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p-Adic Codes

The p-adic numbers were first considered by Hensel in the 19th century. He observed
that the primes play an analogous role in the integers as linear polynomials do in C[X].
The Laurent expansion of a rational function led him to consider the p-adic expansion
of a rational number. In this chapter, for a fixed prime p, we will construct block codes
over the rings Z/ph

Z simultaneously, by constructing codes over the p-adic numbers
and then considering the coordinates modulo ph. These codes will be linear over the
ring but when mapped to codes over Z/pZ will result in codes which are not equivalent
to linear codes. We start with a brief introduction to p-adic numbers, which will cover
enough background for our purposes. The classical cyclic codes, that we constructed
in � Chapter 5, lift to cyclic codes over the p-adic numbers. In the case of the cyclic
Hamming code, this lift extends to a code over Z/4Z which, when mapped to a binary
code, gives a non-linear code with a set of parameters for which no linear code exists.

10.1 p-Adic Numbers

Let p be a prime.
The set of p-adic integers, which is denoted by Zp, is the set of sequences,

a = (a1, a2, a3, . . .),

where ai ∈ Z/pi
Z for all i ∈ N and

aj+1 ≡ aj (mod pj ).

An ordinary integer n ∈ Z is an element of Zp defined by the sequence

aj ≡ n (mod pj ).
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The sequence defined by

aj+1 = aj + pj ,

j ∈ N, is a p-adic integer which is not an ordinary integer.
For example, with a1 = 3 and p = 5, this sequence begins

(3, 8, 33, 158, 783, . . .).

We define addition and multiplication on the sequences component-wise, so

a + b = (a1, a2, a3, . . .) + (b1, b2, b3, . . .) = (a1 + b1, a2 + b2, a3 + b3, . . .).

To verify a + b ∈ Zp, observe that

aj+1 + bj+1 ≡ aj + bj (mod pj ).

Similarly,

ab = (a1, a2, a3, . . .)(b1, b2, b3, . . .) = (a1b1, a2b2, a3b3, . . .).

To verify ab ∈ Zp, observe that

aj+1bj+1 ≡ ajbj (mod pj ).

With these definitions multiplication is distributive with respect to addition, so Zp is a
ring and has a multiplicative identity element

1 = (1, 1, 1, . . .).

If a is a sequence for which a1 = 0, then a does not have a multiplicative inverse, so Zp

is not a field. It is, however, an integral domain (xy = 0 implies either x = 0 or y = 0),
so it has a quotient field. This quotient field is called the field of p-adic numbers and is
denoted Qp. Elements of Qp are called p-adic numbers.

All non-zero elements of Zp can be written as the product of a unit times some
non-negative power of p.

For example, the 5-adic integer

(0, 15, 40, 290, 915, . . .) = 5(3, 8, 58, 183, . . . , ),

since 15 ≡ 0 modulo 5, 40 ≡ 15 modulo 25, 290 ≡ 40 modulo 125, etc.
The field Qp consists of the sequences where we allow negative powers of p as well.
For example,

5−2(2, 22, 97, 222, . . .),
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is a 5-adic number.
The product of pα(a1, a2, a3, . . .) and pβ(b1, b2, b3, . . .) is

pα+β(a1b1, a2b2, a3b3, . . .).

Returning to the previous examples,

5(3, 8, 58, 183, . . . , )5−2(2, 22, 97, 222, . . .) = 5−1(1, 1, 1, 1, . . .).

10.2 Polynomials over the p-Adic Numbers

Let Qp denote an algebraic closure of Qp. Recall that, since Qp is an algebraic closure,
the polynomials of positive degree over Qp factorise into linear factors over Qp. The
following lemma is a straightforward application of the binomial theorem.

Lemma 10.1 If α, β ∈ Qp and

α ≡ β (mod pr)

then

αp ≡ βp (mod pr+1).

Proof
We can write α = β + prγ , for some γ ∈ Zp . Then

αp = (β + prγ )p ≡ βp (mod pr+1).

��
In � Chapter 2 we studied how to factorise cyclotomic polynomials over finite fields

and put this to use in � Chapter 5 while constructing cyclic codes. The following
theorem tells us that a factorisation over Fp “lifts” to a factorisation over the p-adic
numbers. As in � Chapter 5, we will exploit this factorisation to construct cyclic codes
and their extensions with some surprising results.

Theorem 10.2
Let p be a prime and let n be a positive integer which is not a multiple of p. If h is a
monic irreducible divisor of Xn−1 in (Z/pZ)[X], then there exists a monic irreducible
polynomial h∞ in Zp[X] which divides Xn − 1 and is congruent to h modulo p.
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Proof
By induction on r , we will find a polynomial hr(X) ∈ (Z/pr

Z)[X] such that hr(X) divides
Xn − 1 and hr ≡ h modulo p. Then h∞ will be the polynomial hr as r → ∞.

An element c ∈ Z/pr
Z can be extended to an element of Zp by taking the sequence

(c1, c2, . . . , cr−1, c, c, c, . . .),

where ci = c mod pi , for i = 1, . . . r −1. Therefore, the coefficients of hr(X) can be viewed
as elements of Zp and therefore as elements of Qp .

Since n is not a multiple of p, the roots of h1(X) in Qp are distinct. By induction, we
can assume that the roots of hr(X) are distinct.

For each root α of hr(X) (in Qp),

αn ≡ 1 (mod pr).

Let

f (X) = hr(X) + prg(X),

for some polynomial g(X) ∈ Zp[X].
For each root β of f , there is a root α of hr(X) such that

β ≡ α (mod pr).

Then, by Lemma 10.1,

βp ≡ αp (mod pr+1).

Lemma 10.1 also implies that

αnp ≡ 1 (mod pr+1)

from which we deduce that

βnp ≡ 1 (mod pr+1).

Let

hr+1(X) =
∏

(X − βp),

where the product runs over the roots β of f .
Then hr+1 divides Xn − 1 modulo pr+1. Since

βp ≡ αp ≡ α (mod p),
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hr+1 and hr have the same roots modulo p.
Thus, the roots of hr+1 are distinct and

hr+1 ≡ hr (mod p).

��

10.3 p-Adic Codes

Let R be a commutative ring with multiplicative identity 1. An R-module M is a
commutative group with a left multiplication from R × M → M satisfying λ(u + v) =
λu + λv, (λ + μ)u = λu + μu, (λμ)u = λ(μu) and 1u = u, for all u, v ∈ M and all
λ, μ ∈ R.

The set Zn
p of n-tuples over the p-adic integers is a commutative group with respect

to addition. We define left multiplication of an element (u1, . . . , un) ∈ Z
n
p by an element

λ ∈ Zp as

λ(u1, . . . , un) = (λu1, . . . , λun).

This scalar multiplication satisfies λ(u + v) = λu + λv, (λ + μ)u = λu + μu,
(λμ)u = λ(μu) and 1u = u, for all u, v ∈ Z

n
p and all λ, μ ∈ Zp. Thus, with this

scalar multiplication Z
n
p is a Zp-module.

A submodule C of Zn
p is a non-empty subset of Zn

p which is closed under linear
combinations. In other words,

λu + μv ∈ C,

for all u, v ∈ C and all λ, μ ∈ Zp.
We now re-define the analogous objects that we saw for linear codes over a field for

codes over Zp. A p-adic code of length n is a subset of Zn
p. A linear code over Zp is a

submodule of Zn
p.

A generator matrix for a linear code C over Zp is a k×n matrix G with the property
that

C = {(u1, . . . , uk)G| (u1, . . . , uk) ∈ Z
k
p}.

We define the scalar product on Z
n
p as the standard inner product

u · v = u1v1 + · · · + unvn.

The dual code of a linear code C is defined, as in the case of a linear code over a
finite field, as

C⊥ = {v ∈ Z
n
p | u · v = 0 for all u ∈ C}.
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A linear code C is cyclic if

(c1, c2, . . . , cn) ∈ C

implies

(cn, c1, . . . , cn−1) ∈ C.

A codeword of the cyclic code corresponds to a polynomial in the ring Zp[X]/(Xn − 1)

under the correspondence

(c1, c2, . . . , cn) 	→ c1 + c2X + · · · + cnX
n−1.

As in the case of finite fields, under this correspondence, a cyclic code is an ideal 〈g〉,
where g is some divisor of Xn − 1.

Example 10.3
The polynomial X3+X+1 divides X7−1 in (Z/2Z)[X]. Theorem 10.2 implies the existence
of a polynomial in Z2[X] which divides X7 − 1. One can verify that

g(X) = X3 + λX2 + (λ − 1)X − 1

divides X7 − 1 in Z2[X] if and only if λ2 − λ + 2 = 0 by observing that

X7 − 1 = (X3 + λX2 + (λ − 1)X − 1)(X3 + (1 − λ)X2 − λX − 1)(X − 1).

To calculate λ, suppose

λ = (a1, a2, a3, . . .).

Since a1 ∈ Z/2Z, we have a1 = 0 or 1.
If a1 = 0, then substituting λ ≡ 0 + 2a2 (mod 4) in

λ2 − λ + 2 ≡ 0 (mod 4)

implies

−2a2 + 2 ≡ 0 (mod 4),

so a2 = 1 and λ ≡ 2 (mod 4).
Substituting λ ≡ 2 + 4a3 (mod 8) in

λ2 − λ + 2 ≡ 0 (mod 8)
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implies

4 − 2 − 4a3 + 2 ≡ 0 (mod 8),

so a3 = 1 and λ ≡ 6 (mod 8).
Continuing in this way we deduce that one of the roots of λ2 − λ + 2 is

λ = (0, 2, 6, 6, 6, 38, 38, 166, 422, . . .).

The cyclic code 〈g〉 is a 2-adic linear code of length 7 with generator matrix

G =

⎛

⎜⎜⎜⎝

−1 λ − 1 λ 1 0 0 0

0 −1 λ − 1 λ 1 0 0

0 0 −1 λ − 1 λ 1 0

0 0 0 −1 λ − 1 λ 1

⎞

⎟⎟⎟⎠ .

�

To make use of these p-adic codes, we will now consider the coordinates of the
codewords of a p-adic code modulo ph for some h. The resulting code will be a code
defined over the finite alphabet Z/ph

Z. We will use the matrix G from Example 10.3 in
Example 10.9.

10.4 Codes over Z/ph
Z

A linear code over Z/ph
Z is a (Z/ph

Z)-submodule of (Z/ph
Z)n. As in the case for a

linear code over Fq , we define a generator matrix for a linear code C over (Z/ph
Z)n

as a r × n matrix G with the property that

C = {(u1, . . . , ur)G| (u1, . . . , ur) ∈ (Z/ph
Z)r}.

If all the elements in the i-th row of G are divisible by pj , then we can restrict ui to
Z/ph−j

Z.

Example 10.4
Let

G =
⎛

⎜⎝
1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

0 0 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6

⎞

⎟⎠ ,

where the elements of G are from Z/9Z.
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The code generated by the matrix G is

C = {(u1, u2, u3)G | u1, u2 ∈ Z/9Z, u3 ∈ Z/3Z}.

Thus, the code C is a 9-ary code of length 20 of size 243.
The codeword

(3, 0, 1)G = (3, 0, 3, 6, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0)

and the all-zero codeword differ in 11 coordinates, so the minimum distance is at most 11. It
is Exercise 10.3 to verify that the minimum distance is 11. �

Theorem 10.5
After a suitable permutation of the coordinates, a linear code C over (Z/ph

Z)n has a
generator matrix of the form

G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I A01 A02 A03 · · · A0,h−1 A0,h

0 pI pA12 pA13 · · · pA1,h−1 pA1,h

0 0 p2I p2A23 · · · p2A2,h−1 p2A2,h

...
. . .

. . .
. . .

. . . · · · ...

... · · · . . .
. . .

. . .
. . .

...

0 . · · · 0 0 ph−1I ph−1Ah−1,h

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If the block sizes of the columns are k0, k1, . . . , kh (necessarily summing to n), then

|C| = pk,

where

k =
h−1∑

i=0

(h − i)ki .

Proof
Applying elementary row operations to the matrix does not change the code C generated
by the matrix. Since we are also allowed to permute the columns the only impediment to
obtaining a generator matrix of the form

(
I B01

)
,
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is rows in which all elements are divisible by p. Thus, we obtain a generator matrix of the
form

G =
(

I B01

0 pB02

)
,

for some matrices B01 and B02. We continue applying row operations and column permuta-
tions. Again, the only impediment to obtaining a generator matrix of the form

(
I B01 B02

0 pI pB12

)
,

is rows in which all elements are divisible by p2.
Therefore, there is a generator matrix for C of the form

G =
⎛

⎜⎝
I B01 B02

0 pI pB12

0 0 p2B22

⎞

⎟⎠ .

The form of G follows by continuing applying row operations and column permutations.
The code generated by G is

C = {(u1, . . . , ur )G | ui ∈ Z/ph
Z}.

If all the entries in the �-th row of G are divisible by pj , then we can restrict u� to Z/ph−j
Z,

which implies that the size of the code is as claimed. ��

Example 10.6
Consider the code over Z/8Z generated by the matrix

(
0 2 1 4 1 1

4 6 7 4 7 1

)
.

By shifting the coordinates one coordinate to the right, we obtain an equivalent code with
generator matrix

(
1 0 2 1 4 1

1 4 6 7 4 7

)
.

Subtracting the first row from the second, we obtain a generator matrix for the same code

(
1 0 2 1 4 1

0 4 4 6 0 6

)
.
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Multiplying the second row by 3 we obtain another generator matrix for the code

(
1 0 2 1 4 1

0 4 4 2 0 2

)
.

Finally, interchanging the second and sixth column we obtain an equivalent code with
generator matrix

(
1 1 2 1 4 0

0 2 4 2 0 4

)
.

Comparing this to the claim of Theorem 10.5, the matrix A01 = (1), the matrix A02 =
(2 1 4 0) and the matrix A12 = (2 1 0 2).

Note that the code has size 32 and not 64, which is not immediately apparent from the
initial generator matrix. �

10.5 Codes over Z/4Z

The Gray map is a map γ from Z/4Z to {0, 1}2 defined by

x 0 1 2 3

γ (x) (0, 0) (0, 1) (1, 1) (1, 0)
.

We extend the Gray map to a map from (Z/4Z)n to {0, 1}2n by applying γ to each
coordinate.

If C is a block code of length n over Z/4Z, then γ (C), defined by

γ (C) = {γ (v) | v ∈ C},
is a binary code of length 2n. It is immediate that if C has minimum distance d , then
γ (C) has minimum distance at least d .

However, there is a possibility that the minimum distance of γ (C) is larger than d .

Example 10.7
Let C be the code over Z/4Z generated by the matrix

(
1 0 2 1 1 1

0 2 2 2 0 0

)
.

The 8 codewords of C and the code γ (C) are
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C γ (C)

(0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0,0,0,0)

(1,0,2,1,1,1) (0,1,0,0,1,1,0,1,0,1,0,1)

(0,2,2,2,0,0) (0,0,1,1,1,1,1,1,0,0,0,0)

(1,2,0,3,1,1) (0,1,1,1,0,0,1,0,0,1,0,1)

(2,0,0,2,2,2) (1,1,0,0,0,0,1,1,1,1,1,1)

(2,2,2,0,2,2) (1,1,1,1,1,1,0,0,1,1,1,1)

(3,0,2,3,3,3) (1,0,0,0,1,1,1,0,1,0,1,0)

(3,2,0,1,3,3) (1,0,1,1,0,0,0,1,1,0,1,0)

One readily checks that the minimum distance of C is 3 and the minimum distance of
γ (C) is 6. �

The Lee distance between two elements u and v of (Z/4Z)n is defined as the
Hamming distance between γ (u) and γ (v). The Lee weight of an element u of (Z/4Z)n

is the Lee distance between u and the all zero n-tuple.

Lemma 10.8 Let C be a linear code over Z/4Z. The minimum Lee weight of a non-zero
codeword of C is equal to the minimum distance of γ (C).

Proof
Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two codewords of C.

By checking all possibilities for ui, vi ∈ Z/4Z, one can verify that the distance between
γ (ui) and γ (vi) is equal to the distance between (0, 0) and γ (ui − vi).

Thus,

d(γ (u), γ (v)) =
n∑

i=1

d(γ (ui), γ (vi)) =
n∑

i=1

d(γ (ui − vi), (0, 0))

which is equal to the Lee weight of u − v. ��

In the following example, we return to Example 10.3 and consider the entries in the
matrix modulo 4. This matrix will then generate a code over Z/4Z.

Example 10.9
By Example 10.3, we have that X3 + 2X2 + X + 3 divides X7 − 1 in (Z/4Z)[X]. This
polynomial generates a cyclic code of length 7 which extends to a code of length 8 with
generator matrix

G =

⎛

⎜⎜⎜⎝

3 1 2 1 0 0 0 1

0 3 1 2 1 0 0 1

0 0 3 1 2 1 0 1

0 0 0 3 1 2 1 1

⎞

⎟⎟⎟⎠ .
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Let C be the Z/4Z-linear code of length 8 with 256 codewords defined by

C = {uG | u ∈ (Z/4Z)4}.

The code γ (C) is a binary code of length 16 with 256 codewords. By Exercise 10.7,
the minimum distance of γ (C) is 6. This code is equivalent to the code constructed in
Example 9.12. As mentioned there, an important observation is that there is no binary linear
code with these parameters, which we proved in Example 4.20. �

Example 10.9 suggests that codes over rings may be a good place to look for non-
linear codes which have better parameter sets than linear codes. It may be the case that
we need to consider non-linear codes to disprove Conjecture 3.18.

10.6 Comments

This chapter leans somewhat on the enlightening article by Calderbank and Sloane on
p-adic codes [14]. Carlet [19] has generalised the Gray map to a bijection from Z/2k

Z

to R(1, k − 1). This can be extended to (Z/2k
Z)n and can therefore be used to construct

(non-linear) binary codes from Z/2k
Z-linear codes.

Theorem 10.2 is a special case of Hensel’s lifting lemma. For more on p-adic
numbers, including the lifting lemma, see [30].

10.7 Exercises

10.1 Let

λ = (1, b2, b3, b4, . . .)

be the 2-adic integer which is a root of X2 − X + 2. Calculate the numbers b2, b3, b4 in the
sequence of λ.

10.2 Prove that the code generated by the 4 × 8 matrix obtained by extending the generator
matrix in Example 10.3 with the all-one vector is a self-dual code.

10.3 Check, with the aid of a computer or not, that the code in Example 10.4 has minimum
distance 11.

10.4 i. Prove that the dual code C⊥, to the code C generated by the matrix in Theo-
rem 10.5, has a generator matrix of the form
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G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0,h B0,h−1 · · · B03 B02 B01 I

pB1,h pB1,h−1 · · · pB13 pB12 pI 0

p2B2,h p2B2,h−1 · · · p2B23 p2I 0 0

. . . . .
.

. .
.

. .

. . . .
.

. .
.

. . .

ph−1Bh−1,h ph−1I 0 . . . . . . . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for some matrices Bij , where the blocks of columns have the same size as in Theo-
rem 10.5.

ii. Prove that |C⊥| = pk⊥ , where

k⊥ =
h∑

i=1

iki .

10.5 Let C be a linear code over Z/ph
Z. Prove that (C⊥)⊥ = C.

10.6 Let C be the linear code over Z/4Z from Example 10.7.
i. Check that the minimum Lee weight of a non-zero codeword of C is 6 and verify that the

minimum Hamming distance between any two codewords of γ (C) is 6.
ii. The code γ (C) is a non-linear binary code of length 12, minimum distance 6 and size

8. Construct a linear code with the same parameters.
iii. The code

C = {λu + 2μv | λ ∈ Z/4Z, μ ∈ Z/2Z}

for some u ∈ (Z/4Z)6 and v ∈ (Z/2Z)6, where the weight of v is 3. Construct a code
with the same parameters as C in which the weight of v is 4.

10.7
i. Prove, using row operations, that the code C in Example 10.9 has a generator matrix

G = G1 + 2G2,

where

G1 =

⎛

⎜⎜⎜⎝

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

⎞

⎟⎟⎟⎠
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and

G2 =

⎛

⎜⎜⎜⎝

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 1

⎞

⎟⎟⎟⎠ .

ii. Prove, using Lemma 10.8, that the code γ (C) in Example 10.9 has minimum distance 6.

10.8
i. Prove that X2 + λX − 1 divides X8 − 1 in Zp[X], where λ is a p-adic integer satisfying

λ2 = −2.
ii. Calculate the next few numbers in the sequences (1, 4, . . .) and (2, 5, . . .) which are both

solutions of λ2 = −2 in Z3.

10.9
i. Prove that X5 + λX4 − X3 + X2 + (λ − 1)X − 1 divides X11 − 1 in Zp[X], where λ is

a p-adic integer satisfying λ2 = λ − 3.
ii. Calculate the first few numbers in the sequences which are solutions of λ2 = λ−3 in Z3.

10.10
i. Prove that X11 + λX10 + (λ − 3)X9 − 4X8 − (λ + 3)X7 − (2λ + 1)X6 − (2λ − 3)X5 −

(λ − 4)X4 + 4X3 + (λ + 2)X2 + (λ − 1)X − 1 divides X23 − 1 in Zp[X], where λ is a
p-adic integer satisfying λ2 = λ − 6.

ii. Calculate the first few numbers in the sequences which are solutions of λ2 = λ−6 in Z2.
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