
Roger Chamberlain
Martin Edin Grimheden
Walid Taha (Eds.)

LN
CS

 1
19

71

9th International Workshop, CyPhy 2019
and 15th International Workshop, WESE 2019
New York City, NY, USA, October 17–18, 2019
Revised Selected Papers

Cyber Physical Systems
Model-Based Design

Lecture Notes in Computer Science 11971

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Roger Chamberlain • Martin Edin Grimheden •

Walid Taha (Eds.)

Cyber Physical Systems
Model-Based Design

9th International Workshop, CyPhy 2019
and 15th International Workshop, WESE 2019
New York City, NY, USA, October 17–18, 2019
Revised Selected Papers

123

Editors
Roger Chamberlain
Washington University
St. Louis, MO, USA

Martin Edin Grimheden
KTH Royal Institute of Technology
Stockholm, Sweden

Walid Taha
Halmstad University
Halmstad, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-41130-5 ISBN 978-3-030-41131-2 (eBook)
https://doi.org/10.1007/978-3-030-41131-2

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7207-6106
https://orcid.org/0000-0003-3699-5049
https://orcid.org/0000-0003-3160-9188
https://doi.org/10.1007/978-3-030-41131-2

Preface

This volume contains the joint proceedings of the Workshop on Model-Based Design
of Cyber Physical Systems (CyPhy 2019) and the Workshop on Embedded and
Cyber-Physical Systems Education (WESE 2019). The two events were co-located and
coordinated for the third time in a row with the goal of exploring opportunities for
closer collaboration.

This year, CyPhy 2019 planned from the outset to have post-proceedings to allow
authors to incorporate feedback and insights from discussions at the workshop. The
workshop received 18 submissions. The Program Committee decided to accept 10
of these papers.

The WESE 2019 workshop received six submissions and contributed three papers to
the proceedings.

The Program Committee was large and diverse, consisting of 75 members from
18 different countries. As a step towards closer cooperation, the Program Committee
was unified, in that all members served both CyPhy 2019 and WESE 2019. Each paper
received at least four reviews, and the vast majority received five or more.

All committee members were required to declare conflicts of interests whenever
they arose, and were subsequently not involved in reviewing these papers. Three papers
created conflicts for one of the program co-chairs, in which case the same process was
applied and in addition the other co-chair handled the submission. Of the three sub-
missions for which there was a co-chair conflict, two were accepted.

In addition, there were two keynotes, the first by Edward Lee entitled “Actors
Revisited for Cyberphysical Systems” and the second by Martin Edin Grimheden
entitled “What can Embedded Systems education learn from current research and
trends in the general engineering education area?”.

We would like to acknowledge several individuals who were key to the success
of the event, including the Program Committee, authors, keynote speakers, the pub-
licity chair: Abdelhamid Taha, and the organizers of ESWEEK 2019.

December 2019 Roger Chamberlain
Martin Edin Grimheden

Walid Taha

Organization

General Chair (CyPhy)

Walid Taha Halmstad University, Sweden

Program Committee Chair (CyPhy)

Walid Taha Halmstad University, Sweden

Program Committee Chair (WESE)

Martin Edin Grimheden KTH Royal Institute of Technology, Sweden

Program Committee

Houssam Abbas University of Pennsylvania, USA
Erika Abraham RWTH Aachen University, Germany
Julien Alexandre

dit Sandretto
ENSTA ParisTech, France

Ayman Aljarbouh University of Grenoble Alpes, France
Matthias Althoff TU Munich, Germany
Henric Andersson Environment & Innovation, Sweden
Hugo Andrade National Instruments, USA
Stanley Bak Safe Sky Analytics, USA
Ferenc Bartha University of Szeged, Hungary
Saddek Bensalem University of Grenoble Alpes, France
Sergiy Bogomolov The Australian National University, Australia
Mirko Bordignon Fraunhofer IPA, Germany
Manfred Broy TU Munich, Germany
David Broman KTH Royal Institute of Technology, Sweden
Manuela Bujorianu University of Strathclyde, UK
Daniela Cancila Commissariat à l’Énergie Atomique (CEA), France
Ing-Ray Chen Virginia Tech, USA
Janette Cardoso Institut Supérieur de l’Aéronautique et de l’Espace

(ISAE), France
Thao Dang Verimag, France
Alex Dean North Carolina State University, USA
Rayna Dimitrova Leicester University, UK
Adam Duracz Rice University, USA
Sinem Coleri Ergen Koc University, Turkey
Xinyu Feng Nanjing University, China
Martin Fränzle University of Oldenburg, Germany

Goran Frehse University of Grenoble Alpes, France
Laurent Fribourg CNRS, France
Helen Gill (Retired) USA
Ichiro Hasuo University of Tokyo, Japan
Holger Hermanns Saarland University, Germany
Bardh Hoxha Southern Illinous University, USA
Jun Inoue AIST, Japan
Daisuke Ishii Tokyo Institute of Technology, Japan
Taylor T. Johnson Vanderbilt University, USA
Mehdi Kargahi University of Tehran, Iran
Ueda Kazunori Waseda University, Japan
Michal Konečný Aston University, UK
Vladik Kreinovich University of Texas at El Paso, USA
Tei-Wei Kuo National Taiwan University, Taiwan
Kim G. Larson Aalborg University, Denmark
Lucia Lo Bello University of Catania, Italy
Peter Marwedel TU Dortmund, Germany
Karl Meinke KTH Royal Institute of Technology, Sweden
Nacim Meslem Grenoble INP, France
Stefan Mitsch Carnegie Mellon University, USA
Yilin Mo Tsinghua University, China
Eugenio Moggi Università degli Studi di Genova, Italy
Wojciech Mostowski Halmstad University, Sweden
Mohammad Reza Mousavi Leicester University, UK
Marco Mugnaini University of Siena, Italy
Jogesh Muppala Hong Kong University of Science and Technology,

SAR China
Andreas Naderlinger University of Salsburg, Austria
Marc Pouzet ENS, France
Maria Prandini Politecnico di Milano, Italy
Nacim Ramdani University of Orleans, France
Andreas Rauh University of Rostock, Germany
Michel Reniers Eindhoven University of Technology, The Netherlands
Jan Oliver Ringert Leicester University, UK
Bernhard Rumpe RWTH University Aachen, Germany
Maytham Safar Kuwait University, Kuwait
Cherif Salama American University in Cairo, Egypt
Falk Salewski Muenster University of Applied Sciences, Germany
Erwin Schoitsch Austrian Institute of Technology, Austria
Ulrick P. Schultz University of Southern Denmark, Denmark
Marjan Sirjani Mälardalen University, Sweden
Martin Steffen Oslo University, Norway
Marielle Stoelinga Radboud University, The Netherlands
Martin Törngren KTH Royal Institute of Technology, Sweden
Shiao-Li Tsao National Chiao Tung University, Taiwan
Zain Ul-Abdin HEC, Pakistan

viii Organization

Jon Wade Stevens Institute of Technology, USA
Rafael Wisniewski Aalborg University, Germany
Andreas Wortmann RWTH Aachen University, Germany
Yingfu Zeng Rice University, USA
Makal Ziane Laboratoire d’Informatique de Paris, France

Advisory Committee (CyPhy)

Manfred Broy TU Munich, Germany
Karl Iagnemma Massachusetts Institute of Technology, USA
Karl Henrik Johansson KTH Royal Institute of Technology, Sweden
Insup Lee University of Pennsylvania, USA
Pieter Mosterman McGill University, Canada
Janos Sztipanovits Vanderbilt University, USA
Walid Taha Halmstad University, Sweden

Organization ix

Contents

Models and Design

A Modular SystemC RTOS Model for Uncertainty Analysis. 3
Lorenzo Lazzara, Giulio Mosé Mancuso, Fabio Cremona,
and Alessandro Ulisse

Multicore Models of Communication for Cyber-Physical Systems 28
Martin Schoeberl

Towards Creating a Deployable Grasp Type Probability Estimator
for a Prosthetic Hand. 44

Mehrshad Zandigohar, Mo Han, Deniz Erdoğmuş, and Gunar Schirner

Reactors: A Deterministic Model for Composable Reactive Systems 59
Marten Lohstroh, Íñigo Íncer Romeo, Andrés Goens, Patricia Derler,
Jeronimo Castrillon, Edward A. Lee,
and Alberto Sangiovanni-Vincentelli

Simulation and Tools

Guaranteed Simulation of Dynamical Systems with Integral Constraints
and Application on Delayed Dynamical Systems. 89

Paul Rousse, Julien Alexandre dit Sandretto, Alexandre Chapoutot,
and Pierre-Loïc Garoche

Advanced Hazard Analysis and Risk Assessment in the ISO 26262
Functional Safety Standard Using Rigorous Simulation 108

Adam Duracz, Ayman Aljarbouh, Ferenc A. Bartha, Jawad Masood,
Roland Philippsen, Henrik Eriksson, Jan Duracz, Fei Xu, Yingfu Zeng,
and Christian Grante

Practical Multicore Extension of Functionally and Temporally Correct
Real-Time Simulation for Automotive Systems . 127

Wonseok Lee, Jaehwan Jeong, Seonghyeon Park, and Chang-Gun Lee

Constraint-Based Modeling and Symbolic Simulation of Hybrid Systems
with HydLa and HyLaGI . 153

Yunosuke Yamada, Masashi Sato, and Kazunori Ueda

Formal Methods

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations
Using One-Sided Lipschitz Constants and Model Reduction 181

Adrien Le Coënt and Laurent Fribourg

Towards Formal Co-validation of Hardware and Software Timing
Models of CPSs . 203

Mihail Asavoae, Imane Haur, Mathieu Jan, Belgacem Ben Hedia,
and Martin Schoeberl

Workshop on Embedded and Cyber-Physical Systems Education

A Remote Test Environment for a Large-Scale Microcontroller
Laboratory Course. 231

Manfred Smieschek, Stefan Rakel, David Thönnessen, Andreas Derks,
André Stollenwerk, and Stefan Kowalewski

An Embedded Graduate Lab Course with Spirit . 247
André Stollenwerk

Competence Networks in the Era of CPS – Lessons Learnt
in the ICES Cross-Disciplinary and Multi-domain Center 264

Martin Törngren, Fredrik Asplund, Tor Ericson, Catrin Granbom,
Erik Herzog, Zhonghai Lu, Mats Magnusson, Maria Månsson,
Stefan Norrwing, Johanna Olsson, and Johnny Öberg

Author Index . 285

xii Contents

Models and Design

A Modular SystemC RTOS Model
for Uncertainty Analysis

Lorenzo Lazzara(B), Giulio Mosé Mancuso, Fabio Cremona,
and Alessandro Ulisse

United Technologies Research Center, Rome, Italy
{lorenzo.lazzara,giuliomose.mancuso,fabio.cremona,

alessandro.ulisse}@utrc.utc.com

Abstract. Nowadays the complexity of embedded systems is constantly
increasing and several different types of applications concurrently exe-
cute on the same computational platform. Hence these systems have
to satisfy real-time constraints and support real-time communication.
The design and verification of these systems is very complex, full formal
verification is not always possible and the run-time verification is the
only feasible path to follow. In this context, the possibility to simulate
their behavior becomes a crucial aspect. This paper proposes a SystemC
modular RTOS model to assist the design and the verification of real-
time embedded systems. The model architecture has been designed to
capture all the typical functionalities that every RTOS owns, in order
to easily reproduce the behavior of a large class of RTOS. The RTOS
model can support functional simulation for design space exploration
to rapidly evaluate the impact of different RTOS configurations (such
as scheduling policies) on the overall system performances. Moreover
the model can be used for software verification by implementing specific
RTOS APIs over the generic services provided by the model, allowing the
simulation of a real application without changing any instruction. The
proposed approach enables the user to model non-deterministic behaviors
at architectural and application level by means of probabilistic distribu-
tions. This allows to assess system performances of complex embedded
systems under uncertain behavior (e.g. execution time). A use case is pro-
posed considering an instance of the model compliant with the ARINC
653 specification, which requires spatial and temporal segregation, and
where typical RTOS performances are assessed given the probability dis-
tributions of execution time and aperiodic task activation.

Keywords: Real-time operating system model · SystemC ·
Uncertainty quantification · Statistical model checking

1 Introduction

Virtual engineering techniques are increasingly popular in several application
domains. Models of the system components (seen as “virtual components”) are
c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 3–27, 2020.
https://doi.org/10.1007/978-3-030-41131-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_1

4 L. Lazzara et al.

used to assess the behavior and performance of a subsystem unit without the
need of a physical prototype. This capability is usually exploited (1) in the spec-
ification of the subsystem components to compare different design alternatives
and select the best design option; (2) in the verification flow, where the satisfac-
tion of requirements can be assessed on a virtual prototype. This approach allows
to start the verification process earlier in the design flow anticipating errors that
would otherwise propagate along the chain up to the final implementation [5].
System Level Modeling [11,21] seems to be the only feasible way to face the
growing design complexity of modern embedded systems. It allows the modeling
of critical embedded platform details at high abstraction levels. This enables
faster exploration of the design space at early stages and ease the verification of
software integration before having access to the real hardware. However existing
System Level Design Languages (SLDL) and methodologies do not support a
proper modeling of a full real time operating system at higher abstraction level.
The Real-time operating system is a critical software component that orches-
trates all the application execution in the embedded platform. Hence almost all
the timing properties of the platform are dependent from the RTOS. For this
reason in the current paper we aim to fill the gap of the current SLDL proposing
a modular SystemC generic real-time operating system model. The proposed
RTOS model takes into account different functional aspects, providing real-time
scheduling and other typical services necessary for real-time software simulation.
The modularity of the proposed model ease the configuration of the possible
instances enabling functional simulation for design space exploration. The pro-
posed model also provides the capability to implement specific RTOS services
allowing a fast integration of the target platform code for software-in-the-loop
(SIL) simulations. The proposed RTOS model also considers stochastic behav-
iors naturally appearing in the real embedded platforms. For example nowadays
the computational platform presents complex features like caching, pre-fetching,
pipelining, DMA, and interrupts which allow to improve the performance of the
system but can lead to a higher degree of uncertainty. In this scenario the timing
characteristic of the system can be very unpredictable and a rigorous and precise
timing analysis can be very difficult to conduct [4]. In addition, complex embed-
ded system operates in an environment that is intrinsically non-deterministic.
Two kinds of non-determinism can be distinguished in embedded systems [19]:
pure non-determinism and probabilistic non-determinism. Pure non-determinism
is for example the non-determinism due to the interaction with the environment
(sensor data input) that is highly unpredictable. Probabilistic non-determinism
is appropriate whenever a statistical representation of the phenomenon well rep-
resent is occurrence. We believe that the response time may lie in this category.
In the current work we will focus on probabilistic non-determinism allowing a
stochastic characterization of the main kernel operations by defining their behav-
ior in terms of probability distributions. The proposed approach is validated
considering a data acquisition application running on an RTOS model compli-
ant with the ARINC 653 specification [2]. The standard ARINC 653 aims at
support the integrated modular avionic framework providing a strict and robust

A Modular SystemC RTOS Model for Uncertainty Analysis 5

time and space partitioning environment with the definition of a common API
(called APEX) between the software applications and the underlying operating
system.

2 Related Works

Different techniques have been proposed for high abstraction level RTOS mod-
eling and simulation. One of the early techniques was presented in [23] which
uses a specific RTOS model and simulation engine. It allows an highly accurate
simulation but limits the design space exploration and the software verification
to the specific RTOS. Approaches based on System Level Domain Languages
has been proposed in order to provide a general RTOS model able to simulate
different RTOS instances. A fully configurable RTOS model was proposed in [15]
which targets a functional model simulation. This work models both the behav-
ior and the time aspects of the RTOS for both singlecore as well as multicore
platform architectures. It allows the configuration of the model in terms of HW
resources and RTOS functionality, moreover it integrates a timed simulation by
inserting back-annotation at different level of granularity. The work described
in [17] reports a time accurate RTOS model for POSIX compliant applications.
It allows the simulation of application source code integrated into the RTOS
model to be simulated with dynamically execution time estimation. The work
described in [9] present a customizable RTOS with different modules interacting
with each other with the definition of a generic services interface towards the task
which ease the integration of various RTOS APIs. The approach presented in
this paper is based on SystemC [1] similarly to the one proposed in [9,15,17]. In
particular those papers address the case in which the designer is able to configure
the RTOS model in terms of different functional aspects like scheduling policies,
communication mechanisms and other typical RTOS features. However they do
not address the possibility to model hierarchical architectures with multi-level
schedulers. This type of architecture are important for safety critical systems
(i.e. automotive, avionics) where applications usually execute in a temporal and
spatial segregated environment. The work in the [17] provides a POSIX API
from which the user can interact and run application code. This is an inter-
esting feature, however this does not allow to model other kind specific RTOS
APIs. The annotation mechanism discussed in [14] sec. 2.3 consider an annota-
tion for each line of code through the use of a DELAY function. Our approach
of annotation is similiar, we introduce a function which allow to simulate the
task physical running time on a CPU with the possibility of stopping the time
in order to mimic preemption, the behavior of this function is similiar to the one
presented in [24]. The model we propose herein takes into account the variability
present in the system providing a framework for uncertainty analysis. Several
works have been focusing on the uncertainty characterization and propagation
for Embedded Systems. The work in [25] and in [26] mainly focused on a for-
mal software representation of the uncertainty in order to support Model Based
Testing (MBT) techniques. The work in the [8] and in [7] instead targeted the

6 L. Lazzara et al.

formal verification of the application code (written in SystemC) by using affine
arithmetic. Although those methods provide a formal framework for the verifica-
tion under uncertainty, they may not scale well with complex application code.
The rest of the paper is organized as follows: in Sect. 3 we introduce the model
architecture and we will give more details about the software components. In
Sect. 4 we introduce the uncertainty analysis able to run on the proposed RTOS
model. Finally in Sect. 6 we will show some experimental results on a typical
ARINC 653 data acquisition application. The conclusions and the interesting
future work will be exposed in Sect. 7.

Fig. 1. Conceptual architecture and workflow.

3 Real Time Operating System Model Architecture

In the following section we present the high level model architecture of a
SystemC-based System-Level Real-Time Operating System (RTOS) software
simulation framework. The main idea behind the proposed approach is the def-
inition of a Component Library from which the user can take components and
build specific RTOS model instances. The structure of the overall RTOS model
can be decomposed in three main parts: the Generic RTOS Component Library,
Generic RTOS API and a Specific RTOS Mapping API. A graphical repre-
sentation of the architecture and a conceptual workflow is depicted in Fig. 1.
The generic component library is divided into functional categories i.e. kernel,
scheduler, task, communication and synchronization. The user can instantiate a

A Modular SystemC RTOS Model for Uncertainty Analysis 7

specific RTOS model instance interconnecting specific components from differ-
ent categories. Components belonging to the same category implement a stan-
dard execution interface that allows to easily interchange different blocks with
the same interface but with different implementation. This modular approach
ease the evaluation of the impact of different implementation choices during
the design space exploration. The generic API exposes externally generic RTOS
services from all the categories e.g. part of the task management services are
exposed in Fig. 2. The specific mapping API focuses on the implementation of
specific RTOS services. For example the ARINC 653 and the AUTOSAR spec-
ifications detail a specific API (and their semantics) that a real-time operating
system should implement. The main purpose of the mapping API is to map the
specific services into the generic services. The implementation of a specific API
ease the software integration verification phase. As depicted in Fig. 1, our model
may enable the validation and the verification of the application at different level
of abstraction. For example at the early design stage (e.g. functional model), the
generic APIs can be used to validate the preliminary application-RTOS task
mapping (top part of Fig. 1). Once the target platform has been selected, the
mapping API can be implemented in order to enable software-in-the-loop ver-
ification. The interaction between the main components of the system (kernel,
scheduler and task) is achieved through SystemC ports and exports which require
the definition of a common interface in order to communicate each other. The
interfaces have been defined in a way that they are as much as possible inde-
pendent from the particular implementation of the services. This architecture
allows to decouple the declaration of the system calls (defined at the interface)
with their actual implementation in order to guarantee and ease the design
exploration by enabling the replacement of a component with another without
changing any other component in the overall model. The proposed high-level
system architecture is presented in Fig. 2.

Fig. 2. Simplified system class diagram.

8 L. Lazzara et al.

The RTOS model has been integrated into the Desyre [5] framework which
is a SystemC-based virtual prototyping environment developed at the United
Technologies Research Center. However the model is based on open standards
such as SystemC and IPXACT allowing its integration in any framework which
supports those standards.

3.1 Scheduler Model

In all the real-time operating systems the scheduler is in charge of maintaining
the correct execution order between the tasks. More formally at each instant in
time the scheduler has to decide which is the running task and has to build a
queue of available tasks ready to run. Our aim is to model a generic real-time
scheduler with different scheduling policies. When tasks are registered within
the scheduler, a relative TaskSchedulingModel object is instantiated, which
contains the scheduling parameters and ID of the task. This approach allows
the separation of the task parameters (like period, deadline, wcet, etc.) that are
contained in the task class, from the scheduling parameters that are contained in
the TaskSchedulingModel and which are defined specifically depending on the
chosen scheduling algorithm. The ready queue is ordered based on three parame-
ters defined in the TaskSchedulingModel. The priority is the first level sorting
parameter and it depends on the scheduling algorithm used. In order to have
a generic priority which would capture both time-dependent scheduling algo-
rithms (e.g. EDF) and fixed priority scheduling algorithms (e.g. FP, RM), this
parameter is modeled as a sc time SystemC variable. The priority parameter is
used to sort the tasks in ascending order (smaller is the priority value, higher is
the scheduling priority) inside the ready queue. If tasks have the same priority
value the insertion time is used to give higher priority to the oldest tasks
in the ready queue, hence following a FIFO sorting principle. The task ID is
used when modeling an ideal RTOS without system overheads, having therefore
the possibility of having tasks with same priority inserted at the same time.
The model allows to select among several scheduling policies. First Come First
Served (FCFS) is implemented exploiting the second level sorting parameter
(insertion time) to order the tasks in the ready queue. In order to implement
the time-sharing preemptive mechanism of the Round-Robin (RR) scheduling
policy, an event is used in order to trigger the kernel and force a rescheduling
whenever a time quantum expires. For Rate Monotonic (RM), when the task is
registered within the scheduler, its priority (period) is used to construct the rel-
ative TaskSchedulingModel. Hence the priority value is assigned only one time
(static) and is never changed during execution. In Earliest Deadline First (EDF),
since the priority value can not be assigned statically, the task deadline value
is retrieved through the interface with the kernel whenever the task is inserted
in the ready queue. For Fixed Priority (FP), when the task is registered within
the scheduler, its priority is retrieved from a priority-pool inside the scheduler
and it is used to construct the relative TaskSchedulingModel. The Partition
Scheduler implements a partition scheduling policy which is a predetermined,
repetitive with a fixed periodicity, called major time frame (MTF), scheduling

A Modular SystemC RTOS Model for Uncertainty Analysis 9

algorithm. The scheduling parameters, the major time frame, the offset and
duration of each partition window are set during the system configuration. The
offset of the partitions is used as a priority in the TaskSchedulingModel to sort
the partitions in the ready queue, the duration instead is used like the slice time
in the RR scheduler, i.e. it defines the next preemption time. Being a time-driven
scheduler the interaction with the kernel is similar to that described for the RR.
This kind of partition scheduling is used in all the RTOS systems compliant with
the ARINC 653 standard. An example of partition scheduling will be presented
in the later sections (see Fig. 7).

3.2 Kernel Model

The RTOS Kernel module models all the typical software mechanism of an
RTOS, such as: task scheduling, task interaction and synchronization. The ker-
nel model allow to ensure that the execution of the tasks is serialized following
the order of the selected scheduling policy. In order to achieve this behavior, all
the tasks wait on specific SystemC events which are only released by the kernel.
Hence, during scheduling the kernel retrieves the first task from the ready queue
and execute it by triggering its event. If there is not a candidate task (ready
list is empty), the kernel just waits until a ready task is available. Each task is
associated with a task descriptor class that is a data structure containing all its
static and run-time information, i.e. task ID, period, deadline and task state.
The interaction between the kernel and the task is performed through the data
exposed by the task descriptor. The RTOS model supports both periodic and
aperiodic tasks. A periodic task at end of its job will call the task wait cycle
method in order to wait for its next release point while an aperiodic task will
call the terminate method in order to kill its instance. The Task State Machine
is the basis of both multi-tasking management and scheduling services in the
RTOS kernel model. Typical multi-tasking primitive functions include creating
tasks, activating tasks, suspending tasks, blocking tasks, resuming tasks, and
terminating tasks. These functions control the state transitions of tasks during
their execution. In the Fig. 3 is depicted the RTOS task state machine that has
five basic states: dormant, running, ready, suspend and blocked. During the
RTOS execution a task can be at only one state:

– running: in a uniprocessor system, only one task can enter this state and
execute at each time instant. If the running task is preempted, then it enters
the ready state.

– ready: tasks at this state are eligible for execution, but cannot execute imme-
diately as another task is currently at the running state. All ready tasks are
organized in the ready queue by the scheduler according to various scheduling
policies. During a rescheduling the kernel retrieve the first task in the ready
queue; if this new task is different from the running task (if there is one),
the running task is preempted and the new task is dispatched.

– blocked: tasks enter the blocked state when accessing an (empty) blocking
resource or when they explicitly wait for a timer. Each blocked task is orga-
nized in a waiting queue relative to the blocking resource. Usually a timeout

10 L. Lazzara et al.

Fig. 3. Task finite state machine.

period can be specified in order to automatically unblock and put in the
ready state the task.

– suspended: similarly to the tasks in the blocked state, tasks in the suspended
state cannot be selected to enter the running state. The tasks only enter the
suspended state when the TaskSuspend() service is explicitly called. The
task exit the suspended state when the resume or activate service is called.

– dormant: a task is said to be in the dormant state when is created, but has
not yet been started, or when its execution is completed.

Application tasks need to synchronize and share data, in order to cooperate
with each other properly. In the RTOS we can distinguish between synchroniza-
tion methods and communication methods where the former is used mainly to
coordinate the execution orders of involved tasks, while the latter can explic-
itly exchange data between tasks. Unlike the system components previously
described, communication services do not interact with the system through Sys-
temC ports and exports. The kernel contains a pool of pointers to communication
objects which are discriminated through their communication ID that is assigned
to each communication object when it is instantiated. Modeling remains general
thanks to the introduction of a common generic interface; each communication
object will have a specific implementation of this interface. Communication ser-
vices are accessed at task level through the interface with the kernel. Inter-task
communication methods are exploited via message passing. The communication
mechanisms can be fully configured in order to have message queues or shared
variables (single instance message), blocking or non-blocking mechanism, queu-
ing policy and other meaningful parameters. The inter-task synchronization can
be achieved through the use of counting semaphores and events. Semaphores
are used to provide controlled access to resource, while events support control
flow between tasks by notifying the occurrences of conditions to waiting tasks.
In order to allow the modeling of temporally segregated RTOS, an extension
of the kernel model has been done to comprehend the concept of a partitioned
RTOS. A partition is a schedulable entity where one or more tasks concurrently

A Modular SystemC RTOS Model for Uncertainty Analysis 11

execute; hence, the partition has been modeled, by implementing both the kernel
and task interface, as a kernel that can be in turn scheduled. When the partition
is selected to run the partition-level scheduler is activated and tasks execute as
they are running on a normal kernel. The partition execution can be preempted
and in turn if there is a running task, it is also preempted in order to allow the
execution of a new partition and the tasks it contains. This run-time behavior is
modeled through a SystemC SC THREAD. As the kernel manages scheduling and
communication between tasks, an entity is needed to manage the partitions. The
Supervisor is a simple kernel that handles partition scheduling and dispatching,
as well as inter-partition communication. The supervisor allows the exchange
of information between different partitions by means of communication ports.
Ports can have different configurations like blocking/non-blocking mechanism,
possibility of message queuing with the related queuing policy and direction of
transfer. Whenever a partition switch takes place, the outgoing ports, of the
currently running partition, are checked for new data available. In case of data
transfer the partition inform the supervisor which takes charge of the inter-
partition communication transferring data to the destination ports in one or
more partitions. The supervisor, together with the partition scheduler, allows to
achieve time segregation by limit the processing time assigned to each partition.
Whenever the end of a partition time window is reached the supervisor is trig-
gered, it preempts the current running partition and selects the next partition
to run. The supervisor and the partitions allow to instantiate an hierarchical
RTOS with multiple level of scheduling; moreover each partition can represent
a different instance of a RTOS kernel by modifying the attached scheduler or its
behavior.

3.3 Functional and Timing Task Model

An important characteristic of the real-time systems is their tight dependency
between functional and timing characteristic of the task. It is well known that the
correct execution of a real-time application is not only determined by the correct
functional output, but it needs to be provided within some time bounds (dead-
line). It is important then that our RTOS model properly captures both the func-
tional and timing characteristics of the tasks running on top of it. From a func-
tional point of view the proposed RTOS is able to execute the original RTOS task
implementation with minor modification (time annotation). This is an extremely
useful capability in a verification workflow where the code under test does not
need to be modified moving between different validation/verification steps. This
is achieved by mapping the generic RTOS APIs to the specific target RTOS ser-
vices. Indeed when a new real-time operating system (e.g. FreeRTOS [3], DEOS
[6], VxWorks [23]) is selected as suitable for the final system implementation,
the modeler needs to implement the mapping code between the generic RTOS
APIs and the specific RTOS services. An example of this mapping is detailed
in Sect. 3.4 for the ARINC 653 specification. An important capability of the
RTOS model is also to advance the virtual simulation time corresponding to
the virtual execution of the application code. The timing characterization of the

12 L. Lazzara et al.

tasks is of crucial importance to verify all the timing RTOS performances such
as overall tasks schedulability, response time, jitter and so on. There are several
approaches to characterize the timing behavior of the task body. A very nice
survey on all those techniques can be found in [22]. Out of the scope of the
current work is to perform a rigorous execution time analysis of the application
code. The main objective however is to be flexible enough to enable most of the
timing analysis techniques. We propose a timing task model where the overall
execution time is divided into several execution chunks as depicted in Fig. 4a.
The zth execution chunk of the jth job instance of τi is denoted by τi,j[z]. The
execution time of τi,j[z] is denoted by Ci,j[z]. The total execution time is defined
by Ci,j =

∑n
z=1 Ci,j[z]. In case of fixed execution time among all the task jobs,

we remove the index j relative to the task job, e.g. C1,1 = C1,1[1] + Ci,[2] implies
that the second execution chunk Ci,[2] is constant for all the jobs. At the end of
each execution chunk a time wait function called ConsumeTime() is inserted to
emulate real execution time advancing the virtual time. An example of task body
code is represented in the Fig. 4b. The wait function can either take a constant
time or a stochastic variable allowing stochastic task execution time. The timing
information (execution time) can be retrieved using any existing technique. The
way we model the timing feature of the task allows a decoupling between the
real function implementation code and the execution time. This allows the user
to either execute the real application code or leave the task body empty, i.e. def-
inition of abstract tasks. An abstract task can be defined at early design stages
in order to evaluate real-time performances without considering the functional
behavior. Although the user can execute the real application code within an
execution chunk, its evaluation must be considered as atomic. The execution of
the task body does not advance the virtual time of the simulation. Therefore the
application code is always executed at zero virtual execution time, while only the
ConsumeTime() will allow the emulation of the computation time. It follows that
the granularity of the execution chunks may depend on the specific application,
i.e. the insertion of this function at different granularities enables to verify the
system at different level of accuracy. The time wait function is not an atomic
function and it can be preempted by the kernel. The granularity of insertion of
the ConsumeTime() may introduce some approximation in the execution of the
code. A preemption by the RTOS kernel can happen almost at any source code
instruction (e.g. interrupts). This introduces some complexity on the verification
of concurrent systems in presence of shared variables or other synchronization
mechanisms. Our preemption model instead only captures the preemption at
the level of the ConsumeTime() function missing the relation with the functional
source code. A possible mitigation is the insertion of the ConsumeTime() after
every code line, although this may increase the simulation time. It is out of the
scope of this paper to do a rigorous timing analysis of the code but it is a topic
that we will investigate in a future work.

A Modular SystemC RTOS Model for Uncertainty Analysis 13

(a) graphical representation task model. (b) task body pseudo-code.

Fig. 4. Computational task model.

3.4 ARINC 653 Model Interface

The ARINC 653 standard specifies an APplication EXecutive(APEX) interface
which provides a list of services consistent with fulfilling integrated modular
avionic platform. The main purpose of the standard is to provide a partitioned
environment, both spatially and temporally segregated, where one or more avion-
ics applications can independently execute [2]. In order to implement the APEX
services, a specific mapping API (static library) has been developed that imple-
ments the ARINC 653 specific interface on top of the generic RTOS API. This
library can access methods and attributes of the task model and it wraps the
low level generic services exposed by the kernel to satisfy the requirements of the
APEX API. In order to perform a SIL simulation for a given task set, the tasks
are linked with the mapping library enabling the calling of the APEX services
directly within the task body. The API for process management are standard
RTOS services for task management (start, resume, suspend, stop) which have
mostly a direct mapping with the generic services provided by the RTOS model.
The communication API are instead a specialization of the low level communi-
cation services provided by the kernel. For example the queuing ports defined
in the ARINC 653 standard for inter-partition communication are mapped to
the concept of port defined in Sect. 3.2 and are specialized in order to model
a blocking behavior and a message queuing. Instead the sampling ports are
specialized with non-blocking behavior and non-queuing mode. The same app-
roach has been used to map the specialized inter-task communication mechanism
(i.e. buffer and blackboard) with the base communication services provided. An
RTOS instance compliant with ARINC 653 comprehend a supervisor and one
or more partitions. A partition contains one or more tasks which execute in a
temporal and spatial segregated environment. The supervisor, together with the
partition scheduler, schedules partitions enforcing temporal segregation while
the fixed priority scheduler is used to model the partition-level priority based
scheduler defined in the ARINC 653 specification. The structure just described
is represented in Fig. 5. This particular instance represent a two-level hierarchi-

14 L. Lazzara et al.

cal scheduler as required by the standard ARINC 653. The presented workflow
used to integrate the ARINC 653 API is generic. Given a different target RTOS
only the mapping between the specific API and the generic services of the RTOS
model is needed to enable the SIL simulation.

Fig. 5. Specific RTOS model instance compliant with ARINC 653.

4 Uncertainty Analysis

As we introduced before, the modeling of uncertain behavior during the val-
idation and verification of the real-time system is of paramount importance.
Modeling of uncertainties is not only useful to capture the real system operation
but can also be used to model different design aspects at different validation and
verification phases. It can also be used to model unknown platform details at
early design stages. For example the execution time of the application (RTOS
tasks) can be considered uncertain because the processing unit (e.g. CPU) has
not been selected yet at the current design phase. Again the failure probability of
physical components is intrinsically non-deterministic and may generates events
across the platform that will impact the overall system operation. In the current
work we will focus on the probabilistic modeling of the uncertainty affecting real-
time operating system, i.e. all the uncertainty behaviors are modeled in terms
of probability distributions. In particular we will investigate performances under
two main uncertain aspects:

– Execution time of the task jobs: this may be the result of the uncertainty
at lower architectural levels (e.g. RTOS kernel operations), or application spe-
cific uncertainty (e.g. branches in the application code due to unpredictable
events).

A Modular SystemC RTOS Model for Uncertainty Analysis 15

– Activation of aperiodic tasks: the activation of aperiodic tasks can be the
result of an internal functional behavior or can be triggered by an external
event generated from the environment.

Although our focus is on the above two aspects, our RTOS model is able to han-
dle more specific kernel aspects. For example the model can be easily extended
to explicitly model uncertainty affecting the timing of operations such as con-
text switch between jobs or task queuing. The decision on how detailed should
be our uncertainty model is a trade-off between modeling effort and probabil-
ity distribution complexity. The execution time probability distribution is the
results of the correlation of multiple uncertainties affecting several operations
in both application, kernel and hardware side. Although it is out of the scope
of this work an accurate probabilistic modeling of the uncertainty affecting the
system, we are currently providing a framework to enable researcher to approach
this problem in a systematic way. In the next section we will focus on the two
important analysis: Forward Uncertainty Propagation [20] and Statistical Model
Checking [8]. We will see how those two analysis can be used to verify the per-
formances of the system highlighting how the nominal behavior can drastically
change when even a small uncertainty is added to the system.

4.1 Forward Uncertainty Quantification

Uncertainty quantification (UQ) [20] is an interdisciplinary area which addresses
the problem of quantifying the impact of the uncertainty present in both com-
plex computational and physical models. Two main research areas can be
distinguished:

The Forward Uncertainty Propagation [20] focuses on assessing some output
performances given a probabilistic characterization of the input. A typical appli-
cation is the evaluation of low-order moments such as mean or variance of some
outputs given the probability distribution of the input.

The Inverse Uncertainty Quantification [20] instead focuses on the uncer-
tainty characterization of the input given a set of output measurements. This
is generally a more challenging problem then forward uncertainty propagation.
Although this area is of extreme importance and complementary to the current
work, we will not address this topic in the current work.

In the current paper we will focus only on the forward uncertainty propaga-
tion analysis. In particular in the next sections we will address the problem of
quantifying, in terms of probability distributions, typical performance metrics
for a real-time application. There are several efficient UQ techniques available
to perform the uncertainty propagation. All those techniques exploit the model
properties in order to be more accurate and reduce computation time. Unfortu-
nately given the nature of our model (computational model without any partic-
ular structure) we cannot apply any specific technique and we have to rely on a
simple Monte Carlo method.

16 L. Lazzara et al.

4.2 Statistical Model Checking

Model checking is a method for algorithmic verification of formal systems, i.e.
systems based on a formal model representation. The main objective of model
checking is to verify whether a given system model possesses certain properties
expressed using a specification logic. These properties are usually specified using
temporal logic [12], which is an extension of the propositional logic in order
to represent realities that change over time. It uses the classic Boolean logic
operators to which temporal connectives are added. An improvement to this
method is the Probabilistic Model Checking that aim to quantify the likelihood
for a stochastic system to satisfy some property rather than giving a boolean
flag on a property [16]. When dealing with real-time systems it is also impor-
tant to monitor the timing behavior of the system (when a particular situation
arise), hence the possibility to have timing features in the specification of the
requirements is also needed [16]. One major problem with MC-based approaches
is the state-space explosion problem [8]. Statistical Model Checking (SMC) is an
approach that has recently been proposed as an alternative to avoid the state
explosion problem of probabilistic (numerical) model checking. The approach
can be divided in three macro step: (1) the system under test is simulated, (2)
the simulation is monitored in order to retrieve relevant parameters, (3) sta-
tistical tools, like sequential hypothesis testing or Monte Carlo simulation, are
used in order to decide whether the system satisfies the property or not with
some degree of confidence [16]. Statistical Model Checking is a trade-off among
testing and traditional model checking procedures. The simulation-based app-
roach is less memory and time consumptive than the formal ones, and it is
often the only option. To estimate probabilities, SMC uses a number of statisti-
cally independent stochastic simulation traces of a discrete event model [13]. In
the next sections we will focus on two main methods for the statistical model
checking: Monte Carlo and Hypothesis Testing. The Monte Carlo Method in the
SMC literature [18] is considered a quantitative method and it answers to the
following question: What is the probability p for the model under test to satisfy
a logic proposition Ψ? ; The tool returns a simulation trace for the interesting
variables with the number of performed simulations and the number of posi-
tive simulations, i.e. the number of simulations in which the property Ψ has
satisfied. From these two values the probability of satisfying the requirement is
obtained. Instead of manually setting the number of simulations, it is possible
to use the Chernoff-Hoeffding bound which provides the minimum number of
simulations required to ensure the desired confidence level. The implementation
of the Chernoff-Hoeffding bound is based on two parameters: the error margin
(ε) and the confidence bound (δ). The Sequential Hypothesis Testing instead is
considered a qualitative approach and addresses the following question: Is the
probability p for the model under test to satisfy the property Ψ greater or equal
than a certain threshold θ? [18]. The hypothesis testing is used to infer if the
simulated execution traces provide statistical evidence on the satisfaction or vio-
lation of a property. The test is parameterized by three bounds, α and β and the

A Modular SystemC RTOS Model for Uncertainty Analysis 17

indifference region IR [18]. In the next section we will see how to take advantage
of those methods in order to verify typical RTOS performance metrics.

5 ARINC 653 Application Model: Data Acquisition
System

To demonstrate our capability to simulate and verify real-time applications on
our RTOS model, we will use a surrogated application targeting an RTOS com-
pliant with the ARINC 653 specification. The sequence diagram of the applica-
tion is depicted in Fig. 6. It is a simple model of a centralized data acquisition
system where all the data are acquired and manipulated on a single computa-
tional unit. A task i ∈ [0, N] in a partition j ∈ [A,B,C] is represented by τ j

i . The
system is composed by three partitions PA, PB and PC . The partition PA con-
tains the task τA

1 that implements all the decision making logic. It is in charge of
triggering data acquisition (triggered due to some internal state or due to exter-
nal events) and based on the manipulated data takes some actions. The task τA

1

is aperiodic and its execution time is usually variable depending on the sensor
measurements and decision making logic. The tasks τB

1 and τB
2 in the partition

PB perform a data conditioning and manipulation. Moreover they are in charge
of triggering the sensor measurement acquisition from the tasks in the partition
PC . The execution time of the tasks in PB are slightly variable depending on the
amount of data to process at each acquisition event. Tasks in PC performing the
acquisition are usually highly predictable with very short execution time. In our
model the generation of the external event is emulated by an aperiodic “artificial”
task τA

0 . The task τA
0 will trigger the execution of τA

1 based on a given proba-
bility distribution detailed in the next section. The presented base application
model can be proportional scaled in order to obtain a more complex system and
to analyze the interleaving of the task inside the partitions. In the analysis per-
formed in the next sections we will consider four instances of the model running
on the same RTOS. The final system is composed by the task set detailed in the
Table 1. The partition has a major time frame of tMTF = 18 ms while the time
windows have the following configuration φA1 = 0 ms, φA2 = 12 ms, tA1 = 1 ms,
tA2 = 6 ms, φB1 = 1 ms, φB2 = 7 ms, tB1 = 1 ms, tB2 = 5 ms, φC = 2 ms, tC = 5 ms
where φjk and tjk represent the offset and duration of the k-th time window of
the j-th partition. A visual representation of the partition scheduling is presented
in Fig. 7. For what is concerns the overall system performances we require that
the time elapsed between the data acquisition event (activation of τA

1) and the
resulting action (end of execution τA

1) is not more than 30 ms. This correspond
with the response time of tasks in PA. Of course the tasks in PA are blocked by
all the tasks in the other partitions. The response time of the tasks in PA will
account any delay affecting the tasks in the other partitions.

All the inter-partition communication has been implemented using the queu-
ing ports, i.e. each task waits on the queuing port read call until data is available
to be manipulated or, if specified, until a timeout expires. Tasks in PA wait indef-
initely on a read call (i.e. until data is available) while task in PB and PC have a

18 L. Lazzara et al.

Fig. 6. Application Model - UML-like Sequence Diagram. The grey area represent the
task blocking time.

Table 1. Application model task set.

Partition #Task Type Period [ms] Deadline [ms] Execution time [ms]

A 4 Aperiodic - 30 CA
i,[1] = 0.075; CA

i,[2] = 1.075

B 8 Periodic 18 18 CB
i,[1] = 0.1; CB

i,[2] = 0.55

C 16 Periodic 18 18 CC
i = 0.25

Fig. 7. Partition windows scheduling.

timeout specified within the read call in order not to miss the deadline. Hence,
if tasks in PA don’t send the triggering message, the tasks wait only for the
specified timeout then waiting for their next release point.

A Modular SystemC RTOS Model for Uncertainty Analysis 19

5.1 Application Stochastic Task Model

At the beginning of this section we introduce the task model for all the tasks
running on the RTOS model. In the current section we introduce a stochastic
variability for some application tasks. In the Fig. 8 is depicted the task model for
all the tasks in the application. The tasks in the partition A and B are composed
by two execution chunks. The chunks are delimited by the inter-partition com-
munication (possibly blocking calls) involving tasks running on other partitions.
The task jobs in the partitions B and C are deterministic and constant during
the application execution. The execution time of the generic task instance in B
is given by CB

i,j = CB
i,j[1] + CB

i,j[2] = CB
i,[1] + CB

i,[2] where we removed the index j
since the execution time is fixed among all the task jobs. The execution of the
task jobs running in PC are constant and given by CC

i . The execution times for
all the tasks are summarized in the Table 1. The tasks running in PA have a
stochastic task model as described below:

– Uncertain execution time for the task τA
i : The model of the task is

represented by two execution chunks. The first one is CA
1,[1] and it is constant

for all the job instances. The second chunk Ĉ1,j[2] is a stochastic variable
drawn from a Normal distribution [10], i.e. Ĉ1,j[2] ∼ N (μ = 1, σ2 = 0.25). The
total execution time for the job instance j is stochastic and it will be the sum
of both of the contributions, i.e. ĈA

i,j = (CA
1,[1] + Ĉi,j[2]) ∼ N (μ + CA

1,[1], σ2).
– Uncertain activation of the aperiodic task τA

i : As we have seen before,
the activation of the task τA

i generates a data acquisition event that spreads

Fig. 8. Application stochastic task model.

20 L. Lazzara et al.

across all the system. The probabilistic model is specified in terms of time
elapsed between the end of the execution of the task and the next task acti-
vation. In the Fig. 8 this value is denoted with LA

i−i+1 that is the time elapsed
between the end of the execution of the job instance i and the activation
of the job instance i + 1. This variable is a stochastic variable drawn from
a Weibull distribution [10], i.e. LA

i−i+1 ∼ W(λ = 4, k = 2). Choosing this
distribution we consider more likely activation triggered around 3 ms after
the end of current job execution (LA

i−i+1 ≈ 3 ms). The distribution considers
also more likely event that are not more than 10 ms distant each other, and
it penalizes events that are very close each other, i.e. LA

i−i+1 ≈ 0 ms.

6 Results

Given the application described in the Sect. 5, we performed both forward uncer-
tainty propagation and statistical model checking analysis. Although the two
analyses are similar, they provide very different insight regarding the model
under verification. In particular as we will point out in the next sections the
forward uncertainty propagation gives back a global property of the stochastic
model. On the other side the SMC predicates on a limited time horizon, therefore
nothing can be assessed for the model globally.

6.1 Forward Uncertainty Propagation

As introduced in the previous sections, the main objective of the forward uncer-
tainty propagation is to quantify the impact of any input uncertainty on the
output performances. In this case we considered as input disturbance the prob-
ability distributions for both the aperiodic task activation and task execution
time for all the four tasks in PA. As output performance we will focus on the
response time of the tasks in PA denoted as RA

i∈{1,2,3,4}. The main objective is
to verify that their value do not exceed a maximum value fixed to Rmax = 30 ms.
Although we will focus on the response time our approach is general and can be
extended to any relevant RTOS or application performance measure. A qualita-
tive approach has been used to select an appropriate simulation time. It has been
tuned in order to exhaustively exercise all the output probability distributions.
We selected 1000 s as simulation time frame. A simulation trace for the model
has been recorded while the random values for both the Normal and Weibull
distribution were generated using the C++ random library [10].

In order to have a reference baseline, the system has been initially simu-
lated in its nominal condition (deterministic simulation) without any stochastic
behavior. The nominal case has been designed to satisfy the system requirements.
In addition three other different scenarios were simulated considering first the
impact of single uncertainties, then the impact of their interaction.

Nominal (Deterministic) Case: In this case the model is purely deterministic.
The execution times are fixed equal to the nominal value as detailed in the
Table 1. The activation of the aperiodic tasks is triggered at the beginning of

A Modular SystemC RTOS Model for Uncertainty Analysis 21

the first time window PA1. The values of the response times for the tasks are
RA

1 = 13.075, RA
2 = 14.15, RA

3 = 15.225, RA
4 = 16.03.

Stochastic Task Execution: During this use case we will consider only the
effect of a stochastic execution time for all the tasks in the partition A. The
stochastic characteristic is modeled with the Normal distribution as detailed in
Sect. 5.1. In the Fig. 9 are reported the histograms of the response times for
all the four tasks τA

i∈{1,2,3,4} with the probability to miss the response time
bound, i.e. Pr(RA

i ≥ 30 ms). It can be noted that the response time of task with
higher priority (RA

1) have a normal distribution equal to the nominal execution
time ĈA

1 since it doesn’t suffer the interference from the other tasks. It never
violates the Rmax = 30 ms bound, i.e. Pr(RA

1 ≥ 30 ms) = 0. The lower priority
tasks show an interesting behavior. The response time distribution in Fig. 9c
and d present two evident distinct peaks (local maxima) separated by a gap.
This distribution resemble a bimodal distribution, i.e. a probability distribution
with two different modes. The first peak on the left represents the stochastic
variability of the response time around its nominal value. The second peak on
the right is the result of task activation not triggered inside the PA time window
but in another partition (PB or PC) where they are not allowed to execute.
This introduce a delay that is equal to the time needed until the next PA time
windows is available again.

(a) Pr(RA
1 ≥ 30ms) = 0 (b) Pr(RA

2 ≥ 30ms) = 0

(c) Pr(RA
3 ≥ 30ms) = 0.03 (d) Pr(RA

4 ≥ 30ms) = 0.31

Fig. 9. Response time histogram for all the tasks in PA with stochastic execution. In
the y-axis we represent the number of occurrences, while in the x-axis the response
time in ms.

Stochastic Task Activation: In this case the sequence of activation times for
the aperiodic tasks is generated according to a Weibull distribution detailed in
Sect. 5.1. The response time histograms of the results are represented in Fig. 10.

22 L. Lazzara et al.

(a) Pr(RA
1 ≥ 30ms) = 0.01 (b) Pr(RA

2 ≥ 30ms) = 0.12

(c) Pr(RA
3 ≥ 30ms) = 0.26 (d) Pr(RA

4 ≥ 30ms) = 0.42

Fig. 10. Response time histogram for all the tasks in PA with stochastic activation.
In the y-axis we represent the number of occurrences, while in the x-axis the response
time in ms.

It can be noted that the stochastic activation time has a significant impact
on the response time showing a bimodal distribution for all the tasks. With
random activations, all the aperiodic tasks miss some deadlines (i.e. Pr(RA

i ≥
30ms) > 0) and not only the lower priority tasks. All the task response times
are highly impacted by the application partition scheduling represented in Fig. 7.
The distribution of the higher priority task τA

1 depicted in Fig. 10a is limited
by a lower bound (≈ 12 ms) and an upper bound (≈ 30 ms). The task τA

i is
divided in two main execution chunk. During the first chunk the event acquisition
is spread across all the system. Once all the data are available (τB

i and τC
i

finish their execution) the second execution chunk can start its execution. When
the activation of τA

i is triggered within the first partition windows PA1, the
execution always ends inside the second time window PA2. The resulting response
time, in case of activation in PA1 is lower-bounded by CA

1,[1] + tB1 + tC + tB2 +
CA

1,[2] = 12.15 ms. The worst case activation generating the worst case response
time happens when task τA

1 cannot finish the execution of the first chunk τA
1,1

within the time window PA1. In this case the data acquisition event is spread
in PA2 (when the task is again allowed to execute) and a full time frame must
be waited in order to get all the data. The upper bound on the execution time
is then approximately tMTF + tB1 + tC + tB2 + CA

1,[2] = 30.075 ms. For the other
tasks it is possible to do similar considerations even if the behavior is more
complicated due to the possible preemption of the higher priority tasks. Similar
observations can be made for the lower priority tasks showing similar “steps” in
their distributions (especially for τA

2 depicted in Fig. 10b and for τA
3 depicted in

Fig. 10c). Those steps are the result of the activation of an higher priority task
outside its time window while the lower priority task is activated within its time

A Modular SystemC RTOS Model for Uncertainty Analysis 23

window, thus managing to complete the execution before the higher priority
tasks (since the latter is blocked). This situation is very unlikely so the “steps”
in the distributions are small. For τA

2 the step is only one because it has only one
higher priority task τA

1 , while for τA
3 the steps are two since it has two higher

priority tasks (τA
1 and τA

2) with the second step much lower because in this case
both τA

1 and τA
2 must have an unfavorable activation value (the product of two

probabilities is less than the single probabilities).

Stochastic Task Execution and Activation: In this use case we consider
both the execution and activation uncertainties. The distributions are the same
considered in the previous use cases. When injecting both uncertainties in the
system, the output distributions are similar to the case with only stochastic
activation but with the response time covering a wider range of values due to
the introduction of variable execution time. By introducing both uncertainties,
one would expect a degradation of the system performance by an increasing
of deadline miss and an equivalent reduction in the probability to meet the
imposed requirement. However the mixing of both uncertainties can lead to a
small improvement in the performances as shown in Fig. 11 by the probabilities
Pr(RA

i ≥ 30 ms); compared to the previous case, the tasks τ3 and τ4 present
a smaller number of deadlines miss, τ2 performance are almost unchanged and
τ1 is the most impacted. It is interesting to note that a nominal determinis-
tic simulation may not empathize this kind of behaviors vanishing the overall
performance assessment.

(a) Pr(RA
1 ≥ 30ms) = 0.02 (b) Pr(RA

2 ≥ 30ms) = 0.11

(c) Pr(RA
3 ≥ 30ms) = 0.25 (d) Pr(RA

4 ≥ 30ms) = 0.39

Fig. 11. Response time histogram for all the tasks in PA with stochastic execution and
activation. In the y-axis we represent the number of occurrences, while in the x-axis
the response time in ms.

24 L. Lazzara et al.

6.2 Statistical Model Checking

The statistical model checking aims to verify a linear temporal logic targeting a
bounded time window, i.e. Bounded Linear Temporal Logic (BLTL). Differently
from the forward uncertainty propagation analysis that provided global results,
the statistical model checking targets a limited time windows. In our use case we
aim to verify the four properties expressed by the BLTL in Eq. 1. The equation
expresses the system requirement that: whenever a task τi finishes its execution
(finish task event Ef

i is triggered), the resulting response time Ri is always less
then a maximum response time Rmax in the given time window (operator G≤N).

Ψ := G≤N

(
(Ef

i = 1) => (Ri <= Rmax)
)

(1)

The time interval was chosen equal to four major time frames, i.e. N = 72 ms;
The maximum response time value was set to Rmax = 30 ms.

To perform the statistical model checking analyses we used the Plasma Lab
tool. Plasma Lab is a compact, efficient and flexible platform for statistical model
checking of stochastic models [13]. All the simulations have been carried out on a
workstation with an i7-8850H CPU @ 2.6 GHz and 32 GB of RAM. The Plasma
tool makes available different verification algorithms. We focused on two main
algorithms: Monte Carlo Method and Hypotheses Testing. The Monte Carlo
method with Chernoff-Hoeffding was introduced in Sect. 4.2. Plasma implements
this method enabling the setting of the error margin ε and the confidence bound
δ. We selected δ = 95% for the confidence and the precision has ranged on 0.1,
0.05, 0.005 requiring respectively 38, 149, 14889 simulations. The SMC analyses
were performed on the model with both task execution time and task activa-
tion uncertainty. The results are reported in the Table 2 where p represent the

Table 2. PLASMA analysis with Chernoff bound with 95% confidence bound and
variable error margin.

Task Error margin (ε) # Simulations p Simulation time [s]

τA
1 0.1 38 1.0 20

0.05 149 0.966 75

0.005 14889 0.983 7627

τA
2 0.1 38 0.921 20

0.05 149 0.872 75

0.005 14889 0.881 7627

τA
3 0.1 38 0.737 20

0.05 149 0.772 75

0.005 14889 0.733 7627

τA
4 0.1 38 0.579 20

0.05 149 0.51 75

0.005 14889 0.571 7627

A Modular SystemC RTOS Model for Uncertainty Analysis 25

Table 3. PLASMA analysis with hypothesis testing bound.

Task Goal Probability (p) # Simulations Estimate Probability (p′) Simulation Time [s]

τA
1

0.9 267 0.977 808
0.7 171 0.982 722
0.5 127 0.953 331

τA
2

0.9 1527 0.887 808
0.7 258 0.887 722
0.5 155 0.871 331

τA
3

0.9 114 0.719 808
0.7 1325 0.737 722
0.5 201 0.786 331

τA
4

0.9 76 0.618 808
0.7 222 0.482 722
0.5 809 0.571 331

probability to satisfy the BLTL in Eq. 1. It is interesting to note that despite
the introduction of a small uncertainty, the performance of the system drops in
a significant way compared to the nominal case.

The Hypothesis Testing method was introduced in Sect. 4.2. Plasma imple-
ments this method enabling the user to set the probabilistic bounds α and β.
Also in this case we focused on the response time of the tasks in PA. This
method aims to verify whether the probability to satisfy the LBTL Ψ in Eq. 1
is less than a probability p. We considered three values for the goal probability
p = {0.9, 0.7, 0.5}, while we selected α = β = IR = 0.01. The results of the
analysis are reported in Table 3. The tool returns the probability of satisfying
the requirement. The True/False (Green/Red) indicator informs the user if the
set probability goal has been respected or not.

7 Conclusions and Future Work

In the current paper we presented a generic modular RTOS SystemC model.
The RTOS model has been designed in order to be customized implementing
RTOS specific services. This allows the user to run the real application code
on top of the model without modifying the original application code targeting
a specific RTOS implementation. The proposed model captures the timing info
of the application (execution time) by defining a specific API to be added in
the application code. Furthermore the model also allows the modeling of uncer-
tain behavior. We presented a use case application where the execution time
of the tasks and their aperiodic activation is modeled by mean of probability
distributions. The performance analysis of the stochastic application was per-
formed with two different methods: forward uncertainty propagation and statis-
tic model checking. The proposed analyses highlighted how a small uncertainty
may introduce a consistent performance degradation. This shows that analyzing
the system under uncertain conditions is of paramount importance to a proper
verification assessment. Different aspects were not investigated that are of great
importance. Claiming generality of the RTOS model is quite difficult since any
COT RTOS may implement specific services. Future activity will validate the

26 L. Lazzara et al.

model against common RTOSes (FreeRTOS, VxWorks, DEOS) and standardized
RTOS interfaces as OSEK OS and POSIX. The RTOS model could be enhanced
in order to enable the modeling of multicore scheduling. The model can also
be improved in order to integrate hardware models (FPGA, FLASH memory,
EEPROM, etc.) using transaction level modeling (TLM). This will enable an
HW/SW co-simulation in a unified simulation framework. Moreover in order to
ease the simulation of application code, techniques for automatic back annota-
tion will be investigated. In addition the performance of real-time systems are
affected by uncertainty at different levels such as hardware, RTOS kernel or
application. On one side, modeling the uncertainty at all the levels may be time
consuming with the estimation of multiple probability distribution. On the other
side considering the cumulative distribution of many uncertainties at different
levels may move the complexity to fewer distributions with very high modeling
complexity. An active research area called Inverse Uncertainty Quantification
addresses this issue although, to the best of the authors knowledge, there are
not existing works targeting complex embedded systems.

Acknowledgments. This work has received funding from the Clean Sky 2 Joint
Undertaking under the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement N◦ 807081.

References

1. Accelera: Core SystemC Language. https://www.accellera.org/downloads/
standards/systemc. Accessed Aug 2019

2. Airlines Electronic Engineering Committee (AEEC): ARINC Specification 653 P1.
Avionics application software standard interface (2010). rev. 3

3. Barry, R.: FreeRTOS. http://freerots.org. Accessed Aug 2019
4. Buttazzo, G.: Research trends in real-time computing for embedded systems.

SIGBED Rev. 3(3), 1–10 (2006). https://doi.org/10.1145/1164050.1164052
5. D’Angelo, M., Ferrari, A., Ogaard, O., Pinello, C., Ulisse, A.: A Simulator based

on QEMU and SystemC for robustness testing of a networked linux-based fire
detection and alarm system. In: Proceedings of the Conference on Embedded Real
Time Systems and Software, pp. 1–9 (2012)

6. DDC-I: DEOS. https://www.ddci.com/category/deos/. Accessed Aug 2019
7. Grimm, C., Rathmair, M.: Dealing with uncertainties in analog/mixed-signal sys-

tems: invited. In: Proceedings of the 54th Annual Design Automation Conference
2017, New York, NY, USA, pp. 35:1–35:6 (2017)

8. Hansen, J.P., Wrage, L.: Verification of real-time systems using statistical model
checking. In: AIAA Infotech@ Aerospace, p. 1866 (2015)

9. Huck, E., Miramond, B., Verdier, F.: A modular SystemC RTOS model for embed-
ded services exploration. In: Proceedings of First European Workshop on Design
and Architectures for Signal and Image Processing (2007)

10. ISO International Standard ISO/IEC 14882:2017(E): Programming Language
C++: Random Library. http://www.cplusplus.com/reference/random/. Accessed
Aug 2019

https://www.accellera.org/downloads/standards/systemc
https://www.accellera.org/downloads/standards/systemc
http://freerots.org
https://doi.org/10.1145/1164050.1164052
https://www.ddci.com/category/deos/
http://www.cplusplus.com/reference/random/

A Modular SystemC RTOS Model for Uncertainty Analysis 27

11. Keutzer, K., Newton, A.R., Rabaey, J.M., Sangiovanni-Vincentelli, A.: System-
level design: orthogonalization of concerns and platform-based design. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 19(12), 1523–1543 (2000)

12. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
(TOPLAS) 16(3), 872–923 (1994)

13. Legay, A., Sedwards, S., Traonouez, L.M.: Plasma lab: a modular statistical model
checking platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952,
pp. 77–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 6

14. Meyerowitz, T., Sangiovanni-Vincentelli, A., Sauermann, M., Langen, D.: Source-
level timing annotation and simulation for a heterogeneous multiprocessor. In: 2008
Design, Automation and Test in Europe, pp. 276–279 (2008). https://doi.org/10.
1109/DATE.2008.4484897

15. Mignogna, A., Ferrante, O., Carloni, M., Ferrari, A.: A fully configurable RTOS
model for large scale distributed embedded systems simulations based on SystemC.
In: Proceedings of Conference on Applied Simulation and Modelling. ACTA Press
(2011)

16. Plasma-Lab: Statistical Model Checking. https://project.inria.fr/plasma-lab/
statistical-model-checking/. Accessed Aug 2019

17. Posadas, H., Ádamez, J., Villar, E., Blasco, F., Escuder, F.: RTOS modeling in
SystemC for real-time embedded SW simulation: a POSIX model. Des. Autom.
Emb. Syst. 10, 209–227 (2005)

18. Quilbeuf, J., Cavalcante, E., Traonouez, L.-M., Oquendo, F., Batista, T., Legay,
A.: A logic for the statistical model checking of dynamic software architectures.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 806–820.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 56

19. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology (1995)

20. Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applica-
tions. SIAM, Philadelphia (2013)

21. Swan, S.: An introduction to system level modeling in SystemC 2.0. Cadence Design
Systems Inc., draft report (2001)

22. Wilhelm, R., et al.: The worst-case execution-time problem - overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst. (TECS) 7(3), 36 (2008)

23. Wind Rivers Systems: VxWorks. https://www.windriver.com/products/vxworks/.
Accessed Aug 2019

24. Zabel, H., Müller, W., Gerstlauer, A.: Accurate RTOS modeling and analysis with
SystemC. In: Ecker, W., Müller, W. (eds.) Hardware-Dependent Software: Prin-
ciples and Practice, pp. 233–260. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-1-4020-9436-1 9

25. Zhang, M., Ali, S., Yue, T., Nguyen, P.: Uncertainty modeling framework for the
integration level v. 1. Simula Research Laboratory (2016)

26. Zhang, M., Ali, S., Yue, T., Norgren, R., Okariz, O.: Uncertainty-wise cyber-
physical system test modeling. Softw. Syst. Model. 18(2), 1379–1418 (2019)

https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1109/DATE.2008.4484897
https://doi.org/10.1109/DATE.2008.4484897
https://project.inria.fr/plasma-lab/statistical-model-checking/
https://project.inria.fr/plasma-lab/statistical-model-checking/
https://doi.org/10.1007/978-3-319-47166-2_56
https://www.windriver.com/products/vxworks/
https://doi.org/10.1007/978-1-4020-9436-1_9
https://doi.org/10.1007/978-1-4020-9436-1_9

Multicore Models of Communication
for Cyber-Physical Systems

Martin Schoeberl(B)

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kgs. Lyngby, Denmark

masca@dtu.dk

Abstract. Cyber-physical systems are systems where the environment
interacts with computers (the cyber part) with real-time constraints.
Emerging technologies, such as artificial intelligence and machine learn-
ing, call for ever-increasing processing power. However, for real-time sys-
tems, we need to prove statically that this processing demand can be
performed within strict deadlines.

This paper explores a time-predictable multicore architecture for those
demanding cyber-physical systems. We explore different models of com-
munication between those multiple cores. We compare the message pass-
ing model on top of a network-on-chip with message passing on two forms
of shared scratchpad memory.

Keywords: Real-time systems · Multicore communication ·
Time-predictable computer architecture

1 Introduction

Future cyber-physical systems may be in need of higher computing power. One
way to increase computing power is to integrate multiple processing cores in a
single chip to form a multicore processor. Cyber-physical systems often need to
react to the environment within a guaranteed deadline. We call those systems
real-time systems. If such a system is part of a safety-critical system, we need to
guarantee that all deadlines are met. Such proof includes worst-case execution
time (WCET) analysis of individual tasks, analysis of communication time, and
schedulability analysis.

Multicore processors used in cyber-physical systems need to support time-
predictable computation and communication. As communication via shared
main memory supported by a cache coherence protocol is hardly time-
predictable, we need other forms of core-to-core communication.

This paper explores different models of communication between processing
cores and the hardware support for it. We present forms of shared on-chip mem-
ories, links between processor cores, and network-on-chip architectures. In this
paper, we include only solutions that are time-predictable, except describing the
baseline of a hardly time-predictable shared main memory with cache coherence.
c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 28–43, 2020.
https://doi.org/10.1007/978-3-030-41131-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_2&domain=pdf
http://orcid.org/0000-0003-2366-382X
https://doi.org/10.1007/978-3-030-41131-2_2

Multicore Models of Communication for Cyber-Physical Systems 29

Shared on-chip memories with a time-predictable arbitration, such as time-
division multiplexing, provide an efficient solution for around a dozen cores. For
more cores, a distributed communication architecture, such as a network-on-chip,
is a better scaling solution.

In this paper, we use the term task as a notion of parts of a program that can
execute concurrently. We avoid the term thread, as threads are usually associated
with a single form of concurrency: communication via data in shared memory,
protected by locks. Tasks need to communicate when working together as an
application.

The contribution of this paper is a detailed overview of several communi-
cation architectures for a real-time multicore processor. The overview may also
serve as a small survey of real-time multicore communication architectures. Fur-
thermore, we picked several architectures and compared them with an evaluation
of message passing. Our overall goal is to build time-predictable computer archi-
tecture [32] for future demanding cyber-physical systems. Initial ideas on models
of communication for multicore processors have been presented in [39].

This paper is organized into 5 sections: Sect. 2 presents the software view
of multicore communication. Section 3 is the main section, describing several
hardware architectures to support time-predictable multicore communication.
Section 4 evaluates several of the presented architectures with a message passing
microbenchmark. Section 5 concludes.

2 The Software View

When multiple tasks shall work together towards completing work, they need to
communicate in some form. This combination of tasks and forms of communi-
cation is also called the “model of computation.” The Ptolemy II handbook [30]
gives a good overview of those different forms. In the following sections, we focus
on three example models of computation and communication.

2.1 Communicating Sequential Processes

One of the first approaches to establish message passing between tasks was
Hoare’s communicating sequential processes, CSP for short [15]. The CSP con-
cept became popular enough that even a programming language, Occam [23],
was developed to include CSP in the language.

Transputers [16,43], a unique form of processors, where developed to execute
Occam programs. Transputers included hardware support for the Occam chan-
nels. The idea was to build massive parallel multiprocessors. However, in the mid
of the ’80s the performance increase of standard processors was still around 50 %
per year [13], and there was no need for multiprocessor systems. A single task
program is easier to develop and test. Dividing an algorithm into multiple tasks
that communicate via channels is hard, and errors can lead to hard-to-debug
blocking of tasks. Therefore, CSP and transputers did not become a success
story.

30 M. Schoeberl

2.2 Multithreading

Early forms of multiprogramming consisted of using individual programs that
communicate. One form of communication was the usage of Unix pipes, where
the output of one program is fed as input to another program. A Unix pipe
represents a stream with one writer and one reader process. Message passing can
easily be built on top of such a stream. A tighter form of communication between
programs was the creation of a shared memory space by the operating system.
However, those multiple programs still run as individual processes protected
from each other by the operating system.

To simplify multiprogramming, the concept of multiple threads of execution
in a single process was developed. Those threads share memory and use data
allocated on the heap for communication. Those data structures are usually
protected by locks [14]. This programming paradigm became especially popular
when Java supported threads and locks as part of the core language definition.

A runtime system can map multiple threads to multiple cores in a multicore
processor. Also, the communication via shared objects is handled by a cache
coherence protocol.

At the time of this writing, multithreading with shared data is the most
popular approach to use with concurrent tasks. However, getting the locking of
objects right for multithreaded programs is far from trivial. Locking also is a
bottleneck for scaling programs for many cores. Therefore, the current trend is
to explore message passing again in the form of actors.

2.3 Actors and Message Passing

The concept of actors is currently becoming popular through the Akka1 toolkit.
Akka is a library and runtime to support concurrent and distributed applica-
tions. The primary programming model for multiple tasks is actor-based. Akka
is written in Scala but can be used from programs written in Java or Scala.

Actors in Akka are the tasks that communicate via message passing. In con-
trast to CSP, the message passing is asynchronous. Typical Akka programs avoid
shared mutable data and locks to protect them.

However, non-constrained asynchronous message passing may lead to buffer
overflow and is hardly time-predictable. Stricter forms of communication are, for
example, synchronous data flow (SDF) [19]. An SDF actor fires (executes) when
all input ports contain their fixed number of tokens. With the fixed number of
tokens consumed and produced, buffers are bounded, and for a single core, a
statically schedule for the actor firing can be computed.

Recent work extends actors for precise timing in cyber-physical systems [22].
The actors, called reactors in the paper, have strict rules on fire order and
mutual exclusion of different reactions. Reactors include the notion of delays and
deadlines. Delays allow for physical time to pass, and deadlines are a contract
with the environment. WCET and schedulability analysis of reactions can be
used to check if all deadlines can be met.
1 Available at https://akka.io/.

https://akka.io/

Multicore Models of Communication for Cyber-Physical Systems 31

3 Communication Hardware

Message passing can be implemented on top of different communication infras-
tructures. In contrast, the concept of shared objects is usually implemented on
top of cache-coherent, shared main memory only. Therefore, message passing
is the more hardware friendly approach for communication. In the following
sections, we discuss several different hardware mechanisms for communication
between multiple cores on a chip multicore.

Core 1

Memory
controller

External
memory

Communication device

Core 2 Core 3 Core 4

Memory
arbiter

Multicore processor

Fig. 1. A multicore processor with the cores connected to (1) an arbiter to the memory
controller for the shared, external memory and (2) to the communication hardware.

Figure 1 shows a multicore processor where the cores are connected to (1)
external memory via a memory arbiter and (2) to a communication device. That
communication device is the topic of this paper, and we discuss variations of it
in the following sections.

3.1 Shared Main Memory

The state-of-the-art communication mechanism for multicore processors is
shared main memory. Objects are allocated in the main memory, and the access

32 M. Schoeberl

to the objects is protected by locks. As access latency to main memory is in the
range of hundreds of processor clock cycles, several levels of cache are introduced.
It is not uncommon to include 3 levels of cache, where the 2nd and 3rd levels
of cache are shared between the cores. The first level of cache is usually core
local. Therefore, when sharing data, these local caches need to be kept coherent
with a cache-coherent protocol. As this cache coherence protocol is an all-to-all
communication, it scales only to a few tens of processor cores.

However, the main issue with shared memory backed up by a cache coherence
protocol is that it is barely time-predictable. The WCET analysis of tasks needs
to include an analysis of which memory blocks are in the cache and in which
caches. WCET analysis is further complicated by the fact that on a multicore,
we have true concurrency where individual tasks influence the occupancy of
the shared caches. This problem would need a WCET analysis that includes
all tasks in the system. We are not aware of any WCET analysis tool (except
niche research experiments) that supports multiple tasks and multiple levels of
caches, including the cache coherence protocol. The industry standard WCET
tool aiT [12] supports single tasks only. We quote from AbsInt’s website:2

aiT computes an upper bound of the WCET of a task. A task must be
a sequentially executed piece of code, i.e. there must not be any threads,
parallelism, or external events. aiT assumes no interference from the out-
side. Effects of exceptions, interrupts, DRAM refreshes, input/output,
timers and other processors or co-processors are not reflected in the pre-
dicted runtime and have to be considered separately, e.g. via quantitative
analysis.

However, we are aware that realistic applications and their data are too
large to fit in on-chip memory. Therefore, some code and data need to be loaded
into external memory. To provide time-predictable access to external memory,
we propose to use a time-division-multiplexing (TDM) arbiter for the memory
accesses [35].

3.2 Network-on-Chip

Network-on-chip (NoC) technology [6] is an alternative to cache coherence based
inter-core communication. A NoC is a distributed architecture, and therefore the
provided bandwidth scales well with the number of cores. A NoC connects cores
(also called processing elements in NoC literature) to a network of routers. In
most cases, one router serves one core. The routers are connected in a network,
where mesh and torus are the most common organizations.

A NoC itself does not yet provide a communication mechanism. Between
the core and a router, the network interface (NI) provides an interface to the
network. NoCs are used for a wide variety of traffics: serving cache coherence
traffic, access to a memory controller and external memory, streaming between

2 https://www.absint.com/ait/features.htm.

https://www.absint.com/ait/features.htm

Multicore Models of Communication for Cyber-Physical Systems 33

cores, message-passing between cores, and access to remote on-chip memories.
The NI determines what kind of traffic is supported.

Many routers (and NIs) are optimized for the average case performance with
buffers and dynamic arbitration at each router. Those NoCs are hardly time-
predictable. For real-time systems, two mechanisms are popular: rate control at
the injection site or TDM arbitration at the routers.

Rate control, also called traffic shaping, limits the number of packets injected
into the NoC. Network calculus [4,5,18] is used to compute bounds on buffer
sizes and bounds on latencies. The Kalray multicore processor [7] is especially
designed to support time-predictable message passing with rate control in the
sender and no further flow control within the NoC [8].

With a static schedule performing TDM arbitration in the NoC routers,
there is no traffic conflict, and the worst-case message latency can be statically
computed. Æthereal [9] is such a NoC that uses TDM where slots are reserved
to allow a block of data to pass through the NoC router without waiting or
blocking traffic. Slot tables with routing information are contained in the routers,
and no arbitration or link-to-link flow control is required. Instead, credit-based
flow control is applied for end-to-end control, saving buffer space between links.
aelite, a light version of Æthereal, only offers guaranteed services resulting in a
simpler router design [11].

The Argo NoC [17] is another NoC that uses TDM based arbitration of
resources. Compared to Æthereal, Argo also uses the same TDM schedule in the
NI [42] to time-multiplex the NI resources. The Argo NI offers TDM-based DMA
transfer of data from the local memory across the NoC and into the local memory
of another core. Argo supports a global asynchronous, local synchronous system
with an asynchronous router design and mesochronous (same clock source, but
variable upwards bounded skew allowed) NIs.

While Æthereal uses TDM at the routers, it uses buffers with flow-control
in the NIs. In contrast, the Argo NoC [17] uses TDM for the arbitration in the
routers and at the NI [42], resulting in an end-to-end TDM schedule. S4NOC [36,
37] is a TDM based NoC, simpler than Argo, with FIFO buffers as NI. We use
S4NOC in the evaluation section.

The Real-Time Capable Many-Core Model proposes many cores with a static
switched NoC with TDM-based arbitration [24]. The project also proposes avoid-
ing shared memory altogether and supporting timing analysis by using a fine-
grained message passing NoC [25].

Paukovits and Kopetz use a time-triggered NoC for the time-triggered
system-on-chip (TTSoC) architecture [28]. The main difference to other NoC
designs is the absolute time format, which is not directly related to the clock
frequency. The macro tick is a power of two fraction of a second and the basis
for the TDM slotting. The idea behind this time format is a good integration
with off-chip versions of time-triggered networks.

When comparing TDM arbitration with rate control and network calcu-
lus [31], TDM arbitration results in shorter worst-case latencies while network
calculus leads to higher bandwidth. However, using TDM for arbitration leads

34 M. Schoeberl

to simpler routers and network interfaces than supporting dynamic arbitration
and buffering NoC.

3.3 Shared Scratchpad Memory

While NoCs can provide a high bandwidth communication path, their usage is
more elaborated. I.e., messages need to be setup and explicitly sent to other
cores. An alternative is to use on-chip memory, also called scratchpad memory
(SPM), that is shared between several cores. For a small number of cores that
memory can be shared by all the cores. However, with an increase in the number
of cores, this solution does not scale. Therefore, several shared on-chip memories
can be shared only by a subset of the cores. These subsets can be disjoint,
as in the Kalray processor, to form clusters, which are connected by a NoC.
Alternative, these sets can overlap to provide a communications path between
neighboring cores.

The Kalray manycore processor [7] is specially designed for time-critical com-
putation. The processor is organized in 16 clusters of 16 cores. Each core within
a cluster is connected to a shared SPM, consisting of 16 independent memory
banks. By carefully selecting the allocation of data and access to the memory
banks, access can be time-predictable [2].

We have implemented a shared SPM in the T-CREST processor [40]. We use
TDM based arbitration, which results with a single cycle SPM in a maximum
access time of n clock cycles for n cores. We found that a shared SPM scales
up to nine cores when implemented in an FPGA. We use our shared SPM in the
evaluation.

3.4 Scratchpad Memory with Ownership

Access latency to a shared SPM is a few clock cycles, way less than access to
main memory. However, often, the SPM is not used by all cores, and the TDM
arbitration wastes memory bandwidth. For example, in a producer/consumer
setting, only a single core writes into the SPM and when finished a different core
reads from the SPM. For this setup we introduce the notion of ownership [40]. A
core owns an SPM for some time, uses it to compute write data into it, and then
transfers the ownership to a core that consumes the data. When tasks agree
on the ownership of the SPM, there is no need for arbitration. The core has
exclusive access to the owned SPM with short (single cycle) access time. This
mechanism allows fast transfer of bulk data.

For double-buffered communication and several communication channels, we
introduce a pool of SPMs with ownership. Different cores can acquire SPMs out
of this pool and after usage, either transfer the ownership to another core or put
it back into the pool of free SPMs. This pool of SPMs scales up, similar to a
shared SPM, to about nine cores in an FPGA. Beyond that number of cores,
the SPM pools need to be clustered.

Multicore Models of Communication for Cyber-Physical Systems 35

3.5 Distributed Shared On-Chip Memory

Combining core-local SPMs with a NoC leads to a distributed shared on-chip
memory. Each core is attached to local memory and to a NoC that supports
access to a local memory of a remote core. A standard solution for remote read
and writes is to use two NoCs: one to support writes and read requests and a
second to deliver the response for the reads.

Epiphany is a high-performance energy-efficient manycore processor [27] that
uses distributed on-chip memory. Epiphany is intended as an accelerator proces-
sor for real-time embedded systems. Two versions, a 16-core chip, and a 64-core
chip have been taped out. The multicore processor Epiphany uses a distributed
memory architecture. Each core contains 32 KB of local memory that is mapped
into a global address space. The processors contain no caches. Access to the
memory of a remote core is performed over a NoC. The NoC is organized as a
mesh and favors writes over reads, as writes are posted writes where the proces-
sor does not need to wait for the write to finish. Packets are single word long,
and routing is performed in a single cycle per hop. A second NoC is dedicated
for read responses and a third NoC supports off-chip traffic, e.g., with a master
processor and external shared memory. There is no documentation available on
how the arbitration in the NoC routers is performed on a conflict. We explored
the processor and measured considerable latency variations depending on the
NoC load. Therefore, we cannot (yet) recommend it for applications with tight
timing constraints.

We have implemented a distributed shared memory in the T-CREST mul-
ticore [29]. We use two instances of the S4NOC [36]: one is used to write to a
remote SPM or transmit a read request, and the second is used to return the
read result. The SPMs are mapped into different address ranges in the global
address range, and the read or write address determines which SPM to access.
As several remote read requests may arrive at one core in successive clock cycles,
the read results (one per clock cycle) may queue up waiting for their slot to be
sent on the read response NoC. In the worst case, this could be n − 1 words
for an n core system. To minimize the length of this queue, the TDM schedule
for the return NoC is optimized and aligned to the read request schedule. As
S4NOC uses TDM arbitration and a static schedule, we can provide guarantees
on latency bounds for reads and writes. As reads need to travel a NoC twice,
their latency is double the latency of writes.

Operating system support to virtualize SPMs on a distributed shared on-
chip memory is presented in the ShaVe-ICE project [41]. Similar to Epiphany
and our solution, each core contains a local SPM and is connected via a NoC.
The operating system support is to manage the changing demand of threads for
local memory by allocating and deallocating memory on the local or a remote
SPM. When allocating on a remote core, the hop distance is taken into account
for the allocation policy.

36 M. Schoeberl

3.6 Direct Links and Memory Between Cores

Another way to structure communication between cores is to have direct links
between neighboring cores, organized in a mesh or folded torus. The main benefit
of such an organization is that it is a local link and fully supports two types
of parallel applications: (1) applications organized in a computing pipeline or
(2) physical simulations, such as finite element simulation where access to the
neighbor elements is needed.

The link can be as simple as a FIFO queue or more sophisticated, like a dual-
port memory between cores. Isaac Liu uses dual-port memories for a multicore
organization of a precision timed machine in the evaluation of his Ph.D. the-
sis [20]. He implemented a real-time computational fluid dynamics simulator on
a multicore PRET [21]. The cores use so-called privately shared SPMs between
cores to provide point-to-point communication channels.

Although less flexible than a fully blown NoC, direct links may be imple-
mented very efficiently and being, therefore, a practical solution. This form of
communication has not yet received much attention when discussing multicore
communication.

3.7 One-Way Shared Memory

A quite exotic form of on-chip communication is the so-called one-way shared
memory [33]. The one-way memory uses the TDM scheduled S4NOC for com-
munication but uses a very simple NI. Each core contains a core local memory
connected to the NI. The main idea is that the NoC continuously copies data
blocks between the core-local memories. There is one communication channel
between each pair of cores. The NoC reads from the senders’ core-local memory
and writes into the receiver’s core-local memory. As this update is performed in
one direction only, we call this architecture a one-way memory.

The routers have a fixed, pre-programmed schedule. For symmetric struc-
tures, such as the torus, all routers execute the same schedule [3]. One such
schedule is one TDM round in which one word is transferred between each core.
To transfer a memory block of n words, we need n TDM rounds.

The simplicity of the one-way memory paradigm results in very low resource
usage. The resource consumption of the NoC and the NI, which implements the
one-way memory, is lower than other NoC solutions. This simplicity, i.e., low
logical element usage, can be translated either into lower power consumption or
higher NoC bandwidth. Higher NoC bandwidth is achieved simply by duplicating
the local core memory or using wider NoC router links.

3.8 Additional Hardware Support for Message Passing

The previous sections presented on-chip communication architectures that can
be used for message passing. However, we can provide additional hardware to
optimize the performance of message passing further.

Multicore Models of Communication for Cyber-Physical Systems 37

To reduce the overhead of message passing, a tight integration of message
passing instructions into the processor pipeline has been proposed [26]. A RISC-
V processor has been extended with a send, receive, and source instructions
to allow fast message passing of short messages over a NoC. Additionally, to
optimize the checking for ready to send and receive messages available, four
branch instructions have been added.

The NI of the Argo NoC [42] includes a local memory and a DMA machinery
to transfer data from the local memory to the TDM based NoC. The DMA con-
tains a table with entries of memory regions that shall be sent to different cores.
Each virtual channel may have its entry in the table. A message is created in the
local memory by the processor, an entry into the DMA table is programmed,
and the DAM started. The message transfer happens in parallel to program
execution on the processor core.

CSP uses messages not only for data transfer but also as synchronization
points between tasks (called processes in CSP). The CSP rendezvous can be
implemented by exchanging two messages. We extended a ring-based NoC on a
multicore Java processor with explicit support for this synchronization [10]. As
an optimization, the NoC supports a dedicated Ack command for the rendezvous.

4 Evaluation

We have built several of the proposed hardware solutions in the context of the
T-CREST [34] multicore processor Patmos [38]. The hardware is described in
Chisel [1] and available in open source at https://github.com/t-crest/patmos.
As Patmos uses the open-core protocol to interface to IO devices and memory,
all those multicore devices are implemented with this interface.

To enable wider adaption of our multicore hardware, we are currently in
the process of extracting those devices into its own GitHub repository https://
github.com/schoeberl/soc-comm. There we will use a simple interface definition
and will provide bridges for the open-core protocol, Wishbone, and AXI.

4.1 Experimental Setup

We compare different solutions by evaluating them in an FPGA. The default
configuration for T-CREST supports the Altera DE2-115 development board.
The FPGA on this board, the Intel/Altera Cyclone IV EP4CE115 FPGA, is
big enough to build a system with up to 9 cores. All experiments use the 9-core
version of T-CREST. We have chosen the 9-core setup as this is a regular setup
for a NoC (3 × 3 cores), and is the largest setup that fits in the FPGA used.

The Patmos cores are configured with a single-issue pipeline, an 8 KB method
cache with 16 methods, a 4 KB write-through data cache, a 2 KB stack cache, a
1 KB instruction SPM and a 2 KB local SPM. External memory is 2 MB with
an access time of 21 clock cycles for a burst of 4 32-bit words for a single core.
For multicores, the main memory is TDM arbitrated, resulting in access time
between 21 and n× 21 clock cycles for n cores.

https://github.com/t-crest/patmos
https://github.com/schoeberl/soc-comm
https://github.com/schoeberl/soc-comm

38 M. Schoeberl

We use a shared SPM of 16 KB that is TDM arbitrated. The SPM with
ownership is configured as a pool of 16 SPMs, each of 1 KB. We measured
read access times to the SPM and the ownership SPM. For access to the TDM
arbitrated SPM, we observe all possible access times, i.e., for the 9 core version
between 3 and 10 clock cycles. We perform the same measurement with the SPM
with ownership. As expected, we observe a constant access time of 1 clock cycle.

4.2 Benchmark

For the evaluation, we implement a producer and a consumer who exchange mes-
sages. As all presented solutions have no time interference from communication
on other channels, it is enough to measure a single virtual channel. We measure
throughput in clock cycles, to provide a measurement that is only dependent on
the architecture and not on the achievable clock frequency in concrete technol-
ogy. With a know maximum clock frequency, the maximum bandwidth in bytes
per second can be easily computed.

For comparison with a NoC we use the S4NOC [36], configured for 9 cores.
The resulting schedule length for the TDM scheduling of the NoC packets is 10
clock cycles for an all-to-all schedule. Therefore, the maximum bandwidth per
virtual channel is 10 clock cycles per word. Note that this all-to-all configuration
provides 8× 9 = 72 channels, resulting in an overall bandwidth of 7.2 words per
clock cycle.

The NIs for the S4NOC consist of FIFO buffers for the sender and receiver.
The sender FIFO contains entries for 32-bit data and the send slot number as
a representation of the destination address. The receive FIFO includes the read
data and the receive slot number as a representation of the sending core. We use
small FIFOs built out of registers.

4.3 Measured Throughput

Table 1 shows throughput in clock cycles per word of messages of different sizes
on different communication devices. The long access time to shared main memory
dominates the low throughput, showing the need for on-chip communication. For
all memory-based devices the throughput increases with the message length, as
the overhead of sending a message is less dominating. However, we observe an
increase in the number of clock cycles between 16-word messages and 32-word
messages. We explored the generated code and find that the compiler unrolls
loops up to 16 iterations, explaining this anomaly. At 32 or more iterations, the
compiler generates code for a standard loop. The throughput of the shared SPM
is close to the limit of the access time of one word per 9 clock cycles. For the
SPM with ownership, which has a guaranteed access latency of 1 clock cycle, the
loop overhead of sending the data dominates.

For the NoC device, we performed two experiments. In the first experiment,
we let the producer send as fast as possible without handshaking, assuming that
the consumer is fast enough to cover the maximum throughput. As the TDM
schedule of the 9 core NoC is 10 clock cycles per TDM round, the 10.1 clock cycles

Multicore Models of Communication for Cyber-Physical Systems 39

Table 1. Measured throughput, in clock cycles per word for one channel.

Configuration Message size
(32-bit words)

Throughput (clock
cycles per word)

Main memory 8 236.4

Main memory 16 212.9

Main memory 32 201.3

Main memory 64 195.7

Shared SPM 8 12.4

Shared SPM 16 11.1

Shared SPM 32 18.9

Shared SPM 64 18.6

SPM with ownership 8 5.7

SPM with ownership 16 4.9

SPM with ownership 32 9.9

SPM with ownership 64 9.5

S4NOC, unconstraint sender - 10.1

S4NOC, with handshaking - 12.0

per word are close to the NoC limit. In the second experiment, we used a double
buffer of 2 times 4 words (in the NI FIFO) and handshaking so that every 4 words
are acknowledged by the receiver. This small buffer and the handshaking ensures
that the sender will never overrun the receiver, but introduces an overhead of
just 20 % compared to the theoretical maximum throughput.

4.4 Resource Consumption

Table 2 shows the resource requirements of the three different multicore com-
munication devices for 9 cores. The resources are given in logic cells (LC) that
contain a 4-bit lookup table, registers (D flip-flops), and on-chip memory. The
shared SPM is relatively cheap, as it needs logic only for a simple TDM arbiter
for 9 cores. The SPM with ownership contains a pool of 16 SPMs that are mul-
tiplexed for 9 cores and therefore need a considerable amount of combinational
logic (high LC count). The S4NOC is in the resource requirements between the
single SPM and the SPM with ownership but needs no on-chip memory. The
relative high register count comes from the small FIFOs built out of registers.
We can change the FIFO to use on-chip memories; two per node, one for send
and one for receive.

The three solutions scale differently with respect to the maximum clocking
frequency. As a baseline, the Patmos processor can be clocked at 80 MHz within
this FPGA. The NoC is a distributed design and therefore scales best. The 3×3
S4NOC can be clocked faster than 200 MHz, clearly not being the bottleneck in
the system. The single shared SPM has a single merge point and limits the system

40 M. Schoeberl

Table 2. Resource requirement of different communication devices.

Device LCs Registers Memory

Shared SPM 654 490 16 KB

SPM with ownership 8694 77 16 KB

S4NOC 5517 4454 0 KB

frequency to about 70 MHz. We assume one pipeline stage, which increases read
access latency by one clock cycle, should be enough to increase the maximum
clocking frequency to be higher than the 80 MHz of the processor cores. However,
moving to a 4 × 4 organization of the single SPM may reduce the clocking
frequency further. The SPM with ownership has the worst clock frequency of
just 50 MHz. Adding one pipeline stage should help, but this would double the
access latency from 1 to 2 clock cycles.

4.5 Discussion

When we look at the performance, the resource requirement, and the clock
frequency, there is no clear winner between the three solutions. The cheapest
solution is the shared SPM, but the access time in clock cycles for a producer-
consumer workload is higher than at the other two solutions. The SPM with
ownership has the highest throughput in clock cycles, but also the highest hard-
ware demand and the lowest clock frequency. This solution should probably be
clustered with fewer cores or fewer SPMs in the pool. The NoC solution is prob-
ably the sweet spot having medium resource requirement, throughput between
the single SPM and the SPM with ownership, and, perhaps most important,
scales well with a higher core count.

In summary, a combination of a NoC for the global traffic combined with
locally clustered shared SPMs may be the right solution. This combination of a
NoC and shared SPMs is similar to the Kalray architecture, but we propose to
have clusters that use a shared SPM overlap for a more flexible continuum for
communication.

5 Conclusion

Multicore processors used in cyber-physical systems need to support time-
predictable computation and communication. As communication via shared
main memory supported by a cache coherence protocol is hardly time-
predictable, we need other forms of core-to-core communication. In this paper,
we explored different forms of hardware support for on-chip message passing
between cores. Shared on-chip memories with a time-predictable arbitration,
such as time-division multiplexing, provide an efficient solution for around a
dozen cores. For more cores, a distributed communication architecture, such
as a network-on-chip. is a better scaling solution. Also, hybrid solutions using

Multicore Models of Communication for Cyber-Physical Systems 41

shared memories in clusters, which are connected by a network-on-chip, are an
option. The usage of multicore processors in safety-critical cyber-physical sys-
tems is not yet common. Future applications and experiments will tell which
on-chip communication solution will be the most preferred one.

Acknowledgment. The work presented in this paper was partially funded by the
Danish Council for Independent Research | Technology and Production Sciences under
the project PREDICT (no. 4184-00127A). (http://predict.compute.dtu.dk/)

References

1. Bachrach, J., et al.: Chisel: constructing hardware in a scala embedded language.
In: The 49th Annual Design Automation Conference (DAC 2012), pp. 1216–1225.
ACM, San Francisco, June 2012

2. Becker, M., Dasari, D., Nicolic, B., Akesson, B., Nelis, V., Nolte, T.: Contention-
free execution of automotive applications on a clustered many-core platform. In:
28th Euromicro Conference on Real-Time Systems (ECRTS), pp. 14–24, July 2016.
https://doi.org/10.1109/ECRTS.2016.14

3. Brandner, F., Schoeberl, M.: Static routing in symmetric real-time network-on-
chips. In: Proceedings of the 20th International Conference on Real-Time and
Network Systems (RTNS 2012), Pont a Mousson, France, pp. 61–70, November
2012. https://doi.org/10.1145/2392987.2392995

4. Cruz, R.L.: A calculus for network delay. I. Network elements in isolation. IEEE
Trans. Inf. Theory 37(1), 114–131 (1991). https://doi.org/10.1109/18.61110

5. Cruz, R.L.: A calculus for network delay. II. Network analysis. IEEE Trans. Inf.
Theory 37(1), 132–141 (1991). https://doi.org/10.1109/18.61110

6. Dally, W.J., Towles, B.: Route packets, not wires: on-chip interconnection net-
works. In: DAC, pp. 684–689. ACM (2001)

7. Dupont de Dinechin, B., van Amstel, D., Poulhiès, M., Lager, G.: Time-critical
computing on a single-chip massively parallel processor. In: Conference on Design,
Automation and Test in Europe, DATE 2014, pp. 97:1–97:6. European Design and
Automation Association, Leuven (2014)

8. Dupont de Dinechin, B., Durand, Y., van Amstel, D., Ghiti, A.: Guaranteed ser-
vices of the NoC of a manycore processor. In: International Workshop on Network
on Chip Architectures (NoCArc), pp. 11–16. ACM, New York, December 2014.
https://doi.org/10.1145/2685342.2685344

9. Goossens, K., Hansson, A.: The AEthereal network on chip after ten years: goals,
evolution, lessons, and future. In: Proceedings of the 47th ACM/IEEE Design
Automation Conference (DAC 2010), pp. 306–311 (2010)

10. Gruian, F., Schoeberl, M.: Hardware support for CSP on a Java chip-
multiprocessor. Microprocess. Microsyst. 37(4–5), 472–481 (2013). https://doi.
org/10.1016/j.micpro.2012.08.004

11. Hansson, A., Subburaman, M., Goossens, K.: aelite: a flit-synchronous network on
chip with composable and predictable services. In: Proceedings of the Conference
on Design, Automation and Test in Europe (DATE 2009), Leuven, Belgium, pp.
250–255 (2009)

12. Heckmann, R., Ferdinand, C.: Worst-case execution time prediction by static pro-
gram analysis. Technical report, AbsInt Angewandte Informatik GmbH. Accessed
Nov 2013

http://predict.compute.dtu.dk/
https://doi.org/10.1109/ECRTS.2016.14
https://doi.org/10.1145/2392987.2392995
https://doi.org/10.1109/18.61110
https://doi.org/10.1109/18.61110
https://doi.org/10.1145/2685342.2685344
https://doi.org/10.1016/j.micpro.2012.08.004
https://doi.org/10.1016/j.micpro.2012.08.004

42 M. Schoeberl

13. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach,
4th edn. Morgan Kaufmann Publishers, Burlington (2006)

14. Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun. ACM
17(10), 549–557 (1974). https://doi.org/10.1145/355620.361161

15. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978). https://doi.org/10.1145/359576.359585

16. Homewood, M., May, D., Shepherd, D., Shepherd, R.: The IMS T800 transputer.
IEEE Micro 7(5), 10–26 (1987). https://doi.org/10.1109/MM.1987.305012

17. Kasapaki, E., Schoeberl, M., Sørensen, R.B., Müller, C.T., Goossens, K., Sparsø,
J.: Argo: a real-time network-on-chip architecture with an efficient GALS imple-
mentation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24, 479–492 (2016).
https://doi.org/10.1109/TVLSI.2015.2405614

18. Le Boudec, J.Y.: Application of network calculus to guaranteed service networks.
IEEE Trans. Inf. Theory 44(3), 1087–1096 (1998). https://doi.org/10.1109/18.
669170

19. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987). https://doi.org/10.1109/PROC.1987.13876

20. Liu, I.: Precision Timed Machines. Ph.D. thesis, EECS Department, University of
California, Berkeley, May 2012

21. Liu, I., Reineke, J., Broman, D., Zimmer, M., Lee, E.A.: A PRET microarchi-
tecture implementation with repeatable timing and competitive performance. In:
Proceedings of IEEE International Conference on Computer Design (ICCD 2012),
October 2012

22. Lohstroh, M., et al.: Actors revisited for time-critical systems. In: Proceedings of
the 56th Annual Design Automation Conference 2019, DAC 2019, pp. 152:1–152:4.
ACM, New York (2019). https://doi.org/10.1145/3316781.3323469

23. May, D., Shepherd, R.: Occam and the transputer. In: Proceedings of the IFIP WG
10.3 Workshop on Concurrent Languages in Distributed Systems: Hardware Sup-
ported Implementation, pp. 19–33. Elsevier North-Holland Inc., New York (1985)

24. Metzlaff, S., Mische, J., Ungerer, T.: A real-time capable many-core model. In: Pro-
ceedings of 32nd IEEE Real-Time Systems Symposium: Work-in-Progress Session
(2011)

25. Mische, J., Frieb, M., Stegmeier, A., Ungerer, T.: Reduced complexity many-core:
timing predictability due to message-passing. In: Knoop, J., Karl, W., Schulz, M.,
Inoue, K., Pionteck, T. (eds.) ARCS 2017. LNCS, vol. 10172, pp. 139–151. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-54999-6 11

26. Mische, J., Frieb, M., Stegmeier, A., Ungerer, T.: PIMP my many-core: pipeline-
integrated message passing. In: Pnevmatikatos, D.N., Pelcat, M., Jung, M. (eds.)
SAMOS 2019. LNCS, vol. 11733, pp. 199–211. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-27562-4 14

27. Olofsson, A., Nordström, T., ul Abdin, Z.: Kickstarting high-performance energy-
efficient manycore architectures with Epiphany. In: Matthews, M.B. (ed.) Proceed-
ings of Asilomar Conference on Signals, Systems and Computers, pp. 1719–1726.
IEEE (2014)

28. Paukovits, C., Kopetz, H.: Concepts of switching in the time-triggered network-
on-chip. In: Proceedings of the 14th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA 2008), pp. 120–129,
August 2008. https://doi.org/10.1109/RTCSA.2008.18

29. Petersen, M.B., Riber, A.V., Andersen, S.T., Schoeberl, M.: Time-predictable dis-
tributed shared on-chip memory. Microprocess. Microsyst. (2019). https://doi.org/
10.1016/j.micpro.2019.102896

https://doi.org/10.1145/355620.361161
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/MM.1987.305012
https://doi.org/10.1109/TVLSI.2015.2405614
https://doi.org/10.1109/18.669170
https://doi.org/10.1109/18.669170
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1145/3316781.3323469
https://doi.org/10.1007/978-3-319-54999-6_11
https://doi.org/10.1007/978-3-030-27562-4_14
https://doi.org/10.1007/978-3-030-27562-4_14
https://doi.org/10.1109/RTCSA.2008.18
https://doi.org/10.1016/j.micpro.2019.102896
https://doi.org/10.1016/j.micpro.2019.102896

Multicore Models of Communication for Cyber-Physical Systems 43

30. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, Berkeley (2014)

31. Puffitsch, W., Sørensen, R.B., Schoeberl, M.: Time-division multiplexing vs net-
work calculus: a comparison. In: Proceedings of the 23th International Conference
on Real-Time and Network Systems (RTNS 2015), Lille, France, November 2015.
https://doi.org/10.1145/2834848.2834868

32. Schoeberl, M.: Time-predictable computer architecture. EURASIP J. Embedded
Syst. 2009, 17 p. (2009). Article ID 758480. https://doi.org/10.1155/2009/758480

33. Schoeberl, M.: One-way shared memory. In: 2018 Design, Automation and Test
in Europe Conference Exhibition (DATE), pp. 269–272, March 2018. https://doi.
org/10.23919/DATE.2018.8342017

34. Schoeberl, M., et al.: T-CREST: time-predictable multi-core architecture for
embedded systems. J. Syst. Architect. 61(9), 449–471 (2015). https://doi.org/10.
1016/j.sysarc.2015.04.002

35. Schoeberl, M., Chong, D.V., Puffitsch, W., Sparsø J.: A time-predictable memory
network-on-chip. In: Proceedings of the 14th International Workshop on Worst-
Case Execution Time Analysis (WCET 2014), Madrid, Spain, pp. 53–62, July
2014. https://doi.org/10.4230/OASIcs.WCET.2014.53

36. Schoeberl, M., Pezzarossa, L., Sparsø, J.: A minimal network interface for a simple
network-on-chip. In: Schoeberl, M., Hochberger, C., Uhrig, S., Brehm, J., Pionteck,
T. (eds.) ARCS 2019. LNCS, vol. 11479, pp. 295–307. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-18656-2 22

37. Schoeberl, M., Pezzarossa, L., Sparsø J.: S4noc: a minimalistic network-on-chip for
real-time multicores. In: 12th International Workshop on Network on Chip Archi-
tectures (NoCArc 2019). ACM, October 2019. https://doi.org/10.1145/3356045.
3360714

38. Schoeberl, M., Puffitsch, W., Hepp, S., Huber, B., Prokesch, D.: Patmos: a time-
predictable microprocessor. Real-Time Syst. 54(2), 389–423 (2018). https://doi.
org/10.1007/s11241-018-9300-4

39. Schoeberl, M., Sørensen, R.B., Sparsø J.: Models of communication for multicore
processors. In: Proceedings of the 11th Workshop on Software Technologies for
Embedded and Ubiquitous Systems (SEUS 2015). pp. 44–51. IEEE, Auckland,
April 2015. https://doi.org/10.1109/ISORCW.2015.57

40. Schoeberl, M., Strøm, T.B., Baris, O., Sparsø J.: Scratchpad memories with own-
ership. In: 2019 Design, Automation and Test in Europe Conference Exhibition
(DATE) (2019)

41. Shoushtari, M., Donyanavard, B., Bathen, L.A.D., Dutt, N.: Shave-ice: sharing dis-
tributed virtualized SPMS in many-core embedded systems. ACM Trans. Embed.
Comput. Syst. 17(2), 47:1–47:25 (2018). https://doi.org/10.1145/3157667

42. Sparsø J., Kasapaki, E., Schoeberl, M.: An area-efficient network interface for
a TDM-based network-on-chip. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2013, pp. 1044–1047. EDA Consortium,
San Jose (2013)

43. Whitby-Strevens, C.: The transputer. SIGARCH Comput. Archit. News 13(3),
292–300 (1985). https://doi.org/10.1145/327070.327269

https://doi.org/10.1145/2834848.2834868
https://doi.org/10.1155/2009/758480
https://doi.org/10.23919/DATE.2018.8342017
https://doi.org/10.23919/DATE.2018.8342017
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.4230/OASIcs.WCET.2014.53
https://doi.org/10.1007/978-3-030-18656-2_22
https://doi.org/10.1145/3356045.3360714
https://doi.org/10.1145/3356045.3360714
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1109/ISORCW.2015.57
https://doi.org/10.1145/3157667
https://doi.org/10.1145/327070.327269

Towards Creating a Deployable Grasp
Type Probability Estimator

for a Prosthetic Hand

Mehrshad Zandigohar(B), Mo Han, Deniz Erdoğmuş, and Gunar Schirner

Northeastern University, Boston, MA 02115, USA
{zandi,han,erdogmus,schirner}@ece.neu.edu

Abstract. For lower arm amputees, prosthetic hands promise to restore
most of physical interaction capabilities. This requires to accurately pre-
dict hand gestures capable of grabbing varying objects and execute them
timely as intended by the user. Current approaches often rely on phys-
iological signal inputs such as Electromyography (EMG) signal from
residual limb muscles to infer the intended motion. However, limited
signal quality, user diversity and high variability adversely affect the
system robustness. Instead of solely relying on EMG signals, our work
enables augmenting EMG intent inference with physical state probability
through machine learning and computer vision method. To this end, we:
(1) study state-of-the-art deep neural network architectures to select a
performant source of knowledge transfer for the prosthetic hand, (2) use
a dataset containing object images and probability distribution of grasp
types as a new form of labeling where instead of using absolute values
of zero and one as the conventional classification labels, our labels are
a set of probabilities whose sum is 1. The proposed method generates
probabilistic predictions which could be fused with EMG prediction of
probabilities over grasps by using the visual information from the palm
camera of a prosthetic hand. Our results demonstrate that InceptionV3
achieves highest accuracy with 0.95 angular similarity followed by 1.4
MobileNetV2 with 0.93 at ∼20% the amount of operations.

Keywords: Learning from multimodal data · Neural networks and
deep learning · Signal detection pattern recognition and classification

1 Introduction

Prosthetic hands aim to compensate part of the lost ability of lower arm
amputees. In order to correctly enact the intent of the user, prosthetic hands
consider individual finger motion control, grasp type selection, and open close
commands. In this work we focus on grasp type selection.

State-of-the-art approaches try to classify the amputee’s Electromyography
(EMG) signals of the residual limb muscles into meaningful motions. This app-
roach has drawbacks which adversely affect its robustness in real life situations
c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 44–58, 2020.
https://doi.org/10.1007/978-3-030-41131-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_3

Deployable Grasp Estimator for a Prosthetic Hand 45

[1,11]. For instance, they need calibration pretty often; the unexpected electrode
shifting could distort the EMG signals; muscle fatigue and/or limb disposition
adversely affect the EMG patterns; and some amputees may lack critical mus-
cles which EMG classification rely on. These insufficiencies have led researchers
to use more sources of information to understand human intent [12]. With the
rise of Convolutional Neural Networks [5,14,19,23,25,27,28], studies on using
visual information as a source of information for the prosthetic hand have been
conducted [4,7–9,12,26], which focus on classifying images into a grasp type.

Figure 1 demonstrates the overview of our prosthetic hand design, where
an EMG sensor is attached to user’s arm and the collected EMG signals are
used to infer the human intent while the grasp probability estimator provides
physical state information using the images captured from the palm camera of
the prosthetic hand. The resulting predictions from both EMG and vision are
then combined in Fusion module to form a final decision. This work focuses on
the grasp probability estimation to enable efficient and accurate fusion of the
physical information.

Fig. 1. System components and flow of information.

The conventional vision-based classifiers try to estimate the probable grasp
type based on absolute values of one and zero assigned to each class as labels
during training. However, in the context of grasp estimation, this approach has
2 drawbacks: (1) not every object is limited to a single gesture capable of grab-
bing that object, i.e. there might be more than a way to grab an object; (2)
Each potential grasp type for a specific object might not have the same level of
preference for different users. Therefore, the predicted value for each grasp type
could be represented much more accurately as probabilities over grasps which
sum up to 1. Therefore, to facilitate physical information from the camera with

46 M. Zandigohar et al.

human intent provided by EMG, probability based estimation yields much more
information over fusing the absolute predictions.

On the other hand, while having an accurate prediction helps with inferring
the human intent for selecting a grasp type, given the real-time constraints of
inference for prosthetic hands, the network should behave in a timely manner to
meet real-time deadlines. In this work we:

1. Provide a probability distribution based neural network rather than training
on absolute values of zero and one to capture the true nature of capable
gestures for grabbing a specific object and provide more information of the
possible grasp types when combined with EMG inference probabilities.

2. We also study performance of different networks based on the amount of com-
putation each network has to select efficient architectures to transfer which
enables embedded and real-time predictions considering their limited com-
pute power.

Using the proposed method, InceptionV3 as our best probability estimator
reaches 0.95 angular similarity followed by 1.4 MobileNetV2 with 0.02 loss while
improving performance by 5.02X. As a result, fusion of visual data with EMG
data is enabled considering performance limitations. Details on EMG and fusion
modules are out of the scope of this paper.

The paper continues with Sect. 2 providing the overview of our prosthetic
hand. Following that, Sect. 3 our method for selecting an efficient transfer
source. Section 4 presents the details of training. Section 5 evaluates the pro-
posed method and provides results, and finally Sect. 6 concludes this paper.

2 Prosthetic Hand

Figure 2 shows the actual prosthetic robotic hand produced by our collaborators.
The hand is a 3-D printed model of OpenBionics hand [21] with a USB endo-
scopic camera attached on its side. The actuators are position controlled, and
would stop actuation once the drawn current exceeds some threshold. All com-
ponents use ROS Melodic Morenia [22] for communicating between themselves,
i.e. EMG sensor, embedded camera, actuator and fusion units.

Figure 1 demonstrates high level system integration and flow of information in
this work. To predict the intent of the amputee, a classifier on the EMG signal is
used in the form of a probability distribution over five grasp types. Moreover, the
system is augmented with a visual grasp type probability estimator fed with the
images from an embedded camera in the hand to output another distribution over
the same grasp types. This is merely based on the feedback from the environment
to compensate EMG deficiencies. Given the information from human intent and
visual characteristics, the fusion unit aggregates the two probability distributions
into the most probable grasp type considering the confidence of each unit. To
have a more reliable decision, this process is repeated and averaged over two
seconds to make the final decision. This decision is further sent to the control
unit in order to actuate the prosthetic robotic hand to execute the grasp.

Deployable Grasp Estimator for a Prosthetic Hand 47

Fig. 2. Prosthetic hand with camera attached.

In order for the fusion unit to make the most timely decision, the visual grasp
probability estimator should process as many frames as the camera generated
per second to be real-time, which is 30 fps in our work. As we target mobile
deployment of vision system, challenges arise due to low power constraints and
limited compute performance. Therefore, smaller models with less number of
computations are preferred to the more accurate but computationally intensive
networks. While there are researches for deployment of DNNs to an embedded
target, including optimizations such as pruning, quantization, tensor fusion, ker-
nel auto-tuning, multi-stream execution, dynamic tensor memory and precision
calibration, these are outside the scope of this paper and we try to provide a
platform-independant approach for selecting efficient networks.

3 Selecting Efficient Transfer Architectures

While deep neural networks (DNNs) have shown promising results on many
tasks, due to their tremendous number of parameters (i.e. over 25.6M param-
eters in ResNet50), fully training DNNs from scratch requires a large set of
data. This challenge is well solved by transfer leaning. Transfer learning has
shown impressive results on applications with similar domains where there is
not enough data or computing resources to train a deep network from scratch
[30]. In computer vision studies, ImageNet [5] has been the most widely used
benchmark on problems including but not limited to transfer learning [6,24],
object detection [16] and image segmentation [3,13]. Torralba and Efros [29]
show that many datasets before Imagenet were biased and not general enough
to be transferred to other domains.

48 M. Zandigohar et al.

Fig. 3. Accuracy vs. number of floating point operations for several pretrained Ima-
geNet models.

There are many networks trained on the large ImageNet dataset including
AlexNet [20], VGG [25], MobileNet [15], ResNet [14], Inception [28], and NAS-
Net [31] with different accuracies and architectural differences. To choose an
architecture as the transfer source for the new task, one can choose the most
accurate model as the base model. In [18], authors has shown that better Ima-
geNet models provide better feature layers for transferring the learned knowledge
from one domain to another. However, more accurate models generally consist of
more parameters and demand more computation which results in poor inference
performance.

As an initial platform-independent indicator of computation demand, this
paper focuses on number of floating point operations. This allows for a high-
level reasoning to compare different neural networks relatively with each other
and explore the computation demand vs. accuracy trade-off. While suitable for
this purpose, the number of floating point operations is not a substitute for
estimating execution time on an actual deployment target. This would require
taking into account significantly more implementation detail, such as: deploy-
ment target (CPU, GPU, neural-network accelerator), float vs. fixed point and
quantization, various target-dependent optimizations. We consider as a second
phase the target-dependent exploration. This work focuses on the first phase of
network exploration and training.

To this end, we have studied 23 pretrained ImageNet models given our accu-
racy and performance objectives depicted in Fig. 3. The vertical axis provides

Deployable Grasp Estimator for a Prosthetic Hand 49

the Top-5 accuracy of each model and the horizontal axis shows the number of
floating point operations required to execute inference for that network in log
scale. In general, we can observe that as the accuracy of a model improves, the
number of floating point operations also increase.

To avoid training all models which takes tremendous effort and time, we
exploit multi-objective selection also known as Pareto Efficiency [2] for select-
ing the efficient models. Given a system with function f : Rn → Rm, feasible
decisions X is related to feasible criterion vectors Y as follows:

Y = {y ∈ Rm : y = f(x), x ∈ X} (1)

and therefore the Pareto Frontier is:

P (Y) = {y′ ∈ Y : {y′′ � y′, y′′ �= y′} = ∅} (2)

where the efficient models are those on the Pareto Frontier, P (Y), demonstrated
by the dash-dotted line in Fig. 3.

Using the aforementioned method, InceptionV3, 1.4 MobileNetV2, 1.0
MobileNetV2, 0.5 MobileNetV1, 0.25 MobileNetV1 and NASNet-A Large are
selected as efficient models. The selected networks strictly dominate other mod-
els and are not dominated by any other, and hence lie on Pareto Frontier. The
selected networks cover the most efficient yet effective architectures. NASNet-A
Large is excluded here due to very large size of the network, making training
impossible on the current infrastructure.

4 Transfer Learning

In this section, we provide details on the dataset, architectural specifications and
methodology used for transferring the selected ImageNet models to the problem
of grasp probability estimation.

4.1 Dataset

The data used in this work is based on [12]. The dataset consists of 4130 images,
which were augmented from 413 hand-perspective images of 102 ordinary objects
including office and daily supplies, utensils, and complex-shaped objects. In the
process of learning, the environments and image backgrounds could differ from
the practice, which may introduce interference and redundant information during
the feature extraction. To focus the learning on the object shape instead of the
mutative background, the objects were segmented from the raw images which
makes the training independent and orthogonal from the random environment.
In addition, to enlarge the dataset and add arbitrary background information to
respond to the variable environments, the segmented objects were superposed
on a series of Gaussian-noised background. The specific augmentation processes
are as follows: first the objects were cut out of the raw images and randomly
blurred; then, background of Gaussian noise with random variance was added to

50 M. Zandigohar et al.

Open Palm Medium Wrap Power Sphere

Parallel Extension Palmar Pinch

Fig. 4. The selected 5 grasp categories.

the bottom of the segmented object to increase the system robustness to different
actual backgrounds; finally, the segmented and blurred object was placed in the
Gaussian noise background at random location to form the final training image.
In addition, the label set is limited within 5 gestures (Open Palm, Medium Wrap,
Power Sphere, Parallel Extension and Palmar Pinch) based on their compliance
with robotic implements and also their coverage ability for common objects of
daily lives due to the similarity with the other grasp types. The Fig. 4 shows the
5 grasp types used.

Note that the inference problem to be solved is not a hard classification, which
would predict a single category. Instead, the inference here needs to predict a
probability distribution over grasp types which estimates the suitability of grasp
types for a given object. This distribution has to match the distribution observed
in the ground truth data. Ground truth data was collected by asking each labeler
to rank the 5 grasp in decreasing order of preference to grab the object. These
labels are obtained from 11 individuals. We used the most relevant grasp type
among 5 grasp types for each object to create a probability distribution. The
probability of grasp type i where it is chosen by n labelers from total of N
labelers is:

pi = n/N (3)

Figure 5 demonstrates examples of the image data with their corresponding prob-
ability distribution over 5 possible labels.

4.2 Details on Transferring and Network Topology

To create networks suitable for the new domain and task, the features from the
original pretrained model are extracted. This means the top layers, also known
as the classifier part of the network, are excluded and not transferred. On top

Deployable Grasp Estimator for a Prosthetic Hand 51

Fig. 5. The images and corresponding labels. For each image, there exits a ground
truth generated from 11 labelers, which is the probability distribution over 5 grasps.
Same object from different views may lead to different distributions.

of the transferred features, a Global 2-D Average Pooling is added to reduce
the spatial dimension followed by 3 Fully Connected layers with 256, 128 and 5
neurons respectively. The FC layers are stacked with ReLU activations except
the last one wherein a Softmax is used as it transforms the prediction into a
probability distribution.

Our methodology for training applied to all networks is two folded: (1) Firstly,
we freeze all feature layers and replace the default top layers by our own cus-
tomized top layers, and only train those top models added to the fixed features,
as shown in Fig. 6. These layers are initialized with random wights using Xavier’s
method [10]. Then the optimizer with learning rate of 0.001 trains the network
for 50 epochs. (2) After the top FC layers are trained on the target dataset, all
other layers are unfreezed and the whole network is trained with a lower 0.0001
learning rate for another 50 epochs.

4.3 Training Setup

In both steps of training FC layers and fine-tuning the whole network after-
wards, the models were trained using the batch size of 32 images using Adaptive
Moment Estimation (Adam) optimizer [17]. As the format of labels and predic-
tions are both probability distributions over grasp types, in order to minimize
the difference between the current prediction and the ground truth we use the
cross entropy (4) as the loss function, which measures the error between two
distributions:

loss = − 1
n

n∑

i=1

[yi log (pi) + (1 − yi)log(1 − pi)] (4)

52 M. Zandigohar et al.

Fig. 6. While training CNNs, we freeze all feature layers and replace the default top
layers by our customized top layers, and only train those top models added to the fixed
features.

where n is the number of categories; yi and pi are predicted and ground truth
probabilities of grasp type i, respectively.

4.4 Evaluation Metric

The one-hot encoded labels used in conventional hard classifications problems
fail to capture the true nature of grasp types since they can only encode one grasp
type while gestures capable of grabbing a given object can be more than one.
Moreover, absolute zero and one values used for labels in soft-classification would
also fail to represent preference of one grasp type over the others. Each potential
grasp type for a specific object might not have the same preference to the human
over the others. To avoid this information loss, the value for each grasp type is
represented as probabilities that sum up to 1. Therefore, there needs to be an
evaluation metric that can calculate the error given the prediction and ground
truth probability distributions. However, for our probability estimation problem,
choosing an evaluation metric becomes challenging since it is not possible to clip
probabilities to absolute values since it will result in significant information loss.
In result, the evaluation metrics of conventional hard classification, such as Top-1
accuracy, cannot be applied.

To have a simple yet powerful metric, we propose angular similarity for eval-
uating the effectiveness of the model:

sim(u, v) = (1 − 2 · arccos(
u · v

‖u‖‖v‖)/π) (5)

where u and v are vectors of probability distributions for prediction and the
ground truth which are all positive and sum to 1. The angular similarity measures
the angle between two given vectors which ranges from 0 to 1. A higher similarity
indicates that the vectors are closer to each other, i.e. that the ground truth and
the estimated distribution match more closely.

Deployable Grasp Estimator for a Prosthetic Hand 53

As an example to evaluate how probability values impact our proposed
method, given ground truth probability true = (1, 0, 0, 0, 0), pred = (1, 0, 0, 0, 0)
yields the highest value of 1. For pred = (0.87, 0.13, 0, 0, 0) the evaluation metric
yields good value of 0.9 and pred = (0.76, 0.24, 0, 0, 0), pred = (0.67, 0.34, 0, 0, 0),
pred = (0.58, 0.42, 0, 0, 0) and pred = (0.5, 0.5, 0, 0, 0) result in angular similar-
ity of 0.8, 0.7, 0.6 and 0.5 respectively. Note that pred = (0, 1, 0, 0, 0) results in
the lowest value of 0 which implies importance of the probability values order.
It is also noteworthy to provide and example which examines both order and
values of the predicted probabilities. Considering pred = (0.2, 0.2, 0.2, 0.2, 0.2),
will result in low performance of 0.3.

Moreover, comparing angular similarity to cosine similarity as an orientation
based metric, it is a function of a proper distance when subtracted from 1,
whereas in cosine similarity for small angles the resulting cosine values are very
similar.

5 Results

We trained the proposed method using TenosrFlow on Pareto efficient models
including InceptionV3, MobileNetV1 with 0.25 and 0.5 width multipliers (α)
and MobileNetV2 with 1.0 and 1.4 width multipliers. Models were trained over
80% of dataset with batch size of 32 images for 50 epochs and validated on the
20% rest of the dataset. To monitor how well the training is performed for each
model over iterations, the training and validation curves are depicted.

Figure 7a shows the fine-tuning cross entropy loss over the number of epochs
for all models. The loss curves for all models converge as expected which demon-
strate the model is well trained. However, the final cross entropy loss for 0.25
MobileNetV1 is higher than other networks due to significant reduction of num-
ber of learnable parameters.

To evaluate how precise each model is, the angular similarity comparison for
the Pareto models are provided in Fig. 7b. The vertical axis is the validation
angular similarity for each model over epochs, and we find that the ranking of
the trained models with respect to their angular similarity is in total resemblance
with the original pretrained models’ accuracy on Imagenet.

Figure 8 compares the accuracy and performance of the selected models
before and after transferring. On the left axis, the Top-5 accuracy of the pre-
trained model are provided. The right axis also depicts the angular similarity
of the selected models after applying transfer learning. The number of floating
point operations for each network in the source and target domains were calcu-
lated which is observable by the slight shift of the grasp probability estimation
networks. This is due to the fact that the imageNet classification layers (fully
connected) were replaced with the grasp estimation layers, which contain fewer
neurons.

Moreover, since the number of operations related to the top layers of the
pretrained models are much fewer than those of the extracted features, and the
fact that the same amount of computation is required for the added top layers,

54 M. Zandigohar et al.

Fig. 7. (a) Fine-tuning loss of efficient models. (b) Validation angular similarity of the
efficient models

Deployable Grasp Estimator for a Prosthetic Hand 55

Fig. 8. Number of Floating point operations vs. accuracy evaluation of Pareto models
before (blue crosses) and after (red pluses) training. Accuracy axis have the same range
for a fair comparison. (Color figure online)

the total number of operations does not change significantly when transferring
to the new dataset.

As depicted in Fig. 8, there is a trade-off between the computational demand
and the accuracy of the Pareto models. In a computationally limited application
with low intolerance for latency, networks with lower number of floating point
operations such as 0.25 MobileNetV1 are preferred. However, as the models
become less computationally intensive, they reach closer to the accuracy of a
uniform random generator (0.5 angular similarity).

To compensate for EMG deficiencies, there needs to be an accurate yet
efficient model for the visual classifier. While both InceptionV3 and 1.4
MobileNetV2 provide impressive angular similarity of 0.95 and 0.93 respectively,
with 0.02 loss in angular similarity MobileNet has 19.88% (∼1/5) of Inception’s
total number of floating-point operations, hence is expected to execute faster.

6 Conclusion

This work aims to restore the lost ability of lower arm amputees using robotic
prosthetic hands via pre-defined grasp types. Our system aims to fuse probable
grasp types based on visual information with human intent through EMG mea-
surements. With the focus on the visual classifier, our approach utilizes transfer

56 M. Zandigohar et al.

learning of ImageNet models to predict grasp type distributions given the objects
visible from a camera integrated into the robotic hand.

To have an efficient yet accurate prediction, we studied several state-of-the-
art models and excluded inefficient networks as a source of transferring knowl-
edge. We also retrained the efficient networks on probabilistic labels instead of
hard/soft ground truth labels to have an accurate representation of grasp types.
This way, multiple grasp types with different preferences can be represented,
suitable for grasp detection problem. To provide a suitable evaluation for the
probability estimation, we proposed angular similarity as an intuitive evalua-
tion metric. We also observed that the relative ordering of the selected models
in terms of error/performance stays the same using the proposed metric after
transferring. Using the proposed method, we selected the best neural network
architecture for our prosthetic hand to enable efficient performance along with
the EMG inference data. Using 1.4 MobileNetV2 provides 0.93 angular similar-
ity with 20% of Inception’s total number of floating-point operations, improving
the performance by 5.02x with 0.02 loss in angular similarity.

Acknowledgement. This work is partially supported by NSF (CNS-1544895 at NEU;
CNS-1544636 at WPI, CNS-1544815 at HMS).

References

1. Bitzer, S., Van Der Smagt, P.: Learning EMG control of a robotic hand: towards
active prostheses. In: Proceedings 2006 IEEE International Conference on Robotics
and Automation, ICRA 2006, pp. 2819–2823. IEEE (2006)

2. Breyer, F.: On the intergenerational pareto efficiency of pay-as-you-go financed
pension systems. J. Inst. Theor. Econ. (JITE)/Zeitschrift für die gesamte
Staatswissenschaft 643–658 (1989)

3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab:
semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–
848 (2017)

4. DeGol, J., Akhtar, A., Manja, B., Bretl, T.: Automatic grasp selection using a
camera in a hand prosthesis. In: 2016 IEEE 38th Annual International Conference
of the Engineering in Medicine and Biology Society (EMBC), pp. 431–434. IEEE
(2016)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

6. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic
visual recognition. In: International Conference on Machine Learning, pp. 647–655
(2014)

7. Ghazaei, G., Alameer, A., Degenaar, P., Morgan, G., Nazarpour, K.: An
exploratory study on the use of convolutional neural networks for object grasp
classification. In: 2nd IET International Conference on Intelligent Signal Process-
ing 2015 (ISP), pp. 1–5, December 2015. https://doi.org/10.1049/cp.2015.1760

https://doi.org/10.1049/cp.2015.1760

Deployable Grasp Estimator for a Prosthetic Hand 57

8. Ghazaei, G., Alameer, A., Degenaar, P., Morgan, G., Nazarpour, K.: Deep learning-
based artificial vision for grasp classification in myoelectric hands. J. Neural Eng.
14(3), 036025 (2017)

9. Gigli, A., Gregori, V., Cognolato, M., Atzori, M., Gijsberts, A.: Visual cues to
improve myoelectric control of upper limb prostheses. In: 2018 7th IEEE Inter-
national Conference on Biomedical Robotics and Biomechatronics (Biorob), pp.
783–788, August 2018. https://doi.org/10.1109/BIOROB.2018.8487923

10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

11. Günay, S.Y., Quivira, F., Erdoğmuş, D.: Muscle synergy-based grasp classification
for robotic hand prosthetics. In: Proceedings of the 10th International Conference
on Pervasive Technologies Related to Assistive Environments, pp. 335–338. ACM
(2017)

12. Han, M., et al.: From hand-perspective visual information to grasp type probabil-
ities: deep learning via ranking labels. In: Proceedings of 12th ACM International
Conference on Pervasive Technologies Related to Assistive Environments, pp. 256–
263, June 2019. https://doi.org/10.1145/3316782.3316794

13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

15. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv abs/1704.04861 (2017)

16. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detec-
tors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7310–7311 (2017)

17. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International
Conference on Learning Representations, December 2014

18. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better?
CoRR abs/1805.08974 (2018). http://arxiv.org/abs/1805.08974

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–
1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

21. Liarokapis, M.V., Zisimatos, A.G., Mavrogiannis, C.I., Kyriakopoulos, K.J.: Open-
Bionics: an open-source initiative for the creation of affordable, modular, light-
weight, underactuated robot hands and prosthetic devices. In: 2nd ASU Rehabili-
tation Robotics Workshop (2014)

22. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)

23. Rezaei, B., et al.: Target-specific action classification for automated assessment of
human motor behavior from video. Sensors 19(19), 4266 (2019)

24. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-
shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

https://doi.org/10.1109/BIOROB.2018.8487923
https://doi.org/10.1145/3316782.3316794
http://arxiv.org/abs/1805.08974
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

58 M. Zandigohar et al.

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv 1409.1556, September 2014

26. Štrbac, M., Kočović, S., Marković, M., Popović, D.B.: Microsoft kinect-based artifi-
cial perception system for control of functional electrical stimulation assisted grasp-
ing. BioMed Res. Int. 2014 (2014)

27. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

28. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

29. Torralba, A., Efros, A.A., et al.: Unbiased look at dataset bias. In: CVPR, vol. 1,
p. 7. Citeseer (2011)

30. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–
264. IGI Global (2010)

31. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8697–8710 (2018)

Reactors: A Deterministic Model
for Composable Reactive Systems

Marten Lohstroh1(B), Íñigo Íncer Romeo1, Andrés Goens2, Patricia Derler3,
Jeronimo Castrillon2, Edward A. Lee1, and Alberto Sangiovanni-Vincentelli1

1 Department of Electrical Engineering and Computer Sciences, UC Berkeley,
Berkeley, USA

{marten,inigo,eal,alberto}@berkeley.edu
2 Chair for Compiler Construction, TU Dresden, Dresden, Germany

{andres.goens,jeronimo.castrillon}@tu-dresden.de
3 National Instruments, Austin, USA

patricia.derler@ni.com

Abstract. This paper describes a component-based concurrent model
of computation for reactive systems. The components in this model, fea-
turing ports and hierarchy, are called reactors. The model leverages a
semantic notion of time, an event scheduler, and a synchronous-reactive
style of communication to achieve determinism. Reactors enable a pro-
gramming model that ensures determinism, unless explicitly abandoned
by the programmer. We show how the coordination of reactors can safely
and transparently exploit parallelism, both in shared-memory and dis-
tributed systems.

1 Introduction

In the mid-80s, David Harel and Amir Pnueli introduced the notion of reac-
tive systems as those systems which maintain an ongoing interaction with their
environments [28]. Arguing that a suitable decomposition mechanism for the
development of complex reactive systems was lacking at the time, Harel pro-
posed Statecharts [29], a formalism based on state machines. State machines,
however, must keep track of a global state, a demand too stringent for program-
ming today’s distributed systems.

More recently, the term “reactive system” has been adopted by the reactive
programming community, which is focused on building flexible, loosely-coupled,
and scalable systems [34]. Central to the so-called reactive design patterns is the

The work in this paper was supported in part by the National Science Foundation
(NSF), awards #CNS-1836601 (Reconciling Safety with the Internet) and #CNS-
1739816 (Quantitative Contract-Based Synthesis and Verification for CPS Security)
and the iCyPhy Research Center (Industrial Cyber-Physical Systems), supported by
Camozzi Industries, Denso, Ford, Siemens, and Toyota. This work was also supported
in part by the Center for Advancing Electronics Dresden (cfaed) and the German
Academic Exchange Service (DAAD).

c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 59–85, 2020.
https://doi.org/10.1007/978-3-030-41131-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_4

60 M. Lohstroh et al.

idea of decomposing systems into non-blocking, asynchronous tasks that com-
municate via messages (or events). The ideas expressed in the Reactive Man-
ifesto [10] can largely be seen as a revival of the concepts behind the Actor
model by Hewitt and Agha [30]. While scalability, resilience, elasticity, and
responsiveness—all tenets of the manifesto—are clearly important, the gains
in these dimensions come at the loss of testability due to the admittance of
nondeterminism. This is a rather high price to pay, because systematic testing
is still the single most common technique for ensuring the correctness of soft-
ware. We argue that the goals of reactive programming can also be achieved
without adopting a nondeterministic programming model, with the advantage
of maintaining the ability to reliably reproduce and debug potential problems.

In this paper we describe reactors, a model of computation that offers many
desirable properties for designing and programming reactive systems. Our model
is deterministic by construction while allowing for nondeterminism that is intro-
duced explicitly. Unlike most reactive design patterns and programming models,
timing is a fundamental element in the semantics of reactors. As such, reactors
are also particularly suited for specifying real-time requirements in software.
The carefully-coordinated relationship between logical and physical time dur-
ing the execution of reactors allows for the detection and handling of timing
violations. By the same token, safe-to-progress analysis (as it is known from
Ptides [21,61] and Google Spanner [16]) can be leveraged to maintain a deter-
ministic semantics between reactors distributed across networked nodes. Similar
to reactive programming languages, the execution of reactors is governed by a
dependency graph. More generally, this graph is a partial order which exposes
parallelism that can be exploited at runtime. Finally, the interfaces of reactors
readily expose dependencies, allowing their functionality to be treated as a black
box, and opening up the possibility for a polyglot language design.

Reactors were first proposed in [46] and have been discussed in subsequent
papers [44,45]. The main contribution of this paper is to provide a formal descrip-
tion of reactors as well as algorithmic descriptions of the key building blocks
required for implementing a reactor runtime system.

1.1 The Case for Determinism

It may be argued that rapid recovery at run time to ensure correct behavior is
preferable to statically asserting properties of software. After all, hardware fail-
ures, power outages, and other external influences can break the very assump-
tions in the programming model that imply determinism. While this is true, the
dramatic success of software is squarely due to the high probability of hard-
ware behaving deterministically, so the value of such a deterministic model is
undeniable. Moreover, particularly in a cyber-physical system (CPS), the cost
of recovery may be unacceptable, as the effects of unintended behavior could be
irreversible–even disastrous. And even when recovery from unexpected errors is
necessary, it is helpful to test those scenarios to assure that they are handled
correctly.

Reactors: A Deterministic Model for Composable Reactive Systems 61

We can look at Toyota’s unintended acceleration case to underscore the
impact of nondeterminism on testability. In the early 2000s, there were a num-
ber of serious car accidents involving Toyota vehicles that appeared to suffer
from unintended acceleration. The US Department of Transportation contracted
NASA to study Toyota software to determine whether software was capable of
causing unintended acceleration. The study [52] was unable to find a “smoking
gun,” but concluded that the software was “untestable,” making it impossible to
rule out the possibility of unintended acceleration [33]. The software used a style
of design that tolerates a seemingly innocuous form of nondeterminism. Specifi-
cally, state variables representing, for example, the most recent readings from a
sensor, were accessed unguardedly by a multiplicity of threads. The spirit of this
style of programming is to favor reactivity over consistency; the trade-off that
is also central to the reactive programming paradigm. This programming style,
however, renders software untestable, because, given any fixed set of inputs, the
number of possible behaviors is vast.

A programming model can meaningfully limit the kinds of behaviors that
a programmer can express. While weakening the constraints of a programming
model can be useful for very specific optimization purposes, by far, most pro-
grammers will greatly benefit from a stricter rule set that facilitates the design of
systems that will behave correctly and predictably [38]. Lightweight formal meth-
ods, such as type checking and static analysis, are well known to greatly reduce
programming faults, for instance. The goal of reactors is to impose restrictions
on the set of allowable behaviors without being too restrictive. For instance, the
reactor model allows mutable shared state, but only across code segments that
are guaranteed to execute sequentially to ensure mutual exclusion, and must
execute in a predefined order to ensure determinism, making it much easier
for the programmer to reason about side effects. Similarly, reactors are coor-
dinated so that they automatically exploit opportunities for parallel execution,
but only when possible without introducing nondeterminism. This relieves the
programmer of the burdensome task of performing such coordination explicitly.
In essence, the programming model prevents the formulation of programs that
exhibit nondeterminism accidentally; nondeterminism is allowed, but it requires
the express intent of the programmer.

1.2 Outline

The paper is organized as follows. We present the concept of reactors infor-
mally (Sect. 2) with a motivating example. We then proceed to formally define
our model (Sect. 3) and show how our construction achieves a deterministic,
synchronous-reactive model with a modular, hierarchical structure and an inher-
ent notion of time. In Sect. 4, we explain how our model is amenable to dis-
tributed execution. We discuss related work in Sect. 5. Finally, we conclude and
discuss avenues of future work in Sect. 6.

62 M. Lohstroh et al.

2 Reactors

In our model, a reactor is a collection of routines, called reactions, which share
common state. The anatomy of a reactor is illustrated in Fig. 1. The quadrilateral
in the top middle of the figure represents the reactor’s state, with state variables
si through sn. Reactors can contain other reactors, connected in some topology,
illustrated in the figure in the area below the reactor’s state. A contained reactor
has no access to its container’s state, but it can be connected to its container’s
ports via reactions (annotated as np in Fig. 1, where p denotes the reaction’s
priority). The priorities assigned to reactions determine the order of execution of
simultaneously triggered reactions. We distinguish between logical time t, which
is the time of the model, represented as tags (as in the tagged signal model [39]),
and physical time, as it would pass on a wall clock. In our model, simultaneity is
a purely logical notion. Events in the reactor model are tagged; this orders them
along a logical timeline. Two events (and therefore, the reactions they trigger)
are simultaneous if and only if their tags are equal.

Fig. 1. Schematic representation of a reactor

The fundamental unit of execution is the reaction. Reactions are routines that
may operate on the common state of the reactor and have access to a subset of
the input and output ports of the reactor. Reactions may also communicate with
other reactions through signals that are internal to a reactor; these are called
actions and are depicted as the small triangles labeled ai in Fig. 1. Ports and
actions are named entities that can carry values. In an implementation, these
would likely be typed, but for the sake of simplicity we omit types from our

Reactors: A Deterministic Model for Composable Reactive Systems 63

discussion. Reactions are opaque; they can modify the shared state of a reactor
and have side effects, such as reading a sensor or driving an actuator, but these
effects are not captured in the model.

The rounded boxes in the top-left corner of Fig. 1, annotated as mp, where
p denotes priority, are not reactions; we call them mutations. We make a dis-
tinction between reactions and mutations because, unlike a reaction, a mutation
can modify the dependency graph of the reactor that contains it by adding con-
nections to its topology, removing connections, and/or adding or removing its
reactions. As a consequence, to preserve determinism, all mutations triggered at
a given logical time t must be carried out prior to the execution of any contained
reactions that are triggered at t. There are important advantages to limiting the
scope of mutations to the internals of a reactor. For example, it allows mutations
to be carried out without requiring any coordination with adjacent reactors. A
mutation has to declare all the ports that it references. Hence, it can only estab-
lish new connections such that when this would introduce an algebraic loop, it
would be detectable locally, considering only the elements contained by the reac-
tor itself and without inspecting the broader connection topology the reactor is
embedded in. In other words, hierarchy helps to contain the effects of run-time
mutations.

The usage of ports (filled black triangles in the figure) establishes a clean
separation between the functionality and composition of reactors; a reactor only
references its own ports or ports of reactors it contains, not the ports of adja-
cent reactors. This is a key difference with Hewitt actors [31]—as featured in
Akka [55], for instance—which address each other directly in a single shared
address space. If, for a given tag, a reactor sets the value of an output port it
has, this value will be propagated to the input ports of downstream reactors con-
nected to it. Reactions are logically instantaneous. Logical time does not elapse
during a reaction. Reactions have dependencies on input ports and antidepen-
dencies on output ports, shown as dashed edges in the figure. A reaction is not
allowed to execute before all values associated with its dependencies are known
(i.e., an upstream event with a tag t may not be emitted after a downstream
reaction dependent on that event has already executed at t).

Just like in functional reactive programming languages, the dependency infor-
mation of reactions is used to avoid so-called “glitches” (i.e., transient appear-
ances of inconsistent data [15]) and ensure that execution unfolds in a predictable
fashion. Rather than inferring dependencies from code, however, reactions must
declare them, similar to how a function has to declare its arguments. This app-
roach decouples the coordination problem from the implementation language,
which led us to develop a meta language we call Lingua Franca (LF). This lan-
guage serves the sole purpose of declaring and composing reactors, and super-
imposing a timing semantics on their execution. The program logic can then
be written in the target language of choice. The specifics of the language and
compiler toolchain are outside of the scope of this paper.

64 M. Lohstroh et al.

2.1 Runtime API

Reactions have access to a small set of primitives:

– LogicalTime: Returns the current tag ;
– Get: Returns the value associated with given port/action at the current tag;
– Set: Binds given value to a given port at the current tag;
– PhysicalTime: Returns the last observed physical time; and
– Schedule: Schedules given action with minimum delay of one microstep.

These primitives are the only means provided for reactors to interact with other
reactors1. While Get and Set facilitate synchronous communication with reac-
tions in other reactors, Schedule is intended to trigger reactions within the
same reactor, via an action. Actions can have a delay associated with them,
which Schedule uses to determine the tag of the resulting event. Moreover,
an action must have a specified origin: logical or physical. When scheduled, an
action with a logical origin (i.e., a logical action) will be scheduled relative to the
last known logical time. Conversely, actions with a physical origin (i.e., physical
actions) are scheduled relative to the last known physical time, a time value
obtained from the platform. To avoid causality loops, logical actions are always
scheduled with a minimum delay of one microstep. A microstep delay is an incre-
ment of the index in superdense time [3,40,47] with respect to the current logical
time.

Like ports, actions can carry values. If more than once a particular action
gets scheduled to occur at a particular time, the last set value persists. The same
holds for ports. Multiple reactions could be triggered at the same logical time,
and when two such reactions set the value of the same port, the earlier set value
is overwritten. Because all triggered reactions within a reactor are executed in a
predefined order, this semantics does not lead to nondeterminism, and it assures
that each value is defined uniquely for each tag. Of course, this is only true if
each port can have at most one incoming connection. This requirement has to
be strictly enforced. Ports and actions that have not been set have the value
absent. After all reactions for a given tag have been executed, the values of all
ports are set to absent. In other words, ports and actions are, by default, not
persistent.

The subtle interaction between logical and physical time in the reactor model
establishes an interface between inherently asynchronous and nondeterministic
concurrent tasks (e.g., a sensor that monitors a physical process) and determin-
istic computational tasks that benefit from testability and could require precise
and predictable timing (e.g., to drive an actuator to influence said physical pro-
cess). Rather than superimposing a deterministic world view on things that are
inherently unpredictable, or, rejecting determinism entirely—thereby fundamen-
tally compromising testability—reactors provide a model of computation that
avoids this false dichotomy.

1 Primitives used by a mutation to effect changes to its container’s connection topology
or its reactions are not discussed here due to space limitations.

Reactors: A Deterministic Model for Composable Reactive Systems 65

While all reactors in a reactor program share the same logical and physical
clock, reactor programs can interact with one another in a distributed setting,
where each program has its own logical and physical clock. The preservation of
a deterministic semantics in such a setting relies on assumptions about network
delay and clock synchronization error. In this setting, reactions must have access
to PhysicalTime to check for violations of these assumptions. This is explained
in more detail in Sect. 4.

2.2 Example: Drive-by-Wire System

To illustrate how reactors behave, let us return to the Toyota example mentioned
in the introduction and consider a power train implemented using reactors, illus-
trated using the diagram in Fig. 2. It features six reactors that jointly coordinate
the control of the brakes and the engine. While this example is obviously over-
simplified, it features enough complexity to allow us to highlight some of the
most interesting aspects of our model. Following the “accessor” pattern from
[12], each reactor in the figure (represented by a rectangular box) endows a com-
plex subsystem of the car with a simple interface that allows it to be connected
to other reactors. Connections are shown as solid lines in the diagram.

Consider the LP (left pedal) reactor, in Fig. 2, which is used to control the
brakes. We assume that updates from the pedal are reported via an interrupt,
which enables an interrupt service routine (ISR) that schedules an internal
action. This internal action triggers a reaction that sets the value of the angle and
on/off output ports. In order to avoid overwhelming the system, we assume that
the interrupts have a minimum interarrival time. The values angle and on/off,
if present, are propagated to BC (brake controller) and EC (engine controller),
respectively. Notice that LP only has to set on/off at times that the pedal changes
from being released to pressed and vice versa. This prevents the system from
being burdened with handling insignificant events.

Let us now consider the EC reactor, which has three reactions. We interpret
the number associated with each reaction as its execution priority; this way, we
obtain an execution order in case both on/off and angle are present at the same
logical time. The first reaction, EC.1, is triggered by on/off; it updates the state of
the reactor to reflect that the brake pedal is currently pressed and sets the value
of torque to zero. The second reaction is triggered by the angle input; it checks
whether the brakes are applied, and if not, sets the torque output. The third and
last reaction sets the value of check to trigger a reaction in the RP (right pedal)
reactor, which represents the accelerator pedal. It only sets the value of check,
however, if the brake pedal is known not to be pressed. This reaction is triggered
by an action, which, in a naive implementation, could arrive at regularly spaced
intervals. The frequency of these periodic actions, however, would have to match
the maximum number of rotations per second of the crankshaft, which, under
normal driving conditions, is rarely realized. Therefore, it would be more efficient
to trigger the second reaction with variable intervals depending on the number
of revolutions of the crank shaft.

66 M. Lohstroh et al.

The second reaction of RP is triggered by the check input and sets in motion
some asynchronous activity that senses the angle of the accelerator pedal and
writes it to the reactor’s shared state. Before concluding the second reaction, an
action is scheduled at the current time plus a delay of 2 ms, to give the ADC
ample time to report its reading. The first reaction is triggered by this action
and, in turn, triggers the second reaction in EC.

Fig. 2. Reactor that implements a simplified power train control module

The design assures that if the accelerator pedal is stuck or reports faulty read-
ings, the car will still slow down in response to the break pedal being pressed;
the engine is never allowed to apply torque when the brakes are applied. Note
that this approach does not attempt to artificially eliminate nondeterminism
that is intrinsic to the physical realization of the system; actions can occur spo-
radically, but the logic constituted by reactions is deterministic, and therefore,
testable. The behavior of the system is relatively easy to reason about, and it
is straightforward to formulate meaningful test cases to build confidence in the
correctness of the implementation of the reactions.

Real-Time Constraints. In the example in Fig. 2, the first reaction of LP is
triggered by an interaction with the environment; a process that reports a sensor
value. The scheduling of physical action areq effectively maps physical time to
logical time. The event output by LP is timestamped with logical time t equal to
physical time T . We can now impose a deadline2 on the triggering of a reaction
in downstream reactor B of, say, 5 ms. This means that the force input of the
brakes must be observed before or when T reaches t + 5 ms. In other words,
the deadline specifies a maximum end-to-end delay in physical time between the
reaction that reports the braking and the reaction that applies the brakes. The
execution engine can therefore, by comparing logical timestamps with physical
time, check for deadline violations at run time. Moreover, the presence of the

2 Deadlines are omitted from the formalization in Sect. 3 and are left as future work.

Reactors: A Deterministic Model for Composable Reactive Systems 67

deadline enables Earliest Deadline First (EDF) scheduling. In combination with
precision-timed hardware and Worst-Case Execution Time (WCET) analysis,
static guarantees could be obtained with regard to timing of reactions [35,45].

3 Formalization

In this section we formalize the concept of reactors. Some of the central concepts
we will introduce are described by lists of elements. In order to simplify notation,
we will use the symbol for the element of a list to also denote a function that
maps the list to the element corresponding to that symbol. For example, if x is
defined as the list x = (a, b), we reuse the symbols a and b to be functions that
map x to its elements a and b, respectively. Thus, we will commonly use the
notation a(x), where x is a list, and a is the symbol of one of the elements in
that list.

First, we need to introduce some notation. Let Σ be a set. We refer to the
elements of Σ as identifiers. We will use identifiers to uniquely refer to various
objects to be introduced. There is no need to further define the structure of
identifiers.

Let V be a set, which we refer to as the set of values. This set represents the
data values exchanged between or within reactors. Similarly, we do not assume
any structure in the values, i.e., reactors are untyped. We define one distinguished
element in the value set: ε ∈ V is called the absent value.

As motivated in Sect. 2, a reactor is a composite of various objects. Some of
these objects have roles which are tightly intertwined with the model of com-
putation in which reactors operate. This model of computation is the discrete
event model. In discrete event systems, the execution of a program occurs at
given tags. These tags belong to a denumerable and totally ordered set.

3.1 Notions of Time

Our model uses a superdense representation of time (see [40,47]). Each tag is
denoted by a pair, of which the first element is a time value—an integer represen-
tation of time in some predefined unit (e.g., milliseconds or nanoseconds)—and
the second element denotes a microstep index. Two events are logically simul-
taneous if and only if their tags are equal. Formally, the set of tags, T of the
reactor execution model is T = N

2, where N is the set of natural numbers. We
define a total order on T lexicographically: if (a, b), (a′, b′) ∈ T, we say that
(a, b) < (a′, b′) if and only if (a < a′) ∨ (a = a′ ∧ b < b′) . T has an addition
operation that operates element-wise. Using an integer representation for time
ensures that addition is associative, which is not necessarily the case when using
floating-point representations [17]. We define a function timeVal on tags which
extracts the time value: let (a, b) ∈ T, then timeVal ((a, b)) = a.

Events are used to exchange messages between reactors.

Definition 1 (Event). An event e is defined as a list e = (t, v, g), where t ∈ Σ
is called the event trigger, v ∈ V the trigger value, and g ∈ T the event tag.

68 M. Lohstroh et al.

Events inherit an order from their tags. If e and e′ are events, we say that e < e′

if and only if g(e) < g(e′).

Definition 2 (Event queue). We define the event queue QE as a set of
events ordered by their tags.

This model uses two distinct notions of time: logical time and physical time.

Definition 3 (Logical time). Logical time is a monotonically increasing
sequence of tags of the form (a, b), where a is referred to as the time value
and to b as the microstep index.

Definition 4 (Physical time). Physical time refers to a time value that is
obtained from a clock on the execution platform.

Remark 1 (Time units). The time values of logical time and physical time must
be given in some unit of measurement. In order to meaningfully relate two time
values, their units must be the same. Whenever we omit units in expressions
that relate time values, we simply assume the units match. Microstep indices,
on the other hand, are unitless.

3.2 Reactors

We now proceed to define reactors. Note that reactors contain reactions and
mutations. We first discuss reactors to clarify how the domain of constituents of
a reaction or mutation is determined by the containing reactor.

Definition 5 (Priority set). Let Z be the set of integer numbers, Z
+ the set of

integers larger than zero, Z
− the set of integers smaller than zero, and ∗ a symbol

which is not an integer. The priority set, P, is given by P = Z
− ∪ Z

+ ∪ {∗}.
The set P has a partial order given by the order in Z extended with ∗ ≤ ∗ and
p < ∗ for all p ∈ Z

−.

The use of ∗ is to allow particular reactions to be executed in parallel if they
do not touch the reactor’s state. For instance, reactions n0, n5, and n6 in Fig. 1
would qualify as such if their only purpose is to relay values between ports.

Definition 6 (Action). An action is a list a = (x, d, o), where x ∈ Σ is the
action identifier, d ∈ N is the delay of the action, and o ∈ O is the origin of
the action. We use the notation d(x) to refer to the delay of a, and o(x) to refer
to its origin. As we will see, actions belong to exactly one reactor. If A is a set
of actions, we will also let x(A) denote the set of identifiers of each action in A.

When a reaction or mutation schedules an event for an action, this event will
have a tag that includes the action delay plus either the current logical time or
the current physical time, depending on whether the action’s origin is logical or
physical, respectively. This is described in more detail in Algorithm 2 in Sect. 3.5.

Reactors: A Deterministic Model for Composable Reactive Systems 69

Definition 7 (Reactor). A reactor r is a list r = (I,O,A, S,N ,M,R,G,
P, •, �), where

1. I ⊆ Σ is a set of inputs,
2. O ⊆ Σ a set of outputs,
3. A ⊆ Σ × N × O a set of actions,
4. S ⊆ Σ a set of state variables,
5. N a set of reactions,
6. M a set of mutations,
7. R a set of contained reactors,
8. G ⊆

(⋃
r∈R O(r)

)
×

(⋃
r∈R I(r)

)
a topology graph,

9. P : N ∪ M → P the priority function, and
10. •, � ∈ A(r) actions called initialization and termination, respectively.

Given two reactors r and r′, the sets I(r), O(r), x(A(r)), S(r), I(r′), O(r′),
x(A(r′)), and S(r′) are all pairwise disjoint. Similarly, the sets R(r) and R(r′)
are disjoint, and so are the sets N (r) and N (r′) and M(r) and M(r′).

Remark 2 (Hierarchy). We define an atomic reactor as above, with an empty
contained reactor set and empty topology graph, and we call these degree-0
reactors. Then, for n ≥ 1 we define a reactor of degree n as a reactor with a
set R of reactors of degree at most n − 1 and a corresponding topology set.
Moreover, the reactor set of a degree-n reactor contains at least one reactor of
degree n − 1.

Reactors use their inputs and outputs to communicate with other reactors.
Reactions and mutations can schedule events for actions in order to trigger the
execution of other reactions or mutations contained in the same reactor.

Reactors can be built up hierarchically. As such, the reactor set lists the
reactors contained by a reactor. The reaction and mutation sets list the reactions
and mutations, respectively, contained by a reactor. The topology graph specifies
how the reactors contained in a reactor are connected to each other. This graph
consists of pairs (o, i), where o and i are the output and input of two reactors,
respectively. If (o, i), (o′, i′), are two different elements of G, then i �= i′; that
is, inputs are connected to at most one output. The priority function plays a
role in the concurrent execution of reactions and mutations and is discussed in
Sect. 3.8. Initialization and termination actions are discussed in Sect. 3.7.

Let us consider the constituents of the reactor shown in Fig. 1: I = {ii}2i=0,
O = {oi}3i=0, A = {ai}1i=0 ∪ {•, �}, N = {ni}6i=0, M = {mi}ki=0, and R =
{ri}2i=0. The priorities of the reactions and mutations shown in the figure are
equal to their respective subindices. The topology graph is the set of pairs which
indicate connections from the outputs to the inputs of contained reactors. In the
figure, these pairs are (r0.o0, r1.i0) and (r0.o0, r2.i0).

3.3 Reactions

We now discuss the elements that carry out computation in the reactor model.
These are called reactions. First, we define a function to navigate the reactor
hierarchy:

70 M. Lohstroh et al.

Definition 8 (Container function). The container function C maps a reactor
r to the reactor which contains it. The function returns � (pronounced “top”)
if no reactor contains r. Since the sets R(r),R(r′) are disjoint for r �= r′, C
is well-defined. Let r be a reactor. If C(r) = �, we say that r is top-level.
We also define the container function for reactions and mutations: let n be a
reaction; then C(n) yields the reactor r such that n ∈ N (r). The same applies
to mutations. Finally, we define the container function for inputs, outputs, and
action identifiers: let i, o, and a be an input, output, and action, respectively, of
three reactors r, r′, and r′′. Then C(i) = r if and only if i ∈ I(r), C(o) = r′ if
and only if o ∈ O(r′), and C(x(a)) = r′′ if and only if a ∈ A(r′′). Similarly, the
function C is well-defined here since all the relevant sets are pairwise disjoint
for two distinct reactors.

With this function in place, we state the definitions of reactions:

Definition 9 (Reaction). A reaction n is defined as n = (D, T , B,D∨,H),
where

1. D ⊆ I(C(n)) ∪ ⋃
r∈R(C(n)) O(r) is a set of dependencies, identifiers on

which the reaction depends in order to execute;
2. T ⊆ D ∪ x(A(C(n))) is a set of triggers, identifiers whose events cause the

execution of the reaction’s body;
3. B is the body of the reaction (e.g., executable code);
4. D∨ ⊆ O(C(n)) ∪ ⋃

r∈R(C(n)) I(r) is the set of antidependencies, identifiers
for which the reaction can produce events at the current logical time; and

5. H ⊆ x(A(C(n))) is the set of schedulable actions, actions for which n can
generate events.

3.4 Mutations

Now we introduce the concept of a mutation. These are used to modify the
internal structure of a reactor by connecting and disconnecting ports. Ports that
a mutation declares as dependencies are the only sources that it can establish
connections from. Ports that it declares as antidependencies are the only desti-
nations that it can establish connections to. While mutations give reactors the
ability to dynamically reconfigure their internal topology, the above constraints
prevent a reactor from introducing dependencies between its ports of which its
container is not already aware.

Definition 10 (Mutation). A mutation m is defined as m = (D, T , B,D∨,
H), where

1. D ⊆ I(C(m)) is a set of dependencies, identifiers on which the mutation
depends in order to execute, and the only sources from which the mutation
can establish connections;

2. T ⊆ D ∪ x(A(C(m))) is a set of triggers, identifiers whose events cause the
execution of the mutation’s body;

Reactors: A Deterministic Model for Composable Reactive Systems 71

3. B is the body of the mutation (i.e., executable code);
4. D∨ ⊆ O(C(m)) ∪ ⋃

r∈R(C(m)) I(r) is the set of antidependencies, identi-
fiers for which the mutation can produce events at the current logical time,
and the only destinations to which the mutation can establish connections;
and

5. H ⊆ x(A(C(m))) ∪ ⋃
r∈R(C(m)) x ({•(r), �(r)}) is the set of schedulable

actions, actions for which m can generate events.

Reactions and mutations differ as follows:

– Mutations can modify the reactor topology; reactions cannot.
– A mutation can schedule initialization and termination actions for reactors

that its container contains.
– The outputs of contained reactors are allowed in the dependencies of a reac-

tion, but not in the dependencies of a mutation. This is important because,
in contrast to reactions, mutations have the capability of scheduling initial-
ization actions, which do not incur a microstep delay. Disallowing outputs of
contained reactors rules out the introduction of undetectable causality loops.

AppendixA summarizes all definitions we introduce.

3.5 Event Generation

We will find it convenient to have available functions that return the reactions
which depend on the given input, and which are antidependent on the given
output. We find no reason to introduce new notation. Thus, we define the maps

N (i) = {n ∈ N (C(i)) | i ∈ D(n)} and
N (o) = {n ∈ N (C(o)) | o ∈ D∨(n)} .

We define M(i) and M(o) for mutations in a similar manner. Moreover, given
an identifier t, we will identify the reactions and mutations that are triggered by
t. We define

T (t) = {k ∈ N (C(t)) ∪ M(C(t)) | t ∈ T (k)} .

We now discuss how events are created. The body of a reaction is a container
for application code in the reactor framework. Let n be a reaction. Then the body
B(n) of this reaction is allowed to run two functions that affect the execution
environment: Schedule and Set.

A reaction can only execute Set on its antidependencies. The execution of
Set in the body of a reaction propagates the set value to downstream ports and
adds triggered reactions to QR, the set of reactions to be executed at the current
logical time. Set is shown in Algorithm 1.

A reaction can only call Schedule on its set of schedulable actions. The
event created on a call to schedule is shown in Algorithm 2. The algorithm shows
that reactions can add an additional delay to the delay of a schedulable action

72 M. Lohstroh et al.

Algorithm 1. Propagate values to downstream ports
1: procedure set(port, value)
2: WriteValue(port, value)
3: reactionsAndMutations ← T (port)
4: r ← C(C(port))
5: topology ← G(r)
6: for all (o, i) ∈ topology do
7: if port = o then
8: WriteValue(i, value)
9: reactionsAndMutations ← reactionsAndMutations ∪ T (i)

10: end if
11: end for
12: QR ← QR ∪ reactionsAndMutations
13: end procedure

upon scheduling. Note also that Schedule can be called synchronously, from
a reaction, but also asynchronously, from another thread of execution. Mutual
exclusion between concurrent calls to Schedule is achieved via locking. The
same mutex is also used in Next, the function that drives the execution of
triggered reactions (see Sect. 3.8). The mutex protects the event queue QE , as
well as the variable t that holds the current logical time, from data races.

Algorithm 2. Schedule an action
1: procedure schedule(a, additionalDelay, value)
2: interval ← d(a) + additionalDelay
3: lock(mutex) � Mutual exclusivity with concurrent Schedule and Next

4: if o(a) = Physical then
5: tag ← (PhysicalTime() + interval, 0)
6: else
7: if interval = 0 and a �= •(C(x(a))) then
8: tag ← LogicalTime() + (0, 1) � Add microstep delay
9: else

10: tag ← (timeVal(LogicalTime()), 0) + (interval, 0)
11: end if
12: end if
13: e ← (x(a), value, tag)
14: QE ← QE \ {e′ ∈ QE | t(e′) = t(e) ∧ g(e′) = g(e)} � Overwrite if already set
15: QE ← QE ∪ {e}
16: unlock(mutex) � Release mutex
17: end procedure

3.6 Dependencies

During the execution of a reactor, there may be multiple events scheduled at the
same logical time. These events may trigger multiple reactions and mutations.

Reactors: A Deterministic Model for Composable Reactive Systems 73

In what order can these reactions and mutations execute? We arrange reactions
in a partial order based on their dependencies and priority with respect to other
reactions within a reactor. Let k and k′ be mutations or reactions. We say
that k ≺ k′ if k′ has a dependency on an antidependency of k or if C(k) =
C(k′) ∧ (P (k) < P (k′)).

The analysis of dependencies excludes actions because actions (with excep-
tion of •) are always scheduled at least one microstep time unit into the future.

Example: The dependency graph obtained from our example in Fig. 2 is
shown in Fig. 3. Notice that EC.1 ← EC.2 ← EC.3 and RP.1 ← RP.2 are due
to reaction priority; the other edges in the graph are due to dependencies and
antidependencies on ports and the connections between those ports.

LP.1

B.1

E.1

BC.1

EC.1

EC.2

EC.3RP.2

RP.1

Fig. 3. Dependency graph implied by the reactor topology in Fig. 2

Definition 11 (Graph function). Let r be a reactor. The graph function γ(r)
returns a graph whose vertices are all reactions and mutations contained in the
hierarchy of r and whose directed edges denote dependencies between vertices.
The graph function is computed according to Algorithm3.

These are the steps of the algorithm:

– L2. Make the vertices and edges of the dependency graphs of the constituent
reactors of r part of the graph of r. We define the union of graphs to operate
element-wise (i.e., on the vertex sets and edge sets).

– L3. Make the mutations and reactions of r vertices of the graph.
– L4. Use the topology to connect the reactions and mutations of contained

reactors.
– L5–6. Connect the reactions of r to the reactions and mutations of the con-

stituent reactors of r. Note that the functions N and M, when applied to
inputs and outputs, return the reactions and mutations which list that input
as a dependency or the reactions and mutations that list that output as an
antidependency.

– L7. For all reactions and mutations of this reactor, we add an edge to the
graph between two reactions or mutations when the priority of one is smaller
than the priority of the other.

– L8. Make all reactions and mutations of the contained reactors dependent
on the mutations of the container reactor. This is necessary because muta-
tions can change the operation of the container reactor and can schedule the
initialization action of the contained reactors with zero delay.

74 M. Lohstroh et al.

After computing the dependency graph using Algorithm3, the graph must be
checked for directed cycles. Cyclic dependency graphs must be rejected, as they
represent algebraic loops; we do not handle them.

Algorithm 3. Construct dependency graph
1: procedure γ(r)
2: (V, E) ←

⋃
r′∈R(r) γ(r′)

3: V ← V ∪ N (r) ∪ M(r)
4: E ← E ∪ ⋃

(o,i)∈G(r)

(N (i) ∪ M(i)) × (N (o) ∪ M(o))

5: E ← E ∪ ⋃

n∈N (r)

i∈D∨(n)\O(r)

(N (i) ∪ M(i)) × {n}

6: E ← E ∪ ⋃

n∈N (r)
o∈D(n)\I(r)

{n} × (N (o) ∪ M(o))

7: E ← E ∪ ⋃

k,k′∈N (r)∪M(r)

{(k, k′) | P (k′) < P (k)}

8: E ← E ∪
(

⋃

r′∈R(r)

N (r′) ∪ M(r′)

)

× M(r)

9: return (V, E)
10: end procedure

3.7 Initialization and Termination

All reactors have a special initialization action •. At the start of executing a
reactor program, the execution environment generates one event at tag (T, 0)
for the initialization action of the top-level reactor. Every reactor contains a
mutation that is triggered by that reactor’s initialization action; this mutation
initializes that reactor and schedules an event with no microstep delay on the
initialization actions of all reactors that its container reactor contains.

Reactors also have a special action �, called termination. Reactors have the
ability to schedule • and � actions of their contained reactors. Upon processing
a termination action (which implies the need for the existence of a reaction or
mutation which is triggered by the termination action), a reactor can forward
that action to its contained reactors in order for the hierarchy to terminate safely.
The � action is scheduled with a microstep delay, to allow any ongoing reactions
to conclude before termination is set into motion.

3.8 Execution

The execution of reactors is based on a discrete-event model of computation that
guarantees determinacy, a property that can be proven by showing the existence
of unique fixed points over generalized metric spaces given that the dependency
graph that governs the execution (see Sect. 3.6) contains no directed cycles [43,

Reactors: A Deterministic Model for Composable Reactive Systems 75

Algorithm 4. Process events for the next tag
1: procedure next()

2: lock(mutex) � Mutual exclusivity with concurrent Schedule

3: if QE = ∅ then return

4: end if

5: while True do
6: T ←PhysicalTime()
7: tnext ← g(peek(QE)) � Obtain the tag of the first-in-line event
8: if T ≥ tnext then

9: break

10: else � Wait until QE changes or physical time matches tag
11: timedWaitForEventQueueChange(timeVal(tnext))

12: end if

13: end while
14: t ← tnext � Advance logical time
15: clearAll() � Clear all inputs, outputs, actions

16: QR,doneSet, execSet ← ∅, ∅, ∅
17: E ← {e ∈ QE | g(e) = t} � Gather events for current time t

18: QE ← QE \ E
19: unlock(mutex) � Release mutex
20: for all e ∈ E do

21: WriteValue(t(e), v(e)) � Set the value associated with identifier t(e)
22: end for
23: QR ←

⋃
e∈E T (t(e)) � Reactions and mutations triggered by events

24: repeat
25: for all k ∈ execSet do

26: if isDone(k) then � Check whether executing element is done
27: doneSet ← doneSet ∪ {k}
28: execSet ← execSet \ {k}
29: end if
30: end for

31: if QR �= ∅ then � Execute something, if possible
32: if threadIsAvailable() then
33: P ← QR ∪ execSet
34: readyForExec ← {p ∈ P | � ∃p′ ∈ P. p′ < p}
35: readyForExec ← readyForExec \ execSet
36: if readyForExec �= ∅ then

37: k ← Select(readyForExec)

38: execSet, QR ← execSet ∪ {k}, QR \ {k}
39: runInThread(k)
40: else
41: waitUntilNumberOfIdleThreadsHasIncreased()

42: end if

43: else
44: waitUntilThreadHasBecomeAvailable()

45: end if
46: else

47: if execSet �= ∅ then

48: waitUntilNumberOfIdleThreadsHasIncreased()

49: end if

50: end if

51: until QR ∪ execSet = ∅
52: end procedure

76 M. Lohstroh et al.

48]. The execution environment keeps a notion of a global event queue QE that
tracks events scheduled to occur in the future, and of a reaction queue QR that
sorts reactions to be executed at the current logical time by dependency. While
the event loop can be implemented in a single thread, the algorithms discussed
in this section assume a multi-threaded implementation. A single mutex lock is
used to guarantee thread-safe operation on the only two shared data structures:
t and QE . A major advantage of this design is that the use of a single lock
ensures deadlock-freedom. At the beginning of execution, logical time starts at
a value of t = (T, 0), and it can only increase as execution progresses. Logical
time increases when there are no further reactions to be executed and there are
one or more events in QE with a tag greater that has a time value greater than
or equal to the current physical time T .

Algorithm 4 shows how the code of reactions and mutations is executed. The
algorithm proceeds as follows:

– L5–13. Determine what the next logical time should be, based on the event
that is currently on top of QE , and wait for physical time to match the
time value of the tag. The procedure timedWaitForEventQueueChange

blocks until either the event queue was modified or the specified physical time
was reached, whichever comes first. timedWaitForEventQueueChange

is expected to release the mutex and reacquire it after receiving a signal
that an event has been added to QE . This allows concurrent invocations of
Schedule to proceed while Next is waiting. In an implementation based on
POSIX threads, pthread cond timedwait could be used for this.

– L14. Advance logical time to match the smallest tag currently in QE .
– L15. Set the values of all ports and actions to ε.
– L17. Obtain events to process at the current logical time.
– L19. Release the mutex, allowing concurrent calls to Schedule to proceed.
– L20–22. Set triggers according to the value of the event.
– L23. Obtain all reactions and mutations triggered by any of the events with

a tag equal to the current logical time and insert them into QR.
– L24–30. If a reaction or mutation that has been under execution is done, move

that reaction or mutation to doneSet and remove it from execSet.
– L32–39. The routine threadIsAvailable reports whether the runtime sys-

tem has a thread available for executing the selected reaction of mutation.
If this is the case, on L34–35, select one reaction or mutation from the set
of minimal elements of items which are either under execution or pending,
excepting, naturally, the set of executing reactions or mutations. It is ensured
that no reaction or mutation ends up executing concurrently with (or after)
any reaction or mutation that depends on it. Note that the computation of
the minimal elements uses the order on reactions and mutations defined in
Sect. 3.6.

– L41. If all pending tasks have dependencies on currently-executing tasks, wait
until one of the currently-executing tasks concludes, freeing up a thread. With
POSIX threads, waitUntilNumberOfIdleThreadsHasIncreased could
be implemented using pthread cond wait.

Reactors: A Deterministic Model for Composable Reactive Systems 77

– L44. If there are pending tasks, but the runtime system does not have
resources to accept a new task, wait until it can accept a new task. Again,
pthread cond wait could be used to implement the wait.

– L48. If there are no pending tasks, but there are tasks currently in execution,
wait until at least one of the tasks under execution finishes.

– L51. We iterate the loop L24–51 until there remain no reactions or mutations
to be executed, and there are none currently under execution.

4 Distributed Execution of Reactors

We will now describe how reactor programs are executed when distributed over
multiple nodes communicating over network. Many of the concepts around dis-
tributed execution have been introduced in prior work on Ptides [62] and are
applied to reactors here. We can use Ptides to preserve the deterministic seman-
tics of reactors across distributed reactor programs, which requires us to make
some assumptions about our system. Each node in the distributed system main-
tains its own event queue and contains a clock that monitors and keeps track of
the passing of physical time. The clocks are synchronized across nodes with a
known bound E on the clock synchronization error. Sending messages between
distributed nodes takes time, but we assume a known upper bound on the net-
work delay L between any two nodes in the network.

Let us consider the example in Fig. 2 and assume the reactors are distributed
across multiple engine control units (ECUs). The reactor network is split up
into multiple, distributed reactor networks. While automotive networks often do
have provisions for deterministic communication, many networks do not guar-
antee in-order processing of messages, thus potentially causing the receipt of
messages out of order. We can also envision an extension of this system with
car-to-car communication to enable safe lane-switching, platooning, intersection
management, or emergency slow down. Networks used for such communication
are typically not giving any guarantees on the order of transfer of messages.

Similar to sensing and actuation wrapped in reactions, network communi-
cation is performed in the body of reactions. A network sending reaction must
combine the event value together with the current logical time t and implement
the network transmission. To ensure timely sending of network messages, a dead-
line on the network sending the reaction is required. Note that a deadline > 0
increases the delay on a path between sensors and actuators.

Just like a network sending a reaction, a reaction receiving a message from
the network implements network communication in the body of the reaction.
We assume an interrupt upon receipt of the network that triggers an action,
which, in turn, triggers the network receiving reaction. This reaction unpacks the
timestamp tm in the message and uses it to determine when it is safe to process
the message. A network receiver in this programming model must ensure that
messages are forwarded to other reactors in logical timestamp order. A network
receiver that receives a message m at physical time T with timestamp tm cannot
release the message until tm + E + L to ensure that no other messages are in

78 M. Lohstroh et al.

the network with an earlier timestamp. When physical time matches or exceeds
tm + E + L, the message is safe to process. A network receiving reaction will
therefore schedule an action a with additionalDelay = tm + E + L − tc, where
tc is the current logical time on the node. A reaction triggered by a will release
the message into the local reactor program.

A violation of the assumptions of clock synchronization error E or network
delay L is detected if a network receiver gets a message with timestamp t at
physical time T with T > t + E + L (see Fig. 4). Once such an error is detected,
the mitigation is application dependent, ranging from ignoring such erroneous
network messages to an immediate stop of the program. While we do not discuss
strategies for dealing with such an error, we want to stress that the strength of
this programming model is in the ability to detect such errors.

physical time

send m
receive m ok received m too late

t t + L + E
L + E

Fig. 4. Message exchange between distributed reactors

By relating physical time to logical time at sensors, actuators and network
interfaces, deterministic behavior is implemented without the need for a cen-
tral coordinator. The analysis of whether a distributed reactor program can be
implemented on a given set of nodes is performed for each node individually, by
treating network interfaces like sensors and actuators.

5 Related Work

The Actor model by Hewitt and Agha [1,31] can be considered the basis
for reactors. In it, actors execute concurrently and communicate via asyn-
chronously passed messages, with no guarantees on the order or timing of mes-
sage arrival. Implementations can be found in several modern languages and soft-
ware libraries, most notably Erlang [2] by Ericsson, Scala actors [27], Akka [11],
and Ray [50]. The messaging is address-based, and an actor can send messages to
any other actor just using its address, including actors it creates. This flexibility
can be leveraged to make distributed systems more resilient. Dataflow mod-
els [9,19,36] and process networks [32,37] can be seen as subsets of actor models
with deterministic semantics that allows for explicit nondeterminism. Stemming
from the embedded systems community, fixed graph topologies in these models
enable improved static analysis and optimization [53].

The reactive programming community is concerned with developing event-
driven and interactive applications using a wide array of software technologies
ranging from programming frameworks like ReactiveX [49], Akka [11,60], and
Reactors.IO [54] to language-level constructs like event loops [58], futures [5],

Reactors: A Deterministic Model for Composable Reactive Systems 79

promises [23], and reactive extensions [49]. For a more comprehensive survey on
reactive programming techniques, see [4]. Writing software for reactive systems is
difficult when the control flow of a program is driven by external events not under
the control of the programmer, since the conventional imperative programming
paradigm cannot be used. A major goal of reactive programming approaches is
providing abstractions to express programs as reactions to external events (the
observer pattern) and abstracting away the flow of time. Reactors have the same
goal, but instead make use of synchronized time to coordinate such that their
reactions yield predictable results.

In many reactive programming frameworks, futures are used to promote an
imperative, sequential programming style, which avoids an explicit continuation
passing style (also known as “callback hell” [20]), but makes it even more con-
fusing for the programmer when nondeterminism rears its head. Actor-based
frameworks like Ray and Akka rely heavily on futures. All this programmatic
support makes reactive systems especially difficult to debug [6,59]. Another sig-
nificant problem with some of the frameworks, libraries or language primitives
commonly used in reactive programming is that they invite programmers to
break the semantics of the underlying model, mixing models and losing many of
the advantages obtained from them [57].

A different class of very successful models that reactors draw from are
discrete-event models. These models, common in hardware modeling and simu-
lation, have time as a core element in their semantics. Discrete events are, by
design, the model of computation underlying reactors. From a language level,
our language proposition is very close to hardware description languages, like
Verilog or VHDL. Noteworthy is the comparison with SystemC [25,42], and the
related SpecC [24], of which reactors are particularly reminiscent.

On the software engineering side, reactors are probably closest to synchronous
languages and Functional Reactive Programming (FRP). In fact, the discrete
event model can be seen as a special case of the model behind synchronous lan-
guages [41]. Synchronous languages like Esterel [8], Lustre [26] and SIGNAL [7]
make time an essential part of the language design. Here, discrete time ticks
are purely logical and not being synchronized to real, wall clock time. This is
reminiscent of the signals used in FRP languages, like Fran [22] or FrTime [15],
or more modern languages like Elm [18]. Unlike reactors, FRP works with pure
functions and does not deal with side effects like reading sensors or operating
actuators, which are essential in cyber-physical systems. In addition, these sys-
tems typically require a central runtime, which makes a dynamic, distributed
execution infeasible.

The reactive extensions [13] to AmbientTalk make this actor-based language
for mobile application design into one that is very similar to reactors. In par-
ticular, it stores a topology graph and can execute distributedly, albeit without
avoiding glitches [4]. Myter et al. [51] show how to avoid glitches in reactive
distributed systems using distributed dependency graphs and logical clocks

80 M. Lohstroh et al.

to timestamp values propagated through the system. Timestamps are used to
decouple distributed components thus voiding the need for central coordina-
tors and, in effect, implementing a Globally Asynchronous, Locally Synchronous
(GALS) [14] system. Myter et al. propose an execution runtime which guar-
antees that a distributed reactive system eventually reaches a consistent state.
Our work shares several key ideas with this approach, such as the use of log-
ical time and the construction of dependency graphs to circumvent the need
for central coordination, although modeling and implementations choices differ
considerably. In addition, our work is based on ideas presented in Ptides [62],
where logical time is carefully linked to a notion of physical time that is assumed
to be synchronized across nodes with a known error tolerance. This allows for
an always (not just eventual) consistent state. In addition, we can now reason
about end-to-end delays and timing violations, which can help detect errors in
the assumptions about the system or the execution behavior of a system.

6 Conclusions

Reactors are software components that borrow concepts from actors, dataflow
models, synchronous-reactive models, discrete event systems, object-oriented
programming, and reactive programming. They promote modularity through
the use of ports, use hierarchy to preserve locality of causality effects, and pro-
vide a clean interface between asynchronous tasks and reactive programs without
compromising the ability to obtain deterministic reactions to sporadic inputs.
This makes reactors particularly well suited as a programming model for imple-
menting cyber-physical systems, and more broadly, reactive systems that are
expected to deliver predictable, analyzable, and testable behavior.

We have shown how the reactor execution model takes advantage of con-
currency that is naturally exposed in reactor programs; we leave performance
benchmarks, as well as analyses of different scheduling policies and a more thor-
ough discussion of deadlines and runtime mutations as future work. We are cur-
rently developing a compiler tool chain that takes reactor definitions and com-
positions written in the Lingua Franca meta-language and transforms them into
executable target code. Among features we intend to develop for this language
are declarative primitives for the orchestration of distributed reactor programs,
runtime mutations based on state machines, and real-time scheduling analysis
for precision-timed hardware platforms like Patmos [56] and FlexPRET [63].

Acknowledgement. The authors thank the anonymous reviewers for their perceptive
feedback on an earlier version of this paper.

Reactors: A Deterministic Model for Composable Reactive Systems 81

A Summary of the Reactor model

Execution environment objects

Set of identifiers Σ (an abstract set)

Set of values V (an abstract set)

Absent value ε ∈ V

Set of priorities P = Z
− ∪ Z

+ ∪ {∗}
Event queue QE

Reaction queue QR

Logical time t

Physical time T

Set of tags T = N
2

Set of origins O = {Logical, Physical}
Reactors

Reactor instance r = (I, O, A, S, N , M, R, G, P, •, �)

Set of input ports for r I(r) ⊆ Σ

Set of output ports for r O(r) ⊆ Σ

Set of actions for r A(r) ⊆ Σ × N × O

Initialization action for r •(r) ∈ A(r)

Termination action for r �(r) ∈ A(r)

Set of state identifiers for r S(r) ⊆ Σ

Set of reactions contained in r N (r)

Set of mutations contained in r M(r)

Set of contained reactors of r R(r)

Topology of reactors in R(r) G(r) ⊆(⋃
r′∈R(r) O(r′)

)
×

(⋃
r′∈R(r) I(r′)

)

Priority function P : N ∪ M → P
Reactor containing reactor r C(r)

Inputs and outputs

Input, output instance i, o ∈ Σ

Reactions dependent on i ∈ I(r) N (i) = {n ∈ N (C(i)) | i ∈ D(n)}
Reactions antidependent on o ∈ O(r) N (o) = {n ∈ N (C(o)) | o ∈ D∨(n)}
Actions

Action instance a = (x, d, o)

Action identifier x ∈ Σ

Action delay d ∈ T

Action origin o ∈ O

82 M. Lohstroh et al.

Events
Event instance e = (t, v, g)

Event trigger t ∈ Σ

Event value v ∈ V

Event tag g ∈ T

Set of reactions and mutations T (t) =

triggered by trigger t {k ∈ N (C(t)) ∪ M(C(t)) | t ∈ T (k)}
Reactions
Reaction instance n = (D, T , B, D∨, H)

Set of reaction dependencies D(n) ⊆ I(C(n)) ∪
(⋃

r∈R(C(n)) O(r)
)

Set of reaction triggers T (n) ⊆ D(n) ∪ x(A(C(n)))

Reaction body B(n)
Set of reaction antidependencies D∨(n) ⊆ O(C(n)) ∪

(⋃
r∈R(C(n)) I(r)

)

Set of schedulable actions H(n) ⊆ x(A(C(n)))

Reactor containing reaction n C(n)

Reaction priority P (n) ∈ Z
+ ∪ {∗}

Priority of unordered reactions ∀q ∈ Z
− ∀p ∈ Z

+.

(n < ∗) ∧ (p ≯ ∗) ∧ (∗ ≯ p) ∧ (∗ ≤ ∗)

Mutations
Mutation instance m = (D, T , B, D∨, H)

Set of mutation dependencies D(m) ⊆ I(C(m))

Set of mutation triggers T (m) ⊆ D(m) ∪ x(A(C(m)))

Mutation body B(m)

Set of mutation antidependencies D∨(m) ⊆ O(C(m)) ∪
(⋃

r∈R(C(m)) I(r)
)

Set of schedulable actions H ⊆ x(A(C(m)))∪
{x(a) | ∀r ∈ R(C(x)). a ∈ {•(r), �(r)}}

Reactor containing mutation m C(m)

Mutation priority P (m) ∈ Z
−

References

1. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
The MIT Press Series in Artificial Intelligence. MIT Press, Cambridge (1986)

2. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent programming
in Erlang, 2nd edn. Prentice Hall (1996)

3. Bai, Y.: Desynchronization: From macro-step to micro-step. In: 2018 16th
ACM/IEEE International Conference on Formal Methods and Models for System
Design (MEMOCODE), pp. 1–10, October 2018

4. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., Meuter, W.D.: A
survey on reactive programming. ACM Comput. Surv. (CSUR) 45(4), 52 (2013)

5. Baker Jr., H.C., Hewitt, C.: The incremental garbage collection of processes. ACM
Sigplan Not. 12(8), 55–59 (1977)

6. Banken, H., Meijer, E., Gousios, G.: Debugging data flows in reactive programs. In:
2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE),
pp. 752–763. IEEE (2018)

Reactors: A Deterministic Model for Composable Reactive Systems 83

7. Benveniste, A., Le Guernic, P.: Hybrid dynamical systems theory and the SIGNAL
language. IEEE Trans. Autom. Control 35(5), 525–546 (1990)

8. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

9. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Static scheduling of
multi-rate and cyclo-static DSP applications. In: Workshop on VLSI Signal Pro-
cessing. IEEE Press (1994)

10. Bonér, J., Farley, D., Kuhn, R., Thompson, M.: The reactive manifesto (2014).
http://www.reactivemanifesto.org/

11. Bonér, J., Klang, V., Kuhn, R., et al.: Akka library (2011–2019). http://akka.io
12. Brooks, C., et al.: A component architecture for the Internet of Things. Proc. IEEE

106(9), 1527–1542 (2018)
13. Lombide Carreton, A., Mostinckx, S., Van Cutsem, T., De Meuter, W.: Loosely-

coupled distributed reactive programming in mobile ad hoc networks. In: Vitek,
J. (ed.) TOOLS 2010. LNCS, vol. 6141. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13953-6 3

14. Chapiro, D.M.: Globally-asynchronous locally-synchronous systems. Ph.D. thesis,
Stanford University, October 1984

15. Cooper, G.H., Krishnamurthi, S.: Embedding dynamic dataflow in a call-by-value
language. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924. Springer, Heidelberg
(2006). https://doi.org/10.1007/11693024 20

16. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: OSDI
(2012)

17. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.: Hybrid
co-simulation: it’s about time. Softw. Syst. Model. 18, 1622–1679 (2017)

18. Czaplicki, E., Chong, S.N.: Asynchronous functional reactive programming for
GUIs. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation-PLDI 2013. ACM Press (2013)

19. Dennis, J.B.: First version data flow procedure language. Report MAC TM61, MIT
Laboratory for Computer Science (1974)

20. Edwards, J.: Coherent reaction. In: Proceedings of the 24th ACM SIGPLAN Con-
ference Companion on Object Oriented Programming Systems Languages and
Applications, pp. 925–932. ACM (2009)

21. Eidson, J., Lee, E.A., Matic, S., Seshia, S.A., Zou, J.: Distributed real-time software
for cyber-physical systems. Proc. IEEE (Spec. Issue CPS) 100(1), 45–59 (2012)

22. Elliott, C., Hudak, P.: Functional reactive animation. In: ACM SIGPLAN Notices,
vol. 32, pp. 263–273 (1997)

23. Friedman, D.P., Wise, D.S.: The impact of applicative programming on multipro-
cessing. Indiana University, Computer Science Department (1976)

24. Gajski, D.: SpecC: Specification Language and Methodology. Kluwer Academic
Publishers, Norwell (2000)

25. S.C.S.W. Group, et al.: 1666–2011-IEEE standard for standard SystemC language
reference manual (2012)

26. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1319 (1991)

27. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2–3), 202–220 (2009)

28. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.)
Logics and Models of Concurrent Systems, vol. 13, pp. 477–498. Springer, Heidel-
berg (1985). https://doi.org/10.1007/978-3-642-82453-1 17

http://www.reactivemanifesto.org/
http://akka.io
https://doi.org/10.1007/978-3-642-13953-6_3
https://doi.org/10.1007/978-3-642-13953-6_3
https://doi.org/10.1007/11693024_20
https://doi.org/10.1007/978-3-642-82453-1_17

84 M. Lohstroh et al.

29. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

30. Hewitt, C.: Viewing control structures as patterns of passing messages. J. Artif.
Intell. 8(3), 323–363 (1977)

31. Hewitt, C., Bishop, P.B., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proceedings of the 3rd International Joint Conference
on Artificial Intelligence. Standford, CA, USA, 20–23 August 1973, pp. 235–245
(1973)

32. Kahn, G.: The semantics of a simple language for parallel programming. In: Pro-
ceedings of the IFIP Congress 74, pp. 471–475. North-Holland Publishing Co.
(1974)

33. Koopman, P.: A case study of Toyota unintended acceleration and software
safety (2014). http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-
unintended.html

34. Kuhn, R., Hanafee, B., Allen, J.: Reactive Design Patterns. Manning Publications
Company (2017)

35. Lee, E., Reineke, J., Zimmer, M.: Abstract PRET machines. In: 2017 IEEE Real-
Time Systems Symposium (RTSS), pp. 1–11, December 2017

36. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

37. Lee, E.A., Parks, T.M.: Dataflow process networks. Proc. IEEE 83(5), 773–801
(1995)

38. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)
39. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of

computation. IEEE Trans. Comput.-Aided Des. Circuits Syst. 17(12), 1217–1229
(1998)

40. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In: Morari, M.,
Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 25–53. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31954-2 2

41. Lee, E.A., Zheng, H.: Leveraging synchronous language principles for heteroge-
neous modeling and design of embedded systems. In: EMSOFT, pp. 114–123. ACM
(2007)

42. Liao, S., Tjiang, S., Gupta, R.: An efficient implementation of reactivity for model-
ing hardware in the Scenic design environment. In: Design Automation Conference.
ACM (1997)

43. Liu, X., Matsikoudis, E., Lee, E.A.: Modeling timed concurrent systems. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 1–15. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817949 1

44. Lohstroh, M., Lee, E.A.: Deterministic actors. In: 2019 Forum for Specification
and Design Languages (FDL), pp. 1–8, 2–4 September 2019

45. Lohstroh, M., Schoeberl, M., Jan, M., Wang, E., Lee, E.A.: Work-in-progress:
programs with ironclad timing guarantees. In: 2019 International Conference on
Embedded Software (EMSOFT), October 2019

46. Lohstroh, M., et al.: Actors revisited for time-critical systems. In: Proceedings of
the 56th Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV,
USA, 02–06 June 2019, pp. 152:1–152:4. ACM (2019)

47. Maler, O., Manna, Z., Pnueli, A.: Prom timed to hybrid systems. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol.
600. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0032003

http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html
http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html
https://doi.org/10.1007/978-3-540-31954-2_2
https://doi.org/10.1007/11817949_1
https://doi.org/10.1007/BFb0032003

Reactors: A Deterministic Model for Composable Reactive Systems 85

48. Matsikoudis, E., Lee, E.A.: The fixed-point theory of strictly causal functions.
Technical report UCB/EECS-2013-122, EECS Department, University of Califor-
nia, Berkeley, 9 June 2013

49. Meijer, E.: Reactive extensions (Rx): curing your asynchronous programming blues.
In: ACM SIGPLAN Commercial Users of Functional Programming, CUFP 2010,
pp. 11:1–11:1. ACM, New York (2010)

50. Moritz, P., et al.: Ray: a distributed framework for emerging AI applications.
simarXiv:1712.05889v2 [cs.DC] 30 Sept 2018 (2018)

51. Myter, F., Scholliers, C., De Meuter, W.: Distributed reactive programming for
reactive distributed systems. arXiv preprint arXiv:1902.00524 (2019)

52. NASA Engineering and Safety Center: National highway traffic safety adminis-
tration Toyota unintended acceleration investigation. Technical assessment report,
NASA, 18 January 2011

53. Parks, T.M.: Bounded scheduling of process networks. Ph.D. thesis. Technical
report UCB/ERL M95/105, UC Berkeley (1995)

54. Prokopec, A.: Pluggable scheduling for the reactor programming model. In: Ricci,
A., Haller, P. (eds.) Programming with Actors. LNCS, vol. 10789. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00302-9 5

55. Roestenburg, R., Bakker, R., Williams, R.: Akka in Action. Manning Publications
Co. (2016)

56. Schoeberl, M., Puffitsch, W., Hepp, S., Huber, B., Prokesch, D.: Patmos: a time-
predictable microprocessor. Real-Time Syst. 54(2), 389–423 (2018)

57. Tasharofi, S., Dinges, P., Johnson, R.E.: Why do scala developers mix the actor
model with other concurrency models? In: Castagna, G. (ed.) ECOOP 2013. LNCS,
vol. 7920. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39038-
8 13

58. Tilkov, S., Vinoski, S.: Node. js: using JavaScript to build high-performance net-
work programs. IEEE Internet Comput. 14(6), 80–83 (2010)

59. Torres Lopez, C., Gurdeep Singh, R., Marr, S., Gonzalez Boix, E., Scholliers, C.:
Multiverse debugging: non-deterministic debugging for non-deterministic programs
(2019)

60. Vernon, V.: Reactive Messaging Patterns with the Actor Model: Applications and
Integration in Scala and Akka. Addison-Wesley Professional (2015)

61. Zhao, Y., Lee, E.A., Liu, J.: A programming model for time-synchronized dis-
tributed real-time systems. In: Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pp. 259–268. IEEE (2007)

62. Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized dis-
tributed real-time systems. In: 13th IEEE Real Time and Embedded Technology
and Applications Symposium, RTAS 2007, pp. 259–268, April 2007

63. Zimmer, M., Broman, D., Shaver, C., Lee, E.A.: FlexPRET: a processor platform
for mixed-criticality systems. In: Real-Time and Embedded Technology and Appli-
cation Symposium (RTAS) (2014)

http://arxiv.org/abs/1902.00524
https://doi.org/10.1007/978-3-030-00302-9_5
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-642-39038-8_13

Simulation and Tools

Guaranteed Simulation of Dynamical
Systems with Integral Constraints

and Application on Delayed Dynamical
Systems

Paul Rousse1(B), Julien Alexandre dit Sandretto2(B),
Alexandre Chapoutot2(B), and Pierre-Löıc Garoche1(B)

1 ONERA, 31400 Toulouse, France
{paul.rousse,pierre-loic.garoche}@onera.fr

2 U2IS, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
{julien.alexandre-dit-sandretto,alexandre.chapoutot}@ensta-paristech.fr

Abstract. A reachable set computation method for dynamical systems
with an integral constraint over the input set is proposed. These models
are typical in robustness analysis when studying the impact of bounded
energy noises over a system response and can also model a large fam-
ily of complex systems. The reachable set is over-approximated using a
guaranteed set-based integration method within the interval arithmetic
framework.

A Runge-Kutta guaranteed integration scheme with pessimistic
bounds over the input provides a first conservative bound over the reach-
able tube. Then, the integral constraint is used to define a contractor over
the reachable tube. This contractor and a propagation step are succes-
sively applied on the over-approximation until a fixed point is reached.
We evaluated our algorithm with DynIbex library to simulate a delayed
system, i.e., an infinite dimensional system that can be modeled as a
linear time-invariant system subject to an integral quadratic constraint.
Our approach is shown to be tractable and enables the use of inter-
val arithmetic and guaranteed integration for a richer set of dynamical
systems.

Keywords: Numerical integration · Dynamical systems with integral
constraint · Interval arithmetic

1 Introduction

In this paper, we present a method to compute the flowpipe of a dynamical
system with an integral inequality constraint between an unknown input distur-
bance and the state trajectory. The interval arithmetic and guaranteed simula-
tion frameworks are used. With additional assumptions about the dynamic of
the disturbance, the integral constraint gives bounds over the set of disturbances.

c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 89–107, 2020.
https://doi.org/10.1007/978-3-030-41131-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_5

90 P. Rousse et al.

A contractor over the set of reachable states is defined out of these bounds. This
contractor is then used in a fixed point algorithm with a propagation step (as
described in [1]). Our algorithm is implemented using DynIbex library [2] and
applied to overapproximate the flowpipe of a dynamical system with an inner
delay.

In dynamical system’s analysis, two signal norms are frequently used: the
∞-norm (that corresponds to the maximum vector norm over the time domain)
and the 2-norm (that corresponds to the signal’s energy). A signal with a 2-norm
bound can be equivalently defined with an integral constraint. Disturbances with
∞-norm bounds are naturally handled by guaranteed integration frameworks.
Disturbances with 2-norm have been less studied by the community despite
their modeling power. In control theory, many relationships between signals and
systems are expressed in terms of 2-norm gains. In Hybrid systems analysis,
2-norm input-output gains have been derived (as in [21]) and can be used to
compute overapproximation of the reachable set. [7] proposes the use of model
reduction methods to verify large systems. No error bound is used during the
verification of the approximated system. In fact, such bounds exist and can be
expressed as a 2-norm gain relationship with the input signal. Many complex
systems can be, as well, described by a linear time-invariant dynamical system
disturbed by a 2-norm bounded signal [17].

Related Works. In the first paragraph, we motivate our choice of model with a
challenging application: differential equation with inner delays. The next para-
graphs review works in reachability analysis for dynamical systems with integral
constraints.

Simulation of differential equations with inner delays is a notoriously com-
plex problem [26,28]. In [8], the author propose to compute an inner and outer
approximation of a delayed system’s flowpipe. The solution to the differential
delay equation is obtained by integrating ordinary differential equations (ODE)
over small steps. The solutions over these time intervals are recursively used
until the final time of integration is reached. The infinite dimensional state of
the delay (i.e. the memory of the delay) is sampled in time. Taylor series and
a classical integration method are used to solve the ODE. In [6], the simulation
trace is obtained with a similar approach. Along the simulation trace, a bound
over the numerical integration error is derived by solving an optimization prob-
lem. In [30], set-boundary based reachability analysis method initially developed
for ODE is extended to delay differential equations. A sensitivity analysis is used
get an inner and outer approximation of the reachable set. In [6,8,26,28,30], an
outer approximation of past states is used to solve the delay differential equa-
tion, local properties (Taylor remainder, local contraction of the flowpipe and
sensitivity analysis) are used to get guaranteed bound over the reachable state.
In [25], the stability of linear systems with constant delays is studied. The state
of the delay operator is expressed as a weighted sum of polynomials functions
and a remaining noise signal. It can be shown that these weights are solution of
a linear time-invariant system subject to a disturbance. The disturbance satis-
fies an energetic constraint. Delays modeled as an integral quadratic constraint

Guaranteed Simulation of Systems with Integral Constraints 91

have also been used for reachability analysis of delay systems in [20]. The reach-
able tube is overapproximated using a time-varying ellipsoidal set with time-
dependent polynomial radius and center. The overapproximating relationship
can be expressed as the positivity of a polynomial over the state and time space.
An SDP solver is used to find a solution. The SDP solver provide a certificate of
positivity for all positive polynomial and thus the overapproximation relation-
ship can be guaranteed. In this work, the system with delay is as well modeled by
an integral quadratic constraint to build a contractor. An initial reachable tube
can be roughly overapproximated using guaranteed integration tools. Then, the
contractor is used to reduce the pessimism of this reachable tube. To apply this
contraction, we use forward propagation of the reachable set as in [22].

Computing the reachable set of dynamical systems with integral constraints
can be expressed as an optimal control problem as in [10,16]. A state belongs to
the reachable set if the maximum integral value satisfies the positivity constraint
along its trajectory. Standard tools from optimal control can then be used. This
optimization problem can be locally solved (see, e.g., with the Pontryagin Max-
imum Principle -PMP-, see [9,10,16,29]) leading to a local description of the
reachable set boundary. It also can be solved globally (using Hamilton-Jacobi-
Bellman -HJB- viscosity subsolutions, see [27]) leading to global constraints over
the reachable set. These methods rely on numerical integration of (partial) dif-
ferential equations and are often subject to numerical instabilities.

HJB and PMP based methods propagate the constraints along the flow of
the dynamical system. Occupation measures and barrier certificates methods aim
at finding constraints over the reachable tube of a dynamical system: [21] uses
integral constraints for verification purposes using barrier certificates where the
positivity of the integral is ensured by using a nonnegative constant multiplier:
[11,14] use an occupation measure approach where the integral constraint can
be incorporated as a constraint over the moment of the trajectories. A hierarchy
of semi-definite conditions is derived for polynomial dynamics. Then, off-the-
shelf semi-definite programming solvers are used to solve the feasibility problem.
Optimization-based methods do not usually take advantage of the model struc-
ture as they consider a large class of systems (convex, Lipschitz or polynomial
dynamics for example).

For linear system subject to Integral Quadratic Constraints (IQC), the reach-
ability problem can be expressed as the classical Linear Quadratic Regulator
problem [24]. Optimal trajectories belong to a time-varying parabolic surface,
whose quadratic coefficients are the solution to a Riccati differential equation.
[10,23] describes the reachable set of LTI systems with terminal IQC. [13] for-
malizes the problem with a game theory approach. Recent works showed that the
ellipsoidal method developed in [15] can be extended to a so-called Paraboloid
method [22] to get the exact characterization of the reachable set of such systems.

Contributions:

– we developed a framework to analyze systems with integral constraints
between an unknown disturbance and the state. We make an additional

92 P. Rousse et al.

assumption about the disturbance dynamic. This assumption asserts that
the variation of the disturbance is bounded. We then define a contractor over
the set of trajectories. This contractor is used in a fixed point algorithm.

– we use models from robust control theory into guaranteed numerical integra-
tion.

Plan: In Sect. 2, we define the system of interest. Guaranteed numerical integra-
tion for unconstrained systems is presented in Sect. 3. The main contribution of
this work is presented in Sect. 4. Since the integral constraint cannot be directly
handled by guaranteed integration software such as DynIbex, we make further
assumptions about the disturbance dynamic. These hypotheses are then used to
define a narrowing operator out of the integral constraint. In Sect. 5, our app-
roach is used to compute the reachable set of a dynamical system with inner
delays. We compare this method to a set-based method.

Notations. IR is the set of intervals over R, interval vectors are noted in bold
letters. Let the norm of [x] ∈ IR

n be [[x]] = maxx∈[x]‖x‖. For an interval [x] ∈ IR,
let [x] = supx∈[x] x. For n ∈ N and an interval I of R, L2

loc(R
+;Rn) is the set of

locally square integrable functions from I to R
n.

2 System with Integral Constraint over the State

Let the following system: {
ẋ = f(t, x, w)
x(0) ∈ x0

(1)

where w is an unknown disturbance in L
2
loc(R

+;Rm) that satisfies the integral
constraint, for any τ ≥ 0:∫ τ

0

‖w(s)‖2 ds ≤
∫ τ

0

g(s, x(s))ds (2)

where g : R+ × R
n is a given function.

Many systems can be modeled in such way. The robust control community
makes frequent use of this model where the integral constraint overapproximates
the behavior of complex systems, e.g., saturations, delays and bounded non-
linearities to cite few of them.

Remark 1. The integral constraint does not give any bounds on the disturbance
as it can be easily understood from the unit energy disturbed system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ = −x + w

x(0) = 0

1 ≥
∫ 1

0

w2(τ)dτ

. (3)

Guaranteed Simulation of Systems with Integral Constraints 93

Let w be defined for any ε > 0 by⎧⎨
⎩w(τ) =

1
ε

when τ ∈ [0, ε]

w(τ) = 0 otherwise.

Since
∫ 1

0
w2(τ)dτ = 1, the inequality in Eq. (3) is verified for every ε > 0, however

no bounds can be determined for w since w (0) → ∞ when ε → 0. Please
note that the system defined in Eq. (3) has a bounded reachable set even if the
disturbance cannot be bounded at any given time (see [4, Chap. 8.1.2]).

3 Interval Analysis and Guaranteed Numerical
Integration

A presentation of the main mathematical tools is given in this section. First, the
basics of interval analysis is provided in Sect. 3.1. Then, a short introduction of
validated numerical integration is presented in Sect. 3.2.

3.1 Interval Analysis

The simplest and most common way to represent and manipulate sets of values
is interval arithmetic (see [18]). An interval [xi] = [xi, xi] defines the set of reals
xi such that xi ≤ xi ≤ xi. IR denotes the set of all intervals over reals. The size
(or width) of [xi] is denoted by w([xi]) = xi − xi.

Interval arithmetic extends to IR elementary functions over R. For instance,
the interval sum, i.e., [x1] + [x2] = [x1 + x2, x1 + x2], encloses the image of the
sum function over its arguments.

An interval vector or a box [x] ∈ IR
n, is a Cartesian product of n intervals.

The enclosing property basically defines what is called an interval extension or
an inclusion function.

Definition 1 (Inclusion function). Consider a function f : Rn → R
m, then

[f] :IRn → IR
m is said to be an inclusion function of f to intervals if

∀[x] ∈ IR
n, [f]([x]) ⊇ {f(x),x ∈ [x]} .

It is possible to define inclusion functions for all elementary functions such as
×, ÷, sin, cos, exp, etc. The natural inclusion function is the simplest to obtain:
all occurrences of the real variables are replaced by their interval counterpart and
all arithmetic operations are evaluated using interval arithmetic. More sophis-
ticated inclusion functions such as the centered form, or the Taylor inclusion
function may also be used (see [12] for more details).

94 P. Rousse et al.

Example 1 (Interval arithmetic). A few examples of arithmetic operations
between interval values are given

[−2, 5] + [−8, 12] = [−10, 17]
[−10, 17] − [−8, 12] = [−10, 17] + [−12, 8] = [−22, 25]

[−10, 17] − [−2, 5] = [−15, 19]
[−2, 5]
[−8, 12]

= [−∞,∞]

[3, 5]
[8, 12]

=
[

3
12

,
5
8

]
[

3
12

,
5
8

]
× [8, 12] =

[
2,

15
2

]

In the first example of division, the result is the interval containing all the real
numbers because denominator contains 0.

As an example of inclusion function, we consider a function p defined by

p(x, y) = xy + x .

The associated natural inclusion function is

[p]([x], [y]) = [x][y] + [x],

in which variables, constants and arithmetic operations have been replaced by
its interval counterpart. And so p([0, 1], [0, 1]) = [0, 2] ⊆ {p(x, y) | x, y ∈ [0, 1]} =
[0, 2]. �

In the constraint programming community, complex equality and inequality
constraints can be handled using so-called contractors. A contractor is an oper-
ator that associates to a set one of its subset that contains all the points where
the constraint is verified (see [5]).

Definition 2. For a constraint f that maps R
n to a truth value, a contractor

Ctc of f associates to a subset of Rn to a subset of Rn. For any [b], [b′] ∈ IR
n,

Ctc must verifies the following properties:

– the contractance: Ctc ([b]) ⊆ [b],
– the conservativeness: ∀x ∈ [b]\Ctc ([b]) , f(x) is not satisfied,
– the monotonicity: [b′] ⊆ [b] ⇒ Ctc ([b′]) ⊆ Ctc ([b])

3.2 Validated Numerical Integration Methods

Mathematically, differential equations have no explicit solutions, except for few
particular cases. Nevertheless, the solution can be numerically approximated
with the help of integration schemes such as Taylor series [19] or Runge-Kutta
methods [2,3].

Guaranteed Simulation of Systems with Integral Constraints 95

In the following, we consider a generic parametric differential equation as an
interval initial value problem (IIVP) defined by⎧⎪⎨

⎪⎩
ẏ = F (t,y,x,p,u)
0 = G(t,y,x,p,u)

y(0) ∈ Y0,x(0) ∈ X0,p ∈ P,u ∈ U , t ∈ [0, tend] ,

(4)

with F : R×R
n ×R

m ×R
r ×R

s �→ R
n and G : R×R

n ×R
m ×R

r ×R
s �→ R

m.
The variable y of dimension n is the differential variable while the variable x is
an algebraic variable of dimension m with an initial condition y(0) ∈ Y0 ⊆ R

n

and x(0) ∈ X0 ⊆ R
m. In other words, differential-algebraic equations (DAE)

of index 1 are considered, and in the case of m = 0, this differential equation
simplifies to an ordinary differential equation (ODE). Note that usually, the
initial values of algebraic variable x are computed by numerical algorithms used
to solve DAE but we consider it fixed here for simplicity. Variable p ∈ P ⊆ R

r

stands for parameters of dimension r and variable u ∈ U ⊆ R
s stands for a

control vector of dimension s. We assume standard hypotheses on F and G to
guarantee the existence and uniqueness of the solution to such problem.

A validated simulation of a differential equation consists in a discretization
of time, such that t0 � · · · � tend, and a computation of enclosures of the set of
states of the system y0, . . . ,yend, by the help of a guaranteed integration scheme.
In details, a guaranteed integration scheme is made of

– an integration method Φ(F,G,yj , tj , h), starting from an initial value yj at
time tj and a finite time horizon h (the step-size), producing an approximation
yj+1 at time tj+1 = tj +h, of the exact solution y(tj+1;yj), i.e., y(tj+1;yj) ≈
Φ(F,G,yj , tj , h);

– a truncation error function lteΦ(F,G,yj , tj , h), such that

y(tj+1;yj) = Φ(F,G,yj , tj , h) + lteΦ(F,G,yj , tj , h).

Basically, a validated numerical integration method is based on a numerical
integration scheme such as Taylor series [19] or Runge-Kutta methods [2,3] which
is extended with interval analysis tools to bound the local truncation error,
i.e., the distance between the exact and the numerical solutions. Mainly, such
methods work in two stages at each integration step, starting from an enclosure
[yj] � y(tj ;y0) at time tj of the exact solution, we proceed by:

i. a computation of an a priori enclosure [ỹj+1] of the solution y(t;y0) for all
t in the time interval [tj , tj+1]. This stage allows one to prove the existence
and the uniqueness of the solution.

ii. a computation of a tightening of state variable [yj+1] � y(tj+1;y0) at time
tj+1 using [ỹj+1] to bound the local truncation error term lteΦ(F,G,yj , tj , h).

A validated simulation starts with the interval enclosures [y(0)], [x(0)], [p]
and [u] of respectively, Y0, X0, P, and U . It produces two lists of boxes:

96 P. Rousse et al.

– the list of discretization time steps: {t0, . . . , tend};
– the list of state enclosures at the discretization time steps: {[y0], . . . , [yend]};
– the list of a priori enclosures: {[ỹ0], . . . , [ỹend]}.

Figure 1 represents the enclosures [ỹi] and [yi] and their membership properties
with the trajectories of the dynamical system.

[ỹi]

[yi]
[yi+1]

ti ti+1

t

y(t)

Fig. 1. The trajectories (in light gray) are overapproximated by [yi] (thick line seg-
ment) at time step ti. The a priori enclosure [ỹi] (in gray) contains the trajectories
over the time interval [ti, ti+1].

4 Dynamical Systems with Integral Constraints

This section presents the main contribution of our work. For system described
by Eq. (1) subject to the integral constraint defined by Eq. (2), we compute an
overapproximation of its flowpipe over the time domain [0, T], where the time
horizon T > 0 is given. A first overapproximation of the flowpipe is computed
using pessimistic bounds over the disturbances. The integral constraint in Eq. (2)
is used to derive contractor. This contractor and a propagation step are applied
in a fixed point algorithm until a contraction factor is reached. We run the
algorithm over a simple example.

4.1 Extended System

We extend the system’s state with the integral value corresponding to the integral
constraint in Eq. (2): {

ż(t) = g(t, x(t)) − ‖w(t)‖2
z(0) = 0

(5)

Then, Eq. (2) can be equivalently expressed for z:

∀t ∈ R
+, z(t) ≥ 0. (6)

As mentioned in Remark 1, no L∞ bounds can be derived for L2 bounded
signals. To study such systems, we make further assumptions about the distur-
bance:

Guaranteed Simulation of Systems with Integral Constraints 97

Assumption 1. w is continuous, differentiable and of continuous derivative
over R

+.

This assumption seems reasonable in the case of real systems modeling since
disturbances modeled by integral constraints correspond to physical quantities.
Since the continuity of a function over a closed interval implies its boundedness,
Assumption 1 implies that the signal w is bounded and of bounded variation
over [0, T]. Therefore, there exists [w] ∈ IR

m and [w′] ∈ IR
m such that for all

t ∈ [0, T]: {
w(t) ∈ [w]
ẇ(t) ∈ [w′]

(7)

Using Assumption 1 and Eq. (5), the following system will be studied:

S :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f(t, x(t), w(t))

ż(t) = g(t, x(t), w(t)) − ‖w(t)‖2
ẇ(t) ∈ [w′]
x(0) ∈ [x0]
z(0) = 0

0 ≤ z(t)
w(t) ∈ [w]

(8)

where [x0] ∈ IR
n is the set of initial states. We use the following notation

(x, z, w) ∈ S iff (x,w) ∈ L
2
loc([0, T];Rn) × L

2
loc([0, T];R) × L

2
loc([0, T];Rm) is a

trajectory of S.
Equation (7) gives prior bounds over the disturbance w. They can be used

to propagate the trajectories using standard guaranteed integration frameworks.
Thanks to this, we get a first a priori overapproximation of the reachable set. In
the next section, we use this first overapproximation and a contractor (defined
out of the integral inequality) in a fixed point algorithm in order to get a tighter
overapproximation of the reachable set.

4.2 Bounds over w

In this section, Eq. (7) and the integral constraint in Eq. 6 are used to derive
bounds over the disturbance w. These bounds are then used to define a contractor
over the a priori enclosure of the trajectories.

We present a preliminary result to Property 2:

Property 1. For [v] ∈ IR
p, p ∈ N and r > 0, if [[v]] ≤ r then [v] ⊂ [−r, r]p.

Proof. In an Euclidean space, the norm 1 and norm 2 satisfies
√

v2
1 + · · · + v2

p ≤
|v1| + · · · + |vp| for any (v1, . . . , vp) ∈ R

p. �

When w satisfies Eq. (7) and a given integral constraint, hard bounds (mean-
ing in ∞-norm) can be derived over w:

98 P. Rousse et al.

Property 2. For a w ∈ L
2
loc([0, h];Rm) defined over an interval of length h > 0.

If w satisfies Eq. (7) (with given bounds [w], [w′] ∈ IR
m), then for any r > 0:

∫ h

0

‖w(τ)‖2 dτ ≤ r ⇒ ∀τ ∈ [0, h], w(τ) ∈ [Wr],

where [Wr] = [−k, k]n with k =
√

r
h + h

2 [[w′]] (where [[w′]] is the maximum
Euclidean norm over the elements of [w′]).

Proof. By applying the Cauchy-Schwartz inequality between the signal w and
t �→ 1 for the inner product of square integrable function, we have:∥∥∥∥∥

∫ h

0

w(τ)dτ

∥∥∥∥∥
2

≤ h

∫ h

0

‖w(τ)‖2 dτ ≤ hr.

By Eq. (7), w(τ) = w0 +
∫ τ

0
w1(κ)dκ with w0 ∈ [w] and w1(·) ∈ [w′]. Using the

reverse triangular inequality, we have:∥∥∥∥∥
∫ h

0

w0dτ

∥∥∥∥∥ ≤
√

rh +

∥∥∥∥∥
∫ h

0

∫ τ

0

w1(κ)dκ

∥∥∥∥∥ .

Then, we get:

‖hw0‖ ≤
√

hr +
h2

2
[[w′]]. (9)

This relationship is derived over [0, h] but is also valid for any time interval
[t, t + h] of width h, t > 0. Therefore, by using Property 1 and Eq. (9), we have:
∀τ ∈ [0, h], w(τ) ∈ [Wr]. �

We then use Property 2 to derive bounds in the specific case of Eq. (5). Let
a system trajectory (x, z, w) ∈ S, such that at a given t ∈ [0, T] and h > 0 s.t.
t + h ∈ [0, T], and for all τ ∈ [t, t + h]:{

(x(t), z(t), w(t)) ∈ [yt]
(x(τ), z(τ), w(τ)) ∈ [ỹt]

where

{
[yt] = [xt] × [zt] × [wt]
[ỹt] = [x̃t] × [z̃t] × [w̃t]

. (10)

The trajectories belong to [yt] at t and are in [ỹt] between [t, t + h]. At t + h,
for a given t ≥ 0 and a given h ≥ 0, Eq. (8) implies that z satisfies:

z(t + h) = z(t) +
∫ t+h

t

g(t, x(t))dτ −
∫ t+h

t

‖w(τ)‖2 dτ.

By applying Eq. 6 at t + h implies that z(t + h) ≥ 0, we have the following
relationship: ∫ t+h

t

‖w(τ)‖2 dτ ≤ z(t) +
∫ t+h

t

g(τ, x(τ))dτ. (11)

Guaranteed Simulation of Systems with Integral Constraints 99

Let the function

q(z, x) = z +
∫ t+h

t

g(τ, x(τ))dτ. (12)

By using an interval evaluation [q] of q, the upperbound of q(z, x) can be evalu-
ated for z ∈ [zt] and x ∈ [x̃t]. We denote by [q]([zt], [x̃t]) this upperbound. For
any w ∈ L

2
loc([t, t + h], [w̃t]), Eq. 11 implies:

∫ t+h

t

‖w(τ)‖2 dτ ≤ [q]([zt], [x̃t]).

Then, Property 2 can be used to derive bounds over the disturbance w:

Property 3. For a w ∈ L
2
loc([t, t+h];Rm) defined over an interval of length h > 0,

t > 0. If w satisfies Eq. (7) (with given bounds [w], [w′] ∈ IR
m), then for any

τ ∈ [t, t + h]:
w(τ) ∈ [Wq], (13)

where [Wq]([x̃t], [zt]) = [−r, r]m with r =
√

[q]([zt],[x̃t])
h and q defined in Eq. (12).

Proof. This is a direct application of Property 2. �

We then define the operator over [yt] and [ỹt]

C([yt], [ỹt]) = ([yt] ∩ [Yg]([x̃t], [zt]), [ỹt] ∩ [Yg]([x̃t], [zt])) (14)

where [yt] and [ỹt] are defined in Eq. (10),

[Yg] = [−∞,∞]n × [0,∞] × [Wq],

with [Wq] defined in Property 3.

Proposition 1. C defined in Eq. (14) is a contractor.

Proof. By Property 3, we have, for τ ∈ [t, t + h],

w(τ) ∈ [Wq],

i.e., all the disturbance signals of S belongs to [Wq], so the contractor is con-
servative. Since the contractor is defined as an intersection with [yt] and [ỹt]
respectively, we have

([yt], [ỹt]) ⊆ C([yt], [ỹt]),

C is contractive. For any ([y′
t], [ỹ

′
t]) such that [y′

t] ⊆ [yt] and [ỹ′
t] ⊆ [ỹt],

C([y′
t], [ỹ

′
t]) ⊆ C([yt], [ỹt]),

i.e. C is monotone. �

100 P. Rousse et al.

4.3 Integral Constraint Propagation

The contractor defined by Eq. (14) is used in a fixed point algorithm as in [1]. A
priori enclosure of the trajectory is computed using bounds Eq. (7) over w. The
integration algorithm gives

– the discretization time steps: {t0, . . . , tend};
– the state enclosure at the discretization time steps: Y0 = {[y0

0], . . . , [y
0
end]};

– the a priori enclosures: Ỹ0 = {[ỹ0
0], . . . , [ỹ

0
end]}.

We then apply the contractor over each couple of discretized time-step boxes
[y0

i] ∈ Y0 and their associated a priori enclosures [ỹ0
i] ∈ Ỹ0. These 2 steps are

repeated in a fixed point algorithm until the contraction factor is lower than a
given value. In this approach, time steps are computed at the first iteration of
the algorithm and are not updated.

Example 2. We study the following linear time-invariant system disturbed by an
unknown signal w constrained by a 2-norm inequality:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = −x(t) + w(t)∫ t

0

w(τ)2dτ ≤
∫ t

0

0.01x(τ)2dτ

x(0) ∈ [−1, 1]

(15)

with [w] = [−1, 1] and [w′] = [−1, 1] in Eq. (7) for t ∈ [0, 2.5]. Figure 2 shows the
reachable set of this dynamical system computed with the method described in
this section.

Fig. 2. Computation of the overapproximation of the reachable set of Example 2 using
the algorithm presented in Sect. 4. Blue boxes corresponds to the a priori enclosures
at the first iteration of the algorithm ˜Y0, green boxes are the a priori enclosure at the
3rd iteration ˜Y3 of the algorithm. (Color figure online)

Guaranteed Simulation of Systems with Integral Constraints 101

5 Examples

In this part, we present applications of the method described in Sect. 4 for a
tank system (Subsect. 5.1) and a delayed system (Subsect. 5.2). The results are
discussed in the Subsect. 5.3.

5.1 Tank System

We consider a 2-tanks system (see Fig. 3) described by the following dynamical
equation ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ḣ1 = −r1
√

h1 + w

ḣ2 = −r2
√

h2 + r1
√

h1∫ τ

0

w(τ)2dτ ≤
∫ t

0

(
r2

√
h2(τ)

)2

dτ

, (16)

with initial conditions: {
h1(0) = 1
h2(0) = 0

.

r1 = 0.1 and r2 = 0.001 are given constants depending on the hole diameter, h1

and h2 are the respective level of water of tanks 1 and 2. The pump is operated
externally and is considered as an unknown disturbance, we model it as the set
of signals w that verify the integral constraint in Eq. (16).

The plot in Fig. 3 corresponds to the reachable set overapproximation com-
puted using the algorithm described in Sect. 4. The overapproximation of the
reachable set over h1 is larger that over h2. This is a consequence that the dis-
turbance is directly added into the Tank 1 (to h1) and is filtered by Tank 1
before influencing Tank 2. At t = 0.6, the reachable set over h1 computed with
the integral constraint is 9 times smaller than the reachable set computed with
only the prior bound over the unknown disturbance w (see Figs. 3a and b).

5.2 Delayed System with Integral Quadratic Constraint

For u, v ∈ L
2
loc(R

+;R), the delay operator Dh over an input signal u is defined
by the following relationship:

v = Dh(u) ⇔
{

v(t) = u(t − h) for all t ≥ h

v(t) = 0 otherwise.
(17)

Guaranteed integration of differential equation with delays is challenging. Since
they act as a memory of the past input signal over an interval of width h, the
state of the delay belongs to L

2
loc([0, h],R). The dimension of the system state

space is therefore non finite.
The stability of linear time-invariant (LTI) systems with internal delays is

studied in [25]. The state of the delay is projected over finite Legendre polyno-
mial basis. These projections are time-dependent values since the state of the

102 P. Rousse et al.

(a)

(b)

Tank 1

Tank 2

Pump

(c)

Fig. 3. The tank system described by Eq. (16) is represented in Fig. 3c. The algorithm
presented in Sect. 4 is used to compute the overapproximation of h1 (in blue) and h2

(in orange). In Fig. 3a, the prior overapproximation of the reachable set ˜Y0 is shown.

Figure 3b shows the a priori enclosures ˜Y5 at the 5th iteration of the algorithm. (Color
figure online)

delay is also time-varying. The time derivative of these projections only depends
on the input of the delay operator. Then the norm of the state is overapproxi-
mated using a Bessel inequality. By integrating this inequality, we get an Integral
Quadratic Constraint (IQC) between the output of the delay operator, its input,
the derivative of its inputs, the projections over the truncated basis of Legendre
polynomial and an error signal. The IQC models the energy of the Legendre

Guaranteed Simulation of Systems with Integral Constraints 103

expansion’s remainder (i.e. the error signal). In [25], the stability of the delayed
LTI system is assessed for all possible error signal which verifies the derived IQC.
We use this IQC to overapproximate the reachable set of such system.

In what follows, we use the first order of the IQC relationship described in
[25, Theorem 5]. The state ξ corresponds to the average value of the delay’s
state. The remaining energy of the state is bounded by an integral quadratic
constraint.⎧⎪⎨

⎪⎩
ξ̇(t) = −15ξ(t) + 1.5v(t) − w(t) with ξ(0) = 0

under the IQC
∫ t

0

w(s)2ds ≤
∫ t

0

[
0.0025v̇(s)2 − 0.75 (v (s) − ξ (s))2

]
ds

(18)
The IQC system Eq. (18) is used to overapproximate the delay in the following

system: {
ẋ = −x − kcDh(x)

x(0) = 0
(19)

where kc = 4 and h = 0.01. Equations (17, 18 and 19) are then combined in a
unique linear time-invariant system with an integral quadratic constraint.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = AX + Bww(t) + Buu(t)

X(0) =
[
0
0

]
∫ t

0

w(τ)2dτ ≤
∫ t

0

[
X(τ)
u(τ)

]�
M

[
X(τ)
u(τ)

] (20)

where the matrices are defined by

A =
[

1.0417 15.6250
−6.0417 −15.6250

]
, Bw =

[
1.0000

−1.0000

]
, Bu =

[
1.0417

−0.0417

]

and

M =

⎡
⎣−12.4566 −30.5990 0.0434

−30.5990 −68.3594 0.6510
0.0434 0.6510 0.0434

⎤
⎦ .

The bounds in Eq. (13) are [w] = [−10, 10] and [w′] = [−1, 1]. The initial noise
set is defined such that [w0] = [w].

Figure 4 corresponds to the flowpipe of the delayed system modeled with the
integral quadratic constraint. YIQC is the reachable tube of the corresponding
system.

5.3 Discussion

The main motivation of this work is to use Integral quadratic constraint (IQC)
models in a guaranteed integration framework. IQC models are widely used in

104 P. Rousse et al.

Fig. 4. Computation of the flowpipe of the system Eq. (20) using guaranteed numerical
integration framework described in Sect. 3 and the contractor C introduced in Sect. 4.
y (the blue line) corresponds to the response of the delayed system. YIQC is the exact
flowpipe of system computed using the paraboloid method presented in [22]. (Color
figure online)

the robust control community for stability analysis of dynamical systems. When
the IQC system is stable, there exists an invariant over the set of states (x, z)
and the maximal reachable z value (i.e. the maximal integral value reachable) is
bounded for any trajectory.

In our approach, such an invariant does not exists. The overapproximation of
the maximal reachable z is constantly increasing. Consequently, bounds provided
by the fixed point algorithm are also strictly increasing. When these bounds
reach the prior bounds given by Eq. (7) over the disturbance, the reachable set
tends to the reachable set computed without the integral constraint. Figure 5
corresponds to the reachable set of Example 2 for a larger horizon of integration.
The integral constraints provide bounds over w. However, when the energy level
is too high, these bounds are strictly included in bounds given by Eq. (7). At
t = 15 s, the reachable set converges to the reachable set of the system with no
integral constraint between the disturbance and the state.

The bounds of the noise input depends on the result of the used guaranteed
set integration method. Therefore, if the later are too pessimistic, the proposed
contraction method will only rely on the bounds [w] and [w′] of Eq. (7).

In our approach, a larger class of systems is considered compared to the
linear case treated in [22]. Contrary to IQC models, only the dependence in the
disturbance needs to be quadratic for the integral constraint.

In term of scalability, our approach needs the state of the original dynamical
system to be extended from n variables to p = n+m+1 variables (m states for w,
1 state for z). Since the noise signal span in a subspace of Rn, m is always smaller
than n. Since m is often close to 1 (the delay modeled as an integral quadratic
constraint introduce a 1 dimensional noise signal), p is close to n (or 2n in the
worst case). However only the integration part can suffer from the dimension of
the system. Based on the advantage of our approach, a less expansive integration
method can be used for large systems for a similar result.

Guaranteed Simulation of Systems with Integral Constraints 105

We presented 2 examples. A non-linear system in Sect. 5.1 and a linear sys-
tem with delay in Sect. 5.2. A similar approach could be applied to non-linear
system with delay since the integration method can handle non-linear differential
equations.

Fig. 5. Computation of the flowpipe of the system Eq. (3) in Example 2 over [0, 20] using
guaranteed numerical integration framework described in Sect. 3 and the contractor C
introduced in Sect. 4. In blue, the reachable set when only Eq. (7) is used (i.e., when
the integral constraint is not used). In green, the reachable set of the system when the
integral constraint is taken into account. (Color figure online)

6 Conclusion

We presented a method to compute an overapproximation of the reachable tube
for dynamical systems with integral constraints over the input set. The integral
constraint is expressed as a contractor over the set of trajectories and used in a
fixed point algorithm together with a propagation process.

The method developed in this work is guaranteed (we compute an overap-
proximation of the reachable tube). However, our overapproximations tend to
constantly grow in size, even when the reachable set is known to be bounded.
At each time instant, the integral term of the integral constraint is overapprox-
imated by an interval, its upper bound is used to compute bounds over distur-
bances. For a trajectory, the worst case disturbance consumes all the integral
constraint and the best case disturbance consumes none of it. So the integral
level is always growing and at the same time, the reachable set is overapproxi-
mated with the worst case disturbance level. In future works, a template based
scheme will be used to overapproximate the maximum reachable integral value
of the constraint.

Models with integral constraints are a classical tool from the robust control
community. In this field, they represent energy gains between signals of the
system and a disturbance signal. Many complex systems can be analyzed in

106 P. Rousse et al.

this way. In future works, more applications will be discussed. More specifically,
error bounds over reduced models can be expressed as a 2-norm constraints
with the input signal of the system. Simplification of models is very appealing
for guaranteed integration since the computational time is mainly dependent on
the system dimension. Being able to reduce the order of the system and to bound
the error with a 2-norm gain would lead to more efficient algorithm.

Our method provides ways to verify physical systems where the sensors are
subject to energy bounded disturbances. Currently, most of these noise models
are bounds over the signal. Such models are problematic when they disturb
an integrating dynamic. Energy bounded noises might lead to more realistic
noise models and therefore to better overapproximation of dynamical system
reachable set. Future work will include verification of robotic systems subject to
sensor noises.

References

1. Alexandre dit Sandretto, J., Chapoutot, A.: Contraction, propagation and bisec-
tion on a validated simulation of ODE. In: Summer Workshop on Interval Methods
(2016)

2. Alexandre dit Sandretto, J., Chapoutot, A.: Validated explicit and implicit Runge-
Kutta methods. Reliab. Comput. 22, 79–103 (2016)

3. Alexandre dit Sandretto, J., Chapoutot, A.: Validated simulation of differential
algebraic equations with Runge-Kutta methods. Reliab. Comput. 22 (2016)

4. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in
System and Control Theory, vol. 15. SIAM, Philadelphia (1994)

5. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100
(2009)

6. Chen, M., Fränzle, M., Li, Y., Mosaad, P.N., Zhan, N.: Validated simulation-
based verification of delayed differential dynamics. In: Fitzgerald, J., Heitmeyer, C.,
Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 137–154. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 9

7. Chou, Y., Chen, X., Sankaranarayanan, S.: A study of model-order reduction tech-
niques for verification. In: Abate, A., Boldo, S. (eds.) NSV 2017. LNCS, vol. 10381,
pp. 98–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63501-9 8

8. Goubault, E., Putot, S., Sahlmann, L.: Inner and outer approximating flowpipes
for delay differential equations. In: Chockler, H., Weissenbacher, G. (eds.) CAV
2018. LNCS, vol. 10982, pp. 523–541. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96142-2 31

9. Graettinger, T.J., Krogh, B.H.: Hyperplane method for reachable state estimation
for linear time-invariant systems. J. Optim. Theory Appl. 69(3), 555–588 (1991)

10. Gusev, M.I., Zykov, I.V.: On extremal properties of boundary points of reachable
sets for a system with integrally constrained control. In: Proceedings of 20th World
Congress International Federation of Automatic Control, vol. 50, pp. 4082–4087.
Elsevier (2017)

11. Henrion, D., Korda, M.: Convex computation of the region of attraction of poly-
nomial control systems. IEEE Trans. Autom. Control 59(2), 297–312 (2014)

12. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-0249-6

https://doi.org/10.1007/978-3-319-48989-6_9
https://doi.org/10.1007/978-3-319-63501-9_8
https://doi.org/10.1007/978-3-319-96142-2_31
https://doi.org/10.1007/978-3-319-96142-2_31
https://doi.org/10.1007/978-1-4471-0249-6

Guaranteed Simulation of Systems with Integral Constraints 107

13. Jönsson, U.: Robustness of trajectories with finite time extent. Automatica 38(9),
1485–1497 (2002)

14. Korda, M.: Moment-sum-of-squares hierarchies for set approximation and optimal
control. Ph.D. thesis, EPFL, Switzerland (2016)

15. Kurzhanski, A.B., Varaiya, P.: On ellipsoidal techniques for reachability analysis.
Part I: external approximations. Optim. Methods Softw. 17(2), 177–206 (2002)

16. Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York
(1976)

17. Megretski, A., Rantzer, A.: System analysis via integral quadratic constraints.
IEEE Trans. Autom. Control 42(6), 819–830 (1997)

18. Moore, R.E.: Interval Analysis. Prentice Hall, Upper Saddle River (1966)
19. Nedialkov, N.S., Jackson, K., Corliss, G.: Validated solutions of initial value prob-

lems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)
20. Pfifer, H., Seiler, P.: Integral quadratic constraints for delayed nonlinear and

parameter-varying systems. Automatica 56, 36–43 (2015)
21. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-

cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

22. Rousse, P., Garoche, P.-L., Henrion, D.: Parabolic set simulation for reachability
analysis of linear time invariant systems with integral quadratic constraint. In:
Proceedings of European Control Conference, Naples (2019)

23. Savkin, A.V., Petersen, I.R.: Recursive state estimation for uncertain systems with
an integral quadratic constraint. IEEE Trans. Autom. Control 40(6), 1080–1083
(1995)

24. Scherer, C.W., Veenman, J.: Stability analysis by dynamic dissipation inequali-
ties: on merging frequency-domain techniques with time-domain conditions. Syst.
Control Lett. 121, 7–15 (2018)

25. Seuret, A., Gouaisbaut, F.: Hierarchy of LMI conditions for the stability analysis
of time-delay systems. Syst. Control Lett. 81, 1–7 (2015)

26. Shampine, L.F., Thompson, S.: Numerical solution of delay differential equations.
In: Gilsinn, D.E., Kalmár-Nagy, T., Balachandran, B. (eds.) Delay Differential
Equations, pp. 1–27. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-
85595-0 9

27. Soravia, P.: Viscosity solutions and optimal control problems with integral con-
straints. Syst. Control Lett. 40(5), 325–335 (2000)

28. Szczelina, R.: Rigorous integration of delay differential equations. Ph.D. thesis
(2015)

29. Varaiya, P.: Reach set computation using optimal control. In: Inan, M.K., Kurshan,
R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol.
170, pp. 323–331. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-
59615-5 15

30. Xue, B., Mosaad, P.N., Fränzle, M., Chen, M., Li, Y., Zhan, N.: Safe over- and
under-approximation of reachable sets for delay differential equations. In: Abate,
A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 281–299. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65765-3 16

https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-0-387-85595-0_9
https://doi.org/10.1007/978-0-387-85595-0_9
https://doi.org/10.1007/978-3-642-59615-5_15
https://doi.org/10.1007/978-3-642-59615-5_15
https://doi.org/10.1007/978-3-319-65765-3_16

Advanced Hazard Analysis and Risk
Assessment in the ISO 26262 Functional

Safety Standard Using Rigorous
Simulation

Adam Duracz3 , Ayman Aljarbouh1(B) , Ferenc A. Bartha3 ,
Jawad Masood3 , Roland Philippsen2 , Henrik Eriksson4, Jan Duracz2,

Fei Xu2, Yingfu Zeng3, and Christian Grante5

1 GIPSA-lab, Grenoble INP, University of Grenoble Alpes, Grenoble, France
ayman.aljarbouh@univ-grenoble-alpes.fr

2 School of Information Technology, Halmstad University, Halmstad, Sweden
{roland.philippsen,jan.duracz,fei.xu}@hh.se

3 Department of Computer Science, Rice University, Houston, TX, USA
{adam.duracz,ferenc.a.bartha,yingfu.zeng}@rice.edu

4 Dependable Systems, SP Technical Research Institute of Sweden, Boras, Sweden
5 AB Volvo Group Trucks Technology, Gothenburg, Sweden

Abstract. With the increasing level of automation in road vehicles, the
traditional workhorse of safety assessment, namely, physical testing, is no
longer adequate as the sole means of ensuring safety. A standard safety
assessment benchmark is to evaluate the behavior of a new design in the
context of a risk-exposing test scenario. Manual or computerized analysis
of the behavior of such systems is challenging because of the presence of
non-linear physical dynamics, computational components, and impacts.
In this paper, we study the utility of a new technology called rigorous
simulation for addressing this problem. Rigorous simulation aims to com-
bine some of the benefits of traditional simulation methods with those of
traditional analytical methods such as symbolic algebra. We develop and
analyze in detail a case study involving an Intersection Collision Avoid-
ance (ICA) test scenario using the hazard analysis techniques prescribed
in the ISO 26262 functional safety standard. We show that it is possible
to formally model and rigorously simulate the test scenario to produce
informative results about the severity of collisions. The work presented
in this paper demonstrates that rigorous simulation can handle models of
non-trivial complexity. The work also highlights the practical challenges
encountered in using it.

Keywords: Rigorous simulation · Model verification and validation ·
Domain specific languages · ISO 26262 hazard analysis · Validated
numerics · Interval arithmetic · Safety testing · Model-based testing

c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 108–126, 2020.
https://doi.org/10.1007/978-3-030-41131-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_6&domain=pdf
http://orcid.org/0000-0003-4175-4020
http://orcid.org/0000-0002-3909-2227
http://orcid.org/0000-0002-7545-9145
http://orcid.org/0000-0002-8884-9839
http://orcid.org/0000-0003-3513-8854
https://doi.org/10.1007/978-3-030-41131-2_6

Rigorous Simulation for Advanced Hazard Analysis and Risk Assessment 109

1 Introduction

Over the last five years, the automotive industry has demonstrated increas-
ing willingness to commercialize highly advanced driving functions, such as
autonomous driving, platooning, lane departure warning systems, self-parking,
etc. These advances promise to improve safety, comfort, economy, and sustain-
ability. However, due to the computationally intensive nature of advanced driv-
ing functions, traditional physical testing is no longer sufficient. To complement
physical testing, analytic and computational methods and tools including design,
modeling, synthesis, simulation [24,34], and symbolic algebra [35] are needed. In
this work, we focus on simulation.

Rigorous simulation [26] was introduced to combine the ease of use and
scalability of simulation with the rigor of symbolic methods. The idea is to
achieve ease of use by having the same user interface as traditional simulation
(model in, simulation traces out), to achieve scalability by using refined but-
still-essentially-the-same numerical algorithms, and to achieve rigor by ensuring
that the numerical algorithms only produce provably correct enclosures for all
outputs. The field of validated numerics [34] provides exactly that. Validated
numerics algorithms keep track of all possible errors in the computation of all
results. Enclosures are representations of sets that consist of an estimated result
and a guaranteed upper bound on the error of this estimate. This makes rigorous
simulation a promising tool for analyzing safety-critical systems, where all types
of error, from uncertainty or computational methods, are considered.

The Next Generation Test Methods for Active Safety Functions (NG-Test)
research project is an industry/academia collaboration aimed at investigating
ways to mitigate the difficulties with the use of physical testing for safety eval-
uation. In this project, we extended Acumen modeling language [1,33] with
support for rigorous simulation. Acumen facilitates modeling of complex sys-
tems through its support of a simple syntactic language with compositional
constructs.

In this paper, we extend results presented in [14,22]. We show how rigorous
simulation can be used to support safety analysis for realistic models of road
vehicles. For industrial relevance, we focus on Hazard Analysis and Risk Assess-
ment (HARA) as prescribed by the ISO 26262 functional safety standard [19]. We
present a rigorous simulation -based severity analysis with a more realistic and
significantly improved Intersection Collision Avoidance (ICA) model, including
a combination of multiple braking criteria based on recommendations from the
automotive industry, a more precise model of the sensor range (trapezoid), and
support for simulating scenarios in different terrain. The main contribution of
this paper is to demonstrate how rigorous simulation is a useful tool in provid-
ing rigorous bounds on Automotive Safety Integrity Level (ASIL), which can not
be obtained by using traditional simulation, as traditional simulation can miss
collision events (e.g. see Scenario 11.2 in Sect. 5.1 and Fig. 4).

The paper is organized as follows: Sect. 2 introduces Hazard Analysis and
Risk Assessment (HARA) in the ISO 26262 functional safety standard. As an
example of how the standard is applied, Sect. 3 describes a realistic case study

110 A. Duracz et al.

that analyzes an Intersection Collision Avoidance (ICA) scenario. Section 4 intro-
duces the vehicle and collision models in detail, and describes a key challenge
in modeling and rigorously simulating the test scenario, especially the model
dynamics, events, impacts, and the ICA algorithm. Section 5 discusses the results
of the rigorous simulation and demonstrates its advantage in providing accept-
able bounds on the severity class for different initial conditions and parameters
of the test scenario. Finally, we discuss the related work and summarize the
contribution and the future work in Sects. 6 and 7, respectively.

2 Hazard Analysis and Risk Assessment (HARA)
in the ISO 26262 Standard

In 2011, International Organization for Standardization (ISO) released a stan-
dard for functional safety of electrical and/or electronic systems installed in
road vehicles [19]. The standard recognizes three stages of the safety life cycle:
concept development, product development, and after start-of-production. The
ISO 26262 standard prescribes that the concept development phase should
include a Hazard Analysis and Risk Assessment (HARA). A hazard is a pos-
sible source of harm caused by the malfunctioning behavior of an item. A risk
is the probability of a harm. To manage risk, auxiliary quantitative measures of
severity, exposure, and likelihood are introduced. Risk is taken as the product of
these three quantities. Severity is a measure of potential injury that follows from
a given hazard. Exposure is the expected frequency of the hazard. Likelihood is
the probability that an accident will occur.

A risk classification scheme called Automotive Safety Integrity Level (ASIL)
breaks down risks intro three dimensions: severity (S), exposure (E) and con-
trollability (C). Compared to simple likelihood, controllability is the likelihood
that the driver can act to prevent an injury. The ASIL can be used to signal
to the system developers the level of attention or investment that is needed to
mitigate the risk associated with a particular hazard.

A four-level classification is used for severity and controllability, with 0 for
lowest level and 3 for the highest. Exposure is represented by a number between
0 and 4. As part of HARA, every hazard is given a classification in terms of
each of these three dimensions. If there is doubt, a conservative (upper bound)
classification is made. The lowest severity level, S0, is dedicated to consequences
having only material damages, and in that case no ASIL assignment is required.
The lowest exposure level, E0, is dedicated to extremely unusual or incredible
situations and requires no ASIL assignment. Between each exposure class, there
is one order of magnitude in probability. Controllability is not exclusive to the
driver of the item-equipped vehicle but, rather, all people at risk are considered.
Between each controllability class there is one order of magnitude in probability.

3 An Intersection Collision Avoidance (ICA) Scenario

We will consider a test scenario for an advanced emergency braking system
(AEBS) for commercial vehicles. The scenario was used as a common milestone

Rigorous Simulation for Advanced Hazard Analysis and Risk Assessment 111

Fig. 1. Overview of the test scenario. (Color figure online)

for the parties participating in the NG-TEST project, as a step beyond an ini-
tial one-dimensional rear-end collision avoidance scenario. It is based on an EU
regulation [16] that describes requirements and a type-approval test procedure.
In the test procedure, path plans are given for two adjacent vehicles coming
together at a four-way intersection as illustrated in Fig. 1. In the path plans
illustrated by this figure, the distance between the test and target vehicles is
at least 120 m when testing begins. The truck’s mass is 55 t and it travels at
80 ± 2 km/h, while the car has a mass of 1.5 t and travels at 12 ± 2 km/h. We
model the collision between the two vehicles as a set of vehicle configurations on
their paths, that is, the collision is prevented by only controlling the acceleration
of each vehicle along its path, never controlling vehicle steering. The first vehicle
is a truck (gray/blue in Fig. 1) and the second vehicle is a car (red in Fig. 1).

While making a turn, the car enters the path of truck by making a right turn
in the intersection. The car, then, is detected by the truck. Detection occurs when
the rectangle that bounds the car intersects the yellow trapezoid that models
the sensor area of the truck. Thus, the truck’s AEBS sensor can detect the car
already during the turn. The truck is equipped with an idealized sensor with
a field-of-view modeled by a symmetric trapezoid (with length = 50 m, near-
width = 1 m, far-width = 2 m). We assume that the AEBS sensor of the truck
measures the position and speed of the car, and transmits this information to
the truck on-board controller. The truck has to use this information to avoid a
collision. To reduce the uncertainty in the behavior of the truck, we consider a
human driving model in each vehicle with three modes: acceleration A, cruising
C, and braking B (Sect. 4.3). The system can start in any of these modes and the
car can switch from acceleration, to cruising, to braking, to model its approach
to the intersection. The control approach for collision avoidance is entirely based
upon the construction of a set C parametrized by values for Time-To-Collision
(TTC), Critical Warning Distance (CWD) and Critical Braking Distance (CBD)
indicating a future collision. Together with TTC, the distance CWD, respectively
CBD, is used to determine when the truck should activate its Pre-Braking mode,
respectively Braking mode. If the boundary of the set C is reached, then control
applies instantaneously. Otherwise, no control is needed.

112 A. Duracz et al.

In the following sections, equations for the controller are introduced, with
excerpts of Acumen code used to generate the results presented in Sect. 5.

3.1 Critical Warning Distance and Critical Breaking Distance

The critical warning distance (CWD) is a distance used as a threshold to give
a warning to the driver when the vehicle spacing d is less than this distance.
The critical braking distance (CBD) can be defined similarly the system applies
full braking when d is less than the critical braking distance. Many CWD and
CBD algorithms have been proposed by automotive companies [36]. In our test
scenario, we consider Mazda CBD and Honda CWD algorithms.

Mazda’s CBD Algorithm. Mazda’s algorithm uses the following function for
defining CBD

db =
1
2

·
(

v2
1

α1
− v2

2

α2

)
+ v1 · ζ1 + vrel · ζ2 + η0, (1)

where v1 is the velocity of the following vehicle, vrel = v1 − v2 is the relative
velocity between the two vehicles, α1 and α2 are the maximum deceleration of
the leading and the following vehicle, respectively. η0 is a headway offset, and
ζ1 and ζ2 account for the system and the driver delays, respectively. In our
implementation, the variables ζ1, ζ2, and η0 are neglected.

Honda’s CWD Algorithm. Honda’s algorithm uses the following approxima-
tion for defining CBD

dw = 2.2vrel + 6.2. (2)

The following Acumen code calculates the CBD and CWD:

db = 0.5*(y1’*y1’/(9.81*fri0)-(y1’-yvdiff)*(y1’-yvdiff)/(9.81*fri0)),

dw = (2.2 * abs(yvdiff)) + 6.2.

3.2 Time-to-Collision (TTC)

The Time-To-Collision (TTC) is defined as the time (in seconds) needed for
two vehicles to collide. The mechanism for calculating TTC depends on the
configuration of the directional dynamics of the engaged vehicles (Sect. 4.2).

The following Acumen code demonstrates the use of TTC in collision detec-
tion when the truck is sensing the car.

match TestProcedureLevel with

["A"->if -ydiff < ttcpb*yvdiff || distance < dw then

state1+ = "2-Pre-Brake" noelse

| "B"->if -ydiff < ttcpb*yvdiff then state1+ = "2-Pre-Brake" noelse

| "C"->if distance < dw then state1+ = "2-Pre-Brake" noelse]

Rigorous Simulation for Advanced Hazard Analysis and Risk Assessment 113

Setting the mode state1 of the truck to Pre-Brake signals that the truck started
pre-braking. A match statement is used to select a condition for switching the
mode. The (instantaneous) transition is expressed as a discrete assignment (+
=) and switching conditions are expressed as if statements (conditionals). Anal-
ogous code handles switching from pre-braking to braking. In that case, instead
of the critical warning distance dw, the critical braking distance db is used in
the conditionals. We implemented three levels of test procedure reflecting the
reliability of the ICA collision detection (Sect. 4.3). Level A represents the most
reliable test procedure, where the estimated TTC, CWD, and CBD are all used
in the collision detection. In Level B only TTC is relevant in the collision detec-
tion, while in Level C only CWD and CBD are considered. Each test procedure
level corresponds to a case of the match statement.

4 Vehicle and Collision Models

In the following, we introduce the vehicle and collision models in detail. We use
control theoretic methods used in intelligent transportation [9,10].

4.1 Definition of Vehicle Dynamics (Pre-Collision)

By representing each vehicle as a standard control-theoretic input-output sys-
tem, the state of vehicle i ∈ {1, 2} along its path is given as a tuple Si =
{Xi, Oi, Ui, fi, hi}, where Xi = Pi × Vi ⊂ R

2 is the state space describing all
the admissible continuous states (pi, vi), where pi ∈ Pi and vi ∈ Vi are the
longitudinal displacement and the tangential velocity of the center of mass of
vehicle i, respectively. Therefore, the state vector of the entire system is given as
(p, v) = (p1, p2, v1, v2). The output space is Oi ⊂ R

m, and hi : Oi ×Xi is the set-
valued output map that associates outputs with elements of the state space Xi.
Ui = [uiL, uiH] is the control input space representing the scalar combination of
all possible pedal and brake torque inputs (positive when the vehicle accelerates
and negative when the vehicle brakes), where uiL represents the maximum brake
torque command, and uiH represents the maximum throttle torque command.
The constraints on the control input is to ensure that the resulting control action
is within the admissible actuator range. The function fi : Xi × Ui → Xi is a
vector field modeling the dynamics of the vehicle i as fi = (dpi

dt , dvi
dt) = (vi, wi),

where wi = 0 if (vi = 0 ∧ αi < 0) ∨ (vi = vmax ∧ αi > 0) or αi otherwise, with
αi = a ·ui + b− c ·v2

i , where a > 0 is the acceleration coefficient, b < 0 represents
the static friction term, and c > 0 with the c · v2

1 term modeling air drag. For
sake of simplicity, the static friction and air drag can be neglected.

Having state2 = Post-Turn models the cruising dynamics of the car after
the turn. ydiff and yvdiff gives the differences between the vehicles’ position
and speed, respectively (i.e. the relative position and velocity). The threshold
on the TTC for pre-braking is ttcpb.

The ICA system (Sect. 4.3) will issue a throttle command to the car modeled
by entering the mode Act, while issuing a brake command to the truck when

114 A. Duracz et al.

a future collision is detected. These commands are issued in a manner that
does not cause the violation of predefined speed limits (either traffic laws or
comfort levels). This implies that the automatic control commands do not create
hazardous driving conditions for other vehicles not directly involved.

| "2-Post-Turn" -> rot2’ = 0, x2’ = 0, y2’’ = 0,
if abs(yvdiff) > 0 then match TestProcedureLevel with
["A" -> if -ydiff < ttcpb*yvdiff || distance < dw then
state2+ = "3-Act" noelse
| "B" -> if -ydiff < ttcpb*yvdiff then state2+ = "3-Act" noelse
| "C" -> if distance < dw then state2+ = "3-Act" noelse] noelse.

Detecting that we have reached the time-to-collision threshold for activating
pre-braking is done by evaluating the expression -ydiff < ttcpb*yvdiff. This
check is basically equivalent to the condition (y1-y2)/(y1’-y2’) >= ttcpb.
The difference is that it avoids using division because it is a partial function
that would result in a simulation error when the two vehicles reach the same
speed. As discussed in Sect. 5.2, taking such errors into account is important in
modeling for rigorous simulation.

The braking mode of the truck is active when state1 is equal to Brake. It
is braking until collision or until its speed y1’ reaches zero. In the latter case it
stops, and this is modeled by entering the state Stopped. The acceleration rate
for the truck 1 in the model is a1. Its control input for pre-braking is given by
u1pb and for full braking by u1fb. The value mu represents the surface friction.

| "3-Brake" -> if y1’ > 0 then x1’ = 0, y1’’ = a1 * u1fb * mu
else state1+ = "4-Stopped".

4.2 Calculating Time-to-Collision

A key element in detecting a collision is the calculation of a future collision point
p+ = (px+, py+), and the Time-To-Collision TTC for each vehicle to reach this
point. A pair-wise collision detection algorithm is used to compute the points
of collision, and then the time TTC. In this algorithm, a future collision point
(px+, py+) is calculated using the coordinates and angles of the pair of vehicles,

px+ =
(p2y − p1y) − (p2x tan θ2 − p1x tan θ1)

tan θ1 − tan θ2
, (3)

py+ =
(p2x − p1x) − (p2y cos θ2 − p1y cos θ1)

cos θ1 − cos θ2
, (4)

where pix and piy are the x and y coordinates representing the location of the
vehicle i, and the θ represents the angle between the line drawn from the same
orientation or point of reference used by both vehicles and the path plan of the
vehicle. After a collision point is found, TTC is then calculated by

TTCi =
|�r+ − �ri|

�vi
· sign((�r+ − �ri) · �vi), (5)

Rigorous Simulation for Advanced Hazard Analysis and Risk Assessment 115

where for i ∈ {1, 2}, �vi is velocity of vehicle i, �r+ is the future collision coordinate
vector (px+, py+), and �ri is the coordinate vector (px, py). A future collision is
detected if TTC1 = TTC2.

However, for some collision scenarios, future collision points cannot be com-
puted by this formula.

We summarize these special scenarios in the following two cases:

1. Collision on the intersection: When the vehicle orientation lines are per-
pendicular, that is, |θi − θj | = 90◦, then (3) and (4) become

px+ = p2x, py+ = p1y. (6)

2. Front/Rear side Collision: When the vehicle orientation lines are parallel,
as for example, θij = 0◦ (Rear-side collision) or θij = 180◦ (Front-side colli-
sion), where θij = |θi − θj |, then the collision point is estimated by using the
dynamic equations of the vehicles motion. A collision occurs when

√
(p1x − p2x)2 + (p1y − p2y)2 = 0. (7)

If there is no valid solution for (7), the two vehicles are not at risk to collide.

4.3 The ICA System

The Intersection Collision Avoidance (ICA) system can be viewed as a parallel
composition of hybrid automata with explicit modes [2–7,18], with one automa-
ton per vehicle. The continuous state of either vehicle can be either A (acceler-
ating), B (braking), or C (cruising). Each mode corresponds to a combination
of such dynamics, and represents the continuous behaviour that is possible in
that mode. The modes are q1 = {A,B,C}, q2 = {C,B}, q3 = {A}, q4 = {B}.
The hybrid automata representing the ICA system is shown in AppendixA.

In the test procedure, a haptic warning (pre-brake = 2 m/s2) is issued when
the TTC is less than 3.5 s. At TTC = 2.5 s, full braking (5 m/s2) is performed.

Figure 2 shows a hierarchical hybrid automaton that illustrates the continu-
ous dynamics and key state variables that comprise the model. For space reasons,
guard conditions and reset maps have been left out. In the “No Collision” mode,
the dynamics of each vehicle are controlled by a separate automaton. Initial
parameters passed to the Scenario sub-model determine the initial positions
and velocities for the two vehicles, as well as the braking/acceleration applied
when the car enters its “Accelerating” mode. The modes of the truck automa-
ton correspond to different levels of engagement of the truck’s sensor and AEBS.
The car automaton controls the car’s behaviour through and after the turn. How
the car 2 turns is determined by two parameters, ρ (rotation) and τ (turning
radius). Two key events can occur in the model. The first event is detecting
when the car enters the truck’s sensor area. This is represented by the switching
from “Cruising” to “Sensing”, where the finite state machine of the truck still
operates in mode q1 = {A,B,C} during these two phases. Note that, a tran-
sition from the mode q1 to the mode q2 is not possible unless the truck state

116 A. Duracz et al.

enters the “Sensing” subset of q1 (see Fig. 2). The second event is when the car
collides with the truck. This is represented by the switch from “No Collision”
to “A Collision Happened”. The conditions for both events are similar, in that
they are triggered by conditions that correspond to the intersection between two
polygons. Computing the coordinates of rectangle corners based on the position
and orientation of each vehicle requires using non-linear (trigonometric) func-
tions. As mentioned earlier, the expected TTC, CWD, and CBD are used to
trigger transitions between the “Sensing/Pre-Braking” and “Pre-Braking/Full
Braking” modes of the Truck automaton, as well as to trigger the transition
“Cruising/Accelerating” modes of the car automaton.

5 Simulation Results and Discussion

Modeling and simulation were done in the Acumen integrated modeling and
simulation environment [1]. Integrated in this tool are a code editor, both tra-
ditional and rigorous simulators, and a plotter; data table and 3D visualisation
facilities. We now present and analyze the results of simulating the model pre-
sented in the previous section. This is followed by a summary of practical issues
that arose during the process of modeling and rigorous simulation of this system.

5.1 Computing the Severity Class Using Simulation

Figure 3 summarizes five scenarios that were used in the case study. Associated
with each scenario is a set of initial conditions and parameters, that influence
the results of the simulation. They include whether or not the car will make
a turn in the intersection (state2, rot2), whether the car will accelerate after
making the turn (u2a), and whether there will be a collision (related to ttcpb,
ttcfb, u1pb, u1fb). Scenarios 2–4 were constructed to exhibit collisions with
three different severity classes. Scenario 11 was constructed to bring the vehicles
close to each other without a collision. Scenario 11.2 is a variant of Scenario
11 with additional uncertainty in its parameters. It is constructed to produce a
conservative rigorous simulation result that includes the possibility of a collision.

It is worth noting that standard model verification tools can be used for
HARA and ASIL classification. However, these tools simply answer yes or no to
the question of whether a severity class is possible or not for a given test scenario.
While our method answers the same question, it also provides bounds on all
modeled quantities, including those that are needed for ASIL classification, that
is, the pre-collision and post-collision velocities that are necessary to compute
severity classes.

Figure 4 includes the simulated values of Δyv2 (change in velocity of the car
due to collision) at the end time for a given pair of traditional and rigorous

Rigorous Simulation for Advanced Hazard Analysis and Risk Assessment 117

Fig. 2. A hierarchical hybrid automaton representation of the system.

simulations of the same scenario. The traditional simulations were executed on
the extreme values (those that contribute to increasing Δyv2) of the parameter
bounds used for the rigorous simulation. In Scenarios 2, 3, 4 and 11 the results are
consistent, with the caveat that the outcome of the rigorous simulator includes
the lower severity classes corresponding to its over-approximation of Δyv2. In
Scenario 11.2 the rigorous simulation result is also conservative. In this case,
the traditional simulation (of the extreme values of the parameters used in the
scenario) yields no collision, while the enclosure produced by the rigorous simu-
lation yields the possibility of a collision with severity class 1 or 2. The results
show that rigorous simulation is able to produce useful bounds on the severity
class and that, in different cases, the rigorously computed severity classification
can be conservative and have different levels of precision. The enclosure for the
car velocity change from the collision produced, when simulating the first three
scenarios in, is shown in Fig. 5.

118 A. Duracz et al.

Fig. 3. Summary of parameters for collision scenarios. † The truck and the car are
abbreviated as V1 and V2 respectively.

Figure 6 demonstrates how the simulated values of Δyv2 (change in velocity
of the car due to collision) is used in the severity class classification for Scenario 2.

In these examples, the full brake deceleration is less than it should be. The
figure shows the effect of the resulting collisions (Fig. 4) on the velocity of the car.
The collisions happen around time 5, 6 and 4 for Scenarios 2, 3 and 4, respec-
tively. The dotted horizontal lines indicate the upper bounds for the severity
classes S1 (6 m/s, lower dotted line) and S2 (11 m/s upper dotted line). The plot
for Scenario 2 shows that severity does not go beyond level S1, while the plot
for Scenario 3 shows that severity does not go beyond level S2.

Rigorous Simulation for Advanced Hazard Analysis and Risk Assessment 119

Fig. 4. Summary of results for simulation scenarios.

Comparing with the results from traditional simulation, in rigorous simula-
tion, the bounds corresponding severity classes in Fig. 4 are guaranteed to take
two important types of error into account: that which is expressed in the model as
an uncertain parameter, and that which arises from numerical approximations
during simulation. Thus, compared to traditional simulation, rigorous simula-
tion lifts some of the burden in inferring the ASIL of a hazardous event away
from the modeler and on to the simulation tool. In Fig. 4, each Scenario was
executed using uncertain model parameters, specified as intervals in the model.
Interval-valued parameters can be used to reflect variability of components such
as sensors or brakes (corresponding respectively to the Time-To-Collision, Pre-
Brake and Full-Brake thresholds ttcpb/ttcfb and the control inputs u1pb/u1fb).

5.2 Remarks About Our Developing the Model Using Acumen

Acumen allows the user to run the same model using traditional and rigorous
simulation. The traditional simulation is faster, and in the case of an error in the
model, it produces simpler error messages. We found it convenient to use non-
rigorous simulation to develop the model, before switching to rigorous simulation.
In the following, we mention the challenges that we encountered when switching
between the traditional and rigorous simulators during our work on the model.

120 A. Duracz et al.

Fig. 5. Enclosures for vehicle positions and change in velocity due to collision.

Fig. 6. Summary of results Scenario 2.

1. Avoiding missed events. The relatively complex geometry of the sensor
field-of-view made us implement sensing using general intersection compu-
tations. As the shapes involved are convex polygons, we opted to check for
intersections between the edges. This is one of the benefits of using rigor-
ous simulation. Namely, during the first edge intersection in front/rear col-
lisions, the respective segments become collinear. In traditional simulation,
the user needs to implement additional, superfluous conditionals in the model.

Rigorous Simulation for Advanced Hazard Analysis and Risk Assessment 121

Rigorous simulation never misses any intersections, making the modeling task
more intuitive, and the resulting simulations more robust.

2. Avoiding undefined operations. A pervasive problem when working with
rigorous numerical computation is that over-approximation is inevitable. The
main underlying cause is that standard interval arithmetic ignores depen-
dencies between variables. This dependence problem shows itself when eval-
uating an expression that contains the same variable more than once. For
example, evaluating x − x with x = [0, 1] using interval arithmetic gives
x − x = [0, 1] − [0, 1] = [−1, 1] �= 0. Mitigating the dependence problem is a
major concern in validated numerics. Common approaches rely on state rep-
resentations that keep track of dependencies between values [12,15,21] and
on algorithms that avoid evaluating expressions with wide intervals [25].
Over-approximation can give rise to operations being evaluated outside their
domain. An example we encountered with this model is division by zero. In
standard interval arithmetic, division is only defined when the denomina-
tor interval does not contain zero. Occasionally, over-approximation can be
avoided by increasing the precision of the simulation. This may be achieved
by subdivision that is simultaneously subdividing in space and decreasing the
time step used. The improved precision (small resulting interval) can elim-
inate the problem of getting an interval that contains zero. However, this
approach may lead to longer simulation times and can simply fail to solve
the problem when the result is an open interval adjacent to (but not includ-
ing) zero. In such cases it is important to consider whether the model can
be reformulated to avoid the use of a partial operation. A practical example
that arose in this model is a condition a < b/c, which was replaced with
a ∗ c < b to avoid the problem under the assumption that c is positive, and
a ∗ c > b when it is non-positive. The most obvious lesson that can be drawn
from this experience is that it is better to avoid the use of partial functions
when total functions would suffice. A deeper insight is that rigorous simula-
tion tools nudge the user in the direction of such better modeling practices
sooner than traditional tools.

3. Selecting the simulation time step. In traditional numerical simulation,
reducing simulation time steps generally leads to longer simulations, but
yields more precise results (until we get to very small time steps). The situ-
ation is considerably more involved with rigorous simulations. First, decreas-
ing the time step might lead to a loss of precision known as the wrap-
ping effect [25]. Second, both increasing and decreasing simulation steps can
increase computational cost. Depending on the dynamics of a model, choosing
a smaller step may help us obtain a conclusive outcome from a simulation.
For example, one of the scenarios (described in Sect. 3) supported by the
model has the vehicles come close to collision but still averts it. As shown in
Fig. 7, selecting a step that is too large (2−5, light colors) yields enclosures
that include paths corresponding to a collision, which is insufficient to rule
out the possibility of a collision. Decreasing the step by a factor of three
(to 2−8, dark colors) shows conclusively that the collision does not occur.
However, this does increase computational cost. Increasing simulation time

122 A. Duracz et al.

Fig. 7. Enclosures computed with two different step sizes.

steps can also increase runtime. This happens because it can lead to greater
uncertainty in the values of variables, which in turn can lead to more branch-
ing. Branching can happen when multiple time steps are needed to determine
conclusively that an enclosure does cross an event guard. It is possible that
this problem is compounded if, before the branches can be recombined, they
lead to more branching. In such situations, decreasing the step can lead to a
faster simulation, by reducing the time spent on crossing event boundaries.

6 Related Work

Commercial tools exist that specifically support ISO 26262 HARA, for example:
RiskCAT [29], medini analyze [23], SOX2 [32] and Polarium ALM [8]. These tools
automatically determine ASILs based on the selected S, E, and C values for each
hazardous event. However, they do not explicitly support design decisions and
analyses of severity and exposure classes through modeling, and simulation.

There are also tools for formal analysis of models. Two such examples are
Simulink Design Verifier [31] and SCADE Suite Design Verifier [30]. Both tools
use the Prover Plug-In [27] for model and/or equivalence checking. However, this
is limited to discrete-time control systems and does not handle hybrid systems.

Several reachability analysis tools for hybrid automata [2,4–7,18] can be
used for problems related to the automotive domain. Tools like SpaceEx [17],
Flow* [11,28], C2E2 [13] can produce reach set-based over-approximations. How-
ever, for scalability, reachability tools are limited to specific classes of problems.

Rigorous Simulation for Advanced Hazard Analysis and Risk Assessment 123

Theorem proving has also been successfully used to verify the safety of a
protocol for distributed cruise control on multi-lane roads [20]. Compared to
our work, the work in [20] focuses on the analysis of systems with dynamically
varying number of vehicles in a set of connected lanes. Rather than modeling the
position of a vehicle in two-dimensional space, lane-change is modeled by grad-
ual destruction and creation of state variables in the parallel, one-dimensional
systems that represent each lane. The model in [20] does not include the colli-
sion dynamics, and thus does not provide information to derive its severity class.
Furthermore, current implementations theorem provers tools rely on symbolic
algebra and techniques that require the existence of analytical tools, which may
limit their applicability compared to tools based on validated numerics.

7 Conclusions and Future Work

This paper demonstrates how rigorous simulation can be used to assist in ensur-
ing the safety of advanced driving functions. In particular, we focus on its use
to study the severity of collisions in a safety testing scenario based on the guide-
lines of the ISO 26262 standard. We present a detailed account of the model
developed for the case study along with the results of rigorous simulation of
this model with different parameters, and report on practical challenges that we
encountered along with suggested workarounds.

In the future, we would like to focus on better understanding and on improv-
ing the performance of the current implementation of rigorous simulation in
Acumen. In particular, we plan to explore better ways to reduce and control
branching. For example, we suspect that the current implementation generates
significant branching computations that can be avoided with relatively small
changes to key algorithm parameters around an event. More precise simulations
of models with uncertain initial state can be achieved by splitting the uncertain-
ties and running a separate simulation for each combination of parts. We plan
to add support for automating this kind of batch simulation into Acumen. The
proposed collision scenarios were treated as a case studies in this paper. In the
future, we plan to consider more general approach, that is, a general collision
scenario with multiple vehicles (more than a truck and a car) present in the
scene.

Acknowledgments. This work is supported by US National Science Foundation
award CPS-1136099, Swedish Knowledge Foundation, Center for Research on Embed-
ded Systems (CERES), VINNOVA (Dnr. 2011-01819), the European University of
Brittany, and the Regional Council of Brittany.

124 A. Duracz et al.

Appendix A

Figure 8 demonstrates the finite state machine of the ICA’s system with all
possible transitions between modes.

Fig. 8. The finite state machine of the ICA’s system with all possible transitions
between modes.

References

1. Acumen (2016). http://acumen-language.org

http://acumen-language.org

Rigorous Simulation for Advanced Hazard Analysis and Risk Assessment 125

2. Aljarbouh, A.: Accelerated simulation of hybrid systems: method combining static
analysis and run-time execution analysis (Simulation Accélérée des Systèmes
Hybrides: méthode combinant analyse statique et analyse à l’exécution). Ph.D.
thesis, University of Rennes 1, France (2017). https://tel.archives-ouvertes.fr/tel-
01614081

3. Aljarbouh, A.: Non-standard zeno-free simulation semantics for hybrid dynamical
systems. In: Ganty, P., Kaâniche, M. (eds.) VECoS 2019. LNCS, vol. 11847, pp.
16–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35092-5 2

4. Aljarbouh, A., Caillaud, B.: On the regularization of chattering executions in real
time simulation of hybrid systems. In: 11th Baltic Young Scientists Conference,
Tallinn, Estonia, p. 49, July 2015. https://hal.archives-ouvertes.fr/hal-01246853

5. Aljarbouh, A., Caillaud, B.: Robust simulation for hybrid systems: chattering path
avoidance. In: Proceedings of the 56th Conference on Simulation and Modelling
(SIMS 56), Linköping University, Sweden, 7–9 October 2015, pp. 175–185, No. 119.
Linköping University Electronic Press, Linköpings universitet (2015)

6. Aljarbouh, A., Caillaud, B.: Chattering-free simulation of hybrid dynamical sys-
tems with the function mock-up interface 2.0. In: Proceedings of the First Japanese
Modelica Conferences, Tokyo, Japan, 23–24 May 2016. Linköping University Elec-
tronic Press, Linköpings universitet (2016)

7. Aljarbouh, A., Zeng, Y., Duracz, A., Caillaud, B., Taha, W.: Chattering-free simu-
lation for hybrid dynamical systems semantics and prototype implementation. In:
2016 IEEE International Conference on Computational Science and Engineering,
CSE 2016, and IEEE International Conference on Embedded and Ubiquitous Com-
puting, EUC 2016, and 15th International Symposium on Distributed Computing
and Applications for Business Engineering, DCABES 2016, Paris, France, 24–26
August 2016, pp. 412–422 (2016). https://doi.org/10.1109/CSE-EUC-DCABES.
2016.217

8. ALM-PLM (2015). http://polarion.com
9. Baskar, L.D., De Schutter, B., Hellendoorn, J., Papp, Z.: Traffic control and intelli-

gent vehicle highway systems: a survey. IET Intel. Transp. Syst. 5(1), 38–52 (2011)
10. Basma, F., Tachwali, Y., Refai, H.H.: Intersection collision avoidance system using

infrastructure communication. In: 2011 14th International IEEE Conference on
Intelligent Transportation Systems (ITSC), pp. 422–427. IEEE, Washington, DC
(2011)

11. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

12. De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer.
Algorithms 37(1–4), 147–158 (2004)

13. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 5

14. Duracz, A., Eriksson, H., Bartha, F.Á., Zeng, Y., Xu, F., Taha, W.: Using rigorous
simulation to support ISO 26262 hazard analysis and risk assessment. In: 2015
IEEE 12th International Conference on Embedded Software and Systems (ICESS),
pp. 1093–1096. IEEE, August 2015

15. Duracz, J., Farjudian, A., Konečný, M., Taha, W.: Function interval arithmetic.
In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 677–684. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 101

https://tel.archives-ouvertes.fr/tel-01614081
https://tel.archives-ouvertes.fr/tel-01614081
https://doi.org/10.1007/978-3-030-35092-5_2
https://hal.archives-ouvertes.fr/hal-01246853
https://doi.org/10.1109/CSE-EUC-DCABES.2016.217
https://doi.org/10.1109/CSE-EUC-DCABES.2016.217
http://polarion.com
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-44199-2_101

126 A. Duracz et al.

16. EU Regulation No. 347/2012: Type-approval requirements for certain categories of
motor vehicles with regard to advanced emergency braking systems (2012)

17. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

18. Henzinger, T.A.: The theory of hybrid automata. In: Logic in Computer Science,
pp. 278–292. IEEE Computer Society, New Brunswick (1996)

19. ISO26262: Road vehicles - functional safety (2011)
20. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed,

and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol.
6664, pp. 42–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21437-0 6

21. Makino, K., Berz, M.: Taylor models and other validated functional inclusion meth-
ods. Int. J. Pure Appl. Math. 4, 4 (2003)

22. Masood, J., Philippsen, R., Duracz, J., Taha, W., Eriksson, H., Grante, C.: Domain
analysis for standardised functional safety: a case study on design-time verification
of automatic emergency braking. In: International Federation of Automotive Engi-
neering Societies 2014 World Automotive Congress, Maastricht, The Netherlands,
2–6 June 2014. FISITA (2014)

23. Medini analyze (2015). http://ikv.de
24. Mosterman, P.J.: An overview of hybrid simulation phenomena and their support

by simulation packages. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC
1999. LNCS, vol. 1569, pp. 165–177. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48983-5 17

25. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68
(1999)

26. Nedialkov, N.S., Von Mohrenschildt, M.: Rigorous simulation of hybrid dynamic
systems with symbolic and interval methods. In: 2002 Proceedings of the American
Control Conference, vol. 1, pp. 140–147. IEEE (2002)

27. Prover (2015). http://prover.com
28. Ramdani, N., Nedialkov, N.S.: Computing reachable sets for uncertain nonlinear

hybrid systems using interval constraint-propagation techniques. Nonlinear Anal.
Hybrid Syst. 5(2), 149–162 (2011)

29. RiskCAT (2015). http://cats-tools.de
30. SCADE design verifier (2015). http://esterel-technologies.com
31. Simulink design verifier (2015). http://mathworks.com
32. SOX2 (2015). http://enco-software.com
33. Taha, W.: Acumen: an open-source testbed for cyber-physical systems research. In:

Mandler, B., et al. (eds.) IoT360 2015. LNICST, vol. 169, pp. 118–130. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47063-4 11

34. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations
(2011)

35. Ueda, K., Matsumoto, S.: Hyrose: a symbolic simulator of the hybrid constraint
language HydLa. In: Computer Software, vol. 30. Citeseer (2013)

36. Zhang, Y., Antonsson, E.K., Grote, K.: A new threat assessment measure for col-
lision avoidance systems. In: 2006 IEEE Intelligent Transportation Systems Con-
ference, ITSC 2006, pp. 968–975. IEEE, September 2006. https://doi.org/10.1109/
ITSC.2006.1706870

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
http://ikv.de
https://doi.org/10.1007/3-540-48983-5_17
https://doi.org/10.1007/3-540-48983-5_17
http://prover.com
http://cats-tools.de
http://esterel-technologies.com
http://mathworks.com
http://enco-software.com
https://doi.org/10.1007/978-3-319-47063-4_11
https://doi.org/10.1109/ITSC.2006.1706870
https://doi.org/10.1109/ITSC.2006.1706870

Practical Multicore Extension
of Functionally and Temporally Correct
Real-Time Simulation for Automotive

Systems

Wonseok Lee1, Jaehwan Jeong2, Seonghyeon Park2, and Chang-Gun Lee2(B)

1 Hyundai R&D Center, Hwaseong-Si, Gyeonggi-Do 18280, Korea
won.seok.django@gmail.com

2 Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
{jhjeong,seonghyeonpark}@rubis.snu.ac.kr, cglee@snu.ac.kr,

https://rubis.snu.ac.kr/

Abstract. Existing simulation methods cannot provide functionally
and temporally correct simulations for the cyber-side of automotive sys-
tems since they do not correctly model temporal behaviours such as vary-
ing execution times and task preemptions. To address such limitations,
our previous work proposes a novel simulation technique that guarantees
the functional and temporal simulation correctness. However, the sim-
ulation technique is designed assuming a single core simulator. In this
work, we extend the single core simulator targeting a multicore simu-
lator to enhance the simulation capacity. In this multicore extension, a
major challenge is the inter-core interferences in a multicore environ-
ment, which causes unpredictability of simulated job execution times,
which in turn makes it hard to model the timings of the real cyber-side
of an automotive system. To overcome the challenge, this paper empir-
ically analyzes the inter-core interferences for typical automotive work-
loads and proposes a practical multicore extension approach, which can
still provide a functionally and temporally correct simulation, without
using complex inter-core isolation mechanisms. Our experimental study
shows that the proposed multicore extension approach can significantly
improve the simulation capacity over the previous single core simulator
while still preserving simulation correctness.

Keywords: Real-time simulation · Multicore simulator · Automotive
systems

1 Introduction

Simulating an automotive system based on an accurate simulation model is
essential to correctly predict its final performance at the design phase. Incor-
rect prediction due to imprecise simulation model causes painful repetition of
design changes and re-implementations.
c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 127–152, 2020.
https://doi.org/10.1007/978-3-030-41131-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_7

128 W. Lee et al.

Fig. 1. Predicted performance and real performance of LKAS [8]

Figure 1 shows significant gap between the predicted performance of LKAS
(Lane Keeping Assistance System) by Simulink [15]—most widely used simulator
in the automotive industry and the real performance. The reason why the real
performance is not observed on existing simulation tools is that they only focus
on functional behaviours of the system and do not carefully consider the temporal
behaviours caused by varying execution times and task preemptions on ECU
(Electronic Control Unit) environments.

For both functionally and temporally correct simulation of the cyber-side of
an automotive system while guaranteeing real-time interaction with its physical-
side, our previous work [18] transforms the real-time simulation problem into a
real-time job scheduling problem on a single core simulator PC and shows a
significant improvement on the real-time simulation capacity compare to the
other pre-existing simulation methods.

However, the limitation for the single core simulator is that it cannot simulate
a entire car system which consists of 70–80 ECUs [9]. Our previous single core
method uses the property that simulation PC has more powerful performance
than ECU. e.g. Core i7-9700K [7] in PC vs. TC275 [5] in ECU. However, it is
impossible to simulate around 70–80 ECUs by only one single core(See Fig. 7
in [18]). In this paper, in order to overcome the lack of simulation capacity for
a entire car system, we aim at extending the single core simulator to the multi-
core simulator to increase the real-time simulation capacity. Our previous single
core simulator keeps the functional and temporal simulation correctness relying
on the “execution time mapping property” from the PC execution time to the
ECU execution time, which is essential for the simulator PC to correctly model
jobs’ start/finish times on the ECU from their execution times on the simula-
tor PC. However, such execution time mapping property is not easily preserved

Practical Multicore Extension of Correct Real-Time Simulation 129

on multicore simulator PC due to interferences on inter-core shared memory
resources such as LLC (last-level cache), memory bus, and main memory, etc.
That is, even for the same job, its execution time on a core of the simulator PC
largely varies depending on the amount of interferences from other cores execut-
ing other jobs. Thus, the execution time of a job measured on the simulator PC
cannot be directly mapped to its ECU execution time. Due to this reason, the
simple minded extension of our previous single-core based simulation method to
multicore would not work.

To overcome the challenge, this paper proposes a practical approach. First,
we conduct intensive empirical study on the actual amount of inter-core inter-
ference focusing on real automotive workload. From such study, we find that the
execution time mapping property can be preserved even on the multicore simu-
lator PC by a static partitioning of simulation target tasks onto multiple cores
satisfying the local cache size constraint to avoid severe inter-core interferences
without using complicated isolation mechanisms such as shared cache partition-
ing [12], memory bandwidth partitioning [21] and DRAM bank partitioning [20].
Second, we propose a heuristic task partitioning method that effectively consid-
ers precedence relations among tasks for their maximally concurrent executions
on multicore under the local cache size constraint. Our extensive experiments say
that the proposed heuristic can effectively increase the capacity of functionally
and temporally correct simulation.

This paper is organized as follows. In Sect. 2, we survey related works. Then,
Sect. 3 explains the idea of functionally and temporally correct simulation on
single core simulator which we want to extend to the multicore. In Sect. 4, we
empirically analyzes the inter-core interferences and derive a practical approach
for multicore extension. In Sect. 5, we propose our heuristic approach for mul-
ticore simulator. In Sect. 6, we evaluate our approach. Finally, Sect. 7 concludes
the paper.

2 Related Works

To predict the final performance of the cyber-side of an automotive system at the
design phase, simulation tools such as Simulink [15] are widely used in industry.
However, they mimic only functional behaviours of the system and do not con-
sider temporal behaviours which will occur once the system is implemented on
the ECUs. The simulated tasks on Simulink are ideally executed while ignoring
the temporal differences caused by ECU environments. Moreover, Simulink is
focusing on offline simulations which do not interact with the real-time physical-
side.

To simulate the system while interacting with the real-time physical-side,
real-time simulation on AutoBox [3] is commonly used. However, AutoBox pro-
vides only rapid prototyping of the system and does not consider the timings of
the real target ECUs. The temporal behaviours of the simulated tasks are deter-
mined only by the performance of AutoBox hardware, and users do not have
any control knob to model the real target ECUs’ performance which determines
the actual temporal behaviours and the final performance.

130 W. Lee et al.

Fig. 2. Example automotive system

Fig. 3. Execution scenario and simulation scenario of example automotive system

To accurately model the temporal behaviors on the real target ECUs, we
can think of cycle-accurate instruction set simulators [2,13,19]. However, they
are too slow to provide the real-time simulation interacting with the real-time
physical side.

To achieve the two goals at the same time, i.e., (1) the real-time interaction
with the physical side and (2) the functionally and temporally correct simu-
lation, our previous work [18] proposes a novel simulation method. However,
the proposed method uses only a single core of the simulator PC and hence its
simulation capacity is limited.

Practical Multicore Extension of Correct Real-Time Simulation 131

To increase the simulation capacity, a brief idea of using multiple cores of the
simulation PC based on G-EDF (Global-Earliest Deadline First) is proposed [17].
However, it does not consider the invalidation of execution time mapping prop-
erty due to inter-core interferences and job migrations from core to core. Thus,
it cannot guarantee the functional and temporal correctness of the simulation.

3 Overview of Single Core Simulation

For the functionally and temporally correct simulation, the simulated cyber sys-
tem should interact with the physical system at the same time with the same
value as the real cyber system. However, the physical interaction times and values
are not deterministic due to non-deterministic task execution times. To address
such non-determinism, our previous single-core simulation method [18] makes a
precedence graph among simulated jobs including all possible non-determinism.
From the precedence graph, it executes jobs one by one while resolving the non-
determinism once a job’s execution time on the simulation PC is known and
hence its mapped ECU execution time is known.

Since it is the baseline for extending to the multicore simulation PC, our pre-
vious method is briefly explained in this section using a simple example of Fig. 2.
In the figure, the cyber-side of an automotive system to be simulated consists of
three control tasks τ1, τ2, and τ3. The data producer/consumer relations among
the tasks or physical-side are denoted by directed edges as in Fig. 2(a). τ1 and τ2
are mapped to ECU1 and τ3 is mapped to ECU2. The communication channel
between ECUs, e.g., CAN or FlexRay, is not shown here and the communication
time between tasks in different ECUs is assumed to be zero for the simplicity of
explanation. A detailed description of TDMA bus delay(i.e. communication time
between ECUs) is already addressed in our previous work, at Appendix B [18].

Each task, τi, is realized on its mapped ECU as a periodic task and can be
represented as a five-tuple.

τi = (Fi,Φi, Pi, C
best,real
i , Cworst,real

i)

where Fi is the function that τi executes, Φi is the task offset, Pi is the period of
τi. Cbest,real

i and Cworst,real
i represent the best case and the worst case execution

times on its mapped ECU, respectively. The parameters of the three tasks are
given in Fig. 2(b). The j-th job of τi that is released at Φi +(j − 1)Pi is denoted
by Jij .

If the RM (Rate Monotonic) scheduling policy is used on ECU1 and ECU2,
we can expect one of their possible execution scenarios as Fig. 3(a) shows1. The
time points where the cyber and physical-side interact each other are marked
as triangles, and one of the data paths from the physical read to the physical
write is denoted by dashed directed arrows considering the real automotive tasks’
properties, i.e., Most recent data use and Entry read/Exit write. In the

1 There can be many different execution scenarios on the real cyber system since every
job Jij can have any execution time within [Cbest,real

i , Cworst,real
i].

132 W. Lee et al.

Fig. 3(a), J11 reads the most recent data from the physical-side at time 0, i.e.,
entry read, and produces output at time 6, i.e., exit write. J21 that is also released
at time 0 has a lower priority than J11 on ECU1. Thus, it starts executing at
time 6. At that time, its another predecessor J31 has been already completed on
ECU2. Thus, J21 reads the data from J11 and J31. After that, it is preempted
by J12 at time 8 and resumes at time 12. Then, it finishes its execution at time
14 and produces its output to the physical side.

For such a real execution scenario, the simulated cyber-side should interact
with the physical side at the same time with the same value as the real cyber sys-
tem. For this, our previous single-core simulation method leverages the following
properties of the simulation PC:

– Faster execution than ECU: Since PC has more powerful performance
than ECU, the execution times of Fis are much faster on the simulator than
that of on the ECU. e.g., Core i7-9700K [7] in PC vs. TC275 [5] in ECU.

– Tagged/Delayed Data Read/Write: The simulator can log all of physi-
cal read/write data with time-tags. The simulator can execute the Fis with
any specific tagged physical read data. Similarly, the simulator can write the
delayed output data to the physical-side at any specific time point.

– Execution time mapping functions: For every Fi, there exist execution
time mappings between the simulator and the ECU. That is, when Jij is
executed on the simulator for the time of esim

ij , we can estimate its execution
time on the ECU, ereal

ij = Mi(esim
ij) where Mi represents the execution time

mapping function.

Leveraging those properties, our simulator can execute the simulated jobs
as in Fig. 3(b) such that its effect to the physical side is the same as the real
cyber system, i.e., functionally and temporally correct simulation. In Fig. 3(b),
we assume that ereal

ij = 2 ∗ esim
ij for all Fis. At time 0, the single-core simulator

logs the physical-side data with its time-tag 0. The data logging time is assumed
negligibly small. Then, it executes J31. When J31’s execution finishes, the simu-
lator knows that J31’s PC execution time is 2 as shown in Fig. 3(b) and its ECU
mapped execution time is 4. Thus, the simulator knows that J31’s finish time on
the real cyber system is 6 as shown in Fig. 3(a). Then, the simulator starts exe-
cuting J11 with the time-0 tagged physical data. After J11’s execution finishes,
J21 starts its execution. At this moment, the simulator already finished J11 and
J31 and hence knows that their real finish time is 6 using the execution time
mapping function. Thus, the simulator knows that the most recent data that
J21 read in the real cyber system are the ones from J11 and J31. This way, the
previously non-deterministic precedence relations among jobs are now determin-
istically resolved. Thus, the simulator can start J21’s execution with the correct
data. Similarly, after the simulator finishes J21 and J12, using their PC execu-
tion times and their mapped ECU execution times, the simulator can predict
the real finish time of J21 is time 14 as shown in Fig. 3(a). Thus, the simulator
holds J21’s output and delay its physical write until 14 as shown in Fig. 3(b).
This is an example that shows how the non-deterministic physical write time is
resolved as deterministic by progressive executions of simulated jobs.

Practical Multicore Extension of Correct Real-Time Simulation 133

Fig. 4. Job-level precedence graph of the example automotive system

More formally, we can say that the simulation is functionally and temporally
correct if all the simulated jobs can be scheduled while satisfying:

– Physical-read constraint: For any job Jij who reads physical-side data,
the simulator should schedule it later than its actual start time on the real
cyber-side. i.e.,

tS,sim
ij ≥ tS,real

ij (1)

where tS,sim
ij and tS,real

ij represent the start time of Jij on the simulator and
the real cyber-side, respectively.

– Physical-write constraint: For any job Jij who writes its produced data
to the physical-side, the simulator should finish it before its actual finish time
on the real cyber-side, i.e.,

tF,sim
ij ≤ tF,real

ij (2)

where tF,sim
ij and tF,real

ij represent the finish time of Jij on the simulator and
the real cyber-side, respectively.

– Producer/consumer constraint: For any pair of jobs, Ji′j′ and Jij , if Ji′j′

is a producer job of Jij on the real cyber-side, the simulator should finish
Ji′j′ before starting Jij , i.e.,

tF,sim
i′j′ ≤ tS,sim

ij (3)

To schedule the simulated jobs while meeting all of the above constraints,
the simulator has to know tS,real

ij and tF,real
ij which are non-deterministic in the

beginning due to the varying execution times of the jobs. To tackle this challenge,
the previously proposed simulation method with a single-core [18] transforms the
simulation problem to a real-time job scheduling problem with job-level prece-
dence requirements and progressively resolves the non-determinism by executing
simulated jobs one-by-one. Here, we briefly review the method using the exam-
ple automotive system in the Fig. 2. The simulation problem for the cyber-side
of an automotive system in the Fig. 2 can be transformed to a job-level prece-
dence graph scheduling problem as shown in Fig. 4. At the left-side of the Fig. 4,
each vertex represents the job to be simulated. The tags, ‘R’ or ‘W’, at the
upper-left corner of the jobs show the physical read/write constraints that the

134 W. Lee et al.

Fig. 5. Memory size of functions for body control module implemented by Renault [16]

tagged jobs have. Each edge shows the pre-execution condition between the jobs
where hat-job (Ĵ21) is virtually added job which has zero-execution time and
is needed only for deriving pre-execution conditions. The solid edge (Ji′j′ , Jij)
represents the deterministic edge which means Ji′j′ should be finished before Jij

starts. The dashed edge (Ji′j′ , Jij) represents the non-deterministic edge which
means it is not known yet whether Ji′j′ should be finished before Jij or not.
The closed-intervals at the right-side of the Fig. 4 represent the expected tS,real

ij ,
tF,real
ij ranges which are varied by the execution times of the jobs. The numbers

at the lower-left corner of the jobs show the deadlines which are calculated based
on the deterministic edges and the tS,real

ij , tF,real
ij ranges.

To schedule the jobs in the job-level precedence graph, the simulator first
finds a job which does not have any unfinished deterministic predecessor. If the
found job does not have the physical read constraint, it adds this job to the
ready queue of the simulator. If the found job has the physical read constraint,
it adds the found job only when Eq. (1) holds, i.e., current time is later than
its start time on the real cyber-side. Out of the jobs in the ready queue, one
of them is scheduled based on EDF (Earliest-Deadline-First) scheduling policy
according to their assigned deadlines. Whenever a job in the ready queue is
finished, its execution time on the simulator, esim

ij , becomes known, so its execu-
tion time on the real cyber-side, ereal

ij = Mi(esim
ij), is also known. Using the ereal

ij ,
the simulator progressively narrows the tS,real

ij , tF,real
ij ranges. At this step, the

non-deterministic edges are either determined as deterministic edges or removed
based on the narrowed tS,real

ij , tF,real
ij ranges, which results in an updated job-

level precedence graph. Lastly, the simulator re-assigns the deadline of each job
using the updated job-level precedence graph. By iterating the above processes,
the proposed simulation method continues executing the simulated jobs using a
single core of the simulation PC until the end of the required simulation interval
or until a deadline is violated, which is a failure of real-time simulation.

Practical Multicore Extension of Correct Real-Time Simulation 135

Fig. 6. Experimental result for inter-core interferences

Note that the previous single-core simulation method relies on the execution
time mapping function to correctly resolve the non-determinism of the job-level
precedence graph. The existence of the execution time mapping function in a
single-core simulation PC is well justified in [18]. However, in the multicore envi-
ronment of the simulation PC, it is reported that the inter-core interferences at
the shared memory such as the shared last-level cache and DRAM cause the
delay spike of the executed job as high as 600% of its normal execution time
[14]. It means that esim

ij observed by the simulator not only depends on the
actual computation amount but also heavily depends on the memory interfer-
ences from other cores. Thus, it is hard to estimate ereal

ij from esim
ij observed by

the simulator.
This is the key challenge we encounter when we extend the previous single-

core simulator to the multicore simulator.

4 Empirical Analysis for Deriving a Practical Approach
for Multicore Simulator

To minimize the inter-core interferences at the shared memory of multicore sys-
tems, the isolation techniques such as shared cache partitioning [12], memory
bandwidth partitioning [21] and DRAM bank partitioning [20]. However, imple-
menting those techniques on the PC is very complex requiring OS kernel modi-
fications and even hardware changes.

136 W. Lee et al.

Instead, focusing on automotive system tasks, we aim at finding a practical
approach that can be easily implemented on the PC to prevent unpredictable
inter-core interferences at the shared memory and hence make the existence
of the execution time mapping functions valid even in the multicore environ-
ment. Since the automotive system tasks run on ECU which has limited memory
resource, they are normally implemented to access the small memory section. For
example, Fig. 5 shows the such small memory usages ranging from 1 KB to 35 KB
of the automotive functions composing the body control module of Renault (Due
to the confidentiality reasons, the specific information of each function is not
given). If they are compiled on the simulation PC, we can expect the similar
amount of memory footprint although the ISAs (Instruction Set Architectures)
of PC and ECU are different. Thus, if a set of such small memory footprint
tasks can reside within the per-core local cache which has 256 KB size in most
modern general-purpose PC, after the cold starts at their initial executions, their
accessed memory blocks will be copied to the local cache of each core and rarely
evicted. Thus, they rarely access the shared memory and hence their execution
times may not be severely affected by shared memory accesses from other cores.

In order to justify this conjecture, we make a synthetic task denoted by τ
that accesses to an integer array in sequential order and calculate the sum of
element-wide power. We use such a synthetic task τ since we can freely control
its memory footprint size and its computation amount by controlling the array
size. As a multicore simulation PC, we use a i7-3610QM [6] 4 core equipped
Intel CPU which has a 256 KB local cache for each core and a 6 MB shared
LLC. To obtain the base execution time of τ denoted by esim, we run it 5000
times exclusively on a single core keeping all other cores idle. Our experiments
say that from the second to the 5000th execution times except the cold start
execution, that is, the first one, are almost the same. Thus, we use their average
as esim.

In order to investigate how much τ ’s execution time is affected by the
inter-core interferences, we now concurrently run one τ denoted by τinterfered

on core-1 and the other τs denoted by τinterfering on core-2 and core-3 as
changing their array sizes. In this experiment, the measured execution time of
τinterfered is denoted by esim

interfered. Figure 6 plots the normalized execution time

of τinterfered, i.e., esim
interfered

esim . As increasing the size of τinterfering, the normalized
execution time of τinterfered tends to increase. Such increase becomes sharper
when τinterfered is larger. This is because the size increase of τinterfered makes
a number of shared memory accesses larger that can be delayed by the shared
memory accesses from τinterfering concurrently running on two cores. Neverthe-
less, when the sizes of τinterfered and τinterfering is smaller than 256 KB, the
normalized execution time of τinterfered is very close to 1.0, that is negligible
execution time increase due to inter-core interferences, regardless of the size
of τinterfering. This is because τinterfered’s memory access is mostly contained
within the local cache and hence its execution time is rarely delayed by shared
memory accesses of τinterfering on core-2 and core-3.

Practical Multicore Extension of Correct Real-Time Simulation 137

Fig. 7. Experimental result for inter-core interferences with intra-core interferences

In order to investigate both intra-core and inter-core interferences all
together, in Fig. 7, we concurrently run multiple tasks. More specifically, on core-
1, one τ denoted by τinterfered fixing its size as 64 KB and another τ denoted
by τintra as changing its array size to 0 KB, 128 KB and 512 KB. On core-2 and
core-3, one τ each denoted by τinter as increasing its size from 16 KB to 4 MB.
The y-axis of the Fig. 7 is the normalized execution time of τinterfered while the
x-axis is the size of τinter. Conclusionally, even though τinterfered execution is
affected both by other task τintra on core-1, i.e., intra-core interferences, and by
the other tasks τinters on core-2 and core-3, i.e., inter-core interferences, when
each (1) the total size of τinterfered and τintra, and (2) size of τinter is kept
smaller than 256 KB, their combined effect is still minor, that is, the normalized
execution time is very close to 1.0.

Practical Finding 1: This empirical study says that if we map tasks
to a core such that their total memory usage is contained within a
local cache, we can avoid severe inter-core interferences.

Next, in order to investigate the task migration effect from one core to
another, we migrate τ over core-1 and core-2 back and forth. When we run
τ on 2 cores, we first run τ once on core-1 to avoid the cold start effect. Then,
for the second run of τ , to model m migrations, we divide its access loop count
by m + 1 and run each divided piece migrating over core-1 and core-2 back and
forth. The total execution time of τ which migrates over core-1 and core-2 is
denoted by esim

migration. Its normalized execution time relative to esim is ploted in

138 W. Lee et al.

Fig. 8. Experimental result for migration effect

Fig. 8. From the Fig. 8, we can observe that τ ’s execution time is largely affected
by task migrations. Also, the migration effect is more severe when the task size
is smaller. Because the small size τ with 32 KB mostly hits on L1 cache on one
core, but if it is migrated to another core, a relatively large reload cost should
be added to its execution time.

This severe migration effect on the task execution time prevents a global
scheduling method like a G-EDF from being a practical job scheduling method
for our multicore simulator.

Practical Finding 2: This empirical study says that we have to use
a partitioned multicore scheduling method to avoid the non-negligible
execution time variations due to task migrations.

Combining the above two practical findings, we derive the following:
Practical Finding 3: For the existence of the execution time map-

ping functions even in the multicore simulation PC, a practical app-
roach to avoid the execution time variations due to inter-core interfer-
ences and migrations, without using the complex isolation methods,
is to use a partitioned scheduling approach subject to the following
local cache constraint:
∀ci ∈ C , ∑

∀τj mapped to ci

(MEMτj) ≤ Local cache size of ci (4)

Practical Multicore Extension of Correct Real-Time Simulation 139

where C = {c1, c2, ...} represents the set of cores on the multicore simulator and
MEMτj represents the memory footprint size of task τj .

5 Proposed Heuristic for Task Partitioning

The analysis in Sect. 4 tells us that the existence of the execution time mapping
function is valid even in the multicore simulation PC environment, if we use a
partitioned multicore scheduling subject to the local cache constraint in Eq. (4).
Thus, our practical approach to extending our previous simulated job scheduling
algorithm from the single core PC to the multicore PC is as follows:

– First, we find a partitioning of the given task set, e.g, Fig. 2, into the given
number of cores satisfying the local cache constraint for each core. The tasks
in each partition are statically mapped to a core meaning that jobs from those
tasks can only be executed on the mapped core.

– Second, we dynamically manage the job-level precedence graph and progres-
sively execute the simulated jobs in the same way of the single core simulation
PC [18]. Only difference in the multicore simulation PC is that, among jobs
whose all deterministic predecessors have already finished, we choose up to
m earliest deadline jobs not just one, where m denotes the number of cores
in multicore simulation PC. Those m jobs are executed on their statically
mapped cores.

This way, we can keep the validity of the execution time mapping functions
of all the tasks in the multicore simulation PC as well. Thus, the proof for
the functionally and temporally correct real-time simulation in the single core
PC [18] still works in the multicore simulation PC.

Now, our remaining problem is to find a good task partitioning solution sat-
isfying the local cache constraint. The problem is reducible to bin packing deci-
sion problem which is known as NP-Complete [4]. When we consider exhaus-
tive search of the whole possible partitioning cases, the size of solution space
equals to S(|T|, |C |) where S represents the second kind of Stirling number
which exponentially increases according to the number of tasks and cores. e.g.,
S(9, 4) = 7770, S(10, 4) = 34105. Since there is no polynomial time algorithm
and the whole solution space is too large to exhaustively search, the heuristic
approaches such as Best-fit-first, Worst-fit-first can be considered to practically
find the partitioning [11]. However, those heuristics are not likely to give good
task partitioning solution since they only focus on the packing of item(task)
without considering the job-level precedence graph of the given task set. A good
task partitioning solution is one that can maximize the concurrent executions
of simulated jobs using multicore respecting all the precedence constraints of
the job-level precedence graph, in order to maximize the chance of finishing all
of them before their deadlines in the simulation duration. To this end, we pro-
pose Smallest-blocking-first heuristic which partitions the given tasks considering
potential parallelism in the job-level precedence graph.

140 W. Lee et al.

Fig. 9. Intuition of Smallest-blocking-first heuristic

We first give the intuition of Smallest-blocking-first heuristic using Fig. 9.
Let’s assume that the tasks τ1 and τ2 are already mapped to c1 and c2, respec-
tively, as shown in the figure. Thus, jobs of τ1, e.g., J11 and J12, will be executed
on c1 and jobs of τ2, e.g., J21, will be executed on c2. Each bidirectional arrow rep-
resents the job of each task where its left-end means EESTij (Expected Earliest
Start Time) of Jij at the simulator, and its right-end means ELFTij (Expected
Latest Finish Time) of Jij at the simulator. The duration [EESTij , ELFTij] is
a conservative active interval during which Jij may be using its mapped core.
Thus, when we determining which core τ3 should be mapped to, we consider
how much of J31’s conservative active interval overlaps with those of τ1 jobs and
τ2 jobs. If the τ3 is mapped to c1, the length of overlapped interval of is 2 as
Fig. 9 shows. Since the only one job can be executed on a core at a time, one of
the J11 and J31 will be blocked for up to 2 time units. On the other hand, if τ3
is mapped to c2, the overlapped interval is 4, which means one of J21 and J31

will be blocked for up to 4 time units. Thus, the overlapped interval of the con-
servative active intervals of a pair of two tasks can be interpreted as a potential
pairwise blocking factor, i.e., inverse of the potential pairwise parallelism, when
they are mapped to the same core. Thus, the proposed Smallest-blocking-first
heuristic always choose the smallest blocking core at every decision to maximize
the potential parallelism. In the example of Fig. 9, Smallest-blocking-first maps
the τ3 to the c1 which has lower blocking value.

Now, the rest of this section explains how to find EESTij and ELFTij from
the job-level precedence graph and how to use them to compute the pairwise
blocking for the Smallest-blocking-first heuristic.

5.1 Finding the Expected Earliest Start Time at the Simulator

The more predecessors a job has in the job-level precedence graph, the later its
possible start time will be, since it can start only after all of its predecessors
finish. Therefore, to conservatively expect the EESTijs as early as possible one,
we need to consider as few as possible precedence relations in the job-level prece-
dence graph. To this end, we eliminate all the non-deterministic edges, which
are not sure to be deterministic or removed during the simulation, from the
job-level precedence graph. Figure 10(a) shows the original job-level precedence
graph with non-deterministic edges for the example of Fig. 4. For the job-level

Practical Multicore Extension of Correct Real-Time Simulation 141

Fig. 10. Construction of sparse graph and EESTij of each job for the example job-level
precedence graph

precedence graph, Fig. 10(b) shows the job-level precedence graph after elimi-
nating all the non-deterministic edges.

After eliminating the non-deterministic edges from the job-level precedence
graph, we assign the edge weights to the remaining edges following:

w(Jij , Jkl) = Cbest,sim
i (5)

where Cbest,sim
i represents the best case execution time of τi on the simulator.

Figure 10(b) also shows such assigned weights.
Since we assign the edge weights as the best case execution time of the pre-

decessor job, the length of the longest path from the initially scheduled job to
the Jij equals to the EESTij when we assume the infinite number of simula-
tor cores which provides ideally parallelized execution. The job-level precedence
graph after eliminating non-deterministic edges forms a DAG (Directed Acyclic
Graph) as it is already proven that the job-level precedence graph with only
deterministic edges cannot contain a cycle [18]. Since there exists a polynomial
time algorithm to find the longest path on the DAG, we can find the EESTij of
each job in polynomial time [1].

However, unlike the normal DAG, our job-level precedence graph has a con-
straint about the start time of each job as the Eq. (1) shows. It means that the
start time of the Jij who has physical read constraint is affected by not only its
predecessor jobs but also its actual start time on the real cyber-side. In other
words, although the physical read job does not have any unfinished determinis-
tic predecessor, it cannot be added to the ready queue of the simulator until its
actual start time on the real cyber-side.

To consider such constraint, we add a virtual start job Jvs to the job-level
precedence graph and connect it to the jobs who have physical read constraint
as in Fig. 10(c). In addition, we also connect the Jvs to all the jobs who do not
have any predecessor with zero-weight. These edges allow us to regard the Jvs as
a single start job of the job-level precedence graph by collecting all the jobs who
might could be initially scheduled. In summary, the weights of newly connected
edges are assigned following:

142 W. Lee et al.

w(Jvs, Jij) =

⎧
⎪⎨

⎪⎩

min(tS,real
ij), when Jij has

phy. read constraint
0, otherwise

(6)

As we mentioned at the Sect. 3, the start time interval [min(tS,real
ij), max(tS,real

ij)]
is progressively narrowed during the simulation. i.e., the value of min(tS,real

ij)
keeps increasing. By assigning the least narrowed min(tS,real

ij) value as the weight
of edge from the Jvs to the Jij who has physical read constraint, we can force the
length of the longest path from the Jvs to the Jij to be larger than the earliest
start time of Jij on the real cyber-side.

After adding the virtual start job and assigning the corresponding edge
weights, we find the lengths of the longest path from the Jvs to each job as
Fig. 10(d) shows. The shaded box at the lower-left corner of each job Jij repre-
sents the length of the longest path which equals to EESTij .

5.2 Finding the Expected Latest Finish Time at the Simulator

Similar with the start time, the more predecessors a job has in the job-level
precedence graph, the later its finish time will be. Therefore, to conservatively
expect the ELFTijs as late as possible one, we need to consider as many as
possible precedence relations in the job-level precedence graph. To this end,
in this time, we regard the non-deterministic edges as the deterministic edges.
However, when we consider both of deterministic and non-deterministic edges,
the job-level precedence graph may contain cycles which makes it impossible
to define the longest path from the job to the another job. Therefore, we first
resolve the cycle by eliminating the one of the non-deterministic edges composing
a cycle.

Whenever a job in the job-level precedence graph finishes, the simulator
checks below inequality using the narrowed tS,real

ij , tF,real
ij ranges for all of the

remaining non-deterministic edges (Jkl, Jij)s:

max(tS,real
kl) < min(tS,real

ij) (7)

If the above inequality holds, the non-deterministic edge (Jkl, Jij) becomes
deterministic [18]. During the simulation, the value of max(tS,real

kl) keeps
decreasing and min(tS,real

ij) keeps increasing according to the narrowed tS,real
ij ,

tF,real
ij ranges. Therefore, it intuitively implies that a smaller difference between

max(tS,real
kl) and min(tS,real

ij) likely makes the non-deterministic edge determin-
istic at the end. On the other hand, a larger value of max(tS,real

kl)−min(tS,real
ij)

likely makes the non-deterministic edge deleted at the end. From this specula-
tion, we delete the non-deterministic edge who has the largest max(tS,real

kl) −
min(tS,real

ij) value among the non-deterministic edges composing the cycle. Since

Practical Multicore Extension of Correct Real-Time Simulation 143

Fig. 11. Construction of dense graph and ELFTij of each job for the example job-level
precedence graph

there exist plenty of polynomial time cycle detection algorithms [10], we can
resolve the cycles in polynomial time by repeating the deletion of such non-
deterministic edge until no more cycle is detected. Figure 11(b) shows the job-
level precedence graph transformed from the original one in Fig. 11(a) by trans-
forming non-deterministic edges to deterministic and eliminating cycles if any.

After resolving the cycles, we assign the edge weights to the remaining edges
following:

w(Jij , Jkl) = Cworst,sim
k (8)

where Cworst,sim
k represents the worst case execution time of τk on the simulator.

Figure 11(b) also shows such assigned weights.
Then, we add the virtual start job and its corresponding edges from the Jvs

to the jobs who have physical read constraint or do not have any predecessor as
in Fig. 11(c). The weights of edges from Jvs are assigned following:

w(Jvs, Jij) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(tS,real
ij)

+ Cworst,sim
i , when Jij has

phy. read constraint
Cworst,sim

i , otherwise

(9)

Unlike the EEST case, we assign the edge weights using the worst case execution
time of the successor job such that the finish time will be as late as possible.
Such weights also make the virtual start job force the physical read jobs to start
and finish as late as possible. i.e., they start at the latest start time on the real
cyber-side, max(tS,real

ij), and are executed for the worst case execution time,
Cworst,sim

i .
This weight assignment allows us to regard the length of the longest path

from the Jvs to the Jij as the latest finish time ELFTij of the Jij on the
cycle-eliminated job-level precedence graph if we assume the ideally parallelized
execution, i.e., infinite number of cores. In Fig. 11(d), such computed ELFTij

for each job is denoted as the shaded box at the lower-right corner of each job.

144 W. Lee et al.

Fig. 12. Weighted intervals and task-wise blocking values for the example job-level
precedence graph

Note that unlike the EESTij , we cannot guarantee ELFTij is always later than
the actual finish time of the simulated job Jij since we speculatively eliminate
cycles and assume the infinite number of cores. Nevertheless, we can still use
ELFTij as a good end delimiter for the active interval of Jij to approximately
compute the potential blocking factor among tasks.

5.3 Weighting the [EESTij , ELFTij] Intervals

Our conservative approach to find [EESTij , ELFTij] intervals may leads us to
expect too wide intervals which cannot precisely predict the pairwise blocking
among tasks. Since the job Jij can be executed only up to for Cworst,sim

i within
the interval [EESTij , ELFTij], we weight the each interval as follow:

w([EESTij , ELFTij]) =
Cworst,sim

i

ELFTij − EESTij
(10)

Figure 12 shows the resulting weighted intervals and pairwise blocking values
for the example job-level precedence graph in the Fig. 4. The figure represents
the situation where τ1 and τ2 are already mapped to c1, c2, respectively, and
we are determining which core τ3 should be mapped to. The pairwise blocking
between τi and τj , Bτi,τj , is defined as the sum of their job-wise blocking, bJik,Jjl

:

Bτi,τj =
∑

∀Jik∈τi

∑

∀Jjl∈τj

bJik,Jjl
(11)

Practical Multicore Extension of Correct Real-Time Simulation 145

Algorithm 1. Proposed task partitioning algorithm

1: T ← {τ1...τn} // set of tasks
2: C ← {c1...cm} // set of cores
3: U ← {U1 = 0...Um = 0} // mem. usage of each core
4: P ← {P1 = ∅...Pm = ∅} // task partition of each core
5: for τi ∈ T do
6: coremin ← −1
7: blockmin ← ∞
8: for Pj ∈ P do
9: if Uj + MEMτi > local cache size of cj then

10: continue
11: end if
12: block ← 0
13: for τk ∈ Pj do
14: block = block + Bτi,τk

15: end for
16: if block < blockmin then
17: blockmin ← block
18: coremin ← j
19: end if
20: end for
21: if coremin = −1 then
22: Task partitioning failed!
23: else
24: Ucoremin = Ucoremin + MEMτi

25: Pcoremin = Pcoremin ∪ {τi}
26: end if
27: end for

The job-wise blocking bJik,Jjl
between Jik and Jjl is defined as the weighted

product of overlapped length:

bJik,Jjl
= the length of overlapped interval

∗ w([EESTik, ELFTik])
∗ w([EESTjl, ELFTjl])

(12)

For example, the pairwise blocking between τ1 and τ3, Bτ1,τ3 , is defined as the
sum of their job-wise blockings bJ11,J31 and bJ12,J31 as in Fig. 12. When we con-
sider bJ11,J31 , the overlapped interval is [1, 3] and weights of each interval are
1.00 and 0.50 respectively. Thus, bJ11,J31 is 2 * 1.00 * 0.50 = 1.00. On the
other hand, since [EEST12, ELFT12] and [EEST31, ELFT31] do not overlap
each other, bJ12,J31 is zero. Thus, the pairwise blocking between τ1 and τ3 is
Bτ1,τ3 = 1.00.

5.4 Task Partitioning Heuristic Using Pairwise Blocking

Using the above way of computing the pairwise blocking between two tasks, our
proposed heuristic task partitioning can be formally described as Algorithm1.

146 W. Lee et al.

Fig. 13. Simulatability according to the number of simulator cores

For each task τi, the for loop from Line 8 to Line 20 checks each partition Pj

mapped to each core cj .

– to see if the local cache constraint is violated if τi is added to Pj (from Line
9 to Line 11),

– to accumulate the pairwise blocking between the newly added task τi and the
already mapped tasks (from Line 12 to Line 15), and

– to see if the accumulated pairwise blocking for the current partition Pj is the
minimum (from Line 16 to Line 19)

After the for loop, the algorithm maps τ to the core with minimum accumu-
lated blocking among the cores satisfying the local cache constraint.

6 Evaluation

To evaluate our proposed approach, we measure the “simulatability” of our simu-
lation method using randomly synthesized cyber-sides of an automotive system.

Practical Multicore Extension of Correct Real-Time Simulation 147

Fig. 14. Simulatability compared to the other task partitioning heuristics

i.e., how many of them can guarantee functionally and temporally correct real-
time simulation [18]. In the rest of this paper, by “cyber-side”, we mean the
cyber-side of an automotive system which is similarly given as the Fig. 2.

At first, in Fig. 13, we conduct a experiment to see how much simulatability
can be improved by our proposed multicore extension (named Ours(m) where
m is the number of cores) over the previous single core simulator (named Single
core). For this, we synthesize 9,000 random cyber-sides. Each cyber-side is syn-
thesized as follows. The number of ECUs is determined from uniform[3, 10]. The
number of tasks on each ECU is fixed as 5. Out of all the tasks in each cyber-side,
20% of them read data from the physical-side. Similarly, another 20% of them
write data to the physical-side. The data producer/consumer relations among
the tasks are randomly configured, but the total number of producer/consumer
relations does not exceed the number of tasks in each cyber-side. For each task τi,
its task parameters are randomly generated as follows. Its task period Pi is ran-
domly selected from {5ms, 10ms, 20ms, 25ms, 50ms, 100ms} while the offset Φi

is assumed as zero. The worst case execution time Cworst,real
i is determined from

uniform(0, 20]% of the Pi. The best case execution time Cbest,real
i is determined

148 W. Lee et al.

Fig. 15. Simulatability as changing the physical read task ratio

from uniform(0, 100]% of the Cworst,real
i . For all the tasks in each cyber-side,

we assume the following simple execution time mapping function:

ereal
ij =

esim
ij

3
(13)

For each of such synthesized cyber-sides, we run the simulation during the
ten hyper periods and count it simulatable if no deadline violation is observed.
In order to focus on precedence relations among tasks rather than tasks’ memory
sizes, we assume that the memory usage of each task is extremely small, so even
all of them can be fit into a local cache of a core.

For such conducted experiment, Fig. 13 compares the simulatability by Sin-
gle core and by Ours(2 cores), Ours(4 cores), Ours(8 cores) for the dif-
ferent pairs of no. of ECUs and no. of tasks. Note that larger numbers of ECUs
and tasks imply more complex cyber-sides. From the figure, we can observe that
the simulatability of Single core, the baseline, drops down to 0% when the
number of ECUs and tasks pair is (6, 30). On the other hand, our proposed app-
roach using 8 cores, Ours(8 cores), still has 84% simulatability for the same

Practical Multicore Extension of Correct Real-Time Simulation 149

Fig. 16. Simulatability as changing the physical write task ratio

number of ECUs and tasks pair, i.e., (6, 30). Furthermore, by comparing Ours(2
cores), Ours(4 cores), and Ours(8 cores), we can also see that our proposed
approach scalably schedules the more ECUs and tasks in line with the increasing
number of simulator cores.

Secondly, in Fig. 14, we conduct another experiment to compare our proposed
approach with other task partitioning heuristics. For this, we synthesize another
9,000 random cyber-sides in the same way as in Fig. 13 except that the num-
ber of ECUs is determined from uniform[10, 17] for focusing on more complex
cyber-sides. In the figure, we compare our task partitioning algorithm with the
following commonly used heuristics:

– Worst-fit-first: It considers only memory constraint. It places the new task
in a core where it fits loosest. i.e., a core who has the largest remaining local
cache size after placing MEMτi

– Smallest-utilization-first: It considers only utilization of each core. It
places the new task in a core which has the smallest utilization where the
utilization of a core ci, Utilci , is defined as below:

150 W. Lee et al.

Utilci =
∑

∀ τj mapped to ci

Cworst,real
j

Pj
(14)

Figure 14 shows that Ours always has better simulatability than Worst-
fit-first and Smallest-utilization-first in both cases of using 4 cores and
8 cores. The simulatability improvement by Ours over Worst-fit-first and
Smallest-utilization-first, confirms that our Smallest-blocking-first heuristic
can effectively consider the job-level precedence graph while other heuristics
cannot.

In order to more deeply investigate how the physical interactions of the given
cyber-side affect the simulatability, we conduct another experiments in Figs. 15
and 16. For this, we additionally synthesize another 9,000 cyber-sides in the same
way as the previous experiments except that we vary the physical read/write
task ratios while fixing the number of ECUs as 10. Figure 15 shows the sim-
ulatability as increasing the physical read task ratio from 10% to 50% while
keeping the physical write task ratio as 20%. From the figure, we can observe
that the simulatability tends to decrease as increasing the physical read task
ratio, for all of Ours, Worst-fit-first, and Smallest-utilization-first. This is
because the more physical read tasks imply the more physical read constraint in
Eq. (1), which forces more jobs to wait until their actual start times on the real
cyber-side although they do not have any unfinished deterministic predecessors.
Nevertheless, the simulatability of Ours decreases less than Worst-fit-first and
Smallest-utilization-first making more significant improvement, since Ours
employing Smallest-blocking-first well considers the [EESTij , ELFTij] intervals
which reflect the actual start time on the real cyber-side.

Similarly, Fig. 16 shows the simulatability as increasing the physical write
task ratio from 10% to 50% while keeping the physical read task ratio as 20%.
Since the more physical write tasks in the cyber-side imply the more physical
write constraint in Eq. (2), the higher physical write task ratio gives more harsh
deadline requirements that the simulator should meet. We can see this tendency
through the decreasing simulatability of Ours, Worst-fit-first, and Smallest-
utilization-first according to the increasing physical write task ratio. We can
also validate that our consideration about the [EESTij , ELFTij] efficiently han-
dles the physical write tasks by the increasing simulatability gap between Ours
and other heuristics.

7 Conclusion

This paper proposes the multicore extension of previously proposed function-
ally and temporally correct single core simulator. For this, we first empirically
analyze the actual inter-core interferences and derive that a practical multicore
extension without using complex inter-core isolation mechanisms is a partitioned
multicore scheduling subject to per-core local cache constraint. We also show that
the local cache constraint is not too strict to satisfy, if we focus on the practical
usecases of the real automotive system tasks. Then, we propose a heuristic task

Practical Multicore Extension of Correct Real-Time Simulation 151

partitioning algorithm that aims to maximize concurrent job executions on mul-
ticore simulation PC respecting all job-level precedence relations necessary for
the functionally and temporally correct real-time simulation. Our experimental
study shows significant improvement of simulatability, i.e., simulation capacity,
by our proposed multicore extension of the previous single core simulator.

In our future work, we plan to extend our coverage of the simulation to
more complex automotive systems such as self-driving cars which normally have
immense memory usage and super-large computation amount. We also plan to
investigate the simulation behavior of safety-relevant automotive tasks, e.g. ISO-
26262-related monitoring function, whose operational nature is totally different
from the normal control tasks. By investigating such tasks and bring those tasks
into the simulator, we believe our simulator would be more beneficial in terms
of evaluating the overall safety of an automotive system. In the long term, we
plan to make our functionally and temporally correct simulation approach as a
general simulator applicable for a broader spectrum of CPSs.

Acknowledgement. This research was supported by the MSIT (Ministry of Science
and ICT), Korea, under the SW Starlab (IITP-2015-0-00209) supervised by IITP (Insti-
tute for Information & Communications Technology Promotion). The authors would
like to thank Hyundai-Kia Motor Company, Korea, for the cooperation and financial
support in this research project.

References

1. Ando, E., Nakata, T., Yamashita, M.: Approximating the longest path length of a
stochastic dag by a normal distribution in linear time. J. Discret. Algorithms 7(4),
420–438 (2009)

2. Binkert, N., et al.: The gem5 simulator. ACM SIGARCH Comput. Architect. News
39(2), 1–7 (2011)

3. dSPACE: version 8.4.0.150421 (R2014b). dSPACE GmbH., Wixom, Michigan
(2018)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness (Series of Books in the Mathematical Sciences), ed. Computers
and Intractability, vol. 340 (1979)

5. Infineon: Tricore 27x (2018). https://www.infineon.com/cms/en/product/
microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/
aurix-family-tc27xt/. Accessed 1 Nov 2018

6. Intel: Core i7–3610qm (2012). https://ark.intel.com/products/64899/Intel-Core-
i7-3610QM-Processor-6M-Cache-up-to-3-30-GHz-. Accessed 8 Nov 2018

7. Intel: Core i7–9700k (2018). https://www.intel.com/content/www/us/en/
products/processors/core/i7-processors/i7-9700k.html (2018). Accessed 1 Nov
2018

8. Joo, H., We, K.S., Kim, S., Lee, C.G.: An end-to-end tool for developing CPSs
from design to implementation (2016)

9. Navet, N., Song, Y., Simonot-Lion, F., Wilwert, C.: Trends in automotive commu-
nication systems. Proc. IEEE 93(6), 1204–1223 (2005)

10. Nivasch, G.: Cycle detection using a stack. Inf. Process. Lett. 90(3), 135–140 (2004)

https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-family-tc27xt/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-family-tc27xt/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-family-tc27xt/
https://ark.intel.com/products/64899/Intel-Core-i7-3610QM-Processor-6M-Cache-up-to-3-30-GHz-
https://ark.intel.com/products/64899/Intel-Core-i7-3610QM-Processor-6M-Cache-up-to-3-30-GHz-
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-9700k.html
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-9700k.html

152 W. Lee et al.

11. Ong, H.L., Magazine, M.J., Wee, T.: Probabilistic analysis of bin packing heuris-
tics. Oper. Res. 32(5), 983–998 (1984)

12. Qureshi, M.K., Patt, Y.N.: Utility-based cache partitioning: a low-overhead, high-
performance, runtime mechanism to partition shared caches. In: 39th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-39, pp. 423–
432. IEEE (2006)

13. Sanchez, D., Kozyrakis, C.: ZSim: fast and accurate microarchitectural simulation
of thousand-core systems. In: ACM SIGARCH Computer Architecture News, vol.
41, pp. 475–486. ACM (2013)

14. Sha, L., et al.: Single core equivalent virtual machines for hard real–time computing
on multicore processors. Technical report (2014)

15. Simulink: version 8.4.0.150421 (R2014b). MathWorks Inc., Natick, Massachusetts
(2014)

16. Stern, S., Gencel, C.: Embedded software memory size estimation using cosmic: a
case study. In: International Workshop on Software Measurement (IWSM), vol. 39
(2010)

17. We, K.S.: Functionally and temporally correct simulation for cyber-physical sys-
tems. Ph.D. thesis, Seoul National University (2017)

18. We, K.S., Kim, S., Lee, W., Lee, C.G.: Functionally and temporally correct simu-
lation of cyber-systems for automotive systems. In: 2017 IEEE Real-Time Systems
Symposium (RTSS), pp. 68–79. IEEE (2017)

19. Yourst, M.T.: PTLsim: a cycle accurate full system x86–64 microarchitectural sim-
ulator. In: 2007 IEEE International Symposium on Performance Analysis of Sys-
tems & Software, pp. 23–34. IEEE (2007)

20. Yun, H., Mancuso, R., Wu, Z.P., Pellizzoni, R.: PALLOC: DRAM bank-aware
memory allocator for performance isolation on multicore platforms. In: 2014 IEEE
20th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pp. 155–166. IEEE (2014)

21. Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., Sha, L.: MemGuard: memory band-
width reservation system for efficient performance isolation in multi-core platforms.
In: 2013 IEEE 19th Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), pp. 55–64. IEEE (2013)

Constraint-Based Modeling and Symbolic
Simulation of Hybrid Systems

with HydLa and HyLaGI

Yunosuke Yamada(B), Masashi Sato, and Kazunori Ueda

Department of Computer Science and Engineering, Waseda University,
3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

{yunosuke,masashi,ueda}@ueda.info.waseda.ac.jp

Abstract. Hybrid systems are dynamical systems that include both
continuous and discrete changes. Modeling and simulation of hybrid sys-
tems can be challenging due to various kinds of subtleties of their behav-
ior. The declarative modeling language HydLa aims at concise descrip-
tion of hybrid systems by means of constraints and constraint hierarchies.
HyLaGI, a publicly available symbolic simulator of HydLa, featured
error-free computation with symbolic parameters. Based on symbolic
computation, HyLaGI provides various functionalities including nonde-
terministic execution, handling of infinitesimal quantities, and construc-
tion of hybrid automata. Nondeterministic execution in the framework
of constraint programming enables us to solve inverse problems by auto-
matic parameter search. This paper introduces these features by means
of example programs. This paper also discusses our experiences with
HydLa programming, which is unique in that its data and control struc-
tures are both based on constraint technologies. We discuss its expressive
power and our experiences with modeling using constraint hierarchies.

Keywords: Hybrid systems · Constraints · Symbolic simulation

1 Introduction

Hybrid systems [12] are dynamical systems which include both continuous and
discrete changes. To put it differently, hybrid systems are dynamical systems
whose description involves case analysis. Because of the case analysis, simulation
of hybrid systems can easily go qualitatively wrong, and techniques for rigorous
simulation are very important.

Modeling of hybrid systems, as opposed to continuous systems or discrete
systems, is itself a challenge. The best-known modeling technique is hybrid
automata [9] with an explicit notion of states, but designing fundamental lan-
guage constructs, especially those for declarative (as opposed to procedural)
modeling seems to be an open problem. Although there have been a number of
proposals of modeling languages (see [5] for a comprehensive survey), most high-
level languages aim for the modeling of complex hybrid systems [1,16], leaving
the quest for fundamental modeling constructs rather unexplored.
c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 153–178, 2020.
https://doi.org/10.1007/978-3-030-41131-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_8

154 Y. Yamada et al.

We take a constraint-based approach to the above two questions, i.e., rigor-
ous simulation and modeling constructs. Constraints are a necessary ingredient
in any modeling technique of hybrid systems in that they all handle differen-
tial equations. However, virtually all high-level modeling languages come with
other language constructs to provide the language with control structures. For
instance, Modelica [16] appears to be close to our goal in that its main feature
is non-causal, constraint-based modeling, but Modelica also supports imperative
constructs to simulate models for which explicit sequencing of events is necessary.
Another high-level language, Zélus [4], builds on the framework of synchronous
programming into which ordinary differential equations (ODEs) were integrated.
Accordingly, the research question we are going to address is:

“Are constraints and constraint solving adequate, by themselves, for the
concise modeling and rigorous simulation of hybrid systems?”

The modeling language HydLa [20,21] and its implementation HyLaGI [13,
14] were built as an attempt to answer that question.

Constraint programming for hybrid systems is not new; for example, Hybrid
CC [8] was born as an extension of concurrent constraint programming. While
Hybrid CC retained the flavor of process calculi, HydLa, inspired by Hybrid CC,
adopted constraint hierarchy [3] for concise modeling of hybrid systems, as will
be exemplified soon.

The constraint-based approach has another advantage—the ability to express
partial information and handle it with rigorous symbolic computation based
on consistency checking. Constraints include the notion of intervals such as
x ∈ [1.0, 3.5]. As an important application, they also allow natural handling
of parametric hybrid systems, i.e., hybrid systems with symbolic parameters,
which is useful for the understanding, analysis and design of hybrid systems.
Some verification tools such as KeYmaera X [7] and dReach [10] also took a
rigorous, symbolic approach. Unlike these and like Acumen [18], HyLaGI was
designed as a simulation tool whose primary goal was to help understanding
of hybrid systems (as opposed to the solving of decision problems). There are
other tools for rigorous simulation. For instance, Acumen [18] and Flow* [6]
adopt (numerical) interval enclosure techniques while we take a symbolic app-
roach to handle parametric systems. Another symbolic simulator was reported
in [17], but unlike it our algorithm provides exhaustive search.

1.1 HydLa by Example

Let us introduce HydLa by a simple example.
Figure 1 shows a HydLa model of a bouncing particle. In HydLa, each variable

is treated as a function of time; for example, a variable y is an abbreviation of a
function y(t) (t ≥ 0) and represents the height of the particle, while y’ and y’’
stand for its speed and acceleration, both being functions of time.

The first three lines are the definitions of named constraints (called constraint
modules or simply modules) represented using differential equations and logical

Modeling and Simulation with HydLa and HyLaGI 155

1 INIT <=> 7 < y < 12 & y’ = 0.
2 FALL <=> [](y’’ = -10).
3 BOUNCE <=> [](y- = 0 => y’ = -4/5 * y’-).
4
5 INIT, (FALL << BOUNCE).
6 //#hylagi -p10

Fig. 1. A bouncing particle model in HydLa with an uncertain initial state.

connectives. INIT stands for a constraint defining the (uncertain) initial position
and the speed of the particle. FALL represents free fall, while BOUNCE represents
bouncing. The temporal logic operator [], called “always”, indicates that a
constraint holds and keeps holding after it is generated. The postfix operator
- indicates the left limit of the value of the variable; for example, y-(t) stands
for limt′→t−0 y(t′). The connective => is logical implication. Line 5 declares how
the three modules are composed. We can declare relative strength of modules:
in our case, FALL is declared to be weaker than BOUNCE and is ignored when it
is inconsistent with BOUNCE. Line 6 is a comment line showing default options
given to HyLaGI (Sect. 3). Further details of HydLa will be described in Sect. 2.

1.2 HyLaGI and WebHydLa

We are developing an implementation HyLaGI to simulate HydLa programs.
HyLaGI, available from GitHub1, is implemented in C++ and uses the Boost
library. We currently use Mathematica as a constraint solver and perform sim-
ulations by symbolic computation. This opens up various applications including
the simulation and reasoning about models with symbolic parameters, handling
of infinitesimal quantities, and checking of the inclusion properties of the sets
of trajectories. Symbolic simulation assumes the existence of closed-form solu-
tions of ODEs, which might sound like a rather strong restriction, but ODEs
without closed-form solutions could be rigorously approximated using a family
of ODEs with symbolic parameters (to enclose approximation errors) that have
closed-form solutions, which is among our future work.

Figure 2 shows the output of HyLaGI from the program of Fig. 1. HyLaGI
simulates a program in phases, which are an alternating sequence of point phases
(PPs) and interval phases (IPs). A point phase represents discrete change, and an
interval phase represents continuous change. HyLaGI represents the uncertain
initial condition of y by generating a symbolic parameter p[y,0,1], meaning
a parameter representing the 0th derivative of y of the first phase. HyLaGI
performs case analysis for uncertain models, but for this example it returns only
one case with 10 phases. Information for a point phase includes the time and
the values of variables, while that of an interval phase includes the time interval
and trajectories (as functions of time) over that interval. In addition, it provides

1 https://github.com/HydLa/.

https://github.com/HydLa/

156 Y. Yamada et al.

1 ------ Result of Simulation ------
2 ---------parameter condition(global)---------
3 p[y, 0, 1] : (7, 12)
4 ---------Case 1---------
5 ---------1---------
6 ---------PP 1---------
7 unadopted modules: {}
8 positive :
9 negative :

10 t : 0
11 y : p[y, 0, 1]
12 y’ : 0
13 y’’ : -10
14 ---------IP 2---------
15 unadopted modules: {}
16 positive :
17 negative :
18 t : 0->5^(-1/2)*p[y, 0, 1]^(1/2)
19 y : t^2*(-5)+p[y, 0, 1]
20 y’ : t*(-10)
21 y’’ : -10
22 ---------2---------
23 ---------PP 3---------
24 unadopted modules: {FALL}
25 unsat modules : {BOUNCE, FALL}
26 unsat constraints : {y’’=-10, y’=-4/5*y’-}
27 positive : y-=0=>y’=-4/5*y’-
28 negative :
29 t : 5^(-1/2)*p[y, 0, 1]^(1/2)
30 y : 0
31 y’ : 5^(-1/2)*8*p[y, 0, 1]^(1/2)
32 ---------IP 4---------
33 unadopted modules: {}
34 positive :
35 negative : y-=0=>y’=-4/5*y’-
36 t : 5^(-1/2)*p[y, 0, 1]^(1/2)->5^(-1/2)*p[y, 0, 1]^(1/2)*13/5
37 y : t^2*(-5)+18*5^(-1/2)*t*p[y, 0, 1]^(1/2)+p[y, 0, 1]*(-13)/5
38 y’ : t*(-10)+18*5^(-1/2)*p[y, 0, 1]^(1/2)
39 y’’ : -10
40
41 . . . (omitted up to PP 9) . . .
42
43 ---------IP 10---------
44 unadopted modules: {}
45 positive :
46 negative : y-=0=>y’=-4/5*y’-
47 t : 5^(-1/2)*p[y, 0, 1]^(1/2)*613/125->5^(-1/2)*p[y, 0, 1]^(1/2)

*3577/625
48 y : t^2*(-5)+5^(-1/2)*t*p[y, 0, 1]^(1/2)*6642/125+p[y, 0,

1]*(-2192701)/78125
49 y’ : t*(-10)+5^(-1/2)*p[y, 0, 1]^(1/2)*6642/125
50 y’’ : -10
51 ---------parameter condition(Case1)---------
52 p[y, 0, 1] : (7, 12)
53 # number of phases reached limit

Fig. 2. Simulation results of the bouncing particle up to 10 phases.

Modeling and Simulation with HydLa and HyLaGI 157

Fig. 3. Output of webHydLa for the bouncing particle model. Note that simulation
was executed only once, after which the family of trajectories were rendered by the
visualizer.

information about the constraints that determined these values or trajectories,
which turned out to be extremely useful in debugging and construction of hybrid
automata, as discussed in Sects. 3 and 4.

The output of Fig. 2 suggests that a visualization tool for the understanding
of results is highly desirable. We have developed webHydLa2 as an IDE for
HydLa that can visualize simulation results in 2D and 3D. For example, the
simulation result of the program in Fig. 1 is visualized as in Fig. 3.

1.3 Purpose and Outline of the Paper

HydLa and HyLaGI has been available for quite some time, but except for the
language definition [20] and implementation techniques [13,14], the consequences
and implications of the design and functionalities of HydLa and HyLaGI in the
light of the modeling of various hybrid systems have not been reported. Reports
on various ideas that went into our system were scattered over rather short
papers (some of which in Japanese). Thus the purpose of the present paper is to
report our constraint-based approach in a comprehensive way with a number of
examples, discussing important details and findings not addressed by previous
papers.

The rest of the paper is organized as follows. Section 2 briefly introduces the
constructs of HydLa. Section 3 introduces functionalities of HyLaGI by various
examples. Section 4 describes our experiences with constraint-based modeling

2 http://webhydla.ueda.info.waseda.ac.jp/.

http://webhydla.ueda.info.waseda.ac.jp/

158 Y. Yamada et al.

with HydLa. Section 5 introduces further examples involving parameter search.
Section 6 concludes the paper.

2 The Constraint-Based Language HydLa

We briefly overview the modeling language HydLa. Please refer to [20] for further
details of basic constructs and [13] for extended features implemented in HyLaGI
and some subtle points.

As exemplified by the bouncing particle model of Fig. 1, a typical HydLa
program consists of the definitions of constraints followed by the declaration
of constraint hierarchy formed by the defined modules. Constraint hierarchy
refers to a partially ordered set whose elements are combinations of modules
allowed by the declaration and whose order is a set inclusion relation. Constraint
hierarchy allows us to represent ordinary or default behavior and special or
exceptional behavior in a concise manner. Constraints in the module INIT are
defined without the [] operator and hold only at time 0. A constraint with
=> expresses a conditional constraint (also called a guarded constraint) whose
consequent is enabled only when the antecedent (called a guard) holds. The
constraint hierarchy declared in Line 5 indicates that BOUNCE is stronger than
FALL and also that BOUNCE and INIT have the highest priority. At each point of
time, HydLa adopts a maximal consistent set (MCS) of modules that respects
constraint hierarchy. In this example, while the particle is floating, the set {INIT,
FALL, BOUNCE} is adopted (note that INIT is vacuously satisfied after time 0, and
BOUNCE is vacuously satisfied because of the false guard) and that when it collides
with the floor, the MCS changes to {INIT, BOUNCE}. Note that a module which is
not weaker than any other module in the constraint hierarchy is called a required
module and is always enabled.

2.1 Syntax

The syntax of HydLa is shown in Fig. 4, where dname, cname, vname are sym-
bolic names representing definitions, constraints and variables, respectively.

Here we describe language features not covered by Fig. 1. The definition Def
says that we can define named declarations (that may include constraint hierar-
chies) as well as named constraints. It also says that definitions may have formal
parameters

#”

X. The syntax of a constraint C allows an always (�) constraint
to occur in the consequent of a guarded constraint. Examples of its use will be
shown in Sect. 5. Note that, in the declaration Decl, the operator “�” binds
tighter than the operator “,” that imposes no relative priority. For example,
A � B,C is equal to (A � B), C.

Table 1 shows the correspondence between the abstract syntax of Fig. 4 and
the concrete syntax used in example programs.

Modeling and Simulation with HydLa and HyLaGI 159

Fig. 4. Syntax of HydLa.

Table 1. Correspondence between abstract and concrete syntax.

Abstract Concrete Abstract Concrete Abstract Concrete Abstract Concrete

� << ≤ <= ∨ \/ or | ∃ \

⇔ <=> �= != ∧ /\ or &

≥ >= ¬ ! � []

List Expressions. We often need to generate multiple objects (such as balls
and cars) with the same property in the modeling of hybrid systems. As an
extension of the syntax in Fig. 4, HydLa provides a list notation to simplify the
description of such models. Here we explain their use by examples, leaving the
full syntax with list expressions to the Appendix.

We introduce two types of list notation. The first type is the list of arith-
metic expressions, which can be written extensionally or in a list comprehension
notation. Range expressions of the form {l . . h} are also allowed. Range expres-
sions have two applications; one is to express a list of consecutive values (such
as {2*3+1..10}) and the other is to express a list of variables whose names end
with consecutive digits. For instance, {x0..x4} stands for the list of variables
{x0, x1, x2, x3, x4}. The second type of list notation is to declare multi-
ple instances of constraints. A list of priority declarations can also be written
extensionally or in a list comprehension notation as in the example below.

For example, consider a road congestion model with five cars, of which the
cars except the first one accelerates and deaccelerates depending on the distance
from the car in front (Fig. 5). Figure 6 shows its HydLa model. Line 1 defines
X to be the list of cars for which the notation X[i] is available to access its ith
element. Lines 3–6 define named constraints describing the properties of the cars.
Lines 8–12 declare constraints imposed by the five cars, where |X| represents

160 Y. Yamada et al.

Fig. 5. A road congestion model.

1 X := {x1..x5}.
2
3 INIT(x,x0,v0) <=> x = x0 & x’ = v0.
4 CONST(x) <=> [](x’’ = 0).
5 BRAKE(x,xf) <=> [](x’- > 0 & xf- - x- < 30 => x’’ = -5).
6 ACC(x, xf) <=> [](x’- < 15 & xf- - x- > 50 => x’’ = 3).
7
8 { INIT(X[i],100*i+i,4) | i in {1..|X|-1} }.
9 INIT(X[|X|],100*|X|,8).

10 { CONST(X[i]) << (ACC(X[i],X[i+1]), BRAKE(X[i],X[i+1]))
11 | i in {1..|X|-1} }.
12 CONST(X[|X|]).
13 //#hylagi -p40

Fig. 6. A road congestion model in HydLa.

the cardinality of the list X. When we run this program, the distance between
two cars is kept neither too close nor too distant as shown in Fig. 7.

Existential Quantifier. HydLa features existential quantifiers to generate
variables dynamically.

Constraints with existential quantifiers are typically written in the conse-
quents of guarded constraints and generate new trajectories when the guards
hold. Quantified variables are given fresh names when the constraints contain-
ing those variables are expanded. In the modeling of HydLa, dynamic variables
are often used as temporary variables that propagate constraints.

Fig. 7. Simulation result of the road congestion model in HydLa.

Modeling and Simulation with HydLa and HyLaGI 161

1 INIT <=> p = 65 & mode = 0.
2 OFF <=> [](mode = 0 => p’ = -2).
3 ON <=> [](mode = 1 => p’ = 1).
4 MODE(l,r,m) <=> \x.(l < x < r & [](x’ = -1)
5 & [](x- = 0 => mode = m)).
6 SWITCHOFF <=> [](p- = 68 & mode = 1 => MODE(0.2,0.5,0)).
7 SWITCHON <=> [](p- = 62 & mode = 0 => MODE(0.2,0.5,1)).
8
9 INIT, [](mode’ = 0) << (SWITCHON, SWITCHOFF).

10 OFF, ON.

Fig. 8. A thermostat model with delay in HydLa.

1 FACTORIAL(n, ans)
2 <=> (n = 0 => ans = 1)
3 & (n > 0 => \x.(ans = n * x & FACTORIAL(n-1, x))).
4 CALC_F <=> [](timer- = 1 => FACTORIAL(5, ans)).
5 TIMER <=> timer = 0 & [](timer’ = 1).
6
7 TIMER, CALC_F.

Fig. 9. A model to calculate the factorial of 5.

Figure 8 is an thermostat model using an existential quantifier. The variable
p represents the temperature. SWITCHON and SWITCHOFF are fired when the tem-
perature reaches 62 or 68◦, respectively, to switch the mode that decides the
differential equation of p. The existentially quantified variables, written with \
instead of ∃, are used in the consequents as local timers to express the delay
of mode change. Whenever p reaches 62 or 68◦, a new instance of x is gener-
ated, is initialized to [0.2, 0.5], decreases linearly, and changes the mode when it
reaches 0.

A recursive constraint is another important use of existential quantifiers.
Figure 9 is a somewhat contrived example to calculate the factorial of 5 at time 1.
The module FACTORIAL consists of two guarded constraints, the base case and the
recursive case. When the guard of CALC F holds, FACTORIAL is expanded and its
second guarded constraint is enabled. Then FACTORIAL is expanded recursively
until the second argument reaches 0. Each time FACTORIAL is expanded, a fresh
intermediate variable is created, and a network of constraints is constructed to
propagate the calculation result. In this way, existential quantifiers for dynamic
variable creation provide us with an alternative technique to superdense time
for the modeling of multi-step instantaneous computation.

162 Y. Yamada et al.

2.2 Semantics: Overview

In constraint-based languages, the natural plan for the study of the semantics
would be to consider what a program represents (declarative semantics) first and
then its computational aspects.

Declarative Semantics. The declarative semantics of a HydLa model is the
set of trajectories allowed by the constraints given in the model, where HydLa
takes maximal consistent sets of modules at each point of time, as stated in the
beginning of Sect. 2 with an example. Here we describe some important aspects
of the semantics.

Firstly, HydLa naturally allows models with uncertainties. This comes from
the fact that (i) a set of constraints may have multiple solutions, most typically
due to initial values given as intervals, and that (ii) a maximal consistent set of
modules may not be uniquely determined. It is important to note that, in hybrid
systems, quantitative uncertainties may result in qualitative uncertainties. For
example, when a particle bounces on a floor with a hole, whether or not the
particle eventually enters the hole and how many times it bounces before it
enters the hole depend on the initial position and velocity of the ball. HyLaGI
described in Sect. 3 is able to compute all possible solutions by case splitting.

Multiple solutions may occur even without parametric uncertainties. For
instance, Fig. 10 is a program with a nondeterministic switch that may take
the value 0 or 1 every time the value of timer reaches 1. Note that ON and
STAY are given the second-to-highest priority because modules with the highest
priority are required modules.

1 INIT <=> switch = 0 & timer = 0.
2 CONST <=> [](switch’ = 0).
3 TIMER <=> [](timer’ = 1).
4 ON <=> [](timer- = 1 => switch = 1 & timer = 0).
5 STAY <=> [](timer- = 1 => switch = 0 & timer = 0).
6 TRUE <=> [](1 = 1).
7
8 INIT, (CONST, TIMER) << (ON, STAY) << TRUE.
9 //#hylagi --fnd -p6

Fig. 10. A model with a nondeterministic switch.

Secondly, the constraints explicitly given in programs are usually not enough
to determine solution trajectories. For instance, in the bouncing particle model
of Fig. 1, we are implicitly assuming a frame axiom that the position of the
ball is continuous except when discontinuity is deduced from explicitly given
constraints; otherwise we cannot conclude that the particle starts to move from
the floor after bouncing. We call it the principle of implicit continuity, and refer
the readers to [13] for the details of how it is built into HydLa’s constraint
framework.

Modeling and Simulation with HydLa and HyLaGI 163

Expressive Power and Computable Trajectories. The syntax of HydLa
allows a model [](x + y = 0), which might make sense as a specification but
not as an “executable” program. Indeed, no hybrid automaton corresponding to
this model is likely to exist. It is therefore meaningful to consider what HydLa
models (or programs) are executable. We propose that an executable program is
a program whose set of trajectories can be represented in explicit form defined
as follows, where we assume that t stands for the current time:

Definition 1. A trajectory of variables x1, . . . , xn is in explicit form if it is piece-
wisely represented as a (finite or inifinite) set of equations x1 = Ei1, . . . , xn = Ein

associated with a time interval Ti (i = 1, 2, . . .) during which the above set of
equations is effective. Each Eij is a continuous function of t on the interval Ti.
Eij may also contain symbolic parameters p1, . . . , pm(m ≥ 0) but not x1, . . . , xn.
The ends of each time interval Ti are also given using expressions that may con-
tain p1, . . . , pm. The set of allowed values of the parameters p1, . . . , pm are given
as constraints (including equations and inequations), but these constraints must
not contain t. The Ti’s must be mutually disjoint, and

⋃
i Ti must be a single

interval starting from time 0.

The purpose of simulation is to convert the constraints imposed by a HydLa
program into this explicit form, whose example can be found in the simulation
result of Fig. 2.

3 HyLaGI: A Symbolic Implementation of HydLa

HyLaGI is an implementation of HydLa that features rigorous simulation of pos-
sibly uncertain hybrid systems. The central technique to achieve this is symbolic
constraint satisfaction. HyLaGI also employs interval computation internally in
order to compute the time of the earliest possible discrete changes efficiently.

The nondeterministic simulation algorithm of HyLaGI repeats point phases
(PPs) and interval phases (IPs) alternately until a termination condition (time
limit or the number of phases) is satisfied. Calculation of IPs involves (i) solu-
tion of possibly parameterized ODEs and (ii) calculation of the time of the next
discrete change as a minimization problem. Uncertainties represented by sym-
bolic parameters may result in qualitative difference of trajectories as discussed
in Sect. 2.2. In that event, HyLaGI automatically performs case analysis, nar-
rowing the range of parameter values into each qualitatively different case. This
symbolic case analysis is supported by quantifier elimination of the constraint
solver. The readers are referred to [13] for the detailed simulation algorithm of
HyLaGI.

The rest of this section will explain three key functionalities of HyLaGI
enabled by the symbolic approach.

3.1 Assertion

HyLaGI provides an ASSERT construct using constraints, which can be used for
bounded model checking of reachability properties. A property can be stated by

164 Y. Yamada et al.

ASSERT(G), where G stands for a guard. The declarative meaning of ASSERT(G)
is []G or [](!G => false), but we provide ASSERT as a separate construct to be
able to distinguish verification conditions from model descriptions. ASSERT(G)
stops simulation of the current branch of nondeterministic simulation if G
becomes false. Assertion can be used not only for verification but also for solving
inverse problems, as will be described in Sect. 5.

3.2 Epsilon Mode

The simulation of hybrid systems, say those modeling physical phenomena, may
fall into a situation not considered by textbook laws of physics. For example,

1. a ball bouncing inside a box hits the wall and the floor at the same time,
2. a ball in contact with another ball is hit by the third ball, and
3. force is continually applied to an object in contact with another object to

move both.

As for the first example, even if the simultaneity may happen with zero
probability in reality, a family of trajectories of uncertain hybrid systems may
well include it. One way of handling that situation is to consider the limit of
situations where the ball hits the wall or the floor slightly earlier. The second
and the third examples could also be considered as the limit of the situations
where the two objects are slightly apart. HyLaGI is able to simulate such models
by taking the limit of ‘normal’ situations, and it is called the epsilon mode [22].

In the epsilon mode (specified by the option “-en”), we can use a variable
eps as an infinitesimal parameter as shown in Fig. 12. Here, n specifies the
highest-order terms to be retained for eps, for which 1 is enough except when
higher-order effects of eps need to be considered. In the epsilon mode, after
the maximal consistent set of constraints and the current values of variables are
computed in each phase, higher-order terms of eps are deleted (after performing
Taylor expansion when necessary). When the simulation of all phases are com-
pleted, HyLaGI takes the limit (w.r.t. eps) of the expressions representing the
trajectories of all phases.

For the example of three-body collision, HyLaGI will report “unsatisfiable
constraints” (Sect. 4) at the time of collision because the law of two-body collision
is not prepared for this situation. However, simulation can be performed if the
two touching balls are slightly parted. For example, three-body collision shown in

Fig. 11. Collision of three bodies.

Modeling and Simulation with HydLa and HyLaGI 165

1 INIT <=> x1 = 0 & x2 = 5 & x3 = 6+eps
2 & x1’ = 1 & x2’ = 0 & x3’ = 0.
3 EPS <=> 0 < eps < 0.1 & [](eps’ = 0).
4 CONST(x) <=> [](x’’ = 0).
5 COLLISION(xa, xb) <=>
6 [](xa- = xb- - 1 => xa’ = xb’- & xb’ = xa’-).
7
8 INIT, EPS.
9 (CONST(x1),CONST(x2),CONST(x3))

10 << (COLLISION(x1,x2), COLLISION(x2,x3)).
11 //#hylagi --fnd -p6 -e1

Fig. 12. HydLa model of three-body collision.

Fig. 13. Simulation result of Fig. 12.

Fig. 11 can be described as a HydLa program in Fig. 12. Three balls of diameter
1 are aligned in a straight line, where x2 and x3 are apart by eps, and x1 moves
towards x2 at speed 1. The simulation result of the program of Fig. 12, which
still retains eps, is shown in Fig. 13, where the horizontal axis represents time
and the vertical axis represents the position x. When the value of eps is not too
small, we can see from Fig. 13 that there are two collisions. The text output of
the same simulation tells us that x2 will not move in the limit.

Lee et al. discussed the same model in detail in [11] (Fig. 8, p. 806) as a
motivating example of their constructive modeling. Their (non-symbolic) app-
roach introduces superdense time to handle simultaneous collisions, while we
adopt functions of standard, real-valued time to represent trajectories and han-
dle simultaneity by symbolic perturbation.

There are various variations of the three-body collision. Consider another
three-ball model in which the central ball is hit from both sides simultaneously,

166 Y. Yamada et al.

1 INIT <=> x1 = 0 & x2 = 5 & x3 = 10+eps
2 & x1’ = 1 & x2’ = 0 & x3’ = -1.
3 EPS <=> -0.1 < eps < 0.1 & [](eps’ = 0).
4 MASS <=> [](m1 = 0.2 & m2 = 1 & m3 = 5).
5 CONST(x) <=> [](x’’ = 0).
6 COLLISION(xa,ma,xb,mb) <=>
7 [](xa- = xb- - 1 =>
8 xa’ = (xa’- *(ma-mb) + 2*mb*xb’-)/(ma+mb)
9 & xb’ = (xb’- *(mb-ma) + 2*ma*xa’-)/(ma+mb)).

10
11 INIT. EPS. MASS.
12 (CONST(x1),CONST(x2),CONST(x3))
13 << (COLLISION(x1,m1,x2,m2), COLLISION(x2,m2,x3,m3)).
14 //#hylagi --fnd -p12 -e1

Fig. 14. Collision of three bodies with different masses.

a problem discussed also by Lee et al. in [11] (Fig. 11, p. 807). Suppose the
balls have mass as shown in Line 4 of Fig. 14. For this problem, the result differs
depending on whether the value of eps is positive or negative, as shown in Fig. 15
(look at the trajectory of the central ball). Actually, the right-hand limit and
left-hand limit do not coincide, and HyLaGI’s automatic case analysis generates
three cases depending on the sign of eps including the case of eps = 0 that gets
stuck.

The Dirac delta function can also be represented using the epsilon mode.
The (shifted) delta function can be considered as the limit limε→+0 of a function
whose value is 1/eps in a certain interval of width eps and 0 elsewhere as shown
in Fig. 16. The function was used successfully for the simulation of impulse force
in mechanics and impulse response of electrical circuits.

Another application of infinitesimal parameters is the simulation of analysis
of hybrid systems that cause numerous discrete changes in a finite period of time.
Although not integrated into the main branch of HyLaGI due to its experimental
nature, the work reported in [2] analyzed the symbolic output of HyLaGI to
recognize chattering behavior, including a physical model in [11] (p. 808), by the
analysis of loop invariants.

Finally, we note that future applications of the epsilon mode is expected to
include the handling of robustness and sensitivity at a symbolic level.

3.3 Hybrid Automaton Mode

HyLaGI performs symbolic simulation for a given number of phases or a given
period of simulation time. However, we often see cases where different point
phases or different interval phases are ‘similar’ to each other (as in the bouncing
particle example) in the sense that they differ only in the values or trajectories
of variables. Given that HyLaGI maintains the values of variables as constraints,
we can check if the system’s state of some phase is subsumed by the system’s

Modeling and Simulation with HydLa and HyLaGI 167

Fig. 15. Simulation result of Fig. 14.

1 TIMER <=> timer = 0 & [](timer’ = 1).
2 EPS <=> 0 < eps < 0.1 & [](eps’ = 0).
3 OFF <=> [](v = 0).
4 ON <=> []((1 < timer < 1+eps) => v = 1/eps).
5
6 TIMER, EPS, (OFF << ON).
7 //#hylagi -e1

Fig. 16. HydLa model of an impulse function.

state of one of the previous phases, where a state can be defined to consist of (i)
the values (or trajectories in the case of interval phases) of variables and (ii) the
set of adopted modules. These two also determine (iii) whether each guard of
the adopted guarded constraints holds or not. The checking of state subsump-
tion can be done by constraint entailment checking, which can be translated
into inconsistency checking by the relation (P ⇒ Q) ≡ ¬(P ∧ ¬Q), and we can
construct a possibly finite phase transition diagram representing infinite phase
transitions. This feature has been implemented in HyLaGI as an optional hybrid
automaton mode, an experimental mode for future work towards optimized sim-
ulation and unbounded model checking. We can see that the items displayed in
each phase of HyLaGI’s simulation result (Fig. 2) are sufficient to represent the
current state of the model. An initial report on detailed algorithms for construct-
ing hybrid automata can be found in [19], which discusses various subtleties in
the construction. Note that we must properly parameterize the initial values of

168 Y. Yamada et al.

1 INIT <=> y > 0.
2 FALL <=> [](y’’ = -10).
3 BOUNCE <=> [](y- = 0 => y’ = -4/5 * y’-).
4
5 INIT, FALL << BOUNCE.
6 //#hylagi --fha

Fig. 17. A bouncing particle model with parameterized initial height.

Fig. 18. State transition graph induced by HyLaGI from a HydLa model.

the variables in order to construct hybrid automata. For example, for a bouncing
particle on the floor, we fully parameterize the initial height as shown in Fig. 17.
In the hybrid automaton mode, the results can be obtained in the Graphviz
format. Figure 18 shows the state transition graph obtained from the program
in Fig. 17, where the odd-numbered phases represent discrete changes and the
even-numbered phases represent continuous evolution.

4 Experiences with Constraint-Based Modeling

4.1 Discrete Asks and Continuous Asks

Guarded constraints in HydLa are one of the two main constructs that provides
the language with control structure (the other construct being constraint hierar-
chy), corresponding to conditionals in other languages. From our experience with
HydLa programming, we have learned that guarded constraints used to describe

Modeling and Simulation with HydLa and HyLaGI 169

1 INIT <=> p = 65 & [](k1 = 1) & [](k2 = 2) & on = 0.
2 CONST <=> [](on’ = 0).
3 ON <=> [](on = 1 => p’ = k1).
4 OFF <=> [](on = 0 => p’ = -k2).
5 SWITCHON <=> [](p- = 62 & on- = 0 => on = 1).
6 SWITCHOFF <=> [](p- = 68 & on- = 1 => on = 0).
7
8 INIT, ON, OFF, CONST << (SWITCHON, SWITCHOFF).
9 //#hylagi -p10

Fig. 19. A thermostat model in HydLa.

practical hybrid systems are categorized into two patterns. We call them dis-
crete ask and continuous ask, after the terminology in concurrent constraint
programming. Discrete ask is a guarded constraint which is enabled at isolated
time points and triggers discrete changes. An example is BOUNCE in Fig. 1. Since
discrete ask cancels a differential constraint at certain time points, it is usually
given a higher priority than differential constraints. Continuous ask is a con-
straint whose guard continues to hold for a certain period of time during which
the model makes continuous change according to the enabled consequent of the
constraint. A thermostat model in Fig. 19 contains an example of continuous
ask. The variable on represents the state of the thermostat whose value is dis-
cretely changed when the temperature p is about to exceed a certain threshold.
The modules ON and OFF represent continuous asks; they refer to the variable
on and have differential equations on the temperature in the consequents. The
value of on is changed by SWITCHON and SWITCHOFF which are discrete asks. This
example shows a design pattern in which a variable, called a state variable, can
be used to represent the discrete state of a system and is referred to from the
guards of continuous ask. In our experience, it is a good practice to write HydLa
programs keeping the different roles of discrete ask and continuous ask in mind.

Note that HyLaGI does not allow existential quantifiers in the consequent
of a continuous ask because such a consequent would generate an infinite num-
ber of variables and constraints. HyLaGI does not handle such cases and stops
simulation.

4.2 Common Mistakes in Modeling

The design principle of HydLa is to take a constraint-centric approach to allow
declarative and concise description of hybrid systems. In particular, constraint
hierarchies are expected to autonomously impose the ‘right amount’ of con-
straints on variables so that the set of enabled constraints does not become
over- or under-constrained. Still, we have seen many programs which do not
compute trajectories or which compute unintended trajectories. In these cases,
the debugging of declarative programs turned to be highly nontrivial to novice
programmers.

170 Y. Yamada et al.

1 INIT <=> (x = 0 & y = 10 & y’ = 0).
2 FALL <=> [](x’ = 1 & y’’ = -10).
3 BOUNCE <=> [](y- = 0 => y’ = -y’-).
4
5 INIT, (FALL << BOUNCE).
6 //#hylagi -p10

Fig. 20. A model with an unconstrained variable (1).

This motivated us to record a service log of webHydLa and analyze program
errors, where each record contained (i) the HydLa program, (ii) the contents of
stdout and stderr, and (iii) the ‘hydat’ file for visualization.

We analyzed 1017 HydLa programs after recording their standard output,
error output and 766 hydat files passed to the webHydLa visualizer. The simu-
lation results were divided into three categories:

1. normally terminated simulation (regardless of whether the result is intended
or not),

2. simulation aborted by unsatisfiable constraints (in which the set of active
constraints became inconsistent and none of them could be disabled), and

3. simulation in which some variable became totally unconstrained (which is
semantically allowed but regarded as unintended).

We focus on the second and the third categories because they are specific to
constraint programming.

Completely Unconstrained. ‘Completely unconstrained’ means that the con-
straints on the value of some variable become totally lost. HyLaGI does not stop
execution for this event but generates a warning. The following are considered
as possible causes of unconstrainedness.

1. a module that is defined but not declared (i.e., used),
2. lack of initial value constraints,
3. lack of ‘always’ ([]) constraints.

Since this is a warning not found in ordinary languages, we explain these causes
using an example.

The first cause means that one simply forgot to use the defined constraint.
On the other hand, the second and the third causes indicate insufficiency of
constraints. For example, in the program of Fig. 20, x will become completely
unconstrained after the second PP because the constraint on x is totally lost
when the consequent of BOUNCE is enabled and FALL becomes unadopted tem-
porarily. To fix the problem, we must either add a constraint x’ = 1 to the
consequent of BOUNCE or move x’ = 1 from FALL to a new module.

Since this ‘completely unconstrained’ problem occurred much more fre-
quently than expected, it was considered important to provide an explanation

Modeling and Simulation with HydLa and HyLaGI 171

1 INIT <=> (y = 10 & y’ = 0).
2 FALL <=> [](y’’ = -10).
3 BOUNCE <=> [](y- = 0 => y’ = -y’-).
4
5 INIT, FALL, BOUNCE.

Fig. 21. A model causing inconsistency (1).

1 INIT <=> (a = 0 & b = 0).
2 CONST <=> [](a’ = 0).
3 CLOCK <=> [](b’ = 1).
4 JUMP <=> [](b = 3 => a = a + 1 & b = 0).
5
6 INIT, (CONST, CLOCK) << JUMP.

Fig. 22. A model causing inconsistency (2).

of the reason of unconstrainedness. We improved HyLaGI to infer and report
whether the initial value constraint was insufficient or the always constraint was
insufficient based on when the unconstrainedness occurred. If the first PP leaves
any variable unconstrained, some initial value constraint is missing. If a vari-
able becomes completely unconstrained after the first phase, we find, for each
such variable, the module that caused the unconstrainedness. When the cause is
the weakest module, HyLaGI displays a message “WARNING: x is completely
unconstrained in a default module” because the module is supposed to rep-
resent default behavior. Otherwise, HyLaGI displays a message “WARNING: x is
completely unconstrained in a non-default module”.

Unsatisfiable Constraints. ‘Unsatisfiable constraints’ means that HyLaGI
could not find a consistent set of constraint modules that respects constraint
hierarchy. The following causes can be considered.

1. forgetting to define appropriate constraint hierarchy,
2. some of the required constraint modules, i.e., ones at the top of the constraint

hierarchy, are mutually inconsistent or self-inconsistent.

For example, in Fig. 21, FALL and BOUNCE conflict with each other when the
ball collides with the floor, but because there is no constraint hierarchy and all

1 Possible causes...
2 * {a} in {JUMP}
3 * {b} in {JUMP}

Fig. 23. Execution result of Fig. 22.

172 Y. Yamada et al.

top-level modules are handled as required constraints (Sect. 2), FALL cannot be
rejected and computation stops. In this case, the error can be easily resolved by
declaring a hierarchy FALL << BOUNCE.

Consider another example in Fig. 22. When b becomes 3, a is incremented and
b is reset to 0 by JUMP, so a looks like a counter and b looks like a clock. However,
JUMP becomes inconsistent when (and only when) b = 3 because all variables of
HydLa are immutable functions of time. As suggested by previous examples, an
equation for discrete changes should mention the left limit values of variables,
that is, JUMP should be written as [](b- = 3 => a = a- + 1 & b = 0).

When simulation generated unsatisfiable constraints, the reason of inconsis-
tency is not easy to figure out in many cases. We thus let HyLaGI show which
variables are in conflict within which modules. For example, given the program of
Fig. 22, a message like Fig. 23 will be displayed in addition to the standard error
message. The analysis is done as follows. The unsat modules line of the output
(such as Fig. 2) tells the names of mutually inconsistent modules, and the corre-
sponding unsat constraints line contains information about mutually incon-
sistent constraints. HyLaGI extracts variables from each of unsat constraints
and collects corresponding modules from unsat modules. In this way, for each
set of variables, a set of modules that make those variables over-constrained is
derived as shown in Fig. 23.

5 Solving Inverse Problems

Inverse problems are to obtain initial conditions that yield given final goals.
Inverse problems of hybrid systems are more intriguing than those of continuous
systems in that initial and final states may be related by qualitatively different
trajectories, e.g., trajectories of balls with different numbers of bounces. HyLaGI
can solve inverse problems of hybrid systems by combining assertions and sym-
bolic constraint solving with automatic case analysis of parameters. Note that
our approach is based on forward symbolic simulation rather than reverse sim-
ulation from the goal state.

5.1 A Simple Example

Let us consider how to shoot a golf ball to make a hole-in-one (Fig. 24). A
program is shown in Fig. 25. We parameterize the x component of the initial
velocity, while the y component is defined so that the initial speed (norm of the
velocity) is constant. The ball moves at a constant speed in the x direction, while
it behaves like a bouncing ball in the y direction.

We use ASSERT to find the range of parameters for hole-in-one, Assume that
the cup is 9.5 to 10 meters ahead. The constraint to be ASSERTed is the negation
of the desired goal, i.e., !(y = 0 & 9.5 <= x <= 10), so that HyLaGI may find
counterexamples.

Table 2 shows the behavior of the ball and the corresponding parameter
ranges obtained from the program of Fig. 25, where bounce means that the ball
bounces and cup-in means that the ball enters the cup.

Modeling and Simulation with HydLa and HyLaGI 173

Fig. 24. A hole-in-one problem.

1 INIT <=> x = 0 & y = 0 & 1 < x’ < 9 & y’ = (100 - x’^2)^0.5.
2 AXCONST <=> [](x’’ = 0).
3 FALL <=> [](y’’ = -10).
4 BOUNCE <=> [](y- = 0 => y’ = -0.8*y’-).
5
6 ASSERT(!(y = 0 & 9.5 <= x <= 10)).
7 INIT, AXCONST, FALL << BOUNCE.
8 //#hylagi --fnd -p10

Fig. 25. Finding parameters for hole-in-one.

Table 2. Execution result of Fig. 25.

Behavior Parameter range

Cup-in

⎡
⎣

√
5(20 − √

39)

2
,

√
5(20 +

√
39)

2

⎤
⎦

Bounce, cup-in

[5

√
36 − √

935

2

3
,
5
√
14 − 10

3

]

Bounce, bounce, cup-in

⎡
⎣5

√
244 − √

50511

122
, 5

√
2(61 − 6

√
86)

61

⎤
⎦

Bounce, bounce, bounce, cup-in

[5

√
1476 − √

1952951

82

3
,

5

√
2(369 − 2

√
30134)

41

3

]

Bounce, bounce, bounce, bounce Others

5.2 Examples with Persistent Consequents

HydLa’s syntax allows an always constraint �C to appear in the consequent of
an implication. Such a constraint is called a persistent consequent. A persistent

174 Y. Yamada et al.

1 INIT <=> 5 < y < 10 & y’ = 0 & d = 0.
2 FALL <=> [](y’’ = -10).
3 CONST <=> [](d’ = 0).
4 BOUNCE <=> [](y- = 0 => y’ = -4/5 * y’- & d = d- + y’-^2 / 100).
5 BREAK <=> [](d >= 4 => [](y’’ = -10 & d’ = 0)).
6
7 INIT, (FALL, CONST) << BOUNCE << BREAK.
8 ASSERT(y >= 0).
9 //#hylagi -p12 --fnd

Fig. 26. A bouncing ball damaging the floor.

Table 3. Execution result of Fig. 26.

Behavior Parameter range

Bounce, bounce, bounce, bounce, bounce (5, 7812500/968561)

Bounce, bounce, bounce, bounce, break [7812500/968561, 312500/36121)

Bounce, bounce, bounce, break, through [312500/36121, 12500/1281)

Bounce, bounce, break, through [12500/1281, 10)

consequent �(G ⇒ �C) is different from normal guarded constraints in that
once the antecedent G holds, the consequent C continues to hold. The con-
straint �C with the same priority as the original constraint is expanded in the
constraint hierarchy. Since constraints once expanded are not removed, persis-
tent consequents can represent irreversible effects or changes of the system.

Figure 26 is a model in which the floor of a bouncing ball accumulates damage
from the ball and is eventually broken. In BOUNCE of Line 4, damage proportional
to the square of the velocity at each collision is accumulated on the floor. If the
accumulated damage exceeds a certain threshold, the ball keeps falling, meaning
that the floor is broken. To figure out in which conditions the floor breaks, we
assert the constraint that the height of the ball is non-negative. Table 3 shows
the system behavior and corresponding parameter ranges computed by HyLaGI
from the program in Fig. 26. Here, bounce means that the ball bounces on the
floor, break means that the ball bounces and the floor breaks, and through means
that the ball passes through the broken floor.

Finally, we show an example with constraint hierarchy with three strengths.
Figure 27 is a model that searches for a winning strategy of a chicken race: we
want to stop the car exactly at the goal position by keeping acceleration to a
certain point and then braking. The braking position is parameterized. We have
two persistent consequents, BRAKE and STAY, where STAY is given higher prior-
ity so that the car will not move backwards after stop. The ASSERTed constraint
specifies the negation of the winning condition, and HyLaGI finds that the asser-
tion fails when the parameter value is 625/2, from which we can see that the
winning strategy is to start braking at 312.5 m from the starting point.

Modeling and Simulation with HydLa and HyLaGI 175

1 INIT <=> x = 0 & x’ = 0 & 0 < brkpt < 500 & [](brkpt’ = 0).
2 ACC <=> [](x’’ = 3).
3 BRAKE <=> [](x- = brkpt- => [](x’’ = -5)).
4 STAY <=> [](x’- = 0 => [](x’’ = 0)).
5
6 INIT, ACC << BRAKE << STAY.
7 ASSERT(!(x = 500 & x’ = 0)).
8 //#hylagi --fnd

Fig. 27. Chicken race program.

6 Conclusion

In this paper, we first discussed our constraint-based approach to hybrid sys-
tems embodied as a modeling language HydLa and introduced various function-
alities of HyLaGI, a symbolic simulator of hybrid systems expressed in HydLa.
These functionalities, including nondeterministic execution, handling of infinites-
imal quantities, and construction of hybrid automata, are realized since HyLaGI
adopts symbolic computation. Then, we discussed several findings and experi-
ences in the constraint-based modeling of hybrid systems including two different
uses of guarded constraints and modeling errors mostly resulting from improper
use of constraint hierarchy. Finally, we showed that HyLaGI could solve some
inverse problems of hybrid systems and that persistent consequents are useful
for modeling inverse problems.

Although HydLa has many unique features as described above, hybrid models
that can be handled by the current version of HyLaGI are limited to relatively
simple ones due to various limitations. In our experience, computation of the
time of the next discrete change is the most difficult part for the constraint
engine, due to which many models with closed-form solutions of ODEs could
not be fully simulated to the end. To address this problem, Matsumoto et al.
[15] reports how we can integrate symbolic versions of Affine arithmetic and
the interval Newton method into our framework. Also, in order to reduce the
complexity of constraints submitted to the constraint engine to improve the
power of constraint solving, we have incorporated a number of optimization
techniques into HyLaGI.

There are many other issues including the handling of models with many
parameters and models with complicated differential equations such as DAEs
and nonlinear ODEs. Still, we feel that the usefulness of our constraint-based
framework is being established. Our future goal is to extend our framework by
introducing useful results in the field of constraint programming and hybrid
systems.

Acknowledgments. We would like to thank Shota Matsumoto for leading the devel-
opment of the core part of HyLaGI. Early versions of HyLaGI are due to previous
colleagues including Ken-ichi Hirose. Of the developers of many experimental features,
Akira Takeguchi and Yoshiaki Wakatsuki were initial designers and implementors of

176 Y. Yamada et al.

the features mentioned in this paper. We thank all members of the project, includ-
ing the above members, for discussions, development, and debugging. Thanks go also
to anonymous reviewers for their detailed and constructive comments. The work is
partially supported by Grant-in-Aid for Scientific Research (B) JP18H03223, JSPS,
Japan.

A Appendix

Figure 28 shows the syntax of HydLa with the list notation. As a key extension
from Fig. 4, we newly introduce PL (priority list), EL (expression list), LC (list
condition) and a list binding notation “:=”. Both PL and EL consist of exten-
sional and list comprehension notations. In the list comprehension notation, one
can enumerate elements that satisfy conditions specified by LC. We can generate
variables with successive serial numbers using range expressions (RE in Fig. 28)
and bind them to upper-case variables using “:=”. We can generate a list of mod-
ule declarations in a similar manner. MPname, ELname, PLname, and Iname
stand for names for module priority definitions, expression lists, priority lists,
and elements from iterators, respectively.

Fig. 28. Syntax of HydLa with list notation.

Modeling and Simulation with HydLa and HyLaGI 177

References

1. Alur, R., et al.: Hierarchical hybrid modeling of embedded systems. In: Henzinger,
T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 14–31. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45449-7 2

2. Betsuno, K., Matsumoto, S., Ueda, K.: Symbolic analysis of hybrid systems involv-
ing numerous discrete changes using loop detection. In: Berger, C., Mousavi, M.R.,
Wisniewski, R. (eds.) CyPhy 2016. LNCS, vol. 10107, pp. 17–30. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-51738-4 2

3. Borning, A., Freeman-Benson, B., Wilson, M.: Constraint hierarchies. LISP Symb.
Comput. 5(3), 233–270 (1992)

4. Bourke, T., Pouzet, M.: Zélus: a synchronous language with ODEs. In: HSCC 2013,
pp. 113–118. ACM (2013)

5. Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.L.: Languages
and tools for hybrid systems design. Found. Trends Electron. Des. Autom. 1(1/2),
1–193 (2006)

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

7. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

8. Gupta, V., Jagadeesan, R., Saraswat, V., Bobrow, D.G.: Programming in hybrid
constraint languages. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS
1994. LNCS, vol. 999, pp. 226–251. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60472-3 12

9. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292.
IEEE Computer Society (1996)

10. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

11. Lee, E.A.: Constructive models of discrete and continuous physical phenomena.
IEEE Access 2, 797–821 (2014)

12. Lunze, J.: Handbook of Hybrid Systems Control: Theory, Tools, Applications.
Cambridge University Press, Cambridge (2009)

13. Matsumoto, S.: Validated simulation of parametric hybrid systems based on con-
straints. Ph.D. thesis, Waseda University (2017)

14. Matsumoto, S., Kono, F., Kobayashi, T., Ueda, K.: HyLaGI: symbolic implemen-
tation of a hybrid constraint language HydLa. Electron. Notes Theor. Comput.
Sci. 317, 109–115 (2015)

15. Matsumoto, S., Ueda, K.: Symbolic simulation of parametrized hybrid systems
with affine arithmetic. In: TIME 2016, pp. 4–11. IEEE Computer Society (2016)

16. Modelica Association: Modelica - Unified Object-Oriented Language for Sys-
tems Modeling: Language Specification (Version 3.4) (2007). https://modelica.org/
documents/ModelicaSpec34.pdf

17. Ñañez, P., Risso, N., Sanfelice, R.G.: A symbolic simulator for hybrid equations.
In: Proceedings of SummerSim 2014, pp. 18:1–18:8 (2014)

https://doi.org/10.1007/3-540-45449-7_2
https://doi.org/10.1007/978-3-319-51738-4_2
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/3-540-60472-3_12
https://doi.org/10.1007/3-540-60472-3_12
https://doi.org/10.1007/978-3-662-46681-0_15
https://modelica.org/documents/ModelicaSpec34.pdf
https://modelica.org/documents/ModelicaSpec34.pdf

178 Y. Yamada et al.

18. Taha, W., et al.: Acumen: an open-source testbed for cyber-physical systems
research. In: Mandler, B., et al. (eds.) IoT360 2015. LNICST, vol. 169, pp. 118–130.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47063-4 11

19. Takeguchi, A., Wada, R., Matsumoto, S., Hosobe, H., Ueda, K.: An algorithm
for converting hybrid constraint programs to hybrid automata. In: The 29nd
JSSST Annual Conference, 2A-3 (2012). https://www.ueda.info.waseda.ac.jp/
∼ueda/pub/takeguchi jssst PPL2012.pdf. (in Japanese)

20. Ueda, K., Hosobe, H., Ishii, D.: Declarative semantics of the hybrid constraint lan-
guage HydLa. Comput. Softw. 28(1), 306–311 (2011). English translation: http://
arxiv.org/abs/1910.12272

21. Ueda, K., Matsumoto, S., Takeguchi, A., Hosobe, H., Ishii, D.: HydLa: a high-level
language for hybrid systems. In: 2nd Workshop on Logics for System Analysis
(LfSA 2012, affiliated with CAV 2012), pp. 3–17 (2012)

22. Wakatsuki, Y., Matsumoto, S., Ito, T., Wada, T., Ueda, K.: Model analysis by using
micro errors in hybrid constraint processing system HyLaGI. In: The 32nd JSSST
Annual Conference (2015). http://jssst.or.jp/files/user/taikai/2015/GENERAL/
general6-4.pdf. (in Japanese)

https://doi.org/10.1007/978-3-319-47063-4_11
https://www.ueda.info.waseda.ac.jp/~ueda/pub/takeguchi_jssst_PPL2012.pdf
https://www.ueda.info.waseda.ac.jp/~ueda/pub/takeguchi_jssst_PPL2012.pdf
http://arxiv.org/abs/1910.12272
http://arxiv.org/abs/1910.12272
http://jssst.or.jp/files/user/taikai/2015/GENERAL/general6-4.pdf
http://jssst.or.jp/files/user/taikai/2015/GENERAL/general6-4.pdf

Formal Methods

Guaranteed Optimal Reachability Control
of Reaction-Diffusion Equations Using

One-Sided Lipschitz Constants and Model
Reduction

Adrien Le Coënt1(B) and Laurent Fribourg2

1 Department of Computer Science, Aalborg University,
Selma Largerløfs Vej 300, 9220 Aalborg, Denmark

adrien.le-coent@ens-cachan.fr
2 LSV, ENS Paris-Saclay, CNRS, Université Paris Saclay,

91 Avenue du Président Wilson, 94235 Cachan Cedex, France
fribourg@lsv.fr

Abstract. We show that, for any spatially discretized system of
reaction-diffusion, the approximate solution given by the explicit Euler
time-discretization scheme converges to the exact time-continuous solu-
tion, provided that diffusion coefficient be sufficiently large. By “suffi-
ciently large”, we mean that the diffusion coefficient value makes the
one-sided Lipschitz constant of the reaction-diffusion system negative.
We apply this result to solve a finite horizon control problem for a 1D
reaction-diffusion example. We also explain how to perform model reduc-
tion in order to improve the efficiency of the method.

1 Introduction

1.1 Guaranteed Reachability Analysis

Given a system of Ordinary Differential equations (ODEs) of dimension n satis-
fying standard conditions of existence and uniqueness of the solution, the area
of Numerical Analysis makes use of numerical tools in order to compute the
approximate value of the solution, starting at an initial point of Rn, with high
accuracy: 1st order methods (explicit/implicit Euler method, trapezoid rule),
higher-order Runge-Kutta methods, etc. In contrast, the area of Guaranteed (or
Symbolic) Analysis is devoted to the construction of an overapproximation of the
set of solutions that start, not at a single point of Rn, but from a dense compact
set of initial points. Guaranteed analysis, in its modern form, has been initiated
in the 60’s by R.E. Moore and his creation of Interval Arithmetic [40]: the set of
solutions (or trajectories) are overapproximated by a sequence of “rectangular
sets”, i.e., cross-product of intervals of R. A set of arithmetic and differential
calculus has been created for manipulating such sets. An overapproximation
of the set of trajectories is computed using a Taylor development up to some
order and an overestimation of the “Lagrange remainder”. The method has been
c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 181–202, 2020.
https://doi.org/10.1007/978-3-030-41131-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_9

182 A. Le Coënt and L. Fribourg

considerably refined in the 90’s [11,12,35,43,44]. These recent techniques make
use of different convex data structures such as parallelepipeds [35] or zonotopes
[21,29] instead of rectangular sets in order to enclose the flow of ODEs.

Such methods are typically applied to the formal proof of correctness of ODE
integration, and more generally, to guarantee that the solutions of the ODEs
satisfy some desired properties. Guaranteed reachability analysis generally treats
linear systems. Extensions to nonlinear systems have been proposed, e.g., in [4],
using local linearizations (see also [38,39]).

1.2 Guaranteed Optimal Control

In presence of inputs, we can use guaranteed analysis to describe a law that
allows the system to satisfy a desired property. This corresponds to the topic of
guaranteed (or correct-by-design) control synthesis. Several works have recently
applied guaranteed analysis to optimal control synthesis. Thus, in [49,50], the
authors focus on a (finite time-horizon) optimal control procedure with a formal
guarantee of safety constraint satisfaction, using zonotopes as state set represen-
tations. In [16], the authors focus on (periodically) sampled systems, and per-
form reachability analysis using convex polytopes as state set representations.
In [19,27,37,46,47], the authors construct an over-approximation of the set of
trajectories using a growth bound (bounding the distance of neighboring tra-
jectories) exploiting the notion of one-sided Lipschitz constant (also called “log-
arithmic norm” or “matrix norm”). The notion of “one-sided Lipschitz (OSL)
constant” has been introduced independently by Dahlquist [17] and Lozinskii
[36] in order to derive error bounds in initial value problems (see survey in [51]).
We used ourselves OSL constants in the context of symbolic optimal control
in [14]. The main difference with previous work [19,27,37,46,47] is that our
method makes use of explicit Euler’s algorithm for ODE integration (cf. [32,33])
instead of sophisticated algorithms such as Lohner’s algorithm [27] or interval
Taylor series methods [44]. This leads us to a simple implementation of just a
few hundred lines of Octave (see [31]).

As explained in [48], using the Dynamic Programming (DP) [10] one can
approximate the “value” of the solution of Hamilton-Jacobi-Bellman (HJB)
equations. In [18,48], the authors thus show how to use finite difference schemes,
Euler time integration and DP for solving finite horizon control problems. Fur-
thermore, they give a priori errors estimates which are first-order in the size Δt
of the time discretization step; however, the error involves a constant C(T) which
depends exponentially on the length T of the finite horizon1. We solve here finite
horizon control problems along the same lines (using finite difference, explicit
Euler and DP) but, under the hypothesis of OSL negativity (see Sect. 1.3), we
obtain an error upper bound that is linear in T (see Sect. 2.4, Theorem 2).

1 C(T) = O(eLf T) where Lf is the Lipschitz constant associated with vector field f .

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 183

1.3 Reaction-Diffusion Equations

It is natural to adapt the optimal control methods of ODEs to the control of Par-
tial Differential Equations (PDEs). This can be done by transforming the PDE
into (a vast system of) ODEs, using space discretization techniques such as finite
difference or finite element methods. In the present work, we focus on a partic-
ular class of non-linear PDEs called “reaction-diffusion” equations. Reaction-
diffusion equations cover a variety of particular cases with important appli-
cations in mathematical physics, and in biological models such as the Schlögl
model or the FitzHugh-Nagumo system [13]. The problem of optimal control
of reaction-diffusion equations has been recently the topic of many works of
(classical) numerical analysis: see, e.g., [9,15,20,22,41,42].

The notion OSL constant can be naturally extended to PDEs and reaction-
diffusion equations in particular, as shown in [5–8]. In these works, the authors
focus on the case where the OSL constant associated with the reaction-diffusion
equation is negative. In this case, the system has a contractivity (or “incremental
stability”) property which expresses the fact that all solutions converge expo-
nentially to each other (see [52]).

In this work, we also study reaction-diffusion equations with negative OSL
constants, but the equations are equipped with control inputs, and the problem
of controlling these inputs in an optimal way is here considered.

1.4 Model Reduction

In order to reduce the large dimension of ODE systems originating from the
PDE space discretization, Model Order Reduction (MOR) techniques are often
used in conjunction with the analysis of ODE systems. The idea is to first infer
the optimal control at a reduced level, then apply it at the original level. In
the field of guaranteed analysis, the MOR technique of “balanced truncation”
was used to treat linear systems (e.g., [3,23,24,34]). In [25], a MOR technique
based on spectral element method was coupled to an HJB approach for applica-
tion to advection-reaction-diffusion systems (cf. [26] for application to semilinear
parabolic PDEs). The MOR technique of “Proper Orthogonal Decomposition
(POD)” was coupled to an HJB approach in [1,2,30]. Here, we couple our HJB-
based method to a simple ad hoc reduction method (see Sect. 2.5).

The plan of the paper is as follows: We explain how to convert the reaction-
diffusion equation into a system of ODEs by domain discretization in Sect. 2.1,
and how to approximate the solution of the latter system using the explicit Euler
scheme of time integration in Sect. 2.2. Our procedure for solving finite horizon
control problems is explained in Sect. 2.3. In Sect. 2.4, we give an upper bound to
the error between the approximate value thus computed and the exact optimal
value. In Sect. 2.5, we explain how to perform MOR in order to treat systems of
larger dimension. We conclude in Sect. 3.

184 A. Le Coënt and L. Fribourg

2 Optimal Reachability Control of Reaction-Diffusion
Equations

Let us consider the special class of PDEs called “reaction-diffusion” equations.
For the sake of notation simplicity, we focus on 1D reaction-diffusion equations
with Dirichlet boundary conditions (the domain Ω is of the form [0, L] ⊂ R), but
the method applies to 2D or 3D reaction-diffusion equations with other boundary
conditions. A 1D reaction-diffusion system with Dirichlet boundary conditions
is of the form:

∂y(t, x)
∂t

= σ
∂2y(t, x)

∂x2
+ f(y(t, x)), t ∈ [0, T], x ∈ Ω ≡ [0, L].

y(t, 0) = u0(t), y(t, L) = uL(t), t ∈ [0, T],
y(0, x) = y0(x), x ∈ Ω ≡ [0, L].

Here, y = y(t, x) is an R-valued unknown function, Ω is a bounded domain in R

with boundary ∂Ω := {0, L}, and f is a function from [0, T] × Ω to [0, 1]. Also
y0(x) is a given function called “initial condition”, and σ a positive constant,
called “diffusion constant”.

The boundary control u(·) := (u0(·), uL(·)) that we consider here, is a piece-
wise constant (or “staircase”) function from [0, T] to a finite set U ⊂ [0, 1]×[0, 1].
The control u(t) changes its value periodically at t = τ, 2τ, We assume that
T = kτ for some positive integer k. The constant τ is called the “switching (or
sampling) period”.

Given an initial condition y0(·) such that y0(x) ∈ [0, 1] for all x ∈ [0, L],
we assume that, for any boundary control u(·), the solution y(·, ·) of the system
exists, is unique, and y(t, x) ∈ [0, 1] for all (t, x) ∈ [0, T] × [0, L].

2.1 Domain Discretization

A well-known approach in numerical analysis of PDEs (see, e.g., [28]) is to dis-
cretize in space by finite difference or finite element methods in order to trans-
form the PDE into a system of ODEs.

Let M be a positive integer, h = L/(M+1), and let Ωh be a uniform grid with
nodes xj = jh, j = 1, . . . , M . By replacing the 2nd order spatial derivative with
the second order centered difference, we obtain a space-discrete approximation:

dy

dt
= σLhy + σϕh(t, u) + f(t, y),

with y(t) = [y1(t), . . . , yM (t)]T , yj(t) ≈ y(t, xj), and

Lh =
1
h2

⎡
⎢⎢⎢⎢⎣

−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0

· · ·
0 0 · · · 1 −2

⎤
⎥⎥⎥⎥⎦

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 185

ϕh(t, u) =
1
h2

[u0(t), 0, . . . , 0, uL(t)]�.

The point y(t), often abbreviated as y, is thus an element of S = [0, 1]M .

2.2 Explicit Euler Time Integration

Let us abbreviate the equation

dy

dt
= σLhy + σϕh(t, u) + f(t, y)

by:
dy

dt
= fu(t, y).

We denote by Y u
t,y0

, the solution y of the system at time t ∈ [0, τ) controlled by
mode u ∈ U , for initial condition y0. Given a sequence of modes (or “pattern”)
π := uk · · · u1 ∈ Uk, we denote by Y π

t,y0
the solution of the system for mode uk

on t ∈ [0, τ) with initial condition y0, extended continuously with the solution
of the system for mode uk−1 on t ∈ [τ, 2τ), and so on iteratively until mode u1

on t ∈ [(k − 1)τ, kτ].
Let us now approximate the solution of the system by performing time inte-

gration with the explicit Euler scheme. This yields:

yn+1 = yn + τfu(tn, yn),

Here yn is an approximate value of y(tn). Given a starting point z ∈ X and
a mode u ∈ U , we denote by Ỹ u

t,z the Euler-based image of z at time t via u

for t ∈ [0, τ). We have: Ỹ u
t,z := z + t fu(z). We denote similarly by Ỹ π

t,z the
Euler-based image of z via pattern π ∈ Uk at time t ∈ [0, kτ].

2.3 Finite Horizon Control Problems

Let us now explain the principle of the method of optimal control of ODEs used
in [14], in the present context. We consider the cost function: Jk : [0, 1]M ×Uk →
R�0 defined by:

Jk(y, π) = ‖Y π
kτ,y − yf‖,

where ‖ · ‖ denotes the Euclidean norm in R
M , and yf ∈ [0, 1]M is a given

“target” state.
We consider the value function vk : [0, 1]M → R�0 defined by:

vk(y) := min
π∈Uk

{Jk(y, π)} ≡ min
π∈Uk

{‖Y π
kτ,y − yf‖}.

Given k ∈ N and τ ∈ R>0, we consider the following finite time horizon
optimal control problem: Find for each y ∈ [0, 1]M

186 A. Le Coënt and L. Fribourg

– the value vk(y), i.e.
min
π∈Uk

{‖Y π
kτ,y − yf‖},

– and an optimal pattern:

πk(y) := arg min
π∈Uk

{‖Y π
kτ,y − yf‖}.

In order to solve such optimal control problems, a classical “direct” method
consists in spatially discretizing the state space S = [0, 1]M (i.e., the space of
values of y). We consider here a uniform partition of S into a finite number
N of cells of equal size: in our case , this means that interval [0, 1] is divided
into K subintervals of equal size, and N = KM . A cell thus corresponds to a
M -tuple of subintervals. The center of a cell corresponds to the M -tuple of the
subinterval midpoints. The associated grid X is the set of centers of the cells
of S. The center z ∈ X of a cell C is considered as the ε-representative of all
the points of C. We suppose that the cell size is such that ‖y − z‖ � ε, for all
y ∈ C (i.e. K �

√
M/2ε). In this context, the direct method proceeds as follows

(cf. [14]): we consider the points of X as the vertices of a finite oriented graph;
there is a connection from z ∈ X to z′ ∈ X if z′ is the ε-representative of the
Euler-based image (z + τfu(z)) of z, for some u ∈ U . We then compute using
dynamic programming the “path of length k with minimal cost” starting at z:
such a path is a sequence of k + 1 connected points z zk zk−1 · · · z1 of X which
minimizes the distance ‖z1−yf‖. This procedure allows us to compute a pattern
πε

k(z) of length k, which approximates the optimal pattern πk(y).

Definition 1. The function nextu : X → X is defined by:

– nextu(z) = z′, where z′ is the ε-representative of Ỹ u
τ,z.

Definition 2. For all point x ∈ X , the spatially discrete value function vε
k :

X → R�0 is defined by:

– for k = 0, vε
k(z) = ‖z − yf‖,

– for k � 1, vε
k(z) = minu∈U{vε

k−1(nextu(z))}.
Definition 3. The approximate optimal pattern of length k associated to z ∈
X , denoted by πε

k(z) ∈ Uk, is defined by:

– if k = 0, πε
k(z) = nil,

– if k � 1, πε
k(z) = uk(z) · π′ where

uk(z) = arg min
u∈U

{vε
k−1(nextu(z))}

and π′ = πε
k−1(z

′) with z′ = nextuk(z)(z).

It is easy to construct a procedure PROCε
k which takes a point z ∈ X as input,

and returns an approximate optimal pattern πε
k ∈ Uk.

Remark 1. The complexity of PROCε
k is O(m × k × N) where m is the number

of modes (|U | = m), k the time-horizon length (T = kτ) and N the number of
cells of X (N = KM with K =

√
M/2ε).

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 187

2.4 Error Upper Bound

Given a point y ∈ S of ε-representative z ∈ X , and a pattern πε
k returned

by PROCε
k(z), we are now going to show that the distance ‖Ỹ

πε
k

kτ,z − yf‖ con-
verges to vk(y) as ε → 0. We first consider the ODE: dy

dt = fu(y), and give an
upper bound to the error between the exact solution of the ODE and its Euler
approximation (see [33]).

Definition 4. Let μ be a given positive constant. Let us define, for all u ∈ U
and t ∈ [0, τ], δu

t,μ as follows:

if λu < 0 : δu
t,μ =

(
μ2eλut +

C2
u

λ2
u

(
t2 +

2t

λu
+

2
λ2

u

(
1 − eλut

))) 1
2

if λu = 0 : δu
t,μ =

(
μ2et + C2

u(−t2 − 2t + 2(et − 1))
) 1

2

if λu > 0 : δu
t,μ =

(
μ2e3λut +

C2
u

3λ2
u

(
−t2 − 2t

3λu
+

2
9λ2

u

(
e3λut − 1

))) 1
2

where Cu and λu are real constants specific to function fu, defined as follows:

Cu = sup
y∈S

Lu‖fu(y)‖,

where Lu denotes the Lipschitz constant for fu, and λu is the OSL constant
associated to fu, i.e., the minimal constant such that, for all y1, y2 ∈ S:

〈fu(y1) − fu(y2), y1 − y2〉 � λu‖y1 − y2‖2,

where 〈·, ·〉 denotes the scalar product of two vectors of S.

Proposition 1 [33]. Consider the solution Y u
t,y0

of dy
dt = fu(y) with initial con-

dition y0 of ε-representative z0 (hence such that ‖y0 − z0‖ � ε), and the approx-
imate solution Ỹ u

t,z0
given by the explicit Euler scheme. For all t ∈ [0, τ], we

have:
‖Y u

t,y0
− Ỹ u

t,z0
‖ � δu

t,ε.

Proposition 2. Consider the system dy
dt = fu(y) with fu(y) := σLhy +

σϕh(t, u) + f(y). For a diffusion coefficient σ > 0 sufficiently large, the OSL
constant λu associated to fu is such that: λu < 0.

Proof. Consider the ODE: dy
dt = fu(y) = σLhy+σϕh(t, u)+f(y). For all y1, y2 ∈

S, we have: 〈f(y2)−f(y1), y2−y1〉 � λf‖y2−y1‖2, where λf is the OSL constant
of f . Hence:

〈fu(y2) − fu(y1), y2 − y1〉 = 〈σLh(y2 − y1) + f(y2) − f(y1), y2 − y1〉
� (y2 − y1)�(σLh + λf)(y2 − y1).

188 A. Le Coënt and L. Fribourg

Since y�Lhy < 0 for all y ∈ S (negativity of the quadratic form associated
to Lh), we have:

λu‖y1 − y2‖2 � (y2 − y1)T (σLh + λf)(y2 − y1) < 0,

for σ > 0 sufficiently large. Hence λu < 0. �

Lemma 1. Consider the system dy
dt = fu(y) where the OSL constant λu associ-

ated to fu is negative, and initial error e0 := ‖y0 − z0‖ > 0. Let Gu :=
√
3e0|λu|
Cu

.
Consider the (smallest) positive root

αu := 1 + |λu|Gu/4 −
√

1 + (λuGu/4)2

of equation: − 1
2 |λu|Gu + (2 + 1

2 |λu|Gu)α − α2 = 0.

Suppose: |λu|Gu

4 < 1. Then we have 0 < αu < 1, and, for all t ∈ [0, τ] with
τ � Gu(1 − αu):

δu
e0

(t) � e0.

Proof. See Appendix 1.

Remark 2. In practical case studies |λu| is often small, and the term (λuGu/4)2

can be neglected, leading to αu ≈ |λu|Gu/4 and Gu(1−αu) ≈ Gu(1− |λu|Gu

4) ≈
Gu.

Remark 3. It follows that, for τ � Gu(1−αu), the Euler explicit scheme is stable,
in the sense that initial errors are damped out.

Remark 4. If τ > Gu(1−αu), we can make use of subsampling, i.e., decompose τ
into a sequence of elementary time steps Δt with Δt � Gu(1 − αu) in order to
be still able to apply Lemma 1 (see Example 1). Let us point out that Lemma 1
(and the use of subsampling) allows to ensure set-based reachability with the use
of procedure PROCε

k. Indeed, in this setting, the explicit Euler scheme leads to
decreasing errors, and thus, point based computations performed with the center
of a cell can be applied to the entire cell.

We suppose henceforth that the system dy
dt = fu(y) satisfies:

(H) : λu < 0,
|λu|Gu

4
< 1 and τ � Gu(1 − αu), for all u ∈ U.

From Proposition 1 and Lemma 1, it easily follows:

Theorem 1. Consider a system dy
dt = fu(y) satisfying (H), and a point y ∈ S

of ε-representative z ∈ X . We have:

‖Y π
t,y − Ỹ π

t,z‖ � ε, for all π ∈ Uk and t ∈ [0, kτ].

Proposition 3. Let z ∈ X and πε
k be the pattern of Uk returned by PROCε

k(z).
For all π ∈ Uk, we have:

‖Ỹ
πε

k

kτ,z − yf‖ � ‖Ỹ π
kτ,z − yf‖ + 2kε.

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 189

Proof. W.l.o.g., let us suppose that yf is the origin O. Let us prove by induction
on k:

‖Ỹ
πε

k

kτ,z‖ � ‖Ỹ π
kτ,z‖ + 2kε.

Let πε
k := uk · · · u1. The base case k = 1 is easy. For k � 2, we have:

‖Ỹ
πε

k

kτ,z‖ = ‖Ỹ
uk−1···u1

(k−1)τ,zk
‖ with zk = Ỹ uk

τ,z with uk = argminu∈U{vε
k−1

(nextu(z))}
� ‖Ỹ

uk−1···u1

(k−1)τ,nextuk (zk)
‖ + ε

� ‖Ỹ π′
(k−1)τ,nextuk (zk)

‖ + (2k − 1)ε for all π′ ∈ Uk−1 by induction hypothesis,

� ‖Ỹ π′
(k−1)τ,z′‖ + 2kε for all π′ ∈ Uk−1 and all z′ ∈ {nextu(z) |u ∈ U}

� ‖Ỹ π
τ,z‖ + 2kε for all π ∈ Uk.

�

Theorem 2. Let y ∈ S be a point of ε-representative z ∈ X . Let πε
k be the

pattern returned by PROCε
k(z), and π∗ := argminπ∈Uk

‖Y π
kτ,y − yf‖. The dis-

cretization error Eε(T) := |‖Ỹ
πε

k

kτ,z −yf‖−vk(y)|, with vk(y) := ‖Y π∗
kτ,y −yf‖ and

T = kτ , satisfies:
Eε(T) � (2k + 1)ε.

It follows that ‖Ỹ
πε

k

kτ,z − yf‖ converges to vk(y) as ε → 0.

Proof. W.l.o.g., let us suppose that yf is the origin O. For all π ∈ Uk, we have
by Proposition 3 and Theorem 1:

‖Ỹ
πε

k

kτ,z‖ � ‖Ỹ π
kτ,z‖ + 2kε � ‖Y π

kτ,y‖ + (2k + 1)ε.

Hence
‖Ỹ

πε
k

kτ,z‖ � min
π∈Uk

‖Y π
kτ,y‖ + (2k + 1)ε = ‖Y π∗

kτ,y‖ + (2k + 1)ε.

On the other hand, for all π ∈ Uk, it follows from Theorem 1:

‖Y π∗
kτ,y‖ � ‖Y π

kτ,y‖ � ‖Ỹ π
kτ,z‖ + ε.

Hence:
‖Y π∗

kτ,y‖ � ‖Ỹ
πε

k

kτ,z‖ + ε.

Therefore we have: |‖Ỹ
πε

k

kτ,z‖ − ‖Y π∗
kτ,y‖| � (2k + 1)ε. �

Remark 5. The error bound Eε(T) is thus linear in k = T/τ . In order to
decrease k, one can apply consecutively p � 2 modes in a row (without inter-
mediate ε-approximation); this is equivalent to divide k by p, at the price of
considering mp “extended” modes instead of just m modes. (see Example 1,
Fig. 2). An alternative for decreasing k is to increase τ (which may require in
turn to decrease Δt for preserving assumption Δt � Gu(1−αu), see Remark 4).

190 A. Le Coënt and L. Fribourg

Example 1. Consider the 1D reaction-diffusion system with Dirichlet boundary
condition (see [45], bistable case):

∂y(t, x)
∂t

= σ
∂2y(t, x)

∂x2
+ f(y(t, x)), t ∈ [0, T], x ∈ [0, L]

y(t, 0) = u0, y(t, L) = uL,

y(0, x) = y0(x), x ∈ [0, L]

with σ = 1, L = 4 and f(y) = y(1−y)(y−θ) with θ = 0.3. The control switching
period is τ = 0.1. The values of the boundary control u = (u0, uL) are in2

U = {(0, 0), (0.2, 0.2), (0.4, 0.4), (0.6, 0.6), (0.8.0.8), (1, 1)}.

We discretize the domain Ω = [0, L] of the system with M1 = 5 discrete points,
using a finite difference scheme. Our program returns an OSL constant λu =
−0.322 for all u ∈ U . Constant Cu varies between 10.33 and 11.85 depending on
the values of u.

We then discretize each interval component of the space S = [0, 1]M1 of values
of y into 15 points with spacing η = 1/15 ≈ 0.066. The grid X is of the form
{0, η, 2η, . . . , 15η}M1 , and the initial error e0 equal to ε =

√
M1η/2. This leads

to Gu varying between 0.00155 and 0.00178 depending on the value of u ∈ U .
One checks: |λu|Gu

4 < 1 for all u ∈ U . The time step upper bound required by
Theorem 1 for ensuring numeric stability is 0.00155. Since the switching period
is τ = 0.1, we perform subsampling (see, e.g., [33]) by decomposing every time
step [iτ, (i + 1)τ) (1 � i � k − 1) into a sequence of elementary Euler steps of
length Δt = τ/100 < 0.00155. This ensures that the system satisfies (H), hence,
by Theorem 1, the explicit Euler scheme is stable and error ‖Y π

t,y0
− Ỹ π

t,z0
‖ never

exceeds ε.
For objective with yf = (0.3, 0.3, 0.3, 0.3, 0.3) and horizon time T = kτ = 2

(i.e., k = 20), our program3 returns an approximate optimal controller in 2
minutes. Let z0 be the ε-representative of y0 = 0.8x/L+0.1(1−x/L). Let πε

k be
the pattern output by PROCε

k(z0). A simulation of z(t) := Ỹ
πε

k
t,z0

is given in Fig. 1
with T = 2, τ = 0.1 (k = 20), Δt = τ

100 . We have ‖z(T) − yf‖ ≈ 0.276. The
simulation presents some similarity with simulations displayed in [45] (see, e.g.,
lower part of Fig. 6), with a phase control u0 = uL > θ (here, u0 = uL = 0.4)
alternating with a phase control u0 = uL < θ (here, u0 = uL = 0.2). The
discretization error Eε(T) is smaller than (2k + 1)ε = 41

√
5/30 < 3.1.

Let us now proceed with extended modes of length p = 2 and p = 4, as
explained in Remark 5. For p = 2 (i.e., k = 10), the control is synthesized in
2 Note that, in [45], the values of the boundary control are in the full interval [0, 1],

not in a finite set U as here. In [45], they focus, not on the bounding of computation
errors during integration as here, but on a formal proof that the objective state
yf = θ (0 < θ < 1) is reachable in finite time iff L < L∗ for some threshold value L∗.

3 The program, called “OSLator” [31], is implemented in Octave. It is composed of
10 functions and a main script totalling 600 lines of code. The computations are
realised in a virtual machine running Ubuntu 18.06 LTS, having access to one core
of a 2.3GHz Intel Core i5, associated to 3.5 GB of RAM memory.

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 191

Fig. 1. Simulation of the system of Example 1 discretized with M1 = 5 points, for
initial condition y0 = 0.8x/L + 0.1(1 − x/L), objective yf = 0.3 and horizon time
T = 2 (τ = 0.1, Δt = τ

100
).

7 mn of CPU time. The controller simulation is given in the left part of Fig. 2;
we have: ‖z(T) − yf‖ ≈ 0.445 with Eε(T) < 1.57. For p = 4 (i.e., k = 5),
the computation of the control requires 8 h of CPU time. The corresponding
simulation is given in the right part of Fig. 2; we now have: ‖z(T) − yf‖ ≈ 0.164
with Eε(T) < 0.82.

2.5 Model Reduction

Let us consider the system S2 on space Sh2 = [0, 1]M2 (with M2 even). The
differential equation can be written under the form:

dy2
dt

= σLh2y2 + ϕh2(u) + f(y2).

where Lh2 corresponds to the (M2 × M2) Laplacian matrix, and h2 = L
M2+1 .

Let us consider the “reduced” system S1 defined on Sh1 = [0, 1]M1 with
M1 = M2/2, defined by:

dy1
dt

= σLh1y1 + ϕh1(u) + f(y1),

where Lh1 is the (M1 × M1) Laplacian matrix and h1 = L
M1+1 .

With M1 = M2/2, we have h2 = L
2M1+1 (= h1(M1+1)

2M1+1). Let us consider the
(M1 × M2) reduction matrix:

Π :=
1√
2

⎡
⎢⎢⎣

1 1 0 · · · 0 0
0 0 1 1 · · · 0

· · ·
0 0 · · · 0 1 1

⎤
⎥⎥⎦

192 A. Le Coënt and L. Fribourg

Note that ΠΠ� = IM . Let us consider a point w0 ∈ Sh2 , and let z0 = Πw0 ∈
Sh1 .

Theorem 3. Consider the system S2 and a point w0 ∈ Sh2 , and let z0 = Πw0 ∈
Sh1 . Let Y h2

w0
and Y h1

z0
be the solutions of S2 and S1 with initial conditions w0 ∈

Sh2 and z0 ∈ Sh1 respectively. We have:

∀t � 0 ‖ΠY h2
w0

(t) − Y h1
z0

(t)‖ � K2σ

|λh1 |
,

where
K2 := sup

w∈Sh2

‖(ΠLh2 − Lh1Π)w‖,

and Lh2 (resp. Lh1) is the Laplacian matrix of size M2 × M2 (resp. M1 × M1).

Proof. Let us consider the system S2:

dy2
dt

= σLh2y2 + ϕh2(u) + f(y2).

By application of the projection matrix Π, we get:

dΠy2
dt

= σΠLh2y2 + ϕh1(u) + f(Πy2).

By subtracting pairwise with the sides of S1, we have:

dΠy2
dt

− dy1
dt

= σ(ΠLh2y2 − Lh1y1) + f(Πy2) − f(y1)

= Fh1(Πy2) − Fh1(y1) + σ(ΠLh2 − Lh1Π)y2,

where Fh1(y) = σLh1(y) + f(y) for y ∈ Sh1 . On the other hand, we have:
1
2

d
dt (‖Πy2 − y1‖2) = 〈 d

dt (Πy2 − y1),Πy2 − y1〉
= 〈Fh1(Πy2) − Fh1(y1) + σ(ΠLh2 − Lh1Π)y2,Πy2 − y1〉
= 〈Fh1(Πy2) − Fh1(y1),Πy2 − y1〉

+σ〈(ΠLh2 − Lh1Π)y2,Πy2 − y1〉
� λh1‖Πy2 − y1‖2 + σ〈(ΠLh2 − Lh1Π)y2,Πy2 − y1〉
� λh1‖Πy2 − y1‖2 + K2σ‖Πy2 − y1‖

with K2 := sup
w∈Sh2

‖(ΠLh2 − Lh1Π)w‖

� λh1‖Πy2 − y1‖2 + K2σ
1
2 (α‖Πy2 − y1‖2 + 1

α),

for all α > 0. Choosing α > 0 such that K2σα = −λh1 , i.e.: α = − λh1
K2σ , we have:

1
2

d

dt
(‖Πy2 − y1‖2) � λh1

2
‖Πy2 − y1‖2 − (K2σ)2

2λh1

.

Since y2(0) = w0 and y1(0) = z0, we get by integration:

‖Πy2(t) − y1(t)‖2 � (K2σ)2

λ2
h1

(1 − eλh1 t) � (K2σ)2

λ2
h1

.

Hence: ‖ΠY h2
w0

(t) − Y h1
z0

(t)‖ � K2σ
|λh1 | for all t � 0. �

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 193

This proposition expresses that the reduction error is bounded by constant K2σ
|λh1 |

when the same control modes are applied to both systems.4

Let y0
2 ∈ S2 and yf

2 ∈ S2 be an initial and objective point respectively. Let
y0
1 := Πy0

2 ∈ S1 and yf
1 := Πyf

2 ∈ S1 denote their projections. Suppose that πε

is the pattern returned by PROCε
k(y0

1) for the reduced system S1. Then, from
Theorem 3, it follows that, when the same control πε is applied to the original
system S2 with y2(0) = y0

2 ∈ S2, it makes the projection Πyπε

2 (t) ∈ S1 reach a
neighborhood of yf

1 at time t = T . Formally, we have:

‖Pyπε

2 (T) − yf
1 ‖ � ‖yπε

1 (T) − yf
1 ‖ +

K2σ

|λh1 |
.

Example 2. Let us take the system defined in Example 1 as reduced system S1

(M1 = 5), and let us take as “full-size” system S2 the system corresponding to
M2 = 10. Since the size of the grid X2 associated to S2 is exponential in M2, the
size X2 is multiplied by (1/η)M2−M1 = 155 ≈ 7.6 · 105 w.r.t. the size of the grid
X1 associated to S1. The complexity for synthesizing directly the optimal control
of S2 thus becomes intractable. On the other hand, if we apply to S2 the optimal
strategy πε ∈ Uk found for S1 in Example 1, we obtain a simulation depicted
in Fig. 3 for extended mode of length 1, which is the counterpart of Fig. 1 with
M2 = 10 (instead of M1 = 5), and has a very similar form. Likewise, if we apply
to S2 the optimal strategy πε ∈ Uk found for S1 in Example 1, we obtain a
simulation depicted in Fig. 4 for extended modes of length 2 and 4, which is the
counterpart of Fig. 2, and very similar to it. As seen above, we have:

‖Πyπε

2 (T) − yf
1 ‖ � ‖yπε

1 (T) − yf
1 ‖ +

K2σ

|λh1 |
,

where yf
1 = (0.3, 0.3, 0.3, 0.3, 0.3), and the reduction error is bounded by K2σ

|λh1 | =
17.9 σ.

The subexpression ‖yπε

1 (T)−yf
1 ‖ can be computed a posteriori by simulation:

see Table 1 of Appendix 2, with σ = 1, σ = 0.5. The value of ‖yπε

2 (T)−yf
2 ‖ for S2

is also given in Table 1 for comparison.
The upper bound ‖yπε

1 (T) − yf
1 ‖ + K2σ

|λh1 | of the distance ‖Pyπε

2 (T) − yf
1 ‖ is

very conservative, due to a priori error bound K2σ
|λh1 | . On can obtain a posteriori a

much sharper estimate of ‖Pyπε

2 (T)−yf
1 ‖ by simulation: see Table 2, Appendix 2.

3 Final Remarks

Using the notion of OSL constant, we have shown how to use the finite difference
and explicit Euler methods in order to solve finite horizon control problems for
4 By comparison, in [2], the error term originating from the POD model reduction is
exponential in T (see C1(T, |x|) in the proof of Theorem 5.1).

194 A. Le Coënt and L. Fribourg

Fig. 2. Simulation of the system of Example 1 discretized with M1 = 5 points, with
extended modes of length 2 (left) and extended modes of length 4 (right).

Fig. 3. Simulation of the system of Example 1, discretized with M2 = 10 points, with
extended mode of length 1.

Fig. 4. Simulation of the system of Example 1, discretized with M2 = 10 points, with
extended modes of length 2 (left) and extended modes of length 4 (right).

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 195

reaction-diffusion equations. Furthermore, we have quantified the deviation of
this control with the optimal strategy, and proved that the error upper bound
is linear in the horizon length. We have applied the method to a 1D bi-stable
reaction-diffusion equation, and have found experimental results similar to those
of [45]. We have also given a simple and specific model reduction method which
allows to apply the method to equations of larger size. In future work, we plan
to apply the method to 2D reaction-diffusion equations (e.g., Test 1 of [2]).

Appendix 1: Proof of Lemma 1

Proof. It is easy to check that 0 < αu < 1 when |λu|Gu

4 < 1.
Let t∗ := Gu(1 − αu). Let us first prove δe0(t) � e0 for t = t∗. We have:

−1
2
|λu|Gu + (2 +

1
2
|λu|Gu)αu − α2

u = 0.

Hence:

1
2Gu(1 − αu)

λuG2
u(1 − αu)2 + 2αu − α2

u = 0,

i.e.

1
2t∗

λu(t∗)2 + 2αu − α2
u = 0.

We have: − 1
4G2

ut∗ λu(t∗)4eλut∗ � 0. It follows:

1
2t∗

λu(t∗)2 + 2αu − α2
u − 1

4G2
ut∗

λu(t∗)4eλut∗ � 0.

Hence:

1 +
1

2t∗
λu(t∗)2 − 1

G2
u

((t∗)2 +
1

4t∗
λu(t∗)4eλut∗

) � 0.

By multiplying by t∗:

(t∗ +
1
2
λu(t∗)2) − 1

G2
u

((t∗)3 +
1
4
λu(t∗)4eλut∗

) � 0.

Since G =
√

3|λu|e0/Cu:

e20(t
∗ +

1
2
λu(t∗)2) +

C2
u

λ2
u

(−1
3
(t∗)3 − 1

12
λu(t∗)4eλut∗

) � 0.

By multiplying by λu:

e20(λut∗ +
1
2
λ2

u(t∗)2) +
C2

u

λ2
u

(−1
3
λu(t∗)3 − 1

12
λ2

u(t∗)4eλut∗
) � 0.

196 A. Le Coënt and L. Fribourg

Note that, in the above formula, the subexpression λut∗ + 1
2λ2

u(t∗)2 is such
that:

λut∗ +
1
2
λ2

u(t∗)2 � eλut∗ − 1

since eλut∗ − 1 = λut∗ + 1
2λ2

u(t∗)2eλθ � λut∗ + 1
2λ2

u(t∗)2.
On the other hand, the subexpression − 1

3λu(t∗)3 − 1
12λ2

u(t∗)4eλut∗
is such

that:

−1
3
λu(t∗)3 − 1

12
λ2

u(t∗)4eλut∗ � 2t∗

λu
+ (t∗)2 +

2
λ2

u

(1 − eλut∗
)

since
2t∗
λu

+ (t∗)2 + 2
λ2

u
(1 − eλut∗

)

= 2t∗
λu

+ (t∗)2 + 2
λ2

u
(−λut∗ − 1

2λ2
u(t∗)2 − 1

6λ3
u(t∗)3 − 1

24λ4
u(t∗)4eλuθ

= 2
λ2

u
(− 1

6λ3
u(t∗)3 − 1

24λ4
u(t∗)4eλuθ) for some 0 � θ � t∗

= − 1
3λu(t∗)3 − 1

12λ2
u(t∗)4eλuθ

� − 1
3λu(t∗)3 − 1

12λ2
u(t∗)4eλut∗

.

It follows:

e20(e
λut∗ − 1) +

C2
u

λ2
u

(
2t∗

λu
+ (t∗)2 +

2
λ2

u

(1 − eλut∗
)) � 0.

e20e
λut∗

+
C2

u

λ2
u

(
2t∗

λu
+ (t∗)2 +

2
λ2

u

(1 − eλut∗
)) � e20.

i.e.

(δu
e0

(t∗))2 � e20.

Hence: δu
e0

(t∗) � e0. It remains to show: δu
e0

(t) � e0 for t ∈ [0, t∗].
Consider the 1rst and 2nd derivative δ′(·) and δ′′(·) of δ(·). We have:
δ′(t) = λue20e

λut + C2
u

λ2
u
(2t + 2

λu
− 2

λu
eλut)

δ′′(t) = λ2
ue20e

λut + C2
u

λ2
u
(2 − 2eλut).

Hence δ′′(t) > 0 for all t � 0. On the other hand, for t = 0, δ′(t) = λue20 < 0,
and for t sufficiently large, δ′(t) > 0. Hence, δ′(·) is strictly increasing and has a
unique root. It follows that the equation δ(t) = e0 has a unique solution t∗∗ for
t > 0. Besides, δ(t) � e0 for t ∈ [0, t∗∗], and δ(t) � e0 for t ∈ [t∗∗,+∞). Since we
have shown: δ(t∗) � e0, it follows t∗ � t∗∗ and δ(t) � e0 for t ∈ [0, t∗]. �

Appendix 2: Numerical Results

See Fig. 5.

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 197

Fig. 5. Simulation of the controllers for σ = 1.

198 A. Le Coënt and L. Fribourg

Fig. 6. Simulation of the controllers for σ = 0.5.

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 199

Table 1. Value ‖yπε

i (T) − yf
i ‖ for σ = 1 and σ = 0.5 (T = 2, i = 1, 2).

Dimension Extended
mode length

‖yπε

i (T) − yf
i ‖

for σ = 1
‖yπε

i (T) − yf
i ‖

for σ = 0.5

i = 1 (Mi = 5) 1 0.27642 0.33869

2 0.44496 0.39068

4 0.15294 0.22024

i = 2 (Mi = 10) 1 0.39904 0.50251

2 0.50092 0.58500

4 0.16738 0.31440

Table 2. Projection value ‖Pyπε

2 (T) − yf
1 ‖ for σ = 1, σ = 0.5 (T = 2).

Extended mode length ‖Pyπε

2 (T) − yf
1 ‖ for σ = 1 ‖Pyπε

2 (T) − yf
1 ‖ for σ = 0.5

1 0.67429 0.77322

2 0.27501 0.72322

4 0.31385 0.21481

References

1. Alla, A., Falcone, M., Volkwein, S.: Error analysis for POD approximations of
infinite horizon problems via the dynamic programming approach. SIAM J. Control
Optim. 55(5), 3091–3115 (2017)

2. Alla, A., Saluzzi, L.: A HJB-POD approach for the control of nonlinear PDEs on
a tree structure. CoRR, abs/1905.03395 (2019)

3. Althoff, M.: Reachability analysis of large linear systems with uncertain inputs in
the Krylov subspace. CoRR, abs/1712.00369 (2017)

4. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In: Proceedings of the
47th IEEE Conference on Decision and Control, CDC 2008, 9–11 December 2008,
Cancún, Mexico, pp. 4042–4048. IEEE (2008)

5. Aminzare, Z., Shafi, Y., Arcak, M., Sontag, E.D.: Guaranteeing spatial uniformity
in reaction-diffusion systems using weighted L2 norm contractions. In: Kulkarni,
V.V., Stan, G.-B., Raman, K. (eds.) A Systems Theoretic Approach to Systems and
Synthetic Biology I: Models and System Characterizations, pp. 73–101. Springer,
Dordrecht (2014). https://doi.org/10.1007/978-94-017-9041-3 3

6. Aminzare, Z., Sontag, E.D.: Logarithmic Lipschitz norms and diffusion-induced
instability. Nonlinear Anal. Theory Methods Appl. 83, 31–49 (2013)

7. Aminzare, Z., Sontag, E.D.: Some remarks on spatial uniformity of solutions of
reaction-diffusion PDEs. Nonlinear Anal. Theory Methods Appl. 147, 125–144
(2016)

8. Arcak, M.: Certifying spatially uniform behavior in reaction-diffusion PDE and
compartmental ODE systems. Automatica 47(6), 1219–1229 (2011)

9. Barthel, W., John, C., Tröltzsch, F.: Optimal boundary control of a system of reac-
tion diffusion equations. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte
Mathematik und Mechanik 90(12), 966–982 (2010)

https://doi.org/10.1007/978-94-017-9041-3_3

200 A. Le Coënt and L. Fribourg

10. Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Prince-
ton (1957)

11. Berz, M., Hoffstätter, G.: Computation and application of Taylor polynomials with
interval remainder bounds. Reliab. Comput. 4(1), 83–97 (1998)

12. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369
(1998)

13. Casas, E., Ryll, C., Tröltzsch, F.: Optimal control of a class of reaction-diffusion
systems. Comput. Optim. Appl. 70(3), 677–707 (2018)

14. Le Coënt, A., Fribourg, L.: Guaranteed control of sampled switched systems using
semi-Lagrangian schemes and one-sided Lipschitz constants. In: 58th IEEE Con-
ference on Decision and Control, CDC 2019, Nice, France, 11–13 December 2019
(2019)

15. Court, S., Kunisch, K., Pfeiffer, L.: Hybrid optimal control problems for a class of
semilinear parabolic equations. Discret. Contin. Dyn. Syst. 11, 1031–1060 (2018)

16. da Silva, J.E., Sousa, J.T., Pereira, F.L.: Synthesis of safe controllers for nonlinear
systems using dynamic programming techniques. In: 8th International Conference
on Physics and Control (PhysCon 2017). IPACS Electronic Library (2017)

17. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary
differential equations. Ph.D. thesis, Almqvist & Wiksell (1958)

18. Falcone, M., Giorgi, T.: An approximation scheme for evolutive Hamilton-Jacobi
equations. In: McEneaney, W.M., Yin, G.G., Zhang, Q. (eds.) Stochastic Analy-
sis, Control, Optimization and Applications. Systems & Control: Foundations &
Applications. Springer, Boston (1999). https://doi.org/10.1007/978-1-4612-1784-
8 17

19. Fan, C., Kapinski, J., Jin, X., Mitra, S.: Simulation-driven reachability using matrix
measures. ACM Trans. Embedded Comput. Syst. (TECS) 17(1), 21 (2018)

20. Finotti, H., Lenhart, S., Van Phan, T.: Optimal control of advective direction in
reaction-diffusion population models. Evol. Equ. Control Theory 1, 81–107 (2012)

21. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2 19

22. Griesse, R., Volkwein, S.: A primal-dual active set strategy for optimal boundary
control of a nonlinear reaction-diffusion system. SIAM J. Control Optim. 44(2),
467–494 (2005)

23. Han, Z., Krogh, B.H.: Reachability analysis of hybrid control systems using
reduced-order models. In: Proceedings of the 2004 American Control Conference,
vol. 2, pp. 1183–1189, June 2004

24. Han, Z., Krogh, B.H.: Reachability analysis of large-scale affine systems using
low-dimensional polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006.
LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006). https://doi.org/10.
1007/11730637 23

25. Kalise, D., Kröner, A.: Reduced-order minimum time control of advection-reaction-
diffusion systems via dynamic programming. In: 21st International Symposium on
Mathematical Theory of Networks and Systems, Groningen, Netherlands, July
2014, pp. 1196–1202 (2014)

26. Kalise, D., Kunisch, K.: Polynomial approximation of high-dimensional Hamilton-
Jacobi-Bellman equations and applications to feedback control of semilinear
parabolic PDEs. SIAM J. Sci. Comput. 40(2), A629–A652 (2018)

27. Kapela, T., Zgliczyński, P.: A Lohner-type algorithm for control systems and ordi-
nary differential inclusions. Discret. Contin. Dyn. Syst. B 11(2), 365–385 (2009)

https://doi.org/10.1007/978-1-4612-1784-8_17
https://doi.org/10.1007/978-1-4612-1784-8_17
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/11730637_23
https://doi.org/10.1007/11730637_23

Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations 201

28. Koto, T.: IMEX Runge-Kutta schemes for reaction-diffusion equations. J. Comput.
Appl. Math. 215(1), 182–195 (2008)

29. Kühn, W.: Rigorously computed orbits of dynamical systems without the wrapping
effect. Computing 61(1), 47–67 (1998)

30. Kunisch, K., Volkwein, S., Xie, L.: HJB-POD-based feedback design for the optimal
control of evolution problems. SIAM J. Appl. Dyn. Syst. 3(4), 701–722 (2004)

31. Le Coënt, A.: OSLator 1.0 (2019). https://bitbucket.org/alecoent/oslator/src/
master/

32. Le Coënt, A., Alexandre dit Sandretto, J., Chapoutot, A., Fribourg, L., De Vuyst,
F., Chamoin, L.: Distributed control synthesis using Euler’s method. In: Hague,
M., Potapov, I. (eds.) RP 2017. LNCS, vol. 10506, pp. 118–131. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67089-8 9

33. Le Coënt, A., De Vuyst, F., Chamoin, L., Fribourg, L.: Control synthesis of non-
linear sampled switched systems using Euler’s method. In: Proceedings of Interna-
tional Workshop on Symbolic and Numerical Methods for Reachability Analysis
(SNR 2017), EPTCS, vol. 247, pp. 18–33. Open Publishing Association (2017)

34. Le Coënt, A., De Vuyst, F., Rey, C., Chamoin, L., Fribourg, L.: Guaranteed con-
trol synthesis of switched control systems using model order reduction and state-
space bisection. In: Proceedings of International Workshop on Synthesis of Com-
plex Parameters (SYNCOP 2015), OASICS, vol. 44, pp. 33–47. SchlossDagstuhl –
Leibniz-Zentrum für Informatik (2015)

35. Lohner, R.J.: Enclosing the solutions of ordinary initial and boundary value prob-
lems. Comput. Arith. 255–286 (1987)

36. Lozinskii, S.M.: Error estimate for numerical integration of ordinary differential
equations. i. Izv. Vyssh. Uchebn. Zaved. Mat. (5), 52–90 (1958)

37. Maidens, J., Arcak, M.: Reachability analysis of nonlinear systems using matrix
measures. IEEE Trans. Autom. Control 60(1), 265–270 (2014)

38. Mitchell, I., Bayen, A.M., Tomlin, C.J.: Validating a Hamilton-Jacobi approxi-
mation to hybrid system reachable sets. In: Di Benedetto, M.D., Sangiovanni-
Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 418–432. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-45351-2 34

39. Mitchell, I.M., Tomlin, C.: Overapproximating reachable sets by Hamilton-Jacobi
projections. J. Sci. Comput. 19(1–3), 323–346 (2003)

40. Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)
41. Moura, S.J., Fathy, H.K.: Optimal boundary control & estimation of diffusion-

reaction PDEs. In: Proceedings of the 2011 American Control Conference, pp.
921–928, June 2011

42. Moura, S.J., Fathy, H.K.: Optimal boundary control of reaction-diffusion par-
tial differential equations via weak variations. J. Dyn. Syst. Meas. Control Trans.
ASME 135(3), 6 (2013)

43. Nedialkov, N.S., Jackson, K., Corliss, G.: Validated solutions of initial value prob-
lems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)

44. Nedialkov, N.S., Kreinovich, V., Starks, S.A.: Interval arithmetic, affine arithmetic,
Taylor series methods: why, what next? Numer. Algorithms 37(1–4), 325–336
(2004)

45. Pouchol, C., Trélat, E., Zuazua, E.: Phase portrait control for 1D monostable and
bistable reaction-diffusion equations. CoRR, abs/1709.07333 (2017)

46. Reissig, G., Rungger, M.: Symbolic optimal control. IEEE Trans. Autom. Control
64(6), 2224–2239 (2018)

https://bitbucket.org/alecoent/oslator/src/master/
https://bitbucket.org/alecoent/oslator/src/master/
https://doi.org/10.1007/978-3-319-67089-8_9
https://doi.org/10.1007/3-540-45351-2_34

202 A. Le Coënt and L. Fribourg

47. Rungger, M., Reissig, G.: Arbitrarily precise abstractions for optimal controller
synthesis. In: 56th IEEE Annual Conference on Decision and Control, CDC 2017,
Melbourne, Australia, 12–15 December 2017, pp. 1761–1768 (2017)

48. Saluzzi, L., Alla, A., Falcone, M.: Error estimates for a tree structure algorithm
solving finite horizon control problems. CoRR, abs/1812.11194 (2018)

49. Schürmann, B., Althoff, M.: Optimal control of sets of solutions to formally guaran-
tee constraints of disturbed linear systems. In: 2017 American Control Conference,
ACC 2017, Seattle, WA, USA, 24–26 May 2017, pp. 2522–2529 (2017)

50. Schürmann, B., Kochdumper, N., Althoff, M.: Reachset model predictive control
for disturbed nonlinear systems. In: 57th IEEE Conference on Decision and Con-
trol, CDC 2018, Miami, FL, USA, 17–19 December 2018, pp. 3463–3470 (2018)

51. Söderlind, G.: The logarithmic norm. History and modern theory. BIT Numer.
Math. 46(3), 631–652 (2006)

52. Sontag, E.D.: Contractive systems with inputs. In: Willems, J.C., Hara, S., Ohta,
Y., Fujioka, H. (eds.) Perspectives in Mathematical System Theory, Control, and
Signal Processing. LNCIS, vol. 398, pp. 217–228. Springer, Heidelberg (2010)

Towards Formal Co-validation
of Hardware and Software Timing Models

of CPSs

Mihail Asavoae1, Imane Haur1, Mathieu Jan1(B), Belgacem Ben Hedia1,
and Martin Schoeberl2

1 CEA, List, Palaiseau, France
{mihail.asavoae,imane.haur,mathieu.jan,belgacem.ben-hedia}@cea.fr

2 Technical University of Denmark, Lyngby, Denmark
masca@dtu.dk

Abstract. Timing analysis of safety-critical systems derives timing
bounds of applications, or software (SW), executed on dedicated plat-
forms, or hardware (HW). The ensemble HW–SW features, from a tim-
ing perspective, two different types of computation – a SW-specific,
instruction-driven timing progression and a HW-specific, cycle-driven
one. The two timings are unified under a concept of timing model, which
is crucial to establish a sound and precise worst-case timing reasoning. In
this paper, we propose an investigation on how to systematically derive
and formally prove such timing models. Our approach is exemplified on
a simple, accumulator-based processor called Lipsi.

Keywords: Timing analysis · Timing model · Formal semantics ·
Chisel · HW/SW co-validation · Model checking

1 Introduction

Cyber-physical systems (CPSs) integrate computations running on embedded
platforms into physical systems that they interact with. This integration is
expressed through feedback loops between software and the physical environ-
ment and it may need to satisfy strong timing guarantees. To verify them, worst-
case timing analyses of safety-critical systems are combined. Such analyses cover
timing behaviors of computations (e.g., the worst-case execution time analysis,
WCET), communications (e.g., the worst-case traversal time analysis) or both
(e.g., the worst-case response time analysis). It is common to all these analy-
ses that the applications semantics are projected on the timing behavior of the
underlying platforms. In this work, we focus on the computations, viewed as
a set of binaries (SW), i.e. sequences of instructions described at the instruc-
tion set architecture (ISA) level. On the side of the embedded platforms, i.e.
hardware level (HW), our inputs are register transfer-level (RTL) descriptions
of processors in a given hardware description language (HDL). We thus omit any
networking components and focus only on single-core or multi-core architectures.
c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 203–227, 2020.
https://doi.org/10.1007/978-3-030-41131-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_10

204 M. Asavoae et al.

At these levels of design, a timing verification relies on a WCET analy-
sis [41]. A WCET analysis computes safe and accurate timing bounds of a SW
executed on a HW, where the HW is abstracted to micro-architecture elements
(e.g., instruction and data caches, pipeline, speculation mechanisms, etc.). The
workflow of the WCET analysis consists of a series of static SW- and HW-level
analyses. A first analysis extracts the control flow graph (CFG) from the binary,
with nodes being basic (single-entry, single-exit) blocks and edges safely repre-
senting the program flow. Then, the CFG is augmented with flow facts (e.g., loop
bounds) and HW-related information (e.g., cache behavior). Finally, a path anal-
ysis, performed on the augmented CFG, determines the longest execution path
which represents the WCET bound. In this workflow, a cache analysis reports
that, for example, a basic block is classified as “always miss” in the cache and
its timing behavior is a cache miss penalty, for example, 10 cycles. However,
it is not always simple to establish such architecture-dependent bounds due to
its complexity and unwanted timing phenomena [40]. WCET analyses require a
proper timing model, whose correctness and accuracy ensure safe but also tight
WCET estimations.

SW HW
execution

Formalization
+ Trace equivalence via testing

Formal
ISA

Formal
HDL

+ timing

Verification

Fig. 1. General workflow for the HW/SW co-validation of timing models for CPS.

Even if formal verification of hardware design has been thoroughly studied
(see [18] for a survey), it is mainly targeting the functional correctness. HW/SW
co-verification also focuses on the functional side, as in [12], or interfaces between
SW and HW as well as their temporal behavior [30], and thus not on extracting
timing models of HW. In this work, we focus on building and validating such
timing models for CPSs. Figure 1 shows our proposed general workflow that
combines the formalization of the timing behaviors of both SW and HW sides.
For the SW side, a timing model is added to an ISA formal description by relying
on the input textual specification of the architecture. Both the functional and
timing behaviors of this timing augmented formal SW model are tested, for
confidence, against traces of actual code first over an instruction set simulator

Towards Formal Co-validation of HW/SW Timing Models of CPSs 205

(ISS) and then over a real execution. Note that by real execution, we mean
traces generated by executing HDL code, i.e. the circuit, should be on an FPGA
or by a cycle-accurate simulator. Similarly, on the HW side, a formal model is
built which thus includes by construction a timing behavior. The confidence in
this formal HW model is also verified by applying trace equivalence. Finally,
the last step consists in the co-validation of these hardware and software formal
timing models, i.e. verifying the consistency of their two timing models. More
specifically, the instruction-level timing, from the SW model is encoded as a
set of assertions, called timing invariants, in the formal HW model. A timing
invariant identifies the hardware pattern, i.e. the sequence of updates on registers
and wires that must be executed in x cycles, corresponding to the execution of
an instruction in the timing augmented SW model in x cycles. We then prove the
obtained timing model of a particular pairing of programs (SW) over a platform
(HW) by model checking the formal HW model with these timing invariants.

To illustrate how this general approach can be used when designing CPS,
we apply it over Lipsi processors [37]. Lipsi is a tiny sequential processor whose
simplicity enables us to focus on building the complete approach for this HW
platform. Lipsi comes with two components: an instruction-set simulator and the
circuit, specified in Chisel [4]. We then build both HW and SW models using
respectively the Temporal Logic of Actions (TLA+) formal specification lan-
guage [20] and the Sail formal language dedicated to express ISA semantics [1].
We detail these models, the simple timing model of Lipsi that we add in the
SW model and how we add these timing invariants in the HW model of Lipsi.
These timing invariants are then checked using the model-checker of TLA+,
called TLC. In the formalization phase, we discovered semantic issues between
the intended behavior of Lipsi, from [37], and the actual Lipsi code. Finally, we
report a possible use case for such verified timing models of CPS: the detection
and minimization of memory interferences in a multi-core setting of Lipsi.

The remainder of this paper is organized as follows. Section 2 introduces the
formal languages we rely on to build the HW and SW models of our general
approach. It also provides an overview of the timing behavior of the Chisel
language, from which the timing behavior of our HW model is constructed. In
Sect. 3, we present the workflow for the HW/SW co-verification of timing models
of CPSs. In Sect. 4, we apply the approach to a case study: the Lipsi processor.
We provide concrete examples of the HW and SW formal models of Lipsi using
TLA+ and Sail languages. Section 5 reports and discusses the obtained results
when considering this Lipsi case study. Section 6 presents related work, before
concluding in Sect. 7.

2 Preliminaries

In this section, we briefly introduce two specialized specification languages we
rely on to build the formal HW and SW models. To formally specify hard-
ware behavior, we use the TLA+ language [20,43], as it is a high-level specifica-
tion language for modeling concurrent systems and comes with a model-checker.

206 M. Asavoae et al.

On the SW side, we use Sail [1] to formally model programs as it is tailored for
expressing Instruction-Set Architecture (ISA) semantics. It has been successfully
applied to formalize various ISAs, such as ARM, RISC-V, and MIPS [1]. The K
framework, which was recently used for a formal executable semantics of x86-64
ISA [10], is another option we have not yet considered so far [2].

Chisel. We first introduce the programming language we assume as input to
perform hardware designs. We select the Chisel programming language [4] due
to its current rising popularity in the hardware design community and its ability
to reduce hardware design times. Chisel generates Verilog HDL, whose formal
semantics has been studied in [11,27]. Compared to Verilog, Chisel provides some
higher-level constructs to raise the level of hardware design abstraction, as it is
embedded in the Scala programming language as a Domain Specific Language
(DSL). Scala promotes functional-style programming and uses a strong static
type system to facilitate concise and reusable code – some necessary attributes to
address complex hardware designs. Chisel also supports testing through an inter-
nal cycle-accurate hardware simulator. We now briefly describe several language
elements of Chisel, while more elaborate examples are presented in Sect. 4.3 when
we formally specify the Lipsi processor from Chisel code.

Hardware designs are constructed on Chisel typed values that flow through
wires, i.e. the combinational part of circuits, or held in state elements, i.e. the
sequential part of circuits. The keyword val is used to declare variables whose
values do not change. As basic datatypes, Bool represents the boolean values,
SInt and UInt represent signed and respectively unsigned integers. For exam-
ple, val x = UInt(2) declares x to be the unsigned int 2. The bit size of x
is unspecified here, but could be inferred from the usage of x or specified to
be 32-bit with UInt(2, width=32). Simple combinational circuits are described
using the val keyword. For example, val land = a & b has in land the bitwise
and of a and b. Chisel uses registers for state elements, for instance, val r =
RegInit(0.U) initializes r to 0. There are also conditional combinational circuits
built with the class Wire and the conditional construct when. For example, val
x = Wire(UInt(0)) declares x to be an wire initialized to unsigned int 0 and
modified to 1 as follows: when (cond) { x := 1.U }. The assignment operator
:= connects the input of the left-hand side to the output of the right-hand side.

TLA+ is a modeling language proposing an advanced module system,
untyped set theory and predicate logic, making it suitable to specification of
complex computational systems such as computer architectures. TLA+ language
is based on the notion of action (i.e., a transition predicate), which captures a
state change as follows: an action x’ = x + 1 updates the next value, primed
of x based on the current, unprimed value of x. If x is a record, its field f is
accessed as x.f and a partial record update is expressed with [x EXCEPT!.f =
v], changing f to v and leaving the other fields of x unchanged. A module M
having an action A could be referred in another module via the operator “!”,
as M!A. An instance of M could be created inside another module with the con-
struct INSTANCE M WITH, with the state variables of M being initialized after the
keyword WITH.

Towards Formal Co-validation of HW/SW Timing Models of CPSs 207

Abstraction and refinement are natural with TLA+ and, supported by an
explicit model checker called TLC, form a powerful formal specification and ver-
ification framework. It features stuttering invariance to reason about the spec-
ification paths at different levels of granularity and temporal existential quan-
tification to slice away the unnecessary state elements. We elaborate more on
the language and model checking of TLA+ specifications in Sect. 4.3 where we
present the case study of the Lipsi processor.

Sail is a first-order imperative language that comes with a type system for
bit vector lengths and indexing to enables static checking. A Sail specification
relies on the definition of an Abstract Syntax Type (AST) of the ISA of an
architecture, i.e. a union of types with parameters. To each AST value, specific
execute and decode functions are associated with respectively the sequential
semantics of the instruction and the matching of its binary representation of
its AST value. For readability and modularity, Sail supports the definition of
scattered functions and unions allowing to group decode, execute and the AST
value of an instruction in one place. The memory space and the registers of the
architectural state of a processor manipulated by each instruction can also be
specified to model data transfer paths. To this end, a specific register type is
supported and it is possible to annotate functions with effects to describe their
impact on either the declared memories or registers. From a Sail specification,
both emulators and theorem proving definitions can be generated to support
the fast execution of programs or deductive reasoning. In Sect. 4.2, we provide
examples on how we use Sail to formally specify the ISA of the Lipsi processor.

3 Co-validation of Timing Models: General Approach

Typical CPSs are organized as networks of computational and communication
elements that interact with the physical environment. CPSs are subject to var-
ious properties such as adaptability, autonomy, reliability, security or safety.
From a structural point of view, a CPS features multiple components specified
and implemented at different levels of details and using different modeling or
specification languages. From a functional point of view, each such language
comes with its semantics to address specific points. As such, the CPS semantics
landscape includes hybrid approaches, synchronous data flow approaches, simu-
lation or verification languages, general-purpose programming languages, such as
C, etc. We thus abstract a CPS to ensembles of communicating binaries running
of various platforms, as shown in Fig. 2. Heterogeneous computational and com-
municational components, Compi are to be deployed for execution on various
platforms, which is, in the general case, a many-to-many relation. For example,
Plat3 could be a multi/many-core system with applications from Comp3−4 being
executed in parallel. Also, different applications from Comp1 could be executed
on Plat1 and Plat2, whereas the applications of Comp2 are executed only on
Plat1.

208 M. Asavoae et al.

Comp1

Comp2 Comp3

Comp4

BinType1 BinType2 BinType3

Plat1 Plat2 Plat3

CPS

SW

HW

Fig. 2. Components Compi of a CPS are classified based on their execution environ-
ments.

3.1 Motivations: Consistency of Timings

Let us elaborate on the semantics landscape of CPSs with concerning timing
properties because well-defined timing is crucially important to ensure several
of the aforementioned properties of CPSs. Timing models capture how software
applications, or programs, are mapped on hardware resources when it comes to
timing behavior. Timing models are necessary to perform timing analyses. A
timing analysis needs to be safe and accurate and the most precise timing is
to be found at the execution platform-level, i.e. the HW-level. To bridge the
gap between HW-level timing and various ways of expressing timing at the
application-level, i.e. the SW level, timing analysis is usually performed on bina-
ries. From a semantic perspective, the working language is the assembly language
specific to the execution platform under consideration, i.e. the ISA.

The high-level functional and temporal properties are however obfuscated or
even lost when translated to this binary low-level, i.e. BinType1−3 in Fig. 2. Let
us consider a Model-Based Design (MBD) workflow, based on a synchronous
language [7] as high-level programming language. The high-level specification is
transformed into an intermediate language code, usually the C language, in a
correct by construction way, ensured by the well-synchronized property of the
high-level code. Then, a general-purpose compilation chain, in the absence of
compiler optimization, could produce binaries that are traceable to the source
code. However, the initial high-level timing properties can no longer be directly
expressed at the binary level, as most ISAs simply do not include timing. A few
exceptions exist, such as the PRET [26] and the Patmos [38] architectures that
provide the delay until instruction that explicitly manipulates timing, i.e. the
current hardware thread is stalled for a specified number of clock cycles. Even
when it is up to the compiler to schedule instructions over a given hardware
architecture, the defined timing behavior is limited to a single instruction in

Towards Formal Co-validation of HW/SW Timing Models of CPSs 209

isolation. There is no way to impact the timing behavior of the whole architec-
ture, as in PRET or Patmos. This prevents to implement in a proper way the
initial high-level temporal properties, which thus simply disappear at the binary
level. It is the goal of WCET analyses to recover them at this level.

When designing a hardware architecture, its timing behavior is in general
not formalized. Besides, it remains to demonstrate, or at least show enough con-
fidence, that the timings are correctly implemented by the circuit. Most formal
verification of hardware designs focuses on the functional side of an implementa-
tion, for instance in Sect. 6, to cite an open-source tool/project. While the timing
semantic of HDL languages has been the subject of various work (see Sect. 2), the
timing behavior of a given micro-architecture is much more complex to identify
and verify due to pipeline stalling, forwarding, interlocking, etc. The associated
logic can be dispatched in different places of the design and mixed with rich
low-level functionalities, such as the logic in charge of the functional part of
the architecture. It is thus in general unclear to identify at the HDL level when
an instruction terminates its execution. Appropriate abstraction and slicing are
necessary to extract the timing model of a hardware design so that it can be
used to perform WCET analyses, i.e. if the high-level temporal properties can
be fulfilled over the given architecture.

3.2 Building Timing Models

In this work, we consider the pair SW and HW represented by BinTypei and
respectively Plati in Fig. 2 and how models can be established between them.
The SW model is supported by instruction-level simulation, sometimes with an
ad-hoc cycle-level timing, whereas the HW model is a cycle-accurate execution.
Now, a timing model in this context is a function between the time progression
of SW, measured in executed instructions and the cycle-accurate timing, corre-
sponding to HW. We thus propose a formal framework to construct and validate,
from these HW and SW models, such timing models of CPS, abstracted as in
Fig. 2. Note that this framework can either be used when designing new hard-
ware architectures to provide to the SW the appropriate timing model, but also
extract the timing behavior of existing hardware architectures.

Our framework relies on a combination of trace equivalences and model check-
ing, as shown in Fig. 1. On the SW side, the steps of our workflow are thus the
following:

1. We formalize the SW component by defining a formal executable semantics
of BinTypei ISA language.

2. This formal SW model is first tested, by comparing its output against traces
generated from an Instruction Set Simulator (ISS), to gain confidence in the
correctness of the functional part of the formal ISA model.

3. The formal SW model is then extended with timing behavior for each instruc-
tion. The augmented model is tested by comparing its output against traces
from ISS, augmented with cycle-level timing behaviors, to gain confidence in
the added timing model.

210 M. Asavoae et al.

The result is a thoroughly tested formal SW model, though manually asserted,
with a cycle-level timing behavior, i.e. formal ISA + timing in Fig. 1. Note that
if a cycle-level simulator is not available, the timing behavior added in the above
step (3) must be verified against traces from executions of the considered circuit.
In all these steps, discrepancies can be identified either because of traces being
not equivalent in steps (2) and (3) or simply when building the formal model at
the step (1). In all cases, the origin of a discrepancy must be at least identified.
While fixing an error in the formal model being built is, of course, possible, fixing
erroneous simulators or the circuit depend on the availability of their source
codes. When using a “black-box” circuit, its timing could thus be taken as the
reference behavior. However, discrepancies could also come from the interplay of
instructions at the micro-architecture level that the SW model cannot capture.
This is the goal of the co-validation step, described in Sect. 3.3. Note that we
assume that any input program described using our extended formal SW model
is correct, i.e. correctness of programs is out of the scope of this work but, of
course, not the correctness of the formal SW model. Finally, note that we can
leverage existing formal SW models, such as [1] or [10] to avoid steps (1) and
(2).

We propose similar steps to construct a formal HW model for Plati. Com-
pared to the SW side of our workflow, a timing behavior already exists at the
HDL level: we have to extract it. The steps on the HW side are thus the following:

1. We construct a formal executable HW model of the considered circuit. This
is currently being done manually, automatically generating the HW model
being a work in progress.

2. The built formal HW model is then tested, by comparing its outputs against
traces from executions of the circuit, to gain confidence that it behaves as
precisely as possible to the timing behavior of the HDL.

The result of these steps is a formal HW model with a cycle-accurate timing,
denoted by formal HDL in Fig. 1. We assume that a description of the circuit in
HDL or using a higher-level language, such as Chisel, is available. If it is not the
case, a more abstract HW model can be built from the specifications of the data
paths. The timing accuracy of such models is, of course, more limited. Note by
executions of the circuit for step (2) on the HW side and step (3) on the SW side,
we mean either the use of cycle-accurate HDL simulators, such as Verilator [42]
or the built-in simulator of Chisel, or runs over an FPGA board. We ignore any
timing inconsistency that may occur between considered simulation tools. We
also ignore the impact of the environment, such as the temperature or the level of
radiations, on the (functional and temporal) behavior of the HW, i.e HW fault-
free conditions are assumed. Finally, the described steps in our framework are
generic, i.e. they could rely on other toolchains than SAIL or TLA+ to include
timings in their formal models.

Towards Formal Co-validation of HW/SW Timing Models of CPSs 211

3.3 Verifying Timing Invariants

Following the aforementioned workflow, one may wonder why the timing behav-
ior added to the formal SW model is not directly compared against such execu-
tions of circuits and thus considered as our timing model. These ad-hoc timings
within the formal SW model are only compared to traces of an ISS augmented
with cycle-level timing behaviors. The verification process would thus be limited
to trace equivalence, with thus a limited coverage. While trace coverage can be
easily computed on the SW side for the functional part, the diversity of timing
behaviors on the HW side would be simply ignored.

The timing behaviors of the HW and the SW models must instead be ver-
ified together to establish the function which we name a timing model. Our
verification thus proceeds as follows. The ad-hoc timings of the SW model are
first encoded as timing invariants in the formal HW model. To achieve this, we
identify for each instruction the sequence of hardware updates on the processor,
such as changes on wires and registers. For a non-pipelined processor, a simple
input-output relation is defined for each timing invariant. The input represents
the instruction fetch, i.e. when the opcode is taken into account, whereas the
output is instruction-specific, e.g., a memory load terminates with the correct
value in the corresponding register, an ALU instruction modifies the accumula-
tor register, etc. The input-output relation depends on the current clock cycle.
A timing invariant should be read as follows: x cycles after an instruction is
fetched, where x is given by the formal SW model, the instruction terminates
its execution.

Let us denote a timing invariant by TInvi, where i is an instruction from the
language L, i ∈ L. A timing model for an architecture A is thus defined as:

TMA =

(∧
i∈L

TInvi

)

The corresponding assertions are then verified via model checking to establish
the co-validation of the timing model. We expect these timing invariants to
be useful in the context of WCET analyses and thus proving that high-level
timing properties are fulfilled. However, we have not yet connected these timing
invariants to any existing WCET tool.

4 Case Study: Lipsi Processor

We now illustrate our approach described in the previous section over a case
study. We select a very simple processor, the Lipsi processor [37], to better
illustrate the various steps of our approach. In this section, we thus first briefly
describe the Lipsi processor. Then, we present its formal ISA and HDL models
using, respectively, the Sail and TLA+ languages.

212 M. Asavoae et al.

4.1 Overview

Lipsi is a sequential 8-bit accumulator-based processor to be used in auxiliary
functions or for teaching purposes. The ISA of Lipsi includes ALU operations
using registers or immediate operands, load/store from/to the memory, uncon-
ditional and conditional branches, and an input/output (i/o) operation. A com-
plete list of instructions and their encodings are shown in Table 1 of [37]. The
Lipsi instructions are encoded using a single byte, except branch operations and
ALU operations with immediate operands. For these instructions, a second byte
is used to store either the address of the target branch or the immediate operand.

Fig. 3. The datapath of Lipsi, using an accumulator A, a single memory, an ALU and
a program counter PC (extracted from [37]).

On the hardware side, Lipsi consists of an accumulator register (A), a pro-
gram counter (PC), 16 additional registers and a single on-chip memory. Its
datapath is shown in Fig. 3. Lipsi targets the use of a single block RAM in
FPGA, which can be as low as 512 bytes. Addresses are thus 9-bits values. The
memory is accessible through 2 ports: one for reads, the other one for writes. The
lower half of the 9-bit memory space therefore stores up to 256 bytes of instruc-
tions, while the upper half stores first 16 additional registers (R[x]) followed by
up to 240 bytes of data. R[X] can be used to store intermediate results when
performing ALU operations. The specification of Lipsi allows us to identify up to
16 different ports using bits [3:0] in the encoding of the i/o instruction. However,
its current hardware implementation only uses 2 ports to exchange values with
the accumulator A: one for outputting the value of A and the other one to load a
new value in A. The hardware implementation of Lipsi is written in Chisel, and
it has been synthesized to the Cyclon IV FPGA of the DE2-115 FPGA board.
An Instruction Set Simulator (ISS), written in Scala, is also available.

Towards Formal Co-validation of HW/SW Timing Models of CPSs 213

The hardware implementation of Lipsi comes with a very simple timing
model, as a single memory is connected to the processor. Two clock cycles are
required to execute an ALU instruction: one for fetching the instruction and one
for accessing the data and executing the ALU operation. Loading A with a value
in R[x] also takes 2 cycles while writing to R[x] only takes 1 cycle due to the
separated read/write ports to the memory. Updating R[x] is performed while
the next instruction is being from the read port. Memory store and load oper-
ations use the additional registers R[x] to store the targeted memory address.
Those operations thus perform three memory accesses: to fetch the instruction,
to retrieve the memory address from R[x], and finally to perform the memory
operation at the specified memory address. A memory load thus takes 3 cycles,
while a memory write takes only 2 cycles as the last access occurs meanwhile
the next instruction is being fetched. Finally, the i/o operation takes 1 cycle.

4.2 Formal SW Model

We now present the formal SW model of Lipsi using the Sail language. We first
define the architectural state of Lipsi, i.e. its accumulator A, its program counter
PC and the ports used by the i/o instruction, i.e. din and dout for respectively
the input and output ports. The nextPC register is used to store the address of
the branch, i.e. the second byte of a branch instruction when it is decoded. All
these variables are 8-bits registers, as in the hardware implementation of Lipsi.

type len_t = bits(8) /* 8-bit architecture */

register A : len_t /* Accumulator */

register PC : len_t /* Program Counter */

register nextPC : len_t /* For branch instructions */

register din : len_t /* For the i/o instruction, input port */

register dout : len_t /* output port */

Memory Model. The structure Memory represents the memory of Lipsi. It
embeds respectively the instruction and data spaces, which are defined as a
vector of bytes. These vectors are organized in downward memory addresses.
Finally, a vector of registers Rs represents the additional registers R[x] of Lipsi.

type memory_data = vector(256, dec, bits(8)) /* Data space */

type memory_inst = vector(240, dec, bits(8)) /* Instruction space */

struct Memory = { Inst : memory_inst, Data : memory_data }

register Rs : vector(16, dec, bits(8)) /* R[x] */

We now show the formal specification of the write operations, for both the mem-
ory space but also for R[x]. The function mem_write updates the content of Memory

with the value v at the memory address adr. Either the instruction or the data
vector of Memory gets updated, depending on the value of the Most Significant
Bit (MSB) of adr, a 9-bit value. Note that the data vector is updated only if adr

does not target Rs.

214 M. Asavoae et al.

val mem_write : (bits(9), bits(8), Memory) -> vector(256, dec, bits(8))

function mem_write (adr, v, mem) = {

if (adr[8] == 0b1) then {

if (adrbits_to_adrno(adr[7..0]) >= 16) then

plain_vector_update (mem.Data, length(mem.Data) - 1 - adrbits_to_adrno(adr

↪→ [7..0]), v);

else return mem.Data;

} else {

plain_vector_update(mem.Inst, length(mem.Inst) - 1 - adrbits_to_adrno(adr

↪→ [7..0]),v);

}}

The function reg_write updates R[x] and shares with the function mem_write a
similar signature. A string representing the name of the register, noted r, is
however used instead of a memory address. r is mapped into an offset in the
data vector using the functions reg_name and regbits_to_regno. X is the setter
function to update Rs with the value v, which uses the overload feature of Sail to
abstract read (not shown) and write accesses (function wX, signature not shown).

function wX (r, v) = if r < 16 then { Rs[15 - r] = v; }

overload X = {rX, wX}

val reg_write : (string, bits(8)) -> unit /* unit equivalent to void */

function reg_write (r, v) = {

X(regbits_to_regno(reg_name(r)), v); }

Finally, the overload feature of Sail is used to abstract the organization of the
memory. Writing to R[x] or the memory to implement the semantic of instruction
is performed by simply calling the function lipsi_write. Similar functions are used
for read operations (shown in the next paragraph).

overload lipsi_write = {mem_write, reg_write}

Instruction and Timing Models. We now present the part describing the
semantic of instructions. We have modeled in Sail all the ISA of Lipsi, as
presented in [37] (Table 1). We only show the use of Sail to decode and exe-
cute ALU instructions that rely on registers. First, the syntactic sugar of scat-
tered definitions is used to group functions related to each instruction in one
place, i.e. AST union ast, mapping function decode and function execute. The
AST type ALU_TYPE_REG represents the considered ALU instructions. The map-
ping encdec_alu_func_reg matches a binary value to a constant value represent-
ing the requested ALU operation. The mapping decode matches the machine
code of instructions to the associated AST node within ast. The concatenation
operator @ is used to extract, from the input bit vector, the requested ALU oper-
ation (func) and the index of the additional register (reg). Finally, the function
execute implements the semantics of the instructions by first reading the value
from the specified additional register, i.e. reg_val and then performing the spec-
ified ALU operation on reg_val and A. accureg is an accessor to A, for reading or
writing.

Towards Formal Co-validation of HW/SW Timing Models of CPSs 215

scattered union ast

scattered mapping decode

scattered function execute

union clause ast = ALU_TYPE_Reg : (alu_func_reg, regbits)

mapping encdec_alu_func_reg: alu_func_reg <-> bits(3) = {

LIPSI_ADD <-> 0b000,

LIPSI_SUB <-> 0b001,

...

LIPSI_XOR <-> 0b110,

LIPSI_LD <-> 0b111

}

mapping clause decode = ALU_TYPE_Reg(func, reg) <->

0b0 @ encdec_alu_func_reg(func) @ reg

function clause execute ALU_TYPE_Reg(func, reg) = {

let reg_val : len_t = lipsi_read(regbits_to_regno(reg));

let ret : len_t = match func {

LIPSI_ADD => reg_val + accureg(),

LIPSI_SUB => accureg() - reg_val,

...

LIPSI_XOR => reg_val ^ accureg(),

LIPSI_LD => reg_val

};

accureg(ret);

}

For the timing model, we simply use a register to represent clock cycles. This
register is incremented by the clock cycles associated with each instruction being
decoded. The formal SW model executes instructions in single steps, which is
also equivalent to an instruction-level simulation of the input program. However,
this clock register tracks in a cycle-accurate manner the timing behavior of each
instruction.

4.3 Formal HW Model

We now present the formal HW model of the Lipsi processor specified in the
TLA+ language. We partially present the specification, using actual code snap-
shots of both TLA+ and Chisel implementations, in Figs. 4, 5 and 6. Our pre-
sentation emphasizes the traceability between the two semantics representations.
TLA+ being a specification framework, it lacks program-specific infrastructure
such as parsing, rich built-in libraries and AST manipulation. Hence, we also
include several workarounds to preserve the traceability, such as convenient
naming for instance. However, certain information is inevitably less obvious.
For example, the type system of Chisel is abstracted in our TLA+ model, and
implicitly the type inference whose results are manually encoded in the corre-
sponding TLA+ specification. Our purpose is not to accurately provide a formal
executable semantics of Chisel in TLA+, but to specify, as precisely as possible,
the Lipsi Chisel code.

216 M. Asavoae et al.

We first present the memory model of the Lipsi processor, in Fig. 4, its inte-
gration in the datapath, in Fig. 5 and finally, in Fig. 6 a representative snapshot
of the Lipsi processor. Our TLA+ model of Lipsi is cycle-accurate and captures
the execution of a Lipsi instruction through the circuit, with both combinational
and sequential elements being encoded. The TLA+ specification, LipsiSpec con-
sists of the initial state, LipsiInit and the state transformer LispiTrans, the
temporal operator “always”, [] preceding the state transformer. It is applied on
the system state LVars (i.e., the set of wires and registers):

LipsiSpec == LipsiInit /\ [] [LipsiTrans]_LVars

Before detailing LispiSpec, let us present the specification of the memory model.

Memory Model. The TLA+ specification of the Lipsi memory model, in Fig. 4,
adheres to this specification style (e.g., with MemoryInit and MemoryTrans being
presented). On the Chisel side, the Memory class declares a memory zone, mem,
to store data of a total size 256 and elements of type unsigned int of size 8 (e.g.,
UInt(8.W)). data is used to access an element of mem and is initialized with the
memory value at the address from the register rdAddrReg (a 9-bit address trun-
cated to 8-bit as mem represents the data space of Lipsi). The equivalent TLA+

code features the initialization, MemoryInit, of the state elements mem, data and
rdAddrReg with their respective initial values. Note that mem init, not listed,
initializes mem with zeros. The Lipsi memory model features read/write memory
operations, which are grouped in an interface io, whose fields are accessed using
“.”. For example, the Chisel code for a memory write at address io.wrAddr with
value io.wrData is conditionally performed when the memory write is enabled,
i.e. io.wrEna is true. Its equivalent transition in the TLA+ specification updates
primed mem with value io.wrData, only when the memory write is enabled (i.e.,
the predicate cond io wrEna tests if io.wrEna is true). Similarly, the new val-
ues, rdAddrReg’ and data’ are accordingly provided. Finally, class Memory is
parameterized by prog, an input binary program, which is stored in a read-only
memory. These details are omitted due to space constraints.

class Memory(prog: String) extends Module {

val mem = Mem(256, UInt(8.W))

val data = mem(rdAddrReg(7, 0))

when(io.wrEna) { mem(io.wrAddr) := io.wrData } ...

}

MemoryInit == ... /\ rdAddrReg = 0 /\ mem = mem_init /\ data = 0

MemoryTrans == ...

/\ mem’ = IF cond_io_wrEna

THEN [n \in 0..255 |->

IF n = io.wrAddr THEN io.wrData ELSE mem[n]]

ELSE mem

/\ rdAddrReg’ = io.rdAddr

/\ data’ = mem[rdAddrReg]

Fig. 4. From Chisel HDL to TLA+ for defining the memory system of the Lipsi.

Towards Formal Co-validation of HW/SW Timing Models of CPSs 217

class Lipsi(prog: String) extends Module {

val mem = Module(new Memory(prog)) ...

}

LOCAL Lmem == INSTANCE Memory WITH ..., rdAddrReg <- 0,

data <- 0, mem <- [n \in 256..512 |-> 0]

LipsiInit == LET memory_state_init == Lmem!memory_init (program) IN

/\ ... /\ mem = memory_state_init.mem

LipsiTrans == LET memory_state == Lmem!update_memory_state (...) IN

/\ ... /\ mem’ = memory_state.mem

Fig. 5. From Chisel HDL to TLA+ when integrating the memory system of Lipsi.

Figure 5 shows the integration of this memory model and how we preserve
the modularity of the Chisel code in our TLA+ specification. The class Lipsi
instantiates a local state variable mem with the memory model from Fig. 4. The
actual creation of the memory object in Chisel (using new) is translated to a
local instance Lmem of Memory, using the construct INSTANCE WITH. LipsiInit
can then use Lmem and apply the function memory init to set its initial state.
Similarly, LipsiTrans uses the function update memory state to apply the
state transformer of the memory model. This updates at each cycle the mem-
ory system mem’. These two functions memory init and update memory state
are the equivalents of MemoryInit and MemoryTrans from Fig. 4, following a
function-based integration approach possible in TLA+. Finally, the parametriza-
tion, concerning the initial program, from Chisel is preserved in TLA+ via the
memory init function.

Instruction and Timing Models. Figure 6 presents a snapshot of how Lipsi
executes instructions. Compared to the formal SW model, an instruction is exe-
cuted in potentially several clock cycles, i.e. cycle-level execution, by updating
corresponding values in the wires and the registers of Lipsi. Lipsi is implemented
with a Finite State Machine (FSM), whose states are first defined, represented as
a list (Enum). The position in the list identifies the current state, captured in the
register stateReg which is initialized to fetch (and equal to 0). Such states are
encoded in TLA+ as a sequence of LOCAL declarations with explicit assignments
corresponding to their position in the list, while initializing stateReg to fetch
in LipsiInit. Similarly, an exit flag (corresponding to the instruction exit in
Lipsi ISA) is set accordingly in both Chisel and TLA+.

The control logic of the FSM of Lipsi is handled by a switch statement over
the current value of stateReg. When is(fetch) is true, the next state is by
default set to execute (i.e., stateReg := execute) for the next cycle. However,
any subsequent modification of stateReg, in the same clock cycle, overrides this
modification, a behavior common to any HDL language. For example, if the
instruction is an io (i.e., the opcode is equal to 0xf0.U), stateReg is reset to
fetch for the next cycle (while copying the value of the accumulator, accuReg to
outReg and setting enaIoReg to true). The timing model of the io instruction is

218 M. Asavoae et al.

val fetch::execute::stind::ldind1::ldind2::exit::Nil = Enum(6)

val stateReg = RegInit(fetch)

val exitReg = RegInit(false.B)

switch(stateReg) {

is (fetch) {

stateReg := execute ...

when (rdData(7) === 0.U) {... enaAccuReg := true.B ...}

...

when (rdData === 0xf0.U) {

outReg := accuReg enaIoReg := true.B stateReg := fetch }

when (rdData === 0xff.U) { stateReg := exit }

} ...

is (stind) { wrEna := true.B stateReg := fetch }

is (execute) { stateReg := fetch }

is (exit) { exitReg := true.B }

}

LOCAL fetch == 0 ... LOCAL exit == 5

cond_rdData_eq_Bits0 (rddata) == b7(rddata) = 0

cond_rdData_eq_Bits0xf0 (rddata) == rddata = 240

cond_rdData_eq_Bits0xff (rddata) == rddata = 255

cond_stateReg_eq_fetch == stateReg = fetch

cond_stateReg_eq_stind == stateReg = stind

cond_stateReg_eq_execute == stateReg = execute

cond_stateReg_eq_exit == stateReg = exit

...

LipsiInit == ... /\ stateReg = fetch /\ exitReg = FALSE

LipsiTrans == ...

/\ exitReg’ = IF cond_stateReg_eq_exit THEN TRUE ELSE FALSE

/\ outReg’ =

IF cond_stateReg_eq_fetch

THEN IF cond_rdData_eq_Bits0xf0 (memory_state.io.rdData)

THEN accuReg ELSE outReg

ELSE outReg

/\ stateReg’ = ...

IF cond_stateReg_eq_fetch

THEN ... IF X_cond_rdData_eq_Bits0xff (memory_state.io.rdData)

THEN exit ELSE fetch

ELSE IF cond_stateReg_eq_stind

THEN fetch ELSE IF cond_stateReg_eq_execute ...

Fig. 6. From Chisel HDL to TLA+ for snapshot of Lipsi FSM.

thus one clock cycle. The other states are used to store the output of the decode
when an instruction is fetched. For instance, is(stind) enables the memory
write, i.e. the signal wrEna is set to true, while resetting stateReg to fetch. The
timing model of a store instruction is thus one clock cycle, as the write occurs

Towards Formal Co-validation of HW/SW Timing Models of CPSs 219

at the next cycle while the next instruction is fetched. Similarly, is(execute)
resets stateReg, implying that execute represents the last stage in the timing
model of some instructions. Finally, is(exit) signals the end of the program
execution, represented in Lipsi by a specialized register exitReg. Therefore, exit
takes three clock cycles. At the first cycle, the instruction is identified during
is(fetch) based on its opcode 0xff.U and the next state of Lipsi set to exit.
At the second clock cycle, exitReg is set to true, a change that would be visible
at the third clock cycle. Contrary to other instructions, no further instruction
can be fetched at this third clock cycle that we thus count in the timing behavior
of the exit instruction.

The TLA+ encoding of this code fragment is driven by a cascade of condi-
tions on both the value of stateReg (e.g., cond stateReg eq) and the instruc-
tion opcode (e.g., cond rdData eq Bits). For example, exitReg’ is set to true
when the corresponding condition on stateReg is exit and outReg’ is updated
with the value in the accumulator, accuReg only when stateReg is fetch and
the opcode is 0xf0 (i.e., cond rdData eq Bits0xf0 is true). Otherwise it stays
unmodified, as outReg. Similarly, stateReg’ is updated with the corresponding
value, capturing, in this way part of the timing model that we prove next.

5 Evaluation Results

We first report the semantic discrepancies we found between the SW and the
HW models of Lipsi. These discrepancies concern not only the functionality but
also the timing, justifying the need for formalization and verification of timing
models. Finally, we present a potential application of such timing models - the
detection of memory interferences in a multi-core context.

Semantic Discrepancies. We identified some semantics discrepancies when we
performed the trace equivalence between traces from formal SW model and the
simulators and the circuit (steps (2) and (3) on the SW side of our approach,
see Sect. 3.2). First, the instructions sh and brl, specified in the Lipsi ISA, are
not implemented in the Chisel hardware design of Lipsi. Next, the instructions
adc and sbb produce outputs that are equivalent to respectively the add and the
sub instructions. However, these implementation issues are known to the author
of Lipsi.

A more interesting issue concerns the i/o instruction. Its specification allows
the first 4 bits of its encoding to be used to specify the i/o ports. However,
the hardware implementation of Lipsi only uses a single i/o port, the one with
value index 0. Any non-zero index leads to a silent drop of the next instruction
(PC + 1), i.e. the execution continues at PC + 2. Even if this unprocessed
instruction leads to be interpreted as an ALU operation (the default decoding),
the value of the accumulator is not modified as it is guarded by a boolean
value (not set by default). Note that contrary to the previous discrepancies,
this difference was not explicitly documented in the hardware implementation
of Lipsi.

220 M. Asavoae et al.

Finally, while the instruction exit takes 3 cycles in the Lipsi circuit, it only
takes 1 cycle in the Lipsi simulator. We reiterate that our goal is to detect timing
problems and not to point out functionality issues in the considered design.
However, such findings demonstrate that we can detect any kind of semantic
discrepancy between the specified ISA and implementations of it.

Proving the Timing Model. We exemplify next the following timing invari-
ants TInvi in Lipsi, with i ∈ { exit, io, add, ld } (io being the i/o instruction).
We recall that the formal HW model of Lipsi is cycle-accurate and a cycle vari-
able is incremented every time the system makes a transition. The opcode of the
fetched instruction is stored in curr instr. Also, for each invariant, we use a
counter variable x , which is initialized to 0 and incremented at each clock cycle.
Then, this value is compared with the result of the augmented formal ISA to
ensure that the timing on both SW- and HW-level are the same. Note that this
counter variable is not necessary, but we opt to explicitly encode it for clarity
(i.e., an alternative is to directly use the processor clock cycle).

Next, we present the invariant for the instruction exit, TInvexit.

inv_exit (curr_instr) == curr_instr = 255 /\ exitReg /\ x_exit <= 3

Informally, it states that, whenever an instruction is an exit (its opcode is 0xff
or 255), the register exitReg becomes true 3 clock cycles later. This property fol-
lows the semantic of the Chisel code from Fig. 6, with curr instr corresponding
to rdData, the assignment stateReg := exit triggers at the next clock cycle the
assignment to exitReg guarded by the condition is(exit), with an observed
result at the next clock cycle. The timing of instruction exit is thus 3 clock
cycles (i.e., the condition x exit) and proved using the TLC model checker.

The timing invariant of the instruction io, TInvio, is presented next.

inv_io (curr_instr) ==

LET val == curr_instr - 240 IN

/\ curr_instr >= 240 /\ curr_instr <= 254

/\ ((enaIoReg /\ val = 0) \/ not (val = 0))

/\ io.dout = val

/\ x_io <= 1

This instruction covers a range of opcodes, depending on the i/o port identifier.
For example, the instruction 0xf1 is an io (opcode 0xf0 or 240) and the i/o port
number 1. The variable val in TInvio represents the port number. Concerning
i/o ports, the semantics of io is under-specified in [37]: the port number is not
used by the instruction. Therefore, the implementation in the circuit only sup-
ports the use of port 0, i.e. 0xf0 is the only accepted opcode, as seen previously.
The invariant captures the following hardware pattern: the instruction is iden-
tified as io and the port identifier is calculated in val, the register enaIoReg is
updated to allow the actual port output. The timing of instruction io is proved
to be 1 clock cycle.

Towards Formal Co-validation of HW/SW Timing Models of CPSs 221

Next, we present TInvadd, the timing invariant for instruction add.

inv_add (curr_instr, rddata) ==

LET reg == curr_instr IN

/\ curr_instr >= 0 /\ curr_instr <= 15

/\ \/ (not (rddata = reg) /\ (not (reg = 0)) /\ enaAccuReg

\/ not (res = reg)

/\ x_add <= 2

Similarly to io, the opcodes for add include the value to be processed via the
accumulator (i.e., the range is between 0x00 and 0x0f, according to Table 1
from [37]). The instruction add executes in two cycles. In the first cycle, the
instruction is fetched and the flag register enaAccuReg is set to true. In the
second cycle, the actual addition is computed, with the result stored in res. We
use an auxiliary variable reg to distinguish between two cases, depending on if
the operand is 0 or not (and if res remains the same, even after the addition
is performed). TInvadd does not include functional correctness, i.e. that the
correct addition is performed, only that the accumulator is updated after two
clock cycles. However, it could also be possible to have a functionality criterion
included as well, as it is the case with the next timing invariant for a memory
load instruction, ld.

The opcodes of ld are also in a range of values, the difference with 0x70 (or
112) being the target memory address. This address is represented by val. This
instruction takes two cycles. The classical fetch first, followed with the actual
memory read, stored in the accumulator, accuReg.

inv_ld (curr_instr) ==

LET val == curr_instr - 112 IN

/\ curr_instr >= 112 /\ curr_instr <= 127

/\ accuReg = mem[val]

/\ x_ld <= 2

We could also express TInvld as TInvadd, i.e. without any functional checking,
by replacing the actual functionality by only a check that the memory is accessed.
The other timing invariants are expressed similarly.

The experiments are conducted on a quad-core Intel i7 at 2.8 GHz with 16GB
RAM and the TLA+ Toolbox using the TLC model checker version 2.14. The
results are presented in Table 1. The four lines show runtime and state space
statistics for the timing invariants of instructions exit, io, add and ld. The
results of a more general timing invariant for the instructions of type ALU reg
(e.g., TInvadd is part of this invariant) are shown in line 5. Finally, the timing
model of Lipsi (i.e., without the instructions sh and brl which are not coded in
the circuit) is verified in about 51 min and with a total size of the state space of
about 34M (i.e., the last line in Table 1).

Detection of Interferences. We briefly illustrate a possible use of the proved
timing model: the detection of memory interferences. We thus consider three
different input binaries executed with our formal SW model of Lipsi, to represent
a multi-core setting of Lipsi. Each Lipsi core is identified by an index. Besides,

222 M. Asavoae et al.

Table 1. Proving the timing model of the Lipsi processor.

Timing invariant - TInv Runtime (s) State space size

TInvexit 15 75K

TInvio 67 197K

TInvadd 279 1.10M

TInvld 252 1.06M

TInvALU reg =
(∧

i∈ALU reg TInvi
)

1538 18.87M

TMLipsi =
(∧

i∈L TInvi
)

3088 33.94M

as each Lipsi has its private memory, we rely on the i/o instruction to emulate
the access to a shared device. Note that we only emulate the access to a shared
device, not the device itself nor its arbitration policy. If two i/o accesses occur
at the same time, we thus assume that the one coming from the Lipsi with the
smallest index wins the access. The other Lipsi cores continue their execution as
if their accesses were valid, as we are mostly interested in timing properties of
programs not in their functional correctness.

For the input binaries, we reuse the same memory model for the spacing of
memory accesses as in [14]. In this model, tasks or programs are represented as
a sequence of memory requests separated by a given number of processor clock
cycles, representing the amount of computation that is performed between two
memory accesses. We assume a composable computer architecture [13], which
ensures that the distance between requests is independent of the execution of
other tasks. The only interference between the independent tasks thus stems
from accesses to the emulated shared device.

The sequences of memory requests of our three input programs are:
(A : 2, 24, 12), (B : 14, 4, 2) and (C : 26, 6). The program A is made of 2 loops
and thus generates i/o accesses at the (absolute) times 2, 26 and 38. The pro-
gram B is made of a single loop and generates i/o accesses at the (absolute) times
14, 18 and 20. Finally, the program C is also made of a single loop and gener-
ates i/o accesses at the absolute (times) 26 and 32. It is then trivial to detect
that an interference is going to occur at time 26 between program A and C. Our
next step is to modify the input binaries, by adding appropriate nop instructions
(ALU operations that do not change the current value of A) or by introducing
a delay instruction, as in Patmos or PRET, to space out i/o accesses. While
a straightforward algorithm can solve this problem for programs with a single
path, the presence of multiple paths in input programs leads to an interesting
optimization problem of minimizing the number of interferences.

6 Related Work

Traditionally, HW/SW co-verification methods [19,23,29,30] consider SW to
be represented in higher-level languages than our low-level approach (which is
characteristic of worst-case timing reasoning [40]) and HW to be based on HDL

Towards Formal Co-validation of HW/SW Timing Models of CPSs 223

languages. These works use model checking techniques and focus mostly on prov-
ing functionality properties, while we propose advancements on the timing prop-
erties, also using model checking. For example, C code and Verilog designs are
verified together via bounded model checking, in [30], similarly with the co-
verification technique from [29], where model checking is used on C code and
hardware abstractions based on push-down systems. High-level code is co-verified
with HDL designs, in [19], by a combination of BDD-based model checking for
HW and partial order reduction for SW. All these approaches consider an implicit
interface between hardware and software (i.e., we presented this interface under
the name of the hardware patterns). An explicit interface is expressed in [12] and
integrated into the HW/SW co-verification procedure based on bounded model
checking (i.e., as a side note, the application is considered at the binary level).

Our approach increases the confidence in the formal semantics of ISA with
the help of an ISS, providing a de facto procedure to verify an ISS. There are
several works [5,17], centered on the verification of ISS and its use in HW/SW
co-verification. The ISS presented in [5] is symbolic and addresses both func-
tional and timing properties in processors similarly using assertions with our
procedure as another symbolic ISS, which is constructed over an instruction-
level abstraction [17].

WCET analysis tools require a clear and explicit specification of timing mod-
els of architectures to estimate the WCET [40]. One approach is to rely on a
product of timed automata to model the timing behavior of hardware elements,
such as pipelines, caches, etc [6,9]. The WCET estimates are then obtained
using the UPPAAL model-checker. However, in both cases, the timing accuracy
of the hand-made models, which are difficult to design, is unclear and simplified
compared to the underlying micro-architecture. Another approach is to auto-
matically extract timing information from HDL processor designs, either using
static analysis, as in [36] or aiming for patterns of pipelining using abstract sim-
ulation, as in [32]. Both approaches work directly on the processor code (in this
case VHDL) as our approach. However, we differ in the formal technique: static
analysis and respectively model-checking.

Another approach is to extend classical ISA-level Architecture Description
Languages (ADLs) [28], such as ArchC or Sim-nML, to include the specifi-
cation of timing models at the micro-architecture level. The OTAWA WCET
analysis framework relies on an extended Sim-nML to specify timing models of
pipelines by describing resource allocations of instructions over pipeline stages,
functional units, and buffers [15]. In [24,25], the ADL Expression language is
used to describe both ISA but also contention and parallelism relations at the
micro-architecture, i.e. the timing model. Execution graphs are then generated
on which WCET analyses are performed. The LISA ADL language [31] also
enables the assignment of operations to pipeline stages, potentially with delays.
Compared to timed automata models, the ADL-based approach enables the
specification of timing models at a high-level description, from which a low-level
network of timed automata can be generated. However, there is still no connec-
tion with the timing model at the HDL level and moreover, the timing anomalies
are ignored.

224 M. Asavoae et al.

Retargetable compilers have led to the design of processor models in order
to extract instruction sets [8,21,33]. However, these compilers use a reservation
table to describe the pipeline operations and these operations are not timing-
accurate to model pipeline hazards.

In a different area, [16] proposes a timing-abstract behavioral model of
pipelines to increase the instruction parallelism reuse and reduce bugs when
optimizing implementations, for instance when performing logic retiming. Cycle-
level details, such as pipeline staging, are generated from a concise specification
through a process called timing augmentation.

7 Conclusion and Future Work

We proposed a general methodology to reason about the timing properties of
CPSs by taking into account the interplay between HW and SW, both formally
specified and verified. We also reported on how our methodology is applied on
a simple processor called Lipsi towards defining and proving its timing model.
Due to the formal nature of our approach we also discovered several semantic
inconsistencies, both functional and temporal, between the specification and
the implementation of Lipsi. Our methodology is demonstrated using a formal
semantics of Lipsi ISA based on the Sail language and a formal specification of
the corresponding hardware implementation in Chisel code, based on the TLA+

reasoning framework.
We are currently pursuing several lines of research. First, we aim to auto-

matically generate formal (TLA+) models and the necessary timing invariants
directly for the HDL code. Second, we have ongoing work targeting RISC-V
designs, with complicated timing models due to pipelining, multi-level caches
and speculation mechanism. Besides, since we use such timing models in worst-
case reasoning to safely guarantee the timing behaviors, information on timing
predictability [39] and timing compositionality [13] should also be verified. In
other words, we are working to include the knowledge of timing anomalies [35] in
our definition of a timing model to identify timing anomalies via model checking,
as in one of our previous work [3]. Research communities on the WCET anal-
ysis [41] or synchronous languages [7] rely on traceability to transfer high-level
semantics to low-level code [22,34]. We are interested in leveraging high-level
timing properties and traceability enhancements within our HW and SW timing
models. This includes the investigation of how these timing models could be used
within a software compiler toolchain, such as LLVM, to include not only average
case performance optimizations but also worst-case performance optimizations.
Finally, we plan to address timing models for the communication part of the
CPSs, which are currently abstracted away in our current work.

Towards Formal Co-validation of HW/SW Timing Models of CPSs 225

References

1. Armstrong, A., et al.: ISA semantics for ARMv8-a, RISC-V, and CHERI-MIPS.
PACMPL 3(POPL), 71:1–71:31 (2019)

2. Asavoae, M.: K semantics for assembly languages: a case study. Electr. Notes
Theor. Comput. Sci. 304, 111–125 (2014)

3. Asavoae, M., Hedia, B.B., Jan, M.: Formal executable models for automatic detec-
tion of timing anomalies. In: 18th International Workshop on Worst-Case Execu-
tion Time Analysis, WCET 2018, pp. 2:1–2:13 (2018)

4. Bachrach, J., et al.: Chisel: constructing hardware in a Scala embedded language.
In: Proceedings of the 49th Annual Design Automation Conference, DAC 2012,
pp. 1216–1225. ACM (2012)

5. Beatty, D.L., Bryant, R.E.: Formally verifying a microprocessor using a simulation
methodology. In: Proceedings of the 31st Conference on Design Automation, pp.
596–602 (1994)

6. Béchennec, J., Cassez, F.: Computation of WCET using program slicing and
real-time model-checking. CoRR abs/1105.1633 (2011). http://arxiv.org/abs/1105.
1633

7. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

8. Bradlee, D.G., Henry, R.R., Eggers, S.J.: The Marion system for retargetable
instruction scheduling. SIGPLAN Not. 26(6), 229–240 (1991)

9. Dalsgaard, A.E., Olesen, M.C., Toft, M., Hansen, R.R., Larsen, K.G.: METAMOC:
modular execution time analysis using model checking. In: Lisper, B. (ed.) 10th
International Workshop on Worst-Case Execution Time Analysis (WCET 2010).
OpenAccess Series in Informatics (OASIcs), vol. 15, pp. 113–123 (2010)

10. Dasgupta, S., Park, D., Kasampalis, T., Adve, V.S., Rosu, G.: A complete formal
semantics of x86–64 user-level instruction set architecture. In: Proceedings of the
40th PLDI 2019, pp. 1133–1148 (2019)

11. Gordon, M.J.C.: The semantic challenge of Verilog HDL. In: Proceedings of the
10th Annual IEEE Symposium on Logic in Computer Science, San Diego, 26–29,
pp. 136–145 (1995)

12. Große, D., Kühne, U., Drechsler, R.: HW/SW co-verification of embedded systems
using bounded model checking. In: Proceedings of the 16th ACM Great Lakes
Symposium on VLSI 2006, pp. 43–48 (2006)

13. Hahn, S., Reineke, J., Wilhelm, R.: Towards compositionality in execution time
analysis: definition and challenges. SIGBED Rev. 12(1), 28–36 (2015)

14. Hebbache, F., Jan, M., Brandner, F., Pautet, L.: Shedding the shackles of time-
division multiplexing. In: 2018 IEEE Real-Time Systems Symposium, RTSS, 2018,
pp. 456–468 (2018)

15. Herbegue, H., Filali, M., Cassé, H.: Formal architecture specification for time anal-
ysis. In: Maehle, E., Römer, K., Karl, W., Tovar, E. (eds.) ARCS 2014. LNCS,
vol. 8350, pp. 98–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
04891-8 9

16. Hoover, S.F.: Timing-abstract circuit design in transaction-level Verilog. In: 2017
IEEE International Conference on Computer Design (ICCD), pp. 525–532, Novem-
ber 2017

17. Huang, B., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., Malik, S.:
Instruction-level abstraction (ILA): a uniform specification for system-on-chip
(SOC) verification. ACM Trans. Design Autom. Electr. Syst. 24(1), 10:1–10:24
(2019)

http://arxiv.org/abs/1105.1633
http://arxiv.org/abs/1105.1633
https://doi.org/10.1007/978-3-319-04891-8_9
https://doi.org/10.1007/978-3-319-04891-8_9

226 M. Asavoae et al.

18. Kern, C., Greenstreet, M.: Formal verification in hardware design: a survey. ACM
Trans. Des. Autom. Electron. Syst. 4 (2002). https://doi.org/10.1145/307988.
307989

19. Kurshan, R.P., Levin, V., Minea, M., Peled, D.A., Yenigün, H.: Combining software
and hardware verification techniques. Formal Methods Syst. Des. 21(3), 251–280
(2002)

20. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston
(2002)

21. Leupers, R., Marwedel, P.: A BDD-based frontend for retargetable compilers. In:
Proceedings the European Design and Test Conference, ED TC 1995, pp. 239–243,
March 1995

22. Li, H., Puaut, I., Rohou, E.: Tracing flow information for tighter WCET estimation:
application to vectorization. In: 21st IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, RTCSA 2015, Hong Kong,
China, 19–21 August 2015, pp. 217–226 (2015)

23. Li, J., Xie, F., Ball, T., Levin, V., McGarvey, C.: An automata-theoretic approach
to hardware/software co-verification. In: Rosenblum, D.S., Taentzer, G. (eds.)
FASE 2010. LNCS, vol. 6013, pp. 248–262. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-12029-9 18

24. Li, X., Roychoudhury, A., Mitra, T., Mishra, P., Cheng, X.: A retargetable software
timing analyzer using architecture description language. In: 2007 Asia and South
Pacific Design Automation Conference, pp. 396–401, January 2007

25. Li, X., Roychoudhury, A., Mitra, T.: Modeling out-of-order processors for WCET
analysis. Real-Time Syst. 34(3), 195–227 (2006)

26. Liu, I., et al.: A PRET microarchitecture implementation with repeatable timing
and competitive performance. In: 2012 IEEE 30th International Conference on
Computer Design (ICCD), pp. 87–93. IEEE (2012)

27. Meredith, P.O., Katelman, M., Meseguer, J., Rosu, G.: A formal executable seman-
tics of Verilog. In: 8th ACM/IEEE MEMOCODE 2010, Grenoble, France, pp.
179–188 (2010)

28. Mishra, P., Dutt, N. (eds.): Processor Description Languages, Application and
Methodologies. Systems on Silicon, vol. 1. Morgan Kaufman, Burlington (2008)

29. Monniaux, D.: Verification of device drivers and intelligent controllers: a case study.
In: Proceedings of the 7th ACM & IEEE International Conference on Embedded
software, EMSOFT 2007, pp. 30–36 (2007)

30. Mukherjee, R., Purandare, M., Polig, R., Kroening, D.: Formal techniques for
effective co-verification of hardware/software co-designs. In: Proceedings of the
54th Annual Design Automation Conference, DAC 2017, pp. 35:1–35:6 (2017)

31. Pees, S., Hoffmann, A., Zivojnovic, V., Meyr, H.: Lisa-machine description lan-
guage for cycle-accurate models of programmable DSP architectures. In: Proceed-
ings 1999 Design Automation Conference (Cat. No. 99CH36361), pp. 933–938,
June 1999

32. Pister, M.: Timing model derivation: pipeline analyzer generation from hardware
description languages. Ph.D. thesis, Saarland University (2012)

33. Rau, B.R., Kathail, V., Aditya, S.: Machine-description driven compilers for EPIC
and VLIW processors. Des. Autom. Embed. Syst. 4(2), 71–118 (1999)

34. Raymond, P., Maiza, C., Parent-Vigouroux, C., Carrier, F., Asavoae, M.: Timing
analysis enhancement for synchronous program. Real-Time Syst. 51(2), 192–220
(2015)

https://doi.org/10.1145/307988.307989
https://doi.org/10.1145/307988.307989
https://doi.org/10.1007/978-3-642-12029-9_18
https://doi.org/10.1007/978-3-642-12029-9_18

Towards Formal Co-validation of HW/SW Timing Models of CPSs 227

35. Reineke, J., et al.: A definition and classification of timing anomalies. In: 6th
International Workshop on Worst-Case Execution Time (WCET) Analysis (2006)

36. Schlickling, M.: Timing model derivation: static analysis of hardware description
languages. Ph.D. thesis, Saarland University (2013)

37. Schoeberl, M.: Lipsi: probably the smallest processor in the world. In: Berekovic,
M., Buchty, R., Hamann, H., Koch, D., Pionteck, T. (eds.) ARCS 2018. LNCS,
vol. 10793, pp. 18–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77610-1 2

38. Schoeberl, M., Puffitsch, W., Hepp, S., Huber, B., Prokesch, D.: Patmos: a time-
predictable microprocessor. Real-Time Syst. 54(2), 389–423 (2018). https://doi.
org/10.1007/s11241-018-9300-4

39. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-Time Syst. 28(2–3),
157–177 (2004)

40. Wilhelm, R.: Formal analysis of processor timing models. In: Graf, S., Mounier, L.
(eds.) SPIN 2004. LNCS, vol. 2989, pp. 1–4. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24732-6 1

41. Wilhelm, R., et al.: The worst-case execution-time problem - overview of methods
and survey of tools. ACM Trans. Embedded Comput. Syst. 7(3), 36:1–36:53 (2008)

42. Wilson, S.: Verilator 4.0 - open simulation goes multithreaded. In: The Open Source
Digital Design Conference (ORConf), September 2018

43. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-319-77610-1_2
https://doi.org/10.1007/978-3-319-77610-1_2
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1007/978-3-540-24732-6_1
https://doi.org/10.1007/978-3-540-24732-6_1
https://doi.org/10.1007/3-540-48153-2_6

Workshop on Embedded and Cyber-
Physical Systems Education

A Remote Test Environment
for a Large-Scale Microcontroller

Laboratory Course

Manfred Smieschek, Stefan Rakel, David Thönnessen, Andreas Derks,
André Stollenwerk(B), and Stefan Kowalewski

Informatik 11 – Embedded Software, RWTH University, 52074 Aachen, Germany
{smieschek,rakel,thoennessen,derks,

stollenwerk,kowalewski}@embedded.rwth-aachen.de
https://embedded.rwth-aachen.de

Abstract. We report on a remote test environment for a mandatory
undergraduate lab course on microcontroller programming at RWTH
Aachen University. Since the course is being attended by up to 320 stu-
dents each semester, it is not possible to provide comprehensive super-
vised on-site access to the laboratory equipment during the preparation
phase of the participants. To deal with this common scalability problem
of lab courses we implemented a remotely and continuously accessible
test pool with full feature support of the used microcontroller platform.
The paper presents the architecture and the detailed implementation of
the pool, and we provide an evaluation of its success based on usage
statistics and student feedback.

Keywords: Computer science education · Lab course · Remote test
environment · Operating system · Microcontroller · Remote access

1 Introduction

With rising student numbers in computer science at RWTH Aachen university
(2.507 in winter term 2013/14; 3.405 in winter term 2017/18) [9], more students
attend our lab course. These are in general harder to scale than traditional
frontal teaching. We propose a remote scalable test environment to cope with
the increasing number of computer science students in laboratory courses.

Our course was established from scratch in 2007 [11], and is mandatory in the
second semester for every Bachelor student in computer science [8]. It consists of
one voluntary experiment, in which the students are introduced to the used hard-
ware and Integrated Development Environment (IDE). Afterwards, there are six
mandatory experiments, in which a rudimentary operating system is developed.
The experiments are carried out by the students in teams of two and take place
every two weeks. Hence, the lab takes 14 weeks to complete. Each experiment
takes three hours of on-site presence time with additional preparation time at
home. The developed operating system consists of a bootloader, a scheduler
c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 231–246, 2020.
https://doi.org/10.1007/978-3-030-41131-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_11

232 M. Smieschek et al.

with different scheduling strategies, static and dynamic memory allocation, and
different communication protocols, like UART and SPI, to communicate with
additional peripherals, e.g. a keyboard or touchscreen (TLCD). Until winter
term 2018/2019 the course has been rated at 6 ECTS credits and since then at
8 ECTS credits.

The course not only teaches important skills in software engineering, but
also how to work with real hardware and in a team. During the presence time
the functionality of the newly developed part of the operating system is tested
with software tests, which are made available to the students beforehand. An
experiment cannot be passed by the students, if any of the software tests fails.
As the presence time is strictly limited, the students have to prepare and test
their implementation as much as possible beforehand, as coding and debugging
would most probably not be feasible within the three hours of presence time. In
the past, we used to only offer on-site consultation hours, during which students
could use the lab rooms to program the same hardware as during the experiments
and also run the provided software tests.

Our laboratory offers space for 12 teams simultaneously, and due to the
increase of students to up to 320 per semester, we needed additional efforts to
cope with their necessity of testing. We decided against a software emulator,
as testing with an emulator is difficult and prone to errors. During a short
evaluation phase, we experienced that an emulator would sometimes behave
slightly different than the real hardware, which would be frustrating for students,
as this might result in code that works perfectly at home with the emulator, but
not during the presence time of the experiment. Therefore, we wanted to offer real
hardware for testing, but with the advantage of working at home. Thus, we came
up with the idea to build a remote microcontroller test environment (test pool),
where the students can login, program real hardware, test their solution, and
debug if necessary. The students can work around the clock from home without
supervision from our side. Currently, the test pool consists of 26 test stations,
which is already more than double the size of our laboratory. Additionally, the
test pool can be expanded much easier than lab space, when student numbers
keep increasing in the future.

2 Remote Access

A test station consists of a computer and a hardware assembly on which stu-
dents can test their code. Part of the hardware assembly is a microcontroller, a
remote webcam and dedicated hardware to simulate inputs. Test stations can be
arranged in different hardware configurations, called test setups in the following,
because the students need different hardware depending on the experiment. For
example, there are experiments in which the students control a TLCD or oth-
ers, in which a keyboard is controlled. For technical reasons, it is not possible
to set up both configurations at the same time as they share mutually exclu-
sive interfaces. Every test station is preconfigured to one test setup by us and
made available to the students for their work. When accessing the test pool, the
student can select the desired configuration and work on it.

A Remote Microcontroller Test Environment 233

2.1 User Scheduling

The test pool consists of 26 test stations. Each test station can be configured to
one test setup. The test setups change over the different experiments of the lab
course in one semester. The lab dates for different groups of students are dis-
tributed over a period of two weeks, so that the preparation time of the students
for different experiments can overlap. Accordingly, the capacity of the test pool
must be partitioned according to the test setups to be provided. However, the
number of registrations for the lab can reach up to 320. Accordingly, there are
significantly more students than there are test setups. To ensure fair access to
the test pool, we have implemented a scheduling system for access requests.

Access requests are made initially via a dedicated web portal. This portal
requires to log in with a unique student ID (single sign on). Once logged in, a
so-called session can be requested for a test setup. The request puts the student
in a queue that contains all test setups of the desired type.

Student #1
Priority: 15

Student #6
Priority: 9

Student #8
Priority: 2

Student #2
Priority: 0

Station #1

Station #2

Station #3

Station #4

Student #7
Priority: 4

Student #5
Priority: 3

Student #3
Priority: 3

Student #4
Priority: 2

Station #5

Station #6

Station #7

Type: V2

Type: V1

Fig. 1. Scheduling students to test stations using priority queues.

Figure 1 shows the schematic structure of the scheduling. The example shows
two test setups “V1” and “V2” with four and three test stations, respectively.
Currently there are eight students in the two queues. As soon as a station
becomes available, the first student of the corresponding queue (rightmost posi-
tion) is assigned to the free test station. The position of the students is first
determined by the priority and, if this is not unique, by the time of entering the
queue. The priority is determined by the duration the test pool has been used
by the student in the past. At the beginning of a semester, all students have
a priority of zero. With each use of the test pool, the priority increases by the
duration of the session. This is to achieve a fair distribution of resources among
the students. To prevent students from permanently blocking the test pool, the
session time is limited. The maximum duration of a session is two hours. If the
session is not closed by the user before the end of this period, it will be termi-
nated by the system. As the user is disconnected from the test station and the
computer is restarted, there is a risk of data loss of the students work. In order

234 M. Smieschek et al.

to prevent students from this, warning messages are issued to the user on the
Graphical User Interface (GUI) of the test station starting 15 min before the end
of a session.

2.2 Remote Control

After a session is assigned to a student, the corresponding Uniform Resource
Locator (URL) of the test station appears on the screen and the firewall opens
for the computer from which the session was requested. For security reasons,
the test station cannot be reached from any other computer. The firewall also
prevents students from accessing a test station without a session. Because the
domain of a test station is static, students could access it without having a session
if there was no firewall and they knew the address from a previous session.

The test environment of the test stations is Windows-based. Access to these
is realized via Windows Remote Desktop which uses Remote Desktop Protocol
(RDP) [1]. The users can enter the domain, which they received on the website,
into a tool for Windows Remote Desktop and start a connection attempt. The
computers’ access is managed by an Active Directory [4], based on the univer-
sities identity management. Students can log in with their password like on any
computer of the university.

3 Embedded Hardware

Stollenwerk et al. introduced a modular and robust microcontroller platform
based on an ATmega [5,10], which we still use in our lab.

Fig. 2. The EVA Board which is used at the lab as well as the test pool.

A Remote Microcontroller Test Environment 235

Figure 2 shows the evaluation board, called EVA Board, which is programmed
by the students during the course of the lab with different functionalities. Iden-
tical EVA Boards are also used in each test station of the test pool. Currently 26
test stations are available for the students. Each test station is associated with
a Virtual Machine (VM). And each 13 of the VMs are operated by a VM host
server. Thus, we are running two VM host servers for the moment.

We developed hardware and software to enable the students to remotely
interact with the EVA Board like during presence time, called Remote Board
and ATmegaRemote, respectively. To facilitate maintenance work, the hardware
of the test stations is mounted in pairs in removable transportable boxes, see
Fig. 3a. Each box is equipped with a power supply, two Remote Boards, two EVA
Boards, two IP cameras, two JTAG ICE programming devices and LED lighting.
A 5 V/12 V short-circuit-proof combi power supply provides energy to the EVA
Boards, Remote Boards, cameras, LED strips for lighting and the USB hub via
a DIN rail. An Edimax LAN IP camera is located above the EVA Boards, such
that the complete work area can be displayed via our software ATmegaRemote,
see Sect. 4.2.

(a) Top view of a box (b) Side connectors of a box

Fig. 3. Sockets and top view of one of the modular transportable boxes containing two
workplaces (based on the EVA Boards) for the students.

Due to the modular design, in the event of a fault or if the test setup has
to be changed, only two test stations have to be withdrawn from the test pool.
This is achieved by setting them to maintenance mode via our web portal. The
maintenance mode assures that no new sessions are assigned to the affected
test setups, as the user scheduling described in Sect. 2.1 can access the current
mode of the test station. Afterwards, the regarding box can be brought to the
workshop, where it is fixed or reconfigured to a new test setup. For transport,
the front connector of the power supply, the network connectors of the cameras
as well as the USB control of the Remote Boards are pluggable, see Fig. 3b. The
Remote Board, see Fig. 4, purely serves as an interface between the user and the
EVA Board.

236 M. Smieschek et al.

Fig. 4. The Remote Board which serves as a mainboard for the expansion boards.

The Remote Board takes over the actions the user performs remotely on the
hardware during a session. An ATmega2560 processes incoming commands from
the ATmegaRemote software and sends them via extension boards to the EVA
Board. The Remote Board is addressed via a pluggable FTDI USB interface.
The easy exchangeability of the FTDI board allows easy troubleshooting in case
of problems. The power supply is connected via a 4-pin Molex plug with reverse
polarity protection. There are seven slots on the Remote Board for additional
expansion boards. On both sides of each slot there are rails to hold the expansion
boards firmly in place. The Remote Board is designed in such a way, that each
two Input/Output (I/O) ports can be accessed individually via one slot. And
each slot is configured to provide up to 16 I/O, and 5 V as well as 12 V to a
pluggable expansion board.

For better maintainability, all functional components have been moved to
these expansion boards. The Remote Board serves here as a pure mainboard and
interface. The following extension boards can be plugged on to make the vari-
ous practical experiments remote controllable: DAV6 Board: Generates analogue
signals, SPI and UART connectivity available, see Fig. 5a and Sect. 3.1. Button
Board: Simulates external buttons by two Darlington Driver ICs, see Fig. 5b and
Sect. 3.2. JTAG and Supply Board: Controls power supply and JTAG connection
of EVA Board, see Fig. 5c and Sect. 3.3.

A Remote Microcontroller Test Environment 237

(a) DAV6 Board (b) Button Board (c) JTAG Board

Fig. 5. Different expansion boards for the Remote Board.

3.1 DAV6 Board

The DAV6 expansion board serves as a data interface between the EVA Board
and the programming environment, and provides a DAC, a PWM output as
well as an UART and an SPI interface. In various experiments offered during the
practical course, an analog voltage is required, which has to be output digitally by
the students on the one hand and used as an analog voltage reference in another
experiment. On-site an external laboratory power supply is used, which provides
the required variable voltage. The expansion board simulates the adjustable
power supply with an amplified PWM output of the ATmega2560 of the Remote
Board.

In another experiment of the course students have to read an RFID tag via
an optional receiver board. The RFID tag is held by the student near the receiver
board such that the ID of the tag can be read. The process of feeding the RFID
tag near to the receiver board is performed by a servo in the remote workplace,
which moves the RFID tag at a 90◦ angle to the board and away from the board.
For direct control of the servo, the DAV6 Board offers a three-pole interface with
a PWM output, 5 V and GND Pin connection. The PWM output is connected
via the DAV6 Board and directly to the ATmega2560. The servo movement can
be controlled via ATmegaRemote.

Students can connect a PS/2 keyboard to the EVA Board in another experi-
ment and use the LCD as output for keyboard input using a program to be writ-
ten. The UART interface is used to simulate the PS/2 keyboard. In ATmegaRe-
mote the input is done via an on-screen keyboard, the processing is done by the
Remote Board and the commands are sent via UART to the EVA Board. The
SPI interface communicates with an externally connectable TLCD, see Sect. 4.1.

238 M. Smieschek et al.

3.2 Button Board

The EVA Board provides four buttons which are used in the experiments for
different input purposes. To be able to offer these buttons in the test pool,
several I/O pins of the ATmega2560 are routed over a Darlington Driver IC of
the Button Board and made available to the EVA Board as input pins.

3.3 JTAG and Supply Board

In practical operation it was shown that wrong programming of the microcon-
troller can cause connection problems between the microcontroller, the program-
ming device JTAG ICE and the programming environment Atmel Studio. The
viability of the system can at times only be achieved by the disconnection of all
power supply poles. In addition, a long service life of the hardware can only be
guaranteed if it is disconnected from the power supply when the workstation is
not in use. For these reasons several relays are installed on this expansion board,
which disconnects the USB voltage from the JTAG ICE, the 5 V as well as the
12 V power supply from the EVA Board, in order to separate the connected
EVA Board from all power supply poles. The relays are controlled via a Dar-
lington Driver IC from three digital outputs of the Remote Board and can be
controlled via the ATmegaRemote interface of the respective VM. Another relay
is used for remote triggering of the reset of the JTAG ICE to solve connection
problems to the JTAG. The expansion board also provides the EVA Board with
five Analog-to-Digital Converter (ADC) pins. These are looped directly through
the ATmega2560 of the Remote Board. Hence, the slot of the JTAG and Supply
Board is fixed to slot 1 on the Remote Board. Using these inputs, analog voltage
values can be read in during an experiment and displayed via ATmegaRemote
as a simulation of a multimeter.

4 Interface

As presented in Sect. 2, students connect to a test station via the Remote Desktop
Protocol (RDP). Using RDP enables the students to see the desktop of the
connected test station as well as control it by mouse and keyboard input. The
test stations have all software installed needed for development, and to program
and test software for the target hardware described in Sect. 3. Atmel Studio 7
[6] is used for the development and programming of the microcontroller. The
programs developed by the students must change physical states of different
connected hardware components like LEDs, an LCD screen or depending on the
current experiment even a TLCD. Because of this it is necessary for the students
to be able to visually verify these state changes. If for example a certain output
on the LCD screen is requested the student must be able to verify the actual
output. In addition, physical inputs like buttons connected to the hardware
must be controllable by the user. For this the ATmegaRemote software stack
and the Remote Board with its own software were developed. An overview of
the architecture is shown in Fig. 6.

A Remote Microcontroller Test Environment 239

ATMegaRemote

IOModule
Remoteboard

Software

Modules

Test Station Remoteboard EVA Board

USB

Electric
connection

Peripherals

Microcontroller

Fig. 6. ATmegaRemote architecture (Icons by https://icons8.com/).

The ATmegaRemote software, further described in Sect. 4.2, is the user inter-
face showing a webcam image of the linked microcontroller and suitable controls
for the current experiment and hardware configuration of the test setup. Input
by the user is sent to the Remote Board by usage of a library called IOModule.
The IOModule library communicates with the Remote Board hardware over an
USB to UART connection utilizing FTDIs [2]. Communication is full duplex, i.e.
both the IOModule and the Remote Board can transmit packages independently
at the same time. The following subsections will detail ATmegaRemote as well
as the IOModule by presenting their functionality on the example of the TLCD
experiment.

4.1 Touchscreen Experiment

One of the experiments for the students involves a touchscreen (TLCD) which is
connected as slave to the ATmega via a SPI bus [3]. The SPI bus is used to send
image data to the display as well as receive touch data from the display. In
addition, a Sendbuffer Indicator is connected. This is one pin connection which
indicates to the master, in this case the microcontroller, if new touch data is avail-
able for collection. One goal of the remote microcontroller test environment is to
run the software on real hardware as to eliminate possible errors resulting from
simulations. Therefore, an actual TLCD is connected to the ATmega. Because
developing and implementing a mechanical finger to operate the screen would be
impractical, the touch events are generated by the ATmegaRemote software. As
the remote implementation should be indistinguishable for the connected EVA
Board the SPI bus needs to be taken over to transmit the touch events. For this
purpose, the Sendbuffer Indicator is connected directly to the Remote Board.
In addition, the three SPI wires are not connected directly to the EVA Board.
Instead they are connected to a multiplexer [7]. However, the multiplexer is con-
nected on the one side to the EVA Board and on the other side to the Remote
Board. This enables the Remote Board to switch between connecting the TLCD
to the EVA Board or to itself while sending simulated touch events.

https://icons8.com/

240 M. Smieschek et al.

4.2 ATmegaRemote

As shown in Fig. 7, the ATmegaRemote software presents a webcam view of the
EVA Board to the student. The webcam view is overlaid with button graphics
over the actual buttons. These can be clicked by the user to simulate a button
press. Also shown are buttons to reset the EVA Board as well as zoom con-
trols for the picture. Section 2 described the limited session time which is also
displayed by ATmegaRemote. Furthermore, ATmegaRemote can present Addi-
tional controls depending on the configured experiment for this test station. This
includes for example a voltage setting for an external voltage source, controls
for a servo actuated RFID tag, and readouts like the current voltage measured
by the Remote Board. Also implemented as additional controls is the TLCD,
which can be seen in Fig. 7. As the actual screen content is shown on the actual
TLCD, only an input area is presented. The user can draw on this area with his
mouse. This input is then translated into relative coordinates of the TLCD and
then transmitted to the EVA Board by the IOModule.

Fig. 7. The ATmegaRemote interface with TLCD controls.

In addition, ATmegaRemote incorporates a settings dialog only accessible by
authorized users. The settings dialog is used to configure parameters like which
additional controls to present or what part of the webcam’s image to show. It
also provides functionality to program predefined binaries onto the EVA Board
to test and verify its functionality. This is for example used after a hardware fix
or reconfiguration at the workshop.

A Remote Microcontroller Test Environment 241

4.3 IOModule

The IOModule library is written in C# and handles all communication with the
Remote Board. This includes finding the connected Remote Board and estab-
lishing the communication. Further communication tasks like retransmitting lost
packages are also automatically handled.

As described in Sect. 3 the Remote Board can be extended with different
modules to interface with different parts of the EVA Board. These modules
allow the Remote Board to be able to support experiments developed in the
future. For every currently developed module the IOModule library provides a
class. Creating a new instance of one of the module classes automatically sends
initialization messages to the Remote Board. The Remote Board then registers
the module on the specified slot and performs necessary initialization for the
module. Every module class also provides member functions, which correspond
to the functionality provided by the hardware module.

Every information sent is packaged in a Message. A Message consists of the
following fields:

bool System Message
byte Module Index
bool Answer
bool Fault
byte Message ID
byte Size
byte[] Data

The System Message flag indicates whether the message is intended for a
module or for the Remote Board itself. System messages would for example be
messages that instruct the microcontroller to reset or add a module to a specified
slot. The Module Index field is only used if the message is for a specific module.
In this case the field holds the slot index of the module as a unique identifier to
address it. The slot index is assigned when the module is created and corresponds
to the slot on the hardware. The Answer flag indicates whether this message
is an original message or an answer to a previous message. To provide robust
communication with the Remote Board, every Message must be acknowledged
by the receiver. For this the original message is copied, the Answer field set to
true and the Data field set to zero. If the message was handled correctly the
Fault flag is set to false, otherwise to true and then sent back to the sender. To
be able to identify messages the Message ID field is populated with a unique id
for every message. The id is simply generated by counting up. As messages from
the IOModule library and the Remote Board can be distinguished simply by
who is receiving it, the counters do not need to be synchronized. The Size field
holds the size of the Data field in bytes. Finally the Data field holds the payload
data for the message. This data depends on the module the message is sent to
and every model defines its own protocol for the data. The DAV6 module class
for example provides these methods for the TLCD experiment: TLCD Activate,
TLCD SendEvent and TLCD TriggerSend.

242 M. Smieschek et al.

The TLCD SendEvent function is used to simulate a touch event, which is
added to a queue on the Remote Board. This queue is sent to the EVA Board by
the Remote Board when the TLCD TriggerSend function is called which sends
a corresponding TriggerSend message. The TLCD SendEvent function takes the
coordinates of the touch as well as whether it was a touch down or touch up event
as arguments and sends this information to the Remote Board. The IOModule
library then creates the following message to be sent over USB to the Remote
Board:

System Message: false
Module Index: 1
Answer: false
Fault: false
Message ID: 42
Size: 6
Data: [TLCD SEND EVENT, true, x, y]

Where TLCD SEND EVENT is the constant indicating to the DAV6 module the
kind of message sent, in this case a touch event message. The true indicates
that this touch event is a down event, i.e. the finger is pressed down. Finally the
x and y are the coordinates of the touch event. Each is 2 bytes long which gives
the size of 6 bytes as is also indicated in the Size field.

4.4 Remote Board Software

The software running on the Remote Board mirrors the communication func-
tionality by the IOModule library. It is implemented in C and therefore does
not present the modules as classes. Instead, a struct is defined for every module
which holds all necessary information about the state of the corresponding mod-
ule. All module information structs are kept in a global array so the software
can dispatch received messages accordingly. For each module implementation a
create, a destroy and a dispatch method is defined. The create method initializes
the peripheral, while the destroy method shuts the peripheral down and cleans
the state. The dispatch method is called with received messages as argument
that are intended for this module.

The Remote Board software initializes the communication automatically and
waits for a connection by the IOModule library. It also initializes all common
peripherals like the clock and watchdog timers. The watchdog timer ensures the
software does not hang by resetting the microcontroller if the timer has not been
reset in a defined amount of time. When the software receives an initialization
message for a module it creates the corresponding struct. After the struct is
created the correct initialization function for the module is called to ensure a
defined state. Every module can also define a loop function which is registered in
the create function and then continuously run by the software. This is achieved
by implementing a scheduler on the Remote Board which in turn runs all loop
functions for a defined amount of time before scheduling the next function.

A Remote Microcontroller Test Environment 243

The loop functions are used if the peripheral connected needs ongoing operations
to be performed. The TLCD for example defines a loop which sends the current
touch event queue received from the IOModule if no further event was received
for one second.

In the TLCD example the Remote Board software receives the message sent
by the IOModule library. The software first checks the System Message flag to
determine if the message needs to be handled by itself or by a module. As the
message is intended for the DAV6 module it is dispatched to its dispatch method
dav6 dispatch. This method inspects the first byte and detects if it is a touch
event message in case the first byte has the TLCD SEND EVENT value. The rest of
the payload is then extracted and added to the touch event queue to be sent
later to the actual EVA Board. Sending of the queue is triggered either by the
timeout in the loop method or by a TLCD TRIGGER SEND message. The sending
process is then automated and performs the following steps:

1. Switch the multiplexer from the TLCD to the Remote Board.
2. Indicate new touch events with the Sendbuffer Indicator wire.
3. Respond to communication requests by the EVA Board until the communi-

cation is terminated by it.
4. Switch the multiplexer back to the TLCD.

5 Evaluation

The described lab consists of one voluntary and six mandatory experiments.
After participating at each experiment the students are encouraged to leave
anonymous feedback on our website. That way we can get experiment specific
feedback, which helps us to improve each description of the building block of the
implemented operating system. Besides, the RWTH Aachen University evaluates
each course. We perform this evaluation at the end of the semester with the help
of anonymous real-paper survey forms. The survey forms are distributed during
one of the last lectures or experiments, respectively. Thus, the participation rate
is quite high. In winter term 2018/2019 76.5% (202/264) of the students filled out
a form. The overall rating of the lab was 1.7 (where 1 is the best and 5 the worst
grade). The free text part of the survey often contained very positive feedback
about the remote test environment. Students appreciate the convenience to work
from home at any time of the day.

Looking back 10 years, during winter term 2008/2009, when no remote test
environment was present, the overall rating of the lab has been 2.7 and the
students sometimes mentioned in the comments that on-site consultation hours
collided with other courses they had to attend or at other times where overrun by
students. Of course, during these 10 years the class material has been improved
and several minor changes have been applied. Therefore, the overall increase of
the class rating cannot solemnly be attributed to the remote test environment,
but the overwhelming positive feedback of the students highly suggests that it
had a very positive effect in the students’ perception of the lab.

244 M. Smieschek et al.

0

100

200

300

400

500

600

700

C
um

ul
at

iv
e

N
um

be
r o

f S
es

si
on

s

Time of Day (hh:mm)

Fig. 8. Cumulative usage of the test environment in winter term 2018/2019.

As described in Sect. 2, the students request a session for a test station and
after they are granted one, they are able to connect to the test station for the next
two hours. We log these connections to create usage statistics and to plan fur-
ther extension of the test pool, if necessary. In the 14 weeks of the course during
winter term 2018/2019, the 264 participating students requested 8898 sessions,
which results in an average of around 34 sessions per student, or roughly one
session per student every three days. We identified 227 unique users among the
students who requested at least one session, but as two students always work
as a team, it is possible that only one login of the team was used to access the
test environment. The average and mean length of a session was roughly 55 min
and 44 min, respectively. The distribution of the session lengths is U-shaped,
with high peaks at both ends. Namely, there were 2586 sessions (29.1%) shorter
than 15 min. We expect students to have used these short sessions to flash the
microcontroller with their code, run the provided tests, and if necessary, perform
a little bit of debugging to narrow down possible errors before they terminated
the session, and revised their code locally. This procedure is recommended and
highly advised by us as the capacity of the test pool is not sufficient for all
students to work online simultaneously. We communicate this fact openly and
appeal to fair use, such that every team has the opportunity to test their code
on real hardware before the date of their experiment. In addition, we make
technical efforts to ensure this by prioritizing session requests from students
with the fewest cumulative hours spent connected to the test pool, see Sect. 2.1.
Nevertheless, there were also 2372 sessions (26.7%) longer than 1 h and 45 min.
Remember, sessions are terminated after two hours, with warnings issued 15 min
beforehand, as described in Sect. 2.1. These longer sessions are an indicator for
us, that the test pool is not only used for test execution, but also for in depth
debugging, and probably as well for implementing some of the required func-
tionalities. These sessions also show, that the test pool must be convenient to
use and is highly accepted among students.

A Remote Microcontroller Test Environment 245

The total duration of all sessions was about 8293 h, which corresponds to
about 345 and a half days. During on-site consultation one student assistant
supervises a maximum of six teams, therefore the usage of the test pool cor-
responds to around 1382 manpower hours, if realised by on-site consultation.
Figure 8 shows the cumulative usage of the remote test environment for each
minute of the day. The peak usage was at 17:07 with a cumulative 584 ses-
sions during the 14 week period. This means, that during the 98 days of the
course, at 17:07 of each day there were on average six sessions active. The the-
oretical maximum with the current setup of 26 test stations would be 2548
(26 stations · 14 weeks · 7 days in a week).

6 Conclusion

Laboratory courses in computer science are difficult to scale to large student
numbers. We presented a remote microcontroller test environment, which helps
to cope with the students’ need to test their implementation. In the past, only
on-site consultation hours could be offered. However, these are labour inten-
sive and restricted in a timely manner to usual times of the day. Our test pool
is accessible around the clock and compared to emulators much less likely to
behave differently than the hands-on hardware during the experiment, as iden-
tical hardware is used in the test setup.

Students’ evaluation with survey forms showed that the rating of the lab
improved after the introduction of the test pool. In the free text section of the
survey forms it is often mentioned very positively. Additionally, usage statistics
is the best indicator that the acceptance of the test pool is remarkably high
among students. Around 86% (227/264) of the students used it at least once.
With over 345 days of cumulative session duration within a 14 weeks period, the
test environment has become an essential part of the lab. Moreover, to enable
this amount of testing on-site at least 1382 manpower hours would have been
necessary for supervision.

References

1. Deshpande, S.G.: Remote desktop protocol compression system, 30 January 2007.
US Patent 7,171,444

2. FTDI: FT230X – full speed USB to basic UART. https://www.ftdichip.com/
Products/ICs/FT230X.html. Accessed 12 June 2019

3. Leens, F.: An introduction to I2C and SPI protocols. IEEE Instrum. Measur. Mag.
12(1), 8–13 (2009). https://doi.org/10.1109/MIM.2009.4762946

4. Lowe-Norris, A.G., Denn, R.: Windows 2000 Active Directory. O’Reilly & Asso-
ciates Inc., Sebastopol (2000)

5. Microchip Technology: Atmega644. https://www.microchip.com/wwwproducts/
en/ATmega644. Accessed 12 June 2019

6. Microchip Technology Inc.: Atmel Studio 7—Microchip Technology (2019).
https://www.microchip.com/mplab/avr-support/atmel-studio-7. Accessed 12
June 2019

https://www.ftdichip.com/Products/ICs/FT230X.html
https://www.ftdichip.com/Products/ICs/FT230X.html
https://doi.org/10.1109/MIM.2009.4762946
https://www.microchip.com/wwwproducts/en/ATmega644
https://www.microchip.com/wwwproducts/en/ATmega644
https://www.microchip.com/mplab/avr-support/atmel-studio-7

246 M. Smieschek et al.

7. ON Semiconductor: Mc14551b: Quad 2-channel analog multiplexer/demultiplexer.
https://www.onsemi.com/pub/Collateral/MC14551B-D.pdf. Accessed 12 June
2019

8. RWTH Aachen University: Studiengangspezifische Prüfungsordnung für den
Bachelorstudiengang Informatik der Rheinisch-Westfälischen Technischen
Hochschule Aachen. http://www.rwth-aachen.de/global/show document.asp?
id=aaaaaaaaabcejid. Accessed 12 June 2019

9. RWTH Aachen University: Zahlenspiegel (2017). https://www.rwth-aachen.de/
global/show document.asp?id=aaaaaaaaabajkbe. Accessed 12 June 2019

10. Stollenwerk, A., Derks, A., Kowalewski, S., Salewski, F.: A modular, robust and
open source microcontroller platform for broad educational usage. In: Proceedings
of the 2010 Workshop on Embedded Systems Education, p. 8. ACM (2010)

11. Stollenwerk, A., Jongdee, C., Kowalewski, S.: An undergraduate embedded soft-
ware laboratory for the masses. In: Proceedings of the 2009 Workshop on Embed-
ded Systems Education, pp. 34–41. ACM (2009)

https://www.onsemi.com/pub/Collateral/MC14551B-D.pdf
http://www.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabcejid
http://www.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabcejid
https://www.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabajkbe
https://www.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabajkbe

An Embedded Graduate Lab Course
with Spirit

André Stollenwerk(B)

Informatik 11 – Embedded Software, RWTH Aachen University,
52056 Aachen, Germany

stollenwerk@embedded.rwth-aachen.de

Abstract. In this paper, we give an overview of aspects a graduate lab
course should cover for didactic success. As worked example, we present
an interdisciplinary lab course for computer scientists and engineers with
the goal to automatically controlled distill wine to brandy. We present
the developed automation hardware, with respect to the features allow-
ing for a sound lab course performance. We also illustrate the affected
organizational structure and the associated blended learning capabili-
ties. These allow for an efficient carrying out of the course. Beyond, we
give information on the special boundary conditions from regulatory and
safety departmental side for this special example. Yet, the presented work
can be used as template for inspiration up to a blueprint when designing
a graduate lab course.

Keywords: Embedded systems education · Model-based engineering ·
Graduate lab course · Blended learning

1 Motivation

During graduate studies at a university, generally spoken lots of theoretical
knowledge is imparted. Nevertheless, to a certain degree the practical appli-
cation of this knowledge is also needed to steady the knowledge. This may be
addressed by exercises going along with lectures, but also lab courses, which can
easily cover the fields of more than one lecture. Therefore, in computer science
and engineering education, we offer lab courses in which the students can work
on real-life challenges in a hands-on manner [1]. From our perspective to be fer-
tile, such a course needs to fulfill some basic requirements, which are elaborated
in the next paragraph. In the next section, we propose a lab course we imple-
mented fulfilling these needs and give some practical aspects in order to give a
best practice template.

Lab courses in embedded systems engineering allow for the reinforcement of
already acquired knowledge. However, they should address particular aspects in
order to be of didactic value:

c© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 247–263, 2020.
https://doi.org/10.1007/978-3-030-41131-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_12&domain=pdf
http://orcid.org/0000-0002-9195-535X
https://doi.org/10.1007/978-3-030-41131-2_12

248 A. Stollenwerk

Challenge
In order to motivate students one should keep in mind different facets that
should challenge them. The subject of a lab course should allow students to
identify themselves with the subject and in addition gain motivation out of
it. Each individual student should be able to recognize his individual con-
tribution to the final solution. The general subject should build on existing
knowledge, but nevertheless some details of the given task should lead beyond
their major field of study.

Creativity
Within a lab course the tutor always has to ponder on the interaction between
an easily maintainable course, during which the students execute one explic-
itly given task after the other and a openly formulated definition of their task
which allow for different final solutions. This challenge for the students cre-
ativity can result in motivation if periodically achievements can be obtained
throughout.

Modularity
The modularity of the given task as well as the tools offered to fulfill the given
task is of importance to the didactically success of a lab course. Beside the
already mentioned aspect of creativity, furthermore the modularity of a task
allows for partitioning of a task and therefore better planning and supervi-
sion. Offering a modular choice of tools to achieve the defined goals will allow
for new creative solutions to come up. Of course, if speaking of hardware,
specific interfaces should be defined in order to allow for quick interconnec-
tion and to minimize interconnection issues. These pieces of hardware, which
are mostly embedded, need to be robust in everyday usage for the students.
Talking of modularity of the given task small sub-tasks enable the individual
student to identify with his own contribution to the overall solution of the
team. Which goes in hand with the aspect of gaining motivation out of a
challenging task.

Results-oriented
The general problem given for a lab course should be addressable in a results-
oriented manner. It is crucial for the motivation of the participating students
to see first results of their effort already during early stages and continuously
throughout the course.

After the elaboration of the above stated aspects for a pedagogic effective
lab course, we also kept in mind soft-skills to be made subject of the discussion.
First of all, working as a team with the need of communication and a certain
level of project management is to be named. Hence, from our point of view an
interdisciplinary topic of a lab course should be chosen. In our case of embedded
systems education, we wanted to address computer scientists as well as engineers.

2 Automated Control of Distilling Spirit

Like motivated, a graduate lab course should challenge students while offering
freedom for creativity. Joining this with the need for a manageable basic com-
plexity, we identified a control problem, being solved by a reactive system to be

An Embedded Graduate Lab Course with Spirit 249

suitable to impart the envisaged competences for both, computer scientists as
well as engineers.

Hence, we developed a lab course in which the students should automate the
process of distilling wine into brandy. The very basic setup consists of a heat-
ing mantle, the distilling apparatus, some temperature sensors and a weighting
scale. We supply the students with a microcontroller-based hardware to inter-
connect the stated setup. The used microcontroller, an ATmega, is known to
all computer science students who did their bachelor at RWTH Aachen Univer-
sity, due to a mandatory lab course in the third bachelor semester. In this third
semester course, the students have to implement a basic operating system on an
ATmega microcontroller [2]. Besides the existing experience of the students with
the device the second asset of the presented setup is the ease of the components
which allows the students within some hours of work to see first results in terms
of measuring temperatures or controlling the heating up of water.

Generally spoken, the distillation of wine can be automated by the means
of e.g. a closed-loop PID controller [3]. This allows an early feeling of success
for the students. Nevertheless, more sophisticated control techniques like optimal
control (e.g. a model-predictive controller) or intelligent control (e.g. fuzzy logic)
have been designed and implemented by the students attending this course.

2.1 Structure of the Lab Course

Students in teams of five people attend the lab course. These teams generally
are equally staffed with computer scientists and engineers. Students from the
majors electrical engineering or automation engineering to be more specific. The
odd number of persons per group allows for compensation if e.g. some of the
computer scientists have a minor in engineering or vice-versa.

The lab course starts with an introductory meeting, all participating stu-
dents of the course need to attend. After this introductory meeting, individual
weekly meetings with the teams are arranged. During the introductory meeting,
organizational aspects are treated and general questions are discussed. The orga-
nizational aspects cover the forming of the teams of 5 students each, explaining
the legal context, filling out of the documentation needed for the regulatory
restrictions, explaining the given overall time window and giving hints for get-
ting started. The experience over the years showed some aspects need to be
explicitly stated, like the need to work in interdisciplinary pairs. During the first
weekly meeting, we hand out the available hardware to the students. In general,
during the weekly meetings the status with respect to the schedule is reviewed.
Furthermore, the recent problems worked on and the next steps are discussed.

There are only very little predefined work packages to the students. One is, for
each team, to work out a specific time-plan with a weekly granularity. This helps
the students to manage the evolving sub-tasks for the distillation automation and
prevents from losing track on progress. Within the teams as a next work package,
the students have to assign some specific roles to team members for the course of
the semester. This is the appointment of a team leader, a software architect and
a systems architect, where each roll has to coordinate its specific field and be a

250 A. Stollenwerk

responsible contact to other team members. Especially when decisions have to be
made, they are responsible for the coordination. The team leader furthermore
has to coordinate the team-internal progress and if necessary the assignment
of sub-tasks. Both architect roles are bound by education, software architect
to computer science students and systems architect to engineering students. In
addition, the team leader owns the work package to prepare a brief written status
report prior to the weekly meetings with referencing the time-plan. These kind
of organizational structures for the management of a project should also prepare
the students for the industrial needs [4]. Despite the already mentioned work
packages only two additional ones are defined, all other obligations needed for
project progress are self-defined by the teams. Namely one work packages is to
elaborate a first brief automation concept, which is refined over the courses of
the weekly meetings.

In the end of the semester every team has as their last work package to give
a presentation of 5 to 7 min covering either a problem they solved in a very
elegant manner from their perspective or a problem which kept them busy for
a while. Here the students are explicitly motivated to include fail reports and
lessons learned out of errors, in terms of a fail culture.

2.2 Offered Hardware

For the time-span from the first individual team meeting until the end of the
semester, we lent the students various hardware in order to enable them to
automate the distilling process. In general, this hardware can be clustered in
four different classes:

1. Distilling Apparatus (laboratory glassware),
2. Sensors,
3. Actuators and
4. Embedded Hardware for controlling the distillation process,

which will be explained in detail in the following. For all of the described hard-
ware we hold spare parts in case something breaks (especially the glassware).
Hence, reordering usually takes some weeks.

Distilling Apparatus. The distilling setup is available in a small and a large
size setup. Each team retains an individual small size setup (see Fig. 1a). This
shall help them during model design of the distillation process. The large size
setup is available only once and hence, intended for shared use (see Fig. 1b).
The large size setup is meant for productivity purposes when trying to produce
lager volumes of spirit. Speaking in general, both setups consist of comparable
elements. Therefore, the findings from the small setup can be transferred to the
large setup.

Round-Bottomed Flask
Both setups comprise of a round-bottomed flask. In case of the small setup the
flask has a volume of 500 ml and 10, 000 ml for the large setup respectively.

An Embedded Graduate Lab Course with Spirit 251

(a) (b)

Fig. 1. Completely assembled of the 500 ml small size setup (a) and the 10 l large size
setup with a Vigreux column (b).

Condenser
In the small setup for condensing the evaporated liquor a Liebig condenser
is used. For the large setup we use a Widmer condenser, due to the higher
thermal capacity of this layout in order to procure the higher energy supplied
to the 10,000 ml round-bottomed flask.

Claisen Tower
In the small setup the connection between the round-bottomed flask and the
condenser is done using a Claisen tower.

Reflux Separator
In the large setup the connection between the round-bottomed flask and
the condenser is established using a reflux separator (see Fig. 2). The reflux
separator introduces a valve to the setup, which enables us to turn off the
outflux when the feint would start. The feint contains a higher amount of
fusel alcohols and is the part of the outflux following to the actual brandy.
Therefore this output of the distillation process is unwanted in the final
product.

Rectification Glassware
For rectification within the large setup we offer a Vigreux column and a
Hempel column. Rectification means the successive separation in several dis-
tillations. Within this columns the evaporated liquor will condense and due
to the following vapor getting evaporated again. Yet, this enables multiple
distillations in one run/rectification of the educt.
The Hempel column in addition enables to add (essential oils as) flavor car-
riers to the process. In detail, e.g. parts of a fruit can be added to the steam

252 A. Stollenwerk

Fig. 2. The reflux separator used for the outflux control of the large setup

Fig. 3. The smallest size of Hempel column with a stainless steel tea filter for hosting
of flavor adding additives

phase, which imprints this flavor to the final product. We are using stain-
less steel tea filters here to prevent fruits from obstructing the column when
getting slushy with the progression of the distillation (see Fig. 3). A whole
distillation run on the large setup takes several hours while a distillation on
the small setup takes up to one hour including heating up and cooling-down.

Sensors. For the distillation process, the students are offered two different types
of sensors:

An Embedded Graduate Lab Course with Spirit 253

Temperature Sensors
At different points of the setup the temperature needs to be measured. This
is at least at the flask and at directly prior to the condenser. Depending on
the implemented algorithm also the ambient temperature is of importance.
Therefore, the students get offered four PT1000 (platinum based) temper-
ature sensors, which have a IP68 rating and accordingly are suitable for
continuous immersion in a liquid.

Weighting Scale
The outflux of the distilling apparatus is caught in a beaker. To quantize
the outflux the students get a scales with a resolution of 0.1 gramms, on
which the beaker can be placed. This scales has a serial RS232 interface.
Therefore, the readings can be processed electronically and the mass flow
can be calculated online.

Actuator. The presented distilling process has two different actuators:

Heating Mantle
With respect to the two different sizes of the round-bottomed flasks (500 ml
and 10,000 ml) there are also two different heating mantles with a heating
capacity of 250 W and 1,400 W respectively.
Both models of heating mantles were chosen paying attention to not having
a thermal control within the mantles itself, since this would be a disturbance
for the control the students have to implement. We only were able to find
heating mantles that incorporate different duty cycles and two heating zones.
The students are elucidated on these settable variables. Usually, these are
set both to maximum. For safety reasons in addition, the heating mantles
are operated with an incorporated residual-current circuit breaker.

Valve of the Reflux Separator
Like already explained the reflux separator has a valve which can stop the
outflux of the distillation process (green cylinder in Fig. 2). This is used to
stop the distillation at the transition to the feint. This valve is connected
via a flexible extension to a stepper motor. The flexible extension absorbs
lateral forces to the valve and hence, prevents the glass from braking. We
offer the students off-the-shelf wine from a supermarket. Doing so, we can
assure the absence of methanol and hence do not need to separate the very
first outflux.

Embedded Hardware. The described sensors and actuators are intercon-
nected via a set of self-designed printed circuit boards (PCBs). These PCBs
can be interconnected in a modular way, which offers a wide variety of possi-
ble configurations, and therefore empower the students’ creativity. The available
PCBs are described in the following:

254 A. Stollenwerk

Main Board
The core of the embedded hardware is a main board which holds an
ATmega2650 microcontroller (see Fig. 4). On this main board there are four
general connection slots which provide each
– Supply Voltage,
– two 10 Bit Analog-to-Digital-Converter Inputs,
– a SPI interface with two Chip-Select Lines,
– one general-purpose Interrupt Line and
– eight general I/O lines.

In addition to these general connection slots there is one slot dedicated for a
power board controlling the heating mantle and the stepper motor. Besides
the mentioned connection slots, the main board takes care of the power
supply for all the hardware and offers two serial interfaces. One RS-232
interface for the interconnection of the scale and one virtual COM-Port based
USB connection for data transmission to and configuration from a computer.

Fig. 4. Main Board of the supplied Embedded Hardware with voltage supply, commu-
nication interfaces, four general connection slots and an additional slot (5) specially
for the power board.

Analog Temperature Board
The analog temperature board connects two PT1000 temperature sensors via
a Wheatstone bridge and operational amplifiers for buffering and amplifica-
tion, of the analog voltage signal, proportional to the temperature, to one of
the internal 10 Bit Analog-to-Digital-Converter (ADC) inputs of the micro-
controller each. Via some jumpers the students can decide, if they want to
use the PT1000 sensors in 2, 3 or 4 wire connection. An other jumper allows
for the decision if the signal shall be amplified or the signal from one side
of the Wheatstone bridge, which than is a simple voltage divider, shall be
directly connected to the ADC input.

An Embedded Graduate Lab Course with Spirit 255

Digital Temperature Board
The digital temperature board holds a dedicated Analog-to-Digital-
Converter Chip (AD7792), which is connected via the SPI interface to the
microcontroller. This chip has a resolution of 16 Bit, three input channels,
noise filtering (50/60 Hz rejection) and a current source. The current source
enables for direct resulting voltage measurement. We use two of the input
channels for the measurement of two PT1000 temperature sensors, respec-
tively. The third available channel is used to measure a reference resistor
with a very high accuracy to be able to eliminate measurement noise. At the
digital temperature board, again, the students can configure via jumpers, if
they want to use the PT1000 sensors in 2, 3 or 4 wire connection. Addition-
ally, the measurement of only one temperature sensor can be configured via
a jumper.

Display with Connection Board
Coming along as two boards, we have a converter board fitting in the general
connection slots, which is translating the SPI bus to a low voltage differen-
tial signaling (LVDS) interface and a compatible LED Display board. The
translation to LVDS was introduced due to the first experiences with the
SPI interface in conjunction with the electromagnetic induction during the
switching of the heating mantle to a cable carrying the SPI signal. Here we
are now using CAT 5 Ethernet cables. This interface is connected to a second
PCB which holds 16 seven-segment-display digits. These LEDs are driven by
a MAX7221CWG chip. On this PCB the LVDS is converted to SPI again.
Furthermore, this board also has two buttons which can be used as general
purpose user interface.

Power-Board
The power board holds besides the stepper motor drivers and the control
connection for a switching power socket a safety circuit (which is explained in
more detail in the next sub-section). The switching power socket is controlled
via a 5 V signal, which is the logical and conjunction in hardware of a GPIO
pin of the microcontroller and the result of the safety circuit.

Aluminum Housings at Distilling Apparatuses
Each student team (consisting of 5 persons) receives at the beginning of the
semester a hardware set consisting of
– one main board,
– two analog temperature boards,
– two digital temperature boards,
– four temperature sensors,
– one display board and one SPI-LVDS adapter,
– one power board,
– one heating mantle,
– one switching power socket,
– one 500 ml round-bottomed flask and
– one Claisen tower.

This hardware is handed out as bare printed circuits boards. For the three
above mentioned dedicated productive distilling spaces for a big volume setup

256 A. Stollenwerk

and twice a small volume setup all the PCBs have an aluminum housing
(see Fig. 5). This is done on the one hand to enhance robustness due to the
fact that the students are working with a liquid and on the other hand for
shielding with respect to electromagnetic induction. Furthermore, to the list
of hardware, which is handed to each student’s team, mentioned before, at
the productive distilling spaces the parts which are still missing, but already
described, are made available to the students. Which are in detail
– different kinds of rectification glassware,
– a condenser,
– a reflux separator at the big volume setup,
– a scales and
– a stepper-motor to control the valve of the reflux separator,
– some safety sensors which are given in detail in the next sub-section.

Fig. 5. Aluminum housings used at the distilling apparatuses equiped with two tem-
perature boards, two vacant general connections slots and the power board.

Additional Debugging Hardware
Besides all the described hardware, we also offer some dummy temperature
sensors. The students can configure them with a jumper to a defined resis-
tance and hence simulate a temperature sensor at a specific temperature.
This is very helpful for debugging. As last to mention PCB we offer a test
board. This board can be inserted in one of the general connection slots
and sends out defined patterns at all connection pins in a high frequency.
Moreover, the ADC inputs are also assigned with different analog voltages
throughout the whole voltage-range of the setup (i.e. 0; 1.25; 2.5; 3.75; 5 V).
This board in combination with a software we provide to the students, helps
for finding hardware issues like bad solder joints, short circuits or lost con-
tacts. The experience over the different runs of the course showed that these
kinds of hardware errors happen every now and then if the students are
working with the PCBs all the time.

An Embedded Graduate Lab Course with Spirit 257

Safety Related Aspects of the Hardware. When preparing this lab course
we had several discussions with the safety department of the university. This
resulted in some general rules, the students have to comply with some construc-
tive and electric safety measures. From the constructive point, we introduced
a safety screen in front of the distilling apparatus. In addition, we needed to
assure the cooling water circuit having a sufficient throughput and hence the
evaporated liquor being adequate cooled, when heating the distilling apparatus.
Therefore, like already introduced, the power board comprises a dedicated safety
circuit. The safety circuit supervises

– a mushroom emergency stop button,
– a flow sensor on the return line of the cooling circuit,
– a temperature sensor supervising the temperature of the outflux and therefore

double-checking on correct cooling and
– a microswitch supervising if the additional safety screen is installed.

If and only if all of the above-mentioned measures hold the switching power
socket can conduct energy to the heating mantle. For the stepper motor only
the emergency stop button is considered. Finally, the result of the safety cir-
cuit is given back to the microcontroller for information purposes. Here a diode
prevents the microcontroller from being able to override this safety signal by
misconfiguration. The used flow sensor emits impulses for a specific volume of
measured water. Hence, to guarantee a specific cooling we need a minimal num-
ber of impulses per time-interval. To supervise this signal we used a modified
NE555 based monostable multivibrator, which requires the user to manually
press a button to enable the measurement. This prevents from unwanted heat-
ing. Once the cooling water flow was too low and this deficiency was fixed the
user needs to press the button again.

2.3 Regulatory Affairs

In Germany, the distilling of spirits is subject to the supervision of the customs
office [5]. Therefore, each semester the course is offered, first of all we need
to apply for a certificate of exemption. In addition, every time wine shall be
distilled into liquor the appointment has to be notified to the customs office 14
days in advance. All distilling actions need to be documented and all distilling
results need to be stored in appropriate containers. Some kind of plastics can be
dissolved by ethanol and are therefore not suitable for holding liquor.

For the collecting of brandy, one room at our university was declared as a
customs quarantine store [6]. At this store, we are allowed to produce and keep
untaxed liquor. If we want to withdraw some of the liquor out of the quarantine
store, we have to announce this to the customs office and pay the taxes before
doing so.

We are subject to unannounced checks by the customs surveillance unit
throughout the whole semester.

258 A. Stollenwerk

3 Blended Learning Aspects

The theoretical parts of the presented lab course are organized in a flipped
classroom way. There are different videos with a duration of 5 to 14 min each
[7]. The students get communicated different milestones until which a specific
set of videos need to be watched and understood. These milestones are:

– the introductory meeting,
– the first individual meeting,
– the individual meeting prior to the first time distilling on the small setup and
– the individual meeting prior to the first time distilling on the big setup.

During the mentioned respective meetings, possible questions are clarified and
the resulting next steps for the further approach are discussed. The flipped class-
room format allows the students for a straightforward repetition of specific topics
in an independent and individual manner. One of the benefits of a practical lab
course, the practical application of theoretical knowledge, goes in hand with
the drawback, that sometimes one recognizes not having understood the theory
in the moment when trying to apply it. Here the students have the chance to
watch the according parts of the videos again. Breaking the whole theory in small
chunks of less than 15 min allows for having the full attention, when watching
these videos. In general, the videos for the lab course cover the following topics
in one or several videos for each topic:

– regulatory affairs,
– organizational aspects,
– the general distillation process,
– the provided distillation apparatuses,
– safety measures,
– the supplied embedded hardware,
– measurement of the brandy for the documentation,
– known problems,
– hints on the quality of distilled brandy,
– basic control theory: the design and configuration of a controller and
– basics on embedded software engineering.

In addition to these videos the students are granted access to an additional
set of ten videos produced for a lecture on basic control engineering aspects for
computer science students. The first run of this course showed these additional
optional videos to be very fruitful for the interdisciplinary communication. In
this additional set of videos basic aspects on modeling, parameterization of a
model and the design of a basic PID-controller is given.

4 Control Engineering Aspects

The distillation of wine can be treated with a very basic control approach, in
first instance. One has to heat up the wine until the wine starts boiling. After

An Embedded Graduate Lab Course with Spirit 259

this point, only a very reduced amount of energy needs to be fed to the system
to receive a slightly decreasing outflux as a quite fair result. This enables the
students to archive at a very early stage first positive results. Nevertheless, all
phases of the distillation can be improved to a far more sophisticated way.

The heating up process can be optimized for fast heating without an over-
shoot. Here a well parameterized model with an e.g. PI-controller works fine.
For the distillation process itself, we have to have a slightly deeper look at the
process.

During the distillation the concentration of alcohol in the round-bottomed
flask continuously decreases, which results in an increasing temperature at
the round-bottomed flask, if the mixture is still distilled. Figure 6 shows the
boiling-point diagram for the intermixture of water and ethanol. The lower
curve describes the boiling properties. With decreasing ethanol the tempera-
ture increases in a non-linear manner. Hence, more energy is needed to keep this
temperature. Furthermore, water has a way higher evaporation enthalpy than
ethanol. Thus, the feed energy needs to be increased over the course of the dis-
tillation process, if the outflux shall be constant. A constant outflux is stated as
overall optimization goal in literature [8].

70

80

90

100

° C

0 10 20 30 40 50 60 70 80 90 100 % C2H5OH

100 90 80 70 60 50 40 30 20 10 0 % H2O

gas

Boilingcurveliquid
78,5

78

96

Dewcurve

Fig. 6. Dew-Boiling-Diagram of an ethanol water intermixture with the vapor–liquid
equilibrium at 95.6% ethanol (modified from [9]).

There are different time delays and dead times to be dealt with: From the
heating mantle as only process-controlling actuator to the different temperature
sensors and the scales.

So far, the different teams of students came up with distinctly varying solu-
tions to control the distilling process. This was enabled by the modular setup
of the hardware and the very open formulated definition of the lab courses goal.
Besides the very basic solution of a PI-Controller, we have seen Smith Predictors

260 A. Stollenwerk

to overcome some of the time constants, different implementations of a fuzzy con-
trol and various implementations of physically motivated model based control
algorithms. Mostly in a gray box manner.

There was e.g. a particle simulation, in which a process model and the current
status was used to simulate the outcome of the next time-step. The simulation
results were afterwards used to find the set-values for the next time-step. In
another approach, the students parameterized a look-up-table which was used
to run and supervise the distillation process. The supervision included a possible
recalculation of the look-up-table, if the systems behavior deviated too much
from the model.

Finally, there was also one team with a not very embedded solution: Since
the distillation process itself is very slow (the set value of the heating mantle is
usually changed in the dimension of one change per minute), the hard real-time
constraints to be fulfilled are in the same dimension of at least some seconds.
Therefore, a communication with a Windows-based PC was established, which
feed a artificial intelligence algorithm to find an optimal solution with the help
of a neuronal network on a high performance computing cluster the university
offers to the students. Nevertheless, this exhibits again the individual creativity
on the student’s side.

5 Evaluation

The presented lab course was offered three times up to now. Based on these
experiences we also introduced some evolution in the setup of the distillation
apparatus and the hardware that is given at the disposal of the students. In
detail we faced several times issues resulting out of electromagnetic induction
when switching the heating mantle. Hence e.g. the LVDS transceivers and the
aluminum housings were introduced. The additional debugging hardware was
developed a year ago, since we experienced students spending lots of develop-
ment time put into problems, which were finally based on broken hardware. The
debugging hardware offeres the students some efficient tools to identify hardware
errors. Additionally they can determine, if the problem they are facing is based
on their software or the provided hardware. In this paper, we presented the final
version of the setup and the hardware.

The proposed video-based blended learning aspects within the course not only
allow the students for a re-view of the applicable video prior to specific actions
like starting to work with a specific piece hardware or the first distillation on
the small or large setup, respectively. In addition, this also reduces supervision
effort. In the first year, prior to having videos, the tutors were experiencing to
explain nearly all major relations at least twice to each team. Now, in general
they only need to talk about specific questions which may have come up while
watching the videos. Up to now in the beginning of each semester the course was
offered in, we updated some of the videos, but not all, based on the questions
which came up in the previous run of the course. In general the needed effort
in average is about an hour per team and per week. Of course, this is varying

An Embedded Graduate Lab Course with Spirit 261

over the semester. e.g. when the students are working the first time with new
hardware or start distilling there are more questions, which result in a higher
demand of supervision than in the other weeks.

The introduced setup was chosen with respect to allow for a maximum in
modularity. Furthermore, the conceptual formulation of the overall task was
intentionally done in an ambiguous way. Like explained before, this leads to a
wide variety of different solving strategies. Hence, the students felt challenged
in developing a solution, which reflects their knowledge and puts this into effect.
Besides the already depicted creativity with respect to the control strategy we
also have to mention efforts like the development of a droplet counter or various
aspects of additional human-machine-interfaces and cloud-based control apps,
which we saw over the years. These are again explicit results of the encouraged
creativity of the students.

Though first achievements can be gained in a very early stage of the semester
the problem of automatically distilling wine has many facets such that the lab
course is challenging over the whole coarse of the semester. Besides all the
knowledge-based experiences, the students also gain soft-skills throughout this
lab course. To solve the given problem in an adequate manner they need to work
in interdisciplinary teams. This is one of the aspects explained to the students
within the introductory meeting. Yet, regularly some teams at some point in the
semester report on trying to work solitary. This usually resulted in a way higher
time consumption for the addressed sub-task or even failing in solving the sub-
task. The participating students regularly point out project management and
interdisciplinary cooperation as some of the gained key competences during the
presentations in the end of the semester or the subsequent discussion.

Obviously, there is a risk of having the students copy the code of some last
years class fellow students. However, this did not really happen. On the one hand
all different majors of students in the course are not familiar with the details
about the distillation process. Hence they need to familiarize themselves with
distilling as process, which is the real effort. The other way round, when copying
over they would not be able to explain their approach. On the other hand, during
the intense weekly discussions the students also have to explain details of their
solution. Therefore a copy-over of previous solutions could not be experienced.
Since this a masters course we explicitly do not put any effort in plagiarism
identification, which would be possible though [10].

5.1 Survey

At our university, we evaluate every course with a survey based on a fixed ques-
tionnaire within the semester. The questions are predefined on basis of the type
of the course (here lab course). Therefore, not all of the results are given here,
only the relevant ones. Over the three runs of the lab course 73 out of 90 stu-
dents participated in the surveys. The evaluation surveys are conducted in an
unsolicitous and anonymous way.

262 A. Stollenwerk

The practical concept was evaluated a mean 1.3 over the three runs of the
course, where 1 is “very good” and 5 is “poor”. The average over all lab courses
of the department was 1.6.

The mean answer to the question I find the course interesting was answered a
mean 1.29 with a department’s mean of 1.7, where 1 is “strongly agree” and 5 is
“strongly disagree”. The question The trials improve my experimental skills had
a mean answer of 1.26 with an overall department’s mean of 1.7 and the same
scale as before. Stated on the hardware the statement The materials provided
are helpful was evaluated a 1.4 with a department’s average of 1.8. The second
statement in the section hardware, There is enough equipment available, scored
a 1.4 with a department’s mean of 1.6.

All but one student perceived the group size as appropriate. The one student
would have favored smaller groups. The majority of the students, with 25.9%,
state that they invest 3–5 h per week to the lab course. The other classes in
this assessment were assigned: 1–3 h per week with 10.0%, 5–7 h per week with
20.1%, 7–3 h per week with 24.2% and more than 9 h per week with 19.8%.

In addition to the given questions there were comment boxes. These com-
ments were not always filled in. However, we summarize some of the main state-
ments. Mostly the students appreciated the offered autonomy towards the given
implementation tasks they needed to do. The blended learning concept allowed
the students for a very independent time management. Due to the special kind
of project, they on the one hand have to work together in an interdisciplinary
way, which was often gratefully appreciated at the end of the course, on the
other hand they were able to gain applied insights to many project management
aspects. Finally, the students regularly mentioned the practical relevance of the
course.

Yet, with the presented lab course, we did not only receive very good evalua-
tion results, but were also in all points significantly better than the department’s
average.

These good evaluation results lead to the point that the presented lab course
was nominated and obtained the teaching award of the computer science depart-
ment of RWTH Aachen University in 2018 with the inscription “dedicated to
the lab course automation of a distillation plant which connects the application
of embedded systems and control theory with an enthusiastic spirit”. This prize
is awarded once a year for a single course.

6 Conclusion

In this work, we stated general requirements to an embedded systems lab course
and presented a concept for a lab course to apply the knowledge gained in con-
trol and embedded software engineering lectures in an interdisciplinary way. The
worked example was the automation of distilling wine into brandy. Besides the
theoretical demand, we also examined on the practical aspects of the realiza-
tion. This gives a blueprint for the development of comparable interdisciplinary
masters’ lab courses. We put an emphasis on the autonomy-enabled creativity
of the students participating in the lab course.

An Embedded Graduate Lab Course with Spirit 263

In particular, we also put emphasis on the specific characteristics of the
automation of distilling brandy, which results in a template for an instantiation
at other universities. Besides commenting on the organizational structure and
the features of the elaborated circuits, we also commented on the regulatory
affairs applying for us (in Germany) and gave best practice for the cooperation’s
results with the safety department.

In the evaluation, the course proved to be outstanding with respect to other
lab courses in our department. The concept of the lab course was therefore
awarded the teaching award of the department computer science of RWTH
Aachen University.

References

1. Wade, J., Cohen, R., Blackburn, M., Hole, E., Bowen, N.: Systems engineering
of cyber-physical systems education program. In: Workshop on Embedded Sys-
tems Education, WESE 2015, Amsterdam, Netherlands, pp. 0–7. ACM, New York
(2018). https://doi.org/10.1145/2832920.2832927

2. Stollenwerk, A., Jongdee, C., Kowalewski, S.: An undergraduate embedded soft-
ware laboratory for the masses. In: Workshop on Embedded Systems Education,
WESE 2009, Grenoble, France, pp. 34–41. ACM, New York (2009). https://doi.
org/10.1145/1719010.1719017

3. Wescott, T.: Applied Control Theory for Embedded Systems. Elsevier, Amsterdam
(2011)

4. Törngren, M., Herzog, E.: Towards integration of CPS and systems engineering
in education. In: Workshop on Embedded Systems Education, WESE 2016, Pitts-
burgh, Pennsylvania, USA, pp. 6:1–6:5. ACM, New York (2016). https://doi.org/
10.1145/3005329.3005335

5. Malle, B., Schmickl, H.: Schnapsbrennen als Hobby. Verlag Die Werkstatt, Rastede,
Germany (2016). ISBN 978-3895334115

6. European Parliament and Council Regulation: the Union Customs Code, No.
952/2013

7. Velegolt, S., Zappe, S., Mahoney, E.: The evolution of a flipped classroom: evidence-
based recommendations. Adv. Eng. Educ. 4(3), 1–37 (2015)

8. Yorke, C.: Home Distilling Handbook. Mason Creek Publishing, La Center (2017).
ISBN 978-1978458109

9. Chemie Uni Münster. https://bit.ly/2TsCGw1. Accessed 12 Aug 2019
10. Prechelt, L., Malpohl, G., Philippsen, M.: Finding plagiarisms among a set of

programs with JPlag. J. UCS 8(11), 1016 (2002)

https://doi.org/10.1145/2832920.2832927
https://doi.org/10.1145/1719010.1719017
https://doi.org/10.1145/1719010.1719017
https://doi.org/10.1145/3005329.3005335
https://doi.org/10.1145/3005329.3005335
https://bit.ly/2TsCGw1

Competence Networks in the Era of CPS –

Lessons Learnt in the ICES Cross-Disciplinary
and Multi-domain Center

Martin Törngren1(&), Fredrik Asplund1, Tor Ericson2,
Catrin Granbom3, Erik Herzog4, Zhonghai Lu1, Mats Magnusson1,

Maria Månsson5, Stefan Norrwing1,5, Johanna Olsson1,
and Johnny Öberg1

1 KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
martint@kth.se

2 ÅF Digital Solutions AB, 169 99 Stockholm, Sweden
3 Ericsson AB, Torshamnsg. 21-23, 164 80 Stockholm, Sweden

4 Saab Aeronautics, 581 88 Linköping, Sweden
5 Prevas AB, 12030 Stockholm, Sweden

Abstract. Cyber-Physical Systems (CPS) are evolving to become more intel-
ligent, autonomous and collaborating, playing an important role in societal
infrastructure. The amount of knowledge required in developing and managing
future CPS will be unprecedented, leading to stronger needs for collaboration,
competence provisioning, continuous learning and renewal of education. This is
where “competence” (or learning) “networks” involving academia and industry
play an important role. We elaborate and discuss needs, lessons learnt and
challenges for such competence networks in the context of CPS. We draw upon
our experiences gained from ICES - the KTH-industry cross-disciplinary and
multi-domain competence network which in 2019 has been operational for 11
years, growing from 6 to more than 30 participating organizations. The ICES
network focuses on activities to support students, industrial engineers and
managers, and academic faculty, acting as a network, catalyst and competence
provider directed towards these stakeholders. We elaborate challenges faced
during the operation of ICES including the lack of prioritization of competence
networks and education, the paradox with strong needs for competence net-
works but perceived lack of time, the challenges of reaching out to stakeholders,
and fragmented efforts addressing competence provisioning. We finally discuss
ways forward. In conclusion, we believe that the ICES type of network could be
relevant in many other areas characterized by complex systems.

Keywords: Cyber-Physical Systems � Embedded systems � Competence
networks � Learning networks � Industry-academia collaboration � Engineering
education � Technological paradigm shifts � Life-long learning � Science
outreach

© Springer Nature Switzerland AG 2020
R. Chamberlain et al. (Eds.): CyPhy 2019/WESE 2019, LNCS 11971, pp. 264–283, 2020.
https://doi.org/10.1007/978-3-030-41131-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41131-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-41131-2_13

1 Introduction and Motivation

Enabled by continued technological advances, Cyber-Physical Systems (CPS) are
evolving to become more intelligent, autonomous and interconnected, and with an
increasing collaboration with other systems. As a result, CPS are being (and will be)
deployed in all kinds of applications in society, playing an important role in societal
infrastructure. These trends represent what many see as a socio-technical paradigm shift
in which present engineering methodologies and legal frameworks will have to change
to accommodate for the new systems built. And paradigm shifts do take time [30]! A
typical example is that of intelligent transportation systems involving highly automated
vehicles. For such systems, neither engineering methodologies to ensure safety and
availability, nor societal frameworks (e.g. for liability, homologation and insurances)
are in place. New ground has to be broken [1, 2].

The corresponding capabilities and complexity of future CPS will generally
demand much more from various stakeholders, in particular concerning CPS devel-
opment, operational management and maintenance. This will involve more and more
experts and knowledge. Even large organizations will face challenges in incorporating
all expertise needed, implying that the CPS supply chain and usage will evolve further
towards sophisticated networks of collaborating organizations, ranging from customers
to CPS component manufacturers.

The engineering of CPS has always been a multidisciplinary endeavor. However,
there is a growing scope of concerns that needs to be addressed, such as sustainability,
complex unstructured environments, technological content (e.g. AI and cloud con-
nectivity), systems of systems collaboration, system change (due to updates and
learning), and new and changing risks (e.g. cyber-security, safety and privacy
concerns).

These new trends, supply chains and concerns, paired with a faster development
speed, result in a situation in which competence provisioning and life-long learning for
organizations working with and using CPS becomes crucial. The need for what we
refer to as competence or learning networks is therefore growing. With a competence
network, we refer primarily to non-profit collaborations to promote learning and
knowledge creation. While the concept of a competence network is general, we use it
here in the specific context of the engineering of CPS and related education and
research.

We elaborate and discuss needs, lessons learnt and challenges for such competence
networks in the context of embedded and cyber-physical systems. We draw upon our
experiences gained from ICES (Innovative Center for Embedded Systems) - the KTH-
industry cross-disciplinary and multi-domain competence network. In 2019 ICES has
been operational for 11 years, and has during this period grown from 6 to more than 30
participating organizations [3, 4]. The ICES network focuses on activities to support
students, industrial engineers, managers, and academic faculty as key stakeholders. The
network further has a focus on shared concerns among members across industrial
domains – it acts as a network, catalyst and competence provider directed towards the
key stakeholders, while collaborating with other networks.

Competence Networks in the Era of CPS 265

The paper is organized as follows. In Sect. 2 we briefly review the state of the art
on competence networks and other initiatives with a flavor of “competence network”.
In Sect. 3 we describe the ICES competence network and its developed practices. In
Sect. 4 we highlight lessons learnt, aspects that we believe are important in organizing
and operating competence networks. We correspondingly then in Sect. 5 turn to
challenges that we have identified over the years – issues that need to be handled and
overcome for a competence network to function. In Sect. 6 we discuss the findings and
their potential generalization - the relevance of the identified lessons learnt and chal-
lenges in other settings. Finally, in Sect. 7, we present conclusions and ways forward.

2 State of the Art and Other Networks

In this section we first describe research that relates to competence and learning net-
works. We then briefly outline a number of existing initiatives with some ingredients of
competence provisioning.

2.1 Competence Networks: State of the Art

There is no extensive discourse on competence networks, or non-profit collaborations
to promote learning, per se. However, there exists a wider discussion on (public-
private) networks and the future of engineering education.

As knowledge can be seen as a resource that enables firms to stay competitive [15],
network cooperation can be seen as beneficial by generating complementarities and
inter-firm learning [16, 17]. It is typically also an efficient way to share knowledge as
the associated breadth of competencies can be exploited over a long time period. In
regard to different types of networks those that contain both industry and academia are
often of special interest, as firms can use them to access new technology and spe-
cialized consultancy [18]. However, academic institutions can also benefit from such
networks when covering the whole state of the art of a topic area is beyond any single
institute – they allow academics to identify important topics [19], and to understand
exploitation better [20].

As far as the state of the art is concerned there is thus a heavy emphasis on studies
concerning knowledge transfer from, or services provided by, academia to industry.
The implications of this relationship on academia as a whole has not received as much
attention.

However, these interactions are not effortless. Organizations do not have an easy
time engaging with organizations that are not similar to them due to difficulties to
identify and absorb knowledge that is different from their own [21]. This is by necessity
the case for academic institutions and firms. At the same time, firms typically do not get
as much value capture (in terms of innovations, as represented by e.g. patents) from
cooperation with academia when they also invest heavily in internal scientific research
[22, 23]. Academic institutions are similarly negatively affected – the broader a uni-
versity´s collaboration breadth, the more negative increasing cooperation with industry
reflects on academic innovation [20].

266 M. Törngren et al.

The cost of engaging in a competence network might thus be considerable, while
potentially neither resulting in a direct monetary benefit to industry nor academia.
However, if a firm and academic institute are indeed closely aligned, the former’s
recruitment of employees should regardless benefit from a close cooperation.

On that note engineering programs are currently tasked with fostering new skills,
such as cultural awareness, sustainability, innovativeness, entrepreneurship, etc. [24].
This is driven by demand from firms and the opening up of new career paths [25].
However, with engineering curricula already stretched to their limits, the introduction
of new content is difficult. Both new teaching practices and learning environments have
been suggested as solutions to this dilemma [24]. However, while teachers in higher
education might not be outright dismissive of these suggestions, they often have a blind
spot in regard to them. This is unfortunate, as new learning environments can lend
themselves naturally to new pedagogies. A solution to this problem might be an
increased societal support for lifelong learning, where the professional environment of
learners can be matched to new learning approaches.

The challenges of creating viable lifelong learning opportunities will still be sig-
nificant [25]. However, even if firms do not see direct payback in the form of inno-
vative products from their cooperation with academia, they could thus benefit from
forming alliances to coordinate lifelong learning. If they can match their specific
internal context to the right pedagogies, then they could ensure that new employees had
a natural way of progressing from novice to the type of expert they need.

Furthermore, curricula are affected by occurrences at the societal level [26].
Downey and Lucena for instance mention the active push by engineering reformers in
the US to increase the importance of scientific skills in engineering education following
the Sputnik incident [27]. This revamping of US engineering education was at least
partly to maintain the status of engineering. The emergence of the European Higher
Education Area (EHEA) also strongly emphasized supporting peaceful interaction
between societies, democracy building and academic freedom [28]. It was stressed that
education should not be considered merely a servant to the purposes of political or
economic power. This perspective was challenged during the end of the 1980’s when
the cooperation between European universities was being framed as vocational train-
ing. This prompted the signing of the Magna Charta Universitatum by heads of uni-
versities from all over Europe and beyond [29].

Clearly the business needs of engineering firms can be both synergetic and in
opposition to the wider role of academia. Competence networks could be a more
neutral type of cooperation than those focused strongly on value capture, functioning as
so called communities of practice, see e.g. [33, 34]. This could allow industry and
academia to achieve a mutual understanding of each other’s motivations more easily.

Research centers can also act as competence networks as described in the Berkeley
research center experience, highlighting success stories from several research centers
with success factors including multidisciplinary (and regionally local) collaboration
involving demonstrators [32].

Competence Networks in the Era of CPS 267

2.2 Other Related Initiatives/Networks

The need for sharing and improving competence is acknowledged and supported by
many organizations. In the scope of CPS, we have identified several types of initiatives.
The list is not intended to be exhaustive, but to provide representative examples in an
attempt to relate ICES to other efforts.

A distinguishing characteristic of ICES in relation to the listed initiatives is that
both engineering and PhD students are found among ICES’ stakeholders. This enriches
the interactions with the other groups of stakeholders. Most of the other efforts focus on
engineers and/or faculty. ICES is also characterized by its regional scope and by being
based at a University.

We identified the following types of initiatives, here characterized in terms of
primary stakeholders, activities and scope:

– Academic disciplinary communities, for example represented by ESWeek and
CPSWeek:
• Primary stakeholders: Academic faculty
• Activities: Academic conferences
• Scope: Worldwide

– Communities for open source software and software forums:
• Primary stakeholders: Practicing engineers
• Activities: Shared software and discussions hosted by IT platforms.
• Scope: Worldwide

– Social and networks, e.g. Linkedin and Meetup:
• Primary stakeholders: Anyone
• Activities: Dialogues and information sharing hosted by IT-platforms.
• Scope: Worldwide

– Professional associations, e.g. INCOSE and IEEE:
• Primary stakeholders: Association members, typically including industry and

academia.
• Activities: Workshops, meetings, roadmapping and project funding (e.g.

Artemis-IA/ECSEL).
• Scope: Depends on the scope of the association, e.g. worldwide or Europe.

– Company internal competence networks:
• Primary stakeholders: Company employees
• Activities: Courses, workshops and demonstrator projects.
• Scope: Organization (e.g. company)

– Innovation activities such as EC funded projects, training networks and strategic
innovation programs:
• Primary stakeholders: SMEs, innovators, innovation hubs, academia and

industry.
• Activities: Innovation projects (acting as “program offices” for setting up pro-

jects) and “Innovative Training Networks” (a type of EU funded project that
funds PhD students in multiple countries, involving academia and industry
collaboration as well as mobility).

• Scope: According to program/project scope.

268 M. Törngren et al.

– Networks of excellence (e.g. those previously funded by the EU):
• Primary stakeholders: Academic faculty
• Activities: Workshops, conferences, roadmaps and information provisioning.
• Scope: The network and affiliated partners.

– Traditional research centers hosted by universities:
• Primary stakeholders: Academic faculty and industrial partners (if any).
• Activities: Research projects and workshops.
• Scope: According to center scope.

– Educational initiatives such as Udacity, and EdX:
• Primary stakeholders: Anyone (e.g. students and practicing engineers)
• Activities: Online courses
• Scope: Global

3 The ICES Competence Network

In 2006 discussions to improve collaboration in the area of embedded systems started
within the KTH faculty. Fragmentation was identified during these discussions, in
particular in terms of non-collaborating research groups (see Fig. 1) with piecewise
contacts to industry in different industrial domains. There was no focused embedded
systems program and industry seeking contact with experts had problems finding their
way into KTH.

MAP

NI

IIP

DSV

SU

CVAP

MST

OPTSYS

SI
PL

S
P C

O
S

CS
EE

ICT

ITM
E
C
S

CSC

Science

CA
S

STH

E
S

ICS

AC

Science

HCI

Fig. 1. Initial inventory of KTH groups (and their organizational belonging - the acronyms refer
to schools/departments/divisions at KTH in 2008), working with some aspects of embedded
systems – illustrating the fragmented situation before ICES.

Competence Networks in the Era of CPS 269

Key Stakeholders and Role of the Network: In discussions involving industry, the
suggested solution was to gather resources from all relevant areas in KTH and com-
panies with an interest in research and education in the area of embedded systems as a
KTH center. At KTH, a “center” is an entity typically used to cater for cross-school
collaboration that also involves external organizations. When ICES was created, the
needs and concerns of the various partners and research groups were elicited. This
resulted in the realization that while faculty wanted to do research, the industrial
partners stated clearly that their main problem was in competence provisioning in a
broad sense. They wanted to recruit students, and get access to KTH faculty. As a
result, the center was formed as a “competence network”, with the purpose to create a
platform for contacts among faculty, students and industry. This would allow for
exchanging experiences, agreeing on challenges and developing cooperation projects to
influence research and education. The key stakeholders of ICES and their identified
concerns are shown in Fig. 2.

Thematic Focus and Goals: The need to understand what the various organizations
and researchers considered as relevant topics in the scope of embedded systems sur-
faced early. After multiple workshops, a view of shared concerns for embedded sys-
tems was created. This view has since then been revised and updated, with the current
state illustrated in Fig. 3. Only minor Changes had to be made during the updates. The
changes included introducing more industrial domains (as represented by the larger set
of member companies) and a larger thematic scope (from embedded systems to
encompassing software-intensive CPS). Within this scope, the guiding vision of ICES
is to achieve a prospering eco-system for industry and academia, catalyzing world-
class education, research and innovation.

Fig. 2. ICES key stakeholders and their needs

270 M. Törngren et al.

The Vision and Goals document has been revised several times over the years [4]. It
forms an important element of the network. The document describes the long- and
short-term goals of ICES, including vision, strategic objectives and operational goals.
The strategic objectives include (i) a focus on key concerns that are shared among
members across industrial domains (recall Fig. 3), (ii) acting as a network, catalyst and
competence provider directed towards the key stakeholders of the center (recall Fig. 2),
and (iii) creating synergies and leveraging existing efforts, including with related KTH
research centers and other organizations.

Operational goals and KPIs have been defined within the areas that correspond to
the workgroups based on these strategic objectives [4].

Network Evolution and Management. The network was officially inaugurated on
September the 1st, 2008, with KTH, ABB, ÅF, Ericsson, Enea, Scania, and Stoneridge
as initial members.

During its 10 years of operation, the ICES center has grown, and now has more than
30 companies as members. It has a track-record of actually “improving the lives” for its
stakeholders. As a KTH center, ICES has a board, a director, a co-director and an
administrator. Student representatives (from selected, relevant KTH programs) are part
of the board to strengthen the bi-directional interactions with students (student repre-
sentation is quite common at KTH, but this case is special with its connections to
multiple programs). The center is funded by the members (roughly 50% of the turn-
over), innovation project funding (roughly 25%), and by KTH (roughly 25%). The
turnover is in the order of 200 kEUR, which is used to fund the ICES office (roughly
one FTE) and ICES events. The actual turnover is much larger considering the in-kind
efforts, which are at least in the same order of magnitude as the direct funding.
Moreover, there is value created by catalyzed spin-off research projects, improvements
in education, and other secondary effects caused by the networking.

ICES distributes a newsletter to some 1500 receivers and arranges a number of events
each year. Most events are open. Some are free and some have a differentiated fee (with
rebate for members). Generally, the fees are low and only covers the cost of the events.

Fig. 3. Thematic focus of the ICES competence network

Competence Networks in the Era of CPS 271

The Competence and Work Groups. A central part of the network is the industrial
competence groups where industrial experts and KTH faculty meet, organize activities
(such as workshops), and exchange experiences on topics of common interest
(cmp. Fig. 3) and/or on education and continued education.

The current competence groups are as follows:

– Artificial intelligence and machine learning
– Autonomous systems and platforms
– Embedded real-time systems
– Interoperability
– R&D Managers
– Safety
– Security
– Testing of embedded systems
– Systems engineering

A new competence group usually starts by a stakeholder raising a need, followed
by one or more workshops where the group is formed. This includes identifying an
(initial) core team (usually composed of a mix of people from academia and industry),
and deciding on an (initial) focus. The competence groups have slightly different
profiles in terms of the types of activities they have chosen to organize. For example,
the Safety group has emphasized the organization of a relatively new Scandinavian
Conference that provides a venue for cross-domain industrial interactions and for
meeting academia. The systems engineering group has instead focused on introducing
systems thinking and systems engineering into a capstone course at KTH with
industrial engineers as teachers. It has also organized workshops, such as on how
systems engineering can deal with the complexity of future CPS.

The competence groups receive administrative support from the ICES office and a
small budget. The competence groups are in turn expected to organize a few events and
meetings each year and report back to the ICES board. The results from the groups are
made available to the network through workshops, seminars, courses and conferences.

Another central part of the network is the workgroups. Management and devel-
opment of the network takes place through the following workgroups:

– Education and student interaction (improving current engineering education, and
creating contacts)

– Continued education (creating and hosting courses adapted for industry)
– Marketing and member involvement
– Competence groups (as described above)
– Learning network (supporting, managing and creating new competence groups)
– Interactions and catalyzing (research/innovation) projects
– Management of the center

As an example group activity, the continued education task force has been inves-
tigating prioritized thematic topics by industry, funding, and models for implementing

272 M. Törngren et al.

flexible and part on-line courses. A course is now being developed in system safety and
cyber-security as a collaboration between faculty from computer science and industrial
engineering. This type of course is largely lacking both in engineering and continued
education today.

Achievements. Among the achievements, the ICES network has catalyzed multiple
research projects1, a new research center2, and annually organizes more than 20 events.
As examples of such events we present an overview of events that were organized
during 2017:

– Two conferences: The ICES annual conference with a focus on “DevOps for CPS”,
and the 5th Scandinavian Conference on System and Software Safety. Both con-
ferences had roughly 100 participants from industry and academia each (some 60%
from industry, with a good spread across industrial domains and academic
disciplines).

– 50 work group and competence group meetings corresponding to about 3–4
meetings/year.

– Multiple efforts to promote student-industry interactions, including dedicated MSc
thesis fairs, study visits, and industry involvement in teaching (e.g. guest lectures).

– 7 workshops, for example on the topic of CPS foundations and trustworthiness,
Systems engineering and CPS education needs in collaboration with INCOSE, and
Innovation in CPS and IIoT (featuring funding opportunities and information from
innovation support organizations).

– Several special ICES events, including the then newly started “coffee with an expert
series” (featuring e.g. prominent guest professors and industrial experts), a meeting
with the Swedish minister on Research, and an M.Sc. thesis fair.

– Several other events with ICES involvement, including Embedded Conference
Scandinavia and the Cybersecurity and Privacy (CySeP) Summer School (co-
funded by ICES).

As a further example of achievement, ICES paved the way for the international
master-level program in Embedded Systems at KTH. Given that KTH already had
many programs, the industrial support for launching a new program was decisive in
motivating its launch. The program was designed as a collaboration between four
schools, each providing their “best courses” to the program. The interest in the program
has grown from its start in 2011. 2019 the program had about 700 applicants world-
wide, with 335 having the program as its first priority. To maintain top quality, the
number of students has been limited to about 50–70 per year. The program scores well
in course evaluations and is highly appreciated by the industrial partners in ICES.

1 Examples of catalyzed projects include the European projects iFEST (ARTEMIS-project initiated
through ICES), MBAT (ARTEMIS project with ICES initiated Swedish sub-consortium) and
SCOTT (ECSEL project with ICES initiated Swedish sub-consortium), each larger 3-year research
projects involving multiple ICES stakeholder organizations.

2 The TECoSA research center was recently approved and is scheduled to start early 2020. https://
www.vinnova.se/en/news/2019/06/efforts-on-world-class-research-environments/ (accessed Oct.
2019).

Competence Networks in the Era of CPS 273

https://www.vinnova.se/en/news/2019/06/efforts-on-world-class-research-environments/
https://www.vinnova.se/en/news/2019/06/efforts-on-world-class-research-environments/

4 Lessons Learnt

In operating the ICES network for more than 10 years we have designed, introduced,
revised and observed a number of practices that we have found especially important for
the long-term evolution, growth and efficient operation of the network. These are here
summarized.

Stakeholders. ICES early on spent an effort in identifying key stakeholders and their
needs, recall Fig. 2. While the needs have been revised, this early effort has been
instrumental in providing the relevant “services” for the stakeholders, thus creating
interest in ICES. For example, it is clear that there is a large demand for CPS engineers
– thus creating strong incentives for industry to engage with universities3. The para-
digm shift motivates extra efforts for revising education programs. Indeed, university
educators are actively engaged in discussing how to reform programs to educate the
CPS engineers of tomorrow, see e.g. [6–8] – and here it is beneficial with university
and industry interactions to better understand the needs for how such new programs
could be formed.

Vision and Goals. In ICES, the Vision and goals document has been jointly elabo-
rated, followed-up and improved. The operational goals, concretely drive work towards
the vision and goals. Over the years, the role of ICES as a competence network has
been strengthened by the insights and experiences in designing and redesigning
activities to create value for the stakeholders. The name of ICES stands for Innovative
Center for Embedded Systems, with “Innovative” indicating the purpose to be inno-
vative and learning in the way the center is organized. Accordingly, we have contin-
uously had a dialogue with stakeholders and attempted to improve a practices as well as
introducing new ones.

Agreement. In the set-up of ICES, various types of agreements were considered.
Eventually it was decided to not use (complex) agreements. Instead ICES relies on a
code of conduct (including that the network cannot be used for marketing purposes)
and the understanding that aggressive competitors are not included. However, it must
be noted that many of the partners are indeed competitors (e.g. multiple consultancy
companies, Scania and Volvo) but here the benefits of long-term competence devel-
opment are seen as more important. Generally, information that partners bring to the
network is considered to be open. This approach can be compared with research
projects with rather complex contracts and with results that are not generally and
widely shared. Agreements come into play for example when ICES catalyzes a research
project. Such projects will then be separate from ICES with their own agreements, but
can still benefit from ICES as a vehicle for bi-directional communication.

3 According to an investigation by ARTEMIS and ITEA2, the global market of Digital Technology
(encompassing software, embedded software, IT services, internal IT and hardware) was estimated to
USD 3,300 billion, corresponding to approximately 50 million jobs, predicted to have continued
strong growth, [5].

274 M. Törngren et al.

Board Composition, Management and Decentralized Organization. The ICES
board has generally been rather large, involving “gold member” representatives, as well
as representatives from the involved schools at KTH, with the purpose to engage the
organizations and to spread information. Moreover, with the various groups, the
organization is decentralized, engaging multiple persons that contribute in various
ways. The management is divided further into a director and co-director, and a man-
agement team, creating robustness in the organization.

Stakeholder Engagement. As part of the key stakeholders, we would like to explicitly
mention the involvement of student representatives in the board and in some of the
work groups. The students currently represent three relevant master programs at KTH.
The students provide valuable insights into how they see the current education and
improvement potential, communicate ICES activities to students, and facilitate student
interactions with industry as well as with academic faculty. As a further example, one
of the competence groups is dedicated to R&D managers so that managers with similar
technology challenges but in different industry domains meet 3–4 times a year –

providing interactions that are perceived as valuable by the participating managers as
well as for enriching the ICES network.

From Disciplinary to Multidisciplinary. Based in a university, it is important to be
aware of the difficulties in trying to create integration across academic disciplines,
departments and schools. Universities have deep traditions and have slow time con-
stants; for example, it will take more than one year to launch a new program and after
its launch there will be several more years before the first students exit the program.

Moreover, there is a lack of incentives to integrate across disciplines. As opposed to
a company that needs product integration, academic faculty are usually directly
rewarded by specialization, depth and in staying within their discipline. While there
might be large potential in multidisciplinary work, it takes time, is risky and sometimes
even counter-productive in that funding schemes may make it difficult to include more
than one discipline or more than one group from a university. Competence provi-
sioning in the era of CPS is thus challenged by the current disciplinary university
system and the growing amount of knowledge – resulting in fragmentation across
disciplines, experts, groups, etc. The disciplinary setting makes it more difficult to
provide new bridging competences required for future CPS and there is a corre-
sponding lack of T-shaped educators [9]. Similarly, academic teachers often lack first-
hand experience with industrial applications, creating a gap between the taught theory
vs. concerns of real CPS.

We believe that competence networks can at least partly help in addressing these
problems. Establishing collaboration between academia and industry, can help to
bridge the gap between theory and real-world CPS, and also incentivizes creating
bridges between disciplines. ICES has contributed to improved contacts to industry for
both faculty and students, and we have through the collaboration also been able to
integrate industry taught modules. The purpose here has been to bring in industrial
competence related to complex engineering issues that are not (readily and typically)
taught at a university, complementing traditional academic courses. This has for
example included the introduction of an industry taught module on systems engi-
neering as part of a capstone course at KTH [10].

Competence Networks in the Era of CPS 275

A competence network, with opportunities for contacts with industry and for cat-
alyzing research projects thus helps in providing incentives towards integration. ICES
has catalyzed several research projects that involve more than one research group and
discipline at KTH. The era of CPS also provides new opportunities to promote mul-
tidisciplinary research since the needs are becoming much more apparent – for
example, when equipping cars with various artificial intelligence (AI) techniques,
safety concerns become relevant for the AI community.

Collaboration with Other Networks. In the area of CPS, and especially in the midst
of a socio-technical paradigm shift, a huge number of efforts and centers are devoted to
various aspects that relate to CPS. ICES has evolved into a networking center,
establishing strategic collaboration with other initiatives as one way to deal with this
plethora of initiatives. As examples of successful collaboration we would like to
highlight the tradition of co-organized events with the Swedish chapter of INCOSE,
and the KTH membership in ARTEMIS-IA. Currently, ICES is offering collaboration
to other KTH centers that in some way relate to software-intensive CPS. The potential
arises since most other centers are focused on research while ICES is a competence
network. ICES also collaborates with THINGS – a KTH based CPS/IoT incubator,
bringing startups and small SMEs closer to the ICES network, and thus to larger
companies, KTH faculty and students.

Neutral Ground and Regional Focus. We have noticed that having a university to
host a competence network will have some form of trust enhancing effect – with the
university seen as more neutral compared to many other stakeholders. ICES has further
traditionally had a regional focus (the larger Stockholm area), facilitating for stake-
holders to physically engage in the network.

5 Challenges

During the operation of the ICES network we have encountered several challenges. We
here highlight what we consider as key challenges that are relevant when setting up a
competence network, especially considering hosting at a University.

Competence Networks and Education Are Not Prioritized. At universities, research
merits are generally driving promotion (e.g. along tenure track schemes), and education
has a much lower status; this is also true for continued education [6, 11, 12].

This somewhat chocking reality has a further implication that adoption of best
practices in education is progressing very slowly – much university education is still
using passive learning through traditional lectures whereas there is clear scientific
evidence of much improved education when active learning is adopted [13].

Universities are typically given the task to communicate and share knowledge to a
broader audience, referred to as public or science outreach, or the third mission of a
university. Unfortunately, the third mission is vaguely defined and not incentivized. As
a result, academic researchers – who are generally busy doing research within their
specific discipline, will not prioritize competence network initiatives since it draws

276 M. Törngren et al.

their attention from their research. When enthusiasts are recruited, on the other hand,
activities may become dependent on them, making it difficult to provide continuity.

The lack of priorities for competence networks is seen for example in the lack of
funding to support such activities; while research is funded, dissemination of research
and exchange of best practices from industry are also not prioritized (typically with
smaller short-term efforts as part of research projects). Another indication is the funding
struggles we have had with ICES. Most of the centers at KTH are research centers, with
larger but time-limited funds provided by e.g. public funding. For such centers, a
standard model will provide funding support from the university. ICES is on the other
hand a competence network that operates on lower budgets and with no clear time
limit. While research centers deliver tangible research output, ICES output is often
more subtle or indirect, with for example work to improve the engineering education,
catalyzing new research projects and through other effects that we may not even be
aware of. Capturing and estimating the corresponding indirect value is difficult.
A competence network thus often represents an “odd-bird” at a university. We there-
fore believe that there are strong needs to balance the priorities; given the importance of
competence, regions that emphasize this are likely to become winners!

More recently, the funding situation has improved due to the involvement of ICES
in EU innovation projects and a Nordic academic network on the industrial internet of
things [14]. As a related opportunity and centered in ICES, a Digital Innovation Hub on
Industrial Digitalization was recently formed [31].

The Paradox with Strong Needs but (Perceived) Lack of Time. Industrial com-
panies would generally agree that competence networks are increasingly important.
However, at the same time, most industrial stakeholders and experts in the field per-
ceive themselves as very busy. This is quite natural during a paradigm shift. It is
however likely to create an imbalance in addressing short-term vs. long-term needs
(this balance relates closely to the previous challenge, the lack of prioritization).
Because people are so busy, it becomes more difficult to engage people in various
competence network activities. We also see this issue with trends such as breakfast
seminars, lunch meetings, webinars etc. – trying to grab the small free slots available
and resorting to shorter “doses” of interactions. As a consequence, a competence
network may need to spend more time on management and work to make seminars and
workshops worthwhile to attend. It becomes imperative to consider the needs of
stakeholders and design activities to give value to the attendees. We further believe that
it is essential to develop a culture and schemes to promote the longer-term perspective,
for example, by having companies invest in their employees continued education by
engaging in suitable competence networks.

Communication. In these days of communication overflow, finding the right channels
and being able to actually get the attention of stakeholders is becoming increasingly
challenging. People are already overloaded with information, very busy (cmp. previous
bullet), and various hypes makes it even more difficult to penetrate the ether. Just using
email is no longer good enough. Moreover, different organizations use different IT-
tools and this makes it more difficult to create for example useful forums or wiki like
information exchange. ICES is currently using multiple modes of communication,
including through the contacts created in the network, a newsletter, social media, and a

Competence Networks in the Era of CPS 277

web page where presentations, recordings, contacts etc. are made available. A special
challenge is to reach out to companies which are new to CPS. Developing and
implementing clear communication strategies is essential and further work is needed.

Fragmented Efforts Addressing Competence Provisioning. Different aspects of
competence networks are today addressed by many initiatives and organizations. These
efforts are however fragmented, there is a lack of coordination and overview of who
does what, and the sharing of best practices is limited. As one remedy, ICES has
initiated dialogues with other initiatives and engaged in several collaborations with
other associations as described in Sect. 4.

6 Discussion

In this section we discuss our findings by relating ICES to the state of the art as
described in Sect. 2.1, and by elaborating on the generality of our findings.

6.1 Relating ICES to the Discourse on Learning Networks

We relate back to the Prioritization and “Paradox” challenges identified in Sect. 5 and
then further discuss purposes of University and academia collaboration.

Prioritization. Related to the lack of prioritization, the incentives and evaluation of
Universities today to a very little extent encompasses the third mission. Universities are
today mainly evaluated as individual organizations – not relating to their interactions
with other organizations, implying that University accomplishments that relate to their
collaboration with companies and other external actors are likely to be unnoticed. For
individual researchers, their research production represents the main incentive. For the
University as a whole, the main incentives in Sweden today include funding related to
the educational output (“finished students”) and the “ranking” which is geared towards
research performance.

With respect to companies, they often invest too little in competence development
and instead focus on having a higher employee turnover to “shift competences”. In
reality this is most likely quite costly, but it is easier to argue inside a firm that new
employees with desired competence should be hired while others lacking the right
knowledge and skills should be laid off than to argue that employees need a budget for
lifelong learning. One reason for this may be that central HR takes much of the costs
for hiring and firing, whereas continuous competence development is typically carried
out by the business units, resulting in unbalanced incentives. Companies need to
consider the real costs of updating competences as compared to hiring new people, and
maybe also policy makers need to create incentives for lifelong learning inside com-
panies, not only support activities for the ones who have been found to have outdated
knowledge and consequently have lost their jobs.

Paradox and Communication. During the years with ICES, we see a lot of potential
for even more engagement by the involved companies. Apart from “the lack of time”
that we perceived, the state of the art provides an additional explanation – the cost of

278 M. Törngren et al.

interacting with others with a different background. Without the strong motivation that
comes from working towards direct value capture or knowledge creation the partici-
pants thus struggle to find the time to engage continuously. The paradox also relates
closely to the positioning and culture within the company (as just discussed under
priorities) – and this requires some level of management support and a way of oper-
ating the network, and of course, interest by people.

The barrier for engaging may also relate to the fact that competence networks
constitute unusual entities (i.e. “odd birds” as noted in Sect. 5) in the world of aca-
demia, Comparing with traditional research centers, ICES offers a slightly more
complicated mode of engagement. In the setting of a research center, a company pays
money to the center, and is typically in return invited to a few workshops per year and a
committee for deciding on projects. ICES on the other hand offers rich opportunities for
interactions in terms of the work groups and competence groups, the board, workshops,
conferences, and other activities. To access the network thus requires an initial effort in
understanding what the network and groups are about, and then further time (and
prioritization) in actually engaging.

The paradox further relates to the challenge of communication. To reduce the
barriers, there is a need for efficient communication. We believe that IT-support in
various forms (from webexes, recorded talks, forums etc.) have a role to play but
deploying and getting the network to adopt the right tools also introduces another
potential barrier so this requires careful considerations. W.r.t. communication we have
noticed that our reach within some of the larger company members is somewhat
limited. To spread information in such large companies, we believe it is beneficial to
tap into their communication structures. Such efforts have been attempted and will be
continued in ICES.

A competence center can in many ways be seen as a “community of practice” as it is
based on some important pillars: a shared view of its purpose (learning), mutual trust
(making it possible to reveal both strengths and weaknesses), efficient communication
through specialized language (jargon), a strong focus on knowledge (meritocracy)
rather than power stemming from hierarchical positions, and a network-based orga-
nization. In order to function as a community, it cannot be expanded to a very large
group of people as this will undermine all the above pillars, and consequently this type
of community has to be established and managed locally in a bottom-up way (not
excluding support from university and funding bodies, but these should ideally not
come with too much demands and limitations).

Purposes of University and Academia Collaboration. The role of academia in
supporting industry and society encompasses education, research and outreach.

Ensuring a continued flow of possible recruits with the right knowledge is in itself a
strong motivator for public-private cooperation. Our experiences from ICES suggest
that this type of cooperation can also affect the involved stakeholders in other ways
than e.g. cooperation focused on innovation: understanding each other, achieving a
common vision and finding a neutral common ground was strongly emphasized among
the stakeholders.

Interactions taking place in competence networks provides information about
graduates’ needed competences and skills as this is made explicit by industry

Competence Networks in the Era of CPS 279

representatives, making it possible to adjust curricula accordingly in order to increase
employability and reduce the time needed for graduates to find suitable employment.
The high cost of misalignment between supply and demand for university-developed
knowledge and skills could thus be reduced by access to more relevant and updated
information about needs and development trends. In our experience, this type of col-
laboration has a strong potential since in the era of complex CPS – insights into
technology, engineering complex systems and science will all be required. The col-
laboration has to respect the integrity of the involved organizations, and balance short
vs. long term as well as between science, engineering and technology.

6.2 Generality of Findings

If one would like to replicate the ICES competence network – how would that work in
other regions and countries, i.e. what might be specific for the regional context of
ICES?

The operation of the ICES competence network has evolved in Sweden in the larger
Stockholm area. We believe that many of the experiences are valid also in other
settings, although differences in regional needs, constraints and culture needs to be
considered in attempting to draw upon the findings from ICES.

The Swedish setting is characterized by free university education, a strong multi-
domain industry, and a tradition of governmental sponsoring of research and education
(with little corresponding direct industrial sponsoring of such activities). In addition,
Sweden is known to be home to a collaborative culture. Moreover, the use of the
university as neutral ground, the policy to avoid fierce competitors, and the regional
scale have most likely been important in creating an environment of trust, where no
agreements are needed and where people are still participating and sharing information.

Thus, while we do believe that many of the ingredients and effects as discussed in
Sects. 4 and 6.1 should be relevant in other regions with other characteristics, the
element of building trust will be important for setting up a competence network also in
other contexts.

We note that the trends and challenges with CPS are not specific to any region. The
industrial presence and the types of domains related to a region could however vary.
A broader spectrum of CPS application domains – such as we are fortunate to expe-
rience with ICES, certainly implies that it should be easier to set up a competence
network. Engaging in a network to share experiences, may be easier across domains
since there is less competition. However, even with a smaller number of domains, the
needs for competence networks are still strong.

Many other areas are also characterized by complex systems and paradigm shifts,
involving a range of stakeholders. We believe that the experiences from the ICES
network could be relevant in other domains, beyond CPS. For example, considering the
transitioning to sustainable and circular systems, it would be highly beneficial to
establish collaboration – e.g. in the form of a competence network – involving for
example stakeholders representing economy, management, material scientists, experts
in sustainability (e.g. life-cycle analysis), industrial manufacturing, systems engineer-
ing, and digital technology experts.

280 M. Törngren et al.

7 Conclusions and Ways Forward

The amount of knowledge required in developing and managing the CPS of tomorrow
is unprecedented and requires grasping a broader area of concerns and a corresponding
availability of experts in these areas. This leads to strong needs for collaboration.

Competence networks address the needs for CPS involved organizations to con-
tinuously learn within and across organizations, to get access to experts and recruit
competent people, in sharing experiences and best practices, and working to re-shape
the engineering education to better meet the needs for engineering future CPS,
including developing life-long learning through continued education for the existing
work-force.

We have described the ICES competence network involving academia and
industry, lessons learnt and challenges faced during the operation of the network. There
are several important ways forward:

– Competence networks ought to be recognized as important mechanisms for spurring
regional innovation. In order to accomplish this, incentives, funding, KPIs and
evaluation schemes need to be made available. The EC initiative on digital inno-
vation hubs could here correspond to one useful mechanism forward.

– Companies needs to recognize the importance of internal competence development,
and here collaboration with universities in the form of competence networks rep-
resents one promising way forward.

– As well recognized, but still pertinent to this paper, there is a need to provide
incentives for life-long learning and to raise the status of education.

– Gathering, investigating and disseminating best practices on competence networks.
We believe that further work is needed in this direction, including addressing the
identified challenges.

In conclusion, our experience is that the ICES type of competence network fills an
important role as information carrier and collaboration mechanism in our regional
setting with cross-industry domain and academia collaboration. The network is per-
ceived as important by the involved stakeholders, and would be relevant to introduce
also in other areas involving complex systems.

Acknowledgments. This work has been supported by FED4SAE (H2020 Innovation action),
HI2OT (supported by NordForsk’s Nordic University Hubs programme, grant agreement no.
86220) and ICES at KTH. We greatly acknowledge the contributions of the many persons and
organizations that have engaged in ICES or otherwise supported ICES since its start in 2008!

References

1. Thompson, H., et al.: Platforms4CPSKey Outcomes and Recommendations, 1st edn.
Steinbeis-Edition, Stuttgart (2018). Report from the Platforms4CPS project (H2020 project
Grant Agreement No 731599). ISBN 978-3-95663-184-9

2. Törngren, M., Grogan, P.T.: How to deal with the complexity of future cyber-physical
systems? J. Des. 2(4) (2018). https://doi.org/10.3390/designs2040040

Competence Networks in the Era of CPS 281

https://doi.org/10.3390/designs2040040

3. ICES: www.ices.kth.se. Accessed 12 Aug 2019
4. Törngren, M., et al.: ICES - VISION and GOALS. ICES Working Document, February 2018

[3]
5. ITEA ARTEMIS-IA High-Level Vision 2030: Opportunities for Europe, Autumn 2013.

https://itea3.org/publication/download/itea-artemis-ia-high-level-vision-2030-v2013.pdf.
Accessed 12 Aug 2019

6. Törngren, M., Bensalem, S., McDermid, J., Passerone, R., Sangiovanni-Vincentelli, A.,
Schätz, B.: Education and training challenges in the era of cyber-physical systems: beyond
traditional engineering. In: Workshop on Embedded and Cyber-Physical Systems Education
(WESE) at ESWEEK 2015, Amsterdam (2015). http://dl.acm.org/citation.cfm?id=2832928

7. First Workshop on CPS Education, 8th April 2013, Philadelphia, PA (part of CPSWeek
2013) – accessible at. http://cps-vo.org/group/edu/workshop. Accessed July 2015

8. Workshop on Embedded and Cyber-Physical Systems Education (WESE) 2015, Organized
as a part of Embedded Systems Week. http://www.emsig.net/conf/2015/wese/

9. Törngren, M., Herzog, E.: Towards integration of CPS and systems engineering in
education. In: 12th Embedded System Week Proceedings 2016 Workshop on Embedded and
Cyber-Physical Systems Education, Pittsburgh, October 2016

10. Herzog, E., Larsson, Å.N., El‐Khoury, J., Törngren, M.: Experience from introducing
systems engineering in an academic environment using an industry training course. In:
INCOSE International Symposium, vol. 28, no. 1, pp. 245–259 (2018)

11. Debate article in Dagens Nyheter (Swedish newspaper) by Swedish University Chancellor
Harriet Wallberg, 04 August 2014 on “Unacceptable de-prioritization of the higher education
system” (article in Swedish). http://www.dn.se/debatt/oacceptabel-bantning-av-
undervisning-pa-universitet/. Accessed August 2019

12. Chalmers, D.: Progress and challenges to the recognition and reward of the scholarship of
teaching in higher education. High. Educ. Res. Dev. 30(1), 25–38. https://doi.org/10.1080/
07294360.2011.536970

13. Prince, M.: Does active learning work? A review of the research. J. Eng. Educ. 93, 223–231
(2004)

14. http://www.nordic-iot.org/. Accessed August 2019
15. Grant, R.M.: Toward a knowledge-based theory of the firm. Strateg. Manag. J. 17(S2), 109–

122 (1996)
16. Ozman, M.: Inter-firm networks and innovation: a survey of literature. Econ. Innov. New

Technol. 18(1), 39–67 (2009)
17. Pyka, A.: Innovation networks in economics: from the incentive-based to the knowledge-

based approaches. Eur. J. Innov. Manag. 5(3), 152–163 (2002)
18. Ankrah, S., Omar, A.-T.: Universities–industry collaboration: a systematic review. Scand.

J. Manag. 31(3), 387–408 (2015)
19. Mansfield, E.: Academic research underlying industrial innovations: sources, characteristics,

and financing. Rev. Econ. Stat. 77, 55–65 (1995)
20. Lin, J.-Y.: Balancing industry collaboration and academic innovation: the contingent role of

collaboration-specific attributes. Technol. Forecast. Soc. Chang. 123, 216–228 (2017)
21. Cohen, W.M., Levinthal, D.A.: Absorptive capacity: a new perspective on learning and

innovation. Adm. Sci. Q. 35(1), 128–152 (1990)
22. Hess, A.M., Rothaermel, F.T.: When are assets complementary? Star scientists, strategic

alliances, and innovation in the pharmaceutical industry. Strateg. Manag. J. 32(8), 895–909
(2011)

23. Soh, P.-H., Subramanian, A.M.: When do firms benefit from university–industry R&D
collaborations? The implications of firm R&D focus on scientific research and technological
recombination. J. Bus. Ventur. 29(6), 807–821 (2014)

282 M. Törngren et al.

http://www.ices.kth.se
https://itea3.org/publication/download/itea-artemis-ia-high-level-vision-2030-v2013.pdf
http://dl.acm.org/citation.cfm?id=2832928
http://cps-vo.org/group/edu/workshop
http://www.emsig.net/conf/2015/wese/
http://www.dn.se/debatt/oacceptabel-bantning-av-undervisning-pa-universitet/
http://www.dn.se/debatt/oacceptabel-bantning-av-undervisning-pa-universitet/
https://doi.org/10.1080/07294360.2011.536970
https://doi.org/10.1080/07294360.2011.536970
http://www.nordic-iot.org/

24. Jamieson, L.H., Lohmann, J.R.: Innovation with impact: creating a culture for scholarly and
systematic innovation in engineering education. American Society for Engineering
Education, Washington (2012)

25. Kasworm, C., Hemmingsen, L.: Preparing professionals for lifelong learning: comparative
examination of master’s education programs. High. Educ. 54(3), 449–468 (2007)

26. Seely, B.: Patterns in the history of engineering education reform: a brief essay. In:
Educating the Engineer of 2020: Adapting Engineering Education to the New Century,
pp. 114–130. The National Academies Press, Washington (2005)

27. Downey, G.L., Lucena, J.C.: Knowledge and professional identity in engineering: code-
switching and the metrics of progress. Hist. Technol. 20(4), 393–420 (2004)

28. Corbett, A.: Principles, problems, politics … what does the historical record of EU
cooperation in higher education tell the EHEA generation? In: Curaj, A., Scott, P.,
Vlasceanu, L., Wilson, L. (eds.) European Higher Education at the Crossroads, pp. 39–58.
Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-3937-6_3

29. The Magna Charta Observatory: Magna Charta Universitatum. Bologna University, Bologna
(1988)

30. Simon, H.A.: The steam engine and the computer: what makes technology revolutionary.
Comput. People 36(11–12), 7–11 (1987)

31. The KTH Innovation Hub of Digital Industrialization - https://s3platform.jrc.ec.europa.eu/
digital-innovation-hubs-tool/-/dih/5792/view. Accessed 12 Oct 2019

32. Patterson, D.: How to build a bad research center. Technical report UCB/EECS-2013-123,
EECS Department, Univ. of California, Berkeley, June 2013 (2013). http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2013/EECS-2013-123.html. Accessed 12 Oct 2019

33. Brown, J.S., Duguid, P.: Organizational learning and communities-of-practice: toward a
unified view of working, learning, and innovation. Organ. Sci. 2(1), 40–57 (1991)

34. Wenger, E.: Communities of practice and social learning systems. Organization 7(2), 225–
246 (2001)

Competence Networks in the Era of CPS 283

https://doi.org/10.1007/978-94-007-3937-6_3
https://s3platform.jrc.ec.europa.eu/digital-innovation-hubs-tool/-/dih/5792/view
https://s3platform.jrc.ec.europa.eu/digital-innovation-hubs-tool/-/dih/5792/view
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-123.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-123.html

Author Index

Alexandre dit Sandretto, Julien 89
Aljarbouh, Ayman 108
Asavoae, Mihail 203
Asplund, Fredrik 264

Bartha, Ferenc A. 108
Ben Hedia, Belgacem 203

Castrillon, Jeronimo 59
Chapoutot, Alexandre 89
Cremona, Fabio 3

Derks, Andreas 231
Derler, Patricia 59
Duracz, Adam 108
Duracz, Jan 108

Erdoğmuş, Deniz 44
Ericson, Tor 264
Eriksson, Henrik 108

Fribourg, Laurent 181

Garoche, Pierre-Loïc 89
Goens, Andrés 59
Granbom, Catrin 264
Grante, Christian 108

Han, Mo 44
Haur, Imane 203
Herzog, Erik 264

Jan, Mathieu 203
Jeong, Jaehwan 127

Kowalewski, Stefan 231

Lazzara, Lorenzo 3
Le Coënt, Adrien 181
Lee, Chang-Gun 127
Lee, Edward A. 59

Lee, Wonseok 127
Lohstroh, Marten 59
Lu, Zhonghai 264

Magnusson, Mats 264
Mancuso, Giulio Mosé 3
Månsson, Maria 264
Masood, Jawad 108

Norrwing, Stefan 264

Öberg, Johnny 264
Olsson, Johanna 264

Park, Seonghyeon 127
Philippsen, Roland 108

Rakel, Stefan 231
Romeo, Íñigo Íncer 59
Rousse, Paul 89

Sangiovanni-Vincentelli, Alberto 59
Sato, Masashi 153
Schirner, Gunar 44
Schoeberl, Martin 28, 203
Smieschek, Manfred 231
Stollenwerk, André 231, 247

Thönnessen, David 231
Törngren, Martin 264

Ueda, Kazunori 153
Ulisse, Alessandro 3

Xu, Fei 108

Yamada, Yunosuke 153

Zandigohar, Mehrshad 44
Zeng, Yingfu 108

	Preface
	Organization
	Contents
	Models and Design
	A Modular SystemC RTOS Model for Uncertainty Analysis
	1 Introduction
	2 Related Works
	3 Real Time Operating System Model Architecture
	3.1 Scheduler Model
	3.2 Kernel Model
	3.3 Functional and Timing Task Model
	3.4 ARINC 653 Model Interface

	4 Uncertainty Analysis
	4.1 Forward Uncertainty Quantification
	4.2 Statistical Model Checking

	5 ARINC 653 Application Model: Data Acquisition System
	5.1 Application Stochastic Task Model

	6 Results
	6.1 Forward Uncertainty Propagation
	6.2 Statistical Model Checking

	7 Conclusions and Future Work
	References

	Multicore Models of Communication for Cyber-Physical Systems
	1 Introduction
	2 The Software View
	2.1 Communicating Sequential Processes
	2.2 Multithreading
	2.3 Actors and Message Passing

	3 Communication Hardware
	3.1 Shared Main Memory
	3.2 Network-on-Chip
	3.3 Shared Scratchpad Memory
	3.4 Scratchpad Memory with Ownership
	3.5 Distributed Shared On-Chip Memory
	3.6 Direct Links and Memory Between Cores
	3.7 One-Way Shared Memory
	3.8 Additional Hardware Support for Message Passing

	4 Evaluation
	4.1 Experimental Setup
	4.2 Benchmark
	4.3 Measured Throughput
	4.4 Resource Consumption
	4.5 Discussion

	5 Conclusion
	References

	Towards Creating a Deployable Grasp Type Probability Estimator for a Prosthetic Hand
	1 Introduction
	2 Prosthetic Hand
	3 Selecting Efficient Transfer Architectures
	4 Transfer Learning
	4.1 Dataset
	4.2 Details on Transferring and Network Topology
	4.3 Training Setup
	4.4 Evaluation Metric

	5 Results
	6 Conclusion
	References

	Reactors: A Deterministic Model for Composable Reactive Systems
	1 Introduction
	1.1 The Case for Determinism
	1.2 Outline

	2 Reactors
	2.1 Runtime API
	2.2 Example: Drive-by-Wire System

	3 Formalization
	3.1 Notions of Time
	3.2 Reactors
	3.3 Reactions
	3.4 Mutations
	3.5 Event Generation
	3.6 Dependencies
	3.7 Initialization and Termination
	3.8 Execution

	4 Distributed Execution of Reactors
	5 Related Work
	6 Conclusions
	A Summary of the Reactor model
	References

	Simulation and Tools
	Guaranteed Simulation of Dynamical Systems with Integral Constraints and Application on Delayed Dynamical Systems
	1 Introduction
	2 System with Integral Constraint over the State
	3 Interval Analysis and Guaranteed Numerical Integration
	3.1 Interval Analysis
	3.2 Validated Numerical Integration Methods

	4 Dynamical Systems with Integral Constraints
	4.1 Extended System
	4.2 Bounds over w
	4.3 Integral Constraint Propagation

	5 Examples
	5.1 Tank System
	5.2 Delayed System with Integral Quadratic Constraint
	5.3 Discussion

	6 Conclusion
	References

	Advanced Hazard Analysis and Risk Assessment in the ISO 26262 Functional Safety Standard Using Rigorous Simulation
	1 Introduction
	2 Hazard Analysis and Risk Assessment (HARA) in the ISO 26262 Standard
	3 An Intersection Collision Avoidance (ICA) Scenario
	3.1 Critical Warning Distance and Critical Breaking Distance
	3.2 Time-to-Collision (TTC)

	4 Vehicle and Collision Models
	4.1 Definition of Vehicle Dynamics (Pre-Collision)
	4.2 Calculating Time-to-Collision
	4.3 The ICA System

	5 Simulation Results and Discussion
	5.1 Computing the Severity Class Using Simulation
	5.2 Remarks About Our Developing the Model Using Acumen

	6 Related Work
	7 Conclusions and Future Work
	References

	Practical Multicore Extension of Functionally and Temporally Correct Real-Time Simulation for Automotive Systems
	1 Introduction
	2 Related Works
	3 Overview of Single Core Simulation
	4 Empirical Analysis for Deriving a Practical Approach for Multicore Simulator
	5 Proposed Heuristic for Task Partitioning
	5.1 Finding the Expected Earliest Start Time at the Simulator
	5.2 Finding the Expected Latest Finish Time at the Simulator
	5.3 Weighting the [EESTij, ELFTij] Intervals
	5.4 Task Partitioning Heuristic Using Pairwise Blocking

	6 Evaluation
	7 Conclusion
	References

	Constraint-Based Modeling and Symbolic Simulation of Hybrid Systems with HydLa and HyLaGI
	1 Introduction
	1.1 HydLa by Example
	1.2 HyLaGI and WebHydLa
	1.3 Purpose and Outline of the Paper

	2 The Constraint-Based Language HydLa
	2.1 Syntax
	2.2 Semantics: Overview

	3 HyLaGI: A Symbolic Implementation of HydLa
	3.1 Assertion
	3.2 Epsilon Mode
	3.3 Hybrid Automaton Mode

	4 Experiences with Constraint-Based Modeling
	4.1 Discrete Asks and Continuous Asks
	4.2 Common Mistakes in Modeling

	5 Solving Inverse Problems
	5.1 A Simple Example
	5.2 Examples with Persistent Consequents

	6 Conclusion
	A Appendix
	References

	Formal Methods
	Guaranteed Optimal Reachability Control of Reaction-Diffusion Equations Using One-Sided Lipschitz Constants and Model Reduction
	1 Introduction
	1.1 Guaranteed Reachability Analysis
	1.2 Guaranteed Optimal Control
	1.3 Reaction-Diffusion Equations
	1.4 Model Reduction

	2 Optimal Reachability Control of Reaction-Diffusion Equations
	2.1 Domain Discretization
	2.2 Explicit Euler Time Integration
	2.3 Finite Horizon Control Problems
	2.4 Error Upper Bound
	2.5 Model Reduction

	3 Final Remarks
	References

	Towards Formal Co-validation of Hardware and Software Timing Models of CPSs
	1 Introduction
	2 Preliminaries
	3 Co-validation of Timing Models: General Approach
	3.1 Motivations: Consistency of Timings
	3.2 Building Timing Models
	3.3 Verifying Timing Invariants

	4 Case Study: Lipsi Processor
	4.1 Overview
	4.2 Formal SW Model
	4.3 Formal HW Model

	5 Evaluation Results
	6 Related Work
	7 Conclusion and Future Work
	References

	Workshop on Embedded and Cyber-Physical Systems Education
	A Remote Test Environment for a Large-Scale Microcontroller Laboratory Course
	1 Introduction
	2 Remote Access
	2.1 User Scheduling
	2.2 Remote Control

	3 Embedded Hardware
	3.1 DAV6 Board
	3.2 Button Board
	3.3 JTAG and Supply Board

	4 Interface
	4.1 Touchscreen Experiment
	4.2 ATmegaRemote
	4.3 IOModule
	4.4 Remote Board Software

	5 Evaluation
	6 Conclusion
	References

	An Embedded Graduate Lab Course with Spirit
	1 Motivation
	2 Automated Control of Distilling Spirit
	2.1 Structure of the Lab Course
	2.2 Offered Hardware
	2.3 Regulatory Affairs

	3 Blended Learning Aspects
	4 Control Engineering Aspects
	5 Evaluation
	5.1 Survey

	6 Conclusion
	References

	Competence Networks in the Era of CPS – Lessons Learnt in the ICES Cross-Disciplinary and Multi-domain Center
	Abstract
	1 Introduction and Motivation
	2 State of the Art and Other Networks
	2.1 Competence Networks: State of the Art
	2.2 Other Related Initiatives/Networks

	3 The ICES Competence Network
	4 Lessons Learnt
	5 Challenges
	6 Discussion
	6.1 Relating ICES to the Discourse on Learning Networks
	6.2 Generality of Findings

	7 Conclusions and Ways Forward
	Acknowledgments
	References

	Author Index

