
71 5

Cyclic Codes

Although it will turn out that cyclic codes are not asymptotically good codes, they are
an important class of codes which include many useful and widely implemented short
length codes, most notably the Golay codes and the general class of BCH codes. BCH
codes have a prescribed minimum distance which means that, by construction, we can
bound from below the minimum distance and therefore guarantee some error-correction
properties. Cyclic codes also provide examples of linear codes with few weights, which
allows us to construct designs via Theorem 4.22. The cyclic structure of these codes will
appear again in � Chapter 10, when we consider p-adic codes.

5.1 Basic Properties

A linear code C is called cyclic if, for all (c1, . . . , cn) ∈ C, the vector
(cn, c1, . . . , cn−1) ∈ C.

The map

(c1, . . . , cn) �→ c1 + c2X + · · · + cnX
n−1

is a bijection between the vectors of Fn
q and the polynomials in

Fq [X]/(Xn − 1).

We define the weight wt(u) of a polynomial u(X) ∈ Fq [X]/(Xn − 1) of degree less
than n, as the weight of the corresponding vector of Fn

q . In other words, the number of
non-zero coefficients that it has.

An ideal I of a polynomial ring is a subspace with the property that if f ∈ I , then
Xf ∈ I .
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Lemma 5.1 A cyclic code C is mapped by the bijection to an ideal I in Fq [X]/(Xn − 1).

Proof
This is precisely the condition that a linear code satisfies to be cyclic. ��

We assume that (n, q) = 1 so that the polynomial Xn − 1 has no repeated factors in
its factorisation, see � Section 2.3.

The ring Fq [X]/(Xn − 1) is a principal ideal ring, so I in Lemma 5.1 is a principal
ideal. Hence,

I = 〈g〉 = {fg | f ∈ Fq [X]/(Xn − 1)}
for some polynomial g, which is monic and of lowest degree in the ideal.

Therefore, a cyclic code C is mapped by the bijection to 〈g〉. We will from now on
write C = 〈g〉, for some polynomial g.

Lemma 5.2 If C = 〈g〉 is a cyclic code of length n, then g divides Xn − 1 and C has
dimension at least n − deg g.

Proof
If g(X) does not divide Xn−1, then, using the Euclidean algorithm, we can find polynomials
a(X) and b(X) such that

a(X)g(X) + b(X)(Xn − 1)

is equal to the greatest common divisor of g(X) and Xn − 1, which has degree less than g.
This contradicts the property that g has minimal degree in the ideal I . Therefore, g divides
Xn − 1.

The polynomials Xjg, for j = 0, . . . , n − deg(g) − 1 are linearly independent
polynomials in 〈g〉, so the dimension of C is at least n − deg g. ��

In fact, we shall see that the dimension k of C is precisely n − deg g. This follows
from the following theorem.

Theorem 5.3
Let C = 〈g〉 be a cyclic code of length n. The dual code C⊥ is the cyclic code 〈←−h 〉,
where g(X)h(X) = Xn − 1 and

←−
h (X) = Xkh(X−1).

Proof
Suppose that

g(X) =
n−k∑

j=0

gjX
j
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and

h(X) =
k∑

i=0

hiX
i.

The code 〈g〉 contains the row span of the k × n matrix

G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0 . . . gn−k 0 . . . . . . 0

0 g0 . . . gn−k 0 . . . 0

0 0
. . . . . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 . . . . . . 0 g0 . . . gn−k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the code 〈←−h 〉 contains the row span of the (n − k) × n matrix

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

hk . . . h0 0 . . . . . . 0

0 hk . . . h0 0 . . . 0

0 0
. . . . . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 . . . . . . 0 hk . . . h0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The scalar product between the s-th row of G and the r-th row of H, where s ∈ {1, . . . , k}
and r ∈ {1, . . . , n − k} is

k+r∑

i=s

gi−shk+r−i ,

which is the coefficient of Xk+r−s in gh. Since 1 � k + r − s � n − 1, this coefficient is
zero and so GHt = 0.

Since

n = dim C + dim C⊥ � rank(G) + rank(H) = n, (5.1)

the theorem follows. ��

Corollary 5.4 The code C = 〈g〉 of length n has dimension n − deg g.

Proof
Let G and H be as in the previous proof. Equation (5.1) implies that the dimension of C is
the rank of G, which is k. ��
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Example 5.5 (perfect ternary Golay code)
Consider the factorisation of X11 − 1 over F3. As in � Section 2.3, we calculate the
cyclotomic subsets of the multiples of 3 modulo 11,

{0}, {1, 3, 9, 5, 4}, {2, 6, 7, 10, 8}.

According to Lemma 2.12, there are two factors of degree 5 which are

(X − α)(X − α3)(X − α9)(X − α5)(X − α4)

and

(X − α2)(X − α6)(X − α7)(X − α10)(X − α8),

where α is a primitive 11-th root of unity in F35 .
Suppose that

X5 + a4X
4 + a3X

3 + a2X
2 + a1X + a0

is the first of these factors. Then a0 = −α22 = −1. Since the roots of the first factor are the
reciprocals of the roots of the second factor, the second factor is

X5 − a1X
4 − a2X

3 − a3X
2 − a4X − 1.

It is fairly easy to deduce from this that the factorisation is

X11 − 1 = (X − 1)(X5 − X3 + X2 − X − 1)(X5 + X4 − X3 + X2 − 1).

The cyclic code C = 〈X5 − X3 + X2 − X − 1〉 over F3 is the perfect ternary Golay code of
length 11. To prove that this is a perfect code we need to show that the minimum weight of a
non-zero codeword is 5 (and hence the minimum distance is 5 according to Lemma 4.1) and
observe that

(
1 + 2

(
11

1

)
+ 4

(
11

2

))
36 = 311,

so the sphere-packing bound of Theorem 3.9 is attained.
Adding a column of 1’s to the generator matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 −1 0 1 0 0 0 0 0

0 −1 −1 1 −1 0 1 0 0 0 0

0 0 −1 −1 1 −1 0 1 0 0 0

0 0 0 −1 −1 1 −1 0 1 0 0

0 0 0 0 −1 −1 1 −1 0 1 0

0 0 0 0 0 −1 −1 1 −1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
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we get a generator matrix of a self-dual code C of length 12. This we can check by computing
the scalar product of any two rows and verifying that it is zero (modulo 3). Since this code
is self-dual, the codewords have weights which are multiples of 3. If we can rule out the
possibility that a codeword has weight 3, which we will in � Section 5.3, then the minimum
weight of a non-zero codeword of C is 6, which implies that the minimum weight of a non-
zero codeword of the cyclic code 〈X5 − X3 + X2 − X − 1〉 is 5. Therefore, C is a [11, 6, 5]3

code and C is a [12, 6, 6]3 code. �

5.2 Quadratic Residue Codes

Let n and q be primes for which q is a square in Fn, where we consider the field Fn
∼=

Z/nZ to be addition and multiplication modulo n, defined on the set {0, 1, . . . , n − 1}.
Let α be a primitive n-th root of unity in some extension field of Fq .
Define

g(X) =
∏

(X − αr),

where the product runs over the non-zero squares r in Fn.

Lemma 5.6 The polynomial g(X) divides Xn − 1 in Fq [X].

Proof
Since q is a square in Fn, the map

r �→ qr

is a bijection from the squares of Fn to the squares of Fn, for all non-zero squares r ∈ Fn.
Hence,

g(X) =
∏

(X − αr) =
∏

(X − αrq),

where the product runs over the non-zero squares r in Fn.
Lemma 2.11 implies that g(X) ∈ Fq [X] and note that the roots of g(X) are distinct n-th

roots of 1. ��

Since g(X) is a factor of Xn − 1, we can define the cyclic code 〈g〉 of length n over
Fq . This code is called the quadratic residue code.

We can obtain evidence that the minimum distance of a quadratic residue code is
quite good from the following theorems.

Theorem 5.7
If u ∈ 〈g〉 and u(1) �= 0, then wt(u)2 � n.



5

76 Chapter 5 • Cyclic Codes

Proof
Since u ∈ 〈g〉, the n-th roots of unity αr of Fq , where r is a non-zero square in Fn, are zeros
of u(X).

Let t be a non-square of Fn. The n-th roots of unity αs of Fq , where s is a non-square in
Fn, are zeros of u(Xt ), since the product of two non-squares is a square. Therefore, all the
n-th roots of unity of Fq , except 1, are zeros of u(X)u(Xt ). Hence,

u(X)u(Xt ) = (1 + X + · · · + Xn−1)v(X),

for some polynomial v(X). Since u(1) �= 0, we have that v(1) �= 0.
Therefore, in the ring Fq [X]/(Xn − 1),

u(X)u(Xt ) = (1 + X + · · · + Xn−1)v(1),

since v(X) = v(1) + (X − 1)v1(X), for some polynomial v1(X).
Since u(X) has wt(u) terms, this implies that wt(u)2 � n. ��

Theorem 5.8
If n ≡ −1 mod 4, u ∈ 〈g〉 and u(1) �= 0, then wt(u)2 − wt(u) + 1 � n.

Proof
If n ≡ −1 mod 4, then −1 is a non-square in Fn, since (−1)(n−1)/2 = −1. Therefore, in the
proof of Theorem 5.7, we can take t = −1. Then,

u(X)u(X−1) = (1 + X + · · · + Xn−1)v(1).

In the product there are at least wt(u) terms of u(X) which multiply with a term of u(X−1)

to give a constant term, since XjX−j = 1. Hence,

wt(u)2 − wt(u) � n − 1.

��

Example 5.9 (perfect binary Golay code)
Consider the quadratic residue code with n = 23 and q = 2. Let ε be a primitive element of
F211 ∼= F2[X]/(X11 + X2 + 1) and let α = ε89. Then α is a primitive 23-rd root of unity. By
Lemma 5.6, the factorisation of X23 − 1 in F2[X] has a factor

g(X) =
∏

r∈S

(X − αr),

where S = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12} is the set of non-zero squares of F23.
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If αj is a root of g(X), then α−j is not, which implies that

X23 − 1 = (X − 1)g(X)
←−
g (X).

Solving this polynomial identity we deduce that one of g(X) or ←−
g (X) is

X11 + X9 + X7 + X6 + X5 + X + 1.

By checking that the sum of the roots of g(X) is zero, we deduce that this polynomial is
g(X).

The quadratic residue code 〈g〉 is the perfect binary Golay code of length 23. By
Corollary 5.4, it has dimension 12.

Observe that

(
1 +

(
23

1

)
+

(
23

2

)
+

(
23

3

))
212 = 223,

so the bound in Theorem 3.9 is attained.
The following matrix is a generator matrix for the code 〈g〉:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Adding a column of 1’s to this matrix we get a generator matrix for a 12-dimensional linear
code C of length 24. One can verify that all codewords of C have weights which are multiples
of four, see Exercise 5.3. We shall prove in � Section 5.3 that the cyclic code 〈g〉 has
minimum weight at least 5. Therefore, the minimum weight of a non-zero codeword of C is
8, which implies that the minimum weight of a non-zero codeword of 〈g〉 is 7. By Lemma 4.1,
the minimum distance of 〈g〉 is 7. Hence, 〈g〉 is a [23, 12, 7]2 code and C is a [24, 12, 8]2

code. �
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5.3 BCH Codes

Let α be a primitive n-th root of unity in Fqm . BCH codes are a class of cyclic codes in
which we choose α so that α, α2, . . . , αd0−1 are roots of a low degree polynomial g of
Fq [X], for some d0 < n. This allows us to bound the minimum distance of the code 〈g〉.
The lower the degree of g, the larger the dimension (and hence the size) of the code.

Suppose that g(X) ∈ Fq [X] is the polynomial of minimal degree such that

g(αj ) = 0,

for j = 1, . . . , d0 − 1.
The code 〈g〉 is called a BCH code, after Bose, Ray-Chaudhuri and Hocquenghem

who introduced this family of cyclic codes. The parameter d0 is called the prescribed
minimum distance because of the following theorem.

Theorem 5.10
The dimension of the BCH code 〈g〉 is at least n−m(d0 −1) and its minimum distance
is at least d0.

Proof
Let j ∈ {1, . . . , d0 − 1}. By Lemma 2.11, the polynomial

(X − αj )(X − αjq) · · · (X − αjqm−1
)

is in Fq [X]. Clearly, it is zero at αj . Since this polynomial has degree m this implies that there
is a polynomial of degree m(d0 − 1) in Fq [X] which is zero at αj , for all j = 1, . . . , d0 − 1.

Thus, the degree of g is at most m(d0 − 1) so, by Corollary 5.4, the dimension of 〈g〉 is
at least n − m(d0 − 1).

Suppose that there is an f ∈ 〈g〉 for which wt(f ) is at most d0 − 1. Then

f (X) = b1X
k1 + · · · + bd0−1X

kd0−1 ,

for some k1, . . . , kd0−1.
Since f ∈ 〈g〉,

f (αj ) = 0

for all j = 1, . . . , d0 − 1. Writing this in matrix form these equations are

⎛

⎜⎜⎜⎝

αk1 αk2 . . . αkd0−1

α2k1 α2k2 . . . α2kd0−1

. . . .

α(d0−1)k1 α(d0−1)k2 . . . α(d0−1)kd0−1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

b1

b2

.

.

bd0−1

⎞

⎟⎟⎟⎟⎟⎟⎠
= 0.
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The determinant of the matrix is

∏

i �=j

(αki − αkj ),

which is non-zero. This implies that the only solution to the above system is f (X) = 0.
Hence, the minimum weight of a non-zero codeword of the cyclic code 〈g〉 is at least d0.
The lemma follows since, by Lemma 4.1, the minimum weight of a non-zero codeword of a
linear code is equal to its minimum distance. ��

Example 5.11
Let α be a primitive 31-st root of unity in F32. By Lemma 2.12, we obtain the factorisation
of X31 − 1 over F2 by considering the cyclotomy classes

{1, 2, 4, 8, 16}, {3, 6, 12, 24, 17}, {5, 10, 20, 9, 18}, {7, 14, 28, 25, 19},
{11, 22, 13, 26, 21}.

The i-th cyclotomy class gives a polynomial fi(X) in F2[X] which is zero at αj for j in the
cyclotomy class. For example,

f1(X) = (X − α)(X − α2)(X − α4)(X − α8)(X − α16)

is in F2[X] and is zero at αj for j ∈ {1, 2, 4, 8, 16}.
Let

g(X) = f1(X)f2(X)f3(X).

According to Corollary 5.4, the cyclic code 〈g〉 is a 16-dimensional linear code.
Since 1, 2, 3, 4, 5 and 6 appear in the first three cyclotomic subsets,

g(αj ) = 0,

for j = 1, . . . , 6. Theorem 5.10 implies that 〈g〉 is a [31, 16,� 7]2 code. It is in fact a
[31, 16, 7]2 code. Since there exists a [31, 16, 8]2 code, 〈g〉 is not an optimal linear code for
this length and dimension. �

Example 5.12 (shortened Reed–Solomon code)
Let α be a primitive (q −1)-st root of unity in Fq . By Theorem 2.4, the polynomial Xq−1 −1
factorises into linear factors over Fq . Each cyclotomy class has size 1 and the factors are

fi(X) = X − αi,

for i = 0, . . . , q − 2.
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Let

g(X) = f1(X)f2(X) · · · fd−1(X).

According to Corollary 5.4, 〈g〉 is a (n − d + 1)-dimensional linear code of length n.
According to Theorem 5.10, 〈g〉 has minimum distance at least d. This is an example of
an MDS code, which we will study in more depth in � Chapter 6. �

Example 5.13
In Example 5.9, the numbers 1, 2, 3 and 4 appear in the same cyclotomy class, so
Theorem 5.10 implies that the binary Golay code has weight at least 5. As observed in
Example 5.9, this implies that the extended binary Golay code C has no codewords of weight
4, which implies that the minimum distance of C is 8. This, in turn, implies that the minimum
distance of the binary Golay code is 7. �

Example 5.14
Theorem 5.10 generalises in a straightforward way to Exercise 5.5. We can now establish that
the minimum distance of the ternary Golay code is 5. By Exercise 5.5, since 3, 4 and 5 appear
in the same cyclotomy class (and 6, 7 and 8 appear in the same cyclotomy class), the ternary
Golay code in Example 5.5 has minimum distance at least 4. Therefore, the extended code
C has no codewords of weight three, so the weight of a non-zero codeword of the extended
code is either 6, 9 or 12. As observed in Example 5.5, this implies that the minimum distance
of the ternary Golay code is 5.

�

The following theorem, which we quote without proof, states that there is no
sequence of asymptotically good BCH codes.

Theorem 5.15
There is no infinite sequence of [n.k, d]q BCH codes for which both δ = d/n and
R = k/n are bounded away from zero.

5.4 Comments

The introduction of cyclic codes and quadratic residue codes is widely accredited
to Eugene Prange and Andrew Gleason who proved the automorphism group of an
extended quadratic residue code has a subgroup which is isomorphic to either PSL(2, p)

or SL(2, p), see [12]. The Golay codes were discovered by Golay [27]. The BCH
codes were introduced by Bose and Ray-Chaudhuri in [13] and independently by
Hocquenghem in [38]. The fact that long BCH codes are asymptotically bad is proven
by Lin and Welden in [47]. The code in Exercise 5.7 is a Zetterberg code, one of a
family of [4m + 1, 4m + 1 − 4m, 5]2 codes.
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5.5 Exercises

5.1 Let C be the extended ternary Golay code from Example 5.5.
i. Verify that the factorisation of X11 − 1 in F3[X] is as in Example 5.5.

ii. Prove that the weight enumerator of C is

A(X) = 1 + 264X6 + 440X9 + 24X12.

iii. Let S be the set of 12 points of PG(5, 3) obtained from the set of columns of a generator
matrix of the code C. Label the points of S by the elements of {1, . . . , 12} and define
a set D of 6-subsets to be the points of S which are dependent (i.e. are contained in a
hyperplane of PG(5, 3)). Prove that D is a 5-(12, 6, 1) design.

iv. Verify that Theorem 4.22 implies that the set of supports of the codewords of weight 6
of C is a 5-(12, 6, 1) design.

5.2 Prove that in Example 5.9 the code 〈←−g 〉 is equivalent to the code 〈g〉.

5.3
i. Prove that the extended Golay code over F2, the code C in Example 5.9, is self-dual and

that the weights of the codewords of C are multiples of 4.
ii. Prove that the weight enumerator of the code C is

A(X) = 1 + 759X8 + 2576X12 + 759X16 + X24.

iii. Apply Theorem 4.22 to construct a 5-(24, 8, 1) design.

5.4 Investigate the observation that if n ≡ −1 modulo 4 and 〈g〉 is a quadratic residue code,
then the reverse of the polynomial (Xn − 1)/(X − 1)g(X) is g(X). Does this imply that the
extension of the code 〈g〉 is self-dual?

5.5 Suppose that g(X) ∈ Fq [X] is the polynomial of minimal degree such that

g(αj ) = 0,

for j = � + 1, . . . , � + d0 − 1.
Prove that the dimension of 〈g〉 is at least n − m(d0 − 1) and the minimum distance of

〈g〉 is at least d0.

5.6 Construct the largest possible BCH code with the following parameters.
i. A binary code of length 15 with minimum distance at least 5.

ii. A binary code of length 31 with minimum distance at least 11.
iii. A ternary code of length 13 with minimum distance at least 7.
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Compare the dimension of the codes with the Griesmer bound, the sphere-packing bound and
the Gilbert–Varshamov bound.

5.7
i. Prove that X17 + 1 factorises in F2[X] as (X + 1)f (X)g(X), where

f (X) = ←−
f (X) = X8 + X7 + X6 + · · ·

and g(X) = ←−
g (X).

ii. Construct a [17, 9, 5]2 code.
ii. Construct a [18, 9, 6]2 code.

5.8
i. Prove that the polynomial X11 + 1 factorises in F4[X] into two irreducible factors of

degree 5 and one of degree 1.
ii. Using one of the factors of degree 5, construct a [11, 6, d]4 code C.

iii. Prove that C is a [11, 6,� 4]4 code.
iv. With the aid of a computer, or not, verify that C is a [11, 6, 5]4 code.

5.9
i. Prove that the polynomial X17 + 1 factorises in F4[X] into four irreducible factors of

degree 4 and one of degree 1.
ii. Construct a [17, 9,� 7]4 code.

iii. Let g(X) = X8 + eX7 + X6 + X5 + (1 + e)X4 + X3 + X2 + eX + 1, where e is an
element of F4 such that e2 = e + 1. Prove that g divides X17 + 1.

iv. Assuming that the code in ii. is 〈g〉, prove that the minimum distance of the code
constructed in ii. is 7.
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