
133 9

Reed–Muller and Kerdock Codes

In � Chapter 6, we studied Reed–Solomon codes, codes whose codewords are the
evaluation of polynomials in one variable of degree at most k − 1 at the elements of
Fq ∪ {∞}. Reed–Solomon codes are short length codes, where the length n is bounded
by q + 1, and only useful when we take the field to be large. The alternant codes which
we constructed from generalised Reed–Solomon codes in � Chapter 7 allowed us to
construct codes over small fields and we put this to good use. In this chapter we will
consider another generalisation of Reed–Solomon codes, codes whose codewords are
the evaluation of polynomials in many variables. This again allows us to construct
linear codes over small fields and we will restrict our attention, for the most part,
to binary linear codes. It will turn out that these codes are not asymptotically good.
Nevertheless, they are an important class of codes which are widely implemented due to
the availability of fast decoding algorithms. One example of such a decoding algorithm
is the majority-logic decoding algorithm that we will study here. We will then go on and
construct Kerdock codes which are certain subcodes of the second-order Reed–Muller
codes. These codes can give examples of non-linear codes with parameters for which no
linear code exists.

9.1 Binary Reed–Muller Codes

A Boolean function from F
m
2 to F2 is the evaluation map of a polynomial with

coefficients from F2 in m variables generated by monomials in which the degree of
any particular indeterminate is at most 1.

Note that for both elements x of F2, x2 = x, so the function defined by the evaluation
of the polynomial x2

1x3
2x3 at the elements of F3

2 and the polynomial x1x2x3 will be the
same. Therefore, it makes sense that when considering evaluations of polynomials in
many variables over F2, we restrict our attention to Boolean functions.

The r-th order Reed–Muller code is a binary code R(r,m) of length 2m defined by

R(r,m) = {(f (a1), . . . , f (a2m)) | deg f � r},

© Springer Nature Switzerland AG 2020
S. Ball, A Course in Algebraic Error-Correcting Codes, Compact Textbooks in Mathematics,
https://doi.org/10.1007/978-3-030-41153-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41153-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-41153-4_9

9

134 Chapter 9 • Reed–Muller and Kerdock Codes

where {a1, . . . , a2m} is the set of vectors of Fm
2 and f runs through all Boolean functions

that are defined by polynomials in m indeterminates of degree at most r .
The code R(r,m) is a linear code over F2, since

(f (a1), . . . , f (a2m)) + (g(a1), . . . , g(a2m)) = ((f + g)(a1), . . . , (f + g)(a2m)).

The vector space of Boolean functions of degree at most r in m variables has a canonical
basis, which is the set of monomials of degree at most r in m variables and degree at
most one in any particular variable. Therefore, the code R(r,m) has a generator matrix
whose rows are indexed by these monomials. For example, the set of monomials

{1, x1, . . . , xm, x1x2, . . . , xm−1xm}

is a basis for the vector space of Boolean functions in m variables of degree at most 2.

Example 9.1
The 11 × 16 matrix

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

x1

x2

x3

x4

x1x2

x1x3

x1x4

x2x3

x2x4

x3x4

is a generator matrix of the code R(2, 4), with the rows being indexed by the monomials in
four variables of degree at most two. �

We have already proved the following lemma.

Lemma 9.2 R(r, m) is a linear code of length 2m and of dimension

1 +
(

m

1

)
+

(
m

2

)
+ . . . +

(
m

r

)
.

Since R(r,m) is linear, Lemma 4.1 implies that its minimum distance is equal to the
minimum weight of a non-zero codeword. In the above example, evidently R(2, 4) has
codewords of weight 4 and this is indeed its minimum distance. In Theorem 9.3 we will

9.2 · Decoding Reed–Muller Codes

135 9

calculate the minimum distance for binary Reed–Muller codes. Later, in Theorem 9.15,
we will calculate the minimum distance for non-binary Reed–Muller codes.

Theorem 9.3
The minimum distance of R(r, m) is 2m−r .

Proof
By induction on m. If m = r , then the evaluation of the polynomial X1 · · ·Xr is a codeword
of weight one.

Suppose that the minimum distance of R(r, m) is 2m−r .
Order the vectors of Fm+1

2 so that the first 2m vectors have xm+1 = 0.
A codeword (u, u + v) of R(r, m + 1) is the evaluation of a polynomial

f (X) + Xm+1g(X),

where f (X) is a polynomial of degree at most r in m variables and g(X) is a polynomial of
degree at most r − 1 in m variables. Then u ∈ R(r, m), since it is the evaluation of f (X) and
v ∈ R(r − 1, m), since it is the evaluation of g(X).

If u = 0, then the codeword is (0, v) and by induction has non-zero weight at least
2m−(r−1).

If u + v = 0, then u = v ∈ R(r − 1, m) and so the codeword (u, 0) has non-zero weight
at least 2m−(r−1).

If neither u nor u + v is zero, then (u, u + v) has weight at least 2 · 2m−r = 2m−r+1,
since both u and u + v are in R(r, m).

Thus, the minimum weight of a non-zero codeword of R(r, m + 1) is 2m−r+1. By
Lemma 4.1, the minimum weight of a non-zero codeword of a linear code is equal to its
minimum distance. ��

9.2 Decoding Reed–Muller Codes

The popularity of Reed–Muller codes in real-world applications is due in part to the fact
that there are fast decoding algorithms, the most common of which is the focus of this
section. Before we consider this decoding algorithm, we first prove a couple of lemmas
which prove some properties of Boolean functions.

For each non-empty subset J of {1, . . . , m}, let

fJ (X) =
∏
j∈J

Xj

and define

f∅(X) = 1.

9

136 Chapter 9 • Reed–Muller and Kerdock Codes

Then

{fJ (X) | J ⊆ {1, . . . , m}, |J | � r}

is a basis for the space of polynomials in m variables of degree at most r whose
evaluations define Boolean functions.

We will exploit the following lemma repeatedly.

Lemma 9.4 Let J be a subset of {1, . . . , m}. Suppose

g(X) =
∑

L⊆{1,...,m}
aLfL(X),

for some aL ∈ F2, where the sum is over all subsets L of size at most m − |J |.
Then

∑
x∈Fm

2

fJ (x)g(x) = a{1,...,m}\J .

Proof
Let K ⊆ {1, . . . , m}.

If there is an i ∈ {1, . . . , m} \ K , then

∑
{x∈Fm

2 |xi=0}
fK(x) =

∑
{x∈Fm

2 |xi 	=0}
fK(x).

This implies

∑
x∈Fm

2

fK(x) = 0, (9.1)

unless K = {1, . . . , m}.
Then

∑
x∈Fm

2

fJ (x)g(x) =
∑

L⊆{1,...,m}

∑
x∈Fm

2

aLfJ (x)fL(x),

where the first sum on the right-hand side is over all subsets L of size at most m − |J |.
This expression is equal to

∑
L⊆{1,...,m}

aL

∑
x∈Fm

2

fJ∪L(x) = a{1,...,m}\J ,

by (9.1). ��

9.2 · Decoding Reed–Muller Codes

137 9

Theorem 9.5
The dual of the code R(r, m) is the Reed–Muller code R(m − r − 1, m).

Proof
A codeword u of R(r, m) is the evaluation of a polynomial

g(X) =
∑

K⊆{1,...,m}
aKfK(X),

for some aK ∈ F2, where the sum is over all subsets of size at most r .
A codeword v of R(m − r − 1, m) is the evaluation of

h(X) =
∑

L⊆{1,...,m}
bLfL(X),

for some bL ∈ F2, where the sum is over all subsets of size at most m − r − 1.
The inner product of u and v is

∑
x∈Fm

2

h(x)g(x) =
∑
x∈Fm

2

∑
K

∑
L

aKbLfK(x)fL(x)

=
∑
K

∑
L

aKbL

∑
x∈Fm

2

fK∪L(x) = 0,

by Lemma 9.4.
Therefore,

R(m − r − 1, m) ⊆ R(r, m)⊥.

By Theorem 9.3, the sum of the dimensions of R(r, m) and R(m − r − 1, m) is 2m, which is
the length of the codes.

Hence,

dim R(m − r − 1, m) = dim R(r, m)⊥.

��
The following lemma is fundamental to the decoding algorithm.

Lemma 9.6 Let

g(X) =
∑

K⊆{1,...,m}, |K|�r

bKfK(X),

9

138 Chapter 9 • Reed–Muller and Kerdock Codes

where bK ∈ F2 and let J be a subset of {1, . . . , m} of size r .
For all 2m−r choices of ai ∈ F2, i ∈ {1, . . . , m} \ J ,

∑
x∈Fn

2

g(x)
∏

i∈{1,...,m}\J
(xi + ai) = bJ .

Proof
When we expand the product in the sum, all terms have degree less than m except those
coming from

g(x)
∏

i∈{1,...,m}\J
xi = g(x)f{1,...,m}\J (x).

The lemma follows from Lemma 9.4. ��

We are now in a position to describe a decoding algorithm for Reed–Muller codes,
which is an example of a majority-logic decoding algorithm. Let v be the received
vector, whose coordinates vx are indexed by the vectors x ∈ F

m
2 . For each subset J of

{1, . . . , m} of size r , we perform a test. We wish to determine whether uJ is zero or one,
where the sent codeword u is the evaluation of

∑
J⊆{1,...,m}, |J |�r

uJ fJ (X).

For all 2m−r choices of ai ∈ F2, i ∈ {1, . . . , m} \ J , we calculate

∑
x∈Fm

2

vx

∏
i∈{1,...,m}\J

(xi + ai).

If the result of this test is 1 in the majority of cases, then we conclude that uJ = 1 and
vice versa, if it is 0 in the majority of cases, then we conclude that uJ = 0. Once we have
completed this for all subsets J of {1, . . . , m} of size r , we subtract the evaluation of

∑
K⊆{1,...,m}, |K|=r

uKfK(X),

from the received vector and continue with the subsets of size r − 1 supposing that, if
we are correctly decoding, we now have a corrupted codeword of R(r − 1,m).

All that remains to be shown, to prove that this decoding algorithm will correct up to
2m−r−1 − 1 error bits, is to show that an error bit will only affect one of the tests. Before
we prove this in Lemma 9.8, we consider an example.

Example 9.7
Suppose that we have encoded using R(2, 4) and have received

v = (1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0),

9.2 · Decoding Reed–Muller Codes

139 9

where the vectors of F4
2 are ordered as in the matrix G in Example 9.1.

We calculate

w = vGt = (1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0).

The coordinates are indexed by subsets of {1, 2, 3, 4} of size at most 2, as in Example 9.1.
Indexing the coordinates explicitly

J ∅ {1} {2} {3} {4} {12} {13} {14} {23} {24} {34}
wJ 1 0 1 1 0 1 1 0 0 1 0

where

wJ =
∑
x∈Fm

2

vxfJ (x)

are the coordinates of w.
We start by determining uJ for the subsets J of size r = 2.
To determine u{12}, we make 2m−r = 4 tests by calculating

∑
x∈Fm

2

vxx3x4,
∑
x∈Fm

2

vx(x3x4 + x3),
∑
x∈Fm

2

vx(x3x4 + x4)

and

∑
x∈Fm

2

vx(x3x4 + x3 + x4 + 1),

which is

w{34}, w{34} + w{3}, w{34} + w{4} and w{34} + w{3} + w{4} + w∅,

respectively.
The results of these tests are 0, 1, 0, 0, respectively, so we decode u{12} as 0, since there

are a majority of zeros.
The following table lists the results of these tests for all subsets of size 2 and indicates

the majority decision.

u{12} 0, 1, 0, 0 → 0 u{13} 1, 0, 1, 1 → 1 u{14} 0, 1, 1, 1 → 1

u{23} 0, 0, 0, 1 → 0 u{24} 1, 1, 0, 1 → 1 u{34} 1, 1, 0, 1 → 1

Based on the results of those tests, we subtract

(0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1)G

9

140 Chapter 9 • Reed–Muller and Kerdock Codes

from v and get

v1 = v + (0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1)G = (1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0).

If we are decoding correctly, v1 should be a (possibly) corrupted codeword of R(1, 4). To
determine uJ , where J is a subset of size 1, we repeat the above.

We calculate

w1 = v1Gt
1,

where G1 is the generator matrix of R(3, m). This vector will have coordinates

w1
K =

∑
x∈Fm

2

fK(x)v1
x,

where K is a subset of {1, 2, 3, 4} of size at most 3.
Indexing the coordinates explicitly as before

K ∅ {1} {2} {3} {4} {12} {13} {14}
w1

K 1 0 1 1 0 0 0 0

K {23} {24} {34} {123} {124} {134} {234}
w1

K 1 0 0 0 0 1 0

allows us to perform 2m−(r−1) = 8 tests for each uJ .
To determine u{1}, we make 8 tests by calculating

w1{234}, w1{234} + w1{23}, w1{234} + w1{24}, w1{234} + w1{34}, w1{234} + w1{23} + w1{24} + w1{2},

w1{234} + w1{23} + w1{34} + w1{3}, w1{234} + w1{24} + w1{34} + w1{4}

and

w1{234} + w1{23} + w1{24} + w1{34} + w1{2} + w1{3} + w1{4} + w1
∅.

The results of these tests are

u{1} 0, 1, 0, 0, 0, 0, 0, 0 → 0 u{2} 1, 1, 1, 1, 1, 0, 1, 1 → 1

u{3} 0, 0, 0, 0, 0, 1, 0, 0 → 0 u{4} 0, 0, 0, 1, 0, 0, 0, 0 → 0

Based on the results of the tests, we subtract

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)G

9.2 · Decoding Reed–Muller Codes

141 9

from v1 and get

v2 = v + (0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1)G = (1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Summing

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)G

to v2 we have that

v + (1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1)G = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Therefore, we have determined that the error is in the 7-th bit, that the uncoded string

u = (1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1)

and that the sent codeword was uG. �

To finish this section, we prove that an error bit affects exactly one of the tests when
testing a corrupted codeword of R(r,m). Since we perform 2m−r tests, this implies that
we can correct up to 2m−r−1 − 1 error bits, or in other terms 1

2d − 1 error bits, since the
minimum distance d of R(r,m) is 2m−r .

Lemma 9.8 Suppose that e is a vector of F2m

2 of weight one, whose coordinates are indexed
by the vectors of Fm

2 . Let J be a subset of {1, . . . , m}. For all but one of the choices of a,
whose coordinates ai ∈ F2 for i ∈ {1, . . . , m} \ J ,

∑
x∈Fm

2

ex

∏
i∈{1,...,m}\J

(xi + ai) = 0,

where ex is the coordinate of e indexed by x.

Proof
Let y be the vector of Fm

2 indexing the coordinate where the vector e has a 1.
The vector e is the evaluation of

m∏
i=1

(Xi + yi + 1),

since it is zero unless Xi = yi for all i = 1, . . . , m.
Hence, for all x ∈ F

m
2 ,

ex

∏
i∈{1,...,m}\J

(xi + ai) =
m∏

i=1

(xi + yi + 1)
∏

i∈{1,...,m}\J
(xi + ai),

9

142 Chapter 9 • Reed–Muller and Kerdock Codes

which will contain a factor x2
i + xi (and is therefore zero) unless ai = yi + 1 for all i ∈

{1, . . . , m} \ J . ��

To decode using this majority-logic decoding algorithm we perform at most 2m tests
k times, where k is the dimension of the code. This is less than n2 tests, where n is
the length of the code. Each test involves summing less than n terms, so the decoding
algorithm is completed in a number of steps which is polynomial in the length of the
code. This should be compared to syndrome decoding from � Chapter 4, which involved
searching through a look-up table with a number of entries which is exponential in
n. For this reason Reed–Muller codes and the majority-logic decoding algorithm are
widely implemented. However, they do not give a sequence of asymptotically good
codes. Although the relative minimum distance is 2−r , which we can bound away from
zero by fixing r , the transmission rate of R(r, m) is less than

r

n

(
log n

r

)

which tends to zero as n tends to infinity.

9.3 Kerdock Codes

A codeword of R(2,m) \ R(1,m) is the evaluation of polynomials of the form

q(X) + �(X) or q(X) + �(X) + 1,

where �(X) is a linear form in m variables and

q(X) =
∑

1�i<j�m

aijXiXj

is a non-zero quadratic form.
If the quadratic form q(X) has maximum rank, then we will prove that, for all the

linear forms �(X), these codewords will have large weight. Therefore, if we can find a
set of quadratic forms whose differences are quadratic forms of maximum rank, then the
distance between any two codewords will be large. In this section we will develop and
formalise this idea.

Let A = (aij) be the symmetric matrix defined by the symmetric bilinear form

b(X, Y) = q(X + Y) − q(X) − q(Y) =
∑

1�i<j�m

aij (XiYj + XjYi) = XtAY.

The rank of the bilinear form b(X, Y) is defined to be the rank of A.

9.3 · Kerdock Codes
143 9

Lemma 9.9 Suppose m is even. The evaluation of

m/2∑
i=1

X2i−1X2i

at the vectors of Fm
2 has 2m−1 + 2m/2−1 zeros.

Proof
There are 2m/2 zeros of the form (0, x2, 0, x4, . . . , 0, xm).

If x2i−1 	= 0 for some i = 1, . . . , m/2, then one of the x2i is determined by

m/2∑
i=1

x2i−1X2i = 0,

which gives 2m/2−1(2m/2 − 1) zeros of this form, 2m/2−1 zeros for each non-zero vector
(x1, x3, . . . , xm−1).

Hence, there are precisely 2m−1 + 2m/2−1 zeros when evaluated at the vectors of Fm
2 . ��

We are going to construct codes whose codewords are the evaluation of the sum of
a quadratic form and a linear form. For this reason, we want to know the weights of the
vectors which are the evaluations of these Boolean functions.

Lemma 9.10 Suppose m is even, q(X) is a quadratic form and �(X) is a linear form. If
the bilinear form associated to q(X) has rank m, then the evaluation of q(X) + �(X) at the
vectors of Fm

2 has either 2m−1 + 2m/2−1 or 2m−1 − 2m/2−1 zeros.

Proof
Dickson’s theorem, Exercise 9.2, implies that there is a basis of Fm

2 with respect to which
q(x) + �(X) is

m/2∑
i=1

(X2i−1X2i + a2i−1X2i−1 + a2iX2i).

This is equal to

m/2∑
i=1

(X2i−1 + a2i)(X2i + a2i−1) + b

for some b ∈ F2. By Lemma 9.9, the evaluation of q(X) + �(X) has either 2m−1 + 2m/2−1

zeros or 2m − (2m−1 + 2m/2−1) zeros, depending on whether b = 0 or 1. ��

9

144 Chapter 9 • Reed–Muller and Kerdock Codes

Let K be a set of symmetric m × m matrices over F2, which have zeros on the
diagonal, and which have the property that the matrix A − A′ has rank m for all distinct
A, A′ ∈ K .

No two matrices in K can have the same first row, since their difference is of rank
m. The entries on the diagonal of the matrices in K are zero, so the top-left entry of a
matrix in K is zero. Hence, we have that

|K| � 2m−1.

For each A = (aij) ∈ K , let

qA(X) =
∑

1�i<j�m

aijXiXj .

Let C(K) be the code whose codewords are the evaluation at the vectors of Fm
2 of

qA(X) + �(X) or qA(X) + �(X) + 1,

for all A ∈ K and for all linear forms �(X).

Theorem 9.11
Suppose that m is even. The code C(K) is a binary block code of length 2m, size
|K||R(1, m)| and minimum distance 2m−1 − 2m/2−1.

Proof
The distance between the evaluation of

qA(X) + �(X) + b

and

qA′(X) + �′(X) + b′

is the weight of the evaluation of

qA−A′(X) + �(X) − �′(X) + b − b′.

Since, A − A′ has rank m, Lemma 9.10 implies that this distance is at least 2m−1 − 2m/2−1.
��

A Kerdock code is a code C(K) where |K| = 2m−1. Thus, for a Kerdock code, K

is of maximum size and the set K is called a Kerdock set. A Kerdock code is a binary

9.4 · Non-binary Reed–Muller Codes

145 9

block code of length 2m, it has minimum distance 2m−1 − 2m/2−1 and size 22m, i.e. it is
a (2m, 22m, 2m−1 − 2m/2−1)2 code.

There are many non-equivalent Kerdock codes. Indeed, if m − 1 is not prime, then
there are at least 2

√
m/2 inequivalent Kerdock codes of length 2m. However, a sequence

of Kerdock codes, whose lengths tend to infinity, is asymptotically bad. Although the
relative minimum distance tends to 1

2 , the transmission rate is 2m/2m, which tends to
zero.

Kerdock codes are of interest because they can be non-linear. The algebraic and
geometric nature of their construction allows for non-trivial decoding algorithms to be
implemented. The fact that Kerdock codes can be non-linear opens up the possibility of
constructing codes with parameter sets for which linear codes do not exist.

Example 9.12
Consider the set of 4 × 4 matrices over F2

{

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 1

0 1 1 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 0

⎞
⎟⎟⎟⎠}.

This set of matrices can be extended to a set K of 8 matrices with the property that the
difference of any two matrices has rank 4, see Exercise 9.5. Thus, K is a Kerdock set and,
by Theorem 9.11, the binary Kerdock code C(K) is a (16, 256, 6)2 code. We proved in
Example 4.20 that there is no binary linear code with these parameters. This code is the
Nordstrom–Robinson code. �

9.4 Non-binary Reed–Muller Codes

Until now we have only considered Reed–Muller codes over F2, but one can naturally
generalise the definition of a Reed–Muller code over a general finite field Fq . The
codewords of Rq(r,m) are the evaluations at the vectors of Fm

q of polynomials of degree
at most r in m variables, where the degree in any particular variable is at most q−1. The
number of vectors in an m-dimensional vector space over Fq is qm, so the length of the
linear code Rq(r,m) is qm. Its dimension is more difficult to calculate, see Exercise 9.7.
In the following examples, we calculate the dimension for some specific cases and some
low weight codewords, which we will then go on and prove are of minimum non-zero
weight.

Example 9.13
Suppose r � q − 1. The evaluation of any polynomial in m variables of degree at most r will
be a codeword of Rq(r, m). The set

{Xc1
1 · · ·Xcm

m | c1 + · · · + cm � r}

9

146 Chapter 9 • Reed–Muller and Kerdock Codes

is a basis for the space of polynomials in m variables of degree at most r . Hence, the
dimension of Rq(r, m) is

(
m + r

r

)

since this is the number of non-negative integer solutions to

c1 + · · · + cm � r.

Let g(X1) be a polynomial of degree r with r distinct roots in Fq . The evaluation of g is
a codeword with precisely rqm−1 zero coordinates; a zero coordinate being indexed by a
vector of F

m
q whose first coordinate is a root of g. Therefore, Rq(r, m) has codewords of

weight (q − r)qm−1. �

Example 9.14
The space of polynomials of degree at most 3 in three variables in which no variable has an
exponent larger than 2 has a basis

{1, X1, X2, X3, X
2
1, X2

2, X2
3, X1X2, X1X3, X2X3,

X2
1X2, X

2
1X3, X

2
2X1, X

2
2X3, X

2
3X1, X

2
3X2, X1X2X3}.

Therefore, the code R3(3, 3) is a 17-dimensional ternary linear code of length 27. We could
also have arrived at this conclusion by considering a monomial basis for all polynomials of
degree at most three in three variables and deleting X3

1, X3
2 and X3

3, see Exercise 9.7. �

Suppose that r = a(q − 1) + b, where 0 � b � q − 2. If g(X1) is a polynomial of
degree b with b distinct roots in Fq , then the evaluation of

g(X1)(X
q−1
2 − 1) · · · (Xq−1

a+1 − 1),

a polynomial of degree r , is non-zero only when evaluated at

x = (x1, 0, . . . , 0, xa+2, . . . , xm)

for some x1 which is not a root of g. Therefore, Rq(r,m) has a codeword of weight

(q − b)qm−a−1.

We shall prove that this is the minimum weight of a non-zero codeword in the
following theorem, the proof of which is an example of a proof using the polynomial
method. This type of proof, which one sees often in combinatorics, attempts to
obtain bounds from the fact that the number of zeros of a non-zero polynomial is
bounded. The application of the method is often something like the following. Given

9.4 · Non-binary Reed–Muller Codes

147 9

a combinatorial object, a polynomial is constructed in such a way that the properties
of the combinatorial object are translated into algebraic properties of the polynomial.
Usually we are interested in the zeros of the polynomial, often restricted to subsets of a
vector space. Here, the polynomial is directly given as the polynomial whose evaluation
is the codeword. By bounding from above the number of zeros of the polynomial, we
will bound from below the weight of the codeword.

Theorem 9.15
The minimum distance of Rq(r, m) is (q − b)qm−a−1, where r = a(q − 1) + b and
0 � b � q − 2.

Proof
By induction on m.

If m = 1, then the codewords are the evaluation of a polynomial of degree r � q − 1 in
one variable. The polynomial has at most r zeros, so the codeword has weight at least q − r .
Observe that if r = q − 1, then a = 1 and b = 0 and

(q − b)qm−a−1 = q/q = 1 = q − r.

Suppose that the codeword u ∈ Rq(r, m) is the evaluation of the polynomial

f (X) = f (X1, . . . , Xm).

We write f (X) as a polynomial in Xm, whose coefficients are polynomials in X1, . . . , Xm−1.
Thus,

f (X) =
c∑

i=0

fi(X1, . . . , Xm−1)X
i
m,

where c is the degree of f (X) in the indeterminate Xm. Note that fc(X1, . . . , Xm−1) 	≡ 0
and

deg fc � deg f − c � r − c.

The codeword of Rq(r − c, m − 1) which is the evaluation of fc has, by induction, at least

(q − b′)qm−a′−2

non-zero coordinates, where r − c = a′(q − 1) + b′ and 0 � b′ � q − 2.
For any (x1, . . . , xm−1) such that fc(x1, . . . , xm−1) 	= 0, there are at least q −c elements

of Fq for which f (x1, . . . , xm−1, Xm) is not zero. Hence, the codeword u has weight at least

(q − c)(q − b′)qm−a′−2.

9

148 Chapter 9 • Reed–Muller and Kerdock Codes

It remains to prove that

(q − c)(q − b′)qm−a′−2 � (q − b)qm−a−1.

The theorem then follows since, by Lemma 4.1, the minimum distance of a linear code is
equal to the minimum weight of a non-zero codeword.

If a′ � a − 2, then this is clear, so we can assume a′ = a − 1 or a.
Suppose a′ = a − 1 and (q − c)(q − b′) < q − b. This inequality implies b′ > b. We

have r = a(q − 1) + b and r − c = a′(q − 1) + b′, so

c = (a − a′)(q − 1) + b − b′ = q − 1 + b − b′.

Then (q − c)(q − b′) < (q − b) implies (b′ − b + 1)(q − b′) < q − b, a contradiction.
Suppose a′ = a and (q − c)(q − b′) < q(q − b). We have r = a(q − 1) + b and

r − c = a′(q − 1) + b′, so c = b − b′. Then (q − c)(q − b′) < q(q − b) implies (q − b +
b′)(q − b′) < q(q − b) which implies b < b′ and c < 0, a contradiction.

��

9.5 Comments

Reed–Muller codes were introduced by Reed [59] and Muller [53] in the 1950s.
We have taken an algebraic rather than a geometric approach to the majority-logic

decoding algorithm. For a geometric description of the algorithm, see Van Lint [74] or
MacWilliams and Sloane [50].

Dickson’s classification of quadratic form over fields of even characteristic is from
[22].

If m is odd, then there are examples of sets K for which Exercise 9.6 is a (1
2 (m2 +

m) + 1 − rm)-dimensional binary linear code. The 11-dimensional codes (m = 5 and
r = 2) are the codes which caused a dispute between Apple and Samsung, referred to
in James Davis’ lecture [20]. They can be found in Corollary 17 (m = 5, d = t = 2)
on page 455 of MacWilliams and Sloane [50].

Kerdock codes were first considered by Kerdock in [44] in 1972. That there are an
exponential number of inequivalent Kerdock codes is proven by Kantor in [41]. Kantor
takes a geometric approach to Kerdock codes in the articles [42], a treatment of which
can be found in Chapter 12 of Cameron and van Lint’s book [17]. The Nordstrom–
Robinson code is from [54]. Kerdock codes have applications to quantum mechanics,
see [15] and [18].

The non-binary Reed–Muller codes were defined by various authors. Theorem 9.15
is attributed to Kasami, Lin and Peterson [43] in Bishnoi [11], where the proof given
here is adapted from.

9.6 · Exercises
149 9

9.6 Exercises

9.1 Suppose that we have sent a codeword of the code R(2, 4), the coordinates ordered as
in Example 9.1, and have received the vector

(0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1).

i. Decode the received vector using syndrome decoding.
ii. Decode the received vector using majority-logic decoding.

9.2 Suppose that q(X) is a quadratic form of rank m of the type

q(X) =
∑

1�i<j�m

qijXiXj .

Prove that there is a basis of Fm
2 , with respect to which, q(X) is

m/2∑
i=1

X2i−1X2i .

9.3
i. Prove that we can select half the codewords of R(1, m) so that the 2m × 2m matrix H,

whose rows are the selected codewords with zeros changed to minus one, has the property
that HHt = 2mI, where I is the 2m × 2m identity matrix.

ii. Prove that for each vector v ∈ F
2m

2 there is a codeword u of R(1, m) such that d(u, v) �
2m−1 − 2m/2−1.

9.4 Prove that the Kerdock code C(K) of length 2m is linear if and only if the Kerdock set
K is a subspace of the vector space of m × m matrices.

9.5 Complete the set of matrices to a Kerdock set K of eight matrices and prove that C(K)

is a non-linear (16, 256, 16) code.

{

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 1

0 1 1 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 0

⎞
⎟⎟⎟⎠}

9.6
i. Prove that the evaluation of

q(X) =
r∑

i=1

X2i−1X2i

9

150 Chapter 9 • Reed–Muller and Kerdock Codes

at the vectors of Fm
2 , has 2m−1 + 2m−r−1 zeros.

ii. Prove that the evaluation of q(X) + �(X), where �(X) is a linear form and q(X) is a
quadratic form whose associated bilinear form is of rank 2r , at the vectors of Fm

2 , has
either 2m−1 + 2m−r−1, 2m−1 or 2m−1 − 2m−r−1 zeros.

iii. Suppose that K is a set of m×m symmetric matrices over F2 with the property that A+
A′ has rank at least 2r for all A, A′ ∈ K . Construct a (2m, |K|2m+1, 2m−1 − 2m−r−1)2

code.
iv. Use iii. to construct a [32, 11, 12]2 code.
v. Construct a linear code with the same parameters from the code of length 31 constructed

in Exercise 5.6.

9.7
i. By finding a monomial basis for the space of polynomials in 3 variables of degree at

most 4, in which the degree of each variable is at most 2, calculate the dimension of
R3(4, 3).

ii. Prove that if r � q − 1, then the dimension of Rq(r, m) is

r∑
i=0

(
m + i − 1

m − 1

)
.

iii. Prove that the dimension of Rq(r, m) is

r∑
i=0

m∑
j=0

(−1)j
(

m + i − 1 − jq

m − 1

)(
m

j

)
.

	9 Reed–Muller and Kerdock Codes
	9.1 Binary Reed–Muller Codes
	9.2 Decoding Reed–Muller Codes
	9.3 Kerdock Codes
	9.4 Non-binary Reed–Muller Codes
	9.5 Comments
	9.6 Exercises

