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Abstract. Hybrid systems are dynamical systems that include both
continuous and discrete changes. Modeling and simulation of hybrid sys-
tems can be challenging due to various kinds of subtleties of their behav-
ior. The declarative modeling language HydLa aims at concise descrip-
tion of hybrid systems by means of constraints and constraint hierarchies.
HyLaGI, a publicly available symbolic simulator of HydLa, featured
error-free computation with symbolic parameters. Based on symbolic
computation, HyLaGI provides various functionalities including nonde-
terministic execution, handling of infinitesimal quantities, and construc-
tion of hybrid automata. Nondeterministic execution in the framework
of constraint programming enables us to solve inverse problems by auto-
matic parameter search. This paper introduces these features by means
of example programs. This paper also discusses our experiences with
HydLa programming, which is unique in that its data and control struc-
tures are both based on constraint technologies. We discuss its expressive
power and our experiences with modeling using constraint hierarchies.
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1 Introduction

Hybrid systems [12] are dynamical systems which include both continuous and
discrete changes. To put it differently, hybrid systems are dynamical systems
whose description involves case analysis. Because of the case analysis, simulation
of hybrid systems can easily go qualitatively wrong, and techniques for rigorous
simulation are very important.

Modeling of hybrid systems, as opposed to continuous systems or discrete
systems, is itself a challenge. The best-known modeling technique is hybrid
automata [9] with an explicit notion of states, but designing fundamental lan-
guage constructs, especially those for declarative (as opposed to procedural)
modeling seems to be an open problem. Although there have been a number of
proposals of modeling languages (see [5] for a comprehensive survey), most high-
level languages aim for the modeling of complex hybrid systems [1,16], leaving
the quest for fundamental modeling constructs rather unexplored.
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We take a constraint-based approach to the above two questions, i.e., rigor-
ous simulation and modeling constructs. Constraints are a necessary ingredient
in any modeling technique of hybrid systems in that they all handle differen-
tial equations. However, virtually all high-level modeling languages come with
other language constructs to provide the language with control structures. For
instance, Modelica [16] appears to be close to our goal in that its main feature
is non-causal, constraint-based modeling, but Modelica also supports imperative
constructs to simulate models for which explicit sequencing of events is necessary.
Another high-level language, Zélus [4], builds on the framework of synchronous
programming into which ordinary differential equations (ODEs) were integrated.
Accordingly, the research question we are going to address is:

“Are constraints and constraint solving adequate, by themselves, for the
concise modeling and rigorous simulation of hybrid systems?”

The modeling language HydLa [20,21] and its implementation HyLaGI [13,
14] were built as an attempt to answer that question.

Constraint programming for hybrid systems is not new; for example, Hybrid
CC [8] was born as an extension of concurrent constraint programming. While
Hybrid CC retained the flavor of process calculi, HydLa, inspired by Hybrid CC,
adopted constraint hierarchy [3] for concise modeling of hybrid systems, as will
be exemplified soon.

The constraint-based approach has another advantage—the ability to express
partial information and handle it with rigorous symbolic computation based
on consistency checking. Constraints include the notion of intervals such as
x ∈ [1.0, 3.5]. As an important application, they also allow natural handling
of parametric hybrid systems, i.e., hybrid systems with symbolic parameters,
which is useful for the understanding, analysis and design of hybrid systems.
Some verification tools such as KeYmaera X [7] and dReach [10] also took a
rigorous, symbolic approach. Unlike these and like Acumen [18], HyLaGI was
designed as a simulation tool whose primary goal was to help understanding
of hybrid systems (as opposed to the solving of decision problems). There are
other tools for rigorous simulation. For instance, Acumen [18] and Flow* [6]
adopt (numerical) interval enclosure techniques while we take a symbolic app-
roach to handle parametric systems. Another symbolic simulator was reported
in [17], but unlike it our algorithm provides exhaustive search.

1.1 HydLa by Example

Let us introduce HydLa by a simple example.
Figure 1 shows a HydLa model of a bouncing particle. In HydLa, each variable

is treated as a function of time; for example, a variable y is an abbreviation of a
function y(t) (t ≥ 0) and represents the height of the particle, while y’ and y’’
stand for its speed and acceleration, both being functions of time.

The first three lines are the definitions of named constraints (called constraint
modules or simply modules) represented using differential equations and logical
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1 INIT <=> 7 < y < 12 & y’ = 0.
2 FALL <=> [](y’’ = -10).
3 BOUNCE <=> [](y- = 0 => y’ = -4/5 * y’-).
4
5 INIT, (FALL << BOUNCE).
6 //#hylagi -p10

Fig. 1. A bouncing particle model in HydLa with an uncertain initial state.

connectives. INIT stands for a constraint defining the (uncertain) initial position
and the speed of the particle. FALL represents free fall, while BOUNCE represents
bouncing. The temporal logic operator [], called “always”, indicates that a
constraint holds and keeps holding after it is generated. The postfix operator
- indicates the left limit of the value of the variable; for example, y-(t) stands
for limt′→t−0 y(t′). The connective => is logical implication. Line 5 declares how
the three modules are composed. We can declare relative strength of modules:
in our case, FALL is declared to be weaker than BOUNCE and is ignored when it
is inconsistent with BOUNCE. Line 6 is a comment line showing default options
given to HyLaGI (Sect. 3). Further details of HydLa will be described in Sect. 2.

1.2 HyLaGI and WebHydLa

We are developing an implementation HyLaGI to simulate HydLa programs.
HyLaGI, available from GitHub1, is implemented in C++ and uses the Boost
library. We currently use Mathematica as a constraint solver and perform sim-
ulations by symbolic computation. This opens up various applications including
the simulation and reasoning about models with symbolic parameters, handling
of infinitesimal quantities, and checking of the inclusion properties of the sets
of trajectories. Symbolic simulation assumes the existence of closed-form solu-
tions of ODEs, which might sound like a rather strong restriction, but ODEs
without closed-form solutions could be rigorously approximated using a family
of ODEs with symbolic parameters (to enclose approximation errors) that have
closed-form solutions, which is among our future work.

Figure 2 shows the output of HyLaGI from the program of Fig. 1. HyLaGI
simulates a program in phases, which are an alternating sequence of point phases
(PPs) and interval phases (IPs). A point phase represents discrete change, and an
interval phase represents continuous change. HyLaGI represents the uncertain
initial condition of y by generating a symbolic parameter p[y,0,1], meaning
a parameter representing the 0th derivative of y of the first phase. HyLaGI
performs case analysis for uncertain models, but for this example it returns only
one case with 10 phases. Information for a point phase includes the time and
the values of variables, while that of an interval phase includes the time interval
and trajectories (as functions of time) over that interval. In addition, it provides

1 https://github.com/HydLa/.

https://github.com/HydLa/
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1 ------ Result of Simulation ------
2 ---------parameter condition(global)---------
3 p[y, 0, 1] : (7, 12)
4 ---------Case 1---------
5 ---------1---------
6 ---------PP 1---------
7 unadopted modules: {}
8 positive :
9 negative :

10 t : 0
11 y : p[y, 0, 1]
12 y’ : 0
13 y’’ : -10
14 ---------IP 2---------
15 unadopted modules: {}
16 positive :
17 negative :
18 t : 0->5^(-1/2)*p[y, 0, 1]^(1/2)
19 y : t^2*(-5)+p[y, 0, 1]
20 y’ : t*(-10)
21 y’’ : -10
22 ---------2---------
23 ---------PP 3---------
24 unadopted modules: {FALL}
25 unsat modules : {BOUNCE, FALL}
26 unsat constraints : {y’’=-10, y’=-4/5*y’-}
27 positive : y-=0=>y’=-4/5*y’-
28 negative :
29 t : 5^(-1/2)*p[y, 0, 1]^(1/2)
30 y : 0
31 y’ : 5^(-1/2)*8*p[y, 0, 1]^(1/2)
32 ---------IP 4---------
33 unadopted modules: {}
34 positive :
35 negative : y-=0=>y’=-4/5*y’-
36 t : 5^(-1/2)*p[y, 0, 1]^(1/2)->5^(-1/2)*p[y, 0, 1]^(1/2)*13/5
37 y : t^2*(-5)+18*5^(-1/2)*t*p[y, 0, 1]^(1/2)+p[y, 0, 1]*(-13)/5
38 y’ : t*(-10)+18*5^(-1/2)*p[y, 0, 1]^(1/2)
39 y’’ : -10
40
41 . . . (omitted up to PP 9) . . .
42
43 ---------IP 10---------
44 unadopted modules: {}
45 positive :
46 negative : y-=0=>y’=-4/5*y’-
47 t : 5^(-1/2)*p[y, 0, 1]^(1/2)*613/125->5^(-1/2)*p[y, 0, 1]^(1/2)

*3577/625
48 y : t^2*(-5)+5^(-1/2)*t*p[y, 0, 1]^(1/2)*6642/125+p[y, 0,

1]*(-2192701)/78125
49 y’ : t*(-10)+5^(-1/2)*p[y, 0, 1]^(1/2)*6642/125
50 y’’ : -10
51 ---------parameter condition(Case1)---------
52 p[y, 0, 1] : (7, 12)
53 # number of phases reached limit

Fig. 2. Simulation results of the bouncing particle up to 10 phases.
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Fig. 3. Output of webHydLa for the bouncing particle model. Note that simulation
was executed only once, after which the family of trajectories were rendered by the
visualizer.

information about the constraints that determined these values or trajectories,
which turned out to be extremely useful in debugging and construction of hybrid
automata, as discussed in Sects. 3 and 4.

The output of Fig. 2 suggests that a visualization tool for the understanding
of results is highly desirable. We have developed webHydLa2 as an IDE for
HydLa that can visualize simulation results in 2D and 3D. For example, the
simulation result of the program in Fig. 1 is visualized as in Fig. 3.

1.3 Purpose and Outline of the Paper

HydLa and HyLaGI has been available for quite some time, but except for the
language definition [20] and implementation techniques [13,14], the consequences
and implications of the design and functionalities of HydLa and HyLaGI in the
light of the modeling of various hybrid systems have not been reported. Reports
on various ideas that went into our system were scattered over rather short
papers (some of which in Japanese). Thus the purpose of the present paper is to
report our constraint-based approach in a comprehensive way with a number of
examples, discussing important details and findings not addressed by previous
papers.

The rest of the paper is organized as follows. Section 2 briefly introduces the
constructs of HydLa. Section 3 introduces functionalities of HyLaGI by various
examples. Section 4 describes our experiences with constraint-based modeling

2 http://webhydla.ueda.info.waseda.ac.jp/.

http://webhydla.ueda.info.waseda.ac.jp/
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with HydLa. Section 5 introduces further examples involving parameter search.
Section 6 concludes the paper.

2 The Constraint-Based Language HydLa

We briefly overview the modeling language HydLa. Please refer to [20] for further
details of basic constructs and [13] for extended features implemented in HyLaGI
and some subtle points.

As exemplified by the bouncing particle model of Fig. 1, a typical HydLa
program consists of the definitions of constraints followed by the declaration
of constraint hierarchy formed by the defined modules. Constraint hierarchy
refers to a partially ordered set whose elements are combinations of modules
allowed by the declaration and whose order is a set inclusion relation. Constraint
hierarchy allows us to represent ordinary or default behavior and special or
exceptional behavior in a concise manner. Constraints in the module INIT are
defined without the [] operator and hold only at time 0. A constraint with
=> expresses a conditional constraint (also called a guarded constraint) whose
consequent is enabled only when the antecedent (called a guard) holds. The
constraint hierarchy declared in Line 5 indicates that BOUNCE is stronger than
FALL and also that BOUNCE and INIT have the highest priority. At each point of
time, HydLa adopts a maximal consistent set (MCS) of modules that respects
constraint hierarchy. In this example, while the particle is floating, the set {INIT,
FALL, BOUNCE} is adopted (note that INIT is vacuously satisfied after time 0, and
BOUNCE is vacuously satisfied because of the false guard) and that when it collides
with the floor, the MCS changes to {INIT, BOUNCE}. Note that a module which is
not weaker than any other module in the constraint hierarchy is called a required
module and is always enabled.

2.1 Syntax

The syntax of HydLa is shown in Fig. 4, where dname, cname, vname are sym-
bolic names representing definitions, constraints and variables, respectively.

Here we describe language features not covered by Fig. 1. The definition Def
says that we can define named declarations (that may include constraint hierar-
chies) as well as named constraints. It also says that definitions may have formal
parameters

#”

X. The syntax of a constraint C allows an always (�) constraint
to occur in the consequent of a guarded constraint. Examples of its use will be
shown in Sect. 5. Note that, in the declaration Decl, the operator “�” binds
tighter than the operator “,” that imposes no relative priority. For example,
A � B,C is equal to (A � B), C.

Table 1 shows the correspondence between the abstract syntax of Fig. 4 and
the concrete syntax used in example programs.
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Fig. 4. Syntax of HydLa.

Table 1. Correspondence between abstract and concrete syntax.

Abstract Concrete Abstract Concrete Abstract Concrete Abstract Concrete

� << ≤ <= ∨ \/ or | ∃ \

⇔ <=> �= != ∧ /\ or &

≥ >= ¬ ! � []

List Expressions. We often need to generate multiple objects (such as balls
and cars) with the same property in the modeling of hybrid systems. As an
extension of the syntax in Fig. 4, HydLa provides a list notation to simplify the
description of such models. Here we explain their use by examples, leaving the
full syntax with list expressions to the Appendix.

We introduce two types of list notation. The first type is the list of arith-
metic expressions, which can be written extensionally or in a list comprehension
notation. Range expressions of the form {l . . h} are also allowed. Range expres-
sions have two applications; one is to express a list of consecutive values (such
as {2*3+1..10}) and the other is to express a list of variables whose names end
with consecutive digits. For instance, {x0..x4} stands for the list of variables
{x0, x1, x2, x3, x4}. The second type of list notation is to declare multi-
ple instances of constraints. A list of priority declarations can also be written
extensionally or in a list comprehension notation as in the example below.

For example, consider a road congestion model with five cars, of which the
cars except the first one accelerates and deaccelerates depending on the distance
from the car in front (Fig. 5). Figure 6 shows its HydLa model. Line 1 defines
X to be the list of cars for which the notation X[i] is available to access its ith
element. Lines 3–6 define named constraints describing the properties of the cars.
Lines 8–12 declare constraints imposed by the five cars, where |X| represents
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Fig. 5. A road congestion model.

1 X := {x1..x5}.
2
3 INIT(x,x0,v0) <=> x = x0 & x’ = v0.
4 CONST(x) <=> [](x’’ = 0).
5 BRAKE(x,xf) <=> [](x’- > 0 & xf- - x- < 30 => x’’ = -5).
6 ACC(x, xf) <=> [](x’- < 15 & xf- - x- > 50 => x’’ = 3).
7
8 { INIT(X[i],100*i+i,4) | i in {1..|X|-1} }.
9 INIT(X[|X|],100*|X|,8).

10 { CONST(X[i]) << (ACC(X[i],X[i+1]), BRAKE(X[i],X[i+1]))
11 | i in {1..|X|-1} }.
12 CONST(X[|X|]).
13 //#hylagi -p40

Fig. 6. A road congestion model in HydLa.

the cardinality of the list X. When we run this program, the distance between
two cars is kept neither too close nor too distant as shown in Fig. 7.

Existential Quantifier. HydLa features existential quantifiers to generate
variables dynamically.

Constraints with existential quantifiers are typically written in the conse-
quents of guarded constraints and generate new trajectories when the guards
hold. Quantified variables are given fresh names when the constraints contain-
ing those variables are expanded. In the modeling of HydLa, dynamic variables
are often used as temporary variables that propagate constraints.

Fig. 7. Simulation result of the road congestion model in HydLa.
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1 INIT <=> p = 65 & mode = 0.
2 OFF <=> [](mode = 0 => p’ = -2).
3 ON <=> [](mode = 1 => p’ = 1).
4 MODE(l,r,m) <=> \x.(l < x < r & [](x’ = -1)
5 & [](x- = 0 => mode = m)).
6 SWITCHOFF <=> [](p- = 68 & mode = 1 => MODE(0.2,0.5,0)).
7 SWITCHON <=> [](p- = 62 & mode = 0 => MODE(0.2,0.5,1)).
8
9 INIT, [](mode’ = 0) << (SWITCHON, SWITCHOFF).

10 OFF, ON.

Fig. 8. A thermostat model with delay in HydLa.

1 FACTORIAL(n, ans)
2 <=> (n = 0 => ans = 1)
3 & (n > 0 => \x.(ans = n * x & FACTORIAL(n-1, x))).
4 CALC_F <=> [](timer- = 1 => FACTORIAL(5, ans)).
5 TIMER <=> timer = 0 & [](timer’ = 1).
6
7 TIMER, CALC_F.

Fig. 9. A model to calculate the factorial of 5.

Figure 8 is an thermostat model using an existential quantifier. The variable
p represents the temperature. SWITCHON and SWITCHOFF are fired when the tem-
perature reaches 62 or 68◦, respectively, to switch the mode that decides the
differential equation of p. The existentially quantified variables, written with \
instead of ∃, are used in the consequents as local timers to express the delay
of mode change. Whenever p reaches 62 or 68◦, a new instance of x is gener-
ated, is initialized to [0.2, 0.5], decreases linearly, and changes the mode when it
reaches 0.

A recursive constraint is another important use of existential quantifiers.
Figure 9 is a somewhat contrived example to calculate the factorial of 5 at time 1.
The module FACTORIAL consists of two guarded constraints, the base case and the
recursive case. When the guard of CALC F holds, FACTORIAL is expanded and its
second guarded constraint is enabled. Then FACTORIAL is expanded recursively
until the second argument reaches 0. Each time FACTORIAL is expanded, a fresh
intermediate variable is created, and a network of constraints is constructed to
propagate the calculation result. In this way, existential quantifiers for dynamic
variable creation provide us with an alternative technique to superdense time
for the modeling of multi-step instantaneous computation.
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2.2 Semantics: Overview

In constraint-based languages, the natural plan for the study of the semantics
would be to consider what a program represents (declarative semantics) first and
then its computational aspects.

Declarative Semantics. The declarative semantics of a HydLa model is the
set of trajectories allowed by the constraints given in the model, where HydLa
takes maximal consistent sets of modules at each point of time, as stated in the
beginning of Sect. 2 with an example. Here we describe some important aspects
of the semantics.

Firstly, HydLa naturally allows models with uncertainties. This comes from
the fact that (i) a set of constraints may have multiple solutions, most typically
due to initial values given as intervals, and that (ii) a maximal consistent set of
modules may not be uniquely determined. It is important to note that, in hybrid
systems, quantitative uncertainties may result in qualitative uncertainties. For
example, when a particle bounces on a floor with a hole, whether or not the
particle eventually enters the hole and how many times it bounces before it
enters the hole depend on the initial position and velocity of the ball. HyLaGI
described in Sect. 3 is able to compute all possible solutions by case splitting.

Multiple solutions may occur even without parametric uncertainties. For
instance, Fig. 10 is a program with a nondeterministic switch that may take
the value 0 or 1 every time the value of timer reaches 1. Note that ON and
STAY are given the second-to-highest priority because modules with the highest
priority are required modules.

1 INIT <=> switch = 0 & timer = 0.
2 CONST <=> [](switch’ = 0).
3 TIMER <=> [](timer’ = 1).
4 ON <=> [](timer- = 1 => switch = 1 & timer = 0).
5 STAY <=> [](timer- = 1 => switch = 0 & timer = 0).
6 TRUE <=> [](1 = 1).
7
8 INIT, (CONST, TIMER) << (ON, STAY) << TRUE.
9 //#hylagi --fnd -p6

Fig. 10. A model with a nondeterministic switch.

Secondly, the constraints explicitly given in programs are usually not enough
to determine solution trajectories. For instance, in the bouncing particle model
of Fig. 1, we are implicitly assuming a frame axiom that the position of the
ball is continuous except when discontinuity is deduced from explicitly given
constraints; otherwise we cannot conclude that the particle starts to move from
the floor after bouncing. We call it the principle of implicit continuity, and refer
the readers to [13] for the details of how it is built into HydLa’s constraint
framework.
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Expressive Power and Computable Trajectories. The syntax of HydLa
allows a model [](x + y = 0), which might make sense as a specification but
not as an “executable” program. Indeed, no hybrid automaton corresponding to
this model is likely to exist. It is therefore meaningful to consider what HydLa
models (or programs) are executable. We propose that an executable program is
a program whose set of trajectories can be represented in explicit form defined
as follows, where we assume that t stands for the current time:

Definition 1. A trajectory of variables x1, . . . , xn is in explicit form if it is piece-
wisely represented as a (finite or inifinite) set of equations x1 = Ei1, . . . , xn = Ein

associated with a time interval Ti (i = 1, 2, . . . ) during which the above set of
equations is effective. Each Eij is a continuous function of t on the interval Ti.
Eij may also contain symbolic parameters p1, . . . , pm(m ≥ 0) but not x1, . . . , xn.
The ends of each time interval Ti are also given using expressions that may con-
tain p1, . . . , pm. The set of allowed values of the parameters p1, . . . , pm are given
as constraints (including equations and inequations), but these constraints must
not contain t. The Ti’s must be mutually disjoint, and

⋃
i Ti must be a single

interval starting from time 0.

The purpose of simulation is to convert the constraints imposed by a HydLa
program into this explicit form, whose example can be found in the simulation
result of Fig. 2.

3 HyLaGI: A Symbolic Implementation of HydLa

HyLaGI is an implementation of HydLa that features rigorous simulation of pos-
sibly uncertain hybrid systems. The central technique to achieve this is symbolic
constraint satisfaction. HyLaGI also employs interval computation internally in
order to compute the time of the earliest possible discrete changes efficiently.

The nondeterministic simulation algorithm of HyLaGI repeats point phases
(PPs) and interval phases (IPs) alternately until a termination condition (time
limit or the number of phases) is satisfied. Calculation of IPs involves (i) solu-
tion of possibly parameterized ODEs and (ii) calculation of the time of the next
discrete change as a minimization problem. Uncertainties represented by sym-
bolic parameters may result in qualitative difference of trajectories as discussed
in Sect. 2.2. In that event, HyLaGI automatically performs case analysis, nar-
rowing the range of parameter values into each qualitatively different case. This
symbolic case analysis is supported by quantifier elimination of the constraint
solver. The readers are referred to [13] for the detailed simulation algorithm of
HyLaGI.

The rest of this section will explain three key functionalities of HyLaGI
enabled by the symbolic approach.

3.1 Assertion

HyLaGI provides an ASSERT construct using constraints, which can be used for
bounded model checking of reachability properties. A property can be stated by
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ASSERT(G), where G stands for a guard. The declarative meaning of ASSERT(G)
is []G or [](!G => false), but we provide ASSERT as a separate construct to be
able to distinguish verification conditions from model descriptions. ASSERT(G)
stops simulation of the current branch of nondeterministic simulation if G
becomes false. Assertion can be used not only for verification but also for solving
inverse problems, as will be described in Sect. 5.

3.2 Epsilon Mode

The simulation of hybrid systems, say those modeling physical phenomena, may
fall into a situation not considered by textbook laws of physics. For example,

1. a ball bouncing inside a box hits the wall and the floor at the same time,
2. a ball in contact with another ball is hit by the third ball, and
3. force is continually applied to an object in contact with another object to

move both.

As for the first example, even if the simultaneity may happen with zero
probability in reality, a family of trajectories of uncertain hybrid systems may
well include it. One way of handling that situation is to consider the limit of
situations where the ball hits the wall or the floor slightly earlier. The second
and the third examples could also be considered as the limit of the situations
where the two objects are slightly apart. HyLaGI is able to simulate such models
by taking the limit of ‘normal’ situations, and it is called the epsilon mode [22].

In the epsilon mode (specified by the option “-en”), we can use a variable
eps as an infinitesimal parameter as shown in Fig. 12. Here, n specifies the
highest-order terms to be retained for eps, for which 1 is enough except when
higher-order effects of eps need to be considered. In the epsilon mode, after
the maximal consistent set of constraints and the current values of variables are
computed in each phase, higher-order terms of eps are deleted (after performing
Taylor expansion when necessary). When the simulation of all phases are com-
pleted, HyLaGI takes the limit (w.r.t. eps) of the expressions representing the
trajectories of all phases.

For the example of three-body collision, HyLaGI will report “unsatisfiable
constraints” (Sect. 4) at the time of collision because the law of two-body collision
is not prepared for this situation. However, simulation can be performed if the
two touching balls are slightly parted. For example, three-body collision shown in

Fig. 11. Collision of three bodies.
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1 INIT <=> x1 = 0 & x2 = 5 & x3 = 6+eps
2 & x1’ = 1 & x2’ = 0 & x3’ = 0.
3 EPS <=> 0 < eps < 0.1 & [](eps’ = 0).
4 CONST(x) <=> [](x’’ = 0).
5 COLLISION(xa, xb) <=>
6 [](xa- = xb- - 1 => xa’ = xb’- & xb’ = xa’-).
7
8 INIT, EPS.
9 (CONST(x1),CONST(x2),CONST(x3))

10 << (COLLISION(x1,x2), COLLISION(x2,x3)).
11 //#hylagi --fnd -p6 -e1

Fig. 12. HydLa model of three-body collision.

Fig. 13. Simulation result of Fig. 12.

Fig. 11 can be described as a HydLa program in Fig. 12. Three balls of diameter
1 are aligned in a straight line, where x2 and x3 are apart by eps, and x1 moves
towards x2 at speed 1. The simulation result of the program of Fig. 12, which
still retains eps, is shown in Fig. 13, where the horizontal axis represents time
and the vertical axis represents the position x. When the value of eps is not too
small, we can see from Fig. 13 that there are two collisions. The text output of
the same simulation tells us that x2 will not move in the limit.

Lee et al. discussed the same model in detail in [11] (Fig. 8, p. 806) as a
motivating example of their constructive modeling. Their (non-symbolic) app-
roach introduces superdense time to handle simultaneous collisions, while we
adopt functions of standard, real-valued time to represent trajectories and han-
dle simultaneity by symbolic perturbation.

There are various variations of the three-body collision. Consider another
three-ball model in which the central ball is hit from both sides simultaneously,
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1 INIT <=> x1 = 0 & x2 = 5 & x3 = 10+eps
2 & x1’ = 1 & x2’ = 0 & x3’ = -1.
3 EPS <=> -0.1 < eps < 0.1 & [](eps’ = 0).
4 MASS <=> [](m1 = 0.2 & m2 = 1 & m3 = 5).
5 CONST(x) <=> [](x’’ = 0).
6 COLLISION(xa,ma,xb,mb) <=>
7 [](xa- = xb- - 1 =>
8 xa’ = (xa’- *(ma-mb) + 2*mb*xb’-)/(ma+mb)
9 & xb’ = (xb’- *(mb-ma) + 2*ma*xa’-)/(ma+mb)).

10
11 INIT. EPS. MASS.
12 (CONST(x1),CONST(x2),CONST(x3))
13 << (COLLISION(x1,m1,x2,m2), COLLISION(x2,m2,x3,m3)).
14 //#hylagi --fnd -p12 -e1

Fig. 14. Collision of three bodies with different masses.

a problem discussed also by Lee et al. in [11] (Fig. 11, p. 807). Suppose the
balls have mass as shown in Line 4 of Fig. 14. For this problem, the result differs
depending on whether the value of eps is positive or negative, as shown in Fig. 15
(look at the trajectory of the central ball). Actually, the right-hand limit and
left-hand limit do not coincide, and HyLaGI’s automatic case analysis generates
three cases depending on the sign of eps including the case of eps = 0 that gets
stuck.

The Dirac delta function can also be represented using the epsilon mode.
The (shifted) delta function can be considered as the limit limε→+0 of a function
whose value is 1/eps in a certain interval of width eps and 0 elsewhere as shown
in Fig. 16. The function was used successfully for the simulation of impulse force
in mechanics and impulse response of electrical circuits.

Another application of infinitesimal parameters is the simulation of analysis
of hybrid systems that cause numerous discrete changes in a finite period of time.
Although not integrated into the main branch of HyLaGI due to its experimental
nature, the work reported in [2] analyzed the symbolic output of HyLaGI to
recognize chattering behavior, including a physical model in [11] (p. 808), by the
analysis of loop invariants.

Finally, we note that future applications of the epsilon mode is expected to
include the handling of robustness and sensitivity at a symbolic level.

3.3 Hybrid Automaton Mode

HyLaGI performs symbolic simulation for a given number of phases or a given
period of simulation time. However, we often see cases where different point
phases or different interval phases are ‘similar’ to each other (as in the bouncing
particle example) in the sense that they differ only in the values or trajectories
of variables. Given that HyLaGI maintains the values of variables as constraints,
we can check if the system’s state of some phase is subsumed by the system’s
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Fig. 15. Simulation result of Fig. 14.

1 TIMER <=> timer = 0 & [](timer’ = 1).
2 EPS <=> 0 < eps < 0.1 & [](eps’ = 0).
3 OFF <=> [](v = 0).
4 ON <=> []((1 < timer < 1+eps) => v = 1/eps).
5
6 TIMER, EPS, (OFF << ON).
7 //#hylagi -e1

Fig. 16. HydLa model of an impulse function.

state of one of the previous phases, where a state can be defined to consist of (i)
the values (or trajectories in the case of interval phases) of variables and (ii) the
set of adopted modules. These two also determine (iii) whether each guard of
the adopted guarded constraints holds or not. The checking of state subsump-
tion can be done by constraint entailment checking, which can be translated
into inconsistency checking by the relation (P ⇒ Q) ≡ ¬(P ∧ ¬Q), and we can
construct a possibly finite phase transition diagram representing infinite phase
transitions. This feature has been implemented in HyLaGI as an optional hybrid
automaton mode, an experimental mode for future work towards optimized sim-
ulation and unbounded model checking. We can see that the items displayed in
each phase of HyLaGI’s simulation result (Fig. 2) are sufficient to represent the
current state of the model. An initial report on detailed algorithms for construct-
ing hybrid automata can be found in [19], which discusses various subtleties in
the construction. Note that we must properly parameterize the initial values of
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1 INIT <=> y > 0.
2 FALL <=> [](y’’ = -10).
3 BOUNCE <=> [](y- = 0 => y’ = -4/5 * y’-).
4
5 INIT, FALL << BOUNCE.
6 //#hylagi --fha

Fig. 17. A bouncing particle model with parameterized initial height.

Fig. 18. State transition graph induced by HyLaGI from a HydLa model.

the variables in order to construct hybrid automata. For example, for a bouncing
particle on the floor, we fully parameterize the initial height as shown in Fig. 17.
In the hybrid automaton mode, the results can be obtained in the Graphviz
format. Figure 18 shows the state transition graph obtained from the program
in Fig. 17, where the odd-numbered phases represent discrete changes and the
even-numbered phases represent continuous evolution.

4 Experiences with Constraint-Based Modeling

4.1 Discrete Asks and Continuous Asks

Guarded constraints in HydLa are one of the two main constructs that provides
the language with control structure (the other construct being constraint hierar-
chy), corresponding to conditionals in other languages. From our experience with
HydLa programming, we have learned that guarded constraints used to describe
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1 INIT <=> p = 65 & [](k1 = 1) & [](k2 = 2) & on = 0.
2 CONST <=> [](on’ = 0).
3 ON <=> [](on = 1 => p’ = k1).
4 OFF <=> [](on = 0 => p’ = -k2).
5 SWITCHON <=> [](p- = 62 & on- = 0 => on = 1).
6 SWITCHOFF <=> [](p- = 68 & on- = 1 => on = 0).
7
8 INIT, ON, OFF, CONST << (SWITCHON, SWITCHOFF).
9 //#hylagi -p10

Fig. 19. A thermostat model in HydLa.

practical hybrid systems are categorized into two patterns. We call them dis-
crete ask and continuous ask, after the terminology in concurrent constraint
programming. Discrete ask is a guarded constraint which is enabled at isolated
time points and triggers discrete changes. An example is BOUNCE in Fig. 1. Since
discrete ask cancels a differential constraint at certain time points, it is usually
given a higher priority than differential constraints. Continuous ask is a con-
straint whose guard continues to hold for a certain period of time during which
the model makes continuous change according to the enabled consequent of the
constraint. A thermostat model in Fig. 19 contains an example of continuous
ask. The variable on represents the state of the thermostat whose value is dis-
cretely changed when the temperature p is about to exceed a certain threshold.
The modules ON and OFF represent continuous asks; they refer to the variable
on and have differential equations on the temperature in the consequents. The
value of on is changed by SWITCHON and SWITCHOFF which are discrete asks. This
example shows a design pattern in which a variable, called a state variable, can
be used to represent the discrete state of a system and is referred to from the
guards of continuous ask. In our experience, it is a good practice to write HydLa
programs keeping the different roles of discrete ask and continuous ask in mind.

Note that HyLaGI does not allow existential quantifiers in the consequent
of a continuous ask because such a consequent would generate an infinite num-
ber of variables and constraints. HyLaGI does not handle such cases and stops
simulation.

4.2 Common Mistakes in Modeling

The design principle of HydLa is to take a constraint-centric approach to allow
declarative and concise description of hybrid systems. In particular, constraint
hierarchies are expected to autonomously impose the ‘right amount’ of con-
straints on variables so that the set of enabled constraints does not become
over- or under-constrained. Still, we have seen many programs which do not
compute trajectories or which compute unintended trajectories. In these cases,
the debugging of declarative programs turned to be highly nontrivial to novice
programmers.
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1 INIT <=> (x = 0 & y = 10 & y’ = 0).
2 FALL <=> [](x’ = 1 & y’’ = -10).
3 BOUNCE <=> [](y- = 0 => y’ = -y’-).
4
5 INIT, (FALL << BOUNCE).
6 //#hylagi -p10

Fig. 20. A model with an unconstrained variable (1).

This motivated us to record a service log of webHydLa and analyze program
errors, where each record contained (i) the HydLa program, (ii) the contents of
stdout and stderr, and (iii) the ‘hydat’ file for visualization.

We analyzed 1017 HydLa programs after recording their standard output,
error output and 766 hydat files passed to the webHydLa visualizer. The simu-
lation results were divided into three categories:

1. normally terminated simulation (regardless of whether the result is intended
or not),

2. simulation aborted by unsatisfiable constraints (in which the set of active
constraints became inconsistent and none of them could be disabled), and

3. simulation in which some variable became totally unconstrained (which is
semantically allowed but regarded as unintended).

We focus on the second and the third categories because they are specific to
constraint programming.

Completely Unconstrained. ‘Completely unconstrained’ means that the con-
straints on the value of some variable become totally lost. HyLaGI does not stop
execution for this event but generates a warning. The following are considered
as possible causes of unconstrainedness.

1. a module that is defined but not declared (i.e., used),
2. lack of initial value constraints,
3. lack of ‘always’ ([]) constraints.

Since this is a warning not found in ordinary languages, we explain these causes
using an example.

The first cause means that one simply forgot to use the defined constraint.
On the other hand, the second and the third causes indicate insufficiency of
constraints. For example, in the program of Fig. 20, x will become completely
unconstrained after the second PP because the constraint on x is totally lost
when the consequent of BOUNCE is enabled and FALL becomes unadopted tem-
porarily. To fix the problem, we must either add a constraint x’ = 1 to the
consequent of BOUNCE or move x’ = 1 from FALL to a new module.

Since this ‘completely unconstrained’ problem occurred much more fre-
quently than expected, it was considered important to provide an explanation
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1 INIT <=> (y = 10 & y’ = 0).
2 FALL <=> [](y’’ = -10).
3 BOUNCE <=> [](y- = 0 => y’ = -y’-).
4
5 INIT, FALL, BOUNCE.

Fig. 21. A model causing inconsistency (1).

1 INIT <=> (a = 0 & b = 0).
2 CONST <=> [](a’ = 0).
3 CLOCK <=> [](b’ = 1).
4 JUMP <=> [](b = 3 => a = a + 1 & b = 0).
5
6 INIT, (CONST, CLOCK) << JUMP.

Fig. 22. A model causing inconsistency (2).

of the reason of unconstrainedness. We improved HyLaGI to infer and report
whether the initial value constraint was insufficient or the always constraint was
insufficient based on when the unconstrainedness occurred. If the first PP leaves
any variable unconstrained, some initial value constraint is missing. If a vari-
able becomes completely unconstrained after the first phase, we find, for each
such variable, the module that caused the unconstrainedness. When the cause is
the weakest module, HyLaGI displays a message “WARNING: x is completely
unconstrained in a default module” because the module is supposed to rep-
resent default behavior. Otherwise, HyLaGI displays a message “WARNING: x is
completely unconstrained in a non-default module”.

Unsatisfiable Constraints. ‘Unsatisfiable constraints’ means that HyLaGI
could not find a consistent set of constraint modules that respects constraint
hierarchy. The following causes can be considered.

1. forgetting to define appropriate constraint hierarchy,
2. some of the required constraint modules, i.e., ones at the top of the constraint

hierarchy, are mutually inconsistent or self-inconsistent.

For example, in Fig. 21, FALL and BOUNCE conflict with each other when the
ball collides with the floor, but because there is no constraint hierarchy and all

1 Possible causes...
2 * {a} in {JUMP}
3 * {b} in {JUMP}

Fig. 23. Execution result of Fig. 22.
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top-level modules are handled as required constraints (Sect. 2), FALL cannot be
rejected and computation stops. In this case, the error can be easily resolved by
declaring a hierarchy FALL << BOUNCE.

Consider another example in Fig. 22. When b becomes 3, a is incremented and
b is reset to 0 by JUMP, so a looks like a counter and b looks like a clock. However,
JUMP becomes inconsistent when (and only when) b = 3 because all variables of
HydLa are immutable functions of time. As suggested by previous examples, an
equation for discrete changes should mention the left limit values of variables,
that is, JUMP should be written as [](b- = 3 => a = a- + 1 & b = 0).

When simulation generated unsatisfiable constraints, the reason of inconsis-
tency is not easy to figure out in many cases. We thus let HyLaGI show which
variables are in conflict within which modules. For example, given the program of
Fig. 22, a message like Fig. 23 will be displayed in addition to the standard error
message. The analysis is done as follows. The unsat modules line of the output
(such as Fig. 2) tells the names of mutually inconsistent modules, and the corre-
sponding unsat constraints line contains information about mutually incon-
sistent constraints. HyLaGI extracts variables from each of unsat constraints
and collects corresponding modules from unsat modules. In this way, for each
set of variables, a set of modules that make those variables over-constrained is
derived as shown in Fig. 23.

5 Solving Inverse Problems

Inverse problems are to obtain initial conditions that yield given final goals.
Inverse problems of hybrid systems are more intriguing than those of continuous
systems in that initial and final states may be related by qualitatively different
trajectories, e.g., trajectories of balls with different numbers of bounces. HyLaGI
can solve inverse problems of hybrid systems by combining assertions and sym-
bolic constraint solving with automatic case analysis of parameters. Note that
our approach is based on forward symbolic simulation rather than reverse sim-
ulation from the goal state.

5.1 A Simple Example

Let us consider how to shoot a golf ball to make a hole-in-one (Fig. 24). A
program is shown in Fig. 25. We parameterize the x component of the initial
velocity, while the y component is defined so that the initial speed (norm of the
velocity) is constant. The ball moves at a constant speed in the x direction, while
it behaves like a bouncing ball in the y direction.

We use ASSERT to find the range of parameters for hole-in-one, Assume that
the cup is 9.5 to 10 meters ahead. The constraint to be ASSERTed is the negation
of the desired goal, i.e., !(y = 0 & 9.5 <= x <= 10), so that HyLaGI may find
counterexamples.

Table 2 shows the behavior of the ball and the corresponding parameter
ranges obtained from the program of Fig. 25, where bounce means that the ball
bounces and cup-in means that the ball enters the cup.
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Fig. 24. A hole-in-one problem.

1 INIT <=> x = 0 & y = 0 & 1 < x’ < 9 & y’ = (100 - x’^2)^0.5.
2 AXCONST <=> [](x’’ = 0).
3 FALL <=> [](y’’ = -10).
4 BOUNCE <=> [](y- = 0 => y’ = -0.8*y’-).
5
6 ASSERT(!(y = 0 & 9.5 <= x <= 10)).
7 INIT, AXCONST, FALL << BOUNCE.
8 //#hylagi --fnd -p10

Fig. 25. Finding parameters for hole-in-one.

Table 2. Execution result of Fig. 25.

Behavior Parameter range

Cup-in

⎡
⎣

√
5(20 − √

39)

2
,

√
5(20 +

√
39)

2

⎤
⎦

Bounce, cup-in

[5

√
36 − √

935

2

3
,
5
√
14 − 10

3

]

Bounce, bounce, cup-in

⎡
⎣5

√
244 − √

50511

122
, 5

√
2(61 − 6

√
86)

61

⎤
⎦

Bounce, bounce, bounce, cup-in

[5

√
1476 − √

1952951

82

3
,

5

√
2(369 − 2

√
30134)

41

3

]

Bounce, bounce, bounce, bounce Others

5.2 Examples with Persistent Consequents

HydLa’s syntax allows an always constraint �C to appear in the consequent of
an implication. Such a constraint is called a persistent consequent. A persistent
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1 INIT <=> 5 < y < 10 & y’ = 0 & d = 0.
2 FALL <=> [](y’’ = -10).
3 CONST <=> [](d’ = 0).
4 BOUNCE <=> [](y- = 0 => y’ = -4/5 * y’- & d = d- + y’-^2 / 100).
5 BREAK <=> [](d >= 4 => [](y’’ = -10 & d’ = 0)).
6
7 INIT, (FALL, CONST) << BOUNCE << BREAK.
8 ASSERT(y >= 0).
9 //#hylagi -p12 --fnd

Fig. 26. A bouncing ball damaging the floor.

Table 3. Execution result of Fig. 26.

Behavior Parameter range

Bounce, bounce, bounce, bounce, bounce (5, 7812500/968561)

Bounce, bounce, bounce, bounce, break [7812500/968561, 312500/36121)

Bounce, bounce, bounce, break, through [312500/36121, 12500/1281)

Bounce, bounce, break, through [12500/1281, 10)

consequent �(G ⇒ �C) is different from normal guarded constraints in that
once the antecedent G holds, the consequent C continues to hold. The con-
straint �C with the same priority as the original constraint is expanded in the
constraint hierarchy. Since constraints once expanded are not removed, persis-
tent consequents can represent irreversible effects or changes of the system.

Figure 26 is a model in which the floor of a bouncing ball accumulates damage
from the ball and is eventually broken. In BOUNCE of Line 4, damage proportional
to the square of the velocity at each collision is accumulated on the floor. If the
accumulated damage exceeds a certain threshold, the ball keeps falling, meaning
that the floor is broken. To figure out in which conditions the floor breaks, we
assert the constraint that the height of the ball is non-negative. Table 3 shows
the system behavior and corresponding parameter ranges computed by HyLaGI
from the program in Fig. 26. Here, bounce means that the ball bounces on the
floor, break means that the ball bounces and the floor breaks, and through means
that the ball passes through the broken floor.

Finally, we show an example with constraint hierarchy with three strengths.
Figure 27 is a model that searches for a winning strategy of a chicken race: we
want to stop the car exactly at the goal position by keeping acceleration to a
certain point and then braking. The braking position is parameterized. We have
two persistent consequents, BRAKE and STAY, where STAY is given higher prior-
ity so that the car will not move backwards after stop. The ASSERTed constraint
specifies the negation of the winning condition, and HyLaGI finds that the asser-
tion fails when the parameter value is 625/2, from which we can see that the
winning strategy is to start braking at 312.5 m from the starting point.
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1 INIT <=> x = 0 & x’ = 0 & 0 < brkpt < 500 & [](brkpt’ = 0).
2 ACC <=> [](x’’ = 3).
3 BRAKE <=> [](x- = brkpt- => [](x’’ = -5)).
4 STAY <=> [](x’- = 0 => [](x’’ = 0)).
5
6 INIT, ACC << BRAKE << STAY.
7 ASSERT(!(x = 500 & x’ = 0)).
8 //#hylagi --fnd

Fig. 27. Chicken race program.

6 Conclusion

In this paper, we first discussed our constraint-based approach to hybrid sys-
tems embodied as a modeling language HydLa and introduced various function-
alities of HyLaGI, a symbolic simulator of hybrid systems expressed in HydLa.
These functionalities, including nondeterministic execution, handling of infinites-
imal quantities, and construction of hybrid automata, are realized since HyLaGI
adopts symbolic computation. Then, we discussed several findings and experi-
ences in the constraint-based modeling of hybrid systems including two different
uses of guarded constraints and modeling errors mostly resulting from improper
use of constraint hierarchy. Finally, we showed that HyLaGI could solve some
inverse problems of hybrid systems and that persistent consequents are useful
for modeling inverse problems.

Although HydLa has many unique features as described above, hybrid models
that can be handled by the current version of HyLaGI are limited to relatively
simple ones due to various limitations. In our experience, computation of the
time of the next discrete change is the most difficult part for the constraint
engine, due to which many models with closed-form solutions of ODEs could
not be fully simulated to the end. To address this problem, Matsumoto et al.
[15] reports how we can integrate symbolic versions of Affine arithmetic and
the interval Newton method into our framework. Also, in order to reduce the
complexity of constraints submitted to the constraint engine to improve the
power of constraint solving, we have incorporated a number of optimization
techniques into HyLaGI.

There are many other issues including the handling of models with many
parameters and models with complicated differential equations such as DAEs
and nonlinear ODEs. Still, we feel that the usefulness of our constraint-based
framework is being established. Our future goal is to extend our framework by
introducing useful results in the field of constraint programming and hybrid
systems.
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A Appendix

Figure 28 shows the syntax of HydLa with the list notation. As a key extension
from Fig. 4, we newly introduce PL (priority list), EL (expression list), LC (list
condition) and a list binding notation “:=”. Both PL and EL consist of exten-
sional and list comprehension notations. In the list comprehension notation, one
can enumerate elements that satisfy conditions specified by LC. We can generate
variables with successive serial numbers using range expressions (RE in Fig. 28)
and bind them to upper-case variables using “:=”. We can generate a list of mod-
ule declarations in a similar manner. MPname, ELname, PLname, and Iname
stand for names for module priority definitions, expression lists, priority lists,
and elements from iterators, respectively.

Fig. 28. Syntax of HydLa with list notation.
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