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Abstract. The K-Nearest Neighbor (KNN) algorithm is widely used in
practical life because of its simplicity and easy understanding. However,
the traditional KNN algorithm has some shortcomings. It only considers
the number of samples of different classes in k neighbors, but ignores
the distance and location distribution of the unknown sample relative to
the k nearest training samples. Moreover, classes imbalance problem is
always a challenge faced with the KNN algorithm. To solve the above
problems, we propose an improved KNN classification method for classes
imbalanced datasets based on local distance mean and centroid (LDMC-
KNN) in this paper. In the proposed scheme, different numbers of nearest
neighbor training samples are selected from each class, and the unknown
sample is classified according to the distance and position of these nearest
training samples. Experiments are performed on the UCI datasets. The
results show that the proposed algorithm has strong competitiveness and
is always far superior to KNN algorithm and its variants.

Keywords: K-Nearest Neighbor (KNN) · Local distance mean ·
Centroid · Classes imbalance · Classifier

1 Introduction

Many algorithms of machine learning, such as support vector machine [1], deci-
sion tree [2], Bayesian classification [3], etc, train a model from training samples,
and then use the model to classify unknown samples. Unlike these model-based
algorithms, the KNN algorithm [4] has no training process. It makes statistic on

Supported by the National Natural Science Foundation of China (Grant Nos. 61572534
and 61873290), the Special Project for Promoting Economic Development in Guang-
dong Province (Grant No. GDME-2018D004), and the Opening Project of Guang-
dong Province Key Laboratory of Information Security Technology under Grant
2017B030314131.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

H. Gao et al. (Eds.): ChinaCom 2019, LNICST 313, pp. 126–139, 2020.

https://doi.org/10.1007/978-3-030-41117-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41117-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-41117-6_11


A Classifier Combining Local Distance Mean and Centroid 127

the number of each class in k training samples nearest to the unknown sample,
and assigns unknown sample to the class that occupies the largest number in
the k neighbours. The KNN method is not only easy to understand, simple to
implement, but also has remarkable classification performance, which has been
widely used in real life and has been rated as one of the top ten data mining
algorithms [5]. However, there are some problems with the standard KNN algo-
rithm, so researchers proposed a series of improved algorithms to overcome these
shortcomings of KNN algorithm.

Firstly, sensitivity problem of k value. Different values of k have a great
impact on the classification effect. Generally speaking, the method of cross val-
idation is used to get an optimal k value. By introducing the training stage, a
local k value is learned for each testing sample to improve the effect of k in these
classifiers [6,7]. However, their complex training stages make the KNN algo-
rithm lose its advantages of simplicity and convenience. Secondly, the relative
distance between different samples are ignored and all samples within k neigh-
boring training samples are treated equally in traditional KNN algorithm. Zeng
et al. [8] weighted the distance, so that the neighbours who are closer get more
weight. Similarly, the simple majority voting principle also ignores the spatial
distribution of samples and fails to consider the relative positions of unknown
sample and k neighbors. To solve this problem, Mitani et al. [9] used the local
mean vector of k nearest neighbors (LMKNN) to classify unknown samples. On
this basis, Pan et al. [10] improved it and proposed a new k-harmonic near-
est neighbor classifier based on the multi-local means (MLMKHNN), which not
only improved the classification accuracy, but also improved the robustness of
k value. However, only one aspect of k value, distance and location distribution
are considered in the above schemes.

What’s more, the problem of class imbalance has always been a big challenge
in classification problems, and it is a problem that needs to be considered in
many machine learning algorithms. Because of the existing classification algo-
rithms, the classification results for unknown samples are often biased towards
the majority class. For example, the Naive Bayes classifier obtains a classification
model by calculating the prior probability and the conditional probability, and
then assigns the unknown sample to the class with the largest posterior prob-
ability according to the model. According to Bayes’ theorem, prior probability
is a very important part of calculating posterior probability. The KNN algo-
rithm makes statistic on the number of each class in k training samples closest
to the unknown sample, and assigns it to the class that occupies a larger num-
ber in the k neighborhoods. Whether it is Naive Bayes, KNN or other machine
learning algorithms, although they sometimes seem to be able to achieve a good
classification accuracy, they are biased against minority classes for imbalanced
datasets.

However, the distribution of classes is often imbalanced in practice. For exam-
ple, early warning of oil and gas leaks, detection of machine failures and identifi-
cation of fraudulent calls, etc. In these examples, the amount of data on oil and
gas leaks, machine failures, and fraudulent calls are much lower than the amount
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of data in normal times. However, the traditional machine learning algorithms
have the problem of improving the overall classification accuracy by misjudging
the samples of minority class. This is very unscientific in practical applications.
What we really need is to improve the classification accuracy of each class, espe-
cially the minority class (such as those that require early warning samples).

In this paper, we propose a new classification standard. The local distance
mean and the centroid distance are combined to serve as the basis for classifica-
tion. This approach takes into account the distance and position distribution of
the training samples relative to the unknown sample. In addition, we propose a
new method to deal with the problem of class imbalance. We opt different neigh-
bors from different classes, which does not increase the computational complex-
ity or reduce the sample information. The experimental results show that the
proposed classification method perform well in both classes balanced datasets
and classes imbalanced datasets, especially for classes imbalanced datasets. The
LDMC-KNN algorithm proposed in this paper has a great advantage over the
standard KNN algorithm and the latest KNN improved algorithms.

The rest of the paper is organized as follows: Sect. 2 reviews the related works.
Section 3 elaborates on the proposed algorithm LDMC-KNN. Our experimental
results are presented in Sect. 4 and our conclusion is given in Sect. 5.

2 Related Work

Suppose T = {xn ∈ Rm}Nn=1 is the given m dimensional feature space, while
N is the total number of training samples, xn represents the n − th training
sample, Rm is the m dimensional real vector R. yn ∈ {c1, c2, ..., cN} is the label
of the training sample xn. Ti = {xij ∈ Rm}Ni

j=1 represents the collection of i− th
class training samples, Ti is a subset of T in feature space. xij represents the j-th
nearest training sample in the i-th class. Suppose the testing sample or unknown
sample is represented as x.

2.1 KNN

The basic process of the KNN algorithm is as follows:
The Euclidean distance (Other distance measures can also be used) are cal-

culated from testing sample x to each training samples:

dist(xn, x) =
√

(xn − x)T(xn − x). (1)

The distances dist(xn, x) are sorted from small to large, and the k training
samples closest to the testing sample are selected. The number of each class is
counted in the k training samples, and the testing sample is classified into the
class that accounts for the majority of the k training samples:

Cx = arg max
ci

∑
xn∈Xk

L(Cxn
= Ci). (2)

Cx represents the class of x, Xk is the set of k nearest neighbor training samples
including xn. When the class of xn is the i-th class, L(•) = 1, otherwise, L(•) = 0.
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2.2 LMKNN

The basic process of the LMKNN algorithm is as follows:
For a testing sample x, k nearest training samples are selected from each

subset Ti (The value of k is less than the training sample number nci of each
class). The method of distance measurement uses Euclidean distance:

dist(xij , x) =
√

(xij − x)T(xij − x). (3)

The local mean vectors (i.e. local centroid) are calculated using the k nearest
training samples in each class:

uik =
1
k

k∑
j=1

xij . (4)

The distances from the local mean vector of each class to the testing sample are
calculated:

Uik =
√

(uik − x)T(uik − x). (5)

Finally, the testing sample x is classified to the class with the shortest distance:

Cx = arg min
ci

Uik. (6)

2.3 Imbalance Datasets

For classes imbalanced datasets, the solution can be roughly summarized into
two types. The first approach is to pre-process the training set. It generally over-
samples the minority class and/or under-samples the majority class to obtain
the same number of training samples for each class. One of the most common
under-sampling methods is called Random Under-Sampling [11], where major-
ity class samples are randomly discarded until this class contains as many sam-
ples as other classes. However, it will lose some information of the training set,
thus decreasing the classification accuracy. An over-sampling method is proposed
in [12], in which the synthesized samples are introduced along the line segments
connecting less than or equal to k minority class nearest neighbors. He et al. pro-
posed a new adaptive synthesis method [13], where different weights are assigned
to the different samples of minority classes according to the learning difficulty
degree of different minority classes samples. Samples of minority classes that are
difficult to learn generate more composite data than samples of minority classes
that are easy to learn. However, these over-sampling method will introduce a
large number of new samples, increase the computational complexity, and thus
prolong the classification time.

The second method is to keep the original datasets unchanged and improve
the classifier to relieve the class imbalance. Mullick et al. proposed a class-based
global weighting scheme, named Global Imbalance Handling Scheme (GIHS) [6],
which takes the ratio of ideal probability and current probability of a class as the
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global weight related to this class. Zhang et al. [14] proposed k Rare-class Nearest
Neighbour (KRNN) classification algorithm, which adjusts the posterior estima-
tion of unknown samples to make it more partial to minority classes. Dubey et
al. proposed a modified KNN algorithm [15]. In this method, the weighting fac-
tor for each class is calculated by classifying the neighbors of unknown samples
using the existing KNN classifier. Li et al. suggested a training stage which exem-
plar minority class training instances are identified, and the samples of minority
classes are extended to a Gaussian sphere [16], this method will make classifi-
cation more sensitive to minority classes. Liu et al. proposed a class confidence
weighting method [17], the samples are weighted by using the probability of
attribute values given class labels in KNN algorithm. This approach can correct
the preference of traditional KNN algorithm to majority classes. However, the
above algorithms either introduce the training stage or need to adjust parame-
ters, which increases the time complexity and eliminates the advantages of KNN
algorithm that is simple and easy to implement.

3 Proposed Method

In this section, we propose a new method to eliminate the class imbalance while
improving the accuracy of KNN classifier. First, we assume that the distribu-
tion of classes is balanced, the number of training samples of each class is the
same, and KNN algorithm has no preference for each class. The standard KNN
algorithm simply counts the number of classes of k neighbor samples, and does
not care about the distance of the k samples. Therefore, under the condition
that we guarantee the same number of training samples taken from each class
(assuming that k training samples are taken from each class), to calculate the
average distance between k training samples in each class and unknown sample.

For an unknown sample x, Its distance to all training samples are calculated
using Euclidean distance:

dist(xij , x) =
√

(xij − x)T(xij − x). (7)

The training samples in each subset Ti are sorted in an increasing order accord-
ing to their corresponding distances to the unknown sample x. And k nearest
training samples are selected from each subset Ti, the corresponding distance
dist(xij , x), j = 1, ..., k are recorded. Then the average distance of the nearest k
training samples to the unknown sample are calculated:

Dik =
1
k

k∑
j=1

dist(xij , x). (8)

Furthermore, the position distribution of the training samples in each class
relative to the unknown sample is considered. The centroid of k nearest training
samples are calculated in each class:

uik =
1
k

k∑
j=1

xij . (9)
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Then the distance from the centroid of each class to the unknown sample are
calculated:

Uik =
√

(uik − x)T(uik − x). (10)

Our ultimate goal is to find a class in which the average distance between k
nearest training samples and unknown sample is the shortest (This means that
the samples in this class are closer to the unknown sample), and the distance
between the centroid of the k nearest training samples and the unknown sam-
ple is also the shortest. The shorter the distance between the unknown sample
and the centroid, the stronger the enveloping ability of this class of samples to
the unknown sample, and the greater the probability that the unknown sample
belongs to this class. When the k training samples are uniformly distributed
around the unknown sample, the centroid distance is 0.

Therefore, we combined the average distance and centroid distance of k near-
est training samples as the basis for judging the class of unknown sample. The
final judgment formula is:

Cx = arg min
ci

(Uik + Dik). (11)

The above discussion is based on the assumption that the number of samples
in each class is balanced. For the imbalanced datasets of classes, the number of
training samples of different classes is different. If the same number of nearest
neighbors from different classes are opted, it is unfair for the minority classes.
Generally speaking, the distribution of samples of minority class is more sparse,
the same number of nearest neighbors are opted as the majority class may cause
the mean distance between the unknown sample and the nearest neighbors of
the minority class to be larger.

Fig. 1. Sample distribution example of class imbalanced dataset.

In terms of the sample distribution in Fig. 1. The ratio of the sample of
the blue circle to the red asterisk is 3:1. It can be seen from the figure that if
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the standard KNN algorithm is used, the samples of red asterisk close to the
classification boundary are easily classified into blue circle class. As far as the
samples of red asterisk surrounded by a green circle is concerned, no matter
what the k is, it cannot be classified correctly. If we take different number of
training samples according to the number of samples in each class. Samples of
the majority class need to contribute samples further away from the unknown
sample, which is equivalent to giving training samples of the majority class with
less weight. The rate of misclassification of minority class samples decreases.
In practical applications, it is very important to correctly identify the minority
class in the unknown samples

Therefore, we eliminate the class imbalance problem by selecting different
numbers of nearest neighbors from different classes. The specific method is as
follows:

First, the number of classes classNum and the number of training samples
in each class are counted N = {nc1 , nc2 ..., ncclassNum

}. According to the number
of training samples of each class, the number of training samples selected in
each class is determined. The class with the smallest training sample is used as
a benchmark, and the k nearest training samples are selected from this class.
Then the number of training samples selected from other classes is:

kci = k ∗ round(nci/min(N)). (12)

Since the number of samples selected must be an integer, round(•) is used to
round it. Then, the distance mean and centroid distance of kci training samples
in each class were calculated. The unknown samples are classified into the class
with the shortest combining local distance mean and centroid distance. Note that
when the dataset is balanced, the algorithm degenerates to choose k training
samples from each class, so the algorithm is equally applicable to the balanced
datasets.

We substitute Eqs. (8, 9, 10, 12) into Eq. (11) to get the final judgment
formula of the unknown sample:

Cx = arg min
ci

(

√
√
√
√
√(

1

kci

kci∑

j=1

xij − x)T(
1

kci

kci∑

j=1

xij − x) +
1

kci

kci∑

j=1

√

(xij − x)T(xij − x)).

(13)
The pseudo-code of LDMC-KNN is shown in Algorithm1.

4 Experiments and Results

4.1 Degree of Imbalance

We use the imbalance ratio (IR) to quantify the imbalanced degree of classes.
For the dataset of the two classes, IR is expressed as the ratio of the number of
training samples of the majority class and the number of training samples of the
minority class. For multi-class datasets, IR is defined as the maximum value of IR
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Algorithm 1. The proposed LDMC-KNN classifier
Input: Training sample set T , training sample class set Y , unknown sample x, nearest

neighbor number k
Output: The class of the unknown sample
1: Calculate the number of training sample classes classNum, and the number of

training samples in each class N = {nc1 , nc2 ..., ncclassNum}
2: for i = 1 to classNum do
3: kci = k ∗ round(nci/min(N))
4: end for
5: for i = 1 to classNum do
6: for j = 1 to nci do
7: dist(xij , x) =

√

(xij − x)T(xij − x)
8: end for
9: Sort the distance dist(xij , x) and take out the first kci training samples

10: uik = 1
kci

∑kci
j=1 xij

11: Uik =
√

(uik − x)T(uik − x)

12: Dik = 1
kci

∑kci
j=1

√

(xij − x)T(xij − x)

13: end for
14: Cx = arg minci (Uik + Dik)

between all two classes. Based on IR values, we divided the datasets into either
balanced datasets (IR ≤ 1.15), mildly imbalanced datasets (1.15 < IR ≤ 3.5)
and highly imbalanced datasets (IR > 3.5).

In this section, we use the UCI [18] datasets to demonstrate our proposed
approach. The information for the 20 datasets is shown in Table 1. According to
the IR value, we can see that the first 3 datasets are either balanced datasets, the
middle 12 datasets are mildly imbalanced datasets, and the last 5 datasets are
highly imbalanced datasets. (For the Segment, Led7dight, and Glass datasets,
one class is used as the minority class, and the others are combined as the
majority class, which is the same as in [14,19]). According to the information
in Table 1, we can see the datasets used in our experiment is a good example
of a wide range of number of instances, from 208 to 7400, and a wide range of
number of features, from 3 to 60.

4.2 Indices for Evaluation of Classification Performance

We use the following three indices to evaluate the performances of classifiers:

Accuracy. For a testing set containing M testing samples, it is assumed that the
number of correctly classified samples is m. Accuracy is defined as accuracy =
m/M . The more the unknown samples can be correctly classified, the higher
the accuracy is. However, it does not take into account the classification of each
class, so it is not suitable to judge the class imbalance data. Therefore, in our
experiment, we only use accuracy to evaluate the performance of the classifiers
on the class either balanced datasets.
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Table 1. Dataset description of 20 real-world datasets from UCI repository.

Dataset Samples Classes Features Class number ratio IR

Ringnorm 7400 2 20 3736:3664 1.02

Waveform3 5000 3 21 1657:1647:1696 1.02

Sonar 208 2 60 97:111 1.14

Spambase 4597 2 57 2785:1812 1.54

Cloud 1024 2 10 627:397 1.58

Pima 768 2 8 268:500 1.87

Diabetes 768 2 8 500:268 1.87

Saheart 462 2 9 302:160 1.89

Tictactoc 958 2 9 626:332 1.89

Contraceptive 1473 3 9 629:333:511 1.89

German 1000 2 24 300:700 2.32

Breast 277 2 9 81:196 2.42

Haberman 306 2 3 225:81 2.78

Mammographic 748 2 4 278:570 2.81

Parkinsons 195 2 22 48:147 3.06

Hayesroth 160 2 4 129:31 4.16

Balance 625 3 4 49:288:288 5.88

Segment 2310 2 18 1980:330 6

Led7digit 500 2 7 455:45 10.11

Glass 214 2 9 17:185 10.88

Gmeans. Gmeans is a commonly used evaluation standard for imbalanced
datasets. It is based on two classes of confusion matrices. Here, we extend
Gmeans to multi-classes problem. We assume that the testing set contains
a total of M samples, among which Mc testing samples belong to class c
(c = 1, 2, ..., classNum), the number of correctly classified in class c is mc.
The calculation method of Gmeans is as follows:

Gmeans = (
classNum∏

c=1

(mc/Mc))1/classNum (14)

Compared with the accuracy, Gmeans takes into account the classification per-
formance of each class, which is more suitable to be the judgment basis of imbal-
anced datasets of the class.

Area Under Receiver Operating Characteristics Curve (AUROC). The
Receiver Operating Characteristics (ROC) Curve can comprehensively reflect the
performance of the classifier, which is also the performance evaluation standard
of the class imbalanced classifier. Researchers usually use the area under the
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ROC curve, namely AUROC, to further quantify and compare the performance
of classifiers. It is calculated as follows [6]:

AUROC = ((1 + TPR − FPR)/2), (15)

where TPR represents true positive rate and FPR represents false positive rate.
Here, minority class is seen as positively labeled. But the AUROC cannot be
directly applied to multi-classes scenario, so we only use AUROC as the evalu-
ation standard for two classes of imbalanced problems.

4.3 Experimental Procedure

In practice, in order to avoid the influence of different units and ranges of differ-
ent dimensional features on the classification, it is necessary to standardize the
features first. We use z-score standardization in our experiment

Zi =
Xi − E(Xi)√

D(Xi)
, (16)

where, Xi denotes the original i-dimensional sample feature, Zi represents the
i-th dimensional sample feature after standardization, E(Xi) is the mean of
the i-th feature samples,

√
D(Xi) is the standard deviation of the i-th dimen-

sional feature. Using Eq. (16), the original feature data can be normalized to a
mean of zero and a variance of one. It makes data of different magnitudes to
be converted to the same magnitude, increasing the comparability of the data.
All experiments were conducted on the computer with Intel(R) Core(TM) i7-
8700 CPU at 3.20 GHz, 16 GB RAM and Windows 10 64-bit Operating System
running with the Matlab R2016b platform-based programs.

In the experiment, the samples are randomly divided into ten, one as the test-
ing set, and the remaining nine as the training set. In order to ensure the fairness
of the experiment, the partition of each experimental datasets is performed in
the same dataset and is kept unchanged across the different algorithms, to ensure
that the testing set and training set used in each algorithm are the same.

Four algorithms are compared in the experiment, which are standard KNN
algorithm [4], MLMKHNN algorithm [10], Adaknn2GIHS algorithm [6] and
AdaknnGIHS algorithm [6]. These four methods have been briefly introduced
in the Sects. 1, 2, where MLMKHNN algorithm is an improvement of KNN algo-
rithm, without taking into account the class imbalance problem. Adaknn2GIHS
algorithm and AdaknnGIHS algorithm are proposed for class imbalance datasets
to alleviate class imbalance problems, and two methods of adaptive k value are
used in these two algorithms to improve the performance of classifiers. In the
experiment, for the traditional KNN, the MLMKHNN and the LDMC-KNN pro-
posed by us, the range of k value is 1–20, and each k value is cross-verified ten
times to find the optimal k value, and then the corresponding classification per-
formance is compared. For the Adaknn2GIHS algorithm and the AdaknnGIHS
algorithm, since they are adaptive to select k value and have a lot of randomness.
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Table 2. Comparison of classifiers in terms of Gmeans on imbalance datasets.

Dataset KNN LDMC-KNN MLMKHNN Adaknn2GIHS AdaknnGIHS

Glass 0.2158 0.6550 0.2158 0.3983 0.4396

Led7digit 0.7966 0.8945 0.8765 0.8094 0.8199

Segment 0.9538 0.9686 0.9570 0.9388 0.9437

Balance 0.1428 0.8208 0.5282 0.5776 0.5246

Hayesroth 0.7371 0.9786 0.9628 0.7973 0.8044

Parkinsons 0.9362 0.9426 0.9362 0.9087 0.9053

Mammographic 0.6100 0.6840 0.5685 0.6575 0.6131

Haberman 0.5159 0.6138 0.4934 0.5352 0.5732

Breast 0.5708 0.6612 0.5998 0.5849 0.5704

German 0.6404 0.7050 0.5910 0.6545 0.6498

Contraceptive 0.4929 0.5208 0.4438 0.4750 0.4617

Tictactoc 0.7663 0.8637 0.8456 0.7652 0.7511

Saheart 0.5948 0.6918 0.6226 0.6498 0.6450

Diabetes 0.6786 0.7544 0.7267 0.7119 0.7056

Pima 0.7290 0.7481 0.7105 0.7175 0.7108

Cloud 0.9653 0.9780 0.9552 0.9572 0.9545

Spambase 0.9082 0.9281 0.9267 0.8970 0.9000

Table 3. Comparison of classifiers in terms of AUROC for two classes of imbalance
datasets.

Dataset KNN LDMC-KNN MLMKHNN Adaknn2GIHS AdaknnGIHS

Glass 0.5679 0.7036 0.5567 0.5707 0.6428

Led7digit 0.8523 0.8976 0.8854 0.8495 0.8564

Segment 0.9550 0.9688 0.9583 0.9394 0.9442

Hayesroth 0.8058 0.9796 0.9652 0.8539 0.8543

Parkinsons 0.9391 0.9436 0.9391 0.9115 0.9088

Mammographic 0.6503 0.6897 0.5792 0.6647 0.6254

Haberman 0.6150 0.6418 0.5845 0.5800 0.6004

Breast 0.6153 0.6703 0.6335 0.6019 0.5914

German 0.6524 0.7074 0.6234 0.6575 0.6543

Tictactoc 0.7905 0.8712 0.8551 0.7756 0.7611

Saheart 0.6432 0.6959 0.6481 0.6586 0.6548

Diabetes 0.6986 0.7574 0.7340 0.7226 0.7096

Pima 0.7336 0.7517 0.7093 0.7212 0.7156

Cloud 0.9657 0.9781 0.9558 0.9615 0.9550

Spambase 0.9084 0.9282 0.9270 0.8970 0.9003

We repeated the experiment ten times, and conducted cross validation ten times
for each experiment, then take the average result as the basis for comparison.

Table 2 shows the Gmeans performance for 17 imbalanced datasets. We can
find that the algorithm proposed in this paper is always better than and far
superior to the other four algorithms on the comparison datasets. Table 3 shows
the performance comparison of five classifiers in terms of AUROC for two classes
of imbalanced datasets. It can also be seen that our proposed method has obvi-
ous advantages. This is because we not only consider the distance and location
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distribution of each class of samples relative to the unknown samples, but also
consider the problem of class imbalance.

Table 4. Comparison of classifiers in terms of accuracy on balance datasets.

Dataset KNN LDMC-KNN MLMKHNN Adaknn2GIHS AdaknnGIHS

Sonar 0.9048 0.9286 0.9190 0.8476 0.8667

Waveform3 0.8520 0.8548 0.8402 0.8436 0.8476

Ringnorm 0.7511 0.9431 0.9296 0.6420 0.7286

What’s more, to demonstrate that our algorithm is equally applicable to
class-balanced datasets, we use three class-balanced datasets for a simple illus-
tration (Because the algorithm proposed in this paper is mainly to solve the
classes imbalance problem, we will not discuss the classes balance datasets too
much here). Table 4 shows the classification accuracy of five algorithms on three
balanced datasets, We can see that for class balanced datasets, although the
advantages of our algorithm are not as great as it is for class imbalanced datasets,
it is generally superior to the other four methods.

Table 5. The running times(s) of the five algorithms on different datasets.

Dataset KNN LDMC-KNN MLMKHNN Adaknn2GIHS AdaknnGIHS

Ringnorm 3.2252 5.1621 6.5298 32.4742 32.3622

Waveform3 1.4002 2.3725 3.3218 14.5838 15.2613

Sonar 0.0034 0.0070 0.0224 0.0853 0.2596

Spambase 1.3189 2.0880 2.6676 13.2528 13.9233

Cloud 0.0601 0.1032 0.1924 0.8012 0.9646

Pima 0.0341 0.0605 0.1255 0.5228 0.7007

Diabetes 0.0337 0.0598 0.1252 0.5184 0.6896

Saheart 0.0127 0.0240 0.0616 0.2426 0.4188

Tictactoc 0.0529 0.0919 0.1761 0.7254 0.8894

Contraceptive 0.1209 0.2136 0.4039 1.6684 0.8198

German 0.0594 0.1022 0.1890 0.8433 1.0217

Breast 0.0050 0.0102 0.0319 0.1231 0.2868

Haberman 0.0059 0.0117 0.0352 0.1362 0.3060

Parkinsons 0.0027 0.0059 0.0208 0.0851 0.2523

Hayesroth 0.0020 0.0052 0.0226 0.0683 0.2367

Balance 0.0233 0.0457 0.1194 0.3773 0.5474

Segment 0.3044 0.5037 0.7295 3.3785 3.6780

Led7digit 0.0150 0.0279 0.0675 0.2579 0.4449

Glass 0.0032 0.0069 0.0228 0.0853 0.2701

Finally, we analyze the complexity of the algorithm. Table 5 shows the run-
ning times of the five algorithms on different data sets, running time is measured
in seconds. As we can see, the running time of our algorithm is only longer than
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the standard KNN algorithm, and the difference is very small. This is because
our algorithm is compared with the standard KNN algorithm, it just has an
extra work on the calculation of Eqs. (12) and (13). Although it seems that our
algorithm has a loop nesting, it actually splits the entire large training set T
into classNum small subset Ti for calculation. Therefore, the amount of com-
putation is not much different from the standard KNN. The running time of the
MLMKHNN algorithm is slightly larger because it calculates multiple local mean
vectors to calculate the harmonic average distance. The Adaknn2GIHS algorithm
and the AdaknnGIHS algorithm introduce a relatively complex training stage.
This training phase itself requires running KNN algorithms many times. There-
fore, the Adaknn2GIHS algorithm and AdaknnGIHS algorithm require much
longer running time.

5 Conclusions

In this paper, we propose an improved KNN algorithm based on combining
local distance mean and centroid for imbalanced datasets. This method not only
considers the distance from the unknown sample to each class, but also considers
the position of the unknown sample in each class. In addition, the problem of
class imbalance is solved by taking out different number of samples from different
classes.

To evaluate the performance of the proposed LDMC-KNN algorithm, we
compare it with the standard KNN and three state-of-the-art KNN-based
approaches. The experiment was performed on the datasets of UCI database.
Experimental results show that the performance (Gmeans and AUROC) of our
proposed algorithm is far better than any of the other four algorithms on the
imbalanced datasets. For the balanced datasets, our algorithm is also superior
to other algorithms of interest in accuracy. Further, we compared the running
times of the five algorithms. The experimental results show that the running
time of our algorithm is not much different from the standard KNN algorithm,
but it is obviously shorter than any of the other three improved KNN algorithms,
demonstrating the advantages of our algorithm.
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