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Linear Codes

There is a lack of structure in the block codes we have considered in the first few
chapters. Either we chose the code entirely at random, as in the proof of Theorem 1.12,
or we built the code using the greedy algorithm, as in the proof of the Gilbert–Varshamov
bound, Theorem 3.7. In this chapter, we introduce some algebraic structure to the block
codes by restricting our attention to linear codes, codes whose codewords are the vectors
of a subspace of a vector space over a finite field. Linear codes have the immediate
advantage of being fast to encode. We shall also consider a decoding algorithm for
this broad class of block codes. We shall prove the Griesmer bound, a bound which
applies only to linear codes and show how certain linear codes can be used to construct
combinatorial designs.

4.1 Preliminaries

If A = Fq and C is a subspace of Fn
q , then we say that C is a linear code over Fq

or simply a linear code. If the subspace has dimension k, then we say that C is a k-
dimensional linear code over Fq . Observe that |C| = qk .

As in the case of an n-tuple, we define the weight wt(v) of a vector v ∈ F
n
q as the

number of non-zero coordinates that v has. Recall that the elements of a code are called
codewords.

Lemma 4.1 The minimum distance d of a linear code C is equal to the minimum weight w

of a non-zero codeword of C.

Proof
Suppose u ∈ C is a codeword of minimum non-zero weight w. Since C is a subspace, the
zero vector 0 is in C. Clearly d(u, 0) = w, so w � d.

Suppose u and v are two codewords at minimum distance from each other, so d(u, v) =
d . Since C is linear, u − v ∈ C, and d(u − v, 0) = d. Hence, there is a codeword in C with
weight d, which implies that d � w. ��
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We can describe a linear code C by means of a basis. A matrix G whose rows are a
basis for C is called a generator matrix for C. Thus,

C = {vG | v ∈ F
k
q}.

We will often use the short-hand notation [n, k, d]q code to mean that the code is
a k-dimensional linear code of length n and minimum distance d over Fq . For a not
necessarily linear code, we use the notation (n,K, d)r code to mean a code of length n,
minimum distance d of size K over an alphabet of size r .

Example 4.2
The minimum weight of the non-zero codewords of the 4-dimensional linear code of length
7 over F2 generated by the matrix

G =

⎛
⎜⎜⎜⎝

1 0 0 0 1 1 1

0 1 0 0 1 1 0

0 0 1 0 1 0 1

0 0 0 1 0 1 1

⎞
⎟⎟⎟⎠

is 3, so it follows from Lemma 4.1 that the code is a [7, 4, 3]2 code. �

Example 4.3
Consider the [9, 3, d]3 code generated by the matrix

G =
⎛
⎜⎝

1 0 0 1 1 0 1 1 2

0 1 0 1 0 1 1 2 1

0 0 1 0 1 1 2 1 1

⎞
⎟⎠ .

Each row of G has weight 6 and it is immediate to verify that a linear combination of two
of the rows also has weight 6. Any linear combination of the first two rows has at most 3
coordinates in common with the third row, so we can conclude that the minimum weight of
a non-zero codeword is 6. By Lemma 4.1, G is the generator matrix of a [9, 3, 6]3 code. �

We can also define a linear code as the solution of a system of linear equations. A
check matrix for a linear code C is an m × n matrix H with entries from Fq , with the
property that

C = {u ∈ F
n
q | uHt = 0},

where Ht denotes the transpose of the matrix H.

Lemma 4.4 Let C be a linear code with check matrix H. If every set of d − 1 columns of
H are linearly independent, and some set of d columns are linearly dependent, then C has
minimum distance d .



4.1 · Preliminaries

49 4

Proof
Let u be a codeword of C and let D be the set of non-zero coordinates of u, so |D| = wt(u).
Let hi be the i-th column of H. Since H is a check matrix for C,

∑
i∈D

uihi = 0.

Thus, there is a linear combination of |D| columns of H which are linearly dependent.
Applying Lemma 4.1 concludes the proof. ��

Example 4.5
Let C be the linear code over Fq defined by the m × n check matrix H, whose columns are
vectors which span distinct one-dimensional subspaces of Fm

q . In other words, the columns
of H are vector representatives of distinct points of PG(m−1, q). Since any two columns are
H are linearly independent, Lemma 4.4 implies that C has minimum distance at least 3. By
Exercise 2.11, the number of points of PG(m − 1, q) is (qm − 1)/(q − 1), so

n � (qm − 1)/(q − 1).

If we take

n = (qm − 1)/(q − 1),

then C is a code of size qk with parameters, d = 3 and

k = (qm − 1)/(q − 1) − m.

This code C attains the bound in Theorem 3.9, since

|C|(1 + n(q − 1)) = qk(1 + qm − 1) = qn.

Thus, C is a perfect code. �

Example 4.5 is called the Hamming code. Example 4.2 is the Hamming code with
q = 2 and m = 3. A check matrix for this code is

H =
⎛
⎜⎝

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

⎞
⎟⎠ .

One can readily check that GHt = 0, where G is as in Example 4.2, by verifying that
the scalar product of any row of G with any row of H is zero.
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Lemma 4.6 Let G be a generator matrix for a k-dimensional linear code C. An m×n matrix
H is a check matrix for C if and only if GHt = 0 and the rank of H is n − k.

Proof
Suppose that H is an m × n check matrix for C. All the rows of G are codewords of C, so
if u is a row of G, then uHt = 0, which implies GHt = 0. The dimension of the code C is
n − rank(H), which implies that the rank of H is n − k.

Suppose that GHt = 0 and that the rank of H is n − k. A codeword u is a linear
combination of the rows of G, so uHt = 0. Hence, the left kernel of Ht contains C. Since the
rank of H is n − k, the left kernel of Ht has dimension k, so the left kernel of Ht is C. ��

Let Ir denote the r × r identity matrix.
A generator matrix which has the form

(Ik | A) ,

for some k × (n − k) matrix A, is said to be in standard form. The uncoded string v

is encoded by vG, whose first k coordinates are precisely the coordinates of v. There
are obvious advantages in using a generator matrix in this standard form. Once errors
have been corrected, the uncoded string can be recovered from the codeword by simply
deleting the last n − k coordinates. Moreover, the following lemma implies that there is
a check matrix with a similar simple form.

Lemma 4.7 Let C be the linear code generated by

G = (Ik | A) ,

for some k × (n − k) matrix A. Then the matrix

H = (−At | In−k

)

is a check matrix for C.

Proof
We have to check that the inner product of the i-th row of G = (gij ) with the �-th row of
H = (h�j ) is zero. The entries gij = 0 for j � k unless i = j , in which case gii = 1. The
entries h�j = 0 for j � k + 1 unless � = j − k, in which case h�,�+k = 1. Hence,

n∑
j=1

gij h�j =
k∑

j=1

gij h�j +
n∑

j=k+1

gij h�j = h�i + gi,�+k = −ai� + ai� = 0.

��
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4.2 Syndrome Decoding

Given a generator matrix G for a linear code C, encoding is fairly simple since we
assign the codeword vG to each vector v of Fk

q . Moreover, if the generator matrix is in
standard form, as described in the previous section, then we can encode by appending the
n − k coordinates of vA to v. Decoding is a far trickier affair. To use nearest neighbour
decoding we have to find the codeword of length n which is nearest to the received n-
tuple. For a code with no obvious structure, this can only be done by calculating the
distance between the received n-tuple and each codeword, something which is laborious
and infeasible for large codes. In this section, we consider a decoding algorithm for
linear codes which exploits the linearity property.

Let C be a linear code with check matrix H. The syndrome of a vector v ∈ F
n
q is

s(v) = vHt .

Note that s(v) = 0 if and only if v ∈ C, since

C = {v ∈ F
n
q | vH t = 0}.

To use syndrome decoding we compute a look-up table with entries s(e) for all
vectors e of weight at most t = �(d − 1)/2�. To decode a vector v we compute s(v),
use the look-up table to find e such that s(v) = s(e), and decode v as v − e. Note that
v − e ∈ C and the distance between v and v − e is at most t .

Example 4.8
The matrix

G =

⎛
⎜⎜⎜⎝

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

⎞
⎟⎟⎟⎠

is the generator matrix of a [8, 4, 4]3 code.
Suppose that a codeword u has been sent and we have received the vector

v = (1, 0, 1, 0, 0, 1, 0, 2).

By Lemma 4.7, the matrix

H =

⎛
⎜⎜⎜⎝

0 2 2 2 1 0 0 0

2 0 2 2 0 1 0 0

2 2 0 2 0 0 1 0

2 2 2 0 0 0 0 1

⎞
⎟⎟⎟⎠

is a check matrix for C.
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Note that −1 = 2, since we are doing arithmetic with elements of F3.
To decode using syndrome decoding, we calculate the syndrome of v,

s(v) = vHt = (2, 2, 2, 0).

Then we look for the low weight vector e, in this example a vector of weight one, such that
s(v) = s(e). If only one error has occurred in the transmission, the syndrome s(v) must be
equal to s(e), for some vector e of F8

q of weight one. Indeed,

s(v) = s((0, 0, 0, 1, 0, 0, 0, 0)).

Therefore, we correct v to the codeword

v − e = (1, 0, 1, 2, 0, 1, 0, 2),

which is (1, 0, 1, 2)G. �

In general, using a look-up table would involve searching through

t∑
j=1

(
n

j

)
(q − 1)j

entries, an entry for each non-zero vector of Fn
q of weight at most t . For n large, this

implies that we would have to search through a table with an exponential number of
entries, since

(
n

1
2δn

)
∼ 2h( 1

2 δ)n.

This does not imply that there might not be a better method to find the vector e with the
property that s(e) = s(v), especially if the linear code has some additional properties
we can exploit. However, we will now prove that decoding a linear code using syndrome
decoding is an NP problem. Under the assumption that P �= NP, this implies that there
is no polynomial time algorithm that will allow us to decode using syndrome decoding.

Problems in NP are, by definition, decision problems. So what we mean by saying
that decoding a linear code using syndrome decoding is an NP problem, is that deciding
if we can decode a linear code using syndrome decoding is an NP problem. A decision
problem is in P if there exists a polynomial time algorithm which gives a yes/no answer
to the problem. A decision problem is in NP, if there exists a polynomial time algorithm
which verifies that a “yes” solution to the problem, really is a solution. For example,
the Hamiltonian path problem asks if there is a path in a graph which visits all the
vertices without repeating any vertex. This is an NP problem since a “yes” solution to
the problem is a Hamiltonian path. This solution can be checked in polynomial time by
checking that each edge in the path is an edge of the graph.
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It is not known if NP is a larger class of problems than P or not. A decision problem
D is said to be NP-complete if there is a polynomial time algorithm which reduces every
problem in NP to D. This implies that if we had a polynomial time algorithm to solve
D, then we would have a polynomial time algorithm to solve all problems in NP.

Let T be a subset of {1, . . . , n}3.
A perfect matching M is a subset of T of size n,

M = {(aj1, aj2, aj3) | j = 1, . . . , n} ⊆ T ,

where for all i ∈ {1, 2, 3},

{aji | j = 1, . . . , n} = {1, . . . , n}.

Deciding whether T has a perfect matching or not is the three-dimensional
matching problem. This decision problem is NP-complete.

For example, let T be the set of triples

{(1, 1, 1), (1, 2, 3), (1, 4, 2), (2, 1, 4), (2, 3, 3), (3, 2, 1), (3, 3, 4),

(4, 3, 2), (4, 3, 3), (4, 4, 4)} .

The three-dimensional matching problem asks if it is possible to find a subset M of T

such that each element of {1, 2, 3, 4} appears in each coordinate of an element of M

exactly once. In this example the answer is affirmative,

M = {(1, 4, 2), (2, 1, 4), (3, 2, 1), (4, 3, 3)}.

Theorem 4.9
Decoding a linear code using syndrome decoding is NP-complete.

Proof
To decode a linear code using syndrome decoding, we have to find a vector e of weight at
most t , such that eHt = s, where s = s(v) and v is the received vector.

We make this a decision problem by asking if there is a vector e of weight at most t such
that eHt = s. We will show that this decision problem is NP-complete by proving that if
we had a polynomial time algorithm to solve this decision problem, then we would have a
polynomial time algorithm to solve the three-dimensional matching problem.

Let Ri = {1, . . . , n} for i = 1, 2, 3. Let T be a subset of R1 × R2 × R3. Consider
the matrix A whose rows are indexed by the triples in T , whose columns are indexed by
R1 ∪R2 ∪R3, where the ((a1, a2, a3), ri) entry is 1 if ai = ri and zero otherwise. Thus, each
row has three ones and 3n − 3 zeros. A perfect matching is given by a vector v of {0, 1}|T |,
necessarily of weight n, such that vA is equal to the all-one vector j . Therefore, if we have a
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polynomial time algorithm which can decide if there is a vector e of weight at most t , such
that eH t = s, then we can use this to solve the three-dimensional perfect matching decision
problem by asking if there is a vector v of weight n such that vA = j . ��

4.3 Dual Code and theMacWilliams Identities

Let C be a k-dimensional linear code over Fq .
The dual code of a linear code C is

C⊥ = {v ∈ F
n
q | u · v = u1v1 + · · · + unvn = 0, for all u ∈ C}.

In other words C⊥ is the orthogonal subspace to C, with respect to the standard inner
product. The subspace C⊥ is the set of solutions of a homogeneous system of linear
equations of rank k in n unknowns. Hence, the dual code C⊥ is a (n − k)-dimensional
linear code and length n over Fq .

The following lemma is immediate.

Lemma 4.10 If H is a (n − k) × n check matrix for a k-dimensional linear code C, then H
is a generator matrix for C⊥. Likewise, if G is a generator matrix for C, then G is a check
matrix for C⊥.

If C = C⊥, then we say that C is self-dual.

Example 4.11
The extended code of the binary four-dimensional code in Example 4.2 is a self-dual code. It
has a generator (and check) matrix

⎛
⎜⎜⎜⎝

1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎠ .

�

Let Ai denote the number of codewords of weight i of a linear code C of length n.
The weight enumerator of C is a polynomial defined as

A(X) =
n∑

i=0

AiX
i.

Let A⊥(X) denote the weight enumerator of the dual code C⊥.
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There is an important relationship between A(X) and A⊥(X), which implies that
one is determined by the other. To be able to prove this relationship, which we shall do
in Theorem 4.13, we introduce the trace map and characters.

Let p be the prime such that q = ph. Then the trace map from Fq to Fp is defined
as

Tr(x) = x + xp + · · · + xq/p.

By Lemma 2.6, it is additive, i.e.

Tr(x + y) = Tr(x) + Tr(y),

and by Lemma 2.4 and Lemma 2.6,

Tr(x)p = Tr(x),

so, again by Lemma 2.4, Tr(x) ∈ Fp.
Observe that if Tr(λx) = 0 for all λ ∈ Fq , then x = 0, since as a polynomial (in λ) it

has degree q/p. For the same reason, every element of Fp has exactly q/p pre-images
of the trace map from Fq to Fp.

For u ∈ F
n
q , we define a character as a map from F

n
q to C by

χu(x) = e
2πi
p

Tr(x·u)
.

Note that this definition makes sense since Fp is Z/(pZ).

Lemma 4.12 Let C be a linear code over Fq . Then

∑
u∈C

χu(x) =
{

0 if x �∈ C⊥

|C| if x ∈ C⊥ .

Proof
If x ∈ C⊥, then x · u = 0 for all u ∈ C which implies χu(x) = 1 for all u ∈ C and we are
done.

Suppose x �∈ C⊥. If χv(x) = 1 for all v ∈ C, then Tr(v · x) = 0 for all v ∈ C, so
Tr(λ(v · x)) = 0 for all λ ∈ Fq and v ∈ C. This, we observed before, implies v · x = 0 for
all v ∈ C, so x ∈ C⊥, a contradiction. Thus, there is a v ∈ C such that χv(x) �= 1. Then,

χv(x)
∑
u∈C

χu(x) =
∑
u∈C

χu+v(x) =
∑
u∈C

χu(x).

which implies

∑
u∈C

χu(x) = 0.

��
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The following theorem relates the weight enumerator of a linear code to the weight
enumerator of its dual code. It is known as the MacWilliams identities.

Theorem 4.13 (MacWilliams)
For a k-dimensional linear code C over Fq of length n we have

qkA⊥(X) = (1 + (q − 1)X)nA
( 1 − X

1 + (q − 1)X

)
.

Proof
Let u = (u1, . . . , un) ∈ F

n
q .

If ui �= 0, then

∑
wi∈Fq

χwiei
(u) = 0,

since we sum each p-th root of unity q/p times, and the sum of the p-th roots of unity is
zero.

Therefore,

∑
wi∈Fq\{0}

χwiei
(u) =

{
q − 1 if ui = 0

−1 if ui �= 0

and so

n∏
i=1

(
1 +

∑
wi∈Fq\{0}

χwiei
(u)X

)
= (1 + (q − 1)X)n−wt(u)(1 − X)wt(u).

Multiplying out the brackets,

n∏
i=1

(
1 +

∑
wi∈Fq\{0}

χwiei
(u)X

)
=

∑
w∈Fn

q

Xwt(w)
n∏

i=1

χwiei
(u) =

∑
w∈Fn

q

Xwt(w)χu(w).

Combining the above two equations,

∑
w∈Fn

q

Xwt(w)χu(w) = (1 + (q − 1)X)n−wt(u)(1 − X)wt(u).

Summing over u ∈ C, we have

∑
u∈C

∑
w∈Fn

q

Xwt(w)χu(w) = (1 + (q − 1)X)nA
( 1 − X

1 + (q − 1)X

)
,



4.3 · Dual Code and the MacWilliams Identities

57 4

since

A(X) =
∑
u∈C

Xwt(u).

Switching the order of the summations, and applying Lemma 4.12,

∑
w∈Fn

q

Xwt(w)
∑
u∈C

χu(w) =
∑

w∈C⊥
Xwt(w)|C| = |C|A⊥(X).

��

Observe that Theorem 4.13 implies that if we know the weights of the codewords
of C, then we know the weights of the codewords of C⊥ and in particular the minimum
weight of a non-zero codeword and therefore, by Lemma 4.1, the minimum distance of
C⊥.

If C is a self-dual code, we can get information about the weights of the codewords
of C from Theorem 4.13.

Example 4.14
Let C be a self-dual 4-dimensional binary linear code of length 8, for instance, as in
Example 4.11. Then, equating the coefficient of Xj , for j = 0, . . . , 8, in

A(X) = 2−4(1 + X)8A((1 − X)/(1 + X)),

where

A(X) = 1 +
8∑

i=1

aiX
i,

will give a system of nine linear equations and eight unknowns.
This system has the solution

A(X) = 1 + 14X4 + X8 + λ(X2 − 2X4 + X6),

for some λ ∈ {0, . . . , 7}. Thus, C must contain the all-one vector and if the minimum distance
of C is 4, then

A(X) = 1 + 14X4 + X8.

�

We will see an important application of the MacWilliams identities in � Section 4.6
where we will exploit these equations to prove that, under certain hypotheses, we can
construct combinatorial designs from a linear code.
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4.4 Linear Codes and Sets of Points in Projective Spaces

A linear code C is the row space of a generator matrix G. The multi-set S of columns of
G also contains information about the code and its parameters. The length of C is |S|, the
dimension of C is the length of the vectors in S and, as we shall prove in Lemma 4.15,
the weights of the codewords in C can be deduced from the intersection of S with the
hyperplanes of Fk

q . Observe that S is a multi-set since columns can be repeated.

Lemma 4.15 The multi-set S of columns of a generator matrix G of a [n, k, d]q code C is a
multi-set of n vectors of Fk

q in which every hyperplane of Fk
q contains at most n − d vectors

of S, and some hyperplane of Fk
q contains exactly n − d vectors of S.

Proof
There is a bijection between the vectors of Fk

q and the codewords, given by

v �→ vG.

For each non-zero vector v of Fk
q , the subspace consisting of the vectors (x1, . . . , xk) ∈

F
k
q , such that

v1x1 + · · · + vkxk = 0,

is a hyperplane of Fk
q , which we denote by πv . The non-zero multiplies of v define the same

hyperplane, so πv = πλv , for all non-zero λ ∈ Fq .
We can label the coordinates of vG by the elements of S. The s-coordinate of the

codeword vG is the value of the scalar product v · s. The scalar product v · s = 0 if and
only if s ∈ πv . Therefore, the codeword vG has weight w if and only if the hyperplane πv

contains n − w vectors of S. The lemma follows since, by Lemma 4.1, the minimum weight
of a non-zero vector of C is equal to the minimum distance. ��

Lemma 4.15 is still valid if we replace a vector s of S by a non-zero scalar multiple
of s. Thus, we could equivalently state the lemma for a multi-set of points in PG(k −
1, q), assuming that the vectors in S are non-zero vectors. In the projective space, the
hyperplane πv is a hyperplane of PG(k − 1, q). The s-coordinate of the codeword vG
is zero if and only if the point s is incident with the hyperplane πv , as we saw in �
Section 2.4.

We could also try and construct a multi-set S of points of PG(k − 1, q) in which we
can calculate (or at least bound) the size of the intersections of S with the hyperplanes
of PG(k−1, q). Then Lemma 4.15 implies that we can bound from below the minimum
distance of the linear code we obtain from a generator matrix whose columns are vector
representatives of the points of S.

Example 4.16
Let φ(X) = φ(X1, X2, X3) be an irreducible homogeneous polynomial over Fq in three
variables of degree m. Let S be the set of points of PG(2, q) which are zeros of this
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polynomial. Since φ is irreducible, each line of PG(2, q) contains at most m points of S.
By Lemma 4.15, the matrix whose columns are a vector representative of the points of S is
a 3 × |S| matrix which generates a code with minimum distance at least n − deg φ. This can
give an easy way to make codes with surprisingly good parameters. For example, suppose q

is a square and we take the Hermitian curve, defined as the zeros of the polynomial

φ(X) = X
√

q+1
1 + X

√
q+1

2 + X
√

q+1
3 .

This curve has q
√

q+1 points and is irreducible. Thus we obtain a [q√
q+1, 3, q

√
q−√

q]q
code. �

We say that two codes are equivalent if one can be obtained from the other by
a permutation of the coordinates and permutations of the symbols in each coordinate.
Note that non-linear codes can be equivalent to linear codes. Indeed, one can obtain a
non-linear code (of the same size, length and minimum distance) from a linear code by
simply permuting the symbols of Fq in a fixed coordinate.

We can use S to obtain a model for all codes that are equivalent to a linear code
C, this is called the Alderson–Bruen–Silverman model. Let S be the multi-set of n

points of � = PG(k − 1, q), obtained from the columns of a generator matrix G of the
k-dimensional linear code C of length n. For each point (s1 : . . . : sk) of S, we define a
hyperplane πs of � = PG(k − 1, q) as the kernel of the linear form

αs(X) = s1X1 + · · · + skXk.

We embed � in a PG(k, q) and consider PG(k, q) \ � which, by Exercise 2.12, is
isomorphic to AG(k, q). Within PG(k, q), we label each hyperplane (�= �) containing
πs with an element of Fq . For each point v of the affine space PG(k, q) \ � we
obtain a codeword u of C ′, a code equivalent to the code C. The coordinates of u are
indexed by the elements of S, and the s-coordinate of u is the label given to the unique
hyperplane of PG(k, q) spanned by πs and v. Observe that two codewords u and u′ of
C ′ (obtained from the points v and v′, respectively) agree in an s-coordinate if and only
if αs(v) = αs(v

′). The vectors vG and v′G are codewords of C, so agree in at most
n − d coordinates, which implies that there are at most n − d elements s ∈ S such that
αs(v) = αs(v

′). Thus, u and u′ agree in at most n − d coordinates. Furthermore, there
are two codewords which agree in exactly n − d coordinates. Therefore, the code C ′ is
of length n and minimum distance d . It is Exercise 4.10, to prove that the code C ′ is
equivalent to the linear code C. This model is used in Exercise 4.11 to prove that if a
linear code has a non-linear extension, then it has a linear extension.

4.5 Griesmer Bound

In � Chapter 3 we proved various bounds involving the length, the minimum distance
and the size of a block code. In this section, we shall prove another bound involving these
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parameters, the Griesmer bound, which is specifically for linear codes. The Griesmer
bound follows almost directly from the following lemma.

Lemma 4.17 If there is a [n, k, d]q code, then there is a [n − d, k − 1,�
⌈

d
q

⌉
]q code.

Proof
Let S be the multi-set of columns of a generator matrix G of a k-dimensional linear code C

of length n and minimum distance d over Fq .
By Lemma 4.15, there is a non-zero vector v ∈ F

k
q such that the hyperplane πv of Fk

q

contains n − d vectors of S. Let S′ be this multi-set of n − d vectors. Let G′ be the k ×
(n − d) matrix whose columns are the vectors of S′. The matrix G′ generates a linear code
C′, obtained from G′ by left multiplication by a vector of Fk

q . The matrix G′ is not, strictly
speaking, a generator matrix of C′, since its rows are not linearly independent. The vector v

is in the left nucleus of G′. The code C′ is the subspace spanned by the rows of the matrix
G′.

We want to prove that C′ is a (k − 1)-dimensional linear code. The rank of G′ is at most
k − 1, since vG′ = 0. If the rank is less than k − 1, then there is another vector v′ ∈ F

k
q ,

not in the subspace spanned by v, for which v′G′ = 0. But then we can find a λ ∈ Fq

such that (v + λv′)G has zeros in more than n − d coordinates, which implies that C has
non-zero codewords of weight less than d, which contradicts Lemma 4.1. Hence, C′ is a
(k − 1)-dimensional linear code.

Let d ′ be the minimum distance of the code C′ . By Lemma 4.15, there is a hyperplane
π ′ of πv which contains n − d − d ′ vectors of S′. By Exercise 2.12, there are precisely
q + 1 hyperplanes of Fk

q containing the co-dimensional two subspace π ′. Each one of these
hyperplanes contains at most n − d vectors of S and so at most d ′ vectors of S \ π ′. Hence,

n � (q + 1)d ′ + n − d − d ′,

which gives

d ′ �
⌈

d

q

⌉
.

��

Theorem 4.18 (Griesmer bound)
If there is a [n, k, d]q code, then

n �
k−1∑
i=0

⌈
d

qi

⌉
.
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Proof
By induction on k.

For k = 1 the bound gives n � d, which is clear.
By Lemma 4.17, there is a [n − d, k − 1, d ′]q code, where

d ′ �
⌈

d

q

⌉
.

By induction,

n − d �
k−2∑
i=0

⌈
d ′

qi

⌉
�

k−2∑
i=0

⌈
d

qi+1

⌉
=

k−1∑
i=1

⌈
d

qi

⌉
.

��

Example 4.19
Consider the problem of determining the largest ternary code C of length 10 and minimum
distance 4. The Plotkin bound from Lemma 3.10 does not apply, since d+n/r−n is negative.
The sphere packing bound, Theorem 3.9, implies

|C| � 310/21.

The Griesmer bound tells us that if there is a linear code with these parameters, then

10 � 4 + 2 + k − 2.

and so

|C| � 36.

To construct such a code, according to Lemma 4.15, we need to find a set S of 10 points in
PG(5, 3) with the property that any hyperplane is incident with at most 6 points of S. Let G
be the 6 × 10 matrix whose columns are vector representatives of the 10 points of S. The
matrix G is the generator matrix of a [10, 6, 4]3 code. Such a matrix G can be found directly,
see Exercise 4.14. However, we can construct such a code geometrically in the following
way.

Let C⊥ be the linear code over Fq generated by the 4×(q2+1) matrix H, whose columns
are the points of an elliptic quadric. For example, we could take the elliptic quadric defined
as the zeros of the homogeneous quadratic form

X1X2 − f (X3, X4),

where f (X3, X4) is an irreducible homogeneous polynomial of degree two. Explicitly the
points of the quadric are
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{(1, f (x, y), x, y) | x, y ∈ Fq} ∪ {(0, 1, 0, 0)}.

As in the real projective space, the elliptic quadric has no more than two points incident with
any line. To verify this algebraically, consider the line which is the intersection of the planes
defined by X1 = a3X3 + a4X4 and X2 = b3X3 + b4X4. The x3 and x4 coordinates in the
intersection with the quadric satisfy

(a3x3 + a4x4)(b3x3 + b4x4) − f (x3, x4) = 0,

which is a homogeneous polynomial equation of degree two in two variables. It is not
identically zero, since f is irreducible, so there are at most two (projectively distinct or
homogeneous) solutions for (x3, x4); the x1 and x2 coordinates are then determined by
x1 = a3x3 + a4x4 and x2 = b3x3 + b4x4. This checks the intersection with q4 lines, the
intersection with the remaining lines can be checked similarly.

Therefore, any three columns of the matrix H are linearly independent, since three
linearly dependent columns would imply three collinear points on the elliptic quadric. The
elliptic quadric has four co-planar points, so H has four linearly dependent columns. By
Lemma 4.4, C has a minimum distance 4 and is therefore a [q2 + 1, q2 − 3, 4]q code.
Substituting q = 3, we obtain a ternary linear code C meeting the Griesmer bound.

The geometry also allows us to calculate the weight enumerator of C⊥ and hence the
weight enumerator of C. Since any three points span a plane which intersects the elliptic
quadric in a conic, and a conic contains q + 1 points, there are

(q2 + 1)q2(q2 − 1)

(q + 1)q(q − 1)
= (q2 + 1)q

planes incident with q + 1 points of the elliptic quadric and the remaining q2 + 1 planes are
incident with exactly one point. This implies that C⊥ has (q2 + 1)q(q − 1) codewords of
weight q2 − q, (q2 + 1)(q − 1) codewords of weight q2 and one codeword of weight zero.

For q = 3, the weight enumerator of C⊥ is

A⊥(X) = 1 + 60X6 + 20X9.

The MacWilliams identities, Theorem 4.13, imply that C has weight enumerator,

A(X) = 1 + 60X4 + 144X5 + 60X6 + 240X7 + 180X8 + 20X9 + 24X10.

Even if we do not restrict ourselves to linear codes, there is no larger code known with these
parameters. The best known upper bound is |C| � 891.

�

Example 4.20
Consider the problem of determining if there is a (16, 256, 6)2 code C, that is a binary code
of length 16 with minimum distance 6 and size 256. The sphere packing bound, Theorem 3.9,
implies
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|C|(1 + 16 +
(

16

2

)
) � 216,

which is satisfied. The Plotkin bound, Theorem 3.12, does not give a contradiction since

|C| � d2n−2d+2 = 384.

Now, suppose that the code is linear, so C is a [16, 8, 6]2 code. The Griesmer bound is
also satisfied since,

n � 6 +
⌈

6

2

⌉
+

⌈
6

4

⌉
+

7∑
i=3

⌈
6

2i

⌉
= 16.

However, Lemma 4.17 implies the existence of a [10, 7,� 3]2 code. This code is a 1-error
correcting binary code of length 10, so the sphere packing bound, Theorem 3.9, implies that

(1 + 10)27 � 210,

which is a contradiction. Therefore, there is no [10, 7,� 3]2 code. Hence, there is no
[16, 8, 6]2 code. However, there is a non-linear (16, 256, 6)2 code and we shall construct
one both in � Chapter 9 and in � Chapter 10. �

4.6 Constructing Designs from Linear Codes

A τ -design is a collection D of κ-subsets of {1, . . . , n} with the property that every τ -
subset of {1, . . . , n} is contained in precisely λ subsets of D, for some fixed positive
integer λ. If we want to specify the parameters, then we say that D is a τ -(n, κ, λ)

design.
Let u ∈ F

n
q . The support of u = (u1, . . . , un) is a subset of {1, . . . , n} defined as

{i ∈ {1, . . . , n} | ui �= 0}.

In this section we shall prove that if the codewords of the dual of a linear code C have
few distinct weights, then one can construct τ -designs from the supports of codewords
of C of a fixed weight. Before proving the main theorem, we will prove by counting that
we can construct a 3-design from the extended Hamming code, Example 4.11.

Example 4.21
In Example 4.14, we calculated the weight distribution for the extended Hamming code in
Example 4.11 and deduced that there are 14 codewords of weight 4. Two codewords u and v

of weight 4 have at most two 1’s in common, since otherwise u + v would be a codeword of
weight 2. Therefore, every 3-subset of {1, . . . , 8} is contained in the support of at most one
codeword of weight 4. There are 14

(4
3

) = 56 subsets of size 3 of the 14 supports of the 14
codewords of weight 4 and

(8
3

) = 56 subsets of size 3 of {1, . . . , 8}. Hence, each 3-subset is
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contained in a unique support of a codeword of weight 4 and we have deduced that the set of
these supports is a 3-(8, 4, 1) design. �

In the following theorem, κ can be any number in the set {d, . . . , n} in the case that
q = 2, since the condition is vacuous. If q �= 2, then, by Exercise 4.15, the condition is
surely satisfied if

κ ∈ {d, . . . , d − 1 +
⌊

d − 1

q − 2

⌋
}.

In order to simplify the statement of the following theorem, we say that C has a weight
w if there is a codeword of C of weight w.

Theorem 4.22
Let C be an [n, k, d]q code such that C⊥ has at most d − τ non-zero weights of weight
at most n − τ , for some τ � d − 1. If κ has the property that two codewords of C of
weight κ have the same support if and only if they are multiples of each other, then the
set of supports of the codewords of C of weight κ is a τ -(n, κ, λ) design, for some λ.

Proof
Let T be a τ -subset of {1, . . . , n}. Let C \ T be the code obtained from C by deleting the
coordinates indicated by the elements of T . If after deleting τ coordinates the codewords u

and v are the same, then u and v differ in at most τ coordinates. Since τ � d − 1, this cannot
occur, so deleting the coordinates does not reduce the number of codewords. Hence, C \ T is
a k-dimensional linear code of length n − τ .

Let C⊥
T be the subset of codewords of C⊥ which have zeros in all the coordinates

indicated by the elements of T . Then C⊥
T \ T is a linear code and

C⊥
T \ T ⊆ (C \ T )⊥,

since a vector in C⊥
T is orthogonal to all the vectors of C and has zeros in the coordinates

indicated by the elements of T . Furthermore,

dim(C⊥
T \ T ) = dim C⊥

T

since the codewords of C⊥
T have zeros in the coordinates indexed by T , so deleting these

coordinates does not reduce the number of codewords.
Let H be a generator matrix for C⊥. Let L be the set of τ vectors of Fn−k

q which are the
columns of H indicated by the elements of T . Then

C⊥
T = {vH | v ∈ F

n−k
q , v · s = 0, for all s ∈ L},
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since vH is a codeword of C⊥ and has zeros in the coordinates indexed by T precisely when
v · s = 0, for all s ∈ L.

Hence,

dim C⊥
T � n − k − τ.

Now,

dim(C \ T ) = k

implies

dim(C \ T )⊥ = n − τ − k

and we just proved that

dim(C⊥
T \ T ) � n − τ − k,

so we have that

C⊥
T \ T = (C \ T )⊥.

The weight of a codeword of C⊥
T \T is the weight of the corresponding codeword of C⊥. By

hypothesis, C⊥ has at most d − τ non-zero weights of weight at most n − τ . Since at least τ

of the coordinates of a codeword of C⊥
T are zero, C⊥

T has weights at most n − τ . Therefore,
(C \ T )⊥ has at most d − τ non-zero weights.

Since C \ T has minimum distance at least d − τ , Exercise 4.16 implies that the weight
enumerator of C \ T is determined.

If u is a non-zero codeword, then μu is another codeword with the same support as u,
for all non-zero μ ∈ Fq . The number λ(q − 1), of codewords of C \ T of weight κ − τ ,
is determined by the weight enumerator of C \ T . The number λ does not depend on which
subset T we choose, only the size of the subset T . By induction on κ , for all τ -subsets T of
{1, . . . , n}, there are a fixed number of supports of the codewords of weight κ containing T .
Therefore, the set of the supports of the codewords of C of weight κ is a τ -(n, κ, λ)

design. ��

Example 4.23
Consider the [10, 6, 4]3 code from Example 4.19. The dual code C⊥ has codewords of weight
0,6 and 9 so, according to Theorem 4.22, the set of supports of the codewords of weight κ

is a 3-design, provided that no two codewords of C of weight κ have the same support. By
Exercise 4.15, we can be assured of this for κ ∈ {4, 5, 6, 7}.

To calculate λ, we count in two ways the number of 3-subsets. Each 3-subset of
{1, . . . , 10} is contained in λ 3-subsets of the design, so

(
10

3

)
λ =

(
κ

3

)
α,
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where α is the number of supports of codewords of C of weight κ . The number of supports
of codewords of weight κ is the number of codewords of weight κ divided by q − 1.

Therefore, from the code C we can construct a 3-(10, 4, 1)-design, a 3-(10, 5, 6)-design
and a 3-(10, 6, 5)-design. �

In Example 4.23, we could have constructed the designs directly from the elliptic
quadric. For example, the 3-(10, 4, 1) design is obtained by taking subsets of 4 co-
planar points and the 3-(10, 5, 6) design is obtained by taking subsets of 5 points,
no 4 co-planar. In � Chapter 5 we shall construct codes from polynomial divisors
of Xn − 1 which will often satisfy the hypothesis of Theorem 4.22 and allow us to
construct designs. In many cases, these designs cannot be constructed directly from any
geometrical object.

4.7 Comments

The MacWilliams identities from � Chapter 4 appear in MacWilliams’ thesis “Com-
binatorial Problems of Elementary Group Theory”, although the standard reference is
[50]. The MacWilliams identities lead to a set of constraints on the existence of an
[n, k, d]q code. We have that A0 = 1 and A1 = · · · = Ad−1 = 0 and that

1 + Ad + · · · + An = qk.

Since

A⊥
i � 0,

Theorem 4.13 implies, for a fixed n and q, the linear constraint

n∑
j=0

AjKi(j) � 0.

The coefficients

Ki(j) =
j∑

r=0

(
j

r

)(
n − j

i − r

)
(−1)r (q − 1)i−r

are called the Krawtchouk polynomials. Delsarte [21] proved that from the distance
distribution between the codewords of an arbitrary code (not necessarily a linear code)
one can deduce similar inequalities, called the linear programming bound. This can be
a powerful tool, not only in ruling out certain parameter sets, but also for the construction
of codes, since it can give significant information about the distance distribution.
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The Griesmer bound is from [31] and the Hamming code was first considered by
Hamming in [34]. The upper bound on the size of the code in Example 4.19 is from
[55].

The Alderson–Bruen–Silverman model for codes equivalent to linear codes in �
Section 4.4 is from [2]. The fact that a linear code with a non-linear extension has a
linear extension, Exercise 4.11, is due to Alderson and Gács, see [1].

Theorem 4.22 is the Assmus–Mattson theorem from [4].
The bound in Exercise 4.3 is due to Varshamov [75] and is known as the linear

Gilbert–Varshamov bound.

4.8 Exercises

4.1 Prove that if C is linear, then the extended code C is linear.

4.2 Prove that the code in Example 4.2 is a perfect code.

4.3 Prove that if

d−2∑
j=0

(
n − 1

j

)
(q − 1)j < qn−k,

then there exists an [n, k, d]q code.

4.4 Prove that the system of equations in Example 4.14 has the solution

A(X) = 1 + 14X4 + X8 + λ(X2 − 2X4 + X6).

4.5 Prove that the code in Example 4.8 has minimum distance 4 and decode the received
vector (0, 1, 1, 0, 2, 2, 2, 0) using syndrome decoding.

4.6 Prove that the code C in Example 3.4 is linear but not self-dual although for the weight
enumerator A(X) of C, we have A(X) = A⊥(X). Prove that C is equivalent to C⊥.

4.7 Let C be the linear code over F5 generated by the matrix

G =
⎛
⎜⎝

1 0 0 1 1 2

0 1 0 1 2 1

0 0 1 2 1 1

⎞
⎟⎠ .

Calculate the minimum distance of C and decode the received vector (0, 2, 3, 4, 3, 2) using
syndrome decoding.
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4.8 Let C be the linear code over F7 defined by the check matrix

H =

⎛
⎜⎜⎜⎝

1 1 1 1 1 1 1

0 1 2 3 4 5 6

0 1 4 2 2 4 1

0 1 1 6 1 6 6

⎞
⎟⎟⎟⎠ .

i. Prove that C is a [7, 3, 5]7 code.
ii. Decode the received vector (2, 2, 3, 6, 1, 2, 2) using syndrome decoding.

4.9 Let C be the 3-dimensional linear code over F3 generated by the matrix

⎛
⎜⎝

1 0 0 1 1 2 0 1 1

0 1 0 1 2 1 1 0 1

0 0 1 2 1 1 1 1 0

⎞
⎟⎠ .

Prove that C has minimum distance 6 and use syndrome decoding to decode the received
vector

(1, 2, 0, 2, 0, 2, 0, 0, 0).

4.10 Prove that the code C′ obtained from the Alderson–Bruen–Silverman model is
equivalent to the linear code C from which the model is set up.

4.11 Let S be the set of n vectors obtained from the set of columns of a generator matrix of
a linear code C and suppose that C has an extension to a code of length n + 1 and minimum
distance d + 1.

i. Prove that there is a function

f : Fk
q → Fq

with the property that if f (u) = f (v), then u − v is orthogonal (with respect to the
standard inner product) to less than n − d points of S.

ii. Let T be the set of vectors of Fk
q which are orthogonal to n − d vectors of S. Let v ∈ T

and let u1, . . . , uk−2 be a set of k − 2 vectors extending v to a set of k − 1 linearly
independent vectors. Prove that for all λ1, . . . , λk−2, λ, μ ∈ Fq , λ �= μ,

f (λ1u1 + · · · + λk−2uk−2 + λv) �= f (λ1u1 + · · · + λk−2uk−2 + μv).

iii. Prove that if every hyperplane of Fk
q contains a vector of T , then every hyperplane of

F
k
q contains qk−2 vectors u such that f (u) = 0.

iv. Prove that there is a hyperplane of Fk
q not containing a vector of T .

v. Prove that C has a linear extension. In other words, it can be extended to a [n+1, k, d+
1]q code.
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4.12 Prove that for fixed r = n − d, the Griesmer bound implies n � (r − k + 2)q + r .

4.13 Let r = n− d and let S be the set of columns of a generator matrix of a 3-dimensional
linear code C of length (r − 1)q + r , so we have equality in the bound of Exercise 4.12.
Prove that S is a set of vectors of Fk

q in which every hyperplane contains 0 or r vectors of S.
Equivalently show that the non-zero codewords of C have weight n or d.

4.14
i. Verify that equality in the Griesmer bound occurs for the parameters of the code C in

Example 4.19 if and only if q = 3.
ii. Let G be a 6 × 10 matrix

G =
(

I6 A
)

.

Let S be the set of rows of the 6 × 4 matrix A, considered as 6 points of PG(3, 3).
Prove that G is a generator matrix of a [10, 6, 4]3 code if and only if S has the property
all points of S have weight at least three (i.e. the points of S have at most one zero
coordinate), no two points of S are collinear with a point of weight one and that no
three points of S are collinear.

iii. Find a matrix A so that G is a generator matrix for a [10, 6, 4]3 code.

4.15 Let C be a linear code over Fq , where q �= 2.
i. Prove that if w − �w/(q − 1)� < d, where d is the minimum distance of a linear code

C, then two codewords of C of weight w have the same support if and only if they are
multiples of each other.

ii. Prove that if w � (d − 1)(q − 1)/(q − 2), then w − �w/(q − 1)� < d.

4.16 Let C be a linear code of length n and minimum distance d with the property that C⊥
has at most d distinct weights, w1, . . . , wd .

i. Let Aj denote the number of codewords of C of weight j and let A⊥
j denote the number

of codewords of C⊥ of weight j . Prove that

qk
n∑

j=0

A⊥
j (1−X)j = (1+(q−1)(1−X))n+

n∑
j=d

AjX
j (1+(q−1)(1−X)n−j ).

ii. Prove that the n + 1 polynomials Xn−r (1 + (q − 1)(1 − X)r) (r = 0, . . . , n − d),
(1 − X)wj (j = 1, . . . , d) are linearly independent.

iii. Prove that the weight enumerator of C⊥ is determined.
iv. Prove that the weight enumerator of C is determined.
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