting-wells-fargo-chase-and-citibank-customers
https://blog.avast.com/mobile-banking-trojan-sneaks-into-google-play-targeting-wells-fargo-chase-and-citibank-customers

13 This is Just Metadata: From No Communication Content ... 297

tory is illustrated in Listing 2. Therefore, an attacker can easily determine when the
user signs in to Paypal.

The attack is now straightforward: an app that requests only normal permissions
monitors the Paypal’s target file. When the user logs in, the malicious app comes
to the foreground, replicating the UI of the Paypal app. To prevent detection, the
app can collect its data regarding the fake UI construction during runtime from the
Internet and replicate the Ul through a web form that is displayed within a web view.
Since the user was already using the app, he considers that there was an error in
typing his credentials and types them again, without knowing that they are disclosed
to the malicious app. Once collected, the credentials are sent to the C&C server, and
the app launches Paypal to allow the user to interact with the right app. The concept
is illustrated in Fig. 13.8. Note that in this scenario the malicious app does not need
any special permission to overlay Paypal as it uses Ul replication and the forged Ul
completely covers the genuine one. Its only requirement is to come to the foreground,
something that all apps in Android have the permission to accomplish.

shared_prefs/PresentationAccount.RememberedUserState.xml
shared_prefs/FoundationAccount.AccountState.xml
shared_prefs/FoundationCore.DeviceInfoState.xml
shared_prefs/version.6.shared.keys.xml
files/com.paypal.android.AccountInfo.secure
files/CoreStateData

files/AdjustIoActivityState

Listing 13.2: Files changed when a user logs in to Paypal.

13.4.4 User Metadata Experiment

In our independent research, to determine the extent of the problem we have also con-
ducted a supplementary experiment involving distinctly statistical user data. More
precisely, we created an app that collects both hardware and software specs from
users’ devices, accompanied by a test about the metadata leakage in question. The
resulting data bundle from each user was sent to our server for further processing. This
limited yet enlightening experiment justified our claims, about Android fragmenta-
tion that results in vendors failing to conform to AOSP security guidelines, while
the same is true about app developers too. More precisely, our short-term experi-
ment involved 120 random users. The analysis of the results showed that almost half
of them, namely 56 users (46%) owned an Android smartphone with an OS API
level beyond 23 (Marshmallow). This already means that 54% of the users in our
evaluation were already vulnerable to the metadata leakage. In the remaining 46%,

qprsqof-aj0usens

Tes-qpTRqorDZ

ws-qp [eqorHZ

[puedxre

[es-qppjofoxe

urs-qprjo[oxe

wys-qp-a10)s8sut

[em-qp-o10ys8sut
qp-aseqeyep-pajdLous-ajqesporun
qp-uyedso)
MOPRYSYIOMOWEY SON A[eUE- PIoIpUe-Jeypdeus-woo
spromaurely sonA[eue prorpue-jeyodeus urod

C. Kapetanios et al.

AP IELOwEN
qpspueLyo/soseqeyep

ZapTsproxyy
qp-spoxd
oA1000Y
reD

qprsqof-ojouions

[es-qp-pIofoxe
wys-qprpjofoxe
wys-qpro10ysIsut
[em-qp-otoysdsu

qp-eseqejep-pajdAous-as|qeyoorun

qpruyedsoy
MoprySIoMouwRy ST [eue’ proipue-jeyddeus uod
saomoureLyson A[eue: ploapue-jeyodeus woo

qpruyedsoy
MoprySIoMswR so1jA[eue” proipue-jeyodeus uod
saomourelysonA[eue: proapue-jeyodeus-woo

QPRLowE

qprspusLyou/sosequyep
Zqprspeoxyy

qprsqof-ojouens
[eM-qpeqo[DZ,
ws-qp [eqorD7,
[ouedxyut
[em-qp-p10[oxe
wys-qp pjo[oxe
ws-qprotoysFsu
[ea-qp-o10ysBsu

qpsqof-aj0usens
[EA-qP Q0107

us-qp [eqoD7,
[Puedxrm

qproseqerep-paydAus-aqusporun

qp-uyedsoy
MOPBYSHIOMOUIEL SON A[Ue- PIOIpUE- Jeypdeus oo
SIomaurely O A[RUR: proIpue: jeyodeus oD

qp-uyedsoy
MOPBYSIIOMOUIEL SO A[Ue: PIOIpUE FeddRus 0D
Sromaurely sorA[eue” proipue yeyodeus wod
Kaoysty-ysnd-our[10ARu

suI-1oAR

qPIeLoe ey qPIELoe ey

qpspueLyouy/soseqeyep qprspueLyouy/soseqeep

2qprspeoIyy gapTspeoIy)
qp-sjord qp-soad
eI oA1000Y
oFessoly

/soseqeyep form woo feyep erep,/
BN

/sosequeyep/ddesyeym won /eyep feyep/

ddysyeym

qp-eseqeyep-paydLous-a|qeyoorun

qp-uedsoy
MOPRYSHIOMAUIRI) SO1}A[RUR ploIpue jeiddeus uiod
saomouIRIson Aeue: proapue-peyodeus-wod

‘soseqeyep /proipue jerpdeus wod /eyep/erep/
Jeyodeug

/sosequyep /proapue-our-toneu-dl/eyep /eyep/
our

/soseqRIED /3[RY OBy Wod /eyep /erep/
AreLowey

/oy propue-ourwos /eyep eyep,/

ot

Zqpspeoryy oyoeo-[bydess So5UqRYEp /2010 00qP0R) WOD /eyep /eyep/
qp-sjoad qp-spoad 1oBussou 300qooE]
puog sporg RXSICTe] PPV
joBUOD

298

uonesrjdde 1od uonoe yoea £q pajoagje so[1d €T dqeL

13 This is Just Metadata: From No Communication Content ... 299

Forgot?

Use phone number instead

Use phone numoper ir

Jew to PavPal? n
New to PayPal? Sign up

lew to PayPal? Sign

Fig. 13.8 Overlaying Paypal interface with forged interface

we further examined whether the vendors of the devices had incorporated the file
permission security update which was introduced in Nougat.

The results showed that two major vendors, (see Fig. 13.1), namely Samsung and
Xiaomi, do not meet the criteria, as well as OnePlus. For these three well-known man-
ufacturers, we have discovered metadata leakage in popular messaging applications,
which, most importantly, have a target API level (app specific targetSdkVersion)
above 23. Regarding the case of Samsung, our experiment identified five of the most
popular device models that are vulnerable, while we have found two popular models
from Xiaomi and one from for OnePlus. Of course, these findings indicate that the
problem is generic regarding the vendors and not specific devices. However, this
argument is subject to the extent of the experiment.

Going one step further we have examined the number of vulnerable devices where
the API level of Android is beyond 23 (Nougat and Oreo), yet the target app for the
metadata leakage has a targetSdkVersion below 24. The results are quite alarming
since we did not find any protected device in this case. Namely, the vendors that

300 C. Kapetanios et al.

are affected by this vulnerability in our study are Samsung, Huawei, Xiaomi, LGE
Nexus, LG, OnePlus, Sony and HMD Global (NOKIA). It is important to note that for
these vendors, Google’s models (Nexus/Pixel) are also included, while a significant
number of these devices were running Android Oreo.

Concluding, our reported metadata leakage issue affects end-users in an over-
whelming majority of cases since all parties involved can be found to be defective in
the vulnerability in question. Summarizing, the OS is vulnerable in all versions prior
to Nougat. Even in the cases after Nougat, device manufacturers may provide users
with “insecure” devices by not following the AOSP guidelines. Even after Nougat
and with conformance to the AOSP guidelines, app developers, including top compa-
nies (e.g. Facebook apps like Facebook, Facebook Messenger, and Instagram) may
provide users with “insecure” apps, by not targeting their app API beyond 23.

13.4.5 Proofs of Concept

To validate the results of our work, we provide two deliberately stub implementations
of the attacks. The first APK monitors the aforementioned communication apps and
the second one the login actions to Paypal. All recorded actions are displayed as a log
at https://monitor1webapp.azurewebsites.net/. To this end, we record a timestamp,
the UserID (in this case AndroidID), the application which was being monitored and
the action which was detected.

13.5 Conclusions

In this paper we have provided evidence that metadata leakage in not only existent,
butin can easily lead to user data harvesting, user profiling and even user surveillance,
impinging on users’ lives. After analyzing the results of this study, it seems quite
straightforward that the manufacturers need to fully embrace AOSP to implement
security requirements effectively into their devices. However, at the time of writing
this scenario is not the case, neither seems realistic or feasible given the huge deal
of effort that would admittedly require. Therefore, the solution probably lies in the
developers’ hands. A potential patch that could be easily deployed and would help
towards a solution of the “metadata leakage” problem for each app would be to utilize
app subfolders with random names. To do this, the app upon installation or update
should not be assigned to any local database. Instead, upon its first execution, it should
create a folder using a nonce for its name, and it should store this name localy, e.g. in
its shared preferences. Thus, it would be impossible for a malicious app to derive the
folder name without exploiting a major app-specific vulnerability. Consequently, the
patch would manage its goal since the attack stems from the fact that the apps’ folder
names are fixed and consequently “expected”, with wrong permissions assigned to
them that the apps cannot change. Obviously, to implement the above, the requested

https://monitor1webapp.azurewebsites.net/

13 This is Just Metadata: From No Communication Content ... 301

changes would only involve changing the connection string to include the prefix in
the corresponding files along with adding the necessary queries to generate the initial
structure in local databases. Likewise, one could also rename the corresponding files
by adding a prefix that would be also stored in shared preferences, given that apps
do not have access to the shared preferences of their peers unless they have root
privileges.

Acknowledgements The authors would like to thank ElevenPaths for their valuable feedback and
granting them access to Tacyt.

References

1. Y. Aafer, W. Du, H. Yin, Droidapiminer: mining API-level features for robust malware detection
in android, in International Conference on Security and Privacy in Communication Systems
(Springer, 2013), pp. 86-103

2. E. Alepis, C. Patsakis, Trapped by the UI: the android case, in International Symposium on
Research in Attacks, Intrusions, and Defenses (Springer, 2017), pp. 334-354

3. E. Alepis, C. Patsakis, Unravelling security issues of runtime permissions in android (J. Hardw.
Syst, Secur, 2018)

4. Y. Amit, Accessibility clickjacking the next evolution in android malware that impacts more
than 500 million devices (2016). https://www.skycure.com/blog/accessibility-clickjacking/

5. Android Developer, Permission changes. https://developer.android.com/about/versions/
nougat/android-7.0-changes.html. Accessed 07 Feb 2018

6. Android Developer. Android 7.0 behavior changes (2017). https://developer.android.com/
about/versions/nougat/android-7.0-changes.html

7. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, C.E.R.T. Siemens, Drebin: effec-
tive and explainable detection of android malware in your pocket. NDSS 14, 23-26 (2014)

8. A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, G. Vigna, What the app is
that? deception and countermeasures in the android user interface, in Proceedings of the 2015
IEEE Symposium on Security and Privacy (IEEE Computer Society, 2015), pp. 931-948

9. Check Point Mobile Research Team, Android permission security flaw (2017). https://blog.
checkpoint.com/2017/05/09/android-permission-security-flaw/. Accessed 09 Sep 2017

10. Q.A. Chen, Z. Qian, Z.M. Mao, Peeking into your app without actually seeing it: Ul state
inference and novel android attacks, in 23rd USENIX Security Symposium (USENIX Security
14) (San Diego, CA, USENIX Association, 2014), pp. 1037-1052

11. ElevenPaths, An innovative tool for the monitoring and analysis of mobile threats. https://www.
elevenpaths.com/technology/tacyt/index.html

12. P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M.S. Gaur, M. Conti, M. Rajarajan, Android
security: a survey of issues, malware penetration, and defenses. IEEE Commun Surv Tutor
17(2), 998-1022

13. A.P. Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A survey of mobile malware in the wild,
in Proceedings of the 1st ACM workshop on Security and Privacy in Smartphones and Mobile
Devices (ACM, 2011), pp. 3-14

14. Y. Fratantonio, C. Qian, S. Chung, W. Lee, Cloak and dagger: from two permissions to complete
control of the Ul feedback loop, in Proceedings of the IEEE Symposium on Security and Privacy
(Oakland) (, San Jose CA, 2017)

15. Google, AOSP source code for filesystem_config. https://android.googlesource.com/platform/
system/core/+/master/libcutils/include/private/android_filesystem_config.h

16. M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, Riskranker: scalable and accurate zero-day
android malware detection, in Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services (ACM, 2012), pp. 281-294

https://www.skycure.com/blog/accessibility-clickjacking/
https://developer.android.com/about/versions/nougat/android-7.0-changes.html
https://developer.android.com/about/versions/nougat/android-7.0-changes.html
https://developer.android.com/about/versions/nougat/android-7.0-changes.html
https://developer.android.com/about/versions/nougat/android-7.0-changes.html
https://blog.checkpoint.com/2017/05/09/android-permission-security-flaw/
https://blog.checkpoint.com/2017/05/09/android-permission-security-flaw/
https://www.elevenpaths.com/technology/tacyt/index.html
https://www.elevenpaths.com/technology/tacyt/index.html
https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android_filesystem_config.h
https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android_filesystem_config.h

302

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

C. Kapetanios et al.

K. Nohl, J. Lell. Mind the Gap—Uncovering the Android Patch Gap through Binary-only Patch
Analysis (2018)

E.J. Kartaltepe, J.A. Morales, S. Xu, R. Sandhu, Social network-based botnet command-and-
control: emerging threats and countermeasures, in International Conference on Applied Cryp-
tography and Network Security (Springer, 2010), pp. 511-528

Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas, Laurent
Vivier, The new ext4 filesystem: current status and future plans. Proc. Linux Symp. 2, 21-33
(2007)

K. Nohl, Mobile self-defense (snoopsnitch), in Proceedings of Chaos Computer Security Con-
ference (2014)

Ed O’Keefe, https://www.washingtonpost.com/news/post-politics/wp/2013/06/06/transcript-
dianne-feinstein-saxby-chambliss-explain-defend-nsa-phone-records-program/?utm_term=.
f2e1466faae2 (2013)

C. Patsakis, E. Alepis, Knock-knock: the unbearable lightness of android notifications, in
Proceedings of the 4th International Conference on Information Systems Security and Privacy,
ICISSP 2018, Funchal, Madeira-Portugal, January 22-24, 2018, ed. by P. Mori, S. Furnell, O.
Camp (SciTePress, 2018), pp. 52-61

N. Peiravian, X. Zhu, Machine learning for android malware detection using permission and
API calls, in 2013 IEEE 25th International Conference on Tools with Artificial Intelligence
(ICTAI) (IEEE, 2013), pp. 300-305

Android Police, https://www.androidpolice.com/2017/11/12/google-will-remove- play-store-
apps-use-accessibility-services-anything-except-helping-disabled-users/ (2017)

C. Spensky, J. Stewart, A. Yerukhimovich, R. Shay, A. Trachtenberg, R. Housley, R.K. Cun-
ningham, Sok: privacy on mobile devices—it’s complicated. Proc. Privacy Enhanc. Technol.
2016(3), 96-116 (2016)

Statista, Global market share held by the leading smartphone operating systems in sales to end
users from 1st quarter 2009 to 2nd quarter 2018. https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/

T. Vidas, D. Votipka, N. Christin, All your droid are belong to us: a survey of current android
attacks, in Proceedings of the 5th USENIX Conference on Offensive Technologies (USENIX
Association, 2011), pp. 10-10

D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, K.-P. Wu, Droidmat: android malware detection
through manifest and API calls tracing, in 2012 Seventh Asia Joint Conference on Information
Security (Asia JCIS) (IEEE, 2012), pp. 62-69

L. Ying, Y. Cheng, Y. Lu, Y. Gu, P. Su, D. Feng, Attacks and defence on android free floating
windows, in Proceedings of the 11th ACM on Asia Conference on Computer and Communica-
tions Security (ACM, 2016), pp 759-770

Y. Zhou, W. Zhi, W. Zhou, X. Jiang, Hey, you, get off of my market: detecting malicious apps
in official and alternative android markets. NDSS 25, 50-52 (2012)

https://www.washingtonpost.com/news/post-politics/wp/2013/06/06/transcript-dianne-feinstein-saxby-chambliss-explain-defend-nsa-phone-records-program/?utm_term=.f2e1466faae2
https://www.washingtonpost.com/news/post-politics/wp/2013/06/06/transcript-dianne-feinstein-saxby-chambliss-explain-defend-nsa-phone-records-program/?utm_term=.f2e1466faae2
https://www.washingtonpost.com/news/post-politics/wp/2013/06/06/transcript-dianne-feinstein-saxby-chambliss-explain-defend-nsa-phone-records-program/?utm_term=.f2e1466faae2
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

	13 This is Just Metadata: From No Communication Content to User Profiling, Surveillance and Exploitation
	13.1 Introduction
	13.1.1 Motivation
	13.1.2 Main Contributions
	13.1.3 Vulnerable Audience
	13.1.4 Organization of This Work

	13.2 Related Work
	13.2.1 Android Permissions
	13.2.2 Android Foreground App

	13.3 Collecting App Metadata
	13.3.1 Assumptions and Desiderata
	13.3.2 Basic Concept
	13.3.3 Methodology

	13.4 Experimental Results
	13.4.1 Monitoring the Android Filesystem
	13.4.2 Communication Apps
	13.4.3 Forged UI
	13.4.4 User Metadata Experiment
	13.4.5 Proofs of Concept

	13.5 Conclusions
	References

