
Matthew F. Dixon
Igor Halperin
Paul Bilokon

Machine
Learning in
Finance
From Theory to Practice

Machine Learning in Finance

Matthew F. Dixon • Igor Halperin • Paul Bilokon

Machine Learning in Finance
From Theory to Practice

Matthew F. Dixon
Department of Applied Mathematics
Illinois Institute of Technology
Chicago, IL, USA

Igor Halperin
Tandon School of Engineering
New York University
Brooklyn, NY, USA

Paul Bilokon
Department of Mathematics
Imperial College London
London, UK

Additional material to this book can be downloaded from http://mypages.iit.edu/~mdixon7/
book/ML_Finance_Codes-Book.zip

ISBN 978-3-030-41067-4 ISBN 978-3-030-41068-1 (eBook)
https://doi.org/10.1007/978-3-030-41068-1

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://mypages.iit.edu/~mdixon7/book/ML_Finance_Codes-Book.zip
http://mypages.iit.edu/~mdixon7/book/ML_Finance_Codes-Book.zip
https://doi.org/10.1007/978-3-030-41068-1

Once you eliminate the impossible, whatever
remains, no matter how improbable, must be
the truth.

—Arthur Conan Doyle

Introduction

Machine learning in finance sits at the intersection of a number of emergent
and established disciplines including pattern recognition, financial econometrics,
statistical computing, probabilistic programming, and dynamic programming. With
the trend towards increasing computational resources and larger datasets, machine
learning has grown into a central computational engineering field, with an emphasis
placed on plug-and-play algorithms made available through open-source machine
learning toolkits. Algorithm focused areas of finance, such as algorithmic trading
have been the primary adopters of this technology. But outside of engineering-based
research groups and business activities, much of the field remains a mystery.

A key barrier to understanding machine learning for non-engineering students
and practitioners is the absence of the well-established theories and concepts that
financial time series analysis equips us with. These serve as the basis for the
development of financial modeling intuition and scientific reasoning. Moreover,
machine learning is heavily entrenched in engineering ontology, which makes devel-
opments in the field somewhat intellectually inaccessible for students, academics,
and finance practitioners from the quantitative disciplines such as mathematics,
statistics, physics, and economics. Consequently, there is a great deal of miscon-
ception and limited understanding of the capacity of this field. While machine
learning techniques are often effective, they remain poorly understood and are
often mathematically indefensible. How do we place key concepts in the field of
machine learning in the context of more foundational theory in time series analysis,
econometrics, and mathematical statistics? Under which simplifying conditions are
advanced machine learning techniques such as deep neural networks mathematically
equivalent to well-known statistical models such as linear regression? How should
we reason about the perceived benefits of using advanced machine learning methods
over more traditional econometrics methods, for different financial applications?
What theory supports the application of machine learning to problems in financial
modeling? How does reinforcement learning provide a model-free approach to
the Black–Scholes–Merton model for derivative pricing? How does Q-learning
generalize discrete-time stochastic control problems in finance?

vii

viii Introduction

This book is written for advanced graduate students and academics in financial
econometrics, management science, and applied statistics, in addition to quants and
data scientists in the field of quantitative finance. We present machine learning
as a non-linear extension of various topics in quantitative economics such as
financial econometrics and dynamic programming, with an emphasis on novel
algorithmic representations of data, regularization, and techniques for controlling
the bias-variance tradeoff leading to improved out-of-sample forecasting. The book
is presented in three parts, each part covering theory and applications. The first
part presents supervised learning for cross-sectional data from both a Bayesian
and frequentist perspective. The more advanced material places a firm emphasis
on neural networks, including deep learning, as well as Gaussian processes, with
examples in investment management and derivatives. The second part covers
supervised learning for time series data, arguably the most common data type
used in finance with examples in trading, stochastic volatility, and fixed income
modeling. Finally, the third part covers reinforcement learning and its applications
in trading, investment, and wealth management. We provide Python code examples
to support the readers’ understanding of the methodologies and applications. As
a bridge to research in this emergent field, we present the frontiers of machine
learning in finance from a researcher’s perspective, highlighting how many well-
known concepts in statistical physics are likely to emerge as research topics for
machine learning in finance.

Prerequisites

This book is targeted at graduate students in data science, mathematical finance,
financial engineering, and operations research seeking a career in quantitative
finance, data science, analytics, and fintech. Students are expected to have com-
pleted upper section undergraduate courses in linear algebra, multivariate calculus,
advanced probability theory and stochastic processes, statistics for time series
(econometrics), and gained some basic introduction to numerical optimization and
computational mathematics. Students shall find the later chapters of this book,
on reinforcement learning, more accessible with some background in investment
science. Students should also have prior experience with Python programming and,
ideally, taken a course in computational finance and introductory machine learning.
The material in this book is more mathematical and less engineering focused than
most courses on machine learning, and for this reason we recommend reviewing
the recent book, Linear Algebra and Learning from Data by Gilbert Strang as
background reading.

Introduction ix

Advantages of the Book

Readers will find this book useful as a bridge from well-established foundational
topics in financial econometrics to applications of machine learning in finance.
Statistical machine learning is presented as a non-parametric extension of financial
econometrics and quantitative finance, with an emphasis on novel algorithmic rep-
resentations of data, regularization, and model averaging to improve out-of-sample
forecasting. The key distinguishing feature from classical financial econometrics
and dynamic programming is the absence of an assumption on the data generation
process. This has important implications for modeling and performance assessment
which are emphasized with examples throughout the book. Some of the main
contributions of the book are as follows:

• The textbook market is saturated with excellent books on machine learning.
However, few present the topic from the prospective of financial econometrics
and cast fundamental concepts in machine learning into canonical modeling and
decision frameworks already well established in finance such as financial time
series analysis, investment science, and financial risk management. Only through
the integration of these disciplines can we develop an intuition into how machine
learning theory informs the practice of financial modeling.

• Machine learning is entrenched in engineering ontology, which makes develop-
ments in the field somewhat intellectually inaccessible for students, academics,
and finance practitioners from quantitative disciplines such as mathematics,
statistics, physics, and economics. Moreover, financial econometrics has not kept
pace with this transformative field, and there is a need to reconcile various
modeling concepts between these disciplines. This textbook is built around
powerful mathematical ideas that shall serve as the basis for a graduate course for
students with prior training in probability and advanced statistics, linear algebra,
times series analysis, and Python programming.

• This book provides financial market motivated and compact theoretical treatment
of financial modeling with machine learning for the benefit of regulators, wealth
managers, federal research agencies, and professionals in other heavily regulated
business functions in finance who seek a more theoretical exposition to allay
concerns about the “black-box” nature of machine learning.

• Reinforcement learning is presented as a model-free framework for stochastic
control problems in finance, covering portfolio optimization, derivative pricing,
and wealth management applications without assuming a data generation
process. We also provide a model-free approach to problems in market
microstructure, such as optimal execution, with Q-learning. Furthermore,
our book is the first to present on methods of inverse reinforcement
learning.

• Multiple-choice questions, numerical examples, and more than 80 end-of-
chapter exercises are used throughout the book to reinforce key technical
concepts.

x Introduction

• This book provides Python codes demonstrating the application of machine
learning to algorithmic trading and financial modeling in risk management
and equity research. These codes make use of powerful open-source software
toolkits such as Google’s TensorFlow and Pandas, a data processing environment
for Python.

Overview of the Book

Chapter 1

Chapter 1 provides the industry context for machine learning in finance, discussing
the critical events that have shaped the finance industry’s need for machine learning
and the unique barriers to adoption. The finance industry has adopted machine
learning to varying degrees of sophistication. How it has been adopted is heavily
fragmented by the academic disciplines underpinning the applications. We view
some key mathematical examples that demonstrate the nature of machine learning
and how it is used in practice, with the focus on building intuition for more technical
expositions in later chapters. In particular, we begin to address many finance
practitioner’s concerns that neural networks are a “black-box” by showing how they
are related to existing well-established techniques such as linear regression, logistic
regression, and autoregressive time series models. Such arguments are developed
further in later chapters.

Chapter 2

Chapter 2 introduces probabilistic modeling and reviews foundational concepts
in Bayesian econometrics such as Bayesian inference, model selection, online
learning, and Bayesian model averaging. We develop more versatile representations
of complex data with probabilistic graphical models such as mixture models.

Chapter 3

Chapter 3 introduces Bayesian regression and shows how it extends many of
the concepts in the previous chapter. We develop kernel-based machine learning
methods—specifically Gaussian process regression, an important class of Bayesian
machine learning methods—and demonstrate their application to “surrogate” mod-
els of derivative prices. This chapter also provides a natural point from which to

Introduction xi

develop intuition for the role and functional form of regularization in a frequentist
setting—the subject of subsequent chapters.

Chapter 4

Chapter 4 provides a more in-depth description of supervised learning, deep
learning, and neural networks—presenting the foundational mathematical and sta-
tistical learning concepts and explaining how they relate to real-world examples in
trading, risk management, and investment management. These applications present
challenges for forecasting and model design and are presented as a reoccurring
theme throughout the book. This chapter moves towards a more engineering
style exposition of neural networks, applying concepts in the previous chapters to
elucidate various model design choices.

Chapter 5

Chapter 5 presents a method for interpreting neural networks which imposes mini-
mal restrictions on the neural network design. The chapter demonstrates techniques
for interpreting a feedforward network, including how to rank the importance of
the features. In particular, an example demonstrating how to apply interpretability
analysis to deep learning models for factor modeling is also presented.

Chapter 6

Chapter 6 provides an overview of the most important modeling concepts in
financial econometrics. Such methods form the conceptual basis and performance
baseline for more advanced neural network architectures presented in the next
chapter. In fact, each type of architecture is a generalization of many of the models
presented here. This chapter is especially useful for students from an engineering or
science background, with little exposure to econometrics and time series analysis.

Chapter 7

Chapter 7 presents a powerful class of probabilistic models for financial data.
Many of these models overcome some of the severe stationarity limitations of the
frequentist models in the previous chapters. The fitting procedure demonstrated is
also different—the use of Kalman filtering algorithms for state-space models rather

xii Introduction

than maximum likelihood estimation or Bayesian inference. Simple examples of
hidden Markov models and particle filters in finance and various algorithms are
presented.

Chapter 8

Chapter 8 presents various neural network models for financial time series analysis,
providing examples of how they relate to well-known techniques in financial econo-
metrics. Recurrent neural networks (RNNs) are presented as non-linear time series
models and generalize classical linear time series models such as AR(p). They
provide a powerful approach for prediction in financial time series and generalize
to non-stationary data. The chapter also presents convolution neural networks for
filtering time series data and exploiting different scales in the data. Finally, this
chapter demonstrates how autoencoders are used to compress information and
generalize principal component analysis.

Chapter 9

Chapter 9 introduces Markov decision processes and the classical methods of
dynamic programming, before building familiarity with the ideas of reinforcement
learning and other approximate methods for solving MDPs. After describing Bell-
man optimality and iterative value and policy updates before moving to Q-learning,
the chapter quickly advances towards a more engineering style exposition of the
topic, covering key computational concepts such as greediness, batch learning, and
Q-learning. Through a number of mini-case studies, the chapter provides insight
into how RL is applied to optimization problems in asset management and trading.
These examples are each supported with Python notebooks.

Chapter 10

Chapter 10 considers real-world applications of reinforcement learning in finance,
as well as further advances the theory presented in the previous chapter. We start
with one of the most common problems of quantitative finance, which is the problem
of optimal portfolio trading in discrete time. Many practical problems of trading or
risk management amount to different forms of dynamic portfolio optimization, with
different optimization criteria, portfolio composition, and constraints. The chapter
introduces a reinforcement learning approach to option pricing that generalizes the
classical Black–Scholes model to a data-driven approach using Q-learning. It then
presents a probabilistic extension of Q-learning called G-learning and shows how it

Introduction xiii

can be used for dynamic portfolio optimization. For certain specifications of reward
functions, G-learning is semi-analytically tractable and amounts to a probabilistic
version of linear quadratic regulators (LQRs). Detailed analyses of such cases are
presented and we show their solutions with examples from problems of dynamic
portfolio optimization and wealth management.

Chapter 11

Chapter 11 provides an overview of the most popular methods of inverse reinforce-
ment learning (IRL) and imitation learning (IL). These methods solve the problem
of optimal control in a data-driven way, similarly to reinforcement learning, however
with the critical difference that now rewards are not observed. The problem is rather
to learn the reward function from the observed behavior of an agent. As behavioral
data without rewards are widely available, the problem of learning from such data
is certainly very interesting. The chapter provides a moderate-level description of
the most promising IRL methods, equips the reader with sufficient knowledge to
understand and follow the current literature on IRL, and presents examples that use
simple simulated environments to see how these methods perform when we know
the “ground truth" rewards. We then present use cases for IRL in quantitative finance
that include applications to trading strategy identification, sentiment-based trading,
option pricing, inference of portfolio investors, and market modeling.

Chapter 12

Chapter 12 takes us forward to emerging research topics in quantitative finance
and machine learning. Among many interesting emerging topics, we focus here
on two broad themes. The first one deals with unification of supervised learning
and reinforcement learning as two tasks of perception-action cycles of agents. We
outline some recent research ideas in the literature including in particular informa-
tion theory-based versions of reinforcement learning and discuss their relevance for
financial applications. We explain why these ideas might have interesting practical
implications for RL financial models, where feature selection could be done within
the general task of optimization of a long-term objective, rather than outside of it,
as is usually performed in “alpha-research.”

The second topic presented in this chapter deals with using methods of reinforce-
ment learning to construct models of market dynamics. We also introduce some
advanced physics-based approaches for computations for such RL-inspired market
models.

xiv Introduction

Source Code

Many of the chapters are accompanied by Python notebooks to illustrate some
of the main concepts and demonstrate application of machine learning methods.
Each notebook is lightly annotated. Many of these notebooks use TensorFlow.
We recommend loading these notebooks, together with any accompanying Python
source files and data, in Google Colab. Please see the appendices of each chapter
accompanied by notebooks, and the README.md in the subfolder of each chapter,
for further instructions and details.

Scope

We recognize that the field of machine learning is developing rapidly and to keep
abreast of the research in this field is a challenging pursuit. Machine learning is an
umbrella term for a number of methodology classes, including supervised learning,
unsupervised learning, and reinforcement learning. This book focuses on supervised
learning and reinforcement learning because these are the areas with the most
overlap with econometrics, predictive modeling, and optimal control in finance.
Supervised machine learning can be categorized as generative and discriminative.
Our focus is on discriminative learners which attempt to partition the input
space, either directly, through affine transformations or through projections onto
a manifold. Neural networks have been shown to provide a universal approximation
to a wide class of functions. Moreover, they can be shown to reduce to other well-
known statistical techniques and are adaptable to time series data.

Extending time series models, a number of chapters in this book are devoted to
an introduction to reinforcement learning (RL) and inverse reinforcement learning
(IRL) that deal with problems of optimal control of such time series and show how
many classical financial problems such as portfolio optimization, option pricing, and
wealth management can naturally be posed as problems for RL and IRL. We present
simple RL methods that can be applied for these problems, as well as explain how
neural networks can be used in these applications.

There are already several excellent textbooks covering other classical machine
learning methods, and we instead choose to focus on how to cast machine learning
into various financial modeling and decision frameworks. We emphasize that much
of this material is not unique to neural networks, but comparisons of alternative
supervised learning approaches, such as random forests, are beyond the scope of
this book.

Introduction xv

Multiple-Choice Questions

Multiple-choice questions are included after introducing a key concept. The correct
answers to all questions are provided at the end of each chapter with selected, partial,
explanations to some of the more challenging material.

Exercises

The exercises that appear at the end of every chapter form an important component
of the book. Each exercise has been chosen to reinforce concepts explained in the
text, to stimulate the application of machine learning in finance, and to gently bridge
material in other chapters. It is graded according to difficulty ranging from (*),
which denotes a simple exercise which might take a few minutes to complete,
through to (***), which denotes a significantly more complex exercise. Unless
specified otherwise, all equations referenced in each exercise correspond to those
in the corresponding chapter.

Instructor Materials

The book is supplemented by a separate Instructor’s Manual which provides worked
solutions to the end of chapter questions. Full explanations for the solutions to the
multiple-choice questions are also provided. The manual provides additional notes
and example code solutions for some of the programming exercises in the later
chapters.

Acknowledgements

This book is dedicated to the late Mark Davis (Imperial College) who was an
inspiration in the field of mathematical finance and engineering, and formative in
our careers. Peter Carr, Chair of the Department of Financial Engineering at NYU
Tandon, has been instrumental in supporting the growth of the field of machine
learning in finance. Through providing speaker engagements and machine learning
instructorship positions in the MS in Algorithmic Finance Program, the authors have
been able to write research papers and identify the key areas required by a text
book. Miquel Alonso (AIFI), Agostino Capponi (Columbia), Rama Cont (Oxford),
Kay Giesecke (Stanford), Ali Hirsa (Columbia), Sebastian Jaimungal (University
of Toronto), Gary Kazantsev (Bloomberg), Morton Lane (UIUC), Jörg Osterrieder
(ZHAW) have established various academic and joint academic-industry workshops

xvi Introduction

and community meetings to proliferate the field and serve as input for this book.
At the same time, there has been growing support for the development of a book
in London, where several SIAM/LMS workshops and practitioner special interest
groups, such as the Thalesians, have identified a number of compelling financial
applications. The material has grown from courses and invited lectures at NYU,
UIUC, Illinois Tech, Imperial College and the 2019 Bootcamp on Machine Learning
in Finance at the Fields Institute, Toronto.

Along the way, we have been fortunate to receive the support of Tomasz Bielecki
(Illinois Tech), Igor Cialenco (Illinois Tech), Ali Hirsa (Columbia University),
and Brian Peterson (DV Trading). Special thanks to research collaborators and
colleagues Kay Giesecke (Stanford University), Diego Klabjan (NWU), Nick
Polson (Chicago Booth), and Harvey Stein (Bloomberg), all of whom have shaped
our understanding of the emerging field of machine learning in finance and the many
practical challenges. We are indebted to Sri Krishnamurthy (QuantUniversity),
Saeed Amen (Cuemacro), Tyler Ward (Google), and Nicole Königstein for their
valuable input on this book. We acknowledge the support of a number of Illinois
Tech graduate students who have contributed to the source code examples and
exercises: Xiwen Jing, Bo Wang, and Siliang Xong. Special thanks to Swaminathan
Sethuraman for his support of the code development, to Volod Chernat and George
Gvishiani who provided support and code development for the course taught at
NYU and Coursera. Finally, we would like to thank the students and especially the
organisers of the MSc Finance and Mathematics course at Imperial College, where
many of the ideas presented in this book have been tested: Damiano Brigo, Antoine
(Jack) Jacquier, Mikko Pakkanen, and Rula Murtada. We would also like to thank
Blanka Horvath for many useful suggestions.

Chicago, IL, USA Matthew F. Dixon
Brooklyn, NY, USA Igor Halperin
London, UK Paul Bilokon
December 2019

Contents

Part I Machine Learning with Cross-Sectional Data

1 Introduction . 3
1 Background . 3

1.1 Big Data—Big Compute in Finance . 4
1.2 Fintech . 6

2 Machine Learning and Prediction . 8
2.1 Entropy . 11
2.2 Neural Networks . 14

3 Statistical Modeling vs. Machine Learning . 16
3.1 Modeling Paradigms . 16
3.2 Financial Econometrics and Machine Learning 18
3.3 Over-fitting . 21

4 Reinforcement Learning . 22
5 Examples of Supervised Machine Learning in Practice 28

5.1 Algorithmic Trading . 29
5.2 High-Frequency Trade Execution . 32
5.3 Mortgage Modeling. 34

6 Summary. 40
7 Exercises . 41
References . 44

2 Probabilistic Modeling . 47
1 Introduction . 47
2 Bayesian vs. Frequentist Estimation. 48
3 Frequentist Inference from Data . 51
4 Assessing the Quality of Our Estimator: Bias and Variance 53
5 The Bias–Variance Tradeoff (Dilemma) for Estimators 55
6 Bayesian Inference from Data . 56

6.1 A More Informative Prior: The Beta Distribution 60
6.2 Sequential Bayesian updates . 61

xvii

xviii Contents

6.3 Practical Implications of Choosing a Classical
or Bayesian Estimation Framework. 63

7 Model Selection . 63
7.1 Bayesian Inference. 64
7.2 Model Selection. 65
7.3 Model Selection When There Are Many Models 66
7.4 Occam’s Razor . 69
7.5 Model Averaging . 69

8 Probabilistic Graphical Models . 70
8.1 Mixture Models . 72

9 Summary. 76
10 Exercises . 76
References . 80

3 Bayesian Regression and Gaussian Processes . 81
1 Introduction . 81
2 Bayesian Inference with Linear Regression. 82

2.1 Maximum Likelihood Estimation . 86
2.2 Bayesian Prediction. 88
2.3 Schur Identity . 89

3 Gaussian Process Regression . 91
3.1 Gaussian Processes in Finance . 92
3.2 Gaussian Processes Regression and Prediction 93
3.3 Hyperparameter Tuning . 94
3.4 Computational Properties . 96

4 Massively Scalable Gaussian Processes . 96
4.1 Structured Kernel Interpolation (SKI) . 97
4.2 Kernel Approximations . 97

5 Example: Pricing and Greeking with Single-GPs. 98
5.1 Greeking. 101
5.2 Mesh-Free GPs. 101
5.3 Massively Scalable GPs . 103

6 Multi-response Gaussian Processes . 103
6.1 Multi-Output Gaussian Process Regression

and Prediction . 104
7 Summary. 105
8 Exercises . 106

8.1 Programming Related Questions* . 107
References . 108

4 Feedforward Neural Networks . 111
1 Introduction . 111
2 Feedforward Architectures . 112

2.1 Preliminaries . 112
2.2 Geometric Interpretation of Feedforward Networks 114
2.3 Probabilistic Reasoning . 117

Contents xix

2.4 Function Approximation with Deep Learning* 119
2.5 VC Dimension . 120
2.6 When Is a Neural Network a Spline?* . 124
2.7 Why Deep Networks? . 127

3 Convexity and Inequality Constraints . 132
3.1 Similarity of MLPs with Other Supervised Learners 138

4 Training, Validation, and Testing . 140
5 Stochastic Gradient Descent (SGD) . 142

5.1 Back-Propagation . 143
5.2 Momentum . 146

6 Bayesian Neural Networks* . 149
7 Summary. 153
8 Exercises . 153

8.1 Programming Related Questions* . 156
References . 164

5 Interpretability . 167
1 Introduction . 167
2 Background on Interpretability . 168

2.1 Sensitivities . 168
3 Explanatory Power of Neural Networks. 169

3.1 Multiple Hidden Layers . 170
3.2 Example: Step Test . 170

4 Interaction Effects . 170
4.1 Example: Friedman Data . 171

5 Bounds on the Variance of the Jacobian. 172
5.1 Chernoff Bounds . 174
5.2 Simulated Example . 174

6 Factor Modeling . 177
6.1 Non-linear Factor Models . 177
6.2 Fundamental Factor Modeling . 178

7 Summary. 183
8 Exercises . 184

8.1 Programming Related Questions* . 184
References . 188

Part II Sequential Learning

6 Sequence Modeling . 191
1 Introduction . 191
2 Autoregressive Modeling . 192

2.1 Preliminaries . 192
2.2 Autoregressive Processes . 194
2.3 Stability . 195
2.4 Stationarity . 195
2.5 Partial Autocorrelations . 197

xx Contents

2.6 Maximum Likelihood Estimation . 199
2.7 Heteroscedasticity . 200
2.8 Moving Average Processes . 201
2.9 GARCH . 202
2.10 Exponential Smoothing. 204

3 Fitting Time Series Models: The Box–Jenkins Approach 205
3.1 Stationarity . 205
3.2 Transformation to Ensure Stationarity . 206
3.3 Identification . 206
3.4 Model Diagnostics . 208

4 Prediction . 210
4.1 Predicting Events . 210
4.2 Time Series Cross-Validation . 213

5 Principal Component Analysis . 213
5.1 Principal Component Projection . 215
5.2 Dimensionality Reduction . 216

6 Summary. 217
7 Exercises . 218
Reference . 220

7 Probabilistic Sequence Modeling . 221
1 Introduction . 221
2 Hidden Markov Modeling . 222

2.1 The Viterbi Algorithm . 224
2.2 State-Space Models . 227

3 Particle Filtering . 227
3.1 Sequential Importance Resampling (SIR) . 228
3.2 Multinomial Resampling . 229
3.3 Application: Stochastic Volatility Models . 230

4 Point Calibration of Stochastic Filters. 231
5 Bayesian Calibration of Stochastic Filters . 233
6 Summary. 235
7 Exercises . 235
References . 237

8 Advanced Neural Networks . 239
1 Introduction . 239
2 Recurrent Neural Networks . 240

2.1 RNN Memory: Partial Autocovariance . 244
2.2 Stability . 245
2.3 Stationarity . 246
2.4 Generalized Recurrent Neural Networks (GRNNs) 248

3 Gated Recurrent Units. 249
3.1 α-RNNs . 249
3.2 Neural Network Exponential Smoothing . 251
3.3 Long Short-Term Memory (LSTM) . 254

Contents xxi

4 Python Notebook Examples . 255
4.1 Bitcoin Prediction. 256
4.2 Predicting from the Limit Order Book. 256

5 Convolutional Neural Networks . 257
5.1 Weighted Moving Average Smoothers . 258
5.2 2D Convolution . 261
5.3 Pooling . 263
5.4 Dilated Convolution . 264
5.5 Python Notebooks . 265

6 Autoencoders . 266
6.1 Linear Autoencoders. 267
6.2 Equivalence of Linear Autoencoders and PCA 268
6.3 Deep Autoencoders . 270

7 Summary. 271
8 Exercises . 272

8.1 Programming Related Questions* . 273
References . 275

Part III Sequential Data with Decision-Making

9 Introduction to Reinforcement Learning . 279
1 Introduction . 279
2 Elements of Reinforcement Learning . 284

2.1 Rewards . 284
2.2 Value and Policy Functions . 286
2.3 Observable Versus Partially Observable Environments 286

3 Markov Decision Processes . 289
3.1 Decision Policies. 291
3.2 Value Functions and Bellman Equations . 293
3.3 Optimal Policy and Bellman Optimality. 296

4 Dynamic Programming Methods . 299
4.1 Policy Evaluation . 300
4.2 Policy Iteration . 302
4.3 Value Iteration . 303

5 Reinforcement Learning Methods . 306
5.1 Monte Carlo Methods . 307
5.2 Policy-Based Learning . 309
5.3 Temporal Difference Learning . 311
5.4 SARSA and Q-Learning. 313
5.5 Stochastic Approximations and Batch-Mode Q-learning 316
5.6 Q-learning in a Continuous Space: Function

Approximation . 323
5.7 Batch-Mode Q-Learning . 327
5.8 Least Squares Policy Iteration. 331
5.9 Deep Reinforcement Learning . 335

xxii Contents

6 Summary. 337
7 Exercises . 337
References . 345

10 Applications of Reinforcement Learning . 347
1 Introduction . 347
2 The QLBS Model for Option Pricing . 349
3 Discrete-Time Black–Scholes–Merton Model . 352

3.1 Hedge Portfolio Evaluation . 352
3.2 Optimal Hedging Strategy. 354
3.3 Option Pricing in Discrete Time . 356
3.4 Hedging and Pricing in the BS Limit . 359

4 The QLBS Model . 360
4.1 State Variables . 361
4.2 Bellman Equations . 362
4.3 Optimal Policy . 365
4.4 DP Solution: Monte Carlo Implementation 368
4.5 RL Solution for QLBS: Fitted Q Iteration . 370
4.6 Examples . 373
4.7 Option Portfolios . 375
4.8 Possible Extensions . 379

5 G-Learning for Stock Portfolios . 380
5.1 Introduction . 380
5.2 Investment Portfolio . 381
5.3 Terminal Condition . 382
5.4 Asset Returns Model . 383
5.5 Signal Dynamics and State Space. 383
5.6 One-Period Rewards . 384
5.7 Multi-period Portfolio Optimization . 386
5.8 Stochastic Policy . 386
5.9 Reference Policy . 388
5.10 Bellman Optimality Equation . 388
5.11 Entropy-Regularized Bellman Optimality Equation 389
5.12 G-Function: An Entropy-Regularized Q-Function 391
5.13 G-Learning and F-Learning . 393
5.14 Portfolio Dynamics with Market Impact . 395
5.15 Zero Friction Limit: LQR with Entropy Regularization 396
5.16 Non-zero Market Impact: Non-linear Dynamics 400

6 RL for Wealth Management . 401
6.1 The Merton Consumption Problem . 401
6.2 Portfolio Optimization for a Defined Contribution

Retirement Plan . 405
6.3 G-Learning for Retirement Plan Optimization 408
6.4 Discussion . 413

7 Summary. 413

Contents xxiii

8 Exercises . 414
References . 416

11 Inverse Reinforcement Learning and Imitation Learning 419
1 Introduction . 419
2 Inverse Reinforcement Learning. 423

2.1 RL Versus IRL . 425
2.2 What Are the Criteria for Success in IRL? . 426
2.3 Can a Truly Portable Reward Function Be Learned

with IRL?. 427
3 Maximum Entropy Inverse Reinforcement Learning 428

3.1 Maximum Entropy Principle . 430
3.2 Maximum Causal Entropy . 433
3.3 G-Learning and Soft Q-Learning . 436
3.4 Maximum Entropy IRL. 438
3.5 Estimating the Partition Function . 442

4 Example: MaxEnt IRL for Inference of Customer Preferences 443
4.1 IRL and the Problem of Customer Choice. 444
4.2 Customer Utility Function. 445
4.3 Maximum Entropy IRL for Customer Utility 446
4.4 How Much Data Is Needed? IRL and Observational

Noise . 450
4.5 Counterfactual Simulations . 452
4.6 Finite-Sample Properties of MLE Estimators 454
4.7 Discussion . 455

5 Adversarial Imitation Learning and IRL . 457
5.1 Imitation Learning . 457
5.2 GAIL: Generative Adversarial Imitation Learning. 459
5.3 GAIL as an Art of Bypassing RL in IRL . 461
5.4 Practical Regularization in GAIL . 464
5.5 Adversarial Training in GAIL. 466
5.6 Other Adversarial Approaches*. 468
5.7 f-Divergence Training* . 468
5.8 Wasserstein GAN*. 469
5.9 Least Squares GAN* . 471

6 Beyond GAIL: AIRL, f-MAX, FAIRL, RS-GAIL, etc.* 471
6.1 AIRL: Adversarial Inverse Reinforcement Learning 472
6.2 Forward KL or Backward KL?. 474
6.3 f-MAX. 476
6.4 Forward KL: FAIRL . 477
6.5 Risk-Sensitive GAIL (RS-GAIL) . 479
6.6 Summary . 481

7 Gaussian Process Inverse Reinforcement Learning. 481
7.1 Bayesian IRL. 482
7.2 Gaussian Process IRL . 483

xxiv Contents

8 Can IRL Surpass the Teacher? . 484
8.1 IRL from Failure . 485
8.2 Learning Preferences . 487
8.3 T-REX: Trajectory-Ranked Reward EXtrapolation 488
8.4 D-REX: Disturbance-Based Reward EXtrapolation 490

9 Let Us Try It Out: IRL for Financial Cliff Walking 490
9.1 Max-Causal Entropy IRL. 491
9.2 IRL from Failure . 492
9.3 T-REX . 493
9.4 Summary . 494

10 Financial Applications of IRL . 495
10.1 Algorithmic Trading Strategy Identification. 495
10.2 Inverse Reinforcement Learning for Option Pricing 497
10.3 IRL of a Portfolio Investor with G-Learning 499
10.4 IRL and Reward Learning for Sentiment-Based

Trading Strategies. 504
10.5 IRL and the “Invisible Hand” Inference . 505

11 Summary . 512
12 Exercises . 513
References . 515

12 Frontiers of Machine Learning and Finance . 519
1 Introduction . 519
2 Market Dynamics, IRL, and Physics . 521

2.1 “Quantum Equilibrium–Disequilibrium” (QED) Model 522
2.2 The Langevin Equation . 523
2.3 The GBM Model as the Langevin Equation 524
2.4 The QED Model as the Langevin Equation 525
2.5 Insights for Financial Modeling . 527
2.6 Insights for Machine Learning . 528

3 Physics and Machine Learning . 529
3.1 Hierarchical Representations in Deep Learning

and Physics . 529
3.2 Tensor Networks . 530
3.3 Bounded-Rational Agents in a Non-equilibrium

Environment . 534
4 A “Grand Unification” of Machine Learning? . 535

4.1 Perception-Action Cycles . 537
4.2 Information Theory Meets Reinforcement Learning. 538
4.3 Reinforcement Learning Meets Supervised Learning:

Predictron, MuZero, and Other New Ideas . 539
References . 540

Index . 543

About the Authors

Matthew F. Dixon is an Assistant Professor of Applied Math at the Illinois Institute
of Technology. His research in computational methods for finance is funded by
Intel. Matthew began his career in structured credit trading at Lehman Brothers
in London before pursuing academics and consulting for financial institutions in
quantitative trading and risk modeling. He holds a Ph.D. in Applied Mathematics
from Imperial College (2007) and has held postdoctoral and visiting professor
appointments at Stanford University and UC Davis, respectively. He has published
over 20 peer-reviewed publications on machine learning and financial modeling,
has been cited in Bloomberg Markets and the Financial Times as an AI in fintech
expert, and is a frequently invited speaker in Silicon Valley and on Wall Street. He
has published R packages, served as a Google Summer of Code mentor, and is the
co-founder of the Thalesians Ltd.

Igor Halperin is a Research Professor in Financial Engineering at NYU and an
AI Research Associate at Fidelity Investments. He was previously an Executive
Director of Quantitative Research at JPMorgan for nearly 15 years. Igor holds a
Ph.D. in Theoretical Physics from Tel Aviv University (1994). Prior to joining
the financial industry, he held postdoctoral positions in theoretical physics at the
Technion and the University of British Columbia.

Paul Bilokon is CEO and Founder of Thalesians Ltd. and an expert in electronic
and algorithmic trading across multiple asset classes, having helped build such
businesses at Deutsche Bank and Citigroup. Before focusing on electronic trading,
Paul worked on derivatives and has served in quantitative roles at Nomura, Lehman
Brothers, and Morgan Stanley. Paul has been educated at Christ Church College,
Oxford, and Imperial College. Apart from mathematical and computational finance,
his academic interests include machine learning and mathematical logic.

xxv

Part I
Machine Learning with Cross-Sectional

Data

Chapter 1
Introduction

This chapter introduces the industry context for machine learning in finance, dis-
cussing the critical events that have shaped the finance industry’s need for machine
learning and the unique barriers to adoption. The finance industry has adopted
machine learning to varying degrees of sophistication. How it has been adopted
is heavily fragmented by the academic disciplines underpinning the applications.
We view some key mathematical examples that demonstrate the nature of machine
learning and how it is used in practice, with the focus on building intuition for
more technical expositions in later chapters. In particular, we begin to address
many finance practitioner’s concerns that neural networks are a “black-box” by
showing how they are related to existing well-established techniques such as
linear regression, logistic regression, and autoregressive time series models. Such
arguments are developed further in later chapters. This chapter also introduces
reinforcement learning for finance and is followed by more in-depth case studies
highlighting the design concepts and practical challenges of applying machine
learning in practice.

1 Background

In 1955, John McCarthy, then a young Assistant Professor of Mathematics, at
Dartmouth College in Hanover, New Hampshire, submitted a proposal with Marvin
Minsky, Nathaniel Rochester, and Claude Shannon for the Dartmouth Summer
Research Project on Artificial Intelligence (McCarthy et al. 1955). These organizers
were joined in the summer of 1956 by Trenchard More, Oliver Selfridge, Herbert
Simon, Ray Solomonoff, among others. The stated goal was ambitious:

“The study is to proceed on the basis of the conjecture that every aspect
of learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it. An attempt will be made to

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_1

4 1 Introduction

find how to make machines use language, form abstractions and concepts, solve
kinds of problems now reserved for humans, and improve themselves.” Thus the
field of artificial intelligence, or AI, was born.

Since this time, AI has perpetually strived to outperform humans on various judg-
ment tasks (Pinar Saygin et al. 2000). The most fundamental metric for this success
is the Turing test—a test of a machine’s ability to exhibit intelligent behavior equiv-
alent to, or indistinguishable from, that of a human (Turing 1995). In recent years,
a pattern of success in AI has emerged—one in which machines outperform in the
presence of a large number of decision variables, usually with the best solution being
found through evaluating an exponential number of candidates in a constrained
high-dimensional space. Deep learning models, in particular, have proven remark-
ably successful in a wide field of applications (DeepMind 2016; Kubota 2017;
Esteva et al. 2017) including image processing (Simonyan and Zisserman 2014),
learning in games (DeepMind 2017), neuroscience (Poggio 2016), energy conser-
vation (DeepMind 2016), skin cancer diagnostics (Kubota 2017; Esteva et al. 2017).

One popular account of this reasoning points to humans’ perceived inability
to process large amounts of information and make decisions beyond a few key
variables. But this view, even if fractionally representative of the field, does no
justice to AI or human learning. Humans are not being replaced any time soon.
The median estimate for human intelligence in terms of gigaflops is about 104 times
more than the machine that ran alpha-go. Of course, this figure is caveated on the
important question of whether the human mind is even a Turing machine.

1.1 Big Data—Big Compute in Finance

The growth of machine-readable data to record and communicate activities through-
out the financial system combined with persistent growth in computing power and
storage capacity has significant implications for every corner of financial modeling.
Since the financial crises of 2007–2008, regulatory supervisors have reoriented
towards “data-driven” regulation, a prominent example of which is the collection
and analysis of detailed contractual terms for the bank loan and trading book stress-
testing programs in the USA and Europe, instigated by the crisis (Flood et al. 2016).

“Alternative data”—which refers to data and information outside of the usual
scope of securities pricing, company fundamentals, or macroeconomic indicators—
is playing an increasingly important role for asset managers, traders, and decision
makers. Social media is now ranked as one of the top categories of alternative data
currently used by hedge funds. Trading firms are hiring experts in machine learning
with the ability to apply natural language processing (NLP) to financial news and
other unstructured documents such as earnings announcement reports and SEC 10K
reports. Data vendors such as Bloomberg, Thomson Reuters, and RavenPack are
providing processed news sentiment data tailored for systematic trading models.

1 Background 5

In de Prado (2019), some of the properties of these new, alternative datasets are
explored: (a) many of these datasets are unstructured, non-numerical, and/or non-
categorical, like news articles, voice recordings, or satellite images; (b) they tend
to be high-dimensional (e.g., credit card transactions) and the number of variables
may greatly exceed the number of observations; (c) such datasets are often sparse,
containing NaNs (not-a-numbers); (d) they may implicitly contain information
about networks of agents.

Furthermore, de Prado (2019) explains why classical econometric methods fail
on such datasets. These methods are often based on linear algebra, which fail when
the number of variables exceeds the number of observations. Geometric objects,
such as covariance matrices, fail to recognize the topological relationships that
characterize networks. On the other hand, machine learning techniques offer the
numerical power and functional flexibility needed to identify complex patterns
in a high-dimensional space offering a significant improvement over econometric
methods.

The “black-box” view of ML is dismissed in de Prado (2019) as a misconception.
Recent advances in ML make it applicable to the evaluation of plausibility of
scientific theories; determination of the relative informational variables (usually
referred to as features in ML) for explanatory and/or predictive purposes; causal
inference; and visualization of large, high-dimensional, complex datasets.

Advances in ML remedy the shortcomings of econometric methods in goal
setting, outlier detection, feature extraction, regression, and classification when it
comes to modern, complex alternative datasets. For example, in the presence of p
features there may be up to 2p − p − 1 multiplicative interaction effects. For two
features there is only one such interaction effect, x1x2. For three features, there are
x1x2, x1x3, x2x3, x1x2x3. For as few as ten features, there are 1,013 multiplicative
interaction effects. Unlike ML algorithms, econometric models do not “learn”
the structure of the data. The model specification may easily miss some of the
interaction effects. The consequences of missing an interaction effect, e.g. fitting
yt = x1,t + x2,t + εt instead of yt = x1,t + x2,t + x1,t x2,t + εt , can be dramatic.
A machine learning algorithm, such as a decision tree, will recursively partition
a dataset with complex patterns into subsets with simple patterns, which can then
be fit independently with simple linear specifications. Unlike the classical linear
regression, this algorithm “learns” about the existence of the x1,t x2,t effect, yielding
much better out-of-sample results.

There is a draw towards more empirically driven modeling in asset pricing
research—using ever richer sets of firm characteristics and “factors” to describe and
understand differences in expected returns across assets and model the dynamics
of the aggregate market equity risk premium (Gu et al. 2018). For example,
Harvey et al. (2016) study 316 “factors,” which include firm characteristics and
common factors, for describing stock return behavior. Measurement of an asset’s
risk premium is fundamentally a problem of prediction—the risk premium is the
conditional expectation of a future realized excess return. Methodologies that can
reliably attribute excess returns to tradable anomalies are highly prized. Machine
learning provides a non-linear empirical approach for modeling realized security

6 1 Introduction

returns from firm characteristics. Dixon and Polson (2019) review the formulation
of asset pricing models for measuring asset risk premia and cast neural networks in
canonical asset pricing frameworks.

1.2 Fintech

The rise of data and machine learning has led to a “fintech” industry, covering
digital innovations and technology-enabled business model innovations in the
financial sector (Philippon 2016). Examples of innovations that are central to
fintech today include cryptocurrencies and the blockchain, new digital advisory and
trading systems, peer-to-peer lending, equity crowdfunding, and mobile payment
systems. Behavioral prediction is often a critical aspect of product design and risk
management needed for consumer-facing business models; consumers or economic
agents are presented with well-defined choices but have unknown economic needs
and limitations, and in many cases do not behave in a strictly economically rational
fashion. Therefore it is necessary to treat parts of the system as a black-box that
operates under rules that cannot be known in advance.

1.2.1 Robo-Advisors

Robo-advisors are financial advisors that provide financial advice or portfolio
management services with minimal human intervention. The focus has been on
portfolio management rather than on estate and retirement planning, although there
are exceptions, such as Blooom. Some limit investors to the ETFs selected by the
service, others are more flexible. Examples include Betterment, Wealthfront, Wise-
Banyan, FutureAdvisor (working with Fidelity and TD Ameritrade), Blooom, Motif
Investing, and Personal Capital. The degree of sophistication and the utilization of
machine learning are on the rise among robo-advisors.

1.2.2 Fraud Detection

In 2011 fraud cost the financial industry approximately $80 billion annually
(Consumer Reports, June 2011). According to PwC’s Global Economic Crime
Survey 2016, 46% of respondents in the Financial Services industry reported being
victims of economic crime in the last 24 months—a small increase from 45%
reported in 2014. 16% of those that reported experiencing economic crime had
suffered more than 100 incidents, with 6% suffering more than 1,000. According
to the survey, the top 5 types of economic crime are asset misappropriation (60%,
down from 67% in 2014), cybercrime (49%, up from 39% in 2014), bribery and
corruption (18%, down from 20% in 2014), money laundering (24%, as in 2014),
and accounting fraud (18%, down from 21% in 2014). Detecting economic crimes is

1 Background 7

one of the oldest successful applications of machine learning in the financial services
industry. See Gottlieb et al. (2006) for a straightforward overview of some of the
classical methods: logistic regression, naïve Bayes, and support vector machines.
The rise of electronic trading has led to new kinds of financial fraud and market
manipulation. Some exchanges are investigating the use of deep learning to counter
spoofing.

1.2.3 Cryptocurrencies

Blockchain technology, first implemented by Satoshi Nakamoto in 2009 as a
core component of Bitcoin, is a distributed public ledger recording transactions.
Its usage allows secure peer-to-peer communication by linking blocks containing
hash pointers to a previous block, a timestamp, and transaction data. Bitcoin is a
decentralized digital currency (cryptocurrency) which leverages the blockchain to
store transactions in a distributed manner in order to mitigate against flaws in the
financial industry.

In contrast to existing financial networks, blockchain based cryptocurrencies
expose the entire transaction graph to the public. This openness allows, for example,
the most significant agents to be immediately located (pseudonymously) on the
network. By processing all financial interactions, we can model the network with
a high-fidelity graph, as illustrated in Fig. 1.1 so that it is possible to characterize
how the flow of information in the network evolves over time. This novel data
representation permits a new form of financial econometrics—with the emphasis
on the topological network structures in the microstructure rather than solely the
covariance of historical time series of prices. The role of users, entities, and
their interactions in formation and dynamics of cryptocurrency risk investment,
financial predictive analytics and, more generally, in re-shaping the modern financial
world is a novel area of research (Dyhrberg 2016; Gomber et al. 2017; Sovbetov
2018).

a6t1

t2 t4

t3
a2

a1

a7

a4

a3

a5

a8

a9

a10

a11

a12

a13

Time

Fig. 1.1 A transaction–address graph representation of the Bitcoin network. Addresses are
represented by circles, transactions with rectangles, and edges indicate a transfer of coins. Blocks
order transactions in time, whereas each transaction with its input and output nodes represents an
immutable decision that is encoded as a subgraph on the Bitcoin network. Source: Akcora et al.
(2018)

8 1 Introduction

2 Machine Learning and Prediction

With each passing year, finance becomes increasingly reliant on computational
methods. At the same time, the growth of machine-readable data to monitor,
record, and communicate activities throughout the financial system has significant
implications for how we approach the topic of modeling. One of the reasons that AI
and the set of computer algorithms for learning, referred to as “machine learning,”
have been successful is a result of a number of factors beyond computer hardware
and software advances. Machines are able to model complex and high-dimensional
data generation processes, sweep through millions of model configurations, and
then robustly evaluate and correct the models in response to new information (Dhar
2013). By continuously updating and hosting a number of competing models, they
prevent any one model leading us into a data gathering silo effective only for that
market view. Structurally, the adoption of ML has even shifted our behavior—the
way we reason, experiment, and shape our perspectives from data using ML has led
to empirically driven trading and investment decision processes.

Machine learning is a broad area, covering various classes of algorithms for
pattern recognition and decision-making. In supervised learning, we are given
labeled data, i.e. pairs (x1, y1), . . . , (xn, yn), x1, . . . , xn ∈ X, y1, . . . , yn ∈ Y , and
the goal is to learn the relationship betweenX and Y . Each observation xi is referred
to as a feature vector and yi is the label or response. In unsupervised learning,
we are given unlabeled data, x1, x2, . . . , xn and our goal is to retrieve exploratory
information about the data, perhaps grouping similar observations or capturing
some hidden patterns. Unsupervised learning includes cluster analysis algorithms
such as hierarchical clustering, k-means clustering, self-organizing maps, Gaussian
mixture, and hidden Markov models and is commonly referred to as data mining.
In both instances, the data could be financial time series, news documents, SEC
documents, and textual information on important events. The third type of machine
learning paradigm is reinforcement learning and is an algorithmic approach for
enforcing Bellman optimality of a Markov Decision Process—defining a set of
states and actions in response to a changing regime so as to maximize some notion of
cumulative reward. In contrast to supervised learning, which just considers a single
action at each point in time, reinforcement learning is concerned with the optimal
sequence of actions. It is therefore a form of dynamic programming that is used for
decisions leading to optimal trade execution, portfolio allocation, and liquidation
over a given horizon.

Supervised learning addresses a fundamental prediction problem: Construct a
non-linear predictor, Ŷ (X), of an output, Y , given a high-dimensional input matrix
X = (X1, . . . , XP) of P variables. Machine learning can be simply viewed as the
study and construction of an input–output map of the form

Y = F(X) where X = (X1, . . . , XP).

F (X) is sometimes referred to as the “data-feature” map. The output variable, Y ,
can be continuous, discrete, or mixed. For example, in a classification problem,

2 Machine Learning and Prediction 9

F : X → G, where G ∈ K := {0, . . . , K − 1}, K is the number of categories and
Ĝ is the predictor.

Supervised machine learning uses a parameterized1 model g(X|θ) over inde-
pendent variables X, to predict the continuous or categorical output Y or G. The
model is parameterized by one or more free parameters θ which are fitted to data.
Prediction of categorical variables is referred to as classification and is common in
pattern recognition. The most common approach to predicting categorical variables
is to encode the response G as one or more binary values, then treat the model
prediction as continuous.

•? Multiple Choice Question 1

Select all the following correct statements:

1. Supervised learning involves learning the relationship between input and output
variables.

2. Supervised learning requires a human supervisor to prepare labeled training data.
3. Unsupervised learning does not require a human supervisor and is therefore

superior to supervised learning.
4. Reinforcement learning can be viewed as a generalization of supervised learning

to Markov Decision Processes.

There are two different classes of supervised learning models, discriminative
and generative. A discriminative model learns the decision boundary between
the classes and implicitly learns the distribution of the output conditional on the
input. A generative model explicitly learns the joint distribution of the input and
output. An example of the former is a neural network or a decision tree and a
restricted Boltzmann machine (RBM) is an example of the latter. Learning the joint
distribution has the advantage that by the Bayes’ rule, it can also give the conditional
distribution of the output given the input, but also be used for other purposes such
as selecting features based on the joint probability. Generative models are typically
more difficult to build.

This book will mostly focus on discriminative models only, but the distinction
should be made clear. A discriminative model predicts the probability of an output
given an input. For example, if we are predicting the probability of a label G =
k, k ∈ K , then g(x|θ) is a map g : Rp → [0, 1]K and the outputs represent a
discrete probability distribution over G referred to as a “one-hot” encoding—a K-
vector of zeros with 1 at the kth position:

Ĝk := P(G = k | X = x, θ) = gk(x|θ) (1.1)

1The model is referred to as non-parametric if the parameter space is infinite dimensional and
parametric if the parameter space is finite dimensional.

10 1 Introduction

and hence we have that

∑

k∈K
gk(x|θ) = 1. (1.2)

In particular, when G is dichotomous (K = 2), the second component of the model
output is the conditional expected value of G

Ĝ := Ĝ1=g1(x|θ)=0·P(G = 0 |X=x, θ)+1·P(G = 1 |X=x, θ)=E[G |X=x, θ].
(1.3)

The conditional variance of G is given by

σ 2 := E[(G− Ĝ)2 | X = x, θ] = g1(x|θ)− (g1(x|θ))2, (1.4)

which is an inverted parabola with a maximum at g1(x|θ) = 0.5. The following
example illustrates a simple discriminative model which, here, is just based on a set
of fixed rules for partitioning the input space.

Example 1.1 Model Selection

Suppose G ∈ {A,B,C} and the input X ∈ {0, 1}2 are binary 2-vectors given
in Table 1.1.

Table 1.1 Sample model
data G x

A (0, 1)

B (1, 1)

C (1, 0)

C (0, 0)

To match the input and output in this case, one could define a parameter-free
step function g(x) over {0, 1}2 so that

g(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{1, 0, 0} if x = (0, 1)
{0, 1, 0} if x = (1, 1)
{0, 0, 1} if x = (1, 0)
{0, 0, 1} if x = (0, 0).

(1.5)

The discriminative model g(x), defined in Eq. 1.5, specifies a set of fixed rules
which predict the outcome of this experiment with 100% accuracy. Intuitively, it
seems clear that such a model is flawed if the actual relation between inputs and
outputs is non-deterministic. Clearly, a skilled analyst would typically not build such

2 Machine Learning and Prediction 11

a model. Yet, hard-wired rules such as this are ubiquitous in the finance industry
such as rule-based technical analysis and heuristics used for scoring such as credit
ratings.

If the model is allowed to be general, there is no reason why this particular
function should be excluded. Therefore automated systems analyzing datasets such
as this may be prone to construct functions like those given in Eq. 1.5 unless
measures are taken to prevent it. It is therefore incumbent on the model designer
to understand what makes the rules in Eq. 1.5 objectionable, with the goal of using
a theoretically sound process to generalize the input–output map to other data.

Example 1.2 Model Selection (Continued)

Consider an alternate model for Table 1.1

h(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{0.9, 0.05, 0.05} if x = (0, 1)
{0.05, 0.9, 0.05} if x = (1, 1)
{0.05, 0.05, 0.9} if x = (1, 0)
{0.05, 0.05, 0.9} if x = (0, 0).

If this model were sampled, it would produce the data in Table 1.1
with probability (0.9)4 = 0.6561. We can hardly exclude this model from
consideration on the basis of the results in Table 1.1, so which one do we
choose?

Informally, the heart of the model selection problem is that model g has
excessively high confidence about the data, when that confidence is often not
warranted. Many other functions, such as h, could have easily generated Table 1.1.
Though there is only one model that can produce Table 1.1 with probability 1.0,
there is a whole family of models that can produce the table with probability at least
0.66. Many of these plausible models do not assign overwhelming confidence to the
results. To determine which model is best on average, we need to introduce another
key concept.

2.1 Entropy

Model selection in machine learning is based on a quantity known as entropy.
Entropy represents the amount of information associated with each event. To
illustrate the concept of entropy, let us consider a non-fair coin toss. There are two
outcomes, � = {H, T }. Let Y be a Bernoulli random variable representing the coin
flip with density f (Y = 1) = P(H) = p and f (Y = 0) = P(T) = 1 − p. The
(binary) entropy of Y under f is

12 1 Introduction

Fig. 1.2 (Left) This figure shows the binary entropy of a biased coin. If the coin is fully biased,
then each flip provides no new information as the outcome is already known and hence the entropy
is zero. (Right) The concept of entropy was introduced by Claude Shannon2 in 19483 and was
originally intended to represent an upper limit on the average length of a lossless compression
encoding. Shannon’s entropy is foundational to the mathematical discipline of information theory

H(f) = −p log2 p − (1− p)log2(1− p) ≤ 1bit. (1.6)

The reason why base 2 is chosen is so that the upper bound represents the number
of bits needed to represent the outcome of the random variable, i.e. {0, 1} and hence
1 bit.

The binary entropy for a biased coin is shown in Fig. 1.2. If the coin is fully
biased, then each flip provides no new information as the outcome is already known.
The maximum amount of information that can be revealed by a coin flip is when the
coin is unbiased.

Let us now reintroduce our parameterized mass in the setting of the biased coin.
Let us consider an i.i.d. discrete random variable Y : �→ Y ⊂ R and let

g(y|θ) = P(ω ∈ �;Y (ω) = y)

denote a parameterized probability mass function for Y .
We can measure how different g(y|θ) is from the true density f (y) using the

cross-entropy

H(f, g) := −Ef
[
log2 g

] =
∑

y∈Y
f (y) log2 g(y|θ) ≥ H(f), (1.7)

2Photo: Jacobs, Konrad [CC BY-SA 2.0 de (https://creativecommons.org/licenses/by-sa/2.0/de/
deed.en)].
3C. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal, Vol.
27, pp. 379-423, 623-656, July, October, 1948.

https://creativecommons.org/licenses/by-sa/2.0/de/deed.en
https://creativecommons.org/licenses/by-sa/2.0/de/deed.en

2 Machine Learning and Prediction 13

Fig. 1.3 A comparison of the
true distribution, f , of a
biased coin with a
parameterized model g of the
coin

so thatH(f, f) = H(f), whereH(f) is the entropy of f :

H(f) := −Ef [log2f] = −
∑

y∈Y
f (y)log2f (y). (1.8)

If g(y|θ) is a model of the non-fair coin with g(Y = 1|θ) = pθ , g(Y = 0|θ) =
1− pθ . The cross-entropy is

H(f, g) = −p log2 pθ − (1−p)log2(1−pθ) ≥ −p log2 p− (1−p)log2(1−p).
(1.9)

Let us suppose that p = 0.7 and pθ = 0.68, as illustrated in Fig. 1.3, then the
cross-entropy is

H(f, g) = −0.3 log2(0.32)− 0.7 log2(0.68) = 0.8826322.

Returning to our experiment in Table 1.1, let us consider the cross-entropy of
these models which, as you will recall, depends on inputs too. Model g completely
characterizes the data in Table 1.1 and we interpret it here as the truth. Model h,
however, only summarizes some salient aspects of the data, and there is a large
family of tables that would be consistent with model h. In the presence of noise or
strong evidence indicating that Table 1.1 was the only possible outcome, we should
interpret models like h as a more plausible explanation of the actual underlying
phenomenon.

Evaluating the cross-entropy between model h and model g, we get − log2(0.9)
for each observation in the table, which gives the negative log-likelihood when
summed over all samples. The cross-entropy is at its minimum when h = g, we get
− log2(1.0) = 0. If g were a parameterized model, then clearly minimizing cross-
entropy or equivalently maximizing log-likelihood gives the maximum likelihood
estimate of the parameter. We shall revisit the topic of parameter estimation in
Chap. 2.

14 1 Introduction

•? Multiple Choice Question 2

Select all of the following statements that are correct:

1. Neural network classifiers are a discriminative model which output probabilistic
weightings for each category, given an input feature vector.

2. If the data is independent and identically distributed (i.i.d.), then the output
of a dichotomous classifier is a conditional probability of a Bernoulli random
variable.

3. A θ -parameterized discriminative model for a biased coin dependent on the
environment X can be written as {gi(X|θ)}1i=0.

4. A model of two biased coins, both dependent on the environment X, can be
equivalently modeled with either the pair {g(1)i (X|θ)}1i=0 and {g(2)i (X|θ)}1i=0, or
the multi-classifier {gi(X|θ)}3i=0.

2.2 Neural Networks

Neural networks represent the non-linear map F(X) over a high-dimensional input
space using hierarchical layers of abstractions. An example of a neural network is a
feedforward network—a sequence of L layers4 formed via composition:

•> Deep Feedforward Networks

A deep feedforward network is a function of the form

Ŷ (X) := FW,b(X) =
(
f
(L)

W(L),b(L)
. . . ◦ f (1)

W(1),b(1)

)
(X),

where

• f
(l)

W(l),b(l)
(X) := σ (l)(W(l)X+b(l)) is a semi-affine function, where σ (l) is a

univariate and continuous non-linear activation function such as max(·, 0)
or tanh(·).

• W = (W(1), . . . ,W(L)) and b = (b(1), . . . , b(L)) are weight matrices and
offsets (a.k.a. biases), respectively.

4Note that we do not treat the input as a layer. So there are L−1 hidden layers and an output layer.

2 Machine Learning and Prediction 15

(a) (b) (c)

Fig. 1.4 Examples of neural networks architectures discussed in this book. Source: Van Veen, F.
& Leijnen, S. (2019), “The Neural Network Zoo,” Retrieved from https://www.asimovinstitute.
org/neural-network-zoo. The input nodes are shown in yellow and represent the input variables,
the green nodes are the hidden neurons and present hidden latent variables, the red nodes are
the outputs or responses. Blue nodes denote hidden nodes with recurrence or memory. (a)
Feedforward. (b) Recurrent. (c) Long short-term memory

An earlier example of a feedforward network architecture is given in Fig. 1.4a.
The input nodes are shown in yellow and represent the input variables, the green
nodes are the hidden neurons and present hidden latent variables, the red nodes are
the outputs or responses. The activation functions are essential for the network to
approximate non-linear functions. For example, if there is one hidden layer and σ (1)

is the identify function, then

Ŷ (X) = W(2)(W(1)X + b(1))+ b(2) = W(2)W(1)X +W(2)b(1) + b(2) = W ′X + b′
(1.10)

is just linear regression, i.e. an affine transformation.5 Clearly, if there are no hidden
layers, the architecture recovers standard linear regression

Y = WX + b
and logistic regression φ(WX+b), where φ is a sigmoid or softmax function, when
the response is continuous or categorical, respectively. Some of the terminology
used here and the details of this model will be described in Chap. 4.

The theoretical roots of feedforward neural networks are given by the
Kolmogorov–Arnold representation theorem (Arnold 1957; Kolmogorov 1957)
of multivariate functions. Remarkably, Hornik et al. (1989) showed how neural
networks, with one hidden layer, are universal approximators to non-linear
functions.

Clearly there are a number of issues in any architecture design and inference of
the model parameters (W, b). How many layers? How many neurons Nl in each
hidden layer? How to perform “variable selection”? How to avoid over-fitting? The
details and considerations given to these important questions will be addressed in
Chap. 4.

5While the functional form of the map is the same as linear regression, neural networks do not
assume a data generation process and hence inference is not identical to ordinary least squares
regression.

https://www.asimovinstitute.org/neural-network-zoo
https://www.asimovinstitute.org/neural-network-zoo

16 1 Introduction

3 Statistical Modeling vs. Machine Learning

Supervised machine learning is often an algorithmic form of statistical model
estimation in which the data generation process is treated as an unknown (Breiman
2001). Model selection and inference is automated, with an emphasis on processing
large amounts of data to develop robust models. It can be viewed as a highly efficient
data compression technique designed to provide predictors in complex settings
where relations between input and output variables are non-linear and input space
is often high-dimensional. Machine learners balance filtering data with the goal of
making accurate and robust decisions, often discrete and as a categorical function
of input data.

This fundamentally differs from maximum likelihood estimators used in standard
statistical models, which assume that the data was generated by the model and typ-
ically have difficulty with over-fitting, especially when applied to high-dimensional
datasets. Given the complexity of modern datasets, whether they are limit order
books or high-dimensional financial time series, it is increasingly questionable
whether we can posit inference on the basis of a known data generation process.
It is a reasonable assertion, even if an economic interpretation of the data generation
process can be given, that the exact form cannot be known all the time.

The paradigm that machine learning provides for data analysis therefore is very
different from the traditional statistical modeling and testing framework. Traditional
fit metrics, such as R2, t-values, p-values, and the notion of statistical significance,
are replaced by out-of-sample forecasting and understanding the bias–variance
tradeoff. Machine learning is data-driven and focuses on finding structure in large
datasets. The main tools for variable or predictor selection are regularization and
dropout which are discussed in detail in Chap. 4.

Table 1.2 contrasts maximum likelihood estimation-based inference with super-
vised machine learning. The comparison is somewhat exaggerated for ease of
explanation. Rather the two approaches should be viewed as opposite ends of a
continuum of methods. Linear regression techniques such as LASSO and ridge
regression, or hybrids such as Elastic Net, fall somewhere in the middle, providing
some combination of the explanatory power of maximum likelihood estimation
while retaining out-of-sample predictive performance on high-dimensional datasets.

3.1 Modeling Paradigms

Machine learning and statistical methods can be further characterized by whether
they are parametric or non-parametric. Parametric models assume some finite
set of parameters and attempt to model the response as a function of the input
variables and the parameters. Due to the finiteness of the parameter space, they
have limited flexibility and cannot capture complex patterns in big data. As a
general rule, examples of parametric models include ordinary least squares linear

3 Statistical Modeling vs. Machine Learning 17

Table 1.2 This table contrasts maximum likelihood estimation-based inference with supervised
machine learning. The comparison is somewhat exaggerated for ease of explanation; however, the
two should be viewed as opposite ends of a continuum of methods. Regularized linear regression
techniques such as LASSO and ridge regression, or hybrids such as Elastic Net, provide some
combination of the explanatory power of maximum likelihood estimation while retaining out-of-
sample predictive performance on high-dimensional datasets

Property Statistical inference Supervised machine learning

Goal Causal models with explanatory
power

Prediction performance, often with
limited explanatory power

Data The data is generated by a
model

The data generation process is unknown

Framework Probabilistic Algorithmic and Probabilistic

Expressibility Typically linear Non-linear

Model selection Based on information criteria Numerical optimization

Scalability Limited to lower-dimensional
data

Scales to high-dimensional input data

Robustness Prone to over-fitting Designed for out-of-sample performance

Diagnostics Extensive Limited

regression, polynomial regression, mixture models, neural networks, and hidden
Markov models.

Non-parametric models treat the parameter space as infinite dimensional—this is
equivalent to introducing a hidden or latent function. The model structure is, for the
most part, not specified a priori and they can grow in complexity with more data.
Examples of non-parametric models include kernel methods such as support vector
machines and Gaussian processes, the latter will be the focus of Chap. 3.

Note that there is a gray area in whether neural networks are parametric or
non-parametric and it strictly depends on how they are fitted. For example, it is
possible to treat the parameter space in a neural network as infinite dimensional and
hence characterize neural networks as non-parametric (see, for example, Philipp and
Carbonell (2017)). However, this is an exception rather than the norm.

While on the topic of modeling paradigms, it is helpful to further distinguish
between probabilistic models, the subject of the next two chapters, and deterministic
models, the subject of Chaps. 4, 5, and 8. The former treats the parameters as random
and the latter assumes that the parameters are given.

Within probabilistic modeling, a particular niche is occupied by the so-called
state-space models. In these models one assumes the existence of a certain
unobserved, latent, process, whose evolution drives a certain observable process.
The evolution of the latent process and the dependence of the observable process on
the latent process may be given in stochastic, probabilistic terms, which places the
state-space models within the realm of probabilistic modeling.

Note, somewhat counter to the terminology, that a deterministic model may pro-
duce a probabilistic output, for example, a logistic regression gives the probability
that the response is positive given the input variables. The choice of whether to
use a probabilistic or deterministic model is discussed further in the next chapter

18 1 Introduction

and falls under the more general and divisive topic of “Bayesian versus frequentist
modeling.”

3.2 Financial Econometrics and Machine Learning

Machine learning generalizes parametric methods in financial econometrics. A tax-
onomy of machine learning in econometrics in shown in Fig. 1.5 together with the
section references to the material in the first two parts of this book.

When the data is a time series, neural networks can be configured with recurrence
to build memory into the model. By relaxing the modeling assumptions needed
for econometrics techniques, such as ARIMA (Box et al. 1994) and GARCH
models (Bollerslev 1986), recurrent neural networks provide a semi-parametric or
even non-parametric extension of classical time series methods. That use, however,
comes with much caution. Whereas financial econometrics is built on rigorous
experimental design methods such as the estimation framework of Box and Jenkins
(1976), recurrent neural networks have grown from the computational engineering
literature and many engineering studies overlook essential diagnostics such as
Dickey–Fuller tests for verifying stationarity of the time series, a critical aspect
of financial time series modeling. We take an integrative approach, showing how
to cast recurrent neural networks into financial econometrics frameworks such as
Box-Jenkins.

More formally, if the input–output pairs D = {Xt, Yt }Nt=1 are autocorrelated
observations of X and Y at times t = 1, . . . , N , then the fundamental prediction
problem can be expressed as a sequence prediction problem: construct a non-linear

Fig. 1.5 Overview of how machine learning generalizes parametric econometrics, together with
the section references to the material in the first two parts of this book

3 Statistical Modeling vs. Machine Learning 19

times series predictor, Ŷ (Xt), of an output, Y , using a high-dimensional input matrix
of T length sub-sequences Xt :

Ŷt = F(Xt) where Xt := seqT,0(Xt) := (Xt−T+1, . . . , Xt), (1.11)

where Xt−j is a j th lagged observation of Xt , Xt−j = Lj [Xj], for 0 =
1, . . . , T − 1. Sequence learning, then, is just a composition of a non-linear map and
a vectorization of the lagged input variables. If the data is i.i.d., then no sequence is
needed (i.e., T = 1), and we recover the standard cross-sectional prediction problem
which can be approximated with a feedforward neural network model.

Recurrent neural networks (RNNs), shown in Fig. 1.4b, are time series methods
or sequence learners which have achieved much success in applications such as
natural language understanding, language generation, video processing, and many
other tasks (Graves 2012). There are many types of RNNs—we will just concen-
trate on simple RNN models for brevity of notation. Like multivariate structural
autoregressive models, RNNs apply an autoregressive function f (1)

W(1),b(1)
(Xt) to

each input sequence Xt , where T denotes the look back period at each time step—
the maximum number of lags. However, rather than directly imposing a linear
autocovariance structure, a RNN provides a flexible functional form to directly
model the predictor, Ŷ .

A simple RNN can be understood as an unfolding of a single hidden layer neural
network (a.k.a. Elman network (Elman 1991)) over all time steps in the sequence,
j = 0, . . . , T . For each time step, j , this function f (1)

W(1),b(1)
(Xt,j) generates a hidden

state Zt−j from the current input Xt−j and the previous hidden state Zt−j−1 and
Xt,j = seqT,j (Xt) ⊂ Xt which appears in general form as:

response: Ŷt=f (2)W(2),b(2)
(Zt):=σ (2)(W(2)Zt+b(2)),

hidden states: Zt−j = f (1)W(1),b(1)
(Xt,j)

:= σ (1)(W(1)
z Zt−j−1 +W(1)

x Xt−j + b(1)), j ∈ {T , . . . , 0},

where σ (1) is an activation function such as tanh(x) and σ (2) is either a softmax
function, sigmoid function, or identity function depending on whether the response
is categorical, binary, or continuous, respectively. The connections between the
extremal inputsXt and theH hidden units are weighted by the time invariant matrix
W
(1)
x ∈ R

H×P . The recurrent connections between theH hidden units are weighted
by the time invariant matrixW(1)

z ∈ R
H×H . Without such a matrix, the architecture

is simply a single layered feedforward network without memory—each independent
observation Xt is mapped to an output Ŷt using the same hidden layer.

It is important to note that a plain RNN, de-facto, is not a deep network.
The recurrent layer has the deceptive appearance of being a deep network when
“unfolded,” i.e. viewed as being repeatedly applied to each new input, Xt−j , so

that Zt−j = σ (1)(W(1)
z Zt−j−1 +W(1)

x Xt−j). However the same recurrent weights

20 1 Introduction

remain fixed over all repetitions—there is only one recurrent layer with weights
W
(1)
z .
The amount of memory in the model is equal to the sequence length T . This

means that the maximum lagged input that affects the output, Ŷt , is Xt−T . We
shall see later in Chap. 8 that RNNs are simply non-linear autoregressive models
with exogenous variables (NARX). In the special case of the univariate time series
prediction X̂t = F(Xt−1), using T = p previous observations {Xt−i}pi=1, only one
neuron in the recurrent layer with weight φ and no activation function, a RNN is an
AR(p) model with zero drift and geometric weights:

X̂t = (φ1L+ φ2L
2 + · · · + φpLp)[Xt], φi := φi,

with |φ| < 1 to ensure that the model is stationary. The order p can be found through
autocorrelation tests of the residual if we make the additional assumption that the
error Xt − X̂t is Gaussian. Example tests include the Ljung–Box and Lagrange
multiplier tests. However, the over-reliance on parametric diagnostic tests should be
used with caution since the conditions for satisfying the tests may not be satisfied
on complex time series data. Because the weights are time independent, plain RNNs
are static time series models and not suited to non-covariance stationary time series
data.

Additional layers can be added to create deep RNNs by stacking them on top
of each other, using the hidden state of the RNN as the input to the next layer.
However, RNNs have difficulty in learning long-term dynamics, due in part to the
vanishing and exploding gradients that can result from propagating the gradients
down through the many unfolded layers of the network. Moreover, RNNs like most
methods in supervised machine learning are inherently designed for stationary data.
Oftentimes, financial time series data is non-stationary.

In Chap. 8, we shall introduce gated recurrent units (GRUs) and long short term
memory (LSTM) networks, the latter is shown in Fig. 1.4c as a particular form
of recurrent network which provide a solution to this problem by incorporating
memory units. In the language of time series modeling, we shall construct dynamic
RNNs which are suitable for non-stationary data. More precisely, we shall see that
these architecture shall learn when to forget previous hidden states and when to
update hidden states given new information.

This ability to model hidden states is of central importance in financial time
series modeling and applications in trading. Mixture models and hidden Markov
models have historically been the primary probabilistic methods used in quantitative
finance and econometrics to model regimes and are reviewed in Chap. 2 and Chap. 7
respectively. Readers are encouraged to review Chap. 2, before reading Chap. 7.

•? Multiple Choice Question 3

Select all the following correct statements:

1. A linear recurrent neural network with a memory of p lags is an autoregressive
model AR(p) with non-parametric error.

3 Statistical Modeling vs. Machine Learning 21

2. Recurrent neural networks, as time series models, are guaranteed to be stationary,
for any choice of weights.

3. The amount of memory in a shallow recurrent network corresponds to the number
of times a single perceptron layer is unfolded.

4. The amount of memory in a deep recurrent network corresponds to the number
of perceptron layers.

3.3 Over-fitting

Undoubtedly the pivotal concern with machine learning, and especially deep
learning, is the propensity for over-fitting given the number of parameters in the
model. This is why skill is needed to fit deep neural networks.

In frequentist statistics, over-fitting is addressed by penalizing the likelihood
function with a penalty term. A common approach is to select models based on
Akaike’s information criteria (Akaike 1973), which assumes that the model error is
Gaussian. The penalty term is in fact a sample bias correction term to the Kullback–
Leibler divergence (the relative Entropy) and is applied post-hoc to the unpenalized
maximized loss likelihood.

Machine learning methods such as least absolute shrinkage and selection oper-
ator (LASSO) and ridge regression more conveniently directly optimize a loss
function with a penalty term. Moreover the approach is not restricted to model-
ing error distributional assumptions. LASSO or L1 regularization favors sparser
parameterizations, whereas ridge regression or L2 reduces the magnitude of the
parameters. Regularization is arguably the most important aspect of why machine
learning methods have been so successful in finance and other distributions.
Conversely, its absence is why neural networks fell out-of-favor in the finance
industry in the 1990s.

Regularization and information criteria are closely related, a key observation
which enables us to express model selection in terms of information entropy and
hence root our discourse in the works of Shannon (1948), Wiener (1964), Kullback
and Leibler (1951). How to choose weights, the concept of regularization for model
selection, and cross-validation is discussed in Chap. 4.

It turns out that the choice of priors in Bayesian modeling provides a probabilistic
analog to LASSO and ridge regression. L2 regularization is equivalent to a Gaussian
prior and L1 is an equivalent to a Laplacian prior. Another important feature of
Bayesian models is that they have a natural mechanism for prevention of over-fitting
built-in. Introductory Bayesian modeling is covered extensively in Chap. 2.

22 1 Introduction

4 Reinforcement Learning

Recall that supervised learning is essentially a paradigm for inferring the parameters
of a map between input data and an output through minimizing an error over training
samples. Performance generalization is achieved through estimating regularization
parameters on cross-validation data. Once the weights of a network are learned,
they are not updated in response to new data. For this reason, supervised learning
can be considered as an “offline” form of learning, i.e. the model is fitted offline.
Note that we avoid referring to the model as static since it is possible, under certain
types of architectures, to create a dynamical model in which the map between input
and output changes over time. For example, as we shall see in Chap. 8, a LSTM
maintains a set of hidden state variables which result in a different form of the map
over time.

In such learning, a “teacher” provides an exact right output for each data point
in a training set. This can be viewed as “feedback” from the teacher, which for
supervised learning amounts to informing the agent with the correct label each time
the agent classifies a new data point in the training dataset. Note that this is opposite
to unsupervised learning, where there is no teacher to provide correct answers to a
ML algorithm, which can be viewed as a setting with no teacher, and, respectively,
no feedback from a teacher.

An alternative learning paradigm, referred to as “reinforcement learning,” exists
which models a sequence of decisions over state space. The key difference of
this setting from supervised learning is feedback from the teacher is somewhat
in between of the two extremes of unsupervised learning (no feedback at all) and
supervised learning that can be viewed as feedback by providing the right labels.
Instead, such partial feedback is provided by “rewards” which encourage a desired
behavior, but without explicitly instructing the agent what exactly it should do, as in
supervised learning.

The simplest way to reason about reinforcement learning is to consider machine
learning tasks as a problem of an agent interacting with an environment, as
illustrated in Fig. 1.6.

Fig. 1.6 This figure shows a reinforcement learning agent which performs actions at times
t0, . . . , tn. The agent perceives the environment through the state variable St . In order to perform
better on its task, feedback on an action at is provided to the agent at the next time step in the form
of a reward Rt

4 Reinforcement Learning 23

The agent learns about the environment in order to perform better on its task,
which can be formulated as the problem of performing an optimal action. If
an action performed by an agent is always the same and does not impact the
environment, in this case we simply have a perception task, because learning about
the environment helps to improve performance on this task. For example, you might
have a model for prediction of mortgage defaults where the action is to compute the
default probability for a given mortgage. The agent, in this case, is just a predictive
model that produces a number and there is measurement of how the model impacts
the environment. For example, if a model at a large mortgage broker predicted that
all borrowers will default, it is very likely that this would have an impact on the
mortgage market, and consequently future predictions. However, this feedback is
ignored as the agent just performs perception tasks, ideally suited for supervised
learning. Another example is in trading. Once an action is taken by the strategy
there is feedback from the market which is referred to as “market impact.”

Such a learner is configured to maximize a long-run utility function under
some assumptions about the environment. One simple assumption is to treat the
environment as being fully observable and evolving as a first-order Markov process.
A Markov Decision Process (MDP) is then the simplest modeling framework that
allows us to formalize the problem of reinforcement learning. A task solved by
MDPs is the problem of optimal control, which is the problem of choosing action
variables over some period of time, in order to maximize some objective function
that depends both on the future states and action taken. In a discrete-time setting,
the state of the environment St ∈ S is used by the learner (a.k.a. agent) to
decide which action at ∈ A(St) to take at each time step. This decision is made
dynamic by updating the probabilities of selecting each action conditioned on St .
These conditional probabilities πt (a|s) are referred to as the agent’s policy. The
mechanism for updating the policy as a result of its learning is as follows: one time
step later and as a consequence of its action, the learner receives a reward defined
by a reward function, an immediate reward given the current state St and action
taken at .

As a result of the dynamic environment and the action of the agent, we transition
to a new state St+1. A reinforcement learning method specifies how to change the
policy so as to maximize the total amount of reward received over the long-run. The
constructs for reinforcement learning will be formalized in Chap. 9 but we shall
informally discuss some of the challenges of reinforcement learning in finance here.

Most of the impressive progress reported recently with reinforcement learning
by researchers and companies such as Google’s DeepMind or OpenAI, such as
playing video games, walking robots, self-driving cars, etc., assumes complete
observability, using Markovian dynamics. The much more challenging problem,
which is a better setting for finance, is how to formulate reinforcement learning
for partially observable environments, where one or more variables are hidden.

Another, more modest, challenge exists in how to choose the optimal policy when
no environment is fully observable but the dynamic process for how the states evolve
over time is unknown. It may be possible, for simple problems, to reason about how
the states evolve, perhaps adding constraints on the state-action space. However,

24 1 Introduction

the problem is especially acute in high-dimensional discrete state spaces, arising
from, say, discretizing continuous state spaces. Here, it is typically intractable to
enumerate all combinations of states and actions and it is hence not possible to
exactly solve the optimal control problem. Chapter 9 will present approaches for
approximating the optimal control problem. In particular, we will turn to neural
networks to approximate an action function known as a “Q-function.” Such an
approach is referred to as “Q-Learning” and more recently, with the use of deep
learning to approximate the Q-function, is referred to as “Deep Q-Learning.”

To fix ideas, we consider a number of examples to illustrate different aspects
of the problem formulation and challenge in applying reinforcement learning. We
start with arguably the most famous toy problem used to study stochastic optimal
control theory, the “multi-armed bandit problem.” This problem is especially helpful
in developing our intuition of how an agent must balance the competing goals of
exploring different actions versus exploitation of known outcomes.

Example 1.3 Multi-armed Bandit Problem

Suppose there is a fixed and finite set of n actions, a.k.a. arms, denoted A.
Learning proceeds in rounds, indexed by t = 1, . . . , T . The number of rounds
T , a.k.a. the time horizon, is fixed and known in advance. In each round, the
agent picks an arm at and observes the reward Rt(at) for the chosen arm only.
For avoidance of doubt, the agent does not observe rewards for other actions
that could have been selected. If the goal is to maximize total reward over all
rounds, how should the agent choose an arm?

Suppose the rewardsRt are independent and identical random variables with
distribution ν ∈ [0, 1]n and mean μ. The best action is then the distribution
with the maximum mean μ∗.

The difference between the player’s accumulated reward and the maximum
the player (a.k.a. the “cumulative regret”) could have obtained had she known
all the parameters is

R̄T = T μ∗ − E

∑

t∈[T]
Rt .

Intuitively, an agent should pick arms that performed well in the past, yet
the agent needs to ensure that no good option has been missed.

The theoretical origins of reinforcement learning are in stochastic dynamic
programming. In this setting, an agent must make a sequence of decisions under
uncertainty about the reward. If we can characterize this uncertainty with probability
distributions, then the problem is typically much easier to solve. We shall assume
that the reader has some familiarity with dynamic programming—the extension
to stochastic dynamic programming is a relatively minor conceptual development.
Note that Chap. 9 will review pertinent aspects of dynamic programming, including

4 Reinforcement Learning 25

Bellman optimality. The following optimal payoff example will likely just serve as a
simple review exercise in dynamic programming, albeit with uncertainty introduced
into the problem. As we follow the mechanics of solving the problem, the example
exposes the inherent difficulty of relaxing our assumptions about the distribution of
the uncertainty.

Example 1.4 Uncertain Payoffs

A strategy seeks to allocate $600 across 3 markets and is equally profitable
once the position is held, returning 1% of the size of the position over a short
trading horizon [t, t + 1]. However, the markets vary in liquidity and there is
a lower probability that the larger orders will be filled over the horizon. The
amount allocated to each market must be either K = {100, 200, 300}.

Strategy Allocation Fill probability
M1 100 0.8

200 0.7

300 0.6
M2 100 0.75

200 0.7

300 0.65
M3 100 0.75

200 0.75

300 0.6

Strategy Allocation Return

M1 100 0.8

200 1.4

300 1.8
M2 100 0.75

200 1.4

300 1.95
M3 100 0.75

200 1.5

300 1.8

The optimal allocation problem under uncertainty is a stochastic dynamic
programming problem. We can define value functions vi(x) for total allocation
amount x for each stage of the problem, corresponding to the markets. We then
find the optimal allocation using the backward recursive formulae:

v3(x) = R3(x),∀x ∈ K,
v2(x) = max

k∈K {R2(k)+ v3(x − k)},∀x ∈ K + 200,

v1(x) = max
k∈K {R1(k)+ v2(x − k)}, x = 600,

The left-hand side of the table below tabulates the values of R2 + v3
corresponding to the second stage of the backward induction for each pair
(M2,M3).

(continued)

26 1 Introduction

Example 1.4 (continued)

R2 + v3 M2

M3 100 200 300

100 1.5 2.15 2.7

200 2.25 2.9 3.45

300 2.55 3.2 3.75

M1 (M∗
2 ,M

∗
3) v2 R1 R1 + v2

100 (300, 200) 3.45 0.8 4.25

200 (200, 200) 2.9 1.4 4.3

300 (100, 200) 2.25 1.8 4.05

The right-hand side of the above table tabulates the values of R1 + v2
corresponding to the third and final stage of the backward induction for each
tuple (M1,M

∗
2 ,M

∗
3).

In the above example, we can see that the allocation {200, 200, 200} maximizes
the reward to give v1(600) = 4.3. While this exercise is a straightforward
application of a Bellman optimality recurrence relation, it provides a glimpse of
the types of stochastic dynamic programming problems that can be solved with
reinforcement learning. In particular, if the fill probabilities are unknown but must
be learned over time by observing the outcome over each period [ti , ti+1), then
the problem above cannot be solved by just using backward recursion. Instead we
will move to the framework of reinforcement learning and attempt to learn the
best actions given the data. Clearly, in practice, the example is much too simple
to be representative of real-world problems in finance—the profits will be unknown
and the state space is significantly larger, compounding the need for reinforcement
learning. However, it is often very useful to benchmark reinforcement learning on
simple stochastic dynamic programming problems with closed-form solutions.

In the previous example, we assumed that the problem was static—the variables
in the problem did not change over time. This is the so-called static allocation
problem and is somewhat idealized. Our next example will provide a glimpse of the
types of problems that typically arise in optimal portfolio investment where random
variables are dynamic. The example is also seated in more classical finance theory,
that of a “Markowitz portfolio” in which the investor seeks to maximize a risk-
adjusted long-term return and the wealth process is self-financing.6

Example 1.5 Optimal Investment in an Index Portfolio

Let St be a time-t price of a risky asset such as a sector exchange-traded fund
(ETF). We assume that our setting is discrete time, and we denote different time
steps by integer valued-indices t = 0, . . . , T , so there are T + 1 values on our
discrete-time grid. The discrete-time random evolution of the risky asset St is

(continued)

6A wealth process is self-financing if, at each time step, any purchase of an additional quantity
of the risky asset is funded from the bank account. Vice versa, any proceeds from a sale of some
quantity of the asset go to the bank account.

4 Reinforcement Learning 27

Example 1.5 (continued)
St+1 = St (1+ φt) , (1.12)

where φt is a random variable whose probability distribution may depend on
the current asset value St . To ensure non-negativity of prices, we assume that
φt is bounded from below φt ≥ −1.

Consider a wealth processWt of an investor who starts with an initial wealth
W0 = 1 at time t = 0 and, at each period t = 0, . . . , T − 1 allocates a fraction
ut = ut (St) of the total portfolio value to the risky asset, and the remaining
fraction 1 − ut is invested in a risk-free bank account that pays a risk-free
interest rate rf = 0. We will refer to a set of decision variables for all time
steps as a policy π := {ut }T−1

t=0 . The wealth process is self-financing and so the
wealth at time t + 1 is given by

Wt+1 = (1− ut)Wt + utWt (1+ φt) . (1.13)

This produces the one-step return

rt = Wt+1 −Wt
Wt

= utφt . (1.14)

Note this is a random function of the asset price St . We define one-step rewards
Rt for t = 0, . . . , T − 1 as risk-adjusted returns

Rt = rt − λVar [rt |St] = utφt − λu2
t Var [φt |St] , (1.15)

where λ is a risk-aversion parameter.a We now consider the problem of
maximization of the following concave function of the control variable ut :

V π(s)=max
ut

E

[
T∑

t=0

Rt

∣∣∣∣∣ St=s
]
=max

ut
E

[
T∑

t=0

utφt−λu2
t Var [φt |St]

∣∣∣∣∣ St=s
]
.

(1.16)
Equation 1.16 defines an optimal investment problem for T − 1 steps faced
by an investor whose objective is to optimize risk-adjusted returns over each
period. This optimization problem is equivalent to maximizing the long-run

(continued)

aNote, for avoidance of doubt, that the risk-aversion parameter must be scaled by a factor of
1
2 to ensure consistency with the finance literature.

28 1 Introduction

Example 1.5 (continued)

returns over the period [0, T]. For each t = T −1, T −2, . . . , 0, the optimality
condition for action ut is now obtained by maximization of V π(s) with respect
to ut :

u∗t =
E [φt | St]

2λVar [φt |St] , (1.17)

where we allow for short selling in the ETF (i.e., ut < 0) and borrowing of
cash ut > 1.

This is an example of a stochastic optimal control problem for a portfolio that
maximizes its cumulative risk-adjusted return by repeatedly rebalancing between
cash and a risky asset. Such problems can be solved using means of dynamic
programming or reinforcement learning. In our problem, the dynamic programming
solution is given by an analytical expression (1.17). Chapter 9 will present more
complex settings including reinforcement learning approaches to optimal control
problems, as well as demonstrate how expressions like the optimal action of Eq. 1.17
can be computed in practice.

•? Multiple Choice Question 4

Select all the following correct statements:

1. The name “Markov processes” first historically appeared as a result of a
misspelled name “Mark-Off processes” that was previously used for random
processes that describe learning in certain types of video games, but has become
a standard terminology since then.

2. The goal of (risk-neutral) reinforcement learning is to maximize the expected
total reward by choosing an optimal policy.

3. The goal of (risk-neutral) reinforcement learning is to neutralize risk, i.e. make
the variance of the total reward equal zero.

4. The goal of risk-sensitive reinforcement learning is to teach a RL agent to pick
action policies that are most prone to risk of failure. Risk-sensitive RL is used,
e.g. by venture capitalists and other sponsors of RL research, as a tool to assess
the feasibility of new RL projects.

5 Examples of Supervised Machine Learning in Practice

The practice of machine learning in finance has grown somewhat commensurately
with both theoretical and computational developments in machine learning. Early
adopters have been the quantitative hedge funds, including Bridgewater Associates,

5 Examples of Supervised Machine Learning in Practice 29

Renaissance Technologies, WorldQuant, D.E. Shaw, and Two Sigma who have
embraced novel machine learning techniques although there are mixed degrees of
adoption and a healthy skepticism exists that machine learning is a panacea for
quantitative trading. In 2015, Bridgewater Associates announced a new artificial
intelligence unit, having hired people from IBM Watson with expertise in deep
learning. Anthony Ledford, chief scientist at MAN AHL: “It’s at an early stage. We
have set aside a pot of money for test trading. With deep learning, if all goes well,
it will go into test trading, as other machine learning approaches have.” Winton
Capital Management’s CEO David Harding: “People started saying, ‘There’s an
amazing new computing technique that’s going to blow away everything that’s gone
before.’ There was also a fashion for genetic algorithms. Well, I can tell you none
of those companies exist today—not a sausage of them.”

Some qualifications are needed to more accurately assess the extent of adoption.
For instance, there is a false line of reasoning that ordinary least squares regres-
sion and logistic regression, as well as Bayesian methods, are machine learning
techniques. Only if the modeling approach is algorithmic, without positing a data
generation process, can the approach be correctly categorized as machine learning.
So regularized regression without use of parametric assumptions on the error
distribution is an example of machine learning. Unregularized regression with, say,
Gaussian error is not a machine learning technique. The functional form of the
input–output map is the same in both cases, which is why we emphasize that the
functional form of the map is not a sufficient condition for distinguishing ML from
statistical methods.

With that caveat, we shall view some examples that not only illustrate some of
the important practical applications of machine learning prediction in algorithmic
trading, high-frequency market making, and mortgage modeling but also provide a
brief introduction to applications that will be covered in more detail in later chapters.

5.1 Algorithmic Trading

Algorithmic trading is a natural playground for machine learning. The idea behind
algorithmic trading is that trading decisions should be based on data, not intuition.
Therefore, it should be viable to automate this decision-making process using
an algorithm, either specified or learned. The advantages of algorithmic trading
include complex market pattern recognition, reduced human produced error, ability
to test on historic data, etc. In recent times, as more and more information is being
digitized, the feasibility and capacity of algorithmic trading has been expanding
drastically. The number of hedge funds, for example, that apply machine learning for
algorithmic trading is steadily increasing.

Here we provide a simple example of how machine learning techniques can
be used to improve traditional algorithmic trading methods, but also provide new
trading strategy suggestions. The example here is not intended to be the “best”
approach, but rather indicative of more out-of-the-box strategies that machine
learning facilitates, with the emphasis on minimizing out-of-sample error by pattern
matching through efficient compression across high-dimensional datasets.

30 1 Introduction

Momentum strategies are one of the most well-known algo-trading strategies;
In general, strategies that predict prices from historic price data are categorized
as momentum strategies. Traditionally momentum strategies are based on certain
regression-based econometric models, such as ARIMA or VAR (see Chap. 6).
A drawback of these models is that they impose strong linearity which is not
consistently plausible for time series of prices. Another caveat is that these models
are parametric and thus have strong bias which often causes underfitting. Many
machine learning algorithms are both non-linear and semi/non-parametric, and
therefore prove complementary to existing econometric models.

In this example we build a simple momentum portfolio strategy with a feedfor-
ward neural network. We focus on the S&P 500 stock universe, and assume we have
daily close prices for all stocks over a ten-year period.7

Problem Formulation
The most complex practical aspect of machine learning is how to choose the
input (“features”) and output. The type of desired output will determine whether
a regressor or classifier is needed, but the general rule is that it must be actionable
(i.e., tradable). Suppose our goal is to invest in an equally weighted, long only,
stock portfolio only if it beats the S&P 500 index benchmark (which is a reasonable
objective for a portfolio manager). We can therefore label the portfolio at every
observation t based on the mean directional excess return of the portfolio:

Gt =
{

1 1
N

∑
i r
i
t+h,t − r̃t+h,t ≥ ε,

0 1
N

∑
i r
i
t+h,t − r̃t+h,t < 0,

(1.18)

where rit+h,t is the return of stock i between times t and t + h, r̃t+h,t is the return
of the S&P 500 index in the same period, and ε is some target next period excess
portfolio return. Without loss of generality, we could invest in the universe (N =
500), although this is likely to have adverse practical implications such as excessive
transaction costs. We could easily just have restricted the number of stocks to a
subset, such as the top decile of performing stocks in the last period. Framed this
way, the machine learner is thus informing us when our stock selection strategy
will outperform the market. It is largely agnostic to how the stocks are selected,
provided the procedure is systematic and based solely on the historic data provided
to the classifier. It is further worth noting that the map between the decision to hold
the customized portfolio has a non-linear relationship with the past returns of the
universe.

To make the problem more concrete, let us set h = 5 days. The algorithmic
strategy here is therefore automating the decision to invest in the customized

7The question of how much data is needed to train a neural network is a central one, with the
immediate concern being insufficient data to avoid over-fitting. The amount of data needed is
complex to assess; however, it is partly dependent on the number of edges in the network and
can be assessed through bias–variance analysis, as described in Chap. 4.

5 Examples of Supervised Machine Learning in Practice 31

Table 1.3 Training samples for a classification problem

Date X1 X2 . . . X500 G

2007-01-03 0.051 −0.035 0.072 0

2017-01-04 −0.092 0.125 −0.032 0

2017-01-05 0.021 0.063 −0.058 1

. . .

2017-12-29 0.093 −0.023 0.045 1

2017-12-30 0.020 0.019 0.022 1

2017-12-31 −0.109 0.025 −0.092 1

portfolio or the S&P 500 index every week based on the previous 5-day realized
returns of all stocks. To apply machine learning to this decision, the problem
translates into finding the weights in the network between past returns and the
decision to invest in the equally weighted portfolio. For avoidance of doubt, we
emphasize that the interpretation of the optimal weights differs substantially from
Markowitz’s mean–variance portfolios, which simply finds the portfolio weights to
optimize expected returns for a given risk tolerance. Here, we either invest equal
amounts in all stocks of the portfolio or invest the same amount in the S&P 500
index and the weights in the network signify the relevance of past stock returns in
the expected excess portfolio return outperforming the market.

Data
Feature engineering is always important in building models and requires careful
consideration. Since the original price data does not meet several machine learning
requirements, such as stationarity and i.i.d. distributional properties, one needs to
engineer input features to prevent potential “garbage-in-garbage-out” phenomena.
In this example, we take a simple approach by using only the 5-day realized returns
of all S&P 500 stocks.8 Returns are scale-free and no further standardization is
needed. So for each time t , the input features are

Xt =
[
r1
t,t−5, . . . , r

500
t,t−5

]
. (1.19)

Now we can aggregate the features and labels into a panel indexed by date. Each
column is an entry in Eq. 1.19, except for the last column which is the assigned
label from Eq. 1.18, based on the realized excess stock returns of the portfolio. An
example of the labeled input data (X,G) is shown in Table 1.3.

The process by which we train the classifier and evaluate its performance will be
described in Chap. 4, but this example illustrates how algo-trading strategies can be
crafted around supervised machine learning. Our model problem could be tailored

8Note that the composition of the S&P 500 changes over time and so we should interpret a feature
as a fixed symbol.

32 1 Introduction

for specific risk-reward and performance reporting metrics such as, for example,
Sharpe or information ratios meeting or exceeding a threshold.
ε is typically chosen to be a small value so that the labels are not too imbalanced.

As the value ε is increased, the problem becomes an “outlier prediction problem”—
a highly imbalanced classification problem which requires more advanced sampling
and interpolation techniques beyond an off-the-shelf classifier.

In the next example, we shall turn to another important aspect of machine
learning in algorithmic trading, namely execution. How the trades are placed is a
significant aspect of algorithmic trading strategy performance, not only to minimize
price impact of market taking strategies but also for market making. Here we shall
look to transactional data to perfect the execution, an engineering challenge by itself
just to process market feeds of tick-by-tick exchange transactions. The example
considers a market making application but could be adapted for price impact and
other execution considerations in algorithmic trading by moving to a reinforcement
learning framework.

A common mistake is to assume that building a predictive model will result in a
profitable trading strategy. Clearly, the consideration given to reliably evaluating
machine learning in the context of trading strategy performance is a critical
component of its assessment.

5.2 High-Frequency Trade Execution

Modern financial exchanges facilitate the electronic trading of instruments through
an instantaneous double auction. At each point in time, the market demand and
the supply can be represented by an electronic limit order book, a cross-section of
orders to execute at various price levels away from the market price as illustrated in
Table 1.4.

Electronic market makers will quote on both sides of the market in an attempt
to capture the bid–ask spread. Sometimes a large market order, or a succession of
smaller markets orders, will consume an entire price level. This is why the market
price fluctuates in liquid markets—an effect often referred to by practitioners as a
“price-flip.” A market maker can take a loss if only one side of the order is filled as
a result of an adverse price movement.

Figure 1.7 (left) illustrates a typical mechanism resulting in an adverse price
movement. A snapshot of the limit order book at time t , before the arrival of a
market order, and after at time t+1 is shown in the left and right panels, respectively.
The resting orders placed by the market marker are denoted with the “+” symbol—
red denotes a bid and blue denotes an ask quote. A buy market order subsequently
arrives and matches the entire resting quantity of best ask quotes. Then at event
time t + 1 the limit order book is updated—the market maker’s ask has been filled
(blue minus symbol) and the bid now rests away from the inside market. The market
marker may systematically be forced to cancel the bid and buy back at a higher price,
thus taking a loss.

5 Examples of Supervised Machine Learning in Practice 33

Table 1.4 This table shows a snapshot of the limit order book of S&P 500 e-mini futures (ES).
The top half (“sell-side”) shows the ask volumes and prices and the lower half (“buy side”) shows
the bid volumes and prices. The quote levels are ranked by the most competitive at the center (the
“inside market”), outward to the least competitive prices at the top and bottom of the limit order
book. Note that only five bid or ask levels are shown in this example, but the actual book is much
deeper

Bid Price Ask
2170.25 1284
2170.00 1642
2169.75 1401
2169.50 1266
2169.25 290

477 2169.00
1038 2168.75
950 2168.50
1349 2168.25
1559 2168.00

Fig. 1.7 (Top) A snapshot of the limit order book is taken at time t . Limit orders placed by the
market marker are denoted with the “+” symbol—red denotes a bid and blue denotes an ask. A buy
market order subsequently arrives and matches the entire resting quantity of best ask quotes. Then
at event time t + 1 the limit order book is updated. The market maker’s ask has been filled (blue
minus symbol) and the bid rests away from the inside market. (Bottom) A pre-emptive strategy
for avoiding adverse price selection is illustrated. The ask is requoted at a higher ask price. In this
case, the bid is not replaced and the market maker may capture a tick more than the spread if both
orders are filled

Machine learning can be used to predict these price movements (Kearns and
Nevmyvaka 2013; Kercheval and Zhang 2015; Sirignano 2016; Dixon et al. 2018;
Dixon 2018b,a) and thus to potentially avoid adverse selection. Following Cont and
de Larrard (2013) we can treat queue sizes at each price level as input variables.
We can additionally include properties of market orders, albeit in a form which
our machines deem most relevant to predicting the direction of price movements
(a.k.a. feature engineering). In contrast to stochastic modeling, we do not impose
conditional distributional assumptions on the independent variables (a.k.a. features)
nor assume that price movements are Markovian. Chapter 8 presents a RNN for

34 1 Introduction

mid-price prediction from the limit order book history which is the starting point
for the more in-depth study of Dixon (2018b) which includes market orders and
demonstrates the superiority of RNNs compared to other time series methods such
as Kalman filters.

We reiterate that the ability to accurately predict does not imply profitability
of the strategy. Complex issues concerning queue position, exchange matching
rules, latency, position constraints, and price impact are central considerations for
practitioners. The design of profitable strategies goes beyond the scope of this book
but the reader is referred to de Prado (2018) for the pitfalls of backtesting and
designing algorithms for trading. Dixon (2018a) presents a framework for evaluating
the performance of supervised machine learning algorithms which accounts for
latency, position constraints, and queue position. However, supervised learning is
ultimately not the best machine learning approach as it cannot capture the effect
of market impact and is too inflexible to incorporate more complex strategies.
Chapter 9 presents examples of reinforcement learning which demonstrate how to
capture market impact and also how to flexibly formulate market making strategies.

5.3 Mortgage Modeling

Beyond the data rich environment of algorithmic trading, does machine learning
have a place in finance? One perspective is that there simply is not sufficient data
for some “low-frequency” application areas in finance, especially where traditional
models have failed catastrophically. The purpose of this section is to serve as a
sobering reminder that long-term forecasting goes far beyond merely selecting the
best choice of machine learning algorithm and why there is no substitute for strong
domain knowledge and an understanding of the limitations of data.

In the USA, a mortgage is a loan collateralized by real-estate. Mortgages are
used to securitize financial instruments such as mortgage backed securities and
collateralized mortgage obligations. The analysis of such securities is complex and
has changed significantly over the last decade in response to the 2007–2008 financial
crises (Stein 2012).

Unless otherwise specified, a mortgage will be taken to mean a “residential
mortgage,” which is a loan with payments due monthly that is collateralized by a
single family home. Commercial mortgages do exist, covering office towers, rental
apartment buildings, and industrial facilities, but they are different enough to be
considered separate classes of financial instruments. Borrowing money to buy a
house is one of the most common, and largest balance, loans that an individual
borrower is ever likely to commit to. Within the USA alone, mortgages comprise
a staggering $15 trillion dollars in debt. This is approximately the same balance as
the total federal debt outstanding (Fig. 1.8).

Within the USA, mortgages may be repaid (typically without penalty) at will by
the borrower. Usually, borrowers use this feature to refinance their loans in favorable
interest rate regimes, or to liquidate the loan when selling the underlying house. This

5 Examples of Supervised Machine Learning in Practice 35

Fig. 1.8 Total mortgage debt in the USA compared to total federal debt, millions of dollars,
unadjusted for inflation. Source: https://fred.stlouisfed.org/series/MDOAH, https://fred.stlouisfed.
org/series/GFDEBTN

Table 1.5 At any time, the states of any US style residential mortgage is in one of the several
possible states

Symbol Name Definition

P Paid All balances paid, loan is dissolved

C Current All payments due have been paid

3 30-days delinquent Mortgage is delinquent by one payment

6 60-days delinquent Delinquent by 2 payments

9 90+ delinquent Delinquent by 3 or more payments

F Foreclosure Foreclosure has been initiated by the lender

R Real-Estate-Owned (REO) The lender has possession of the property

D Default liquidation Loan is involuntarily liquidated for nonpayment

has the effect of moving a great deal of financial risk off of individual borrowers,
and into the financial system. It also drives a lively and well developed industry
around modeling the behavior of these loans.

The mortgage model description here will generally follow the comprehensive
work in Sirignano et al. (2016), with only a few minor deviations.

Any US style residential mortgage, in each month, can be in one of the several
possible states listed in Table 1.5.

Consider this set of K available states to be K = {P,C, 3, 6, 9, F,R,D}.
Following the problem formulation in Sirignano et al. (2016), we will refer to the
status of loan n at time t as Unt ∈ K, and this will be represented as a probability
vector using a standard one-hot encoding.

If X = (X1, . . . , XP) is the input matrix of P explanatory variables, then we
define a probability transition density function g : RP → [0, 1]K×K parameterized
by θ so that

P(Unt+1 = i | Unt = j,Xnt) = gi,j (Xnt | θ),∀i, j ∈ K. (1.20)

https://fred.stlouisfed.org/series/MDOAH
https://fred.stlouisfed.org/series/GFDEBTN
https://fred.stlouisfed.org/series/GFDEBTN

36 1 Introduction

Note that g(Xnt | θ) is a time in-homogeneous K ×K Markov transition matrix.
Also, not all transitions are even conceptually possible—there are non-commutative
states. For instance, a transition from C to 6 is not possible since a borrower cannot
miss two payments in a single month. Here we will write p(i,j) := gi,j (X

n
t | θ)

for ease of notation and because of the non-commutative state transitions where
p(i,j) = 0, the Markov matrix takes the form:

g(Xnt | θ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 p(c,p) p(3,p) 0 0 0 0 0
0 p(c,c) p(3,c) p(6,c) p(9,c) p(f,c) 0 0
0 p(c,3) p(3,3) p(6,3) p(9,3) p(f,3) 0 0
0 0 p(3,6) p(6,6) p(9,6) p(f,6) 0 0
0 0 0 p(6,9) p(9,9) p(f,9) 0 0
0 0 0 p(6,f) p(9,f) p(f,f) 0 0
0 0 0 p(6,r) p(9,r) p(f,r) p(r,r) 0
0 0 0 p(6,d) p(9,d) p(f,d) p(r,d) 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Our classifier gi,j (Xnt | θ) can thus be constructed so that only the probability
of transition between the commutative states are outputs and we can apply softmax
functions on a subset of the outputs to ensure that

∑
j∈K gi,j (Xnt | θ) = 1 and hence

the transition probabilities in each row sum to one.
For the purposes of financial modeling, it is important to realize that both states

P and D are loan liquidation terminal states. However, state P is considered to
be voluntary loan liquidation (e.g., prepayment due to refinance), whereas state
D is considered to be involuntary liquidation (e.g., liquidation via foreclosure and
auction). These states are not distinguishable in the mortgage data itself, but rather
the driving force behind liquidation must be inferred from the events leading up to
the liquidation.

One contributor to mortgage model misprediction in the run up to the 2008
financial crisis was that some (but not all) modeling groups considered loans
liquidating from deep delinquency (e.g., status 9) to be the transition 9 → P

if no losses were incurred. However, behaviorally, these were typically defaults
due to financial hardship, and they would have had losses in a more difficult
house price regime. They were really 9 → D transitions that just happened to be
lossless due to strong house price gains over the life of the mortgage. Considering
them to be voluntary prepayments (status P) resulted in systematic over-prediction
of prepayments in the aftermath of major house price drops. The matrix above
therefore explicitly excludes this possibility and forces delinquent loan liquidation
to be always considered involuntary.

The reverse of this problem does not typically exist. In most states it is illegal
to force a borrower into liquidation until at least 2 payments have been missed.
Therefore, liquidation from C or 3 is always voluntary, and hence C → P

and 3 → P . Except in cases of fraud or severe malfeasance, it is almost never
economically advantageous for a lender to force liquidation from status 6, but it is
not illegal. Therefore the transition 3 → D is typically a data error, but 6 → D is
merely very rare.

5 Examples of Supervised Machine Learning in Practice 37

Example 1.6 Parameterized Probability Transitions

If loan n is current in time period t , then

P(Unt) = (0, 1, 0, 0, 0, 0, 0, 0)T . (1.21)

If we have p(c,p) = 0.05, p(c,c) = 0.9, and p(c,3) = 0.05, then

P(Unt+1 | Xnt) = g(Xnt | θ) · P(Unt) = (0.05, 0.9, 0.05, 0, 0, 0, 0, 0)T .
(1.22)

Common mortgage models sometimes use additional states, often ones that are
(without additional information) indistinguishable from the states listed above.
Table 1.6 describes a few of these.

The reason for including these is the same as the reason for breaking out states
like REO, status R. It is known on theoretical grounds that some model regressors
fromXnt should not be relevant for R. For instance, since the property is now owned
by the lender, and the loan itself no longer exists, the interest rate (and rate incentive)
of the original loan should no longer have a bearing on the outcome. To avoid
over-fitting due to highly colinear variables, these known-useless variables are then
excluded from transitions models starting in status R.

This is the same reason status T is sometimes broken out, especially for logistic
regressions. Without an extra status listed in this way, strong rate disincentives
could drive prepayments in the model to (almost) zero, but we know that people
die and divorce in all rate regimes, so at least some minimal level of premature loan
liquidations must still occur based on demographic factors, not financial ones.

5.3.1 Model Stability

Unlike many other models, mortgage models are designed to accurately predict
events a decade or more in the future. Generally, this requires that they be built on
regressors that themselves can be accurately predicted, or at least hedged. Therefore,
it is common to see regressors like FICO at origination, loan age in months, rate
incentive, and loan-to-value (LTV) ratio. Often LTV would be called MTMLTV if
it is marked-to-market against projected or realized housing price moves. Of these
regressors, original FICO is static over the life of the loan, age is deterministic,

Table 1.6 A brief description of mortgage states

Symbol Name Overlaps with Definition

T Turnover P Loan prepaid due to non-financial life event

U Curtailment C Borrower overpaid to reduce loan principal

38 1 Introduction

Table 1.7 Loan originations
by year (Freddie Mac,
FRM30)

Year Loans originated

1999 976,159

2000 733,567

2001 1,542,025

2002 1,403,515

2003 2,063,488

2004 1,133,015

2005 1,618,748

2006 1,300,559

2007 1,238,814

2008 1,237,823

2009 1,879,477

2010 1,250,484

2011 1,008,731

2012 1,249,486

2013 1,375,423

2014 942,208

Fig. 1.9 Sample mortgage model predicting C → 3 and fit on loans originated in 2001 and
observed until 2006, by loan age (in months). The prepayment probabilities are shown on the
y-axis

rates can be hedged, and MTMLTV is rapidly driven down by loan amortization
and inflation thus eliminating the need to predict it accurately far into the future.

Consider the Freddie Mac loan level dataset of 30 year fixed rate mortgages
originated through 2014. This includes each monthly observation from each loan
present in the dataset. Table 1.7 shows the loan count by year for this dataset.

When a model is fit on 1 million observations from loans originated in 2001 and
observed until the end of 2006, its C → P probability charted against age is shown
in Fig. 1.9.

In Fig. 1.9 the curve observed is the actual prepayment probability of the
observations with the given age in the test dataset, “Model” is the model prediction,

5 Examples of Supervised Machine Learning in Practice 39

Fig. 1.10 Sample mortgage model predicting C → 3 and fit on loans originated in 2006 and
observed until 2015, by loan age (in months). The prepayment probabilities are shown on the y-
axis

and “Theoretical” is the response to age by a theoretical loan with all other
regressors from Xnt held constant. Two observations are worth noting:

1. The marginal response to age closely matches the model predictions; and
2. The model predictions match actual behavior almost perfectly.

This is a regime where prepayment behavior is largely driven by age. When
that same model is run on observations from loans originated in 2006 (the peak
of housing prices before the crisis), and observed until 2015, Fig. 1.10 is produced.

Three observations are warranted from this figure:

1. The observed distribution is significantly different from Fig. 1.9;
2. The model predicted a decline of 25%, but the actual decline was approximately

56%; and
3. Prepayment probabilities are largely indifferent to age.

The regime shown here is clearly not driven by age. In order to provide even this
level of accuracy, the model had to extrapolate far from any of the available data and
“imagine” a regime where loan age is almost irrelevant to prepayment. This model
meets with mixed success. This particular one was fit on only 8 regressors, a more
complicated model might have done better, but the actual driver of this inaccuracy
was a general tightening of lending standards. Moreover, there was no good data
series available before the crisis to represent lending standards.

This model was reasonably accurate even though almost 15 years separated the
start of the fitting data from the end of the projection period, and a lot happened in
that time. Mortgage models in particular place a high premium on model stability,
and the ability to provide as much accuracy as possible even though the underlying
distribution may have changed dramatically from the one that generated the fitting
data. Notice also that cross-validation would not help here, as we cannot draw
testing data from the distribution we care about, since that distribution comes from
the future.

40 1 Introduction

Most importantly, this model shows that the low-dimensional projections of this
(moderately) high-dimensional problem are extremely deceptive. No modeler would
have chosen a shape like the model prediction from Fig. 1.9 as function of age.
That prediction arises due to the interaction of several variables, interactions that
are not interpretable from one-dimensional plots such as this. As we will see in
subsequent chapters, such complexities in data are well suited to machine learning,
but not without a cost. That cost is understanding the “bias–variance tradeoff”
and understanding machine learning with sufficient rigor for its decisions to be
defensible.

6 Summary

In this chapter, we have identified some of the key elements of supervised machine
learning. Supervised machine learning

1. is an algorithmic approach to statistical inference which, crucially, does not
depend on a data generation process;

2. estimates a parameterized map between inputs and outputs, with the functional
form defined by the methodology such as a neural network or a random forest;

3. automates model selection, using regularization and ensemble averaging tech-
niques to iterate through possible models and arrive at a model with the best
out-of-sample performance; and

4. is often well suited to large sample sizes of high-dimensional non-linear covari-
ates.

The emphasis on out-of-sample performance, automated model selection, and
absence of a pre-determined parametric data generation process is really the key
to machine learning being a more robust approach than many parametric, financial
econometrics techniques in use today. The key to adoption of machine learning in
finance is the ability to run machine learners alongside their parametric counterparts,
observing over time the differences and limitations of parametric modeling based on
in-sample fitting metrics. Statistical tests must be used to characterize the data and
guide the choice of algorithm, such as, for example, tests for stationary. See Dixon
and Halperin (2019) for a checklist and brief but rounded discussion of some of the
challenges in adopting machine learning in the finance industry.

Capacity to readily exploit a wide form of data is their other advantage, but only if
that data is sufficiently high quality and adds a new source of information. We close
this chapter with a reminder of the failings of forecasting models during the financial
crisis of 2008 and emphasize the importance of avoiding siloed data extraction. The
application of machine learning requires strong scientific reasoning skills and is not
a panacea for commoditized and automated decision-making.

7 Exercises 41

7 Exercises

Exercise 1.1**: Market Game
Suppose that two players enter into a market game. The rules of the game are as
follows: Player 1 is the market maker, and Player 2 is the market taker. In each
round, Player 1 is provided with information x, and must choose and declare a value
α ∈ (0, 1) that determines how much it will pay out if a binary event G occurs in
the round. G ∼ Bernoulli(p), where p = g(x|θ) for some unknown parameter θ .

Player 2 then enters the game with a $1 payment and chooses one of the following
payoffs:

V1(G, p) =
{

1
α

with probability p

0 with probability (1− p)
or

V2(G, p) =
{

0 with probability p
1

(1−α) with probability (1− p)

1. Given that α is known to Player 2, state the strategy9 that will give Player 2 an
expected payoff, over multiple games, of $1 without knowing p.

2. Suppose now that p is known to both players. In a given round, what is the
optimal choice of α for Player 1?

3. Suppose Player 2 knows with complete certainty, thatG will be 1 for a particular
round, what will be the payoff for Player 2?

4. Suppose Player 2 has complete knowledge in rounds {1, . . . , i} and can reinvest
payoffs from earlier rounds into later rounds. Further suppose without loss of
generality that G = 1 for each of these rounds. What will be the payoff for
Player 2 after i rounds? You may assume that the each game can be played with
fractional dollar costs, so that, for example, if Player 2 pays Player 1 $1.5 to enter
the game, then the payoff will be 1.5V1.

Exercise 1.2**: Model Comparison
Recall Example 1.2. Suppose additional information was added such that it is no
longer possible to predict the outcome with 100% probability. Consider Table 1.8
as the results of some experiment.

Now if we are presented with x = (1, 0), the result could be B or C. Consider
three different models applied to this value of x which encode the value A, B, or C.

9The strategy refers the choice of weight if Player 2 is to choose a payoff V = wV1 + (1− w)V2,
i.e. a weighted combination of payoffs V1 and V2.

42 1 Introduction

Table 1.8 Sample model
data

G x

A (0, 1)

B (1, 1)

B (1, 0)

C (1, 0)

C (0, 0)

f ((1, 0)) = (0, 1, 0), Predicts B with 100% certainty. (1.23)

g((1, 0)) = (0, 0, 1), Predicts C with 100% certainty. (1.24)

h((1, 0)) = (0, 0.5, 0.5), Predicts B or C with 50% certainty. (1.25)

1. Show that each model has the same total absolute error, over the samples where
x = (1, 0).

2. Show that all three models assign the same average probability to the values from
Table 1.8 when x = (1, 0).

3. Suppose that the market game in Exercise 1 is now played with models f or g.
B or C each triggers two separate payoffs, V1 and V2, respectively. Show that the
losses to Player 1 are unbounded when x = (1, 0) and α = 1− p.

4. Show also that if the market game in Exercise 1 is now played with model h, the
losses to Player 1 are bounded.

Exercise 1.3**: Model Comparison
Example 1.1 and the associated discussion alluded to the notion that some types
of models are more common than others. This exercise will explore that concept
briefly.

Recall Table 1.1 from Example 1.1:

G x

A (0, 1)

B (1, 1)

C (1, 0)

C (0, 0)

For this exercise, consider two models “similar” if they produce the same
projections for G when applied to the values of x from Table 1.1 with probability
strictly greater than 0.95.

In the following subsections, the goal will be to produce sets of mutually
dissimilar models that all produce Table 1.1 with a given likelihood.

1. How many similar models produce Table 1.1 with likelihood 1.0?
2. Produce at least 4 dissimilar models that produce Table 1.1 with likelihood 0.9.
3. How many dissimilar models can produce Table 1.1 with likelihood exactly 0.95?

Appendix 43

Exercise 1.4*: Likelihood Estimation
When the data is i.i.d., the negative of log-likelihood function (the “error function”)
for a binary classifier is the cross-entropy

E(θ) = −
n∑

i=1

Giln (g1(xi | θ))+ (1−Gi)ln (g0(xi | θ)).

Suppose now that there is a probability πi that the class label on a training data
point xi has been correctly set. Write down the error function corresponding to
the negative log-likelihood. Verify that the error function in the above equation is
obtained when πi = 1. Note that this error function renders the model robust to
incorrectly labeled data, in contrast to the usual least squares error function.

Exercise 1.5**: Optimal Action
Derive Eq. 1.17 by setting the derivative of Eq. 1.16 with respect to the time-
t action ut to zero. Note that Eq. 1.17 gives a non-parametric expression for the
optimal action ut in terms of a ratio of two conditional expectations. To be useful in
practice, the approach might need some further modification as you will use in the
next exercise.

Exercise 1.6***: Basis Functions
Instead of non-parametric specifications of an optimal action in Eq. 1.17, we can
develop a parametric model of optimal action. To this end, assume we have a set
of basic functions ψk(S) with k = 1, . . . , K . Here K is the total number of basis
functions—the same as the dimension of your model space.

We now define the optimal action ut = ut (St) in terms of coefficients θk of
expansion over basis functions�k (for example, we could use spline basis functions,
Fourier bases, etc.) :

ut = ut (St) =
K∑

k=1

θk(t)�k(St).

Compute the optimal coefficients θk(t) by substituting the above equation for ut into
Eq. 1.16 and maximizing it with respect to a set of weights θk(t) for a t-th time step.

Appendix

Answers to Multiple Choice Questions

Question 1
Answer: 1, 2.

Answer 3 is incorrect. While it is true that unsupervised learning does not require
a human supervisor to train the model, it is false to presume that the approach is
superior.

44 1 Introduction

Answer 4 is incorrect. Reinforcement learning cannot be viewed as a general-
ization of supervised learning to Markov Decision Processes. The reason is that
reinforcement learning uses rewards to reinforce decisions, rather than labels to
define the correct decision. For this reason, reinforcement learning uses a weaker
form of supervision.

Question 2
Answer: 1,2,3.

Answer 4 is incorrect. Two separate binary models {g(1)i (X|θ)}1i=0 and

{g(2)i (X|θ)}1i=0 will, in general, not produce the same output as a single, multi-
class, model {gi(X|θ)}3i=0. Consider, as a counter example, the logistic models

g
(1)
0 = g0(X|θ1) = exp{−XT θ1}

1+exp{−XT θ1} and g(2)0 = g0(X|θ2) = exp{−XT θ2}
1+exp{−XT θ2} , compared

with the multi-class model

gi(X|θ ′) = softmax(exp{XT θ ′}) = exp{(XT θ ′)i}∑K
k=0 exp{(XT θ ′)k}

. (1.26)

If we set θ1 = θ ′0 − θ ′1 and θ ′2 = θ ′3 = 0, then the multi-class model is equivalent
to Model 1. Similarly if we set θ2 = θ ′2 − θ ′3 and θ ′0 = θ ′1 = 0, then the multi-
class model is equivalent to Model 2. However, we cannot simultaneously match
the outputs of Model 1 and Model 2 with the multi-class model.

Question 3
Answer: 1,2,3.

Answer 4 is incorrect. The layers in a deep recurrent network provide more
expressibility between each lagged input and the hidden state variable, but are
unrelated to the amount of memory in the network. The hidden layers in any
multilayered perceptron are not the hidden state variables in our time series model.
It is the degree of unfolding, i.e. number of hidden state vectors which determines
the amount of memory in any recurrent network.

Question 4
Answer: 2.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle (pp.
267–281).

Akcora, C. G., Dixon, M. F., Gel, Y. R., & Kantarcioglu, M. (2018). Bitcoin risk modeling with
blockchain graphs. Economics Letters, 173(C), 138–142.

Arnold, V. I. (1957). On functions of three variables (Vol. 114, pp. 679–681).
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econo-

metrics, 31, 307–327.
Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis, forecasting, and control. San

Francisco: Holden-Day.

References 45

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis, forecasting, and
control (third ed.). Englewood Cliffs, NJ: Prentice-Hall.

Breiman, L. (2001). Statistical modeling: the two cultures (with comments and a rejoinder by the
author). Statistical Science, 16(3), 199–231.

Cont, R., & de Larrard, A. (2013). Price dynamics in a Markovian limit order market. SIAM Journal
on Financial Mathematics, 4(1), 1–25.

de Prado, M. (2018). Advances in financial machine learning. Wiley.
de Prado, M. L. (2019). Beyond econometrics: A roadmap towards financial machine learning.

SSRN. Available at SSRN: https://ssrn.com/abstract=3365282 or http://dx.doi.org/10.2139/
ssrn.3365282.

DeepMind (2016). DeepMind AI reduces Google data centre cooling bill by 40%. https://
deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/.

DeepMind (2017). The story of AlphaGo so far. https://deepmind.com/research/alphago/.
Dhar, V. (2013, December). Data science and prediction. Commun. ACM, 56(12), 64–73.
Dixon, M. (2018a). A high frequency trade execution model for supervised learning. High

Frequency, 1(1), 32–52.
Dixon, M. (2018b). Sequence classification of the limit order book using recurrent neural networks.

Journal of Computational Science, 24, 277–286.
Dixon, M., & Halperin, I. (2019). The four horsemen of machine learning in finance.
Dixon, M., Polson, N., & Sokolov, V. (2018). Deep learning for spatio-temporal modeling:

Dynamic traffic flows and high frequency trading. ASMB.
Dixon, M. F., & Polson, N. G. (2019, Mar). Deep fundamental factor models. arXiv e-prints,

arXiv:1903.07677.
Dyhrberg, A. (2016). Bitcoin, gold and the dollar – a GARCH volatility analysis. Finance Research

Letters.
Elman, J. L. (1991, Sep). Distributed representations, simple recurrent networks, and grammatical

structure. Machine Learning, 7(2), 195–225.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017).

Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639), 115–118.

Flood, M., Jagadish, H. V., & Raschid, L. (2016). Big data challenges and opportunities in financial
stability monitoring. Financial Stability Review, (20), 129–142.

Gomber, P., Koch, J.-A., & Siering, M. (2017). Digital finance and fintech: current research and
future research directions. Journal of Business Economics, 7(5), 537–580.

Gottlieb, O., Salisbury, C., Shek, H., & Vaidyanathan, V. (2006). Detecting corporate fraud:
An application of machine learning. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.142.7470.

Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Studies in
Computational intelligence. Heidelberg, New York: Springer.

Gu, S., Kelly, B. T., & Xiu, D. (2018). Empirical asset pricing via machine learning. Chicago
Booth Research Paper 18–04.

Harvey, C. R., Liu, Y., & Zhu, H. (2016). . . . and the cross-section of expected returns. The Review
of Financial Studies, 29(1), 5–68.

Hornik, K., Stinchcombe, M., & White, H. (1989, July). Multilayer feedforward networks are
universal approximators. Neural Netw., 2(5), 359–366.

Kearns, M., & Nevmyvaka, Y. (2013). Machine learning for market microstructure and high
frequency trading. High Frequency Trading - New Realities for Traders.

Kercheval, A., & Zhang, Y. (2015). Modeling high-frequency limit order book dynamics with
support vector machines. Journal of Quantitative Finance, 15(8), 1315–1329.

Kolmogorov, A. N. (1957). On the representation of continuous functions of many variables by
superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR,
114, 953–956.

Kubota, T. (2017, January). Artificial intelligence used to identify skin cancer.

https://ssrn.com/abstract=3365282
http://dx.doi.org/10.2139/ssrn.3365282
http://dx.doi.org/10.2139/ssrn.3365282
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/research/alphago/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.7470
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.7470

46 1 Introduction

Kullback, S., & Leibler, R. A. (1951, 03). On information and sufficiency. Ann. Math. Statist.,
22(1), 79–86.

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955, August). A proposal for the
Dartmouth summer research project on artificial intelligence. http://www-formal.stanford.edu/
jmc/history/dartmouth/dartmouth.html.

Philipp, G., & Carbonell, J. G. (2017, Dec). Nonparametric neural networks. arXiv e-prints,
arXiv:1712.05440.

Philippon, T. (2016). The fintech opportunity. CEPR Discussion Papers 11409, C.E.P.R. Discussion
Papers.

Pinar Saygin, A., Cicekli, I., & Akman, V. (2000, November). Turing test: 50 years later. Minds
Mach., 10(4), 463–518.

Poggio, T. (2016). Deep learning: mathematics and neuroscience. A Sponsored Supplement to
Science Brain-Inspired intelligent robotics: The intersection of robotics and neuroscience, 9–
12.

Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition.
Sirignano, J., Sadhwani, A., & Giesecke, K. (2016, July). Deep learning for mortgage risk. ArXiv

e-prints.
Sirignano, J. A. (2016). Deep learning for limit order books. arXiv preprint arXiv:1601.01987.
Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from Bitcoin, Ethereum,

Dash, Litcoin, and Monero. Journal of Economics and Financial Analysis, 2(2), 1–27.
Stein, H. (2012). Counterparty risk, CVA, and Basel III.
Turing, A. M. (1995). Computers & thought. Chapter Computing Machinery and Intelligence (pp.

11–35). Cambridge, MA, USA: MIT Press.
Wiener, N. (1964). Extrapolation, interpolation, and smoothing of stationary time series. The MIT

Press.

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

Chapter 2
Probabilistic Modeling

This chapter introduces probabilistic modeling and reviews foundational concepts
in Bayesian econometrics such as Bayesian inference, model selection, online learn-
ing, and Bayesian model averaging. We then develop more versatile representations
of complex data with probabilistic graphical models such as mixture models.

1 Introduction

Not only is statistical inference from data intrinsically uncertain, but the type of data
and relationships in the data that we seek to model are growing ever more complex.
In this chapter, we turn to probabilistic modeling, a class of statistical models, which
are broadly designed to characterize uncertainty and allow the expression of causal-
ity between variables. Probabilistic modeling is a meta-class of models, including
generative modeling—a class of statistical inference models which maximizes the
joint distribution, p(X, Y), and Bayesian modeling, employing either maximum
likelihood estimation or “fully Bayesian” inference. Probabilistic graphical models
put the emphasis on causal modeling to simplify statistical inference of parameters
from data. This chapter shall focus on the constructs of probabilistic modeling, as
they relate to the application of both unsupervised and supervised machine learning
in financial modeling.

While it seems natural to extend the previous chapters directly to a probabilistic
neural network counterpart, it turns out that this does not develop the type of
intuitive explanation of complex data that is needed in finance. It also turns out
that neural networks are not a natural fit for probabilistic modeling. In other words,
neural networks are well suited to pointwise estimation but lead to many difficulties
in a probabilistic setting. In particular, they tend to be very data intensive—offsetting
one of the major advantages of Bayesian modeling.

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_2

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_2

48 2 Probabilistic Modeling

We will explore probabilistic modeling through the introduction of probabilistic
graphical models—a data structure which is convenient for understanding the
relationship between a multitude of different classes of models, both discriminative
and generative. This representation will lead us neatly to Bayesian kernel learning,
the subject of Chap. 3. We begin by introducing the reader to elementary topics
in Bayesian modeling, which is a well-established approach for characterizing
uncertainty in, for example, trading and risk modeling. Starting with simple
probabilistic models of the data, we review some of the main constructs necessary
to apply Bayesian methods in practice.

The application of probabilistic models to time series modeling, using filtering
and hidden variables to dynamically represent the data is presented in Chap. 7.

Chapter Objectives

The key learning points of this chapter are:

• Apply Bayesian inference to data using simple probabilistic models;
• Understand how linear regression with probabilistic weights can be viewed as a

simple probabilistic graphical model; and
• Develop more versatile representations of complex data with probabilistic graph-

ical models such as mixture models and hidden Markov models.

Note that section headers ending with * are more mathematically advanced, often
requiring some background in analysis and probability theory, and can be skipped
by the less mathematically inclined reader.

2 Bayesian vs. Frequentist Estimation

Bayesian data analysis is distinctly different from classical (or “frequentist”)
analysis in its treatment of probabilities, and in its resulting treatment of model
parameters when compared to classical parametric analysis.1

Bayesian analysts formulate probabilistic statements about uncertain events
before collecting any additional evidence (i.e., “data”). These ex-ante probabilities
(or, more generally, probability distributions plus underlying parameters) are called
priors.

This notion of subjective probabilities is absent in classical estimation. In the
classical world, all estimation and inference is based solely on observed data.

1Throughout the first part of this chapter we will largely remain within the realm of parametric
analysis. However, we shall later see examples of Bayesian methods for non- and semi-parametric
modeling.

2 Bayesian vs. Frequentist Estimation 49

Both Bayesian and classical econometricians aim to learn more about a set of
parameters, say θ . In the classical mindset, θ contains fixed but unknown elements,
usually associated with an underlying population of interest (e.g., the mean and
variance for credit card debt among US college students). Bayesians share with
classicals the interest in θ and the definition of the population of interest.

However, they assign ex ante a prior probability to θ , labeled p (θ), which
usually takes the form of a probability distribution with “known” moments. For
example, Bayesians might state that the aforementioned debt amount has a normal
distribution with mean $3000 and standard deviation of $1500. This prior may be
based on previous research, related findings in the published literature, or it may be
completely arbitrary. In any case, it is an inherently subjective construct.

Both schools then develop a theoretical framework that relates θ to observed
data, say a “dependent variable” y, and a matrix of explanatory variables X. This
relationship is formalized via a likelihood function, say p (y | θ ,X) to stay with
Bayesian notation. To stress, this likelihood function takes the exact same analytical
form for both schools.

The classical analyst then collects a sample of observations from the underlying
population of interest and, combining these data with the formulated statistical
model, produces an estimate of θ , say θ̂ . Any and all uncertainty surrounding the
accuracy of this estimate is solely related to the notion that results are based on
a sample, not data for the entire population. A different sample (of equal size)
may produce slightly different estimates. Classicals express this uncertainty via
“standard errors” assigned to each element of θ̂ . They also have a strong focus on
the behavior of θ̂ as the sample size increases. The behavior of estimators under
increasing sample size falls under the heading of “asymptotic theory.”

The properties of most estimators in the classical world can only be assessed
“asymptotically,” i.e. are only understood for the hypothetical case of an infinitely
large sample. Also, virtually all specification tests used by frequentists hinge on
asymptotic theory. This is a major limitation when the data size is finite.

Bayesians, in turn, combine prior and likelihood via Bayes’ rule to derive the
posterior distribution of θ as

p (θ | y,X) = p (θ , y | X)
p (y | X)

= p (θ) p (y | θ ,X)
p (y | X)

∝ p (θ) p (y | θ ,X) . (2.1)

•> Bayesian Modeling

Bayesian modeling is not about point estimation of a parameter value, θ , but
rather updating and sharpening our subjective beliefs (our “prior”) about θ

from the sample data. Thus, the sample data should contribute to “learning”
about θ .

50 2 Probabilistic Modeling

Bayesian Learning

Simply put, the posterior distribution is just an updated version of the prior. More
specifically, the posterior is proportional to the prior multiplied by the likelihood.
The likelihood carries all the current information about the parameters and the data.
If the data has high informational content (i.e., allows for substantial learning about
θ), the posterior will generally look very different from the prior. In most cases, it is
much “tighter” (i.e., has a much smaller variance) than the prior. There is no room
in Bayesian analysis for the classical notions of “sampling uncertainty,” and less a
priori focus on the “asymptotic behavior” of estimators.2

Taking the Bayesian paradigm to its logical extreme, Duembgen and Rogers
(2014) suggest to “estimate nothing.” They propose the replacement of the industry-
standard estimation-based paradigm of calibration with an approach based on
Bayesian techniques, wherein a posterior is iteratively obtained from a prior, namely
stochastic filtering and MCMC. Calibration attempts to estimate, and then uses the
estimates as if they were known true values—ignoring the estimation error. On the
contrary, an approach based on a systematic application of the Bayesian principle
is consistent: “There is never any doubt about what we should be doing to hedge
or to mark-to-market a portfolio of derivatives, and whatever we do today will
be consistent with what we did before, and with what we will do in the future.”
Moreover, Bayesian model comparison methods enable one to easily compare
models of very different types.

Marginal Likelihood

The term in the denominator of Eq. 2.1 is called the “marginal likelihood,” it is not a
function of θ , and can usually be ignored for most components of Bayesian analysis.
Thus, we usually work only with the numerator (i.e., prior times likelihood) for
inference about θ . From Eq. 2.1 we know that this expression is proportional (“∝
”) to the actual posterior. However, the marginal likelihood is crucial for model
comparison, so we will learn a few methods to derive it as a by-product of or
following the actual posterior analysis. For some choices of prior and likelihood
there exist analytical solutions for this term.

In summary, frequentists start with a “blank mind” regarding θ . They collect data
to produce an estimate θ̂ . They formalize the characteristics and uncertainty of θ̂ for
a finite sample context (if possible) and a hypothetical large sample (asymptotic)
case.

Bayesians collect data to update a prior, i.e. a pre-conceived probabilistic notion
regarding θ .

2However, at times Bayesian analysis does rest on asymptotic results. Naturally, the general notion
that a larger sample, i.e. more empirical information, is better than a small one also holds for
Bayesian analysis.

3 Frequentist Inference from Data 51

3 Frequentist Inference from Data

Let us begin this section with a simple example which illustrates frequentist
inference.

Example 2.1 Bernoulli Trials Example

Consider an experiment consisting of a single coin flip. We set the random
variable Y to 0 if tails come up and 1 if heads come up. Then the probability
density of Y is given by

p(y | θ) = θy(1− θ)1−y,

where θ ∈ [0, 1] is the probability of heads showing up.
You will recognize Y as a Bernoulli random variable. We view p as a

function of y, but parameterized by the given parameter θ , hence the notation,
p(y | θ).

More generally, suppose that we perform n such independent experiments
(tosses) on the same coin. Denote these n realizations of Y as

y =

⎛

⎜⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎟⎠ ∈ {0, 1}
n,

where, for 1 ≤ i ≤ n, yi is the result of the ith toss. What is the probability
density of y?

Since the coin tosses are independent, the probability density of y, i.e. the
joint probability density of y1, y2, . . . , yn, is given by the product rule

p(y | θ) = p(y1, y2, . . . , yn | θ) =
n∏

i=1

θyi (1− θ)1−yi = θ
∑
yi (1− θ)n−

∑
yi .

Suppose that we have tossed the coin n = 50 times (performed n = 50
Bernoulli trials) and recorded the results of the trials as

0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0

How can we estimate θ given these data?

Both the frequentists and Bayesians regard the density p(y | θ) as a likelihood.
Bayesians maintain this notation, whereas frequentists reinterpret p(y | θ), which is

52 2 Probabilistic Modeling

a function of y (given the parameters θ : in our case, there is a single parameter, so
θ is univariate, but this does not have to be the case) as a function of θ (given the
specific sample y), and write

L(θ) := L(θ | y) := p(y | θ).

Notice that we have merely reinterpreted this probability density, whereas its
functional form remains the same, in our case:

L(θ) = θ
∑
yi (1− θ)n−

∑
yi .

•> Likelihood

Likelihood is one of the seminal ideas of the frequentist school. It was
introduced by one of its founding fathers, Sir Ronald Aylmer Fisher:
“What has now appeared is that the mathematical concept of probability
is . . . inadequate to express our mental confidence or [lack of confidence]
in making . . . inferences, and that the mathematical quantity which usually
appears to be appropriate for measuring our order of preference among
different possible populations does not in fact obey the laws of probability. To
distinguish it from probability, I have used the term ‘likelihood’ to designate
this quantity. . . ”—R.A. Fisher, Statistical Methods for Research Workers.

It is generally more convenient to work with the log of likelihood—the log-
likelihood. Since ln is a monotonically increasing function of its argument, the same
values of θ maximize the log-likelihood as the ones that maximize the likelihood.

lnL(θ) = ln
{
θ
∑
yi (1− θ)n−

∑
yi
}
=
(∑

yi

)
ln θ +

(
n−

∑
yi

)
ln(1− θ).

In order to find the value of θ that maximizes this expression, we differentiate
with respect to θ and solve for the value of θ that sets the (partial) derivative to zero.

∂

∂θ
lnL(θ) =

∑
yi

θ
+ n−

∑
yi

θ − 1
.

Equating this to zero and solving for θ , we obtain the maximum likelihood
estimate for θ :

4 Assessing the Quality of Our Estimator: Bias and Variance 53

θ̂ML =
∑
yi

n
.

To confirm that this value does indeed maximize the log-likelihood, we take the
second derivative with respect to θ ,

∂2

∂θ2
lnL(θ) = −

∑
yi

θ2
− n−

∑
yi

(θ − 1)2
< 0.

Since this quantity is strictly negative for all 0 < θ < 1, it is negative at θ̂ML, and
we do indeed have a maximum.

Example 2.2 Bernoulli Trials Example (continued)

Note that θ̂ML depends only on the sum of yis, we can answer our question: if
in a sequence of 50 coin tosses exactly twelve heads come up, then

θ̂ML =
∑
yi

n
= 12

50
= 0.24.

A frequentist approach gives at a single value (a single “point”) as our estimate,
0.24—in this sense we are performing point estimation. When we apply a Bayesian
approach to the same problem, we shall see that the Bayesian estimate is a
probability distribution, rather than a single point.

Despite some mathematical formalism, the answer is intuitively obvious. If we
toss a coin fifty times, and out of those twelve times it lands with heads up, it is
natural to estimate the probability of getting heads as 12

50 . It is encouraging that the
result of our calculation agrees with our intuition and common sense.

4 Assessing the Quality of Our Estimator: Bias and Variance

When we obtained our maximum likelihood estimate, we plugged in a specific
number for

∑
yi , 12. In this sense the estimator is an ordinary function. However,

we could also view it as a function of the random sample,

θ̂ML =
∑
Yi

n
,

each Yi being a random variable. A function of a random variable is itself a random
variable, so we can compute its expectation and variance.

In particular, an expectation of the error

54 2 Probabilistic Modeling

e = θ̂ − θ

is known as bias,

bias(θ̂, θ) = E(e) = E

[
θ̂ − θ

]
= E

[
θ̂
]
− E [θ] .

As frequentists, we view the true value of θ as a single, deterministic, fixed point,
so we take it outside of the expectation:

bias(θ̂, θ) = E

[
θ̂
]
− θ .

In our case it is

E[θ̂ML − θ] = E[θ̂ML] − θ = E

[∑
Yi

n

]
− θ = 1

n

∑
E[Yi] − θ

= 1

n
· n(θ · 1+ (1− θ) · 0)− θ = 0,

we see that the bias is zero, so this particular maximum likelihood estimator is
unbiased (otherwise it would be biased).

What about the variance of this estimator?

Var[θ̂ML] = Var

[∑
Yi

n

]
independence= 1

n2

∑
Var[Yi] = 1

n2
·n·θ(1−θ) = 1

n
θ(1−θ),

and we see that the variance of the estimator depends on the true value of θ .
For multivariate θ , it is useful to examine the error covariance matrix given by

P = E[eeᵀ] = E

[
(θ̂ − θ)(θ̂ − θ)ᵀ

]
.

When estimating θ , our goal is to minimize the estimation error. This error can
be expressed using loss functions. Supposing our parameter vector θ takes values
on some space �, a loss function L(θ̂) is a mapping from � × � into R which
quantifies the “loss” incurred by estimating θ with θ̂ .

We have already seen loss functions in earlier chapters, but we shall restate the
definitions here for completeness. One frequently used loss function is the absolute
error,

L1(θ̂ , θ) := ‖θ̂ − θ‖2 =
√
(θ̂ − θ)ᵀ(θ̂ − θ),

where ‖ · ‖2 is the Euclidean norm (it coincides with the absolute value when � ⊆
R). One advantage of the absolute error is that it has the same units as θ .

We use the squared error perhaps even more frequently than the absolute error:

L2(θ̂ , θ) := ‖θ̂ − θ‖2
2 = (θ̂ − θ)ᵀ(θ̂ − θ).

5 The Bias–Variance Tradeoff (Dilemma) for Estimators 55

While the squared error has the disadvantage compared to the absolute error of
being expressed in quadratic units of θ , rather than the units of θ , it does not contain
the cumbersome

√· and is therefore easier to deal with mathematically.
The expected value of a loss function is known as the statistical risk of the

estimator.
The statistical risks corresponding to the above loss functions are, respectively,

the mean absolute error,

MAE(θ̂ , θ):=R1(θ̂ , θ):=E
[
L1(θ̂, θ)

]
:=E

[
‖θ̂ − θ‖2

]
= E

[√
(θ̂ − θ)ᵀ(θ̂ − θ)

]
,

and, by far the most commonly used, mean squared error (MSE),

MSE(θ̂ , θ) := R2(θ̂ , θ) := E

[
L2(θ̂, θ)

]
:= E

[
‖θ̂ − θ‖2

2

]
= E

[
(θ̂ − θ)ᵀ(θ̂ − θ)

]
.

The square root of the mean squared error is called the root mean squared error
(RMSE). The minimum mean squared error (MMSE) estimator is the estimator that
minimizes the mean squared error.

5 The Bias–Variance Tradeoff (Dilemma) for Estimators

It can easily be shown that the mean squared error separates into a variance and bias
term:

MSE(θ̂ , θ) = trVar
[
θ̂
]
+ ‖bias(θ̂ , θ)‖2

2,

where tr(·) is the trace operator. In the case of a scalar θ , this expression simplifies
to

MSE(θ̂ , θ) = Var
[
θ̂
]
+ bias(θ̂ , θ)2.

In other words, the MSE is equal to the sum of the variance of the estimator and
the squared bias.

The bias–variance tradeoff or bias–variance dilemma consists in the need to
minimize these two sources of error, the variance and bias of an estimator, in order to
minimize the mean squared error. Sometimes there is a tradeoff between minimizing
bias and minimizing variance to achieve the least possible MSE. The concept of a
bias–variance tradeoff in machine learning will be revisited in Chap. 4, within the
context of statistical learning theory.

56 2 Probabilistic Modeling

6 Bayesian Inference from Data

As before, let θ be the parameter of some statistical model and let y = y1, . . . , yn
be n i.i.d. observations of some random variable Y . We capture our subjective
assumptions about the model parameter θ , before observing the data, in the form
of a prior probability distribution p(θ). Bayes’ rule converts a prior probability into
a posterior probability by incorporating the evidence provided by the observed data:

p(θ | y) = p(y | θ)
p(y)

p(θ)

allows us to evaluate the uncertainty in θ after we have observed y. This uncertainty
is characterized by the posterior probability p(θ | y). The effect of the observed
data is expressed through p(y | θ)—a function of θ referred to as the likelihood
function. It expresses how likely the observed dataset was generated by a model
with parameter θ .

Let us summarize some of the notation that will be important:

• The prior is p(θ);
• The likelihood is p(y | θ) =∏n

i=1 p(yi | θ), since the data is i.i.d.;
• The marginal likelihood p(y) = ∫

p(y | θ)p(θ)dθ is the likelihood with
the dependency on θ marginalized out; and

• The posterior is p(θ | y).

•> Bayesian Inference

Informally, Bayesian inference involves the following steps:

1. Formulate your statistical model as a collection of probability distributions
conditional on different values for a parameter θ , about which you wish to
learn;

2. Organize your beliefs about θ into a (prior) probability distribution;
3. Collect the data and insert them into the family of distributions given in

Step 1;
4. Use Bayes’ rule to calculate your new beliefs about θ ; and
5. Criticize your model and revise your modeling assumptions.

6 Bayesian Inference from Data 57

The following example shall illustrate the application of Bayesian inference for
the Bernoulli parameter θ .

Example 2.3 Bernoulli Trials Example (continued)

θ is a probability, so it is bounded and must belong to the interval [0, 1]. We
could assume that all values of θ in [0, 1] are equally likely. Thus our prior
could be that θ is uniformly distributed on [0, 1], i.e. θ ∼ U(a = 0, b = 1).

This assumption would constitute an application of Laplace’s principle of
indifference, also known as the principle of insufficient reason: when faced
with multiple possibilities, whose probabilities are unknown, assume that the
probabilities of all possibilities are equal.

In the context of Bayesian estimation, applying Laplace’s principle of
indifference constitutes what is known as an uninformative prior. Our goal
is, however, not to rely too much on the prior, but use the likelihood to proceed
to a posterior based on new information.

The pdf of the uniform distribution,U(a, b), is given by

p(θ) = 1

b − a
if θ ∈ [a, b] and zero elsewhere. In our case, a = 0, b = 1, and so our
uninformative uniform prior is given by

p(θ) = 1, ∀θ ∈ [0, 1].

Let us derive the posterior based on this prior assumption. Bayes’ theorem
tells us that

posterior ∝ likelihood · prior,

where ∝ stands for “proportional to,” so the left- and right-hand side are equal
up to a normalizing constant which depends on the data but not on θ . The
posterior is

p(θ | x1:n) ∝ p(x1:n | θ)p(θ) = θ
∑
xi (1− θ)n−

∑
xi · 1.

If the prior is uniform, i.e. p(θ) = 1, then after n = 5 trials we see from the
data that

p(θ | x1:n) ∝ θ(1− θ)4. (2.2)

After 10 trials we have

(continued)

58 2 Probabilistic Modeling

Example 2.3 (continued)

p(θ | x1:n) ∝ θ(1− θ)4 × θ(1− θ)4 = θ2(1− θ)8. (2.3)

From the shape of the resulting pdf, we recognize it as the pdf of the Beta
distributiona

Beta
(
θ |

∑
xi, n−

∑
xi

)
,

and we immediately know that the missing normalizing constant factor is

1

B
(∑

xi, n−∑
xi
) = �

(∑
xi
)
�
(
n−∑

xi
)

�(n)
.

Let us now assume that we have tossed the coin fifty times and, out of
those fifty coin tosses, we get heads on twelve. Then our posterior distribution
becomes

θ | x1:n ∼ Beta(θ | 12, 38).

Then, from the properties of this distribution,

E[θ | x1:n] =
∑
xi∑

xi + (n−∑
xi)

=
∑
xi

n
= 12

12+ 38
= 12

50
= 0.24,

Var[θ | x1:n] =
(∑

xi
) (
n−∑

xi
)

(∑
xi + n−∑

xi
)2 (∑

xi + n−∑
xi + 1

) (2.4)

= n
∑
xi −

(∑
xi
)2

n2(n+ 1)
= 12 · 38

(12+ 38)2(12+ 38+ 1)
= 456

127500
= 0.00357647058.

(2.5)

The standard deviation being, in units of probability,
√

456
127500 =

0.05980360012.
Notice that the mean of the posterior, 0.24, matches the frequentist max-

imum likelihood estimate of θ , θ̂ML, and our intuition. Again, it is not
unreasonable to assume that the probability of getting heads is 0.24 if we
observe heads on twelve out of fifty coin tosses.

aThe function’s argument is now θ , not xi , so it is not the pdf of a Bernoulli distribution.

6 Bayesian Inference from Data 59

Fig. 2.1 The posterior
distribution of θ against
successive numbers of trials.
The x-axis shows the values
of theta. The shape of the
distribution tightens as the
Bayesian model is observed
to “learn”

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

first 5 trials first 10 trials

first 40 trials first 50 trials

θθ

θθ

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Note that we did not need to evaluate the marginal likelihood in the example
above, only the θ dependent terms were evaluated for the purpose of the plot. Thus
each plot in Fig. 2.1 is only representative of the posterior up to a scaling.

•! The Principle of Indifference

In practice, the principle of indifference should be used with great care, as
we are assuming a property of the data strictly greater than we know. Saying
“the probabilities of the outcomes are equally likely” contains strictly more
information than “I don’t know what the probabilities of the outcomes are.”

If someone tosses a coin and then covers it with her hand, asking you,
“heads or tails?” it is probably relatively sensible to assume that the two
possibilities are equally likely, effectively assuming that the coin is unbiased.

If an investor asks you, “Will the stock price of XYZ increase?” you should
think twice before applying Laplace’s principle of indifference and replying
“Well, there is a 50% chance that XYZ will grow, you can either long or short
XYZ.” Clearly there are other important considerations such as the amount by
which the stock could increase versus decrease, limits on portfolio exposure
to market risk factors, and anticipation of other market events such as earnings
announcements. In other words, the implications of going long or short will
not necessarily be equal.

60 2 Probabilistic Modeling

6.1 A More Informative Prior: The Beta Distribution

Continuing with the above example, let us question our prior. Is it somewhat too
uninformative? After all, most coins in the world are probably close to being
unbiased. We could use a Beta(α, β) prior instead of the Uniform prior. Picking
α = β = 2, for example, will give a distribution on [0, 1] centered on 1

2 ,
incorporating a prior assumption that the coin is unbiased.

The pdf of this prior is given by

p(θ) = 1

B(α, β)
θα−1(1− θ)β−1,∀θ ∈ [0, 1],

and so the posterior becomes

p(θ | x1:n) ∝ p(x1:n | θ)p(θ)

= θ
∑
xi (1− θ)n−

∑
xi · 1

B(α, β)
θα−1(1− θ)β−1 ∝ θ(α+

∑
xi)−1(1− θ)(β+n−

∑
xi)−1,

which we recognize as a pdf of the distribution

Beta
(
θ |α +

∑
xi, β + n−

∑
xi

)
.

Why did we pick this prior distribution? One reason is that its pdf is defined
over the compact interval [0, 1], unlike, for example, the normal distribution, which
has tails extending to −∞ and +∞. Another reason is that we are able to choose
parameters which center the pdf at θ = 1

2 , incorporating the prior assumption that
the coin is unbiased.

If we initially assume a Beta(θ |α = 2, β = 2) prior, then the posterior
expectation is

E [θ | x1:n] = α +∑
xi

α +∑
xi + β + n−∑

xi
= α +∑

xi

α + β + n

= 2+ 12

2+ 2+ 50
= 7

27
≈ 0.259.

Notice that both the prior and posterior belong to the same probability distribu-
tion family. In Bayesian estimation theory we refer to such prior and posterior as
conjugate distributions (with respect to this particular likelihood function).

Unsurprisingly, since now our prior assumption is that the coin is unbiased, 12
50 <

E [θ | x1:n] < 1
2 .

Perhaps surprisingly, we are also somewhat more certain about the posterior (its
variance is smaller) than when we assumed the uniform prior.

6 Bayesian Inference from Data 61

Notice that the results of Bayesian estimation are sensitive—to varying degree in
each specific case—to the choice of prior distribution:

p(θ | α, β) = (α + β − 1)!
(α − 1)!(β − 1)!θ

α−1(1− θ)β−1 = �(α, β)θα−1(1− θ)β−1.

(2.6)

So for the above example, this marginal likelihood would be evaluated with α = 13
and β = 39 since there are 12 observed 1s and 38 observed 0s.

6.2 Sequential Bayesian updates

In the previous section we saw that, starting with the prior

Beta (θ |α, β) ,

we arrived at the Beta-distributed posterior,

Beta
(
θ |α +

∑
xi, β + n−

∑
xi

)
.

What would happen if, instead of observing all twelve coin tosses at once, we
(i) considered each coin toss in turn; (ii) obtained our posterior; and (iii) used that
posterior as a prior for an update based on the information from the next coin toss?

The above two formulae give the answer to this question. We start with our initial
prior,

Beta (θ |α, β) ,

then, substituting n = 1 into the second formula, we get

Beta (θ |α + x1, β + 1− x1) .

Using this posterior as a prior before the second coin toss, we obtain the next
posterior as

Beta (θ |α + x1 + x2, β + 2− x1 − x2) .

Proceeding along these lines, after all ten coin tosses, we end up with

Beta
(
θ |α +

∑
xi, β + n−

∑
xi

)
,

62 2 Probabilistic Modeling

the same result that we would have attained if we processed all ten coin tosses as a
single “batch,” as we did in the previous section.

This insight forms the basis for a sequential or iterative application of Bayes’
theorem—sequential Bayesian updates—the foundation for real-time Bayesian
filtering. In machine learning, this mechanism for updating our beliefs in response
to new data is referred to as “online learning.”

6.2.1 Online Learning

An important aspect of Bayesian learning is the capacity to update the posterior in
response to the arrival of new data, y′. The posterior over y now becomes the prior,
and the new posterior is updated to

p(θ | y′, y) = p(y′ | θ)p(θ | y)∫
θ∈� p(y′ | θ)p(θ | y)dθ

. (2.7)

6.2.2 Prediction

In auto-correlated data, often encountered in financial econometrics, it is common
to use Bayesian models for prediction. We can write that the density of the new
predicted value y′ given the previous data y is the expected value of the likelihood
of the new data under the posterior density p(θ | y):

p(y′ | y) = Eθ | y[p(y′ | y, θ)] =
∫

θ∈�
p(y′ | y, θ)p(θ | y)dθ. (2.8)

•? Multiple Choice Question 1

Which of the following statements are true:

1. A frequentist performs statistical inference by finding the best fit parameters. The
Bayesian finds the distribution of the parameters assuming a prior.

2. Frequentist inference can be regarded as a special case of Bayesian inference
when the prior is a Dirac delta-function.

3. Bayesian inference is well suited to online learning, an experimental design
under which the model is continuously updated as new data arrives.

4. Prediction, under Bayesian inference, is the conditional expectation of the
predicted variable under the posterior distribution of the parameter.

7 Model Selection 63

6.3 Practical Implications of Choosing a Classical or Bayesian
Estimation Framework

If the sample size is large and the likelihood function “well-behaved” (which usually
means a simple function with a clear maximum, plus a small dimension for θ),
classical and Bayesian analysis are essentially on the same footing and will produce
virtually identical results. This is because the likelihood function and empirical data
will dominate any prior assumptions in the Bayesian approach.

If the sample size is large but the dimensionality of θ is high and the likelihood
function is less tractable (which usually means highly non-linear, with local
maxima, flat spots, etc.), a Bayesian approach may be preferable purely from a
computational standpoint. It can be very difficult to attain reliable estimates via
maximum likelihood estimation (MLE) techniques, but it is usually straightforward
to derive a posterior distribution for the parameters of interest using Bayesian
estimation approaches, which often operate via sequential draws from known
distributions.

If the sample size is small, Bayesian analysis can have substantial advantages
over a classical approach. First, Bayesian results do not depend on asymptotic theory
to hold for their interpretability. Second, the Bayesian approach combines the sparse
data with subjective priors. Well-informed priors can increase the accuracy and
efficiency of the model. Conversely, of course, poorly chosen priors3 can produce
misleading posterior inference in this case. Thus, under small sample conditions, the
choice between Bayesian and classical estimation often distills to a choice between
trusting the asymptotic properties of estimators and trusting one’s priors.

7 Model Selection

Beyond the inference challenges described above, there are a number of problems
with the classical approach to model selection which Bayesian statistics solves.
For example, it has been shown by Breiman (2001) that the following three linear
regression models have a residual sum of squares (RSS) which are all within 1%:

Model 1 Ŷ = 2.1+ 3.8X3 − 0.6X8 + 83.2X13 − 2.1X17 + 3.2X27, (2.9)

Model 2 Ŷ =− 8.9+ 4.6X5 + 0.01X6 + 12.0X15 + 17.5X21 + 0.2X22,

(2.10)

Model 3 Ŷ =− 76.7+ 9.3X2 + 22.0X7 − 13.2X8 + 3.4X11 + 7.2X28.

(2.11)

3For example, priors that place substantial probability mass on practically infeasible ranges of
θ—this often happens inadvertently when parameter transformations are involved in the analysis.

64 2 Probabilistic Modeling

You could, for example, think of each model being used to find the fair price of an
asset Y , where each Xi are the contemporaneous (i.e., measured at the same time)
firm characteristics.

• Which model is better?
• How would your interpretation of which variables are the most important change

between models?
• Would you arrive at different conclusions about the market signals if you picked,

say, Model 1 versus Model 2?
• How would you eliminate some of the ambiguity resulting from this outcome of

statistical inference?

Of course one direction is to simply analyze the F-scores of each independent
variable and select the model which has the most statistically significant fitted
coefficients. But this is unlikely to reliably discern the models when the fitted
coefficients are comparable in statistical significance.

It is well known that the goodness-of-fit measures, such as RSS’s and F-scores,
do not scale well to more complex datasets where there are several independent
variables. This leads to modelers drawing different conclusions about the same
data, and is famously known as the “Rashomon effect.” Yet many studies and
models in finance are still built this way and make use of information criterion and
regularization techniques such as Akaike’s information criteria (AIC).

A limitation for more robust frequentist model comparison is the requirement
that the models being compared are “nested.” That is, one model should be a subset
of the other model being compared, e.g.

Model 1 Ŷ = β0 + β1X1 + β2X2 (2.12)

Model 2 Ŷ = β0 + β1X1 + β2X2 + β11X
2
1. (2.13)

Model 1 is nested in Model 2 and we refer to the model selection as a “nested model
selection.” In contrast to classical model selection, Bayesian model selection need
not be restricted to nested models.

7.1 Bayesian Inference

We now consider the more general setting—selection and updating of several
candidate models in response to a dataset y. The “model” can be any data model,
not just a regression, and the notation used here reflects that. In Bayesian inference,
a model is a family of probability distributions, each of which can explain the
observed data. More precisely, a modelM is the set of likelihoods p(xn | θ) over
all possible parameter values �.

7 Model Selection 65

For example, consider the case of flipping a coin n times with an unknown bias
θ ∈ � ≡ [0, 1]. The data xn = {xi}ni=1 is now i.i.d. Bernoulli and if we observe the
number of heads X = x, the model is the family of binomial distributions

M := {P [X = x | n, θ] =
(
n

x

)
θx(1− θ)n−x}θ∈�. (2.14)

Each one of these distributions is a potential explanation of the observed head count
x. In the Bayesian method, we maintain a belief over which elements in the model
are considered plausible by reasoning about p(θ | xn). See Example 1.1 for further
details of this experiment.

We start by re-writing the Bayesian inference formula with explicit inclusion of
model indexes. You will see that we have dropped X since the exact composition of
explanatory data is implicitly covered by model indexMi :

p (θ i | xn,Mi) = p (θ i |Mi) p (xn | θ i ,Mi)

p (xn |Mi)
i = 1, 2. (2.15)

This expression shows that differences across models can occur due to differing
priors for θ and/or differences in the likelihood function. The marginal likelihood in
the denominator will usually also differ across models.

7.2 Model Selection

So far, we just considered parameter inference when the model has already been
selected. The Bayesian setting offers a very flexible framework for the comparison
of competing models—this is formally referred to as “model selection.” The models
do not have to be nested—all that is required is that the competing specifications
share the same xn.

Suppose there are two models, denoted M1 and M2, each associated with a
respective set of parameters θ1 and θ2. We seek the most “probable” model given
the observed data xn. We first apply Bayes’ rule to derive an expression for the
posterior model probability

p (Mi | xn) = p (Mi) p (xn |Mi)∑
j p

(
xn |Mj

)
p
(
Mj

) i = 1, 2. (2.16)

Here p (Mi) is a prior distribution over models that we have selected; a common
practice is to set this to a uniform distribution over the models. The value
p (xn |Mi) is a marginal likelihood function—a likelihood function over the space
of models in which the parameters have been marginalized out:

66 2 Probabilistic Modeling

p(xn |Mi) =
∫

θ i∈�i

p(xn | θ i ,Mi)p(θ i |Mi)dθ i . (2.17)

From a sampling perspective, this marginal likelihood can be interpreted as the
probability that the model could have generated the observed data, under the chosen
prior belief over its parameters. More precisely, the marginal likelihood can be
viewed as the probability of generating xn from a model Mi whose parameters
θ i ∈ �i are sampled at random from the prior p(θ i | Mi). For this reason, it is
often referred to here as the model evidence and plays an important role in model
selection that we will see later.

We can now construct the posterior odds ratio for the two models as

p (M1 | xn)
p (M2 | xn) =

p (M1) p (xn |M1)

p (M2) p (xn |M2)
, (2.18)

which is simply the prior odds multiplied by the ratio of the evidence for each model.
Under equal model priors (i.e., p (M1) = p (M2)) this reduces to the Bayes’

factor for Model 1 vs. 2, i.e.

B1,2 = p (xn |M1)

p (xn |M2)
, (2.19)

which is simply the ratio of marginal likelihoods for the two models. Since Bayes’
factors can become quite large, we usually prefer to work with its logged version

logB1,2 = logp (xn |M1)− logp (xn |M2) . (2.20)

The derivation of BFs and thus model comparison is straightforward if
expressions for marginal likelihoods are analytically known or can be easily derived.
However, often this can be quite tricky, and we will learn a few techniques to
compute marginal likelihoods in this book.

7.3 Model Selection When There Are Many Models

Suppose now that a set of models {Mi} may be used to explain the data xn. θ i
represents the parameters of modelMi . Which model is “best”?

We answer this question by estimating the posterior distribution over models:

p(Mi | xn) =
∫
θ i∈�i

p(xn | θ i ,Mi)p(θ i |Mi)dθ ip(Mi)∑
j p(xn |Mj)p(Mj)

. (2.21)

7 Model Selection 67

Table 2.1 Jeffreys’ scale is used to assess the comparative strength of
evidence in favor of one model over another

As before we can compare any two models via the posterior odds, or if we
assume equal priors, by the BFs. Model selection is always relative rather than
absolute. We must always pick a reference model M2 and decide whether model
M1 has more strength. We use Jeffreys’ scale to assess the strength of evidence as
shown in Table 2.1.

Example 2.4 Model Selection

You compare two models for explaining the behavior of a coin. The first model,
M1, assumes that the probability of a head is fixed to 0.5. Notice that this
model does not have any parameters. The second model, M2, assumes the
probability of a head is set to an unknown θ ∈ � = (0, 1) with a uniform prior
on θ : p(θ |M2) = 1. For simplicity, we additionally choose a uniform model
prior p(M1) = p(M2).

Suppose we flip the coin n = 200 times and observeX = 115 heads. Which
model should we prefer in light of this data? We compute the model evidence
for each model. The model evidence forM1

p(x |M1) =
(
n

x

)
1

2200 ≈ 0.005956. (2.22)

The model evidence ofM2 requires integrating over θ :

p(x |M2) =
∫ 1

0
p(x | θ,M2)p(θ |M2)dθ (2.23)

=
∫ 1

0

(
n

x

)
θ115(1− θ)200−115dθ (2.24)

= 1

201
≈ 0.004975. (2.25)

(continued)

68 2 Probabilistic Modeling

Example 2.4 (continued)

Note that we have used the definition of the Beta density function

p(θ | α, β) = (α + β − 1)!
(α − 1)!(β − 1)!θ

α−1(1− θ)β−1 (2.26)

to evaluate the integral in the marginal density function above.
The Bayes’ factor in favor ofM1 is 1.2 and thus |lnB| = 0.182 and there is

no evidence in favor ofM1.

•! Frequentist Approach

An interesting aside here is that a frequentist hypothesis test would reject the
null hypothesis θ = 0.5 at the α = 0.05 level. The probability of generating
at least 115 heads under model M1 is approximately 0.02. The probability
of generating at least 115 tails is also 0.02. So a two-sided test would give a
p-value of approximately 4%.

•! Hyperparameters

We note in passing that the prior distribution in the example above does
not involve any parameterization. If the prior is a parameterized distribution,
then the parameters of the prior are referred to as hyperparameters. The
distributions of the hyperparameters are known as hyperpriors. “Bayesian
hierarchical modeling” is a statistical model written in multiple levels (hierar-
chical form) that estimates the parameters of the posterior distribution using
the Bayesian method.

7 Model Selection 69

7.4 Occam’s Razor

The model evidence performs a vital role in the prevention of model over-fitting.
Models that are too simple are unlikely to generate the dataset. On the other hand,
models that are too complex can generate many possible data sets, but they are
unlikely to generate any particular dataset at random. Bayesian inference therefore
automates the determination of model complexity using the training data xn alone
and does not need special “fixes” (a.k.a regularization and information criteria) to
prevent over-fitting. The underlying philosophical principle of selecting the simplest
model, if given a choice, is known as “Occam’s razor” (Fig. 2.2).

We maintain a belief over which parameters in the model we consider plausible
by reasoning with the posterior

p(θ i | xn,Mi) = p(xn | θ i ,Mi)p(θ i |Mi)

p(xn |Mi)
, (2.27)

and we may choose the parameter value which maximizes the posterior distribution
(MAP).

7.5 Model Averaging

Marginal likelihoods can also be used to derive model weights in Bayesian model
averaging (BMA). Informally, the intuition behind BMA is that we are never
fully convinced that a single model is the correct one for our analysis at hand.
There are usually several (and often millions of) competing specifications. To
explicitly incorporate this notion of “model uncertainty,” one can estimate every
model separately, compute relative probability weights for each model, and then
generate model-averaged posterior distributions for the parameters (and predictions)

Fig. 2.2 The model evidence
p(D | m) performs a vital
role in the prevention of
model over-fitting. Models
that are too simple are
unlikely to generate the
dataset. Models that are too
complex can generate many
possible data sets, but they
are unlikely to generate any
particular dataset at random.
Source: Rasmussen and
Ghahramani (2001)

70 2 Probabilistic Modeling

of interest. We often choose BMA when there is not strong enough evidence for any
particular model. Prediction of a new point y∗ under BMA is given over m models
as the weighted average

p(y∗|y) =
m∑

i=1

p(y∗|y,Mi)p(Mi |y). (2.28)

Note that model-averaged prediction would be cumbersome to accomplish in
a classical framework, and thus constitutes another advantage of employing a
Bayesian estimation approach.

•? Multiple Choice Question 2

Which of the following statements are true:

1. Bayesian inference is ideally suited to model selection because the model
evidence effectively penalizes over-parameterized models.

2. The principle of Occam’s razor is to simply choose the model with the least bias.
3. Bayesian model averaging uses the uncertainty from the model to weight the

output from each model.
4. Bayesian model averaging is a method of consensus voting between models—the

best candidate model is selected for each new observation.
5. Hierarchical Bayesian modeling involves nesting Bayesian models through

parameterizations of prior distributions and their distributions.

8 Probabilistic Graphical Models

Graphical models (a.k.a. Bayesian networks) are a method for representing relation-
ships between random variables in a probabilistic model. They provide a useful tool
for big data, providing graphical representations of complex datasets.

To see how graphical models arise, we can revisit the familiar perceptron model
from the previous chapter in a probabilistic framework, i.e. the network weights are
now assumed to be probabilistic. As a starting point, consider a logistic regression
classifier with probabilistic output:

P [G | X] = σ(U) = 1

1+ e−U , U = wX + b, G ∈ {0, 1}, X ∈ R
p. (2.29)

8 Probabilistic Graphical Models 71

By Bayes’ law, we know that the posterior probabilities must be given by the
likelihood, prior and evidence:

P [G | X] = P [X | G]P [G]

P [X]
= 1

1+ e−
(

log
(

P[X | G])
P[X | Gc]

)
+log

(
P[G]
P[Gc]

)) , (2.30)

where Gc is the complement of G. So the outputs are only posterior probabilities
when the weights and biases are, respectively, likelihood and log-odds ratios:

wj = P
[
Xj | G

]

P
[
Xj | Gc

] , ∀j ∈ {1, . . . , p}, b = log

(
P [G]

P [Gc]

)
. (2.31)

In particular, the X′j s must be conditionally independent over G; otherwise, the
outputs from the logistic regression are not the true posterior probabilities. Put
differently, the posteriors of the input given the class can only be found when the
input is mutually independent given the class G. In this case, the logistic regression
is a naive Bayes’ classifier—a type of generative model which models the joint dis-
tribution as the products of marginals, P [X,G] = P [G]

∏p

j=1 P
[
Xj | G

]
. Hence,

under this data assumption, logistic regression is the discriminative counterpart to
naive Bayes. Figure 2.3b shows an example of an equivalent logistic regression
models and naive Bayes’ binary classifier for the case when the inputs are binary.

Furthermore, if the conditional density functions of the inputs, P
[
Xj | G

]
, are

Gaussian (but not necessarily identical), then we can establish equivalence between
logistic regression and a Gaussian naive Bayes’ classifier. See Exercise 2.7 for
establishing the equivalence when the inputs are binary.

The graphical model captures the causal process (Pearl, 1988) by which the
observed data was generated. For this reason, such models are often called
generative models.

Fig. 2.3 Logistic regression
fw(X) = σ(wT X) and an
equivalent naive Bayes’
classifier. (a) Logistic
regression weights and
resulting predictions. (b) A
naive Bayes’ classifier with
the same probabilistic output

(a)

(b)

w =
−1.16
2.23
−0.20

X1 X2 Fw (X)

1 1 0.70
1 0 0.74
0 1 0.20
0 0 0.24

G

X1 X2

P1(c)

0.5

G 1[X1 | G]

1 0.8
0 0.3

G 1[X2 | G]

1 0.45
0 0.5

72 2 Probabilistic Modeling

Naive Bayes’ classification is the simplest form of a probabilistic graphical
model (PGM) with a directed graph G = (X, E), where the edges, E, represent the
conditional dependence between the random variables X = (X, Y). For example,
Fig. 2.3b shows the dependence of the response G on X in the naive Bayes’
classifier. Such graphs, provided they are directed, are often referred to as “Bayesian
networks.” Such graphical model captures the causal process by which the observed
data was generated. If the graph is undirected—an undirected graphical model
(UGM), as in restricted Boltzmann machines (RBMs), then the network is referred
to as a “Markov network” or Markov random field.

RBMs have the specific restriction that there are no observed–observed and
hidden–hidden node connections. RBMs are an example of continuous latent
variable models which find the probability of an observed variable by marginalizing
over the continuous latent variable, Z,

p(x) =
∫
p(x | z)p(z)dz. (2.32)

This type of graphical model corresponds to that of factor analysis. Other related
types of graphical models include mixture models.

8.1 Mixture Models

A standard mixture probability density of a continuous and independently (but not
identically) distributed random variable X, whose value is denoted by x, is defined
as

p(x;υ) =
K∑

k=1

πkp(x; θk). (2.33)

The mixture density has K components (or states) and is defined by the parameter
set υ = {θ, π}, where π = {π1, · · · , πK } is the set of weights given to
each component and θ = {θ1, · · · , θK } is the set of parameters describing each
component distribution. A well-known mixture model is the Gaussian mixture
model (GMM):

p(x) =
K∑

k=1

πkN
(
x;μk, σ 2

k

)
, (2.34)

where each component parameter vector θk is the mean and variance parameters, μk
and σ 2

k .

8 Probabilistic Graphical Models 73

When X is discrete, the graphical model is referred to as a “discrete mixture
model.” Examples of GMMs are common in finance. Risk managers, for example,
speak in terms of “correlation breakdowns,” “market contagion,” and “volatility
shocks.” Finger (1997) presents a two-component GMM for modeling risk under
normal and stressed market scenarios which has become standard methodology for
stressed Value-at-Risk and Economic Capital modeling in the investment banking
sector. Mixture models can also be used to cluster data and have a non-probabilistic
analog called the K-means algorithm which is a well-known unsupervised learning
method used in finance and other fields.

Before such a model can be fitted, it is necessary to introduce an additional
variable which represents the current state of the data, i.e. which of the mixture
component distributions is the current observation drawn from.

8.1.1 Hidden Indicator Variable Representation of Mixture Models

Let us first suppose that the independent random variable, X, has been observed
over N data points, xN = {x1, · · · , xN }. The set is assumed to be generated by a
K-component mixture model.

To indicate the mixture component from which a sample was drawn, we intro-
duce an independent hidden (a.k.a. latent) discrete random variable, S ∈ {1, . . . , K}.
For each observation xi , the value of S is denoted as si , and is encoded as a binary
vector of length K . We set the vector’s k-th component, (si)k = 1 to indicate that
the k-th mixture component is selected, while all other states are set to 0. As a
consequence,

1 =
K∑

k=1

(si)k. (2.35)

We can now specify the joint probability distribution of X and S in terms of a
marginal density p(si;π) and a conditional density p(xi | si; θ) as

p(xn, sn;υ) =
N∏

i

p(xi |si; θ)p(si;π), (2.36)

where the marginal densities p(si;π) are drawn from a multinomial distribution
that is parameterized by the mixing weights π = {π1, · · · , πK }:

p(si;π) =
K∏

k=1

π
(si)k
k , (2.37)

or, more simply,

74 2 Probabilistic Modeling

P [(si)k = 1] = πk. (2.38)

Naturally the mixing weights, πk ∈ [0, 1], must satisfy

1 =
K∑

k=1

πk. (2.39)

8.1.2 Maximum Likelihood Estimation

The maximum likelihood method of estimating mixture models is known as the
expectation–maximization (EM) algorithm. The goal of the EM is to maximize the
likelihood of the data given the model, i.e. maximize

L(υ) = log

{
∑

s

p(xn, sn;υ)
}
=

N∑

i=1

K∑

k=1

(si)k log {πkp(xi; θk)} . (2.40)

If the sequence of states sn were known, then the estimation of the model parameters
π, θ would be straightforward; conditioned on the state variables and the observa-
tions, Eq. 2.40 could be maximized with respect to the model parameters. However,
the value of the state variable is unknown. This suggests an alternative two-stage
iterated optimization algorithm: If we know the expected value of S, one could
use this expectation in the first step to perform a weighted maximum likelihood
estimation of Eq. 2.40 with respect to the model parameters. These estimates will
be incorrect since the expectation S is inaccurate. So, in the second step, one could
update the expected value of all S pretending the model parameters υ := (π, θ)

are known and held fixed at their values from the past iteration. This is precisely
the strategy of the expectation–maximization (EM) algorithm—a statistically self-
consistent, iterative, algorithm for maximum likelihood estimation. With the context
of mixture models, the EM algorithm is outlined as follows:

• E-step:
In this step, the parameters υ are held fixed at the old values, υold , obtained

from the previous iteration (or at their initial settings during the algorithm’s
initialization). Conditioned on the observations, the E-step then computes the
probability density of the state variables Si , ∀i given the current model parame-
ters and observation data, i.e.

p(si | xi, υold) ∝ p(xi | si; θ)p(si;πold). (2.41)

In particular, we compute

8 Probabilistic Graphical Models 75

P((si)k = 1 | xi, υold) = p(xi | (si)k = 1; θk)πk∑
� p(xi | (si)� = 1; θ�)π� . (2.42)

The likelihood terms p(xi | (si)k = 1; θk) are evaluated using the observation
densities defined for each of the states.

• M-step:
In this step, the hidden state probabilities are considered given and maximiza-

tion is performed with respect to the parameters:

υnew = arg max
υ
L(υ). (2.43)

This results in the following update equations for the parameters in the probabil-
ity distributions:

μk = 1

N

∑N
i=1(γi)kxi∑N
i=1(γi)k

(2.44)

σ 2
k =

1

N

∑N
i=1(γi)k (xi − μk)2∑N

i=1(γi)k
, ∀k ∈ {1, . . . , K}, (2.45)

where (γi)k := E[(si)k | xi] are the responsibilities—conditional expectations
which measure how strongly a data point, xi , “belongs” to each component, k, of
the mixture model.

The number of components needed to model the data depends on the data and
can be determined by a Kolmogorov–Smirnoff test or based on entropy criteria.
Heavy tailed data required at least two light tailed components to compensate. More
components require larger sample sizes to ensure adequate fitting. In the extreme
case there may be insufficient data available to calibrate a given mixture model with
a certain degree of accuracy. In summary, while GMMs are flexible they may not be
the most appropriate model. If more is known about the data distribution, such as
its behavior in the tails, incorporation of this knowledge can only help improve the
model.

•? Multiple Choice Question 3

Which of the following statements are true:

1. Mixture models assume that the data is multi-modal and drawn from a linear
combination of uni-modal distributions.

2. The expectation–maximization (EM) algorithm is a type of iterative unsuper-
vised learning algorithm which alternates between updating the probability
density of the state variables, based on model parameters (E-step) and updating
the parameters by maximum likelihood estimation (M-step).

76 2 Probabilistic Modeling

3. The EM algorithm automatically determines the modality of the distribution and
hence the number of components.

4. A mixture model is only appropriate for use in finance if the modeler specifies
which component is the most relevant for each observation.

9 Summary

Probabilistic modeling is an important class of models in financial data, which is
often noisy and incomplete. Additionally much of finance rests on being able to
make financial decisions under uncertainty, a task perfectly suited to probabilistic
modeling. In this chapter we have identified and demonstrated how probabilistic
modeling is used for financial modeling. In particular we have:

– Applied Bayesian inference to data using simple probabilistic models;
– Show how linear regression with probabilistic weights can be viewed as a simple

probabilistic graphical model; and
– Developed more versatile representations of complex data with probabilistic

graphical models such as mixture models and hidden Markov models.

10 Exercises

Exercise 2.1: Applied Bayes’ Theorem
An accountant is 95 percent effective in detecting fraudulent accounting when it
is, in fact, present. However, the audit also yields a “false positive” result for one
percent of the non-fraudulent companies audited. If 0.1 percent of the companies
are actually fraudulent, what is the probability that a company is fraudulent given
that the audit revealed fraudulent accounting?

Exercise 2.2*: FX and Equity
A currency strategist has estimated that JPY will strengthen against USD with
probability 60% if S&P 500 continues to rise. JPY will strengthen against USD
with probability 95% if S&P 500 falls or stays flat. We are in an upward trending
market at the moment, and we believe that the probability that S&P 500 will rise
is 70%. We then learn that JPY has actually strengthened against USD. Taking this
new information into account, what is the probability that S&P 500 will rise? Hint:
Recall Bayes’ rule: P(A | B) = P(B | A)

P (B)
P (A).

Exercise 2.3**: Bayesian Inference in Trading
Suppose there are n conditionally independent, but not identical, Bernoulli trials
G1, . . . ,Gn generated from the map P(Gi = 1 | X = xi) = g1(xi | θ) with
θ ∈ [0, 1]. Show that the likelihood of G | X is given by

10 Exercises 77

p(G | X, θ) =
n∏

i=1

(g1(xi | θ))Gi · (g0(xi | θ))1−Gi (2.46)

and the log-likelihood of G | X is given by

ln p(G | X, θ) =
n∑

i=1

Giln(g1(xi | θ))+ (1−Gi)ln(g0(xi | θ)). (2.47)

Using Bayes’ rule, write the condition probability density function of θ (the
“posterior”) given the data (X,G) in terms of the above likelihood function.

From the previous example, suppose that G = 1 corresponds to JPY strengthen-
ing against the dollar and X are the S&P 500 daily returns and now

g1(x | θ) = θ1x>0 + (θ + 35)1x≤0. (2.48)

Starting with a neutral view on the parameter θ (i.e., θ ∈ [0, 1]), learn the
distribution of the parameter θ given that JPY strengthens against the dollar for
two of the three days and S&P 500 is observed to rise for 3 consecutive days. Hint:
You can use the Beta density function with a scaling constant �(α, β)

p(θ |α, β) = (α + β − 1)!
(α − 1)!(β − 1)!θ

α−1(1− θ)β−1 = �(α, β)θα−1(1− θ)β−1

(2.49)
to evaluate the integral in the marginal density function.
If θ represents the currency analyst’s opinion of JPY strengthening against the
dollar, what is the probability that the model overestimates the analyst’s estimate?

Exercise 2.4*: Bayesian Inference in Trading
Suppose that you observe the following daily sequence of directional changes in the
JPY/USD exchange rate (U (up), D(down or stays flat)):

U, D, U, U, D

and the corresponding daily sequence of S&P 500 returns is

-0.05, 0.01, -0.01, -0.02, 0.03

You propose the following probability model to explain the behavior of JPY
against USD given the directional changes in S&P 500 returns: Let G denote a
Bernoulli R.V., where G = 1 corresponds to JPY strengthening against the dollar
and r are the S&P 500 daily returns. All observations of G are conditionally
independent (but *not* identical) so that the likelihood is

p(G | r, θ) =
n∏

i=1

p(G = Gi | r = ri, θ)

78 2 Probabilistic Modeling

where

p(Gi = 1 | r = ri, θ) =
{
θu, ri > 0

θd, ri ≤ 0.

Compute the full expression for the likelihood that the data was generated by this
model.

Exercise 2.5: Model Comparison
Suppose you observe the following daily sequence of direction changes in the stock
market (U (up), D(down)):

U, D, U, U, D, D, D, D, U, U, U, U, U, U, U, D, U, D, U, D,
U, D, D, D, D, U, U, D, U, D, U, U, U, D, U, D, D, D, U, U,
D, D, D, U, D, U, D, U, D, D

You compare two models for explaining its behavior. The first model,M1, assumes
that the probability of an upward movement is fixed to 0.5 and the data is i.i.d.

The second model,M2, also assumes the data is i.i.d. but that the probability of
an upward movement is set to an unknown θ ∈ � = (0, 1) with a uniform prior
on θ : p(θ |M2) = 1. For simplicity, we additionally choose a uniform model prior
p(M1) = p(M2).

Compute the model evidence for each model.
Compute the Bayes’ factor and indicate which model should we prefer in light

of this data?

Exercise 2.6: Bayesian Prediction and Updating
Using Bayesian prediction, predict the probability of an upward movement given
the best model and data in Exercise 2.5.

Suppose now that you observe the following new daily sequence of direction
changes in the stock market (U (up), D(down)):

D, U, D, D, D, D, U, D, U, D, U, D, D, D, U, U, D, U, D, D, D,
U, U, D, D, D, U, D, U, D, U, D, D, D, U, D, U, D, U, D, D, D,
D, U, U, D, U, D, U, U

Using the best model from Exercise 2.5, compute the new posterior distribution
function based on the new data and the data in the previous question and predict
the probability of an upward price movement given all data. State all modeling
assumptions clearly.

Exercise 2.7: Logistic Regression Is Naive Bayes
Suppose that G and X ∈ {0, 1}p are Bernoulli random variables and the Xis are
mutually independent given G—that is, P [X | G] = ∏p

i=1 P [Xi | G]. Given a
naive Bayes’ classifier P [G | X], show that the following logistic regression model
produces equivalent output if the weights are

10 Exercises 79

w0 = log
P [G]

P [Gc]
+

p∑

i=1

log
P [Xi = 0 ∈ G]

P [Xi = 0 ∈ Gc]

wi = log
P [Xi = 1 ∈ G]

P [Xi = 1 ∈ Gc] ·
P [Xi = 0 ∈ Gc]
P [Xi = 0 ∈ G]

, i = 1, . . . , p.

Exercise 2.8**: Restricted Boltzmann Machines
Consider a probabilistic model with two types of binary variables: visible binary
stochastic units v ∈ {0, 1}D and hidden binary stochastic units h ∈ {0, 1}F , whereD
and F are the number of visible and hidden units, respectively. The joint probability
density to observe their values is given by the exponential distribution

p(v,h) = 1

Z
exp (−E(v,h)) , Z =

∑

v,h

exp (−E(v,h))

and where the energy E(v,h) of the state {v,h} is

E(v,h) = −vT Wh− bT v− aT h = −
D∑

i=1

F∑

j=1

Wijvihj −
D∑

i=1

bivi −
F∑

j=1

ajhj ,

with model parameters a, b,W . This probabilistic model is called the restricted
Boltzmann machine. Show that conditional probabilities for visible and hidden
nodes are given by the sigmoid function σ(x) = 1/(1+ e−x):

P [vi = 1 | h] = σ
⎛

⎝
∑

j

Wijhj + bi
⎞

⎠ , P [hi = 1 | v] = σ
⎛

⎝
∑

j

Wij vj + ai
⎞

⎠ .

Appendix

Answers to Multiple Choice Questions

Question 1
Answer: 1,3,4.

Question 2
Answer: 1,3,5.

Question 3
Answer: 1,2. Mixture models assume that the data is multi-modal—the data is
drawn from a linear combination of uni-modal distributions. The expectation–
maximization (EM) algorithm is a type of iterative, self-consistent, unsupervised

80 2 Probabilistic Modeling

learning algorithm which alternates between updating the probability density of the
state variables, based on model parameters (E-step) and updating the parameters by
maximum likelihood estimation (M-step). The EM algorithm does not automatically
determine the modality of the data distribution, although there are statistical tests to
determine this. A mixture model assigns a probabilistic weight for every component
that each observation might belong to. The component with the highest weight is
chosen.

References

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the
author). Statistical Science 16(3), 199–231.

Duembgen, M., & Rogers, L. C. G. (2014). Estimate nothing. https://arxiv.org/abs/1401.5666.
Finger, C. (1997). A methodology to stress correlations, fourth Quarter. RiskMetrics Monitor.
Rasmussen, C. E., & Ghahramani, Z. (2001). Occam’s razor. In In Advances in Neural Information

Processing Systems 13, (pp. 294–300). MIT Press.

https://arxiv.org/abs/1401.5666

Chapter 3
Bayesian Regression and Gaussian
Processes

This chapter introduces Bayesian regression and shows how it extends many of
the concepts in the previous chapter. We develop kernel based machine learning
methods—specifically Gaussian process regression, an important class of Bayesian
machine learning methods—and demonstrate their application to “surrogate” mod-
els of derivative prices. This chapter also provides a natural starting point from
which to develop intuition for the role and functional form of regularization in a
frequentist setting—the subject of subsequent chapters.

1 Introduction

In general, it is difficult to develop intuition about how the distribution of weights in
a parametric regression model represents the data. Rather than induce distributions
over variables, as we have seen in the previous chapter, we could instead induce
distributions over functions. Specifically, we can express those intuitions using a
“covariance kernel .”

We start by exploring Bayesian regression in a more general setup that enables
us to easily move from a toy regression model to a more complex non-parametric
Bayesian regression model, such as Gaussian process regression. By introducing
Bayesian regression in more depth, we show how it extends many of the concepts
in the previous chapter. We develop kernel based machine learning methods
(specifically Gaussian process regression), and demonstrate their application to
“surrogate” models of derivative prices.1

1Surrogate models learn the output of an existing mathematical or statistical model as a function
of input data.

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_3

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_3

82 3 Bayesian Regression and Gaussian Processes

Chapter Objectives

The key learning points of this chapter are:

– Formulate a Bayesian linear regression model;
– Derive the posterior distribution and the predictive distribution;
– Describe the role of the prior as an equivalent form of regularization in maximum

likelihood estimation; and
– Formulate and implement Gaussian Processes for kernel based probabilistic

modeling, with programming examples involving derivative modeling.

2 Bayesian Inference with Linear Regression

Consider the following linear regression model which is affine in x ∈ R:

y = f (x) = θ0 + θ1x, θ0, θ1 ∼ N(0, 1), x ∈ R, (3.1)

and suppose that we observe the value of the function over the inputs x :=
[x1, . . . , xn]. The random parameter vector θ := [θ0, θ1] is unknown. This setup
is referred to as “noise-free,” since we assume that y is strictly given by the function
f (x) without noise.

The graphical model representation of this model is given in Fig. 3.1 and clearly
specifies that the ith model output only depends on xi . Note that the graphical model
also holds in the case when there is noise.

In the noise-free setting, the expectation of the function under known data is

Eθ [f (xi)|xi] = Eθ [θ0] + Eθ [θ1]xi = 0,∀i, (3.2)

where the expectation operator is w.r.t. the prior density of θ

Eθ [·] =
∫
(·)p(θ)dθ . (3.3)

Fig. 3.1 This graphical
model represents Bayesian
linear regression. The features
x := {xi}ni=1 and responses
y := {yi}ni=1 are known and
the random parameter vector
θ is unknown. The ith model
output only depends on xi

2 Bayesian Inference with Linear Regression 83

Then the covariance of the function values between any two points, xi and xj is

Eθ [f (xi)f (xj)|xi, xj] = Eθ [θ2
0 + θ0θ1(xi + xj)+ θ2

1 xixj] (3.4)

= Eθ [θ2
0] + Eθ [θ2

0]xixj + Eθ [θ0θ1](xi + xj), (3.5)

= 1+ xixj , (3.6)

where the last term is zero because of the independence of θ0 and θ1. Then
any collection of function values [f (x1), . . . , f (xn)] with given data has a joint
Gaussian distribution with covariance matrix Kij := Eθ [f (xi)f (xj)|xi, xj] =
1 + xixj . Such a probabilistic model is the simplest example of a more general,
non-linear, Bayesian kernel learning method referred to as “Gaussian Process
Regression” or simply “Gaussian Processes” (GPs) and is the subject of the later
material in this chapter.

Noisy Data

The above example is in a noise-free setting where the function values
[f (x1), . . . , f (xn)] are observed. In practice, we do not observe these function
values, but rather some target values y = [y1, . . . , yn] which depend on x by the
function, f (x), and some zero-mean Gaussian i.i.d. additive noise with known
variance σ 2

n :

yi = f (xi)+ εi, εi ∼ N(0, σ 2
n). (3.7)

Hence the observed i.i.d. data is D := (x, y). Following Rasmussen and Williams
(2006), under this noise assumption and the linear model we can write down the
likelihood function of the data:

p(y|x, θ) =
n∏

i=1

p(yi |xi, θ)

= 1√
2πσn

exp{−(yi − xiθ1 − θ0)
2/(2σ 2

n)}

and hence y|x, θ ∼ N(θ0 + θ1x, σ 2
n I).

Bayesian inference of the parameters in this linear regression model is based on
the posterior distribution over the weights:

p(θi |y, x) = p(y|x, θi)p(θi)
p(y|x) , i ∈ {0, 1}, (3.8)

where the marginal likelihood in the denominator is given by integrating over the
parameters as

84 3 Bayesian Regression and Gaussian Processes

p(y|x) =
∫
p(y|x, θ)p(θ)dθ . (3.9)

If we define the matrix X, where [X]i := [1, xi], and under more general conjugate
priors, we have

θ ∼ N(μ,�),
y|X, θ ∼ N(θT X, σ 2

n I),

and the product of Gaussian densities is also Gaussian, we can simply use standard
results of moments of affine transformations to give

E[y|X] = E[θT X + ε] = E[θT]X = μTX. (3.10)

The conditional covariance is

Cov(y|X) = Cov(θT X)+σ 2
n I = XCov(θ)XT +σ 2

n I = X�XT +σ 2
n I. (3.11)

To derive the posterior of θ , it is convenient to transform the prior density function
from a moment parameterization to a natural parameterization by completing the
square. This is useful for multiplying normal density functions such as normalized
likelihoods and conjugate priors. The quadratic form for the prior transforms to

p(θ) ∝ exp{−1

2
(θ − μ)T �−1(θ − μ)}, (3.12)

∝ exp{μT�−1θ − 1

2
θT �−1θ}, (3.13)

where the 1
2μ
T�−1μ term is absorbed in the normalizing term as it is independent

of θ . Using this transformation, the posterior p(θ |D) is proportional to:

p(y|X, θ)p(θ) ∝ exp{− 1

2σ 2
n

(y− θT X)T (y− θT X)} exp{μT�−1 − 1

2
θT �−1θ}

(3.14)

∝ exp{− 1

2σ 2
n

(−2yθT X + θT XXT θ)} exp{μT�−1 − 1

2
θT �−1θ}

(3.15)

= exp{(�−1μ+ 1

σ 2
n

yT X)T θT − 1

2
θT (�−1 + 1

σ 2
n

XXT)θ}
(3.16)

= exp{aT θ − 1

2
θT Aθ}. (3.17)

2 Bayesian Inference with Linear Regression 85

The posterior follows the distribution

θ |D ∼ N(μ′, �′), (3.18)

where the moments of the posterior are

μ′ = �′a = (�−1 + 1

σ 2
n

XXT)−1(�−1μ+ 1

σ 2
n

yT X) (3.19)

�′ = A−1 = (�−1 + 1

σ 2
n

XXT)−1 (3.20)

and we use the inverse of transformation above, from natural back to moment
parameterization to write

p(θ |D) ∝ exp{−1

2
(θ − μ′)T (�′)−1(θ − μ′)}. (3.21)

�−1, the inverse of a covariance matrix, is referred to as the precision matrix.
The mean of this distribution is the maximum a posteriori (MAP) estimate of the
weights—it is the mode of the posterior distribution. We will show shortly that it
corresponds to the penalized maximum likelihood estimate of the weights, with a
L2 (ridge) penalty term given by the log prior.

Figure 3.2 demonstrates Bayesian learning of the posterior distribution of the
weights. A bi-variate Gaussian prior is initially chosen for the prior distribution
and there are an infinite number of possible lines that could be drawn in the data
space [−1, 1] × [−1, 1]. The data is generated under the model f (x) = 0.3 +
0.5x with a small amount of additive i.i.d. Gaussian noise. As the number of points
that the likelihood function is evaluated over increases, the posterior distribution
sharpens and eventually contracts to a point. See the Bayesian Linear regression
Python notebook for details of the implementation.

•? Multiple Choice Question 1

Which of the following statements are true:

1. Bayesian regression treats the regression weights as random variables.
2. In Bayesian regression the data function f (x) is assumed to always be observed.
3. The posterior distribution of the parameters is always Gaussian if the prior is

Gaussian.
4. The posterior distribution of the regression weights will typically contract with

increasing data.
5. The mean of the posterior distribution depends on both the mean and covariance

of the prior if it is Gaussian.

86 3 Bayesian Regression and Gaussian Processes

Fig. 3.2 This figure demonstrates Bayesian inference for the linear model. The data has been
generated from the function f (x) = 0.3 + 0.5x with a small amount of additive white noise.
Source: Bishop (2006)

2.1 Maximum Likelihood Estimation

Let us briefly revisit parameter estimation in a frequentist setting to solidify our
understanding of Bayesian inference. Assuming that σ 2

n is a known parameter, we
can easily derive the maximum likelihood estimate of the parameter vector, θ̂ . The
gradient of the negative log-likelihood function (a.k.a. loss function) w.r.t. θ is

d

dθ
L(θ) := − d

dθ

(
n∑

i=1

log p(yi |xi, θ)
)
,

= 1

2σ 2
n

d

dθ

(
||y− θT X||22 + c

)

= 1

σ 2
n

(−yT X + θT XT X),

where the constant c := −n2 (log(2π)+ log(σ 2
n)). Setting this gradient to zero gives

the orthogonal projection of y on to the subspace spanned by X:

2 Bayesian Inference with Linear Regression 87

θ̂ = (XT X)−1XT y, (3.22)

where θ̂ is the vector in the subspace spanned by X which is closest to y. This result
states that the maximum likelihood estimate of an unpenalized loss function (i.e.,
without including the prior) is the OLS estimate when the noise variance is known.
If the noise variance is unknown then the loss function is

L(θ , σ 2
n) =

n

2
log(σ 2

n)+
1

2σ 2
n

||y− θT X||22 + c, (3.23)

where now c = n
2 log(2π). Taking the partial derivative

∂L(θ, σ 2
n)

∂σ 2
n

= n

2σ 2
n

− 1

2σ 4
n

||y− θT X||22, (3.24)

and setting it to zero gives2 σ̂ 2
n = 1

n
||y− θT X||22.

Maximum likelihood estimation is prone to overfitting and therefore should
be avoided. We instead maximize the posterior distribution to arrive at the MAP
estimate, θ̂MAP . Returning to the above computation under known noise:

d

dθ
L(θ) := − d

dθ

(
n∑

i=1

log p(yi |xi, θ)+ log p(θ)
)
,

= d

dθ

(
1

2σ 2
n

||y− θT X||22 +
1

2
(θ − μ)T �−1(θ − μ)+ c

)

= 1

σ 2
n

(−yT X + θT XXT)+ (θ − μ)T �−1.

Setting this derivative to zero gives

1

σ 2
n

(yT X − θT XXT) = (θ − μ)T �−1, (3.25)

and after some rearrangement we obtain

θ̂MAP = (XXT + σ 2
n�

−1)−1(σ 2
nΣ

−1μ+XT y) = A−1(Σ−1μ+ σ−2
n XT y),

(3.26)
which is equal to the mean of the posterior derived in Eq. 3.19. Of course, this
is to be expected since the mean of a Gaussian distribution is also its mode. The
difference between θ̂MAP and θ̂ are the σ 2

n�
−1 terms. This term has the effect of

2Note that the factor of 2 in the denominator of the second term does not cancel out because the
derivative is w.r.t. σ 2

n and not σn.

88 3 Bayesian Regression and Gaussian Processes

reducing the condition number of XTX. Forgetting the mean of the prior, the linear
system (XT X)θ = XT y becomes the regularized linear system: Aθ = σ−2

n XT y.
Note that choosing the isotropic Gaussian prior p(θ) = N(0, 1

2λI) gives the
ridge penalty term in the loss function: λ||θ ||22, i.e. the negative log Gaussian prior
matches the ridge penalty term up to a constant. In the limit, λ → 0 recovers
maximum likelihood estimation—this corresponds to using the uninformative prior.

Of course, in Bayesian inference, we do not perform point-estimation of the
parameters, however it was a useful exercise to confirm that the mean of the
posterior in Eq. 3.19 did indeed match the MAP estimate. Furthermore, we have
made explicit the interpretation of the prior as a regularization term used in ridge
regression.

2.2 Bayesian Prediction

Recall from Chap. 2 that Bayesian prediction requires evaluating the density of
f∗ := f (x∗) w.r.t. a new data point x∗ and the training dataD.

In general, we predict the model output at a new point, f∗, by averaging the
model output over all possible weights, with the weight density function given
by the posterior. That is we seek to find the marginal density p(f∗|x∗,D) =
Eθ |D[p(f∗|x∗, θ)], where the dependency on θ has been integrated out. This
conditional density is Gaussian

f∗|x∗,D ∼ N(μ∗, �∗), (3.27)

with moments

μ∗ = Eθ |D[f∗|x∗,D] = xT∗ Eθ |D[θ |x∗,D] = xT∗ Eθ |D[θ |D] = xT∗ μ′

�∗ = Eθ |D[(f∗ − μ∗)(f∗ − μ∗)T |x∗,D]
= xT∗ Eθ |D[(θ − μ′)(θ − μ′)|x∗,D]x∗
= xT∗ Eθ |D[(θ − μ′)(θ − μ′)|D]x∗ = xT∗ �′x∗,

where we have avoided taking the expectation of the entire density function
p(f∗|x∗, θ), but rather just the moments because we know that f∗ is Gaussian.

•? Multiple Choice Question 2

Which of the following statements are true:

1. Prediction under a Bayesian linear model requires first estimating the posterior
distribution of the parameters;

2. The predictive distribution is Gaussian only if the posterior and likelihood
distributions are Gaussian;

2 Bayesian Inference with Linear Regression 89

3. The predictive distribution depends on the weights in the models;
4. The variance of the predictive distribution typically contracts with increasing

training data.

2.3 Schur Identity

There is another approach to deriving the predictive distribution from the conditional
distribution of the model output which relies on properties of inverse matrices. We
can write the joint density between Gaussian random variables X and Y in terms of
the partitioned covariance matrix:

[
X

Y

]
= N

([
μx

μy

]
,

[
�xx �xy

Σyx Σyy

])
,

where �xx = V(X), �xy = Cov(XY) and �yy = V(Y), how can we find the
conditional density p(y|x)?

In order to express the moments in terms of the partitioned covariance matrix we
shall use the following Schur identity:

[
A B

C D

]−1

=
[

M −MBD−1

−D−1CM D−1 +D−1CMBD−1

]
.

where the Schur complement w.r.t. the submatrix D is M := (A − BD−1C)−1.
Applying the Schur identity to the partitioned precision matrix A gives

[
�yy �yx

�xy �xx

]−1

=
[
Ayy Ayx

Axy Axx

]
, (3.28)

where

Ayy = (�yy −�yx�−1
xx �xy)

−1 (3.29)

Ayx = −(�yy −�yx�−1
xx �xy)

−1�yx�
−1
xx , (3.30)

and thus the moments of the Gaussian distribution p(y|x) are

μy|x = μy +�yx�−1
xx (x − μx), (3.31)

�y|x = �yy −�yx�−1
xx �xy. (3.32)

Hence the density of the condition distribution Y |X can alternatively be derived
by using the Schur identity. In the special case when the joint density p(x, y) is
bi-Gaussian, the expression for the moments simplify to

90 3 Bayesian Regression and Gaussian Processes

μy|x = μy + σyx
σ 2
x

(x − μx), (3.33)

�y|x = σy −
σ 2
yx

σ 2
x

, (3.34)

where σxy is the covariance between X and Y .
Now returning to the predictive distribution, the joint density between y and f∗

is

[
y
f∗

]
= N

([
μy

μf∗

]
,

[
�yy �yf∗
�f∗y �f∗f∗

])
. (3.35)

We can immediately write down the moments of the condition distribution

μf∗|X,y,x∗ = μf∗ +�f∗y�−1
yy (y − μy), (3.36)

�f∗|X,y,x∗ = �f∗f∗ −�f∗y�−1
yy �yf∗ . (3.37)

Since we know the form of the function f (x), we can simplify this expression by
writing that

�yy = KX,X + σ 2
n I, (3.38)

where KX,X is the covariance of f (X), which for linear regression takes the form

KX,X = E[θ2
1 (X − μx)2],

�f∗f∗ = Kx∗,x∗ and�yf∗ = KX,x∗ . Now we can write the moments of the predictive
distribution as

μf∗|X,y,x∗ = μf∗ +Kx∗,XK−1
X,X(y − μy), (3.39)

Kf∗|X,y,x∗ = Kx∗,x∗ −Kx∗,XK−1
X,XKX,x∗ . (3.40)

Discussion

Note that we have assumed that the functional form of the map, f (x) is known
and parameterized. Here we assumed that the map is linear in the parameters and
affine in the features. Hence our approximation of the map is in the data space
and, for prediction, we can subsequently forget about the map and work with its
moments. The moments of the prior on the weights also no longer need to be
specified.

3 Gaussian Process Regression 91

If we do not know the form of the map but want to specify structure on the
covariance of the map (i.e., the kernel), then we are said to be approximating
in the kernel space rather than in the data space. If the kernels are given by
continuous functions of X, then such an approximation corresponds to learning a
posterior distribution over an infinite dimensional function space rather than a finite
dimensional vector space. Put differently, we perform non-parametric regression
rather than parametric regression. This is the remaining topic of this chapter and is
precisely how Gaussian process regression models data.

3 Gaussian Process Regression

Whereas, statistical inference involves learning a latent function Y = f (X) of the
training data, (X, Y) := {(xi , yi) | i = 1, . . . , n}, the idea of GPs is to, without
parameterizing3 f (X), place a probabilistic prior directly on the space of functions
(MacKay 1998). Restated, the GP is hence a Bayesian non-parametric model that
generalizes the Gaussian distributions from finite dimensional vector spaces to
infinite dimensional function spaces. GPs do not provide some parameterized map,
Ŷ = fθ (X), but rather the posterior distribution of the latent function given the
training data.

The basic theory of prediction with GPs dates back to at least as far as the
time series work of Kolmogorov or Wiener in the 1940s (see (Whittle and Sargent
1983)). GPs are an example of a more general class of supervised machine learning
techniques referred to as “kernel learning,” which model the covariance matrix
from a set of parameterized kernels over the input. GPs extend and put in a
Bayesian framework spline or kernel interpolators, and Tikhonov regularization (see
(Rasmussen and Williams 2006) and (Alvarez et al. 2012)). On the other hand, (Neal
1996) observed that certain neural networks with one hidden layer converge to a
Gaussian process in the limit of an infinite number of hidden units.

We refer to the reader to (Rasmussen and Williams 2006) for an excellent intro-
duction to GPs. In addition to a number of favorable statistical and mathematical
properties, such as universality (Micchelli et al. 2006), the implementation support
infrastructure is mature—provided by GpyTorch, scikit-learn, Edward,
STAN, and other open-source machine learning packages.

In this section we restrict ourselves to the simpler case of single-output GPs
where f is real-valued. Multi-output GPs are considered in the next section.

3This is in contrast to non-linear regressions commonly used in finance, which attempt to
parameterize a non-linear function with a set of weights.

92 3 Bayesian Regression and Gaussian Processes

3.1 Gaussian Processes in Finance

The adoption of GPs in financial derivative modeling is more recent and sometimes
under the name of “kriging” (see, e.g., (Cousin et al. 2016) or (Ludkovski 2018)).
Examples of applying GPs to financial time series prediction are presented in
(Roberts et al. 2013). These authors helpfully note that AR(p) processes are
discrete-time equivalents of GP models with a certain class of covariance functions,
known as Matérn covariance functions. Hence, GPs can be viewed as a Bayesian
non-parametric generalization of well-known econometrics techniques. da Barrosa
et al. (2016) present a GP method for optimizing financial asset portfolios. Other
examples of GPs include metamodeling for expected shortfall computations (Liu
and Staum 2010), where GPs are used to infer portfolio values in a scenario
based on inner-level simulation of nearby scenarios, and Crépey and Dixon (2020),
where multiple GPs infer derivative prices in a portfolio for market and credit
risk modeling. The approach of Liu and Staum (2010) significantly reduces the
required computational effort by avoiding inner-level simulation in every scenario
and naturally takes account of the variance that arises from inner-level simulation.
The caveat is that the portfolio remains fixed. The approach of Crépey and Dixon
(2020), on the other hand, allows for the composition of the portfolio to be changed,
which is especially useful for portfolio sensitivity analysis, risk attribution and stress
testing.

Derivative Pricing, Greeking, and Hedging

In the general context of derivative pricing, Spiegeleer et al. (2018) noted that
many of the calculations required for pricing a wide array of complex instruments,
are often similar. The market conditions affecting OTC derivatives may often
only slightly vary between observations by a few variables, such as interest rates.
Accordingly, for fast derivative pricing, greeking, and hedging, Spiegeleer et al.
(2018) propose offline learning the pricing function, through Gaussian Process
regression. Specifically, the authors configure the training set over a grid and
then use the GP to interpolate at the test points. We emphasize that such GP
estimates depend on option pricing models, rather than just market data - somewhat
counter the motivation for adopting machine learning, but also the case in other
computational finance applications such as Hernandez (2017), Weinan et al. (2017),
or Hans Bühler et al. (2018).

Spiegeleer et al. (2018) demonstrate the speed up of GPs relative to Monte-
Carlo methods and tolerable accuracy loss applied to pricing and Greek estimation
with a Heston model, in addition to approximating the implied volatility surface.
The increased expressibility of GPs compared to cubic spline interpolation, a
popular numerical approximation techniques useful for fast point estimation, is
also demonstrated. However, the applications shown in (Spiegeleer et al. 2018) are
limited to single instrument pricing and do not consider risk modeling aspects.
In particular, their study is limited to single-output GPs, without consideration

3 Gaussian Process Regression 93

of multi-output GPs (respectively referred to as single- vs. multi-GPs for brevity
hereafter).

By contrast, multi-GPs directly model the uncertainty in the prediction of a
vector of derivative prices (responses) with spatial covariance matrices specified
by kernel functions. Thus the amount of error in a portfolio value prediction, at any
point in space and time, can only be adequately modeled using multi-GPs (which,
however, do not provide any methodology improvement in estimation of the mean
with respect to single-GPs). See Crépey and Dixon (2020) for further details of how
multi-GPs can be applied to estimate market and credit risk.

The need for uncertainty quantification in the prediction is certainly a practical
motivation for using GPs, as opposed to frequentist machine learning techniques
such as neural networks, etc., which only provide point estimates. A high uncer-
tainty in a prediction might result in a GP model estimate being rejected in favor of
either retraining the model or even using full derivative model repricing. Another
motivation for using GPs, as we will see, is the availability of a scalable training
method for the model hyperparameters.

3.2 Gaussian Processes Regression and Prediction

We say that a random function f : Rp �→ R is drawn from a GP with a mean
function μ and a covariance function, called kernel, k, i.e. f ∼ GP(μ, k), if for
any input points x1, x2, . . . , xn in R

p, the corresponding vector of function values
is Gaussian:

[f (x1), f (x2), . . . , f (xn)] ∼ N(μ,KX,X),

for some mean vector μ, such that μi = μ(xi), and covariance matrix KX,X
that satisfies (KX,X)ij = k(xi , xj). We follow the convention4 in the literature of
assuming μ = 0.

Kernels k can be any symmetric positive semidefinite function, which is the
infinite dimensional analogue of the notion of a symmetric positive semidefinite
(i.e., covariance) matrix, i.e. such that

n∑

i,j=1

k(xi , xj)ξiξj ≥ 0, for any points xk ∈ R
p and reals ξk.

Radial basis functions (RBF) are kernels that only depend on ||x− x′||, such as the
squared exponential (SE) kernel

4This choice is not a real limitation in practice (since it is for the prior) and does not prevent the
mean of the predictor from being nonzero.

94 3 Bayesian Regression and Gaussian Processes

k(x, x′) = exp{− 1

2�2 ||x− x′||2}, (3.41)

where the length-scale parameter � can be interpreted as “how far you need to move
in input space for the function values to become uncorrelated,” or the Matern (MA)
kernel

k(x, x′) = σ 2 21−ν

�(ν)

(√
2ν
||x− x′||
�

)ν
Kν

(√
2ν
||x− x′||
�

)
(3.42)

(which converges to (3.41) in the limit where ν goes to infinity), where � is the
gamma function, Kν is the modified Bessel function of the second kind, and � and
ν are non-negative parameters.

GPs can be seen as distributions over the reproducing kernel Hilbert space
(RKHS) of functions which is uniquely defined by the kernel function, k (Scholkopf
and Smola 2001). GPs with RBF kernels are known to be universal approximators
with prior support to within an arbitrarily small epsilon band of any continuous
function (Micchelli et al. 2006).

Assuming additive Gaussian noise, y | x ∼ N(f (x), σ 2
n), and a GP prior on

f (x), given training inputs x ∈ X and training targets y ∈ Y , the predictive
distribution of the GP evaluated at an arbitrary test point x∗ ∈ X∗ is:

f∗ | X, Y, x∗ ∼ N(E[f∗|X, Y, x∗], var[f∗|X, Y, x∗]), (3.43)

where the moments of the posterior over X∗ are

E[f∗|X, Y,X∗] = μX∗ +KX∗,X[KX,X + σ 2
n I]−1Y,

var[f∗|X, Y,X∗] = KX∗,X∗ −KX∗,X[KX,X + σ 2
n I]−1KX,X∗ .

(3.44)

Here, KX∗,X, KX,X∗ , KX,X, and KX∗,X∗ are matrices that consist of the kernel,
k : Rp ×R

p �→ R, evaluated at the corresponding points, X and X∗, and μX∗ is the
mean function evaluated on the test inputs X∗.

One key advantage of GPs over interpolation methods is their expressibility. In
particular, one can combine the kernels, using convolution, to generalize the base
kernels (c.f. “multi-kernel” GPs (Melkumyan and Ramos 2011)).

3.3 Hyperparameter Tuning

GPs are fit to the data by optimizing the evidence-the marginal probability of the
data given the model with respect to the learned kernel hyperparameters.

The evidence has the form (see, e.g., (Murphy 2012, Section 15.2.4, p. 523)):

3 Gaussian Process Regression 95

logp(Y | X, λ) = −
[
Y�(KX,X + σ 2

n I)
−1Y + log det(KX,X + σ 2

n I)
]
− n

2
log 2π,

(3.45)
where KX,X implicitly depends on the kernel hyperparameters λ (e.g., [�, σ],
assuming an SE kernel as per (3.41) or an MA kernel for some exogenously fixed
value of ν in (3.42)).

The first and second term in the [· · ·] in (3.45) can be interpreted as a model fit
and a complexity penalty term (see (Rasmussen and Williams 2006, Section 5.4.1)).
Maximizing the evidence with respect to the kernel hyperparameters, i.e. computing
λ∗ = argmaxλ logp(y | x, λ), results in an automatic Occam’s razor (see (Alvarez
et al. 2012, Section 2.3) and (Rasmussen and Ghahramani 2001)), through which we
effectively learn the structure of the space of functional relationships between the
inputs and the targets. In practice, the negative evidence is minimized by stochastic
gradient descent (SGD). The gradient of the evidence is given analytically by

∂λ logp(y | x, λ) = tr
(
(ααT − (K + σ 2

n I)
−1)∂λ(K + σ 2

n I)
−1
)
, (3.46)

where α := (K + σ 2
n I)

−1y and

∂�(K + σ 2
n I)

−1 = −(K + σ 2
n I)

−2∂�K, (3.47)

∂σ (K + σ 2
n I)

−1 = −2σ(K + σ 2
n I)

−2, (3.48)

with

∂�k(x, x′) = �−3||x− x′||2k(x, x′). (3.49)

•? Multiple Choice Question 3

Which of the following statements are true:

1. Gaussian Processes are a Bayesian modeling approach which assumes that the
data is Gaussian distributed.

2. Gaussian Processes place a probabilistic prior directly on the space of functions.
3. Gaussian Processes model the posterior of the predictor using a parameterized

kernel representation of the covariance matrix.
4. Gaussian Processes can be fitted to data by maximizing the evidence for the

kernel parameters.
5. During evidence maximization, different kernels are evaluated, and the optimal

kernel is chosen.

96 3 Bayesian Regression and Gaussian Processes

3.4 Computational Properties

If uniform grids are used (as opposed to a mesh-free GP as described in Sect. 5.2),
we have n =∏p

k=1 nk , where nk are the number of grid points per variable.
However, although each kernel matrix KX,X is n× n, we only store the n-vector

α in (3.46), which brings reduced memory requirements.
Training time, required for maximizing (3.45) numerically, scales poorly with

the number of observations n. This complexity stems from the need to solve linear
systems and compute log determinants involving an n × n symmetric positive
definite covariance matrix K . This task is commonly performed by computing the
Cholesky decomposition of K incurring O(n3) complexity. Prediction, however,
is faster and can be performed in O(n2) with a matrix–vector multiplication for
each test point, and hence the primary motivation for using GPs is real-time risk
estimation performance.

Online Learning

If the option pricing model is recalibrated intra-day, then the corresponding
GP model should be retrained. Online learning techniques permit performing this
incrementally (Pillonetto et al. 2010). To enable online learning, the training data
should be augmented with the constant model parameters. Each time the parameters
are updated, a new observation (x′, y′) is generated from the option model prices
under the new parameterization. The posterior at test point x∗ is then updated with
the new training point following

p(f∗|X, Y, x′, y′, x∗) = p(x′, y′|f∗)p(f∗|X, Y, x∗)∫
f∗ p(x

′, y′|z)p(z|X, Y, x∗)dz
, (3.50)

where the previous posterior p(f∗|X, Y, x∗) becomes the prior in the update. Hence
the GP learns over time as model parameters (which are an input to the GP) are
updated through pricing model recalibration.

4 Massively Scalable Gaussian Processes

Massively scalable Gaussian processes (MSGP) are a significant extension of
the basic kernel interpolation framework described above. The core idea of the
framework, which is detailed in (Gardner et al. 2018), is to improve scalability by
combining GPs with “inducing point methods.” The basic setup is as follows; Using
structured kernel interpolation (SKI), a small set of m inducing points are carefully
selected from the original training points. The covariance matrix has a Kronecker
and Toeplitz structure, which is exploited by the Fast Fourier Transform (FFT).
Finally, output over the original input points is interpolated from the output at the

4 Massively Scalable Gaussian Processes 97

inducing points. The interpolation complexity scales linearly with dimensionality p
of the input data by expressing the kernel interpolation as a product of 1D kernels.
Overall, SKI gives O(pn+ pmlogm) training complexity and O(1) prediction time
per test point.

4.1 Structured Kernel Interpolation (SKI)

Given a set of m inducing points, the n × m cross-covariance matrix, KX,U ,
between the training inputs, X, and the inducing points, U, can be approximated
as K̃X,U = WXKU,U using a (potentially sparse) n × m matrix of interpolation
weights, WX. This allows to approximate KX,Z for an arbitrary set of inputs Z as
KX,Z ≈ K̃X,UW�

Z . For any given kernel function, K , and a set of inducing points,
U, structured kernel interpolation (SKI) procedure (Gardner et al. 2018) gives rise
to the following approximate kernel:

KSKI(x, z) = WXKU,UW�
z , (3.51)

which allows to approximate KX,X ≈ WXKU,UW
�
X . Gardner et al. (2018) note

that standard inducing point approaches, such as subset of regression (SoR) or
fully independent training conditional (FITC), can be reinterpreted from the SKI
perspective. Importantly, the efficiency of SKI-based MSGP methods comes from,
first, a clever choice of a set of inducing points which exploit the algebraic structure
of KU,U , and second, from using very sparse local interpolation matrices. In
practice, local cubic interpolation is used.

4.2 Kernel Approximations

If inducing points, U , form a regularly spaced P -dimensional grid, and we use
a stationary product kernel (e.g., the RBF kernel), then KU,U decomposes as a
Kronecker product of Toeplitz matrices:

KU,U = T1 ⊗ T2 ⊗ · · · ⊗ TP . (3.52)

The Kronecker structure allows one to compute the eigendecomposition of KU,U
by separately decomposing T1, . . . ,TP , each of which is much smaller than KU,U .
Further, a Toeplitz matrix can be approximated by a circulant matrix5 which
eigendecomposes by simply applying a discrete Fourier transform (DFT) to its

5Gardner et al. (2018) explored 5 different approximation methods known in the numerical analysis
literature.

98 3 Bayesian Regression and Gaussian Processes

first column. Therefore, an approximate eigendecomposition of each T1, . . . ,TP
is computed via the FFT in only O(m logm) time.

4.2.1 Structure Exploiting Inference

To perform inference, we need to solve (KSKI + σ 2
n I)

−1y; kernel learning requires
evaluating log det(KSKI + σ 2

n I). The first task can be accomplished by using
an iterative scheme—linear conjugate gradients—which depends only on matrix
vector multiplications with (KSKI + σ 2

n I). The second is performed by exploiting
the Kronecker and Toeplitz structure of KU,U for computing an approximate
eigendecomposition, as described above.

In this chapter, we primarily use the basic interpolation approach for simplicity.
However for completeness, Sect. 5.3 shows the scaling of the time taken to train and
predict with MSGPs.

5 Example: Pricing and Greeking with Single-GPs

In the following example, the portfolio holds a long position in both a European call
and a put option struck on the same underlying, with K = 100. We assume that the
underlying follows Heston dynamics:

dSt

St
= μdt +√

VtdW
1
t , (3.53)

dVt = κ(θ − Vt)dt + σ
√
VtdW

2
t , (3.54)

d〈W 1,W 2〉t = ρdt, (3.55)

where the notation and fixed parameter values used for experiments are given in
Table 3.1 under μ = r0. We use a Fourier Cosine method (Fang and Oosterlee
2008) to generate the European Heston option price training and testing data for the
GP. We also use this method to compare the GP Greeks, obtained by differentiating
the kernel function.

Table 3.1 lists the values of the parameters for the Heston dynamics and terms
of the European Call and Put option contract used in our numerical experiments.
Table 3.2 shows the values for the Euler time stepper used for simulating Heston
dynamics and the credit risk model.

For each pricing time ti , we simultaneously fit a multi-GP to both gridded call
and put prices over stock price S and volatility

√
V , keeping time to maturity fixed.

Figure 3.3 shows the gridded call (top) and put (bottom) price surfaces at various
time to maturities, together with the GP estimate. Within each column in the figure,
the same GP model has been simultaneously fitted to both the call and put price

5 Example: Pricing and Greeking with Single-GPs 99

Table 3.1 This table shows
the values of the parameters
for the Heston dynamics and
terms of the European Call
and Put option contracts

Parameter description Symbol Value

Mean reversion rate κ 0.1

Mean reversion level θ 0.15

Vol. of Vol. σ 0.1

Risk-free rate r0 0.002

Strike K 100

Maturity T 2.0

Correlation ρ −0.9

Table 3.2 This table shows
the values for the Euler time
stepper used for market risk
factor simulation

Parameter description Symbol Value

Number of simulation M 1000

Number of time steps ns 100

Initial stock price S0 100

Initial variance V0 0.1

(a) Call: T − t = 1.0 (b) Call: T − t = 0.5 (c) Call: T − t = 0.1

(a) Put: T − t = 1.0 (b) Put: T − t = 0.5 (c) Put: T − t = 0.1

Fig. 3.3 This figure compares the gridded Heston model call (top) and put (bottom) price surfaces
at various time to maturities, with the GP estimate. The GP estimate is observed to be practically
identical (slightly below in the first five panels and slightly above in the last one). Within each
column in the figure, the same GP model has been simultaneously fitted to both the Heston model
call and put price surfaces over a 30× 30 grid of prices and volatilities, fixing the time to maturity.
Across each column, corresponding to different time to maturities, a different GP model has been
fitted. The GP is then evaluated out-of-sample over a 40×40 grid, so that many of the test samples
are new to the model. This is repeated over various time to maturities

surfaces over a 30 × 30 grid �h ⊂ � := [0, 1] × [0, 1] of prices and volatilities,6

fixing the time to maturity. The scaling to the unit domain is not essential. However,
we observed superior numerical stability when scaling.

6Note that the plot uses the original coordinates and not the re-scaled coordinates.

100 3 Bayesian Regression and Gaussian Processes

Across each column, corresponding to different time to maturities, a different GP
model has been fitted. The GP is then evaluated out-of-sample over a 40 × 40 grid
�h′ ⊂ �, so that many of the test samples are new to the model. This is repeated
over various time to maturities.7

Extrapolation

One instance where kernel combination is useful in derivative modeling is for
extrapolation—the appropriate mixture or combination of kernels can be chosen
so that the GP is able to predict outside the domain of the training set. Noting
that the payoff is linear when a call or put option is respectively deeply in and
out-of-the money, we can configure a GP as a combination of a linear kernel and,
say, a SE kernel. The linear kernel is included to ensure that prediction outside the
domain preserves the linear property, whereas the SE kernel captures non-linearity.
Figure 3.4 shows the results of using this combination of kernels to extrapolate the
prices of a call struck at 110 and a put struck at 90. The linear property of the payoff
function is preserved by the GP prediction and the uncertainty increases as the test
point is further from the training set.

Fig. 3.4 This figure assesses the GP option price prediction in the setup of a Black–Scholes model.
The GP with a mixture of a linear and SE kernel is trained on n = 50 X, Y pairs, where X ∈ �h ⊂
(0, 300] is the gridded underlying of the option prices and Y is a vector of call or put prices. These
training points are shown by the black “+” symbols. The exact result using the Black–Scholes
pricing formula is given by the black line. The predicted mean (blue solid line) and variance of the
posterior are estimated from Eq. 3.44 over m = 100 gridded test points, X∗ ∈ �h∗ ⊂ [300, 400],
for the (left) call option struck at 110 and (center) put option struck at 90. The shaded envelope
represents the 95% confidence interval about the mean of the posterior. This confidence interval is
observed to increase the further the test point is from the training set. The time to maturity of the
options are fixed to two years. (a) Call price. (b) Put price

7Such maturities might correspond to exposure evaluation times in CVA simulation as in Crépey
and Dixon (2020). The option model versus GP model are observed to produce very similar values.

5 Example: Pricing and Greeking with Single-GPs 101

5.1 Greeking

The GP provides analytic derivatives with respect to the input variables

∂X∗E[f∗|X, Y,X∗] = ∂X∗μX∗ + ∂X∗KX∗,Xα, (3.56)

where ∂X∗KX∗,X = 1
�2 (X − X∗)KX∗,X and we recall from Sect. (3.46) that α =

[KX,X + σ 2
n I]−1y (and in the numerical experiments we set μ = 0). Second-order

sensitivities are obtained by differentiating once more with respect to X∗.
Note that α is already calculated at training time (for pricing) by Cholesky

matrix factorization of [KX,X + σ 2
n I] with O(n3) complexity, so there is no

significant computational overhead from Greeking. Once the GP has learned
the derivative prices, Eq. 3.56 is used to evaluate the first order MtM Greeks
with respect to the input variables over the test set. Example source code
illustrating the implementation of this calculation is presented in the notebook
Example-2-GP-BS-Derivatives.ipynb.

Figure 3.5 shows (left) the GP estimate of a call option’s delta � := ∂C
∂S

and (right) vega ν := ∂C
∂σ

, having trained on the underlying, respectively implied
volatility, and on the BS option model prices. For avoidance of doubt, the model is
not trained on the BS Greeks. For comparison in the figure, the BS delta and vega
are also shown. In each case, the two graphs are practically indistinguishable, with
one graph superimposed over the other.

5.2 Mesh-Free GPs

The above numerical examples have trained and tested GPs on uniform grids. This
approach suffers from the curse of dimensionality, as the number of training points
grows exponentially with the dimensionality of the data. This is why, in order to
estimate the MtM cube, we advocate divide-and-conquer, i.e. the use of numerous

Fig. 3.5 This figure shows (left) the GP estimate of the call option’s delta � := ∂C
∂S

and (right)

vega ν := ∂C
∂σ

, having trained on the underlying, respectively implied volatility, and on the BS
option model prices

102 3 Bayesian Regression and Gaussian Processes

low input dimensional space, p, GPs run in parallel on specific asset classes.
However, use of fixed grids is by no means necessary. We show here how GPs can
show favorable approximation properties with a relatively few number of simulated
reference points (cf. also (Gramacy and Apley 2015)).

Figure 3.6 shows the predicted Heston call prices using (left) 50 and (right)
100 simulated training points, indicated by “+”s, drawn from a uniform random
distribution. The Heston call option is struck at K = 100 with a maturity of T = 2
years.

Figure 3.7 (left) shows the convergence of the GP MSE of the prediction, based
on the number of Heston simulated training points. Fixing the number of simulated
points to 100, but increasing the input space dimensionality, p, of each observation
point (to include varying Heston parameters, Fig. 3.7 (right) shows the wall-clock
time for training a GP with SKI (see Sect. 3.4), Note that the number of SGD
iterations has been fixed to 1000.

120

V

S S

V

100

80

60

40

20

0
60 80 100 120 140 160 180

GP Prediction
Analytical Model

GP Prediction
Analytical Model

200 60 80 100 120 140 160 180 200

120

100

80

60

40

20

0

Fig. 3.6 Predicted Heston Call prices using (left) 50 and (right) 100 simulated training points,
indicated by “+”s, drawn from a uniform random distribution

Fig. 3.7 (Left) The convergence of the GP MSE of the prediction is shown based on the number
of simulated Heston training points. (Right) Fixing the number of simulated points to 100, but
increasing the dimensionality p of each observation point (to include varying Heston parameters),
the figure shows the wall-clock time for training a GP with SKI

6 Multi-response Gaussian Processes 103

Fig. 3.8 (Left) The elapsed wall-clock time is shown for training against the number of training
points generated by a Black–Scholes model. (Right) The elapsed wall-clock time for prediction
of a single point is shown against the number of testing points. The reason that the prediction
time increases (whereas the theory reviewed in Sect. 3.4 says it should be constant) is due to
memory latency in our implementation—each point prediction involves loading a new test point
into memory

5.3 Massively Scalable GPs

Figure 3.8 shows the increase of MSGP training time and prediction time against
the number of training points n from a Black Scholes model. Fixing the number of
inducing points to m = 30 (see Sect. 3.4), we increase the number of observations,
n, in the p = 1 dimensional training set.

Setting the number of SGD iterations to 1000, we observe an approximate 1.4x
increase in training time for a 10x increase in the training sample. We observe an
approximate 2x increase in prediction time for a 10x increase in the training sample.
The reason that the prediction time does not scale independently of n is due to
memory latency in our implementation—each point prediction involves loading a
new test point into memory. Fast caching approaches can be used to reduce this
memory latency, but are beyond the scope of this section.

Note that training and testing times could be improved with CUDA on a GPU,
but are not evaluated here.

6 Multi-response Gaussian Processes

A multi-output Gaussian process is a collection of random vectors, any finite number
of which have a matrix-variate Gaussian distribution. We borrow from Chen et al.
(2017) the following formulation of a separable multi-output kernel specification as
per (Alvarez et al. 2012, Eq. (9)):

Definition (MGP) f is a d variate Gaussian process on R
p with vector-valued mean

function μ : Rp �→ R
d , kernel k : Rp × R

p �→ R, and positive semi-definite

104 3 Bayesian Regression and Gaussian Processes

parameter covariance matrix � ∈ R
d×d , if the vectorization of any finite collection

of vectors f(x1), . . . , f(xn) have a joint multivariate Gaussian distribution,

vec([f(x1), . . . , f(xn)]) ∼ N(vec(M),� ⊗�),

where f(xi) ∈ R
d is a column vector whose components are the functions fl (xi)}dl=1,

M is a matrix in R
d×n with Mli = μl(xi), � is a matrix in R

n×n with �ij =
k(xi , xj), and � ⊗� is the Kronecker product

⎛

⎜⎝
�11� · · · �1n�
...

. . .
...

�m1� · · · �mn�

⎞

⎟⎠.

Sometimes� is called the column covariance matrix while� is the row (or task)
covariance matrix. We denote f ∼MGP(mμ, k,�). As explained after Eq. (10) in
(Alvarez et al. 2012), the matrices � and � encode dependencies among the inputs,
respectively outputs.

6.1 Multi-Output Gaussian Process Regression and Prediction

Given n pairs of observations {(xi , yi)}ni=1, xi ∈ R
p, yi ∈ R

d , we assume the model
yi = f(xi), i ∈ {1, . . . , n}, where f ∼MGP(μ, k′,�) with k′ = k(xi , xj)+ δij σ 2

n ,
in which σ 2

n is the variance of the additive Gaussian noise. That is, the vectorization
of the collection of functions [f(x1), . . . , f(xn)] follows a multivariate Gaussian
distribution

vec([f(x1), . . . , f(xn)]) ∼ N(0,K ′ ⊗�),

where K ′ is the n × n covariance matrix of which the (i, j)-th element [K ′]ij =
k′(xi , xj).

To predict a new variable f∗ = [f∗1, . . . , f∗m] at the test locations
X∗ = [xn+1, . . . , xn+m], the joint distribution of the training observations
Y = [y1, . . . , yn] and the predictive targets f∗ are given by

[
Y

f∗

]
∼MN

(
0,
[
K ′(X,X) K ′(X∗, X)T
K ′(X∗, X) K ′(X∗, X∗)

]
,�

)
, (3.57)

where K ′(X,X) is an n × n matrix of which the (i, j)-th element [K ′(X,X)]ij =
k′(xi, xj), K ′(X∗, X) is an m × n matrix of which the (i, j)-th element

7 Summary 105

[K ′(X∗, X)]ij = k′(xn+i , xj), andK ′(X∗, X∗) is anm×mmatrix with the (i, j)-th
element [K ′(X∗, X∗)]ij = k′(xn+i , xn+j). Thus, taking advantage of conditional
distribution of multivariate Gaussian process, the predictive distribution is:

p(vec(f∗)|X, Y,X∗) = N(vec(M̂), �̂ ⊗ �̂), (3.58)

where

M̂ = K ′(X∗, X)T K ′(X,X)−1Y, (3.59)

�̂ = K ′(X∗, X∗)−K ′(X∗, X)TK ′(X,X)−1K ′(X∗, X), (3.60)

�̂ = �. (3.61)

The hyperparameters and elements of the covariance matrix � are found by
minimizing the negative log marginal likelihood of observations:

L(Y |X, λ,�) = nd
2

ln(2π)+ d
2

ln |K ′| + n
2

ln |�| + 1

2
tr((K ′)−1Y�−1YT).

(3.62)
Further details of the multi-GP are given in (Bonilla et al. 2007; Alvarez et al.

2012; Chen et al. 2017). The computational remarks made in Sect. 3.4 also apply
here, with the additional comment that the training and prediction time also scale
linearly (proportionally) with the number of dimensions d. Note that the task
covariance matrix� is estimated via a d-vector factor b by� = bbT +σ 2

ΩI (where
the σ 2

� component corresponds to a standard white noise term). An alternative
computational approach, which exploits separability of the kernel, is the one
described in Section 6.1 of (Alvarez et al. 2012), with complexity O(d3 + n3).

7 Summary

In this chapter we have introduced Bayesian regression and shown how it extends
many of the concepts in the previous chapter. We develop kernel based machine
learning methods, known as Gaussian processes, and demonstrate their application
to surrogate models of derivative prices. The key learning points of this chapter
are:

– Introduced Bayesian linear regression;
– Derived the posterior distribution and the predictive distribution;
– Described the role of the prior as an equivalent form of regularization in

maximum likelihood estimation; and
– Developed Gaussian Processes for kernel based probabilistic modeling, with

programming examples in derivative modeling.

106 3 Bayesian Regression and Gaussian Processes

8 Exercises

Exercise 3.1: Posterior Distribution of Bayesian Linear Regression
Consider the Bayesian linear regression model

yi = θT X + ε, ε ∼ N(0, σ 2
n), θ ∼ N(μ,�).

Show that the posterior over dataD is given by the distribution

θ |D ∼ N(μ′, �′),

with moments:

μ′ = �′a = (�−1 + 1

σ 2
n

XXT)−1(�−1μ+ 1

σ 2
n

yT X)

�′ = A−1 = (�−1 + 1

σ 2
n

XXT)−1.

Exercise 3.2: Normal Conjugate Distributions
Suppose that the prior is p(θ) = φ(θ; μ0, σ

2
0) and the likelihood is given by

p(x1:n | θ) =
n∏

i=1

φ(xi; θ, σ 2),

where σ 2 is assumed to be known. Show that the posterior is also normal,
p(θ | x1:n) = φ(θ; μpost, σ

2
post), where

μpost = σ 2
0

σ 2

n
+ σ 2

0

x̄ + σ 2

σ 2

n
+ σ 2

0

μ0,

σ 2
post =

1
1
σ 2

0
+ n
σ 2

,

where x̄ := 1
n

∑n
i=1 xi .

Exercise 3.3: Prediction with GPs
Show that the predictive distribution for a Gaussian Process, with model output over
a test point, f∗, and assumed Gaussian noise with variance σ 2

n , is given by

f∗ | D, x∗ ∼ N(E[f∗|D, x∗], var[f∗|D, x∗]),

where the moments of the posterior over X∗ are

Appendix 107

E[f∗|D, X∗] = μX∗ +KX∗,X[KX,X + σ 2
n I]−1Y,

var[f∗|D, X∗] = KX∗,X∗ −KX∗,X[KX,X + σ 2
n I]−1KX,X∗ .

8.1 Programming Related Questions*

Exercise 3.4: Derivative Modeling with GPs
Using the notebook Example-1-GP-BS-Pricing.ipynb, investigate the
effectiveness of a Gaussian process with RBF kernels for learning the shape of a
European derivative (call) pricing function Vt = ft (St) where St is the underlying
stock’s spot price. The risk free rate is r = 0.001, the strike of the call isKC = 130,
the volatility of the underlying is σ = 0.1 and the time to maturity τ = 1.0.

Your answer should plot the variance of the predictive distribution against the
stock price, St = s, over a dataset consisting of n ∈ {10, 50, 100, 200} gridded
values of the stock price s ∈ �h := {i�s | i ∈ {0, . . . , n−1},�s = 200/(n−1)} ⊆
[0, 200] and the corresponding gridded derivative prices V (s). Each observation of
the dataset, (si, vi = ft (si)) is a gridded (stock, call price) pair at time t .

Appendix

Answers to Multiple Choice Questions

Question 1
Answer: 1,4,5.

Parametric Bayesian regression always treats the regression weights as random
variables.

In Bayesian regression the data function f (x) is only observed if the data is
assumed to be noise-free. Otherwise, the function is not directly observed.

The posterior distribution of the parameters will only be Gaussian if both the
prior and the likelihood function are Gaussian. The distribution of the likelihood
function depends on the assumed error distribution.

The posterior distribution of the regression weights will typically contract with
increasing data. The precision matrix grows with decreasing variance and hence the
variance of the posterior shrinks with increasing data. There are exceptions if, for
example, there are outliers in the data.

The mean of the posterior distribution depends on both the mean and covariance
of the prior if it is Gaussian. We can see this from Eq. 3.19.

Question 2
Answer: 1, 2, 4. Prediction under a Bayesian linear model requires first estimating
the moments of the posterior distribution of the parameters. This is because the
prediction is the expected likelihood of the new data under the posterior distribution.

108 3 Bayesian Regression and Gaussian Processes

The predictive distribution is Gaussian only if the posterior and likelihood
distributions are Gaussian. The product of Gaussian density functions is also
Gaussian.

The predictive distribution does not depend on the weights in the models -
it is marginalized out under the expectation w.r.t. the posterior distribution. The
variance of the predictive distribution typically contracts with increasing training
data because the variance of the posterior and the likelihood typically decreases
with increasing training data.

Question 3
Answer: 2, 3, 4.

Gaussian Process regression is a Bayesian modeling approach but they do
not assume that the data is Gaussian distributed, neither do they make such an
assumption about the error.

Gaussian Processes place a probabilistic prior directly on the space of functions
and model the posterior of the predictor using a parameterized kernel representation
of the covariance matrix. Gaussian Processes are fitted to data by maximizing the
evidence for the kernel parameters. However, it is not necessarily the case that the
choice of kernel is effectively a hyperparameter that can be optimized. While this
could be achieved in an ad hoc way, there are other considerations which dictate the
choice of kernel concerning smoothness and ability to extrapolate.

Python Notebooks

A number of notebooks are provided in the accompanying source code repository,
beyond the two described in this chapter. These notebooks demonstrate the use
of Multi-GPs and application to CVA modeling (see Crépey and Dixon (2020)
for details of these models). Further details of the notebooks are included in the
README.md file.

References

Alvarez, M., Rosasco, L., & Lawrence, N. (2012). Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning, 4(3), 195–266.

Bishop, C. M. (2006). Pattern recognition and machine learning (information science and
statistics). Berlin, Heidelberg: Springer-Verlag.

Bonilla, E. V., Chai, K. M. A., & Williams, C. K. I. (2007). Multi-task Gaussian process prediction.
In Proceedings of the 20th International Conference on Neural Information Processing
Systems, NIPS’07, USA (pp. 153–160). Curran Associates Inc.

Chen, Z., Wang, B., & Gorban, A. N. (2017, March). Multivariate Gaussian and student−t process
regression for multi-output prediction. ArXiv e-prints.

Cousin, A., Maatouk, H., & Rullière, D. (2016). Kriging of financial term structures. European
Journal of Operational Research, 255, 631–648.

References 109

Crépey, S., & M. Dixon (2020). Gaussian process regression for derivative portfolio modeling and
application to CVA computations. Computational Finance.

da Barrosa, M. R., Salles, A. V., & de Oliveira Ribeiro, C. (2016). Portfolio optimization through
kriging methods. Applied Economics, 48(50), 4894–4905.

Fang, F., & Oosterlee, C. W. (2008). A novel pricing method for European options based on
Fourier-cosine series expansions. SIAM J. SCI. COMPUT .

Gardner, J., Pleiss, G., Wu, R., Weinberger, K., & Wilson, A. (2018). Product kernel interpolation
for scalable Gaussian processes. In International Conference on Artificial Intelligence and
Statistics (pp. 1407–1416).

Gramacy, R., & D. Apley (2015). Local Gaussian process approximation for large computer
experiments. Journal of Computational and Graphical Statistics, 24(2), 561–578.

Hans Bühler, H., Gonon, L., Teichmann, J., & Wood, B. (2018). Deep hedging. Quantitative
Finance. Forthcoming (preprint version available as arXiv:1802.03042).

Hernandez, A. (2017). Model calibration with neural networks. Risk Magazine (June 1–5). Preprint
version available at SSRN.2812140, code available at https://github.com/Andres-Hernandez/
CalibrationNN.

Liu, M., & Staum, J. (2010). Stochastic kriging for efficient nested simulation of expected shortfall.
Journal of Risk, 12(3), 3–27.

Ludkovski, M. (2018). Kriging metamodels and experimental design for Bermudan option pricing.
Journal of Computational Finance, 22(1), 37–77.

MacKay, D. J. (1998). Introduction to Gaussian processes. In C. M. Bishop (Ed.), Neural networks
and machine learning. Springer-Verlag.

Melkumyan, A., & Ramos, F. (2011). Multi-kernel Gaussian processes. In Proceedings of
the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Two,
IJCAI’11 (pp. 1408–1413). AAAI Press.

Micchelli, C. A., Xu, Y., & Zhang, H. (2006, December). Universal kernels. J. Mach. Learn.
Res., 7, 2651–2667.

Murphy, K. (2012). Machine learning: a probabilistic perspective. The MIT Press.
Neal, R. M. (1996). Bayesian learning for neural networks, Volume 118 of Lecture Notes in

Statistics. Springer.
Pillonetto, G., Dinuzzo, F., & Nicolao, G. D. (2010, Feb). Bayesian online multitask learning of

Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2),
193–205.

Rasmussen, C. E., & Ghahramani, Z. (2001). Occam’s razor. In In Advances in Neural Information
Processing Systems 13 (pp. 294–300). MIT Press.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., & Aigrain, S. (2013). Gaussian
processes for time-series modelling. Philosophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, 371(1984).

Scholkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond. Cambridge, MA, USA: MIT Press.

Spiegeleer, J. D., Madan, D. B., Reyners, S., & Schoutens, W. (2018). Machine learning for
quantitative finance: fast derivative pricing, hedging and fitting. Quantitative Finance, 0(0),
1–9.

Weinan, E, Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential
equations. arXiv:1706.04702.

Whittle, P., & Sargent, T. J. (1983). Prediction and regulation by linear least-square methods (NED
- New edition ed.). University of Minnesota Press.

https://github.com/Andres-Hernandez/CalibrationNN
https://github.com/Andres-Hernandez/CalibrationNN

Chapter 4
Feedforward Neural Networks

This chapter provides a more in-depth description of supervised learning, deep
learning, and neural networks—presenting the foundational mathematical and sta-
tistical learning concepts and explaining how they relate to real-world examples in
trading, risk management, and investment management. These applications present
challenges for forecasting and model design and are presented as a reoccurring
theme throughout the book. This chapter moves towards a more engineering
style exposition of neural networks, applying concepts in the previous chapters to
elucidate various model design choices.

1 Introduction

Artificial neural networks have a long history in financial and economic statistics.
Building on the seminal work of (Gallant and White 1988; Andrews 1989; Hornik
et al. 1989; Swanson and White 1995; Kuan and White 1994; Lo 1994; Hutchinson,
Lo, and Poggio Hutchinson et al.; Baillie and Kapetanios 2007; Racine 2001)
develop various studies in the finance, economics, and business literature. Most
recently, the literature has been extended to include deep neural networks (Sirignano
et al. 2016; Dixon et al. 2016; Feng et al. 2018; Heaton et al. 2017).

In this chapter we shall introduce some of the theory of function approximation
and out-of-sample estimation with neural networks when the observation points are
independent and typically also identically distributed. Such a case is not suitable
for times series data and shall be the subject of later chapters. We shall restrict our
attention to feedforward neural networks in order to explore some of the theoretical
arguments which help us reason scientifically about architecture design and approx-
imation error. Understanding these networks from a statistical, mathematical, and
information-theoretic perspective is key to being able to successfully apply them
in practice. While this chapter does present some simple financial examples to

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_4

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_4

112 4 Feedforward Neural Networks

highlight problematic conceptual issues, we defer the realistic financial applications
to later chapters. Also, note that the emphasis of this chapter is how to build
statistical models suitable for financial modeling, thus our emphasis is less on
engineering considerations and more on how theory can guide the design of useful
machine learning methods.

Chapter Objectives

By the end of this chapter, the reader should expect to accomplish the following:

– Develop mathematical reasoning skills to guide the design of neural networks;
– Gain familiarity with the main theory supporting statistical inference with neural

networks;
– Relate feedforward neural networks with other types of machine learning

methods;
– Perform model selection with ridge and LASSO neural network regression;
– Learn how to train and test a neural network; and
– Gain familiarity with Bayesian neural networks.

Note that section headers ending with * are more mathematically advanced, often
requiring some background in analysis and probability theory, and can be skipped
by the less mathematically advanced reader.

2 Feedforward Architectures

2.1 Preliminaries

Feedforward neural networks are a form of supervised machine learning that
use hierarchical layers of abstraction to represent high-dimensional non-linear
predictors. The paradigm that deep learning provides for data analysis is very
different from the traditional statistical modeling and testing framework. Traditional
fit metrics, such as R2, t-values, p-values, and the notion of statistical significance
has been replaced in the machine learning literature by out-of-sample forecasting
and understanding the bias–variance tradeoff ; that is the tradeoff between a more
complex model versus over-fitting. Deep learning is data-driven and focuses on
finding structure in large datasets. The main tools for variable or predictor selection
are regularization and dropout.

There are a number of issues in any architecture design. How many layers? How
many neurons Nl in each hidden layer? How to perform “variable selection?” Many
of these problems can be solved by a stochastic search technique, called dropout

2 Feedforward Architectures 113

Srivastava et al. (2014), which we discuss in Sect. 5.2.2. Recall from Chap. 1 that a
feedforward neural network model takes the general form of a parameterized map

Y = FW,b(X)+ ε, (4.1)

where FW,b is a deep neural network with L layers (Fig. 4.1) and ε is i.i.d. error.
The deep neural network takes the form of a composition of simpler functions:

Ŷ (X) := FW,b(X) = f (L)W(L),b(L)
◦ · · · ◦ f (1)

W(1),b(1)
(X), (4.2)

where W = (W(1), . . . ,W(L)) and b = (b(1), . . . , b(L)) are weight matrices and
bias vectors. Any weight matrix W(�) ∈ R

m×n can be expressed as n column m-
vectorsW(�) = [w(�),1 , . . . ,w(�),n]. We denote each weight as w(�)ij :=

[
W(�)

]
ij

.
More formally and under additional restrictions, we can form this parameterized

map in the class of compositions of semi-affine functions.

•> Semi-Affine Functions

Let σ : R→ B ⊂ R denote a continuous, monotonically increasing function
whose codomain is a bounded subset of the real line. A function f (�)

W(�),b(�)
:

(continued)

x1

x2

x3

x4

x5

x6

ŷ1

ŷ2

Hidden
layer 1 Hidden

layer 2

Input
layer

Output
layer

Fig. 4.1 An illustrative example of a feedforward neural network with two hidden layers, six
features, and two outputs. Deep learning network classifiers typically have many more layers, use
a large number of features and several outputs or classes. The goal of learning is to find the weight
on every edge and the bias for every neuron (not illustrated) that minimizes the out-of-sample error

114 4 Feedforward Neural Networks

R
n → R

m, given by f (v) = W(�)σ (�−1)(v)+ b(�), W(�) ∈ R
m×n and b(�) ∈

R
m, is a semi-affine function in v, e.g. f (v) = wtanh(v) + b. σ(·) are the

activation functions of the output from the previous layer.

If all the activation functions are linear, FW,b is just linear regression, regardless
of the number of layers L and the hidden layers are redundant. For any such network
we can always find an equivalent network without hidden units. This follows from
the fact that the composition of successive linear transformations is itself a linear
transformation.1 For example if there is one hidden layer and σ (1) is the identify
function, then

Ŷ (X) = W(2)(W(1)X + b(1))+ b(2) = W(2)W(1)X +W(2)b(1) + b(2) = W̃X + b̃.
(4.3)

Informally, the main effect of activation is to introduce non-linearity into the
model, and in particular, interaction terms between the input. The geometric
interpretation of the activation units will be discussed in the next section. We
can view the special case when the network has one hidden layer and will see
that the activation function introduces interaction terms XiXj . Consider the partial
derivative

∂Xj Ŷ =
∑

i

w(2),i σ
′(I (1)i)w

(1)
ij , (4.4)

where w(2),i is the ith column vector of W(2), I (�)(X) := W(�)X + b(�), and
differentiate again with respect to Xk, k �= i to give

∂2
Xj ,Xk

Ŷ = −2
∑

i

w(2),i σ (I
(1)
i)σ

′(I (1)i)w
(1)
ij w

(1)
ik , (4.5)

which is not in general zero unless σ is the identity map.

2.2 Geometric Interpretation of Feedforward Networks

We begin by considering a simple feedforward binary classifier with only two
features, as illustrated in Fig. 4.2. The simplest configuration we shall consider
has just two inputs and one output unit—this is a multivariate regression model.
More precisely, because we shall fit the model to binary responses, this network

1Note that there is a potential degeneracy in this case; There may exist “flat directions”—hyper-
surfaces in the parameter space that have exactly the same loss function.

2 Feedforward Architectures 115

x1 x2 x1 x2 x1 x2

No hidden units (linear) Two hidden units Many hidden units

Fig. 4.2 Simple two variable feedforward networks with and without hidden layers. The yellow
nodes denote input variables, the green nodes denote hidden units, and the red nodes are outputs. A
feedforward network without hidden layers is a linear regressor. A feedforward network with one
hidden layer is a shallow learner and a feedforward network with two or more hidden layers is a
deep learner

is a logistic regression. Recall that only one output unit is required to represent
the probability of a positive label, i.e. P [G = 1 | X]. The next configuration we
shall consider has one hidden layer—the number of hidden units shall be equal
to the number of input neurons. This choice serves as a useful reference point
as many hidden units are often needed for sufficient expressibility. The final
configuration has substantially more hidden units. Note that the second layer has
been introduced purely to visualize the output from the hidden layer. This set
of simple configurations (a.k.a. architectures) is ample to illustrate how a neural
network method works.

In Fig. 4.3 the data has been arranged so that no separating linear plane can
perfectly separate the points in [−1, 1] × [−1, 1]. The activation function is chosen
to be ReLU(x). The weight and biases of the network have been trained on this
data. For each network, we can observe how the input space is transformed by the
layers by viewing the top row of the figure. We can also view the linear regression
in the original, input, space in the bottom row of the figure. The number of units in
the first hidden layers is observed to significantly affect the classifier performance.2

Determining the weight and bias matrices, together with how many hidden units
are needed for generalizable performance is the goal of parameter estimation and
model selection. However, we emphasize that some conceptual understanding of
neural networks is needed to derive interpretability, the topic of Chap. 5.

Partitioning

The partitioning of the input space is a distinguishing feature of neural networks
compared to other machine learning methods. Each hidden unit defines a manifold

2There is some redundancy in the construction of the network and around 50 units are needed.

116 4 Feedforward Neural Networks

No hidden units Two hidden units Many hidden units

Fig. 4.3 This figure compares various feedforward neural network classifiers applied to a toy,
non-linearly separable, binary classification dataset. Its purpose is to illustrate that increasing the
number of hidden units in the first hidden layer provides substantial expressibility, even when the
number of input variables is small. (Top) Each neural network classifier attempts to separate the
labels with a hyperplane in the space of the output from the last hidden layer,Z(L−1). If the network
has no hidden layers, then Z(L−1) = Z(0) = X. The features are shown in the space of Z(L−1).
(Bottom) The separating hyperplane in the space of Z(L−1) is projected to the input space in order
to visualize how the layers partition the input space. (Left) A feedforward classifier with no hidden
layers is a logistic regression model—it partitions the input space with a plane. (Center) One hidden
layer transforms the features by rotation, dilatation, and truncation. (Right) Two hidden layers with
many hidden units perform an affine projection into high-dimensional space where points are more
separable. See the Deep Classifiers notebook for an implementation of the classifiers and additional
diagnostic tests (not shown here)

which divides the input space into convex regions. In other words, each unit in the
hidden layer implements a half-space predictor. In the case of a ReLU activation
function f (x) = max(x, 0), each manifold is simply a hyperplane and the neuron
gets activated when the observation is on the “best” side of this hyperplane, the
activation amount is equal to how far from the boundary the given point is. The set
of hyperplanes defines a hyperplane arrangement (Montúfar et al. 2014). In general,
an arrangement of n ≥ p hyperplanes in R

p has at most
∑p

j=0

(
n
j

)
convex regions.

For example, in a two-dimensional input space, three neurons with ReLU
activation functions will divide the space into no more than

∑2
j=0

(3
j

) = 7 regions,
as shown in Fig. 4.4.

Multiple Hidden Layers

We can easily extend this geometrical interpretation to three-layered perceptrons
(L = 3). Clearly, the neurons in the first (hidden) layer partition the network input
space by corresponding hyperplanes into various half-spaces. Hence, the number of
these half-spaces equals the number of neurons in the first layer. Then, the neurons
in the second layer can classify the intersections of some of these half-spaces, i.e.

2 Feedforward Architectures 117

Fig. 4.4 Hyperplanes
defined by three neurons in
the hidden layer, each with
ReLU activation functions,
form a hyperplane
arrangement. An arrangement
of 3 hyperplanes in R

2 has at
most

∑2
j=0

(3
j

) = 7 convex
regions

they represent convex regions in the input space. This means that a neuron from the
second layer is active if and only if the network input corresponds to a point in the
input space that is located simultaneously in all half-spaces, which are classified by
selected neurons from the first layer.

The maximal number of linear regions of the functions computed by a neural
network with p input units and L− 1 hidden layers, with equal width n(�) = n ≥ p
rectifiers at the �th layer, can compute functions that have�

([
n
p

](L−2)p
np
)

linear

regions (Montúfar et al. 2014). We see that the number of linear regions of deep
models grows exponentially in L and polynomially in n. See Montúfar et al. (2014)
for a more detailed exposition of how the additional layers partition the input space.

While this form of reasoning guides our intuition towards designing neural
network architectures it falls short at explaining why projection into a higher
dimensional space is complementary to how the networks partition the input space.
To address this, we turn to some informal probabilistic reasoning to aid our
understanding.

2.3 Probabilistic Reasoning

Data Dimensionality

First consider any two independent standard Gaussian random p-vectors X, Y ∼
N(0, I) and define their distance in Euclidean space by the 2-norm

118 4 Feedforward Neural Networks

d(X, Y)2 := ||X − Y ||22 =
p∑

i=1

(Xi − Yi)2. (4.6)

Taking expectations gives

E[d(X, Y)2] =
p∑

i=1

E[X2
i] + E[Y 2

i] = 2p. (4.7)

Under these i.i.d. assumptions, the mean of the pairwise distance squared between
any random points in R

p is increasingly linear with the dimensionality of the space.
By Jensen’s inequality for concave functions, such as

√
x

E[d(X, Y)] = E[
√
d(X, Y)2] ≤

√
E[d(X, Y)2] = √

2p, (4.8)

and hence the expected distance is bounded above by a function which grows
to the power of p1/2. This simple observation supports the characterization of
random points as being less concentrated as the dimensionality of the input space
increases. In particular, this property suggests machine learning techniques which
rely on concentration of points in the input space, such as linear kernel methods,
may not scale well with dimensionality. More importantly, this notion of loss of
concentration with dimensionality of the input space does not conflict with how the
input space is partitioned—the model defines a convex polytope with a less stringent
requirement for locality of data for approximation accuracy.

Size of Hidden Layer

A similar simple probabilistic reasoning can be applied to the output from a one-
layer network to understand how concentration varies with the number of units in
the hidden layer. Consider, as before two i.i.d. random vectors X and Y in R

p.
Suppose now that these vectors are projected by a bounded semi-affine function
g : Rp → R

q . Assume that the output vectors g(X), g(Y) ∈ R
q are i.i.d. with

zero mean and variance σ 2I . Defining the distance between the output vectors as
the 2−norm

d2
g := ||g(X)− g(Y)||22 =

q∑

i=1

(gi(X)− gi(Y))2. (4.9)

Under expectations

E[d2
g] =

p∑

i=1

E[g(X)2i] + E[g(Y)2i] = 2qσ 2 ≤ q(ḡ − g) (4.10)

2 Feedforward Architectures 119

and again by Jensen’s inequality,

E[d] ≤ √2
√
qσ ≤ √

q(ḡ − g), (4.11)

we observe that the distance between the two output vectors, corresponding to the
output of a hidden layer g under different inputs X and Y , can be less concentrated
as the dimensionality of the output space increases. In other words, points in the
codomain of g are on average more separate as q increases.

2.4 Function Approximation with Deep Learning*

While the above informal geometric and probabilistic reasoning provides some intu-
ition for the need for multiple units in the hidden layer of a two-layer MLP, it does
not address why deep networks are needed. The most fundamental mathematical
concept in neural networks is the universal representation theorem. Simply put, this
is a statement about the ability of a neural network to approximate any continuous,
and unknown, function between input and output pairs with a simple, and known,
functional representation. Hornik et al. (1989) show that a feedforward network
with a single hidden layer can approximate any continuous function, regardless of
the choice of activation function or data.

Formally, let Cp := {F : Rp → R | F(x) ∈ C(R)} be the set of continuous
functions from R

p to R. Denote �p(g) as the class of functions {F : R
p →

R : F(x) = W(2)σ (W(1)x + b(1)) + b(2)}. Consider � = (0, 1] and let C0 be the
collection of all open intervals in (0, 1]. Then σ(C0), the σ -algebra generated by C0,
is called the Borel σ -algebra. It is denoted by B((0, 1]). An element of B((0, 1]) is
called a Borel set. A map f : X→ Y between two topological spacesX, Y is called
Borel measurable if f−1(A) is a Borel set for any open set A.

Let Mp := {F : Rp → R | F(x) ∈ B(R)} be the set of all Borel measurable
functions from R

p to R. We denote the Borel σ -algebra of Rp as Bp.

•> Universal Representation Theorem

(Hornik et al. (1989)) For every monotonically increasing activation func-
tion σ , every input dimension size p, and every probability measure μ on
(Rp,Bp),�p(g) is uniformly dense on compacta in Cp and ρμ-dense inMp.

120 4 Feedforward Neural Networks

This theorem shows that standard feedforward networks with only a single
hidden layer can approximate any continuous function uniformly on any compact
set and any measurable function arbitrarily well in the ρμ metric, regardless of the
activation function (provided it is measurable), regardless of the dimension of the
input space, p, and regardless of the input space. In other words, by taking the
number of hidden units, k, large enough, every continuous function over Rp can
be approximated arbitrarily closely, uniformly over any bounded set by functions
realized by neural networks with one hidden layer.

The universal approximation theorem is important because it characterizes
feedforward networks with a single hidden layer as a class of approximate solutions.
However, the theorem is not constructive—it does not specify how to configure a
multilayer perceptron with the required approximation properties.

The theorem has some important limitations. It says nothing about the effect of
adding more layers, other than to suggest they are redundant. It assumes that the
optimal network weight vectors are reachable by gradient descent from the initial
weight values, but this may not be possible in finite computations. Hence there are
additional limitations introduced by the learning algorithm which are not apparent
from a functional approximation perspective. The theorem cannot characterize the
prediction error in any way, the result is purely based on approximation theory. An
important concern is over-fitting and performance generalization on out-of-sample
datasets, both of which it does not address. Moreover, it does not inform how MLPs
can recover other approximation techniques, as a special case, such as polynomial
spline interpolation. As such we shall turn to alternative theory in this section to
assess the learnability of a neural network and to further understand it, beginning
with a perceptron binary classifier. The reason why multiple hidden layers are
needed is still an open problem, but various clues are provided in the next section
and later in Sect. 2.7.

2.5 VC Dimension

In addition to expressive power, which determines the approximation error of the
model, there is the notion of learnability, which determines the level of estimation
error. The former measures the error introduced by an approximating function and
the latter error measures the performance lost as a result of using a finite training
sample.

One classical measure of the learnability of neural network classifiers is the
Vapnik–Chervonenkis (VC) dimension. The VC dimension of a binary model
g = FW,b(X) is the maximum number of points that can be arranged so that
FW,b(X) shatters them, i.e. for all possible assignments of labels to those points,
there exists aW, b such that FW,b makes no errors when classifying that set of data
points. In the simplest case, a perceptron with n inputs units and a linear threshold
activation σ(x) := sgn(x) has a VC dimension of n+1. For example, if n = 1, then

2 Feedforward Architectures 121

Right point activated Left point activated None activated Both activated

Fig. 4.5 For the points {−0.5, 0.5}, there are weights and biases that activate only one of them
(W = 1, b = 0 or W = −1, b = 0), none of them (W = 1, b = −0.75), and both of them
(W = 1, b = 0.75)

only two distinct points can always be correctly classified under all possible binary
label assignments.

As shown in Fig. 4.5, for the points {−0.5, 0.5}, there are weights and biases that
activate both of them (W = 1, b = 0.75), only one of them (W = 1, b = 0 or
W = −1, b = 0), and none of them (W = 1, b = −0.75). Every distinct pair of
points is separable with the linear threshold perceptron. So every dataset of size 2 is
shattered by the perceptron. However, this linear threshold perceptron is incapable
of shattering triplets, for example, X ∈ {−0.5, 0, 0.5} and Y ∈ {0, 1, 0}. In general,
the VC dimension of the class of half-spaces in R

k is k+1. For example, a 2d plane
shatters any three points, but cannot shatter four points.

The VC dimension determines both the necessary and sufficient conditions for
the consistency and rate of convergence of learning processes (i.e., the process
of choosing an appropriate function from a given set of functions). If a class of
functions has a finite VC dimension, then it is learnable. This measure of capacity is
more robust than arbitrary measures such as the number of parameters. It is possible,
for example, to find a simple set of functions that depends on only one parameter
and that has infinite VC dimension.

•? VC Dimension of an Indicator Function

Determine the VC dimension of the indicator function over � = [0, 1]

F (x) = {f : �→ {0, 1}, f (x) = 1x∈[t1,t2), or f (x) = 1−1x∈[t1,t2) , t1 < t2 ∈ �}.
(4.12)

Suppose there are three points x1, x2, and x3 and assume x1 < x2 < x3 without
loss of generality. All possible labeling of the points is reachable; therefore, we
assert that VC(F) ≥ 3. With four points x1, x2, x3, and x4 (assumed increasing as
always), you cannot label x1 and x3 with the value 1 and x2 and x4 with the value 0,
for example. Hence VC(F) = 3.

Recently (Bartlett et al. 2017a) prove upper and lower bounds on the VC
dimension of deep feedforward neural network classifiers with the piecewise linear
activation function, such as ReLU activation functions. These bounds are tight for
almost the entire range of parameters. Letting |W | be the number of weights and L
be the number of layers, they proved that the VC dimension is O(|W |Llog(|W |)).

122 4 Feedforward Neural Networks

They further showed the effect of network depth on VC dimension with different
non-linearities: there is no dependence for piecewise constant, linear dependence
for piecewise-linear, and no more than quadratic dependence for general piecewise-
polynomials.

Vapnik (1998) formulated a method of VC dimension based inductive infer-
ence. This approach, known as structural empirical risk minimization, achieved
the smallest bound on the test error by using the training errors and choosing
the machine (i.e., the set or functions) with the smallest VC dimension. The
minimization problem expresses the bias–variance tradeoff . On the one hand, to
minimize the bias, one needs to choose a function from a wide set of functions, not
necessarily with a low VC dimension. On the other hand, the difference between the
training error and the test error (i.e., variance) increases with VC dimension (a.k.a.
expressibility).

The expected risk is an out-of-sample measure of performance of the learned
model and is based on the joint probability density function (pdf) p(x, y):

R[F̂] = E[L(F̂ (X), Y)] =
∫
L(F̂ (x), y)dp(x, y). (4.13)

If one could choose F̂ to minimize the expected risk, then one would have a definite
measure of optimal learning. Unfortunately, the expected risk cannot be measured
directly since this underlying pdf is unknown. Instead, we typically use the risk over
the training set ofN observations, also known as the empirical risk measure (ERM):

Remp(F̂) := 1

N

N∑

i=1

L(F̂ (xi), yi). (4.14)

Under i.i.d. data assumptions, the law of large numbers ensures that the empirical
risk will asymptotically converge to the expected risk. However, for small samples,
one cannot guarantee that ERM will also minimize the expected risk. A famous
result from statistical learning theory (Vapnik 1998) is that the VC dimension
provides bounds on the expected risk as a function of the ERM and the number
of training observations N , which holds with probability (1− η):

R[F̂] ≤ Remp(F̂)+

√√√√h
(
ln
(

2N
h

)
+ 1

)
− ln (η4

)

N
, (4.15)

where h is the VC dimension of F̂ (X) and N > h. Figure 4.6 shows the tradeoff
between VC dimension and the tightness of the bound. As the ratioN/h gets larger,
i.e. for a fixed N, we decrease h, the VC confidence becomes smaller, and the actual
risk becomes closer to the empirical risk. On the other hand, choosing a model
with a higher VC dimension reduces the ERM at the expense of increasing the VC
confidence.

2 Feedforward Architectures 123

Fig. 4.6 This figure shows
the tradeoff between VC
dimension and the tightness
of the bound. As the ratio
N/h gets larger, i.e. for a
fixed N, we decrease h, the
VC confidence becomes
smaller, and the actual risk
becomes closer to the
empirical risk. On the other
hand, choosing a model with
a higher VC dimension
reduces the ERM at the
expense of increasing the VC
confidence

The VC dimension plays a more dominant role in small-scale learning problems,
where i.i.d. training data is limited and optimization error, that is the error introduced
by the optimizer, is negligible. Beyond a certain sample size, computing power and
the optimization algorithm become more dominant and the VC dimension is limited
as a measure of learnability. Several studies demonstrate that VC dimension based
error bounds are too weak and its usage, while providing some intuitive notion
of model complexity, have faded in favor of alternative theories. Perhaps most
importantly for finance, the bound in Eq. 4.15 only holds for i.i.d. data and little
is known in the case when the data is auto-correlated.

•? Multiple Choice Question 1

Which of the following statements are true:

1. The hidden units of a shallow feedforward network partition, with n hidden units,
partition the input space in R

p into no more than
∑p

j=0

(
n
j

)
convex regions.

2. The VC dimension of a Heaviside activated shallow feedforward network, with
one hidden unit, and p features, is p + 1.

3. The bias–variance tradeoff is equivalently expressed through the VC confidence
and the empirical risk measure.

4. The upper bound on the out-of-sample error of a feedforward network depends
on its VC dimension and the number of training samples.

5. The VC dimension always grows linearly with the number of layers in a deep
network.

124 4 Feedforward Neural Networks

2.6 When Is a Neural Network a Spline?*

Under certain choices of the activation function, we can construct MLPs which are a
certain type of piecewise polynomial interpolants referred to as “splines.” Let f (x)
be any function whose domain is � and the function values fk := f (xk) are known
only at grid points �h := {xk | xk = kh, k ∈ {1, . . . , K}} ⊂ � ⊂ R which
are spaced by h. Note that the requirement that the data is gridded is for ease of
exposition and is not necessary. We construct an orthogonal basis over� to give the
interpolant

f̂ (x) =
K∑

i=1

φk(x)fk, x ∈ �, (4.16)

where the {φk}Kk=1 are orthogonal basis functions. Under additional restrictions of
the function space of f , we can derive error bounds which are a function of h.

We can easily demonstrate how a MLP with hidden units activated by Heaviside
functions (unit step functions) is a piecewise constant functional approximation.
Let f (x) be any function whose domain is � = [0, 1]. Suppose that the function is
Lipschitz continuous, that is,

∀x, x′ ∈ [0, 1), |f (x′)− f (x)| ≤ L|x′ − x|,

for some constant L ≥ 0. Using Heaviside functions to activate the hidden units

H(x) =
{

1, x ≥ 0,

0, x < 0,
(4.17)

we construct a neural network with K = � L2ε + 1� units in a single hidden layer

that approximates f (x) within ε > 0. That is, ∀x ∈ [0, 1), |f (x) − f̂ (x)| ≤ ε,
where f̂ (x) is the output of the neural network given input x. Let ε′ = ε

L
. We shall

show that the neural network is a linear combination of indicator functions, φk , with
compact support over [xk − ε′, xk + ε′) and centered about xk:

φk(x) =
{

1 [xk − ε′, xk + ε′),
0 otherwise.

(4.18)

The {φk}Kk=1 are piecewise constant basis functions, φi(xj) = δij , and the first few
are illustrated in Fig. 4.7 below. The basis functions satisfy the partition of unity
property

∑K
k=1 φk(x) = 1, ∀x ∈ �.

2 Feedforward Architectures 125

0.0 0.2 0.4 0.6 0.8 1.0
x

φ 1
(x

)

● ●

0.0 0.2 0.4 0.6 0.8 1.0
x

φ 2
(x

)

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

x

φ 3
(x

)

● ●

Fig. 4.7 The first three piecewise constant basis functions produced by the difference of neigh-
boring step function activated units, φk(x) = H(x − (xk − ε′))−H(x − (xk + ε′))

We shall construct such basis functions as the difference of Heaviside functions
φk(x) = H(x − (xk − ε′)) − H(x − (xk + ε′)), xk = (2k − 1)ε′, by choosing
the bias b(1)k = −2(k − 1)ε′ and W(1) = 1 so that the neural network, f̂ (X) =
W(2)H(W(1)X + b(1)) has values based on

H(W(1)x + b(1)) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

H(x)

H(x − 2ε′)
. . .

H(x − 2(k − 1)ε′)
. . .

H(x − (2K − 1)ε′)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (4.19)

ThenW(2) is set equal to exact function values and their differences:

W(2) = [f (x1), f (x2)− f (x1), . . . , f (xK)− f (xK−1)], (4.20)

so that

126 4 Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x

|f̂
(x
)−
f(
x)
|

Function values Absolute error

Fig. 4.8 The approximation of cos(2πx) using gridded input data and Heaviside activation
functions. The error in approximation is at most ε with K = � L2ε + 1� hidden units

f̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x1), x ≤ 2ε′,
f (x2), 2ε′ < x ≤ 4ε′,
.

f (xk), 2(k)ε′ < x ≤ 2(k + 1)ε′,
.

f (xK−1), 2(K − 1)ε′ < x ≤ 2Kε′.

(4.21)

Figure 4.8 illustrates the function approximation for the case when f (x) =
cos(2πx).

Since xk = (2k−1)ε′,we have that Ŷ = f (xk) over the interval [xk−ε′, xk+ε′],
which is the support of φk(x). By the Lipschitz continuity of f (x), it follows that
the worst-case error appears at the mid-point of any interval [xk, xk+1)

|f (xk + ε′)− f̂ (x + ε′)| = |f (x + ε′)− f (xk)| ≤ |f (xk)| + Lε′ − |f (xk)| = ε.
(4.22)

This example is a special case of a more general representation permitted by MLPs.
If we relax that the points need to be gridded, but instead just assume there are K
data points in R

p, then the region boundaries created by the K hidden units define
a Voronoi diagram. Informally, a Voronoi diagram is a partitioning of a plane into
regions based on distance to points in a specific subset of the plane. The set of points
are referred to as “seeds.” For each seed there is a corresponding region consisting of
all points closer to that seed than to any other. The discussion of Voronoi diagrams is
beyond the scope of this chapter, but suffice to say that the representation of MLPs
as splines extends to higher dimensional input spaces and higher degree splines.

2 Feedforward Architectures 127

Hence, under a special configuration of the weights and biases, with the hidden
units defining Voronoi cells for each observation, we can show that a neural
network is a univariate spline. This result generalizes to higher dimensional and
higher order splines. Such a result enables us to view splines as a special case
of a neural network which is consistent with our reasoning of neural networks as
generalized approximation and regression techniques. The formulation of neural
networks as splines allows approximation theory to guide the design of the network.
Unfortunately, equating neural networks with splines says little about why and when
multiples layers are needed.

2.7 Why Deep Networks?

The extension to deep neural networks is in fact well motivated on statistical
and information-theoretical grounds (Tishby and Zaslavsky 2015; Poggio 2016;
Mhaskar et al. 2016; Martin and Mahoney 2018; Bartlett et al. 2017a). Poggio
(2016) shows that deep networks can achieve superior performance versus linear
additive models, such as linear regression, while avoiding the curse of dimensional-
ity. There are additionally many recent theoretical developments which characterize
the approximation behavior as a function of network depth, width, and sparsity level
(Polson and Rockova 2018). Recently (Bartlett et al. 2017b) prove upper and lower
bounds on the expressibility of deep feedforward neural network classifiers with
the piecewise linear activation function, such as ReLU activation functions. These
bounds are tight for almost the entire range of parameters. Letting n denote the total
number of weights, they prove that the VC dimension is O(nLlog(n)).

•> VC Dimension Theorem

Theorem (Bartlett et al. (2017b)) There exists a universal constant C such
that the following holds. Given any W,L with W > CL > C2, there exists
a ReLU network with ≤ L layers and ≤ W parameters with VC dimension
≥ WLlog(W/L)/C. ��

They further showed the effect of network depth on VC dimension with different
non-linearities: there is no dependence for piecewise constant, linear dependence
for piecewise-linear, and no more than quadratic dependence for general piecewise-
polynomial. Thus the relationship between expressibility and depth is determined by
the degree of the activation function. There is further ample theoretical evidence to

128 4 Feedforward Neural Networks

suggest that shallow networks cannot approximate the class of non-linear functions
represented by deep ReLU networks without blow-up. Telgarsky (2016) shows that
there is a ReLU network with L layers such that any network approximating it with
only O(L1/3) layers must have �(2L

1/3
) units. Mhaskar et al. (2016) discuss the

differences between composition versus additive models and show that it is possible
to approximate higher polynomials much more efficiently with several hidden layers
than a single hidden layer.

Martin and Mahoney (2018) shows that deep networks are implicitly self-
regularizing behaving like Tikhonov regularization. Tishby and Zaslavsky (2015)
characterizes the layers as “statistically decoupling” the input variables.

2.7.1 Approximation with Compositions of Functions

To gain some intuition as to why function composition can lead to successively more
accurate function representation with each layer, consider the following example of
a binary expansion of a decimal x.

Example 4.1 Binary Expansion of a Decimal

For each integer n ≥ 1 and x ∈ [0, 1], define fn(x) = xn, where xn is the
nth binary digit of x. The binary expansion of x = ∑∞

n=1
xn
2n , where xn is 1

or 0 depends on whether Xn−1 ≥ 1
2n or otherwise, respectively, and Xn :=

x −∑n
i=1

xi
2i

. For example, we can find the first binary digit, x1 as either 1 or

0 depending on whether x0 = x ≥ 1
2 . Now consider X1 = x − x1/2 and set

x2 = 1 if X1 ≥ 1
22 or x2 = 0 otherwise.

Example 4.2 Neural Network for Binary Expansion of a Decimal

A deep feedforward network for such a binary expansion of a decimal uses
two neurons in each layer with different activations—Heaviside and identity
functions. The input weight matrix, W(1), is the identity matrix, the other
weight matrices, {W(�)}�>1 are

W(�) =
[
− 1

2�−1 1
− 1

2�−1 1

]
,

and σ (�)1 (x) = H(x, 1
2�
) and σ (�)2 (x) = id(x) = x. There are no bias terms.

The output after � hidden layers is the error, X� ≤ 1
2�

.

2 Feedforward Architectures 129

While the example of converting a decimal in binary format using a binary
expansion is simple, the approach can be readily generalized to the binary expansion
of polynomials.

Theorem 4.2 (Liang and Srikant (2016)) For the pth order polynomial f (x) =∑p

i=0 aix
i , x ∈ [0, 1] and

∑p

i=1 |ai | ≤ 1, there exists a multilayer neural network

f̂ (x) withO
(
p + log p

ε

)
layers,O

(
log p

ε

)
Heaviside units, andO

(
p log p

ε

)
rectifier

linear units such that |f (x)− f̂ (x)| ≤ ε, ∀x ∈ [0, 1].
Proof The sketch of the proof is as follows. Liang and Srikant (2016) use the deep
structure shown in Fig. 4.9 to find the n-step binary expansion

∑n
i=0 aix

i of x.
Then they construct a multilayer network to approximate polynomials gi(x) = xi ,
i = 1, . . . , p. Finally, they analyze the approximation error which is

|f (x)− f̂ (x)| ≤ p

2n−1 .

See Appendix “Proof of Theorem 4.2” for the proof. ��

2.7.2 Composition with ReLU Activation

An intuitive way to understand the importance of multiple network layers is to
consider the effect of composing piecewise affine functions instead of adding them.
It is easy to see that combinations of ReLU activated neurons give piecewise affine

x 1 x 1

x 2 x 2

x 3

x

H (x, 1/2) id (x)

H (x − x1/2, 1/4) id (x − x1/2)

H (x − x1/2 − x2/ 4, 1/8) id (x − x1/2 − x2/4)

X3

Fig. 4.9 An illustrative example of a deep feedforward neural network for binary expansion of a
decimal. Each layer has two neurons with different activations—Heaviside and identity functions

130 4 Feedforward Neural Networks

approximations. For example, consider the shallow ReLU network with 2 and 4
perceptrons in Fig. 4.10:

FW,b = W(2)σ (W(1)x + b(1)), σ := max(x, 0).

Let us start by defining σ : R → R to be t-sawtooth if it is piecewise affine
with t pieces, meaning R is partitioned into t consecutive intervals, and σ is affine
within each interval. Consequently, ReLU(x) is 2-sawtooth, but this class also
includes many other functions, for instance, the decision stumps used in boosting
are 2-sawtooth, and decision trees with t − 1 nodes correspond to t-sawtooths.
The following lemma serves to build intuition about the effect of adding versus
composing sawtooth functions which is illustrated in Fig. 4.11.

Lemma 4.1 Let f : R → R and g : R → R be, respectively, k- and l-sawtooth.
Then f + g is (k + l)-sawtooth, and f ◦ g is kl-sawtooth. ��

Fig. 4.10 A Shallow ReLU
network with (left) two
perceptrons and (right) four
perceptrons 0

1

11/2 0

1

11/2

2σ (x) − 4σ (x − 1
2) 4σ (x) − 8σ (x − 1

4)+
4σ (x − 1

2) − 8σ (x − 3
4).

Two units Four units
W (2) = [2, −4] W (2) = [4, −8, 4, −8]
b(1) = [0, − 1

2]T b(1) = [0, − 1
4, − 1

2, − 3
4]T

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

x

y

g(x)

f(x)

f(x) + g(x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

x

y

f(g(x))

g(x)

f(x)

(a) (b)

Fig. 4.11 Adding versus composing 2-sawtooth functions. (a) Adding 2-sawtooths. (b) Compos-
ing 2-sawtooths

2 Feedforward Architectures 131

Let us now build on this result by considering the mirror map fm : R → R,
which is shown in Fig. 4.12, and defined as

fm(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

2x when 0 ≤ x ≤ 1/2,

2(1− x) when 1/2 < x ≤ 1,

0 otherwise.

Note that fm can be represented by a two-layer ReLU activated network with two
neurons; For instance, fm(x) = (2σ(x)−4σ(x−1/2)). Hence f km is the composition
of k (identical) ReLU sub-networks. A key observation is that fewer hidden units are
needed to shatter a set of points when the network is deep versus shallow.

Consider, for example, the sequence of n = 2k points with alternating labels,
referred to as the n-ap, and illustrated in Fig. 4.13 for the case when k = 3. As the
x values pass from left to right, the labels change as often as possible and provide
the most challenging arrangement for shattering n points.

There are many ways to measure the representation power of a network, but
we will consider the classification error here. Suppose that we have a σ activated
network with m units per layer and l layers. Given a function f : Rp → R let
f̃ : R

p → {0, 1} denote the corresponding classifier f̃ (x) := 1f (x)≥1/2, and
additionally given a sequence of points ((xi, yi))ni=1 with xi ∈ R

p and yi ∈ {0, 1},
define the classification error as E(f) := 1

n

∑
i 1
f̃ (xi) �=yi .

Given a sawtooth function, its classification error on the n-ap may be lower
bounded as follows.

0

1

1 0

1

1 0

1

11/21/21/2

fm f 2
m f 3

m.

Fig. 4.12 The mirror map composed with itself

0

1

11/2

Fig. 4.13 The n-ap consists of n uniformly spaced points with alternating labels over the interval
[0, 1 − 2−n]. That is, the points ((xi , yi))ni=1 with xi = i2−n and yi = 0 when i is even, and
otherwise yi = 1

132 4 Feedforward Neural Networks

Lemma 4.2 Let ((xi, yi))ni=1 be given according to the n-ap. Then every t-sawtooth
function f : R→ R satisfies E(f) ≥ (n− 4t)/(3n). ��
The proof in the appendix relies on a simple counting argument for the number
of crossings of 1/2. If there are m t-saw-tooth functions, then by Lemma 4.1, the
resultant is a piecewise affine function over mt intervals. The main theorem now
directly follows from Lemma 4.2.

Theorem 4.3 Let positive integer k, number of layers l, and number of nodes per
layer m be given. Given a t-sawtooth σ : R → R and n := 2k points as specified
by the n-ap, then

min
W,b
E(f) ≥ n− 4(tm)l

3n
.

From this result one can say, for example, that on the n-ap one needs m = 2k−3

many units when classifying with a ReLU activated shallow network versus only
m = 2(1/l(k−2)−1) units per layer for a l ≥ 2 deep network.

Research on deep learning is very active and there are still many questions that
need to be addressed before deep learning is fully understood. However, the purpose
of these examples is to build intuition and motivate the need for many hidden layers
in addition to the effect of increasing the number of neurons in each hidden layer.

In the remaining part of this chapter we turn towards the practical application
of neural networks and consider some of the primary challenges in the context of
financial modeling. We shall begin by considering how to preserve the shape of
functions being approximated and, indeed, how to train and evaluate a network.

3 Convexity and Inequality Constraints

It may be necessary to restrict the range of f̂ (x) or impose certain properties which
are known about the shape of the function f (x) being approximated. For example,
V = f (S) might be an option price and S the value of the underlying asset
and convexity and non-negativity of f̂ (S) are necessary. Consider the following
feedforward network architecture FW,b(X) : Rp → R

d :

Ŷ = FW,b(X) = f (L)W(L),b(L)
◦ · · · ◦ f (1)

W(1),b(1)
(X), (4.23)

where

f
(�)

W(�),b(�)
(x) = σ(W(�)x + b(�)), ∀� ∈ {1, . . . , L}. (4.24)

3 Convexity and Inequality Constraints 133

Convexity

For convexity of Ŷ w.r.t. x, the activation function, σ(x), must be a convex
function of x. For avoidance of doubt, this convexity constraint should not be
confused with convexity of the loss function w.r.t. the weights as in, for example,
Bengio et al. (2006).

Examples3 include ReLU(x) := max(x, 0) and softplus(x; t) := 1
t
ln(1 +

exp{tx}). For this class of activation functions, the semi-affine function
f
(�)

W(�),b(�)
(x) = σ(W(�)x + b(�)) must also be convex in x since a convex

function of a linear combination of x is also convex in x. The composition,
f
(�+1)
W(�+1),b(�+1) ◦ f (�)W(�),b(�)

(x), is convex if and only if f (�+1)
W(�+1),b(�+1) (x) is non-

decreasing convex and f (�)
W(�),b(�)

(x) is convex. The proof is left to the reader as

a straightforward exercise. Hence, for convexity of f̂ (x) = FW,b(x) w.r.t. x we
require that the weights in all but the first layer be positive:

w
(�)
ij ≥ 0,∀i, j,∀� ∈ {2, . . . , L}. (4.25)

The constraints on the weights needed to enforce convexity guarantee non-negative
output if the bias b(L)i ≥ 0,∀i ∈ {1, . . . , d} and σ(x) ≥ 0,∀x. Sincew(L)ij ≥ 0,∀i, j
it follows that

w
(L)
ij σ (I

(L−1)
i) ≥ 0, (4.26)

and with non-negative bias terms, f̂i is non-negative.
We now separately consider bounding the network output independently of

imposing convexity on f̂i (x) w.r.t. x. If we choose a bounded activation function
σ ∈ [σ , σ̄], then we can easily impose linear inequality constraints to ensure that
f̂i ∈ [ci, di]

ci ≤ f̂i (x) ≤ di, di > ci, i ∈ {1, . . . , d}, (4.27)

by setting

b
(L)
i = ci −

n(L−1)∑

j=1

min(sij |σ |, sij |σ̄ |)|w(L)ij |, sij := sign(w(L)ij). (4.28)

3The parameterized softplus function σ(x; t) = 1
t
ln(1+exp{tx}), with a model parameter t >> 1,

converges to the ReLU function in the limit t →∞.

134 4 Feedforward Neural Networks

Note that the expression inside the min function can be simplified further to
min(sij |σ |, sij |σ̄ |)|wij | = min(wij |σ |, wij |σ̄ |). Training of the weights and biases
is a constrained optimization problem with the linear constraints

n(L−1)∑

j=1

max(sij |σ |, sij |σ̄ |)|w(L)ij | ≤ di − b(L)i , (4.29)

which can be solved with the method of Lagrange multipliers or otherwise. If
we require that f̂i should be convex and bounded in the interval [ci, di], then the
additional constraint, w(L)ij ≥ 0,∀i, j , is needed of course and the above simplifies
to

b
(L)
i = ci − σ

n(L−1)∑

j=1

w
(L)
ij (4.30)

and solving the underdetermined system for w(L)ij ,∀j :

n(L−1)∑

j=1

σ̄w
(L)
ij ≤ di − b(L)i (4.31)

n(L−1)∑

j=1

w
(L)
ij ≤ di − ci

(σ̄ − σ) . (4.32)

The following toy examples provide simplified versions of constrained learning
problems that arise in derivative modeling and calibration. The examples are
intended only to illustrate the methodology introduced here. The first example is
motivated by the need to learn an arbitrage free option price as a function of
the underlying asset price. In particular, there are three scenarios where neural
networks, and more broadly, supervised machine learning is useful for pricing.
First, it provides a “model-free” framework, where no data generation process is
assumed for the underlying dynamics. Second, machine learning can price complex
derivatives where no analytic solution is known. Finally, machine learning does not
suffer from the curse of dimensionality w.r.t. to the input space and can thus scale
to basket options, options on many underlying assets. Each of these aspects merits
further exploration and our example illustrates some of the challenges with learning
pricing functions.

Perhaps the single largest defect of conventional derivative pricing models,
however, is their calibration to data. Machine learning, too, provides an answer
here—it provides a method for learning the relationship between market and
contract variables and the model parameters.

3 Convexity and Inequality Constraints 135

Example 4.3 Approximating Option Prices

The payoff of a European call option at expiry time T is VT = max(ST −K, 0)
and is convex with respect to S. Under the risk-neutral measure the option price
at time t is the conditional expectation Vt = Et [exp{−r(T − t)}VT]. Since the
conditional expectation is a linear operator, it preserves the convexity of the
payoff function, so that the option price is always convex w.r.t. the underlying
price. Thus, the second derivative, γ is always non-negative. Furthermore, the
option price must always be non-negative.

Let us approximate the surface of a European call option with strikeK over
all underlying values St ∈ (0, S̄). The input variable X ∈ R

+ are underlying
asset prices and the outputs are call prices, so that the data is {Si, Vi}. We use
a neural network to learn the relation V = f (S) and enforce the property that
f is non-negative and convex w.r.t. S.

In the following example, we train the MLP over a uniform grid of 100
training points Si ∈ �h ⊂ [0.001, 300], and Vi = f (Si) generated by the
Black–Scholes (BS) pricing formula. The risk-free rate r = 0.01, the strike
is 130, the volatility is σ , and time to maturity is T = 2.0. The test data
of 100 observations are on a different uniform gridded over a wider domain
[0.001, 600]. The network uses one hidden layer (L = 2) with 100 units, a
softplus activation function, and w(L)ij , b

(L)
i ≥ 0, ∀i, j . Figure 4.14 compares

the prediction with the BS model over the test set. Ŷ is observed to be convex
w.r.t. S because w(2)ij is non-negative. Additionally, because b(2)i ≥ 0 and

σ = 0, Ŷ ≥ 0.
The figure also compares the Black–Scholes formula for the delta of the call

option, �(X), the derivative of the price w.r.t. to S with the gradient of Ŷ :

�̂(X) = ∂XŶ = (W(2))T DW(1), Dii = 1

1+ exp{−w(1)i, X − b(1)i }
. (4.33)

Under the BS model, the delta of a call option is in the interval [0, 1]. Note
that the delta, although observed positive here, could be negative since there
are no restrictions on W(1). Similarly, the delta approximation is observed to
exceed unity. Thus, additional constraints are needed to bound the delta. For
this architecture, imposing w(1)ij ≥ 0 preserves the non-negativity of the delta

and
∑n(1)

j w
(2)
ij w(1)j, ≤ 1,∀i bounds the delta at unity.

136 4 Feedforward Neural Networks

(a) Estimated call prices (b) Derived delta

Fig. 4.14 (a) The out-of-sample call prices are estimated using a single-layer neural network with
constraints to ensure non-negativity and convexity of the price approximation w.r.t. the underlying
price S. (b) The analytic derivative of Ŷ is taken as the approximation of delta and compared over
the test set with the Black–Scholes delta. We observe that additional constraints on the weights are
needed to ensure that ∂XŶ ∈ [0, 1]

Example 4.4 Calibrating Options

The goal is to learn the inverse of the Black–Scholes formula, as a function of
moneyness, M = S/K . For simplicity, it considers the calibration of a chain
of European in-the-money put or in-the-money equity call options with fixed
time to maturity only. The input is moneyness for each option in the chain. The
output of the neural network is the BS implied volatility—this is the implied
volatility needed to calibrate the BS model to option price data corresponding
to each moneyness.

The neural network preserves the positivity of the volatility and, in this
example, imposes a convexity constraint on the surface w.r.t. to moneyness.
The latter ensures consistency with liquid option markets, the implied volatility
for both puts and calls typically monotonically increases as the strike price
moves away from the current stock price—the so-called implied volatility
smile. In markets, such as the equity markets, an implied volatility skew occurs
because money managers usually prefer to write calls over puts.

The input variable X ∈ R
+ is moneyness and the output is volatility so

that the training data is {Mi, σi}. We use a neural network to learn the relation
σ = f (M) and enforce the property that f is non-negative and convex w.r.t.
M . Note, in this example, that we do not directly learn the relationship between
option prices and implied volatilities. Instead we learn how a BS root finder
approximates the implied volatility as a function of the moneyness.

(continued)

3 Convexity and Inequality Constraints 137

Example 4.4 (continued)

In the following example, we train the MLP over a uniform grid of n = 100
training points Mi ∈ �h ⊂ [0.5, 1 × 104], and σi = f (Mi) is generated
by using a root finder for V (σ ; S,Ki, τ, r) − V̂i = 0, ∀i = 1, . . . , n and
τ = 0.2 years using the option price with strike Ki and time to maturity τ .
The risk-free rate r = 0.01. The test data of 100 observations are on a different
uniform gridded over a wider domain [0.4166, 1 × 104]. The network uses
one hidden layer (L = 2) with 100 units, a softplus activation function, and
w
(L)
ij , b

(L)
i ≤ 0, ∀i, j . Figure 4.15 compares the out-of-sample model output

with the root finder for the BS model over the test set. Ŷ is observed to be
convex w.r.t. M because w(2)ij is non-negative. Additionally, because b(2)i ≥ 0

and σ = 0, Ŷ ≥ 0.

No-Arbitrage Pricing

The previous examples are simple enough to illustrate the application of con-
straints in neural networks. However, one would typically need to enforce more
complex constraints for no-arbitrage pricing and calibration. Pricing approximations
should be monotonically increasing w.r.t. to maturity and convex w.r.t. strike. Such
constraints require that the neural network is fitted with more input variables K
and T .

Accelerating Calibrations

One promising direction, which does not require neural network derivative
pricing, is to simply learn a stochastic volatility based pricing model, such as the
Heston model, as a function of underlying price, strike, and maturity, and then use
the neural network pricing function to calibrate the pricing model. Such a calibration

Fig. 4.15 The out-of-sample
MLP estimation of implied
volatility as a function of
moneyness is compared with
the true values

138 4 Feedforward Neural Networks

avoids fitting a few parameters to the chain of observed option prices or implied
volatilities. Replacement of expensive pricing functions, which may require FFTs
or Monte Carlo methods, with trained neural networks reduces calibration time
considerably. See Horvath et al. (2019) for further details.

Dupire Local Volatility

Another challenge is how to price exotic options consistently with the market
prices of their European counterpart. The former are typically traded over-the-
counter, whereas the latter are often exchange traded and therefore “fully” observ-
able. To fix ideas, let C(K, T) denote an observed call price, for some fixed strike,
K , maturity, T , and underlying price St . Modulo a short rate and dividend term, the
unique “effective” volatility, σ 2

0 , is given by the Dupire formula:

σ 2
0 =

2∂T C(K, T)

K2∂2
KC(K, T)

. (4.34)

The challenge arises when calibrating the local volatility model, extracting effective
volatility from market option prices is an ill-posed inverse problem. Such a
challenge has recently been addressed by Chataigner et al. (2020) in their paper
on deep local volatility.

•? Multiple Choice Question 2

Which of the following statements are true:

1. A feedforward architecture is always convex w.r.t. each input variables if every
activation function is convex and the weights are constrained to be either all
positive or all negative.

2. A feedforward architecture with positive weights is a monotonically increasing
function of the input for any choice of monotonically increasing activation
function.

3. The weights of a feedforward architecture must be constrained for the output of
a feedforward network to be bounded.

4. The bias terms in a network simply shift the output and have no effect on the
derivatives of the output w.r.t. to the input.

3.1 Similarity of MLPs with Other Supervised Learners

Under special circumstances, MLPs are functionally equivalent to a number of other
machine learning techniques. As previously mentioned, when the network has no
hidden layer, it is either a regression or logistic regression. Neural networks with

3 Convexity and Inequality Constraints 139

one hidden layer is essentially a projection pursuit regression (PPR), both project the
input vector onto a hyperplane, apply a non-linear transformation into feature space,
followed by an affine transformation. The mapping of input vectors to feature space
by the hidden layer is conceptually similar to kernel methods, such as support vector
machines (SVMs), which map to a kernel space, where classification and regression
are subsequently performed. Boosted decision stumps, one level boosted decision
trees, can even be expressed as a single-layer MLP. Caution must be exercised in
over-stretching these conceptual similarities. Data generation assumptions aside,
there are differences in the classes of non-linear functions and learning algorithms
used. For example, the non-linear function being fitted in PPR can be different for
each combination of input variables and is sequentially estimated before updating
the weights. In contrast, neural networks fix these functions and estimate all the
weights belonging to a single layer simultaneously. A summary of other machine
learning approaches is given in Table 4.1 and we refer the reader to numerous
excellent textbooks (Bishop 2006; Hastie et al. 2009) covering such methods.

Table 4.1 This table compares supervised machine learning algorithms (reproduced from Mul-
lainathan and Spiess (2017))

Function class F (and its parameteri-
zation)

Regularizer R(f)

Global/parametric predictors

Linear β ′x (and generalizations) Subset selection ‖β‖0 =∑k
j=1 1βj �=0

LASSO ‖β‖1 =∑k
j=1 |βj |

Ridge ‖β‖2
2 =

∑k
j=1 β

2
j

Elastic net α‖β‖1 + (1− α)‖β‖2
2

Local/non-parametric predictors

Decision/regression trees Depth, number of nodes/leaves, minimal leaf size,
information gain at splits

Random forest (linear combination of
trees)

Number of trees, number of variables used in each
tree, size of bootstrap sample, complexity of trees
(see above)

Nearest neighbors Number of neighbors

Kernel regression Kernel bandwidth

Mixed predictors

Deep learning, neural nets, convolu-
tional neural networks

Number of levels, number of neurons per level, con-
nectivity between neurons

Splines Number of knots, order

Combined predictors

Bagging: unweighted average of pre-
dictors from bootstrap draws

Number of draws, size of bootstrap samples (and
individual regularization parameters)

Boosting: linear combination of pre-
dictions of residual

Learning rate, number of iterations (and individual
regularization parameters)

Ensemble: weighted combination of
different predictors

Ensemble weights (and individual regularization
parameters)

140 4 Feedforward Neural Networks

4 Training, Validation, and Testing

Deep learning is a data-driven approach which focuses on finding structure in large
datasets. The main tools for variable or predictor selection are regularization and
dropout. Out-of-sample predictive performance helps assess the optimal amount of
regularization, the problem of finding the optimal hyperparameter selection. There
is still a very Bayesian flavor to the modeling procedure and the modeler follows
two key steps:

1. Training phase: pair the input with expected output, until a sufficiently close
match has been found. Gauss’ original least squares procedure is a common
example.

2. Validation and test phase: assess how well the deep learner has been trained for
out-of-sample prediction. This depends on the size of your data, the value you
would like to predict, the input, etc., and various model properties including the
mean-error for numeric predictors and classification errors for classifiers.

Often, the validation phase is split into two parts.

2.a First, estimate the out-of-sample accuracy of all approaches (a.k.a. validation).
2.b Second, compare the models and select the best performing approach based on

the validation data (a.k.a. verification).

Step 2.b. can be skipped if there is no need to select an appropriate model from
several rivaling approaches. The researcher then only needs to partition the dataset
into a training and test set.

To construct and evaluate a learning machine, we start with training data of input–
output pairs D = {Y (i), X(i)}Ni=1. The goal is to find the machine learner of Y =
F(X), where we have a loss functionL(Y, Ŷ) for a predictor, Ŷ , of the output signal,
Y . In many cases, there is an underlying probability model, p(Y | Ŷ), then the loss
function is the negative log probability L(Y, Ŷ) = − log p(Y | Ŷ). For example,
under a Gaussian modelL(Y, Ŷ) = ||Y−Ŷ ||2 is aL2 norm, for binary classification,
L(Y, Ŷ) = −Y log Ŷ is the negative cross-entropy. In its simplest form, we then
solve an optimization problem

minimize
W,b

f (W, b)+ λφ(W, b)

f (W, b) = 1

N

N∑

i=1

L(Y (i), Ŷ (X(i)))

with a regularization penalty, φ(W, b). The loss function is non-convex, possessing
many local minima and is generally difficult to find a global minimum. An important
assumption, which is often not explicitly stated, is that the errors are assumed
to be “homoscedastic.” Homoscedasticity is the assumption that the error has an
identical distribution over each observation. This assumption can be relaxed by

4 Training, Validation, and Testing 141

weighting the observations differently. However, we shall regard such extensions
as straightforward and compatible with the algorithms for solving the unweighted
optimization problem. Here λ is a global regularization parameter which we tune
using the out-of-sample predictive mean squared error (MSE) of the model. The
regularization penalty, φ(W, b), introduces a bias–variance tradeoff . ∇L is given
in closed form by a chain rule and, through back-propagation, each layer’s weights
Ŵ (�) are fitted with stochastic gradient descent.

Recall from Chap. 1 that a 1-of-K encoding is used for a categorical response,
so that G is a K-binary vector G ∈ [0, 1]K and the value k is presented as Gk =
1 and Gj = 0,∀j �= k, where ||Gk||1 = 1. The predictor is given by Ĝk :=
gk(X|(W, b)), ||Ĝk||1 = 1 and the loss function is the negative cross-entropy for
discrete random variables

L(G, Ĝ(X)) = −GT lnĜ. (4.35)

For example, if there are K = 3 classes, then G = [0, 0, 1],G = [0, 1, 0], or
G = [1, 0, 0] to represent the three classes. When K > 2, the output layer has K
neurons and the loss function is the negative cross-entropy

L(G, Ĝ(X)) = −
K∑

k=1

GklnĜk. (4.36)

For the case when K = 2, i.e. binary classification, there is only one neuron in the
output layer and the loss function is

L(G, Ĝ(X)) = −GlnĜ− (1−G)ln(1− Ĝ), (4.37)

where Ĝ = g1(X|(W, b)) = σ(I (L−1)) and σ is a sigmoid function.
We observe that when there are no hidden layers, I (1) = W(1)X + b(1) and

g1(X|(W, b)) is a logistic regression. The softmax function, σs generalizes binary
classifiers to multi-classifiers. σs : RK → [0, 1]K is a continuous K-vector function
given by

σs(x)k = exp(xk)

|| exp(x)||1 , k ∈ {1, . . . , K}, (4.38)

where ||σs(x)||1=1. The softmax function is used to represent a probability distribu-
tion over K possible states:

Ĝk = P(G = k | X) = σs(WX + b) = exp((WX + b)k)
|| exp(WX + b)||1 . (4.39)

142 4 Feedforward Neural Networks

•> Derivative of the Softmax Function

Using the quotient rule f ′(x) = g′(x)h(x)−h′(x)g(x)
[h(x)]2 , the derivative σ := σs(x)

can be written as:

∂σi

∂xi
= exp(xi)|| exp(x)||1 − exp(xi) exp(xi)

|| exp(x)||21
(4.40)

= exp(xi)

|| exp(x)||1 ·
|| exp(x)||1 − exp(xi)

|| exp(x)||1 (4.41)

= σi(1− σi) (4.42)

For the case i �= j , the derivative of the sum is

∂σi

∂xj
= 0− exp(xi) exp(xj)

|| exp(x)||21
(4.43)

= − exp(xj)

|| exp(x)||1 ·
exp(xi)

|| exp(x)||1 (4.44)

= −σjσi (4.45)

This can be written compactly as ∂σi
∂xj

= σi(δij − σj), where δij is the
Kronecker delta function.

5 Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) method or its variation is typically used to
find the deep learning model weights by minimizing the penalized loss function,
f (W, b). The method minimizes the function by taking a negative step along an
estimate gk of the gradient ∇f (Wk, bk) at iteration k. The approximate gradient is
calculated by

gk = 1

bk

∑

i∈Ek
∇LW,b(Y (i), Ŷ k(X(i))),

5 Stochastic Gradient Descent (SGD) 143

where Ek ⊂ {1, . . . , N} and bk = |Ek| is the number of elements in Ek (a.k.a. batch
size). When bk > 1 the algorithm is called batch SGD and simply SGD otherwise. A
usual strategy to choose subset E is to go cyclically and pick consecutive elements
of {1, . . . , N} andEk+1 = [Ek mod N]+1, where modular arithmetic is applied to
the set. The approximated direction gk is calculated using a chain rule (a.k.a. back-
propagation) for deep learning. It is an unbiased estimator of ∇f (Wk, bk), and we
have

E(gk) = 1

N

N∑

i=1

∇LW,b
(
Y (i), Ŷ k(X(i))

)
= ∇f (Wk, bk).

At each iteration, we update the solution (W, b)k+1 = (W, b)k − tkgk.
Deep learning applications use a step size tk (a.k.a. learning rate) as constant

or a reduction strategy of the form, tk = a exp{−kt}. Appropriate learning rates
or the hyperparameters of reduction schedule are usually found empirically from
numerical experiments and observations of the loss function progression. In order
to update the weights across the layers, back-propagation is needed and will now be
explained.

•? Multiple Choice Question 3

Which of the following statements are true:

1. The training of a neural network involves minimizing a loss function w.r.t. the
weights and biases over the training data.

2. L1 regularization is used during model selection to penalize models with too
many parameters.

3. In deep learning, regularization can be applied to each layer of the network.
4. Back-propagation uses the chain rule to update the weights of the network but is

not guaranteed to convergence to a unique minimum.
5. Stochastic gradient descent and back-propagation are two different optimization

algorithms for minimizing the loss function and the user must choose the best
one.

5.1 Back-Propagation

Staying with a multi-classifier, we can begin by informally motivating the need for
a recursive approach to updating the weights and biases. Let us express Ŷ ∈ [0, 1]K
as a function of the final weight matrixW ∈ R

K×M and output bias RK so that

Ŷ (W, b) = σ ◦ I (W, b), (4.46)

144 4 Feedforward Neural Networks

where the input function I : RK×M×R
K → R

K is of the form I (W, b) := WX+b
and σ : RK → R

K is the softmax function. Applying the multivariate chain rule
gives the Jacobian of Ŷ (W, b):

∇Ŷ (W, b) = ∇(σ ◦ I)(W, b) (4.47)

= ∇σ(I (W, b)) · ∇I (W, b). (4.48)

5.1.1 Updating the Weight Matrices

Recall that the loss function for a multi-classifier is the cross-entropy

L(Y, Ŷ (X)) = −
K∑

k=1

YklnŶk. (4.49)

Since Y is a constant vector we can express the cross-entropy as a function of (W, b)

L(W, b) = L ◦ σ(I (W, b)). (4.50)

Applying the multivariate chain rule gives

∇L(W, b) = ∇(L ◦ σ)(I (W, b)) (4.51)

= ∇L(σ (I (W, b))) · ∇σ(I (W, b)) · ∇I (W, b). (4.52)

Stochastic gradient descent is used to find the minimum

(Ŵ , b̂) = arg minW,b
1

N

N∑

i=1

L(yi, ŶW,b(xi)). (4.53)

Because of the compositional form of the model, the gradient must be derived
using the chain rule for differentiation. This can be computed by a forward and then
a backward sweep (“back-propagation”) over the network, keeping track only of
quantities local to each neuron.

Forward Pass

Set Z(0) = X and for � ∈ {1, . . . , L} set

Z(�) = f (�)
W(�),b(�)

(Z(�−1)) = σ (�)(W(�)Z(�−1) + b(�)). (4.54)

On completion of the forward pass, the error Ŷ − Y is evaluated using Ŷ := Z(L).

5 Stochastic Gradient Descent (SGD) 145

Back-Propagation

Define the back-propagation error δ(�) := ∇b(�)L, where given δ(L) = Ŷ − Y ,
and for � = L − 1, . . . , 1 the following recursion relation gives the updated back-
propagation error and weight update for layer �:

δ(�) = (∇I (�)σ (�))W(�+1)T δ(�+1), (4.55)

∇W(�)L = δ(�) ⊗ Z(�−1), (4.56)

and ⊗ is the outer product of two vectors. See Appendix “Back-Propagation” for a
derivation of Eqs. 4.55 and 4.56.

The weights and biases are updated for all � ∈ {1, . . . , L} according to the
expression

�W(�) = −γ∇W(�)L = −γ δ(�) ⊗ Z(�−1),

�b(�) = −γ δ(�),

where γ is a user defined learning rate parameter. Note the negative sign: this
indicates that weight changes are in the direction of decrease in error. Mini-batch or
off-line updates involve using many observations of X at the same time. The batch
size refers to the number of observations of X used in each pass. An epoch refers to
a round-trip (i.e., forward+backward pass) over all training samples.

Example 4.5 Back-Propagation with a Three-Layer Network

Suppose that a feedforward network classifier has two sigmoid activated hidden
layers and a softmax activated output layer. After a forward pass, the values of
{Z(�)}3�=1 are stored and the error Ŷ −Y , where Ŷ = Z(3), is calculated for one
observation of X. The back-propagation and weight updates in the final layer
are evaluated:

δ(3) = Ŷ − Y
∇W(3)L = δ(3) ⊗ Z(2).

Now using Eqs. 4.55 and 4.56, we update the back-propagation error and
weight updates for hidden layer 2

δ(2) = Z(2)(1− Z(2))(W(3))T δ(3),

∇W(2)L = δ(2) ⊗ Z(1).

(continued)

146 4 Feedforward Neural Networks

Example 4.4 (continued)

Repeating for hidden layer 1

δ(1) = Z(1)(1− Z(1))(W(2))T δ(2),

∇W(1)L = δ(1) ⊗X.

We update the weights and biases using Eqs. 4.57 and 4.57, so that b(3) →
b(3)− γ δ(3),W(3)→ W(3)− γ δ(3)⊗Z(2) and repeat for the other weight-bias
pairs, {(W(�), b(�))}2�=1. See the back-propagation notebook for further details
of a worked example in Python and then complete Exercise 4.12.

5.2 Momentum

One disadvantage of SGD is that the descent in f is not guaranteed or can be very
slow at every iteration. Furthermore, the variance of the gradient estimate gk is near
zero as the iterates converge to a solution. To address those problems a coordinate
descent (CD) and momentum-based modifications of SGD are used. Each CD step
evaluates a single component Ek of the gradient ∇f at the current point and then
updates theEkth component of the variable vector in the negative gradient direction.
The momentum-based versions of SGD or the so-called accelerated algorithms were
originally proposed by Nesterov (2013).

The use of momentum in the choice of step in the search direction combines
new gradient information with the previous search direction. These methods are
also related to other classical techniques such as the heavy-ball method and
conjugate gradient methods. Empirically momentum-based methods show a far
better convergence for deep learning networks. The key idea is that the gradient
only influences changes in the “velocity” of the update

vk+1 =μvk − tkgk,
(W, b)k+1 =(W, b)k + vk.

The parameter μ controls the dumping effect on the rate of update of the variables.
The physical analogy is the reduction in kinetic energy that allows “slow down”
in the movements at the minima. This parameter is also chosen empirically using
cross-validation.

Nesterov’s momentum method (a.k.a. Nesterov acceleration) instead calculate
gradient at the point predicted by the momentum. We can think of it as a look-ahead
strategy. The resulting update equations are

5 Stochastic Gradient Descent (SGD) 147

vk+1 =μvk − tkg((W, b)k + vk),
(W, b)k+1 =(W, b)k + vk.

Another popular modification to the SGD method is the AdaGrad method, which
adaptively scales each of the learning parameters at each iteration

ck+1 =ck + g((W, b)k)2,
(W, b)k+1 =(W, b)k − tkg(W, b)k)/(

√
ck+1 − a),

where a is usually a small number, e.g. a = 10−6 that prevents dividing by zero.
PRMSprop takes the AdaGrad idea further and places more weight on recent values
of the gradient squared to scale the update direction, i.e. we have

ck+1 = dck + (1− d)g((W, b)k)2.

The Adam method combines both PRMSprop and momentum methods and leads to
the following update equations:

vk+1 =μvk − (1− μ)tkg((W, b)k + vk),
ck+1 =dck + (1− d)g((W, b)k)2,

(W, b)k+1 =(W, b)k − tkvk+1/(
√
ck+1 − a).

Second-order methods solve the optimization problem by solving a system of non-
linear equations ∇f (W, b) = 0 with Newton’s method

(W, b)+ = (W, b)− {∇2f (W, b)}−1∇f (W, b).

SGD simply approximates ∇2f (W, b) by 1/t . The advantages of a second-order
method include much faster convergence rates and insensitivity to the conditioning
of the problem. In practice, second-order methods are rarely used for deep learning
applications (Dean et al. 2012). The major disadvantage is the inability to train the
model using batches of data as SGD does. Since typical deep learning models rely
on large-scale datasets, second-order methods become memory and computationally
prohibitive at even modest-sized training datasets.

5.2.1 Computational Considerations

Batching alone is not sufficient to scale SGD methods to large-scale problems
on modern high-performance computers. Back-propagation through a chain rule
creates an inherit sequential dependency in the weight updates which limits the

148 4 Feedforward Neural Networks

dataset dimensions for the deep learner. Polson et al. (2015) consider a proximal
Newton method, a Bayesian optimization technique which provides an efficient
solution for estimation and optimization of such models and for calculating a
regularization path. The authors present a splitting approach, alternating direction
method of multipliers (ADMM), which overcomes the inherent bottlenecks in back-
propagation by providing a simultaneous block update of parameters at all layers.
ADMM facilitates the use of large-scale computing.

A significant factor in the widespread adoption of deep learning has been the
creation of TensorFlow (Abadi et al. 2016), an interface for easily expressing
machine learning algorithms and mapping compute intensive operations onto a
wide variety of different hardware platforms and in particular GPU cards. Recently,
TensorFlow has been augmented by Edward (Tran et al. 2017) to combine
concepts in Bayesian statistics and probabilistic programming with deep learning.

5.2.2 Model Averaging via Dropout

We close this section by briefly mentioning one final technique which has proved
indispensable in preventing neural networks from over-fitting. Dropout is a compu-
tationally efficient technique to reduce model variance by considering many model
configurations and then averaging the predictions. The layer input space Z =
(Z1, . . . , Zn), where n is large, needs dimension reduction techniques which are
designed to avoid over-fitting in the training process. Dropout works by removing
layer inputs randomly with a given probability θ . The probability, θ , can be viewed
as a further hyperparameter (like λ) which can be tuned via cross-validation.
Heuristically, if there are 1000 variables, then a choice of θ = 0.1 will result in
a search for models with 100 variables. The dropout architecture with stochastic
search for the predictors can be used

d
(�)
i ∼ Ber(θ),

Z̃(�) = d(�) ◦ Z(�), 1 ≤ � < L,
Z(�) = σ (�)(W(�)Z̃(�−1) + b(�)).

Effectively, this replaces the layer input Z by d ◦ Z, where ◦ denotes the element-
wise product and d is a vector of independent Bernoulli, Ber(θ), distributed random
variables. The overall objective function is closely related to ridge regression with a
g-prior (Heaton et al. 2017).

6 Bayesian Neural Networks 149

6 Bayesian Neural Networks*

Bayesian deep learning (Neal 1990; Saul et al. 1996; Frey and Hinton 1999;
Lawrence 2005; Adams et al. 2010; Mnih and Gregor 2014; Kingma and Welling
2013; Rezende et al. 2014) provides a powerful and general framework for statistical
modeling. Such a framework allows for a completely new approach to data modeling
and solves a number of problems that conventional models cannot address: (i) DLs
(deep learners) permit complex dependencies between variables to be explicitly
represented which are difficult, if not impossible, to model with copulas; (ii) they
capture correlations between variables in high-dimensional datasets; and (iii) they
characterize the degree of uncertainty in predicting large-scale effects from large
datasets relevant for quantifying uncertainty.

Uncertainty refers to the statistically unmeasurable situation of Knightian uncer-
tainty, where the event space is known but the probabilities are not (Chen et al.
2017). Oftentimes, a forecast may be shrouded in uncertainty arising from noisy data
or model uncertainty, either through incorrect modeling assumptions or parameter
error. It is desirable to characterize this uncertainty in the forecast. In conventional
Bayesian modeling, uncertainty is used to learn from small amounts of low-
dimensional data under parametric assumptions on the prior. The choice of the prior
is typically the point of contention and chosen for solution tractability rather than
modeling fidelity. Recently, deterministic deep learners have been shown to scale
well to large, high-dimensional, datasets. However, the probability vector obtained
from the network is often erroneously interpreted as model confidence (Gal 2016).

A typical approach to model uncertainty in neural network models is to assume
that model parameters (weights and biases) are random variables (as illustrated in
Fig. 4.16). Then ANN model approaches Gaussian process as the number of weights
goes to infinity (Neal 2012; Williams 1997). In the case of finite number of weights,
a network with random parameters is called a Bayesian neural network (MacKay
1992b). Recent advances in “variational inference” techniques and software that
represent mathematical models as a computational graph (Blundell et al. 2015a)
enable probabilistic deep learning models to be built, without having to worry
about how to perform testing (forward propagation) or inference (gradient- based
optimization, with back-propagation and automatic differentiation). Variational
inference is an approximate technique which allows multi-modal likelihood func-
tions to be extremized with standard stochastic gradient descent algorithm. An
alternative to variational and MCMC algorithms was recently proposed by Gal
(2016) and builds on efficient dropout regularization technique.

All of the current techniques rely on approximating the true posterior over
the model parameters p(w | X, Y) by another distribution qθ (w) which can be
evaluated in a computationally tractable way. Such a distribution is chosen to be as
close as possible to the true posterior and is found by minimizing the Kullback–
Leibler (KL) divergence

150 4 Feedforward Neural Networks

3 1.05

0.90

0.75

0.60

0.45

0.30

0.15

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

2

1

0

-1

-2

-3-3 -2

x2

x1

Pr
ob

ab
ili

ty
 o

f c
la

ss
 (l

ab
el

=0
)

U
nc

er
ta

in
ty

-1 0 1 2 3

3

2

1

0

-1

-2

-3-3 -2

x2

x1
-1 0 1 2 3

Fig. 4.16 Bayesian classification of the half-moon problem with neural networks. (top) The
posterior mean and (bottom) the posterior std. dev.

θ∗ ∈ arg min
θ

∫
qθ (w) log

qθ (w)

p(w | X, Y)dw.

There are numerous approaches to Bayesian deep learning for uncertainty
quantification including MCMC (Markov chain Monte Carlo) methods. These are
known to scale poorly with the number of observations and recent studies have

6 Bayesian Neural Networks 151

developed SG-MCMC (stochastic gradient MCMC) and related methods such as
PX-MCMC (parameter expansion MCMC) to ease the computational burden. A
Bayesian extension of feedforward network architectures has been considered by
several authors (Neal 1990; Saul et al. 1996; Frey and Hinton 1999; Lawrence
2005; Adams et al. 2010; Mnih and Gregor 2014; Kingma and Welling 2013;
Rezende et al. 2014). Recent results show how dropout regularization can be used
to represent uncertainty in deep learning models. In particular, Gal (2015) shows
that dropout provides uncertainty estimates for the predicted values. The predictions
generated by the deep learning models with dropout are nothing but samples from
the predictive posterior distribution.

A classical example of using neural networks to model a vector of binary
variables is the Boltzmann machine (BM), with two layers. The first layer encodes
latent variables and the second layer encodes the observed variables. Both con-
ditional distributions p(data | latent variables) and p(latent variables | data) are
specified using logistic functions parameterized by weights and offset vectors.
The size of the joint distribution table grows exponentially with the number of
variables and (Hinton and Sejnowski 1983) proposed using Gibbs sampler to
calculate updates to model weights on each iteration. The multi-modal nature of
the posterior distribution leads to prohibitive computational times required to learn
models of a practical size. Tieleman (2008) proposed a variational approach that
replaces the posterior p(latent variables | data) and approximates it with another
easy to calculate distribution and was considered in Salakhutdinov (2008). Several
extensions to the BMs have been proposed. Exponential family extensions have been
considered by (Smolensky 1986; Salakhutdinov 2008; Salakhutdinov and Hinton
2009; Welling et al. 2005).

There have also been multiple approaches to building inference algorithms for
deep learning models (MacKay 1992a; Hinton and Van Camp 1993; Neal 1992;
Barber and Bishop 1998). Performing Bayesian inference on a neural network cal-
culates the posterior distribution over the weights given the observations. In general,
such a posterior cannot be calculated analytically, or even efficiently sampled from.
However, several recently proposed approaches address the computational problem
for some specific deep learning models (Graves 2011; Kingma and Welling 2013;
Rezende et al. 2014; Blundell et al. 2015b; Hernández-Lobato and Adams 2015;
Gal and Ghahramani 2016).

The recent successful approaches to develop efficient Bayesian inference algo-
rithms for deep learning networks are based on the reparameterization techniques
for calculating Monte Carlo gradients while performing variational inference. Such
an approach has led to an explosive development in the application of stochastic
variational inference. Given the data D = (X, Y), the variational inference relies
on approximating the posterior p(θ | D) with a variation distribution q(θ | D, φ),
where θ = (W, b). Then q is found by minimizing the Kullback–Leibler divergence
between the approximate distribution and the posterior, namely

KL(q || p) =
∫
q(θ | D, φ) log

q(θ | D, φ)
p(θ | D) dθ.

152 4 Feedforward Neural Networks

Since p(θ | D) is not necessarily tractable, we replace minimization of KL(q || p)
with maximization of the evidence lower bound (ELBO)

ELBO(φ) =
∫
q(θ | D, φ) log

p(Y | X, θ)p(θ)
q(θ | D, φ) dθ

The log of the total probability (evidence) is then

logp(D) = ELBO(φ)+ KL(q || p).

The sum does not depend on φ, thus minimizing KL(q || p) is the same as
maximizing ELBO(q). Also, since KL(q || p) ≥ 0, which follows from Jensen’s
inequality, we have logp(D) ≥ ELBO(φ). Thus, the evidence lower bound name.
The resulting maximization problem ELBO(φ)→ maxφ is solved using stochastic
gradient descent.

To calculate the gradient, it is convenient to write the ELBO as

ELBO(φ) =
∫
q(θ | D, φ) logp(Y | X, θ)dθ −

∫
q(θ | D, φ) log

q(θ | D, φ)
p(θ)

dθ

The gradient of the first term ∇φ
∫
q(θ | D, φ) logp(Y | X, θ)dθ =

∇φEq logp(Y | X, θ) is not an expectation and thus cannot be calculated using
Monte Carlo methods. The idea is to represent the gradient ∇φEq logp(Y | X, θ)
as an expectation of some random variable, so that Monte Carlo techniques can
be used to calculate it. There are two standard methods to do it. First, the log-
derivative trick uses the following identity ∇xf (x) = f (x)∇x log f (x) to obtain
∇φEq logp(Y | θ). Thus, if we select q(θ | φ) so that it is easy to compute its
derivative and generate samples from it, the gradient can be efficiently calculated
using Monte Carlo techniques. Second, we can use the reparameterization trick
by representing θ as a value of a deterministic function, θ = g(ε, x, φ), where
ε ∼ r(ε) does not depend on φ. The derivative is given by

∇φEq logp(Y | X, θ) =
∫
r(ε)∇φ logp(Y | X, g(ε, x, φ))dε

= Eε[∇g logp(Y | X, g(ε, x, φ))∇φg(ε, x, φ)].

The reparameterization is trivial when q(θ | D, φ) = N(θ | μ(D, φ),�(D, φ)),
and θ = μ(D, φ)+ ε�(D, φ), ε ∼ N(0, I). Kingma and Welling (2013) propose
using �(D, φ) = I and representing μ(D, φ) and ε as outputs of a neural network
(multilayer perceptron), the resulting approach was called a variational autoencoder.
A generalized reparameterization has been proposed by Ruiz et al. (2016) and
combines both log-derivative and reparameterization techniques by assuming that
ε can depend on φ.

8 Exercises 153

7 Summary

In this chapter we have introduced some of the theory of function approximation
and out-of-sample estimation with neural networks when the observation points are
i.i.d. Such a case is not suitable for times series data and shall be the subject of later
chapters. We restricted our attention to feedforward neural networks in order to
explore some of the theoretical arguments which help us reason scientifically about
architecture design. We have seen that feedforward networks use hidden units, or
perceptrons, to partition the input space into regions bounded with manifolds. In
the case of ReLU activated units, each manifold is a hyperplane and the hidden
units form a hyperplane arrangement. We have introduced various approaches to
reason about the effect of the number of units in each layer in addition to reasoning
about the effect of hidden layers. We also introduced various concepts and methods
necessary for understanding and applying neural networks to i.i.d. data including

– Fat shattering, VC dimension, and the empirical risk measure (ERM) as the basis
for characterizing the learnability of a class of MLPs;

– The construction of neural networks as splines and their pointwise approximation
error bound;

– The reason for composing layers in deep learning;
– Stochastic gradient descent and back-propagation as techniques for training

neural networks; and
– Imposing constraints on the network needed for approximating financial deriva-

tives and other constrained optimization problems in finance.

8 Exercises

Exercise 4.1
Show that substituting

∇ij Ik =
{
Xj , i = k,
0, i �= k,

into Eq. 4.47 gives

∇ij σk ≡ ∂σk

∂wij
= ∇iσkXj = σk(δki − σi)Xj .

Exercise 4.2
Show that substituting the derivative of the softmax function w.r.t. wij into Eq. 4.52
gives for the special case when the output is Yk = 1, k = i, and Yk = 0, ∀k �= i:

154 4 Feedforward Neural Networks

∇ijL(W, b) := [∇WL(W, b)]ij =
{
(σi − 1)Xj , Yi = 1,

0, Yk = 0, ∀k �= i.

Exercise 4.3
Consider feedforward neural networks constructed using the following two types of
activation functions:

– Identity

Id(x) := x

– Step function (a.k.a. Heaviside function)

H(x) :=
{

1 if x ≥ 0,
0 otherwise.

1. Consider a feedforward neural network with one input x ∈ R, a single hidden
layer with K units having step function activations, H(x), and a single output
with identity (a.k.a. linear) activation, Id(x). The output can be written as

f̂ (x) = Id
(
b(2) +

K∑

k=1

w
(2)
k H(b

(1)
k + w(1)k x)

)
.

Construct neural networks using these activation functions.

a. Consider the step function

u(x; a) := yH(x − a) =
{
y, if x ≥ a,
0, otherwise.

Construct a neural network with one input x and one hidden layer, whose
response is u(x; a). Draw the structure of the neural network, specify the
activation function for each unit (either Id or H), and specify the values for
all weights (in terms of a and y).

b. Now consider the indicator function

1[a,b)(x) =
{

1, if x ∈ [a, b),
0, otherwise.

Construct a neural network with one input x and one hidden layer, whose
response is y1[a,b)(x), for given real values y, a and b. Draw the structure of
the neural network, specify the activation function for each unit (either Id or
H), and specify the values for all weights (in terms of a, b and y).

8 Exercises 155

Exercise 4.4
A neural network with a single hidden layer can provide an arbitrarily close
approximation to any 1-dimensional bounded smooth function. This question will
guide you through the proof. Let f (x) be any function whose domain is [C,D), for
real values C < D. Suppose that the function is Lipschitz continuous, that is,

∀x, x′ ∈ [C,D), |f (x′)− f (x)| ≤ L|x′ − x|,

for some constant L ≥ 0. Use the building blocks constructed in the previous part
to construct a neural network with one hidden layer that approximates this function
within ε > 0, that is, ∀x ∈ [C,D), |f (x)− f̂ (x)| ≤ ε, where f̂ (x) is the output of
your neural network given input x. Your network should use only the identity or the
Heaviside activation functions. You need to specify the number K of hidden units,
the activation function for each unit, and a formula for calculating each weight w0,
wk , w

(k)
0 , and w(k)1 , for each k ∈ {1, . . . , K}. These weights may be specified in

terms of C, D, L, and ε, as well as the values of f (x) evaluated at a finite number
of x values of your choosing (you need to explicitly specify which x values you
use). You do not need to explicitly write the f̂ (x) function. Why does your network
attain the given accuracy ε?

Exercise 4.5
Consider a shallow neural network regression model with n tanh activated units in
the hidden layer and d outputs. The hidden-outer weight matrix W(2)

ij = 1
n

and

the input-hidden weight matrix W(1) = 1. The biases are zero. If the features,
X1, . . . , Xp are i.i.d. Gaussian random variables with mean μ = 0, variance σ 2,
show that

a. Ŷ ∈ [−1, 1].
b. Ŷ is independent of the number of hidden units, n ≥ 1.
c. The expectation, E[Ŷ] = 0, and the variance V[Ŷ] ≤ 1.

Exercise 4.6
Determine the VC dimension of the sum of indicator functions where � = [0, 1]

Fk(x) = {f : �→ {0, 1}, f (x) =
k∑

i=0

1x∈[t2i ,t2i+1), 0 ≤ t0 < · · · < t2k+1 ≤ 1, k ≥ 1}.

Exercise 4.7
Show that a feedforward binary classifier with two Heaviside activated units shatters
the data {0.25, 0.5, 0.75}.

Exercise 4.8
Compute the weight and bias updates of W(2) and b(2) given a shallow binary
classifier (with one hidden layer) with unit weights, zero biases, and ReLU
activation of two hidden units for the labeled observation (x = 1, y = 1).

156 4 Feedforward Neural Networks

8.1 Programming Related Questions*

Exercise 4.9
Consider the following dataset (taken from Anscombe’s quartet):

(x1, y1) = (10.0, 9.14), (x2, y2) = (8.0, 8.14), (x3, y3) = (13.0, 8.74),

(x4, y4) = (9.0, 8.77), (x5, y5) = (11.0, 9.26), (x6, y6) = (14.0, 8.10),

(x7, y7) = (6.0, 6.13), (x8, y8) = (4.0, 3.10), (x9, y9) = (12.0, 9.13),

(x10, y10) = (7.0, 7.26), (x11, y11) = (5.0, 4.74).

a. Use a neural network library of your choice to show that a feedforward network
with one hidden layer consisting of one unit and a feedforward network with
no hidden layers, each using only linear activation functions, do not outperform
linear regression based on ordinary least squares (OLS).

b. Also demonstrate that a neural network with a hidden layer of three neurons
using the tanh activation function and an output layer using the linear activation
function captures the non-linearity and outperforms the linear regression.

Exercise 4.10
Review the Python notebook deep_classifiers.ipynb. This notebook uses
Keras to build three simple feedforward networks applied to the half-moon problem:
a logistic regression (with no hidden layer); a feedforward network with one
hidden layer; and a feedforward architecture with two hidden layers. The half-
moons problem is not linearly separable in the original coordinates. However you
will observe—after plotting the fitted weights and biases—that a network with
many hidden neurons gives a linearly separable representation of the classification
problem in the coordinates of the output from the final hidden layer.

Complete the following questions in your own words.

a. Did we need more than one hidden layer to perfectly classify the half-moons
dataset? If not, why might multiple hidden layers be useful for other datasets?

b. Why not use a very large number of neurons since it is clear that the classification
accuracy improves with more degrees of freedom?

c. Repeat the plotting of the hyperplane, in Part 1b of the notebook, only without the
ReLU function (i.e., activation=“linear”). Describe qualitatively how the decision
surface changes with increasing neurons. Why is a (non-linear) activation
function needed? The use of figures to support your answer is expected.

Exercise 4.11
Using the EarlyStopping callback in Keras, modify the notebook
Deep_Classifiers.ipynb to terminate training under the following stopping
criterion |L(k+1) − L(k)| ≤ δ with δ = 0.1.

Appendix 157

Exercise 4.12***
Consider a feedforward neural network with three inputs, two units in the first
hidden layer, two units in the second hidden layer, and three units in the output layer.
The activation function for hidden layer 1 is ReLU, for hidden layer 2 is sigmoid,
and for the output layer is softmax.

The initial weights are given by the matrices

W(1) =
(

0.1 0.3 0.7
0.9 0.4 0.4

)
,W(2) =

(
0.4 0.3
0.7 0.2

)
,W(3) =

⎛

⎝
0.5 0.6
0.6 0.7
0.3 0.2

⎞

⎠ ,

and all the biases are unit vectors.
Assuming that the input

(
0.1 0.7 0.3

)
corresponds to the output

(
1 0 0

)
, man-

ually compute the updated weights and biases after a single epoch (forward +
backward pass), clearly stating all derivatives that you have used. You should use a
learning rate of 1.

As a practical exercise, you should modify the implementation of a stochastic
gradient descent routine in the back-propagation Python notebook.

Note that the notebook example corresponds to the example in Sect. 5, which
uses sigmoid activated hidden layers only. Compare the weights and biases obtained
by TensorFlow (or your ANN library of choice) with those obtained by your
procedure after 200 epochs.

Appendix

Answers to Multiple Choice Questions

Question 1
Answer: 1, 2, 3, 4. All answers are found in the text.

Question 2
Answer: 1,2. A feedforward architecture is always convex w.r.t. each input variable
if every activation function is convex and the weights are constrained to be either all
positive or all negative. Simply using convex activation functions is not sufficient,
since the composition of a convex function and the affine transformation of a convex
function do not preserve the convexity. For example, if σ(x) = x2, w = −1, and
b = 1, then σ(wσ(x)+ b) = (−x2 + 1)2 is not convex in x.

A feedforward architecture with positive weights is a monotonically increasing
function of the input for any choice of monotonically increasing activation function.

The weights of a feedforward architecture need not be constrained for the output
of a feedforward network to be bounded. For example, activating the output with a
softmax function will bound the output. Only if the output is not activated, should
the weights and bias in the final layer be bounded to ensure bounded output.

158 4 Feedforward Neural Networks

The bias terms in a network shift the output but also effect the derivatives of the
output w.r.t. to the input when the layer is activated.

Question 3
Answer: 1,2,3,4. The training of a neural network involves minimizing a loss
function w.r.t. the weights and biases over the training data. L1 regularization is
used during model selection to penalize models with too many parameters. The
loss function is augmented with a Lagrange penalty for the number of weights. In
deep learning, regularization can be applied to each layer of the network. Therefore
each layer has an associated regularization parameter. Back-propagation uses the
chain rule to update the weights of the network but is not guaranteed to convergence
to a unique minimum. This is because the loss function is not convex w.r.t. the
weights. Stochastic gradient descent is a type of optimization method which is
implemented with back-propagation. There are variants of SGD, however, such as
adding Nestov’s momentum term, ADAM , or RMSProp.

Back-Propagation

Let us consider a feedforward architecture with an input layer, L − 1 hidden
layers, and one output layer, with K units in the output layer for classification
of K categories. As a result, we have L sets of weights and biases (W(�),b(�))
for � = 1, . . . , L, corresponding to the layer inputs Z(�−1) and outputs Z(�) for
� = 1, . . . , L. Recall that each layer is an activation of a semi-affine transformation,
I (�)(Z(�−1)) := W(L)Z(�−1) + b(L). The corresponding activation functions are
denoted as σ (�). The activation function for the output layer is a softmax function,
σs(x).

Here we use the cross-entropy as the loss function, which is defined as

L := −
K∑

k=1

Yk log Ŷk.

The relationship between the layers, for � ∈ {1, . . . , L} are

Ŷ (X) = Z(L) = σs(I (L)) ∈ [0, 1]K,
Z(�) = σ (�)

(
I (�)

)
, � = 1, . . . , L− 1,

Z(0) = X.
The update rules for the weights and biases are

�W(�) = −γ∇W(�)L,

�b(�) = −γ∇b(�)L.

Appendix 159

We now begin the back-propagation, tracking the intermediate calculations carefully
using Einstein summation notation.

For the gradient of L w.r.t.W(L) we have

∂L
∂w

(L)
ij

=
K∑

k=1

∂L
∂Z

(L)
k

∂Z
(L)
k

∂w
(L)
ij

=
K∑

k=1

∂L
∂Z

(L)
k

K∑

m=1

∂Z
(L)
k

∂I
(L)
m

∂I
(L)
m

∂w
(L)
ij

But

∂L
∂Z

(L)
k

= − Yk

Z
(L)
k

∂Z
(L)
k

∂I
(L)
m

= ∂

∂I
(L)
m

[σ(I (L))]k

= ∂

∂I
(L)
m

exp[I (L)k]
∑K
n=1 exp[I (L)n]

=

⎧
⎪⎨

⎪⎩

− exp[I (L)k]
∑K
n=1 exp[I (L)n]

exp[I (L)m]∑K
n=1 exp[I (L)n] if k �= m

exp[I (L)k]
∑K
n=1 exp[I (L)n] −

exp[I (L)k]
∑K
n=1 exp[I (L)n]

exp[I (L)m]∑K
n=1 exp[I (L)n] otherwise

=
{
−σkσm if k �= m
σk(1− σm) otherwise

= σk(δkm − σm) where δkm is the Kronecker’s Delta

∂I
(L)
m

∂w
(L)
ij

= δmiZ(L−1)
j

 ⇒ ∂L
∂w

(L)
ij

= −
K∑

k=1

Yk

Z
(L)
k

K∑

m=1

Z(L)m (δkm − Z(L)m)δmiZ
(L−1)
j

= −Z(L−1)
j

K∑

k=1

Yk(δki − Z(L)i)

= Z(L−1)
j (Z

(L)
i − Yi),

160 4 Feedforward Neural Networks

where we have used the fact that
∑K
k=1 Yk = 1 in the last equality. Similarly for

b(L), we have

∂L
∂b
(L)
i

=
K∑

k=1

∂L
∂Z

(L)
k

K∑

m=1

∂Z
(L)
k

∂I
(L)
m

∂I
(L)
m

∂b
(L)
i

= Z(L)i − Yi
It follows that

∇b(L)L = Z(L) − Y
∇W(L)L = ∇b(L)L⊗ Z(L−1),

where ⊗ denotes the outer product.
Now for the gradient of L w.r.t.W(L−1) we have

∂L
∂w

(L−1)
ij

=
K∑

k=1

∂L

∂Z
(L)
k

∂Z
(L)
k

∂w
(L−1)
ij

=
K∑

k=1

∂L
∂Z

(L)
k

K∑

m=1

∂Z
(L)
k

∂I
(L)
m

n(L−1)∑

n=1

∂I
(L)
m

∂Z
(L−1)
n

n(L−1)∑

p=1

∂Z
(L−1)
n

∂I
(L−1)
p

∂I
(L−1)
p

∂w
(L−1)
ij

If we assume that σ (�)(x) = sigmoid(x), � ∈ {1, . . . , L− 1}, then

∂I
(L)
m

∂Z
(L−1)
n

= w(L)mn

∂Z
(L−1)
n

∂I
(L−1)
p

= ∂

∂I
(L−1)
p

(
1

1+ exp(−I (L−1)
n)

)

= 1

1+ exp(−I (L−1)
n)

exp(−I (L−1)
n)

1+ exp(−I (L−1)
n)

δnp

= Z(L−1)
n (1− Z(L−1)

n) δnp = σ (L−1)
n (1− σ (L−1)

n)δnp

∂I
(L−1)
p

∂w
(L−1)
ij

= δpiZ(L−2)
j

 ⇒ ∂L

∂w
(L)
ij

= −
K∑

k=1

Yk

Z
(L)
k

K∑

m=1

Z
(L)
k (δkm − Z(L)m)

Appendix 161

n(L−1)∑

n=1

w(L)mn

n(L−1)∑

p=1

Z(L−1)
n (1− Z(L−1)

n) δnpδpiZ
(L−2)
j

= −
K∑

k=1

Yk

K∑

m=1

(δkm − Z(L)m)

n(L−1)∑

n=1

w(L)mnZ
(L−1)
n (1− Z(L−1)

n) δniZ
(L−2)
j

= −
K∑

k=1

Yk

K∑

m=1

(δkm − Z(L)m)w
(L)
mi Z

(L−2)
i (1− Z(L−1)

i)Z
(L−2)
j

= −Z(L−2)
j Z

(L−1)
i (1− Z(L−1)

i)

K∑

m=1

w
(L)
mi

K∑

k=1

(δkmYk − Z(L)m Yk)

= Z(L−2)
j Z

(L−1)
i (1− Z(L−1)

i)

K∑

m=1

w
(L)
mi (Z

(L)
m − Ym)

= Z(L−2)
j Z

(L−1)
i (1− Z(L−1)

i)(Z(L) − Y)Tw(L),i

Similarly we have

∂L
∂b
(L−1)
i

= Z(L−1)
i (1− Z(L−1)

i)(Z(L) − Y)Tw(L),i .

It follows that we can define the following recursion relation for the loss gradient:

∇b(L−1)L = Z(L−1) ◦ (1− Z(L−1)) ◦ (W(L)T∇b(L)L)
∇W(L−1)L = ∇b(L−1)L⊗ Z(L−2)

= Z(L−1) ◦ (1− Z(L−1)) ◦ (W(L)T∇W(L)L),

where ◦ denotes the Hadamard product (element-wise multiplication). This recur-
sion relation can be generalized for all layers and choice of activation functions. To
see this, let the back-propagation error δ(�) := ∇b(�)L, and since

[
∂σ (�)

∂I (�)

]

ij

= ∂σ
(�)
i

∂I
(�)
j

= σ (�)i (1− σ (�)i)δij
or equivalently in matrix–vector form

162 4 Feedforward Neural Networks

∇I (�)σ (�) = diag(σ (�) ◦ (1− σ (�))),

we can write, in general, for any choice of activation function for the hidden layer,

δ(�) = ∇I (�)σ (�)(W(�+1))T δ(�+1),

and

∇W(�)L = δ(�) ⊗ Z(�−1).

Proof of Theorem 4.2

Using the same deep structure shown in Fig. 4.9, Liang and Srikant (2016) find the
binary expansion sequence {x0, . . . , xn}. In this step, they used n binary steps units
in total. Then they rewrite gm+1(

∑n
i=0

xi
2n),

gm+1

(
n∑

i=0

xi

2i

)
=

n∑

j=0

[
xj · 1

2j
gm

(
n∑

i=0

xi

2i

)]

=
n∑

j=0

max

[
2(xj − 1)+ 1

2j
gm

(
n∑

i=0

xi

2i

)
, 0

]
. (4.57)

Clearly Eq. 4.57 defines iterations between the outputs of neighboring layers. Defin-

ing the output of the multilayer neural network as f̂ (x) = ∑p

i=0 aigi

(∑n
j=0

xj

2j

)
.

For this multilayer network, the approximation error is

|f (x)− f̂ (x)| =
∣∣∣∣∣∣

p∑

i=0

aigi

⎛

⎝
n∑

j=0

xj

2j

⎞

⎠−
p∑

i=0

aix
i

∣∣∣∣∣∣

≤
p∑

i=0

⎡

⎣|ai | ·
∣∣∣∣∣∣
gi

⎛

⎝
n∑

j=0

xj

2j

⎞

⎠− xi
∣∣∣∣∣∣

⎤

⎦ ≤ p

2n−1 .

This indicates, to achieve ε-approximation error, one should choose n = ⌈
log p

ε

⌉+
1. Besides, since O(n + p) layers with O(n) binary step units and O(pn) ReLU
units are used in total, this multilayer neural network thus has O

(
p + log p

ε

)
layers,

O
(
log p

ε

)
binary step units, and O

(
p log p

ε

)
ReLU units.

Appendix 163

Table 4.2 Definitions of the
functions f (x) and g(x)

f (x) := max(x − 1
4 , 0), g(x) := max(x − 1

2 , 0)

cIf = {[0, 1
4], (1

4 , 1]}, cIg = {[0, 1
2], (1

2 , 1]}.

Proof of Lemmas from Telgarsky (2016)

Proof (Proof of 4.1) Let cIf denote the partition of R corresponding to f , and cIg
denote the partition of R corresponding to g.

First consider f + g, and moreover any intervals Uf ∈ cIf and Ug ∈ cIg .
Necessarily, f + g has a single slope along Uf ∩ Ug . Consequently, f + g is
|cI|-sawtooth, where cI is the set of all intersections of intervals from cIf and cIg ,
meaning cI := {Uf ∩ Ug : Uf ∈ cIf , Ug ∈ cIg}. By sorting the left endpoints
of elements of cIf and cIg , it follows that |cI| ≤ k + l (the other intersections are
empty).

For example, consider the example in Fig. 4.11 with partitions given in Table 4.2.
The set of all intersections of intervals from cIf and cIg contains 3 elements:

cI = {[0, 1

4
] ∩ [0, 1

2
], (1

4
, 1] ∩ [0, 1

2
], (1

4
, 1] ∩ (1

2
, 1]} (4.58)

Now consider f ◦ g, and in particular consider the image f (g(Ug)) for some
interval Ug ∈ cIg . g is affine with a single slope along Ug; therefore, f is being
considered along a single unbroken interval g(Ug). However, nothing prevents
g(Ug) from hitting all the elements of cIf ; since Ug was arbitrary, it holds that
f ◦ g is (|cIf | · |cIg|)-sawtooth. ��
Proof Recall the notation f̃ (x) := [f (x) ≥ 1/2], whereby E(f) := 1

n

∑
i[yi �=

f̃ (xi)]. Since f is piecewise monotonic with a corresponding partition R having
at most t pieces, then f has at most 2t − 1 crossings of 1/2: at most one within
each interval of the partition, and at most 1 at the right endpoint of all but the last
interval. Consequently, f̃ is piecewise constant, where the corresponding partition
of R is into at most 2t intervals. This means n points with alternating labels must
land in 2t buckets, thus the total number of points landing in buckets with at least
three points is at least n− 4t . ��

Python Notebooks

The notebooks provided in the accompanying source code repository are designed
to gain insight in toy classification datasets. They provide examples of deep
feedforward classification, back-propagation, and Bayesian network classifiers.
Further details of the notebooks are included in the README.md file.

164 4 Feedforward Neural Networks

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). Tensor flow: A system
for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’16 (pp. 265–283).

Adams, R., Wallach, H., & Ghahramani, Z. (2010). Learning the structure of deep sparse graphical
models. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics (pp. 1–8).

Andrews, D. (1989). A unified theory of estimation and inference for nonlinear dynamic models
a.r. gallant and h. white. Econometric Theory, 5(01), 166–171.

Baillie, R. T., & Kapetanios, G. (2007). Testing for neglected nonlinearity in long-memory models.
Journal of Business & Economic Statistics, 25(4), 447–461.

Barber, D., & Bishop, C. M. (1998). Ensemble learning in Bayesian neural networks. Neural
Networks and Machine Learning, 168, 215–238.

Bartlett, P., Harvey, N., Liaw, C., & Mehrabian, A. (2017a). Nearly-tight VC-dimension bounds
for piecewise linear neural networks. CoRR, abs/1703.02930.

Bartlett, P., Harvey, N., Liaw, C., & Mehrabian, A. (2017b). Nearly-tight VC-dimension bounds
for piecewise linear neural networks. CoRR, abs/1703.02930.

Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., & Marcotte, P. (2006). Convex neural networks.
In Y. Weiss, Schölkopf, B., & Platt, J. C. (Eds.), Advances in neural information processing
systems 18 (pp. 123–130). MIT Press.

Bishop, C. M. (2006). Pattern recognition and machine learning (information science and
statistics). Berlin, Heidelberg: Springer-Verlag.

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015a, May). Weight uncertainty in
neural networks. arXiv:1505.05424 [cs, stat].

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015b). Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424.

Chataigner, Crepe, & Dixon. (2020). Deep local volatility.
Chen, J., Flood, M. D., & Sowers, R. B. (2017). Measuring the unmeasurable: an application of

uncertainty quantification to treasury bond portfolios. Quantitative Finance, 17(10), 1491–
1507.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., et al. (2012). Large scale
distributed deep networks. In Advances in neural information processing systems (pp. 1223–
1231).

Dixon, M., Klabjan, D., & Bang, J. H. (2016). Classification-based financial markets prediction
using deep neural networks. CoRR, abs/1603.08604.

Feng, G., He, J., & Polson, N. G. (2018, Apr). Deep learning for predicting asset returns. arXiv
e-prints, arXiv:1804.09314.

Frey, B. J., & Hinton, G. E. (1999). Variational learning in nonlinear Gaussian belief networks.
Neural Computation, 11(1), 193–213.

Gal, Y. (2015). A theoretically grounded application of dropout in recurrent neural networks.
arXiv:1512.05287.

Gal, Y. (2016). Uncertainty in deep learning. Ph.D. thesis, University of Cambridge.
Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model

uncertainty in deep learning. In international Conference on Machine Learning (pp. 1050–
1059).

Gallant, A., & White, H. (1988, July). There exists a neural network that does not make avoidable
mistakes. In IEEE 1988 International Conference on Neural Networks (vol.1 ,pp. 657–664).

Graves, A. (2011). Practical variational inference for neural networks. In Advances in Neural
Information Processing Systems (pp. 2348–2356).

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining,
inference and prediction. Springer.

References 165

Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: deep portfolios.
Applied Stochastic Models in Business and Industry, 33(1), 3–12.

Hernández-Lobato, J. M., & Adams, R. (2015). Probabilistic backpropagation for scalable learning
of Bayesian neural networks. In International Conference on Machine Learning (pp. 1861–
1869).

Hinton, G. E., & Sejnowski, T. J. (1983). Optimal perceptual inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 448–453). IEEE New York.

Hinton, G. E., & Van Camp, D. (1993). Keeping the neural networks simple by minimizing
the description length of the weights. In Proceedings of the Sixth Annual Conference on
Computational Learning Theory (pp. 5–13). ACM.

Hornik, K., Stinchcombe, M., & White, H. (1989, July). Multilayer feedforward networks are
universal approximators. Neural Netw., 2(5), 359–366.

Horvath, B., Muguruza, A., & Tomas, M. (2019, Jan). Deep learning volatility. arXiv e-prints,
arXiv:1901.09647.

Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A nonparametric approach to pricing and
hedging derivative securities via learning networks. The Journal of Finance, 49(3), 851–889.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114.

Kuan, C.-M., & White, H. (1994). Artificial neural networks: an econometric perspective.
Econometric Reviews, 13(1), 1–91.

Lawrence, N. (2005). Probabilistic non-linear principal component analysis with Gaussian process
latent variable models. Journal of Machine Learning Research, 6(Nov), 1783–1816.

Liang, S., & Srikant, R. (2016). Why deep neural networks? CoRR abs/1610.04161.
Lo, A. (1994). Neural networks and other nonparametric techniques in economics and finance. In

AIMR Conference Proceedings, Number 9.
MacKay, D. J. (1992a). A practical Bayesian framework for backpropagation networks. Neural

Computation, 4(3), 448–472.
MacKay, D. J. C. (1992b, May). A practical Bayesian framework for backpropagation networks.

Neural Computation, 4(3), 448–472.
Martin, C. H., & Mahoney, M. W. (2018). Implicit self-regularization in deep neural networks:

Evidence from random matrix theory and implications for learning. CoRR abs/1810.01075.
Mhaskar, H., Liao, Q., & Poggio, T. A. (2016). Learning real and Boolean functions: When is deep

better than shallow. CoRR abs/1603.00988.
Mnih, A., & Gregor, K. (2014). Neural variational inference and learning in belief networks. arXiv

preprint arXiv:1402.0030.
Montúfar, G., Pascanu, R., Cho, K., & Bengio, Y. (2014, Feb). On the number of linear regions of

deep neural networks. arXiv e-prints, arXiv:1402.1869.
Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach.

Journal of Economic Perspectives, 31(2), 87–106.
Neal, R. M. (1990). Learning stochastic feedforward networks, Vol. 64. Technical report, Depart-

ment of Computer Science, University of Toronto.
Neal, R. M. (1992). Bayesian training of backpropagation networks by the hybrid Monte Carlo

method. Technical report, CRG-TR-92-1, Dept. of Computer Science, University of Toronto.
Neal, R. M. (2012). Bayesian learning for neural networks, Vol. 118. Springer Science & Business

Media. bibtex: aneal2012bayesian.
Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course, Volume 87.

Springer Science & Business Media.
Poggio, T. (2016). Deep learning: mathematics and neuroscience. A sponsored supplement to

science brain-inspired intelligent robotics: The intersection of robotics and neuroscience,
pp. 9–12.

Polson, N., & Rockova, V. (2018, Mar). Posterior concentration for sparse deep learning. arXiv
e-prints, arXiv:1803.09138.

Polson, N. G., Willard, B. T., & Heidari, M. (2015). A statistical theory of deep learning via
proximal splitting. arXiv:1509.06061.

166 4 Feedforward Neural Networks

Racine, J. (2001). On the nonlinear predictability of stock returns using financial and economic
variables. Journal of Business & Economic Statistics, 19(3), 380–382.

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint arXiv:1401.4082.

Ruiz, F. R., Aueb, M. T. R., & Blei, D. (2016). The generalized reparameterization gradient. In
Advances in Neural Information Processing Systems (pp. 460–468).

Salakhutdinov, R. (2008). Learning and evaluating Boltzmann machines. Tech. Rep., Technical
Report UTML TR 2008-002, Department of Computer Science, University of Toronto.

Salakhutdinov, R., & Hinton, G. (2009). Deep Boltzmann machines. In Artificial Intelligence and
Statistics (pp. 448–455).

Saul, L. K., Jaakkola, T., & Jordan, M. I. (1996). Mean field theory for sigmoid belief networks.
Journal of Artificial Intelligence Research, 4, 61–76.

Sirignano, J., Sadhwani, A., & Giesecke, K. (2016, July). Deep learning for mortgage risk. ArXiv
e-prints.

Smolensky, P. (1986). Parallel distributed processing: explorations in the microstructure of
cognition (Vol. 1. pp. 194–281). Cambridge, MA, USA: MIT Press.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1), 1929–1958.

Swanson, N. R., & White, H. (1995). A model-selection approach to assessing the information in
the term structure using linear models and artificial neural networks. Journal of Business &
Economic Statistics, 13(3), 265–275.

Telgarsky, M. (2016). Benefits of depth in neural networks. CoRR abs/1602.04485.
Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likeli-

hood gradient. In Proceedings of the 25th International Conference on Machine Learning (pp.
1064–1071). ACM.

Tishby, N., & Zaslavsky, N. (2015). Deep learning and the information bottleneck principle.
CoRR abs/1503.02406.

Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017, January).
Deep probabilistic programming. arXiv:1701.03757 [cs, stat].

Vapnik, V. N. (1998). Statistical learning theory. Wiley-Interscience.
Welling, M., Rosen-Zvi, M., & Hinton, G. E. (2005). Exponential family harmoniums with an

application to information retrieval. In Advances in Neural Information Processing Systems
(pp. 1481–1488).

Williams, C. K. (1997). Computing with infinite networks. In Advances in Neural Information
Processing systems (pp. 295–301).

Chapter 5
Interpretability

This chapter presents a method for interpreting neural networks which imposes
minimal restrictions on the neural network design. The chapter demonstrates
techniques for interpreting a feedforward network, including how to rank the
importance of the features. An example demonstrating how to apply interpretability
analysis to deep learning models for factor modeling is also presented.

1 Introduction

Once the neural network has been trained, a number of important issues surface
around how to interpret the model parameters. This aspect is a prominent issue for
practitioners in deciding whether to use neural networks in favor of other machine
learning and statistical methods for estimating factor realizations, sometimes even
if the latter’s predictive accuracy is inferior.

In this section, we shall introduce a method for interpreting multilayer percep-
trons which imposes minimal restrictions on the neural network design.

Chapter Objectives

By the end of this chapter, the reader should expect to accomplish the following:

– Apply techniques for interpreting a feedforward network, including how to rank
the importance of the features.

– Learn how to apply interpretability analysis to deep learning models for factor
modeling.

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_5

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_5

168 5 Interpretability

2 Background on Interpretability

There are numerous techniques for interpreting machine learning methods which
treat the model as a black-box. A good example are Partial Dependence Plots
(PDPs) as described by Greenwell et al. (2018). Other approaches also exist
in the literature. Garson (1991) partitions hidden-output connection weights into
components associated with each input neuron using absolute values of connection
weights. Olden and Jackson (2002) determine the relative importance, [R]ij , of the
ith output to the j th predictor variable of the model as a function of the weights,
according to a simple linear expression.

We seek to understand the limitations on the choice of activation functions and
understand the effect of increasing layers and numbers of neurons on probabilistic
interpretability. For example, under standard Gaussian i.i.d. data, how robust are the
model’s estimate of the importance of each input variable with variable number of
neurons?

2.1 Sensitivities

We shall therefore turn to a “white-box” technique for determining the importance
of the input variables. This approach generalizes Dimopoulos et al. (1995) to
a deep neural network with interaction terms. Moreover, the method is directly
consistent with how coefficients are interpreted in linear regression—they are model
sensitivities. Model sensitivities are the change of the fitted model output w.r.t. input.

As a control, we shall use this property to empirically evaluate how reliably
neural networks, even deep networks, learn data from a linear model.

Such an approach is appealing to practitioners who are evaluating the compara-
tive performance of linear regression with neural networks and need the assurance
that a neural network model is at least able to reproduce and match the coefficients
on a linear dataset.

We also offset the common misconception that the activation functions must be
deactivated for a neural network model to produce a linear output. Under linear data,
any non-linear statistical model should be able to reproduce a statistical linear model
under some choice of parameter values. Irrespective of whether data is linear or
non-linear in practice - the best control experiment for comparing a neural network
estimator with an OLS estimator is to simulate data under a linear regression model.
In this scenario, the correct model coefficients are known and the error in the
coefficient estimator can be studied.

To evaluate fitted model sensitivities analytically, we require that the function
Ŷ = f (X) is continuous and differentiable everywhere. Furthermore, for stability of

3 Explanatory Power of Neural Networks 169

the interpretation, we shall require that f (x) is Lipschitz continuous.1 That is, there
is a positive real constantK s.t. ∀x1, x2 ∈ R

p, |F(x1)−F(x2)| ≤ K|x1− x2|. Such
a constraint is necessary for the first derivative to be bounded and hence amenable
to the derivatives, w.r.t. to the inputs, providing interpretability.

Fortunately, provided that the weights and biases are finite, each semi-affine
function is Lipschitz continuous everywhere. For example, the function tanh(x) is
continuously differentiable and its derivative 1− tanh2(x) is globally bounded. With
finite weights, the composition of tanh(x) with an affine function is also Lipschitz.
Clearly ReLU(x) := max(·, 0) is not continuously differentiable and one cannot use
the approach described here. Note that for the following examples, we are indifferent
to the choice of homoscedastic or heteroscedastic error, since the model sensitivities
are independent of the error.

3 Explanatory Power of Neural Networks

In a linear regression model

Ŷ = Fβ(X) := β0 + β1X1 + · · · + βKXK, (5.1)

the model sensitivities are

∂Xi Ŷ = βi. (5.2)

In a feedforward neural network, we can use the chain rule to obtain the model
sensitivities

∂Xi Ŷ = ∂XiFW,b(X) = ∂Xi σ (L)W(L),b(L)
◦ · · · ◦ σ (1)

W(1),b(1)
(X). (5.3)

For example, with one hidden layer, σ(x) := tanh(x) and σ (1)
W(1),b(1)

(X) :=
σ(I (1)) := σ(W(1)X + b(1)):

∂Xj Ŷ =
∑

i

w(2),i (1− σ 2(I
(1)
i))w

(1)
ij where ∂xσ (x) = (1− σ 2(x)). (5.4)

In matrix form, with general σ , the Jacobian2 of σ w.r.tX is J = D(I (1))W(1) of σ ,

∂XŶ = W(2)J (I (1)) = W(2)D(J (1))W(1), (5.5)

1If Lipschitz continuity is not imposed, then a small change in one of the input values could result
in an undesirable large variation in the derivative.
2When σ is an identity function, the Jacobian J (I (1)) = W(1).

170 5 Interpretability

where Dii(I) = σ ′(Ii), Dij = 0, i �= j is a diagonal matrix. Bounds on the
sensitivities are given by the product of the weight matrices

min(W(2)W(1), 0) ≤ ∂XŶ ≤ max(W(2)W(1), 0). (5.6)

3.1 Multiple Hidden Layers

The model sensitivities can be readily generalized to an L layer deep network by
evaluating the Jacobian matrix:

∂XŶ = W(L)J (I (L−1)) = W(L)D(I (L−1))W(L−1) . . . D(I (1))W(1). (5.7)

3.2 Example: Step Test

To illustrate our interpretability approach, we shall consider a simple example. The
model is trained to the following data generation process where the coefficients of
the features are stepped and the error, here, is i.i.d. uniform:

Ŷ =
10∑

i=1

iXi, Xi ∼ U(0, 1). (5.8)

Figure 5.1 shows the ranked importance of the input variables in a neural network
with one hidden layer. Our interpretability method is compared with well-known
black-box interpretability methods such as Garson’s algorithm (Garson 1991) and
Olden’s algorithm (Olden and Jackson 2002). Our approach is the only technique to
interpret the fitted neural network which is consistent with how a linear regression
model would interpret the input variables.

4 Interaction Effects

The previous example is too simplistic to illustrate another important property of
our interpretability method, namely the ability to capture pairwise interaction terms.
The pairwise interaction effects are readily available by evaluating the elements of
the Hessian matrix. For example, with one hidden layer, the Hessian takes the form:

∂2
XiXj

Ŷ = W(2)diag(W
(1)
i)D

′(I (1))W(1)
j , (5.9)

where it is assumed that the activation function is at least twice differentiable
everywhere, e.g. tanh(x).

4 Interaction Effects 171

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

0.0 2.5 5.0 7.5 10.0 0.00 0.05 0.10 0.15 0.20 403020100

X9

X8

X7

X5

X6

X2

X4

X1

X3

X10

Importance (Garson’s algorithm) Importance (Olden’s algorithm)Importance (Sensitivity)

V
ar

ia
bl

e

Fig. 5.1 Step test: This figure shows the ranked importance of the input variables in a neural
network with one hidden layer. (left) Our sensitivity based approach for input interpretability.
(Center) Garson’s algorithm and (Right) Olden’s algorithm. Our approach is the only technique
to interpret the fitted neural network which is consistent with how a linear regression model would
interpret the input variables

4.1 Example: Friedman Data

To illustrate our input variable and interaction effect ranking approach, we will use
a classical nonlinear benchmark regression problem. The input space consists of
ten i.i.d. uniform U (0, 1) random variables; however, only five out of these ten
actually appear in the true model. The response is related to the inputs according to
the formula

172 5 Interpretability

X9

X10

X6

X8

X7

X3

X5

X2

X1

X4

0.0 2.5 5.0 7.5 10.0

Importance (Sensitivity)

V
ar

ia
bl

e

X6

X5

X8

X7

X9

X4

X3

X2

X1

X10

0.0 0.1 0.2 0.3

Importance (Garson's algorithm)

X3

X4

X2

X5

X8

X9

X6

X7

X10

X1

−10 0 10 20 30

Importance (Olden's algorithm)

Fig. 5.2 Friedman test: Ranked model sensitivities of the fitted neural network to the input. (left)
Our sensitivity based approach for input interpretability. (Center) Garson’s algorithm and (Right)
Olden’s algorithm

Y = 10 sin (πX1X2)+ 20 (X3 − 0.5)2 + 10X4 + 5X5 + ε,
using white noise error, ε ∼ N

(
0, σ 2

)
. We fit a NN with one hidden layer

containing eight units and a weight decay of 0.01 (these parameters were chosen
using 5-fold cross-validation) to 500 observations simulated from the above model
with σ = 1. The cross-validated R2 value was 0.94.

Figures 5.2 and 5.3, respectively, compare the ranked model sensitivities and
ranked interaction terms of the fitted neural network with Garson’s and Olden’s
algorithm.

5 Bounds on the Variance of the Jacobian

General results on the bound of the variance of the Jacobian for any activation
function are difficult to derive. However, we derive the following result for a ReLU
activated single-layer feedforward network. In matrix form, with σ(x) = max(x, 0),
the Jacobian, J , can be written as a linear combination of Heaviside functions:

J := J (X) = ∂XŶ (X) = W(2)J (I (1)) = W(2)H(W(1)X + b(1))W(1), (5.10)

5 Bounds on the Variance of the Jacobian 173

x_23

x_34

x_28

x_310

x_15

x_45

x_14

x_25

x_24

x_12

0 1 2 3 4

Importance (Sensitivity)

In
te

ra
ct

io
n

T
er

m

Fig. 5.3 Friedman test: Ranked pairwise interaction terms in the fitted neural network to the input.
(Left) Our sensitivity based approach for ranking interaction terms. (Center) Garson’s algorithm
and (Right) Olden’s algorithm

where Hii(Z) = H(I (1)i) = 1{I (1)i >0}, Hij = 0, j ≥ i. We assume that the mean

of the Jacobian is independent of the number of hidden units, μij := E[Jij]. Then
we can state the following bound on the Jacobian of the network for the special case
when the input is one-dimensional.

Theorem (Dixon and Polson 2019) IfX ∈ R
p is i.i.d. and there are n hidden units,

with ReLU activation i, then the variance of a single-layer feedforward network with
K outputs is bounded by μij

V[Jij] = μij n− 1

n
< μij , ∀i ∈ {1, . . . , K} and ∀j ∈ {1, . . . , p}. (5.11)

See Appendix “Proof of Variance Bound on Jacobian” for the proof.

Remark 5.1 The theorem establishes a negative result for a ReLU activated shallow
network—increasing the number of hidden units, increases the bound on the
variance of the Jacobian, and hence reduces interpretability of the sensitivities. Note
that if we do not assume that the mean of the Jacobian is fixed under varying n, then
we have the more general bound:

V[Jij] ≤ μij , (5.12)

174 5 Interpretability

and hence the effect of network architecture on the bound of the variance of
the Jacobian is not clear. Note that the theorem holds without (i) distributional
assumptions on X other than i.i.d. data and (ii) specifying the number of data
points. �
Remark 5.2 This result also suggests that the inputs should be rescaled so that each
μij , the expected value of the Jacobian, is a small positive value, although it may
not be possible to find such a scaling for all (i, j) pairs. �

5.1 Chernoff Bounds

We can derive probabilistic bounds on the Jacobians for any choice of activation
function. Let δ > 0 and a1, . . . , an−1 be reals in (0, 1]. Let X1, . . . , Xn−1 be
independent Bernoulli trials with E[Xk] = pk so that

E[J] =
n−1∑

k=1

akpk = μ. (5.13)

The Chernoff-type bound exists on deviations of J above the mean

Pr(J > (1+ δ)μ) =
[

eδ

(1+ δ)1+δ
]μ
. (5.14)

A similar bound exists for deviations of J below the mean. For γ ∈ (0, 1]:

Pr(J − μ < −γμ) <
[

eγ

(1+ γ)1+γ
]μ
. (5.15)

These bounds are generally weak and are suited to large deviations, i.e. the tail
regions. The bounds are shown in the Fig. 5.4 for different values of μ. Here, μ is
increasing towards the upper right-hand corner of the plot.

5.2 Simulated Example

In this section, we demonstrate the estimation properties of neural network sensitiv-
ities applied to data simulated from a linear model. We show that the sensitivities in
a neural network are consistent with the linear model, even if the neural network
model is non-linear. We also show that the confidence intervals, estimated by
sampling, converge with increasing hidden units.

We generate 400 simulated training samples from the following linear model
with i.i.d. Gaussian error:

5 Bounds on the Variance of the Jacobian 175

Fig. 5.4 The Chernoff-type
bounds for deviations of J
above the mean, μ. Various μ
are shown in the plot, with μ
increasing towards the upper
right-hand corner of the plot

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

δ

P
r[

J>
μ(

1+
δ)

]

Table 5.1 This table compares the functional form of the variable sensitivities and values with an
OLS estimator. NN0 is a zero hidden layer feedforward network and NN1 is a one hidden layer
feedforward network with 10 hidden neurons and tanh activation functions

Model Intercept Sensitivity of X1 Sensitivity of X2

OLS β̂0 0.011 β̂1 1.015 β̂2 1.018

NN0 b̂(1) 0.020 Ŵ
(1)
1 1.018 Ŵ

(1)
2 1.021

NN1 Ŵ (2)σ (b̂(1))+ b̂(2) 0.021 E[Ŵ (2)D(I (1))Ŵ
(1)
1] 1.014 E[Ŵ (2)D(I (1))Ŵ

(1)
2] 1.022

Y = β1X1 + β2X2 + ε, X1, X2, ε ∼ N(0, 1), β1 = 1, β2 = 1. (5.16)

Table 5.1 compares an OLS estimator with a zero hidden layer feedforward network
(NN0) and a one hidden layer feedforward network with 10 hidden neurons and tanh
activation functions (NN1). The functional form of the first two regression models
is equivalent, although the OLS estimator has been computed using a matrix solver,
whereas the zero layer hidden network parameters have been fitted with stochastic
gradient descent.

The fitted parameters values will vary slightly with each optimization as the
stochastic gradient descent is randomized. However, the sensitivity terms are given
in closed form and easily mapped to the linear model. In an industrial setting, such
a one-to-one mapping is useful for migrating to a deep factor model where, for
model validation purposes, compatibility with linear models should be recovered in
a limiting case. Clearly, if the data is not generated from a linear model, then the
parameter values would vary across models.

176 5 Interpretability

Fig. 5.5 This figure shows the empirical distribution of the sensitivities β̂1 and β̂2. The sharpness
of the distribution is observed to converge with the number of hidden units. (a) Density of β̂1. (b)
Density of β̂2

Table 5.2 This table shows the moments and 99% confidence interval of the empirical distribution
of the sensitivity β̂1. The sharpness of the distribution is observed to converge monotonically with
the number of hidden units

Hidden Units Mean Median Std.dev 1% C.I. 99% C.I.

2 0.980875 1.0232913 0.10898393 0.58121675 1.0729908

10 0.9866159 1.0083131 0.056483902 0.76814914 1.0322522

50 0.99183553 1.0029879 0.03123002 0.8698967 1.0182846

100 1.0071343 1.0175397 0.028034585 0.89689034 1.0296803

200 1.0152218 1.0249312 0.026156902 0.9119074 1.0363332

Table 5.3 This table shows the moments and the 99% confidence interval of the empirical
distribution of the sensitivity β̂2. The sharpness of the distribution is observed to converge
monotonically with the number of hidden units

Hidden Units Mean Median Std.dev 1% C.I. 99% C.I.

2 0.98129386 1.0233982 0.10931312 0.5787732 1.073728

10 0.9876832 1.0091512 0.057096474 0.76264584 1.0339714

50 0.9903236 1.0020974 0.031827927 0.86471796 1.0152498

100 0.9842479 0.9946766 0.028286876 0.87199813 1.0065105

200 0.9976638 1.0074166 0.026751818 0.8920307 1.0189484

Figure 5.5 and Tables 5.2 and 5.3 show the empirical distribution of the fitted
sensitivities using the single hidden layer model with increasing hidden units.
The sharpness of the distributions is observed to converge monotonically with
the number of hidden units. The confidence intervals are estimated under a non-
parametric distribution.

In general, provided the weights and biases of the network are finite, the variances
of the sensitivities are bounded for any input and choice of activation function.

6 Factor Modeling 177

We do not recommend using ReLU activation because it does not permit
identification of the interaction terms and has provably non-convergent sensitivity
variances as a function of the number of hidden units (see Appendix “Proof of
Variance Bound on Jacobian”).

6 Factor Modeling

Rosenberg and Marathe (1976) introduced a cross-sectional fundamental factor
model to capture the effects of macroeconomic events on individual securities. The
choice of factors are microeconomic characteristics—essentially common factors,
such as industry membership, financial structure, or growth orientation (Nielsen and
Bender 2010).

The BARRA fundamental factor model expresses the linear relationship between
K fundamental factors and N asset returns:

rt = Bt ft + εt , t = 1, . . . , T , (5.17)

whereBt = [1 | β1(t) | · · · | βK(t)] is theN×K+1 matrix of known factor loadings
(betas): βi,k(t) :=

(
βk
)
i
(t) is the exposure of asset i to factor k at time t .

The factors are asset specific attributes such as market capitalization, industry
classification, style classification. ft = [αt , f1,t , . . . , fK,t] is the K + 1 vector of
unobserved factor realizations at time t , including αt .

rt is the N -vector of asset returns at time t . The errors are assumed independent
of the factor realizations ρ(fi,t , εj,t) = 0,∀i, j, t with Gaussian error, E[ε2

j,t] = σ 2.

6.1 Non-linear Factor Models

We can extend the linear model to a non-linear cross-sectional fundamental factor
model of the form

rt = Ft(Bt)+ εt , (5.18)

where rt are asset returns, Ft : RK → R is a differentiable non-linear function
that maps the ith row of B to the ith asset return at time t . The map is assumed to
incorporate a bias term so that Ft(0) = αt . In the special case when Ft(Bt) is linear,
the map is Ft(Bt) = Bt ft .

A key feature is that we do not assume that εt is described by a parametric
distribution, such as a Gaussian distribution. In our example, we shall treat εt as
i.i.d., however, we can extend the methodology to non-i.i.d. idea as in Dixon and
Polson (2019). In our setup, the model shall just be used to predict the next period
returns only and stationarity of the factor realizations is not required.

178 5 Interpretability

We approximate a non-linear map, Ft(Bt), with a feedforward neural network
cross-sectional factor model:

rt = FWt ,bt (Bt)+ εt , (5.19)

where FWt ,bt is a deep neural network with L layers.

6.2 Fundamental Factor Modeling

This section presents an application of deep learning to a toy fundamental factor
model. Factor models in practice include significantly more fundamental factors
that used here. But the purpose, here, is to illustrate the application of interpretable
deep learning to financial data.

We define the universe as the top 250 stocks from the S&P 500 index, ranked by
market cap. Factors are given by Bloomberg and reported monthly over a hundred
month period beginning in February 2008. We remove stocks with too many missing
factor values, leaving 218 stocks.

The historical factors are inputs to the model and are standardized to enable
model interpretability. These factors are (i) current enterprise value; (ii) Price-
to-Book ratio; (iii) current enterprise value to trailing 12 month EBITDA; (iv)
Price-to-Sales ratio; (v) Price-to-Earnings ratio; and (vi) log market cap. The
responses are the monthly asset returns for each stock in our universe based on
the daily adjusted closing prices of the stocks.

We use Tensorflow (Abadi et al. 2016) to implement a two hidden layer
feedforward network and develop a custom implementation for the least squares
error and variable sensitivities and is available in the deep factor models notebook.
The OLS regression is implemented by the Python StatsModels module.

All deep learning results are shown using L1 regularization and tanh activation
functions. The number of hidden units and regularization parameters are found by
three-fold cross-validation and reported alongside the results.

Figure 5.6 compares the performance of an OLS estimator with the feedforward
neural network with 10 hidden units in the first hidden layer and 10 hidden units in
the second layer and λ1 = 0.001.

Figure 5.7 shows the in-sample MSE as a function of the number of hidden units
in the hidden layer. The neural networks are trained here without L1 regularization
to demonstrate the effect of solely increasing the number of hidden units in the first
layer. Increasing the number of hidden units reduces the bias in the model.

Figure 5.8 shows the effect of L1 regularization on the MSE errors for a
network with 10 units in each of the two hidden layers. Increasing the level of L1
regularization increases the in-sample bias but reduces the out-of-sample bias, and
hence the variance of the estimation error.

Figure 5.9 compares the distribution of sensitivities to each factor over the entire
100 month period using the neural network (top) and OLS regression (bottom). The

6 Factor Modeling 179

t
200

10−2

10−2

10−1

M
S

E
 (

ou
t-

of
-s

am
pl

e)

M
S

E
 (

in
-s

am
pl

e)

40 60 80 100
t
(a) (b)

200 40 60 80 100

NN
OLS

NN
OLS

Fig. 5.6 This figures compares the in-sample and out-of-sample performances of an OLS estima-
tor (OLS) with a feedforward neural network (NN), as measured by the mean squared error (MSE).
The neural network is observed to always exhibit slightly lower out-of-sample MSE, although the
effect of deep networks on this problem is marginal because the dataset is too simplistic. (a) In-
sample error. (b) Out-of-sample error

Fig. 5.7 This figure shows
the in-sample MSE as a
function of the number of
hidden units in the hidden
layer. Increasing the number
of hidden units reduces the
bias in the model

0.0060

0.0055

0.0050

0.0045

0.0040

Zero 1 10 25 50 100
Number of Neurons

M
S

E
 In

-S
am

pl
e

0.0135

0.0130

0.0125

0.0115

0.0110

0.0105

0.00 0.02 0.04 0.06 0.08 0.10
L1 Regularization

0.00 0.02 0.04 0.06 0.08 0.10
L1 Regularization

M
S

E
 O

ut
-o

f-
sa

m
pl

e
(5

0N
)

M
S

E
 in

-s
am

pl
e

(5
0N

)

0.0120

0.0052

0.0050

0.0048

0.0046

0.0044

0.0042

(a) (b)

Fig. 5.8 These figures show the effect of L1 regularization on the MSE errors for a network with
10 neurons in each of the two hidden layers. (a) In-sample. (b) Out-of-sample

180 5 Interpretability

Fig. 5.9 The distribution of sensitivities to each factor over the entire 100 month period using
the neural network (top). The sensitivities are sorted in ascending order from left to right by their
median values. The same sensitivities using OLS linear regression (bottom)

sensitivities are sorted in ascending order from left to right by their median values.
We observe that the OLS regression is much more sensitive to the factors than the
NN. We further note that the NN ranks the top sensitivities differently to OLS.

Clearly, the above results are purely illustrative of the interpretability method-
ology and not intended to be representative of a real-world factor model. Such a
choice of factors is observed to provide little benefit on the information ratios of a
simple stock selection strategy.

Larger Dataset

For completeness, we provide evidence that our neural network factor model
generates positive and higher information ratios than OLS when used to sort
portfolios from a larger universe, using up to 50 factors (see Table 5.4 for a
description of the factors). The dataset is not provided due to data licensing
restrictions.

We define the universe as 3290 stocks from the Russell 3000 index. Factors are
given by Bloomberg and reported monthly over the period from November 2008 to
November 2018. We train a two-hidden layer deep network with 50 hidden units
using ReLU activation.

Figure 5.10 compares the out-of-sample performance of neural networks and
OLS regression by the MSE (left) and the information ratios of a portfolio selection
strategy which selects the n stocks with the highest predicted monthly returns
(right). The information ratios are evaluated for various size portfolios, using the
Russell 3000 index as the benchmark. Also shown, for control, are randomly
selected portfolios.

6 Factor Modeling 181

Table 5.4 A short description of the factors used in the Russell 3000 deep learning factor model
demonstrated at the end of this chapter

Value factors

B/P Book to price

CF/P Cash flow to price

E/P Earning to price

S/EV Sales to enterprise value (EV). EV is given by

EV=Market Cap + LT Debt + max(ST Debt-Cash,0),

where LT (ST) stands for long (short) term

EB/EV EBIDTA to EV

FE/P Forecasted E/P. Forecast earnings are calculated from Bloomberg earnings
consensus estimates data

For coverage reasons, Bloomberg uses the 1-year and 2-year forward earnings

DIV Dividend yield. The exposure to this factor is just the most recently announced
annual net dividends

divided by the market price

Stocks with high dividend yields have high exposures to this factor

Size factors

MC Log (Market capitalization)

S Log (sales)

TA Log (total assets)

Trading activity factors

TrA Trading activity is a turnover based measure

Bloomberg focuses on turnover which is trading volume normalized by shares
outstanding

This indirectly controls for the Size effect

The exponential weighted average (EWMA) of the ratio of shares traded to
shares outstanding

In addition, to mitigate the impacts of those sharp short-lived spikes in trading
volume,

Bloomberg winsorizes the data

first daily trading volume data is compared to the long-term EWMA
volume(180 day half-life),

then the data is capped at 3 standard deviations away from the EWMA average

Earnings variability factors

EaV/TA Earnings volatility to total assets

Earnings volatility is measured

over the last 5 years/median total assets over the last 5 years

CFV/TA Cash flow volatility to total assets

Cash flow volatility is measured over the last 5 years/median total assets over
the last 5 years

SV/TA Sales volatility to total assets

Sales volatility over the last 5 years/median total assets over the last 5 year

(continued)

182 5 Interpretability

Table 5.4 (continued)

Volatility factors

RV Rolling volatility which is the return volatility over the latest 252 trading
days

CB Rolling CAPM beta which is the regression coefficient

from the rolling window regression of stock returns on local index returns

Growth factors

TAG Total asset growth is the 5-year average growth in total assets

divided by the average total assets over the last 5 years

EG Earnings growth is the 5-year average growth in earnings

divided by the average total assets over the last 5 years

GSIC sectorial codes

(I)ndustry {10, 20, 30, 40, 50, 60, 70}
(S)ub-(I)ndustry {10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80}
(S)ector {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}
(I)ndustry (G)roup {10, 20, 30, 40, 50}

Fig. 5.10 (a) The out-of-sample MSE is compared between OLS and a two-hidden layer deep
network applied to a universe of 3290 stocks from the Russell 3000 index over the period from
November 2008 to November 2018. (b) The information ratios of a portfolio selection strategy
which selects the n stocks from the universe with the highest predicted monthly returns. The
information ratios are evaluated for various size portfolios. The information ratios are based on out-
of-sample predicted asset returns using OLS regression, neural networks, and randomized selection
with no predictive model

Finally, Fig. 5.11 compares the distribution of sensitivities to each factor over
the entire 100 month period using the neural network (top) and OLS regression
(bottom). The sensitivities are sorted in ascending order from left to right by their
median values. We observe that the NN ranking of the factors differs substantially
from the OLS regression.

7 Summary 183

Fig. 5.11 The distribution of factor model sensitivities to each factor over the entire ten-year
period using the neural network applied to the Russell 3000 asset factor loadings (top). The
sensitivities are sorted in ascending order from left to right by their median values. The same
sensitivities using OLS linear regression (bottom). See Table 5.4 for a short description of the
fundamental factors

7 Summary

An important aspect in adoption of neural networks in factor modeling is the
existence of a statistical framework which provides the transparency and statistical
interpretability of linear least squares estimation. Moreover, one should expect to
use such a framework applied to linear data and obtain similar results to linear
regression, thus isolating the effects of non-linearity versus the effect of using
different optimization algorithms and model implementation environments.

In this chapter, we introduce a deep learning framework for interpretable
cross-sectional modeling and demonstrate its application to a simple fundamental
factor model. Deep learning generalizes the linear fundamental factor models by
capturing non-linearity, interaction effects, and non-parametric shocks in financial
econometrics. This framework provides interpretability, with confidence intervals,
and ranking of the factor importance and interaction effects. In the case when the
network contains no hidden layers, our approach recovers a linear fundamental
factor model. The framework allows the impact of non-linearity and non-parametric
treatment of the error on the factors over time and forms the basis for generalized
interpretability of fundamental factors.

184 5 Interpretability

8 Exercises

Exercise 5.1*
Consider the following data generation process

Y = X1 +X2 + ε, X1, X2, ε ∼ N(0, 1),

i.e. β0 = 0 and β1 = β2 = 1.

a. For this data, write down the mathematical expression for the sensitivities of the
fitted neural network when the network has

– zero hidden layers;
– one hidden layer, with n unactivated hidden units;
– one hidden layer, with n tanh activated hidden units;
– one hidden layer, with n ReLU activated hidden units; and
– two hidden layers, each with n tanh activated hidden units.

Exercise 5.2**
Consider the following data generation process

Y = X1 +X2 +X1X2 + ε, X1, X2 ∼ N(0, 1), ε ∼ N(0, σ 2
n),

i.e. β0 = 0 and β1 = β2 = β12 = 1, where β12 is the interaction term. σ 2
n is the

variance of the noise and σn = 0.01.

a. For this data, write down the mathematical expression for the interaction term
(i.e., the off-diagonal components of the Hessian matrix) of the fitted neural
network when the network has

– zero hidden layers;
– one hidden layer, with n unactivated hidden units;
– one hidden layer, with n tanh activated hidden units;
– one hidden layer, with n ReLU activated hidden units; and
– two hidden layers, each with n tanh activated hidden units.

Why is the ReLU activated network problematic for estimating interaction terms?

8.1 Programming Related Questions*

Exercise 5.3*
For the same problem in the previous exercise, use 5000 simulations to gen-
erate a regression training set dataset for the neural network with one hidden
layer. Produce a table showing how the mean and standard deviation of the
sensitivities βi behave as the number of hidden units is increased. Compare
your result with tanh and ReLU activation. What do you conclude about which

Appendix 185

activation function to use for interpretability? Note that you should use the note-
book Deep-Learning-Interpretability.ipynb as the starting point for
experimental analysis.

Exercise 5.4*
Generalize the sensitivities function in Exercise 5.3 to L layers for either
tanh or ReLU activated hidden layers. Test your function on the data generation
process given in Exercise 5.1.

Exercise 5.5**
Fixing the total number of hidden units, how do the mean and standard deviation
of the sensitivities βi behave as the number of layers is increased? Your answer
should compare using either tanh or ReLU activation functions. Note, do not mix
the type of activation functions across layers. What you conclude about the effect of
the number of layers, keeping the total number of units fixed, on the interpretability
of the sensitivities?

Exercise 5.6**
For the same data generation process as the previous exercise, use 5000 simulations
to generate a regression training set for the neural network with one hidden layer.
Produce a table showing how the mean and standard deviation of the interaction
term behave as the number of hidden units is increased, fixing all other parameters.
What do you conclude about the effect of the number of hidden units on the
interpretability of the interaction term? Note that you should use the notebook
Deep-Learning-Interaction.ipynb as the starting point for experimental
analysis.

Appendix

Other Interpretability Methods

Partial Dependence Plots (PDPs) evaluate the expected output w.r.t. the marginal
density function of each input variable, and allow the importance of the predictors
to be ranked. More precisely, partitioning the data X into an interest set, Xs , and its
complement, Xc = X \Xs , then the “partial dependence” of the response on Xs is
defined as

fs (Xs) = EXc

[
f̂ (Xs ,Xc)

] =
∫
f̂ (Xs ,Xc) pc (Xc) dXc, (5.20)

where pc (Xc) is the marginal probability density of Xc: pc (Xc) =
∫
p (x) dxs .

Equation (5.20) can be estimated from a set of training data by

f̄s (Xs) = 1

n

n∑

i=1

f̂
(
Xs ,Xi,c

)
, (5.21)

186 5 Interpretability

where Xi,c (i = 1, 2, . . . , n) are the observations of Xc in the training set; that
is, the effects of all the other predictors in the model are averaged out. There
are a number of challenges with using PDPs for model interpretability. First, the
interaction effects are ignored by the simplest version of this approach. While
Greenwell et al. (2018) propose a methodology extension to potentially address the
modeling of interactive effects, PDPs do not provide a 1-to-1 correspondence with
the coefficients in a linear regression. Instead, we would like to know, under strict
control conditions, how the fitted weights and biases of the MLP correspond to the
fitted coefficients of linear regression. Moreover in the context of neural networks,
by treating the model as a black-box, it is difficult to gain theoretical insight in
to how the choice of the network architecture affects its interpretability from a
probabilistic perspective.

Garson (1991) partitions hidden-output connection weights into components
associated with each input neuron using absolute values of connection weights.
Garson’s algorithm uses the absolute values of the connection weights when
calculating variable contributions, and therefore does not provide the direction of
the relationship between the input and output variables.

Olden and Jackson (2002) determines the relative importance, rij = [R]ij , of the
ith output to the j th predictor variable of the model as a function of the weights,
according to the expression

rij = W(2)
jk W

(1)
ki . (5.22)

The approach does not account for non-linearity introduced into the activation,
which is the most critical aspects of the model. Furthermore, the approach presented
was limited to a single hidden layer.

Proof of Variance Bound on Jacobian

Proof The Jacobian can be written in matrix element form as

Jij = [∂XŶ]ij =
n∑

k=1

w
(2)
ik w

(1)
kj H(I

(1)
k) =

n∑

k=1

ckHk(I) (5.23)

where ck := cijk := w(2)ik w(1)kj and Hk(I) := H(I (1)k) is the Heaviside function. As
a linear combination of indicator functions, we have

Jij =
n−1∑

k=1

ak1{I (1)k >0,I (1)k+1≤0} + an1{I (1)n >0}, ak :=
k∑

i=1

ci . (5.24)

Alternatively, the Jacobian can be expressed in terms of a weighted sum of
independent Bernoulli trials involving X:

Appendix 187

Jij =
n−1∑

k=1

ak1{w(1)k, X>−b(1)k ,w(1)}k+1,X≤−b(1)k+1} + an1{w(1)n, X>−b(1)n }. (5.25)

Without loss of generality, consider the case when p = 1, the dimension of the input
space is one. Then Eq. 5.25 simplifies to:

Jij =
n−1∑

k=1

ak1xk<X≤xk+1 + an1xn<X, j = 1, (5.26)

where xk := − b
(1)
k

W
(1)
k

. The expectation of the Jacobian is given by

μij := E[Jij] =
n∑

k=1

akpk, (5.27)

where pk := Pr(xk < X ≤ xk+1) ∀k = 1, . . . , n− 1, pn := Pr(xn < X). For finite
weights, the expectation is bounded above by

∑n
k=1 ak . We can write the variance

of the Jacobian as:

V[Jij] =
n−1∑

k=1

akV[1{Z(1)k >0,Z(1)k+1≤0}] + anV[1{Z(1)n >0}] =
n∑

k=1

akpk(1− pk).
(5.28)

Under the assumption that the mean of the Jacobian is invariant to the number of
hidden units, or if the weights are constrained so that the mean is constant, then the
weights are ak = μij

npk
. Then the variance is bounded by the mean:

V[Jij] = μij n− 1

n
< μij . (5.29)

If we relax the assumption that μij is independent of n then, under the original
weights ak :=∑k

i=1 ci :

V[Jij] =
n∑

k=1

akpk(1− pk)

≤
n∑

k=1

akpk

= μij

≤
n∑

k=1

ak.

��

188 5 Interpretability

Russell 3000 Factor Model Description

Python Notebooks

The notebooks provided in the accompanying source code repository are designed to
gain familiarity with how to implement interpretable deep networks. The examples
include toy simulated data and a simple factor model. Further details of the
notebooks are included in the README.md file.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). Tensor flow: A system
for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’16 (pp. 265–283).

Dimopoulos, Y., Bourret, P., & Lek, S. (1995, Dec). Use of some sensitivity criteria for choosing
networks with good generalization ability. Neural Processing Letters, 2(6), 1–4.

Dixon, M. F., & Polson, N. G. (2019). Deep fundamental factor models.
Garson, G. D. (1991, April). Interpreting neural-network connection weights. AI Expert, 6(4), 46–

51.
Greenwell, B. M., Boehmke, B. C., & McCarthy, A. J. (2018, May). A simple and effective model-

based variable importance measure. arXiv e-prints, arXiv:1805.04755.
Nielsen, F., & Bender, J. (2010). The fundamentals of fundamental factor models. Technical

Report 24, MSCI Barra Research Paper.
Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: a randomization approach

for understanding variable contributions in artificial neural networks. Ecological Mod-
elling, 154(1), 135–150.

Rosenberg, B., & Marathe, V. (1976). Common factors in security returns: Microeconomic
determinants and macroeconomic correlates. Research Program in Finance Working Papers 44,
University of California at Berkeley.

Part II
Sequential Learning

Chapter 6
Sequence Modeling

This chapter provides an overview of the most important modeling concepts in
financial econometrics. Such methods form the conceptual basis and performance
baseline for more advanced neural network architectures presented in the next
chapter. In fact, each type of architecture is a generalization of many of the models
presented here. This chapter is especially useful for students from an engineering or
science background, with little exposure to econometrics and time series analysis.

1 Introduction

More often in finance, the data consists of observations of a variable over time, e.g.
stock prices, bond yields, etc. In such a case, the observations are not independent
over time, rather observations are often strongly related to their recent histories.
For this reason, the ordering of the data matters (unlike cross-sectional data). This
is in contrast to most methods of machine learning which assume that the data is
i.i.d. Moreover algorithms and techniques for fitting machine learning models, such
as back-propagation for neural networks and cross-validation for hyperparameter
tuning, must be modified for use on time series data.

“Stationarity” of the data is a further important delineation necessary to success-
fully apply models to time series data. If the estimated moments of the data change
depending on the window of observation, then the modeling problem is much more
difficult. Neural network approaches to addressing these challenges are presented in
the next chapter.

An additional consideration is the data frequency—the frequency at which the
data is observed assuming that the timestamps are uniform. In general, the frequency
of the data governs the frequency of the time series model. For example, support that
we seek to predict the week ahead stock price from daily historical adjusted close
prices on business days. In such a case, we would build a model from daily prices

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_6

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_6

192 6 Sequence Modeling

and then predict 5 daily steps ahead, rather than building a model using only weekly
intervals of data.

In this chapter we shall primarily consider applications of parametric, linear, and
frequentist models to uniform time series data. Such methods form the conceptual
basis and performance baseline for more advanced neural network architectures
presented in the next chapter. In fact, each type of architecture is a generalization
of many of the models presented here. Please note that the material presented in
this chapter is not intended as a substitute for a more comprehensive and rigorous
treatment of econometrics, but rather to provide enough background for Chap. 8.

Chapter Objectives

By the end of this chapter, the reader should expect to accomplish the following:

– Explain and analyze linear autoregressive models;
– Understand the classical approaches to identifying, fitting, and diagnosing

autoregressive models;
– Apply simple heteroscedastic regression techniques to time series data;
– Understand how exponential smoothing can be used to predict and filter time

series; and
– Project multivariate time series data onto lower dimensional spaces with principal

component analysis.

Note that this chapter can be skipped if the reader is already familiar with
econometrics. This chapter is especially useful for students from an engineering or
physical sciences background, with little exposure to econometrics and time series
analysis.

2 Autoregressive Modeling

We begin by considering a single variable Yt indexed by t to indicate the variable
changes over time. This variable may depend on other variables Xt ; however, we
shall simply consider the case when the dependence of Yt is on past observations of
itself—this is known as univariate time series analysis.

2.1 Preliminaries

Before we can build a model to predict Yt , we recall some basic definitions and
terminology, starting with a continuous time setting and then continuing thereafter
solely in a discrete-time setting.

2 Autoregressive Modeling 193

•> Stochastic Process

A stochastic process is a sequence of random variables, indexed by continuous
time: {Yt }∞t=−∞.

•> Time Series

A time series is a sequence of observations of a stochastic process at discrete times
over a specific interval: {yt }nt=1.

•> Autocovariance

The j th autocovariance of a time series is γjt := E[(yt −μt)(yt−j −μt−j)], where
μt := E[yt].

•> Covariance (Weak) Stationarity

A time series is weak (or wide-sense) covariance stationary if it has time constant
mean and autocovariances of all orders:

μt = μ, ∀t
γjt = γj , ∀t.

As we have seen, this implies that γj = γ−j : the autocovariances depend only
on the interval between observations, but not the time of the observations.

•> Autocorrelation

The j th autocorrelation, τj is just the j th autocovariance divided by the variance:

τj = γj
γ0
. (6.1)

•> White Noise

White noise, εt , is i.i.d. error which satisfies all three conditions:

194 6 Sequence Modeling

a. E[εt] = 0,∀t ;
b. V[εt] = σ 2,∀t ; and
c. εt and εs are independent, t �= s,∀t, s.
Gaussian white noise just adds a normality assumption to the error. White noise
error is often referred to as a “disturbance,” “shock,” or “innovation” in the financial
econometrics literature.

With these definitions in place, we are now ready to define autoregressive
processes. Tacit in our usage of these models is that the time series exhibits
autocorrelation.1 If this is not the case, then we would choose to use cross-sectional
models seen in Part I of this book.

2.2 Autoregressive Processes

Autoregressive models are parametric time series models describing yt as a linear
combination of p past observations and white noise. They are referred to as
“processes” as they are representative of random processes which are dependent
on one or more past values.

•> AR(p) Process

The pth order autoregressive process of a variable Yt depends only on the previous
values of the variable plus a white noise disturbance term

yt = μ+
p∑

i=1

φiyt−i + εt , (6.2)

where εt is independent of {yt−1}pi=1. We refer to μ as the drift term. p is referred
to as the order of the model.

Defining the polynomial function φ(L) := (1 − φ1L − φ2L
2 − · · · − φpLp),

where yt−j is a j th lagged observation of yt given by the Lag operator or Backshift
operator, yt−j = Lj [yj] .

The AR(p) process can be expressed in the more compact form

φ(L)[yt] = μ+ εt . (6.3)

1We shall identify statistical tests for establishing autocorrelation later in this chapter.

2 Autoregressive Modeling 195

This compact form shall be conducive to analysis describing the properties of the
AR(p) process. We mention in passing that the identification of the parameter p
from data, i.e. the number of lags in the model rests on the data being weakly
covariance stationary.2

2.3 Stability

An important property of AR(p) processes is whether past disturbances exhibit an
inclining or declining impact on the current value of y as the lag increases. For
example, think of the impact of a news event about a public company on the stock
price movement over the next minute versus if the same news event had occurred,
say, six months in the past. One should expect that the latter is much less significant
than the former.

To see this, consider the AR(1) process and write yt in terms of the inverse of
 (L)

yt = −1(L)[μ+ εt], (6.4)

so that for an AR(1) process

yt = 1

1− φL [μ+ εt] =
∞∑

j=0

φjLj [μ+ εt], (6.5)

and the infinite sum will be stable, i.e. the φj terms do not grow with j , provided that
|φ| < 1. Conversely, unstable AR(p) processes exhibit the counter-intuitive behavior
that the error disturbance terms become increasingly influential as the lag increases.
We can calculate the Impulse Response Function (IRF), ∂yt

∂εt−j ∀j , to characterize

the influence of past disturbances. For the AR(p) model, the IRF is given by φj and
hence is geometrically decaying when the model is stable.

2.4 Stationarity

Another desirable property of AR(p) models is that their autocorrelation function
convergences to zero as the lag increases. A sufficient condition for convergence is
stationary. From the characteristic equation

2Statistical tests for identifying the order of the model will be discussed later in the chapter.

196 6 Sequence Modeling

 (z) = (1− z

λ1
) · (1− z

λ2
) · . . . · (1− z

λp
) = 0, (6.6)

it follows that a AR(p) model is strictly stationary and ergodic if all the roots lie
outside the unit sphere in the complex plane C. That is |λi | > 1, i ∈ {1, . . . , p} and
| · | is the modulus of a complex number. Note that if the characteristic equation has
at least one unit root, with all other roots lying outside the unit sphere, then this is a
special case of non-stationarity but not strict stationarity.

•> Stationarity of Random Walk

We can show that the following random walk (zero mean AR(1) process) is not
strictly stationary:

yt = yt−1 + εt (6.7)

Written in compact form gives

 (L)[yt] = εt , (L) = 1− L, (6.8)

and the characteristic polynomial, (z) = 1 − z = 0, implies that the real root
z = 1. Hence the root is on the unit circle and the model is a special case of non-
stationarity.

Finding roots of polynomials is equivalent to finding eigenvalues. The Cayley–
Hamilton theorem states that the roots of any polynomial can be found by turning it
into a matrix and finding the eigenvalues.

Given the p degree polynomial3:

q(z) = c0 + c1z+ . . .+ cp−1z
p−1 + zp, (6.9)

we define the p × p companion matrix

C :=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1 0
...

...
. . .

. . .
. . .

...

0 0 0 0 1
−c0 −c1 . . . −cp−2 −cp−1

⎞

⎟⎟⎟⎟⎟⎟⎠
, (6.10)

3Notice that the zp coefficient is 1.

2 Autoregressive Modeling 197

then the characteristic polynomial det (C − λI) = q(λ), and so the eigenvalues
of C are the roots of q. Note that if the polynomial does not have a unit leading
coefficient, then one can just divide the polynomial by that coefficient to arrive at
the form of Eq. 6.9, without changing its roots. Hence the roots of any polynomial
can be found by computing the eigenvalues of a companion matrix.

The AR(p) has a characteristic polynomial of the form

 (z) = 1− φ1z− · · · − φpzp (6.11)

and dividing by −φp gives

q(z) = − (z)
φp

= − 1

φp
+ φ1

φp
z+ · · · + zp (6.12)

and hence the companion matrix is of the form

C :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1 0
...

...
. . .

. . .
. . .

...

0 0 0 0 1
1
φp
− φ1
φp
. . . −φp−1

φp
−φp−1

φp

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (6.13)

2.5 Partial Autocorrelations

Autoregressive models carry a signature which allows its order, p, to be determined
from time series data provided the data is stationary. This signature encodes the
memory in the model and is given by “partial autocorrelations.” Informally each
partial autocorrelation measures the correlation of a random variable, yt , with its
lag, yt−h, while controlling for intermediate lags. The formal definition of the partial
autocorrelation is now given.

•> Partial Autocorrelation

A partial autocorrelation at lag h ≥ 2 is a conditional autocorrelation between
a variable, yt , and its hth lag, yt−h under the assumption that the values of the
intermediate lags, yt−1, . . . , yt−h+1 are controlled:

τ̃h := τ̃t,t−h := γ̃h√
γ̃t,h

√
γ̃t−h,h

,

198 6 Sequence Modeling

where γ̃h := γ̃t,t−h := E[yt −P(yt | yt−1, . . . , yt−h+1), yt−h−P(yt−h | yt−1, . . . ,

yt−h+1)] is the lag-h partial autocovariance, P(W | Z) is an orthogonal projection
of W onto the set Z and

γ̃t,h := E[(yt − P(yt | yt−1, . . . , yt−h+1))
2]. (6.14)

The partial autocorrelation function τ̃h : N → [−1, 1] is a map h :�→ τ̃h. The plot
of τ̃h against h is referred to as the partial correlogram.

AR(p) Processes

Using the property that a linear orthogonal projection ŷt = P(yt | yt−1, . . . ,

yt−h+1) is given by the OLS estimator as ŷt = φ1yt−1 + · · · + φh−1yt−h+1, gives
the Yule-Walker equations for an AR(p) process, relating the partial autocorrelations
T̃p := [τ̃1, . . . , τ̃p] to the autocorrelations Tp := [τ1, . . . , τp]:

RpT̃p = Tp, Rp =

⎡

⎢⎢⎢⎢⎣

1 τ1 . . . τp−1

τ1
. . .

. . .
...

...
. . .

. . .
...

τp−1 τp−2 . . . 1

⎤

⎥⎥⎥⎥⎦
. (6.15)

For h ≤ p, we can solve for the hth lag partial autocorrelation by writing

τ̃h = |R∗h|
|Rh| , (6.16)

where | · | is the matrix determinant and the j th column of [R∗h],j = [Rh],j , j �= h
and the hth column is [R∗h],h = Th.

For example, the lag-1 partial autocorrelation is τ̃1 = τ1 and the lag-2 partial
autocorrelation is

τ̃2 =

∣∣∣∣
1 τ1

τ1 τ2

∣∣∣∣
∣∣∣∣
1 τ1

τ1 1

∣∣∣∣

= τ2 − τ
2
1

1− τ 2
1

. (6.17)

We note, in particular, that the lag-2 partial autocorrelation of an AR(1) process,
with autocorrelation T2 = [τ1, τ 2

1] is

τ̃2 = τ
2
1 − τ 2

1

1− τ 2
1

= 0, (6.18)

2 Autoregressive Modeling 199

and this is true for all lag orders greater than the order of the AR process.
We can reason about this property from another perspective—through the partial
autocovariances. The lag-2 partial autocovariance of an AR(1) process is

γ̃2 := γ̃t,t−2 := E[yt − ŷt , yt−2 − ŷt−2], (6.19)

where ŷ = P(yt | yt−1) and ŷt−2 = P(yt−2 | yt−1). When P is a linear orthogonal
projection, we have from the property of an orthogonal projection

P(W | Z) = μW + Cov(W,Z)
V[Z] (Z − μZ) (6.20)

and P(yt | yt−1) = φ V(yt−1)

V(yt−1)
= φ so that

ŷt = φyt−1, ŷt−2 = φyt−1 and hence εt = yt − ŷt so the lag-2 partial
autocovariance is

γ̃2 = E[εt , yt−2 − φyt−1] = 0. (6.21)

Clearly the lag-1 partial autocovariance of an AR(1) process is

γ̃1 = E[yt − μ, yt−1 − μ] = γ1 = φγ0. (6.22)

2.6 Maximum Likelihood Estimation

The exact likelihood when the density of the data is independent of (φ, σ 2
n) is

L(y, x;φ, σ 2
n) =

T∏

t=1

fYt |Xt (yt |xt ;φ, σ 2
n)fXt (xt). (6.23)

Under this assumption, the exact likelihood is proportional to the conditional
likelihood function:

L(y, x;φ, σ 2
n) ∝ L(y|x;φ, σ 2

n)

=
T∏

t=1

fYt |Xt (yt |xt ;φ, σ 2
n)

= (σ 2
n2π)−T/2 exp{− 1

2σ 2
n

T∑

t=1

(yt − φT xt)2}.

200 6 Sequence Modeling

In many cases such an assumption about the independence of the density of the data
and the parameters is not warranted. For example, consider the zero mean AR(1)
with unknown noise variance:

yt = φyt−1 + εt , εt ∼ N(0, σ 2
n) (6.24)

Yt |Yt−1 ∼ N(φyt−1, σ
2
n)

Y1 ∼ N(0, σ 2
n

1− φ2
).

The exact likelihood is

L(x;φ, σ 2
n) = fYt |Yt−1(yt |yt−1;φ, σ 2

n)fY1(y1;φ, σ 2
n)

=
(

σ 2
n

1− φ2
2π

)−1/2

exp{−1− φ2

2σ 2
n

y2
1}(σ 2

n2π)−
T−1

2

exp{− 1

2σ 2
n

T∑

t=2

(yt − φyt−1)
2},

where we made use of the moments of Yt—a result which is derived in Sect. 2.8.
Despite the dependence of the density of the data on the parameters, there

may be practically little advantage of using exact maximum likelihood against the
conditional likelihood method (i.e., dropping the fY1(y1;φ, σ 2

n) term). This turns
out to be the case for linear models. Maximizing the conditional likelihood is
equivalent to ordinary least squares estimation.

2.7 Heteroscedasticity

The AR model assumes that the noise is i.i.d. This may be an overly optimistic
assumption which can be relaxed by assuming that the noise is time dependent.
Treating the noise as time dependent is exemplified by a heteroscedastic AR(p)
model

yt = μ+
p∑

i=1

φiyt−i + εt , εt ∼ N(0, σ 2
n,t). (6.25)

There are many tests for heteroscedasticity in time series models and one of
them, the ARCH test, is summarized in Table 6.3. The estimation procedure for
heteroscedastic models is more complex and involves two steps: (i) estimation of the
errors from the maximum likelihood function which treats the errors as independent
and (ii) estimation of model parameters under a more general maximum likelihood

2 Autoregressive Modeling 201

estimation which treats the errors as time-dependent. Note that such a procedure
could be generalized further to account for correlation in the errors but requires the
inversion of the covariance matrix, which is computationally intractable with large
time series.

The conditional likelihood is

L(y|X;φ, σ 2
n) =

T∏

t=1

fYt |Xt (yt |xt ;φ, σ 2
n)

= (2π)−T/2det (D)−1/2 exp{−1

2
(y− φT X)T D−1(y− φT X)},

where Dtt = σ 2
n,t is the diagonal covariance matrix and X ∈ R

T×p is the data
matrix defined as [X]t = xt .

The advantage of this approach is its relative simplicity. The treatment of noise
variance as time dependent in finance has long been addressed by more sophisticated
econometrics models and the approach presented here brings AR models into line
with the specifications of more realistic models.

On the other hand, the use of the sample variance of the residuals is only
appropriate when the sample size is sufficient. In practice, this translates into the
requirement for a sufficiently large historical period before a prediction can be made.
Another disadvantage is that the approach does not explicitly define the relationship
between the variances. We shall briefly revisit heteroscedastic models and explore a
model for regressing the conditional variance on previous conditional variances in
Sect. 2.9.

2.8 Moving Average Processes

The Wold representation theorem (a.k.a. Wold decomposition) states that every
covariance stationary time series can be written as the sum of two time series,
one deterministic and one stochastic. In effect, we have already considered the
deterministic component when choosing an AR process.4 The stochastic component
can be represented as a “moving average process” or MA(q) process which
expresses yt as a linear combination of current and q past disturbances. Its definition
is as follows:

•> MA(q) Process

The qth order moving average process is the linear combination of the white noise
process {εt−i}qt=0, ∀t

4This is an overly simplistic statement because the AR(1) process can be expressed as a MA(∞)
process and vice versa.

202 6 Sequence Modeling

yt = μ+
q∑

i=1

θiεt−i + εt . (6.26)

It turns out that yt−1 depends on {εt−1, εt−2, . . . }, but not εt and hence γ 2
t,t−2 =

0. It should be apparent that this property holds even when P is a non-linear
projection provided that the errors are independent (but not necessarily identical).

Another brief point of discussion is that an AR(1) process can be rewritten as a
MA(∞) process. Suppose that the AR(1) process has a mean μ and the variance of
the noise is σ 2

n , then by a binomial expansion of the operator (1− φL)−1 we have

yt = μ

1− φ +
∞∑

j=0

φjεt−j , (6.27)

where the moments can be easily found and are

E[yt] = μ

1− φ

V[yt] =
∞∑

j=0

φ2j
E[ε2

t−j]

= σ 2
n

∞∑

j=0

φ2j = σ 2
n

1− φ2 .

AR and MA models are important components of more complex models which
are known as ARMA or, more generally, ARIMA models. The expression of a
pattern as a linear combination of past observations and past innovations turns out
to be more flexible in time series modeling than any single component. These are by
no means the only useful techniques and we briefly turn to another technique which
smooths out shorter-term fluctuations and consequently boosts the signal to noise
ratio in longer term predictions.

2.9 GARCH

Recall from Sect. 2.7 that heteroscedastic time series models treat the error as time
dependent. A popular parametric, linear, and heteroscedastic method used in finan-
cial econometrics is the Generalized Autoregressive Conditional Heteroscedastic
(GARCH) model (Bollerslev and Taylor) . A GARCH(p,q) model specifies that the
conditional variance (i.e., volatility) is given by an ARMA(p,q) model—there are p
lagged conditional variances and q lagged squared noise terms:

2 Autoregressive Modeling 203

σ 2
t := E[ε2

t |�t−1] = α0 +
q∑

i=1

αiε
2
t−i +

p∑

i=1

βiσ
2
t−i .

This model gives an explicit relationship between the current volatility and previous
volatilities. Such a relationship is useful for predicting volatility in the model, with
obvious benefits for volatility modeling in trading and risk management. This simple
relationship enables us to characterize the behavior of the model, as we shall see
shortly.

A necessary condition for model stationarity is the following constraint:

(

q∑

i=1

αi +
p∑

i=1

βi) < 1.

When the model is stationary, the long-run volatility converges to the uncondi-
tional variance of εt :

σ 2 := var(εt) = α0

1− (∑q

i=1 αi +
∑p

i=1 βi)
.

To see this, let us consider the l-step ahead forecast using a GARCH(1,1) model:

σ 2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 (6.28)

σ̂ 2
t+1 = α0 + α1E[ε2

t |�t−1] + β1σ
2
t (6.29)

= σ 2 + (α1 + β1)(σ
2
t − σ 2) (6.30)

σ̂ 2
t+2 = α0 + α1E[ε2

t+1|�t−1] + β1E[σ 2
t+1|�t−1] (6.31)

= σ 2 + (α1 + β1)
2(σ 2

t − σ 2) (6.32)

σ̂ 2
t+l = α0 + α1E[ε2

t+l−1|�t−1] + β1E[σ 2
t+l−1|�t−1] (6.33)

= σ 2 + (α1 + β1)
l(σ 2
t − σ 2), (6.34)

where we have substituted for the unconditional variance, σ 2 = α0/(1− α1 − β1).
From the above equation we can see that σ̂ 2

t+1 → σ 2 as l → ∞ so as the forecast
horizon goes to infinity, the variance forecast approaches the unconditional variance
of εt . From the l-step ahead variance forecast, we can see that (α1+ β1) determines
how quickly the variance forecast converges to the unconditional variance. If the
variance sharply rises during a crisis, the number of periods, K , until it is halfway
between the first forecast and the unconditional variance is (α1 + β1)

K = 0.5, so
the half-life5 is given by K = ln(0.5)/ ln(α1 + β1).

5The half-life is the lag k at which its coefficient is equal to a half.

204 6 Sequence Modeling

For example, if

(α1 + β1) = 0.97

and steps are measured in days, the half-life is approximately 23 days.

2.10 Exponential Smoothing

Exponential smoothing is a type of forecasting or filtering method that exponentially
decreases the weight of past and current observations to give smoothed predictions
ỹt+1. It requires a single parameter, α, also called the smoothing factor or smoothing
coefficient. This parameter controls the rate at which the influence of the observa-
tions at prior time steps decay exponentially. α is often set to a value between 0
and 1. Large values mean that the model pays attention mainly to the most recent
past observations, whereas smaller values mean more of the history is taken into
account when making a prediction. Exponential smoothing takes the forecast for
the previous period ỹt and adjusts with the forecast error, yt − ỹt . The forecast for
the next period becomes

ỹt+1 = ỹt + α(yt − ỹt), (6.35)

or equivalently

ỹt+1 = αyt + (1− α)ỹt . (6.36)

Writing this as a geometric decaying autoregressive series back to the first observa-
tion:

ỹt+1 = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + α(1− α)3yt−3

+ · · · + α(1− α)t−1y1 + α(1− α)t ỹ1,

hence we observe that smoothing introduces a long-term model of the entire
observed data, not just a sub-sequence used for prediction in a AR model, for
example. For geometrically decaying models, it is useful to characterize it by the
half-life—the lag k at which its coefficient is equal to a half:

α(1− α)k = 1

2
, (6.37)

or

k = − ln(2α)

ln(1− α) . (6.38)

The optimal amount of smoothing, α̂, is found by maximizing a likelihood function.

3 Fitting Time Series Models: The Box–Jenkins Approach 205

3 Fitting Time Series Models: The Box–Jenkins Approach

While maximum likelihood estimation is the approach of choice for fitting the
ARMA models described in this chapter, there are many considerations beyond
fitting the model parameters. In particular, we know from earlier chapters that the
bias–variance tradeoff is a central consideration which is not addressed in maximum
likelihood estimation without adding a penalty term.

Machine learning achieves generalized performance through optimizing the
bias–variance tradeoff, with many of the parameters being optimized through cross-
validation. This is both a blessing and a curse. On the one hand, the heavy reliance
on numerical optimization provides substantial flexibility but at the expense of com-
putational cost and, often-times, under-exploitation of structure in the time series.
There are also potential instabilities whereby small changes in hyperparameters lead
to substantial differences in model performance.

If one were able to restrict the class of functions represented by the model, using
knowledge of the relationship and dependencies between variables, then one could
in principle reduce the complexity and improve the stability of the fitting procedure.

For some 75 years, econometricians and statisticians have approached the
problem of time series modeling with ARIMA in a simple and intuitive way. They
follow a three-step process to fit and assess AR(p). This process is referred to as
a Box–Jenkins approach or framework. The three basic steps of the Box–Jenkins
modeling approach are:

a. (I)dentification—determining the order of the model (a.k.a. model selection);
b. (E)stimation—estimation of model parameters; and
c. (D)iagnostic checking—evaluating the fit of the model.

This modeling approach is iterative and parsimonious—it favors models with
fewer parameters.

3.1 Stationarity

Before the order of the model can be determined, the time series must be tested for
stationarity. A standard statistical test for covariance stationarity is the Augmented
Dickey-Fuller (ADF) test which often accounts for the (c)onstant drift and (t)ime
trend. The ADF test is a unit root test—the Null hypothesis is that the characteristic
polynomial exhibits at least a unit root and hence the data is non-stationary. If the
Null can be rejected at a confidence level, α, then the data is stationary. Attempting
to fit a time series model to non-stationary data will result in dubious interpretations
of the estimated partial autocorrelation function and poor predictions and should
therefore be avoided.

206 6 Sequence Modeling

3.2 Transformation to Ensure Stationarity

Any trending time series process is non-stationary. Before we can fit an AR(p)
model, it is first necessary to transform the original time series into a stationary
form. In some instances, it may be possible to simply detrend the time series (a
transformation which works in a limited number of cases). However this is rarely
full proof. To the potential detriment of the predictive accuracy of the model, we can
however systematically difference the original time series one or more times until
we arrive at a stationary time series.

To gain insight, let us consider a simple example. Suppose we are given the
following linear model with a time trend of the form:

yt = α + βt + εt , εt ∼ N(0, 1). (6.39)

We first observe that the mean of yt is time dependent:

E[yt] = α + βt, (6.40)

and thus this is model is non-stationary. Instead we can difference the process to
give

yt − yt−1 = (α + βt + εt)− (α + β(t − 1)+ εt−1) = β + εt − εt−1, (6.41)

and hence the mean and the variance of this difference process are constant and the
difference process is stationary:

E[yt − yt−1] = β (6.42)

E[(yt − yt−1 − β)2] = 2σ 2. (6.43)

Any difference process can be written as an ARIMA(p,d,q) process, where here
d = 1 is the order of differencing to achieve stationarity. There is, in general, no
guarantee that first order differencing yields a stationary difference process. One
can apply higher order differencing, d > 1, to the detriment of recovering the
original signal, but one must often resort to non-stationary time series methods
such as Kalman filters, Markov-switching models, and advanced neural networks
for sequential data covered later in this part of the book.

3.3 Identification

A common approach for determining the order of a AR(p) from a stationary time
series is to estimate the partial autocorrelations and determine the largest lag which
is significant. Figure 6.1 shows the partial correlogram, the plot of the estimated

3 Fitting Time Series Models: The Box–Jenkins Approach 207

Fig. 6.1 This plot shows the
partial correlogram, the plot
of the estimated partial
autocorrelations against the
lag. The solid horizontal lines
define the 95% confidence
interval. We observe that all
but the first lag are
approximately within the
envelope and hence we may
determine the order of the
AR(p) model as p = 1

partial autocorrelations against the lag. The solid horizontal lines define the 95%
confidence interval which can be constructed for each coefficient using

± 1.96× 1√
T
, (6.44)

where T is the number of observations. Note that we have assumed that T is
sufficiently large that the autocorrelation coefficients are assumed to be normally
distributed with zero mean and standard error of 1√

T
.6

We observe that all but the first lag are approximately within the envelope and
hence we may determine the order of the AR(p) model as p = 1.

The properties of the partial autocorrelation and autocorrelation plots reveal the
orders of the AR and MA models. In Fig. 6.1, there is an immediate cut-off in the
partial autocorrelation (acf) plot after 1 lag indicating an AR(1) process. Conversely,
the location of a sharp cut-off in the estimated autocorrelation function determines
the order, q, of a MA process. It is often assumed that the data generation process is
a combination of an AR and MA model—referred to as an ARMA(p,q) model.

Information Criterion

While the partial autocorrelation function is useful for determining the AR(p)
model order, in many cases there is an undesirable element of subjectively in the
choice.

It is often preferable to use the Akaike Information Criteria (AIC) to measure the
quality of fit. The AIC is given by

AIC = ln(σ̂ 2)+ 2k

T
, (6.45)

6This assumption is admitted by the Central Limit Theorem.

208 6 Sequence Modeling

where σ̂ 2 is the residual variance (the residual sums of squares divided by the
number of observations T) and k = p + q + 1 is the total number of parameters
estimated. This criterion expresses a bias–variance tradeoff between the first term,
the quality of fit, and the second term, a penalty function proportional to the number
of parameters. The goal is to select the model which minimizes the AIC by first
using maximum likelihood estimation and then adding the penalty term. Adding
more parameters to the model reduces the residuals but increases the right-hand
term, thus the AIC favors the best fit with the fewest number of parameters.

On the surface, the overall approach has many similarities with regularization
in machine learning where the loss function is penalized by a LASSO penalty (L1
norm of the parameters) or a ridge penalty (L2 norm of the parameters). However,
we emphasize that AIC is estimated post-hoc, once the maximum likelihood
function is evaluated, whereas in machine learning models, the penalized loss
function is directly minimized.

3.4 Model Diagnostics

Once the model is fitted we must assess whether the residual exhibits autocorrela-
tion, suggesting the model is underfitting. The residual of fitted time series model
should be white noise. To test for autocorrelation in the residual, Box and Pierce
propose the Portmanteau statistic

Q∗(m) = T
m∑

l=1

ρ̂2
l ,

as a test statistic for the Null hypothesis

H0 : ρ̂1 = · · · = ρ̂m = 0

against the alternative hypothesis

Ha : ρ̂i �= 0

for some i ∈ {1, . . . , m}. ρ̂i are the sample autocorrelations of the residual.
The Box-Pierce statistic follows an asymptotically chi-squared distribution with

m degrees of freedom. The closely related Ljung–Box test statistic increases the
power of the test in finite samples:

Q(m) = T (T + 2)
m∑

l=1

ρ̂2
l

T − l . (6.46)

3 Fitting Time Series Models: The Box–Jenkins Approach 209

Fig. 6.2 This plot shows the results of applying a Ljung–Box test to the residuals of an AR(p)
model. (Top) The standardized residuals are shown against time. (Center) The estimated ACF of
the residuals is shown against the lag index. (Bottom) The p-values of the Ljung–Box test statistic
are shown against the lag index

This statistic also follows asymptotically a chi-squared distribution with m degrees
of freedom. The decision rule is to reject H0 if Q(m) > χ2

α where χ2
α denotes the

100(1−α)th percentile of a chi-squared distribution with m degrees of freedom and
is the significance level for rejecting H0.

For a AR(p) model, the Ljung–Box statistic follows asymptotically a chi-
squared distribution with m − p degrees of freedom. Figure 6.2 shows the results
of applying a Ljung–Box test to the residuals of an AR(p) model. (Top) The
standardized residuals are shown against time. (Center) The estimated ACF of the
residuals is shown against the lag index. (Bottom) The p-values of the Ljung–Box
test statistic are shown against the lag index. The figure shows that if the maximum
lag in the model is sufficiently large, then the p-value is small and the Null is rejected
in favor of the alternative hypothesis.

Failing the test requires repeating the Box–Jenkins approach until the model no
longer under-fits. The only mild safe-guard against over-fitting is the use of AIC for
model selection, but in general there is no strong guarantee of avoiding over-fitting
as the performance of the model is not assessed out-of-sample in this framework.
Assessing the bias variance tradeoff by cross-validation has arisen as the better
approach for generalizing model performance. Therefore any model that has been
fitted under a Box–Jenkins approach needs to be assessed out-of-sample by time
series cross-validation—the topic of the next section.

There are many diagnostic tests which have been developed for time series
modeling which we have not discussed here. A small subset has been listed in
Table 6.3. The readers should refer to a standard financial econometrics textbook

210 6 Sequence Modeling

such as Tsay (2010) for further details of these tests and elaboration on their
application to linear models.

4 Prediction

While the Box–Jenkins approach is useful in identifying, fitting, and critiquing
models, there is no guarantee that such a model shall exhibit strong predictive
properties of course. We seek to predict the value of yt+h given information �t
up to and including time t . Producing a forecast is simply a matter of taking the
conditional expectation of the data under the model. The h-step ahead forecast from
a AR(p) model is given by

ŷt+h = E[yt+h | �t] =
p∑

i=1

φiŷt+h−i , (6.47)

where ŷt+h = yt+h, h ≤ 0 and E[εt+h | �t] = 0, h > 0. Note that conditional
expectations of observed variables are not equal to the unconditional expectations.
In particular E[εt+h |�t] = εt +h, h ≤ 0, whereas E[εt+h] = 0. The quality of the
forecast is measured over the forecasting horizon from either the MSE or the MAE.

4.1 Predicting Events

If the output is categorical, rather than continuous, then the ARMA model is used to
predict the log-odds ratio of the binary event rather than the conditional expectation
of the response. This is analogous to using a logit function as a link in logistic
regression.

Other general metrics are also used to assess model accuracy such as a confusion
matrix, the F1-score and Receiver Operating Characteristic (ROC) curves. These
metrics are not specific to time series data and could be applied to cross-section
models to. The following example will illustrate a binary event prediction problem
using time series data.

Example 6.1 Predicting Binary Events

Suppose we have conditionally i.i.d. Bernoulli r.v.s Xt with pt := P(Xt =
1 | �t) representing a binary event and conditional moments given by

(continued)

4 Prediction 211

Example 6.1 (continued)

• E[Xt | �] = 0 · (1− pt)+ 1 · pt = pt
• V[Xt | �] = pt(1− pt)

The log-odds ratio shall be assumed to follow an ARMA model,

ln

(
pt

1− pt
)
= φ−1(L)(μ+ θ(L)εt). (6.48)

and the category of the model output is determined by a threshold, e.g.
pt >= 0.5 corresponds to a positive event. If the number of out-of-sample
observations is 24, we can compare the prediction with the observed event and
construct a truth table (a.k.a. confusion matrix) as illustrated in Table 6.1.

In this example, the accuracy is (12 + 2)/24—the ratio of the sum of the
diagonal terms to the set size. The type I (false positive) and type II (false
negative) errors, shown by the off-diagonal elements as 8 and 2, respectively.

Table 6.1 The confusion
matrix for the above example

Predicted

Actual 1 0 Sum

1 12 2 14

0 8 2 10

Sum 20 4 24

In this example, the accuracy is (12+2)/24—the ratio of the sum of the diagonal
terms to the set size. Of special interest are the type I (false positive) and type II
(false negative) errors, shown by the off-diagonal elements as 8 and 2, respectively.
In practice, careful consideration must be given as to whether there is equal tolerance
for type 1 and type 2 errors.

The significance of the classifier can be estimated from a chi-squared statistic
with one degree of freedom under a Null hypothesis that the classifier is a white
noise. In general, Chi-squared testing is used to determine whether two variables
are independent of one another. In this case, if the Chi-squared statistic is above a
given critical threshold value, associated with a significance level, then we can say
that the classifier is not white noise.

Let us label the elements of the confusion matrix as in Table 6.2 below. The
column and row sums of the confusion matrices and the total number of test samples,
m, are also shown.

The chi-squared statistic with one degree of freedom is given by the squared
difference of the expected result (i.e., a white noise model where the prediction
is independent of the observations) and the model prediction, Ŷ , relative to the
expected result. When normalized by the number of observations, each element of
the confusion matrix is the joint probability [P(Y, Ŷ)]ij . Under a white noise model,

212 6 Sequence Modeling

Table 6.2 The confusion
matrix of a binary
classification is shown
together with the column and
row sums and the total
number of test samples, m

Predicted

Actual 1 0 Sum

1 m11 m12 m1,

0 m21 m22 m1,

Sum m,1 m,2 m

the observed outcome, Y , and the predicted outcome, Ŷ , are independent and so
[P(Y, Ŷ)]ij = [P(Y)]i[P(Ŷ)]j which is the ith row sum, mi,, multiplied by the j th
column sum, m,j , divided by m. Since mi,j is based on the model prediction, the
chi-squared statistic is thus

χ2 =
2∑

i=1

2∑

j=1

(mij −mi,m,j /m)2
mi,m,j /m

. (6.49)

Returning to the example above, the chi-squared statistic is

χ2 = (12− (14× 20)/24)2/(14× 20)/24

+ (2− (14× 4)/24)2/(14× 4)/24

+ (8− (10× 20)/24)2/(10× 20)/24

+ (2− (10× 4)/24)2/(10× 4)/24

= 0.231.

This value is far below the threshold value of 6.635 for a chi-squared statistic with
one degree of freedom to be significant. Thus we cannot reject the Null hypothesis.
The predicted model is not sufficiently indistinguishable from white noise.

The example classification model shown above used a threshold of pt >= 0.5 to
classify an event as positive. This choice of threshold is intuitive but arbitrary. How
can we measure the performance of a classifier for a range of thresholds?

A ROC-Curve contains information about all possible thresholds. The ROC-
Curve plots true positive rates against false positive rates, where these terms are
defined as follows:

– True Positive Rate (TPR) is T P/(T P +FN): fraction of positive samples which
the classifier correctly identified. This is also known as Recall or Sensitivity.
Using the confusion matrix in Table 6.1, the TPR=12/(12+ 2) = 6/7.

– False Positive Rate (FPR) is FP/(FP+TN): fraction of positive samples which
the classifier misidentified. In the example confusion matrix, the FPR=8/(8 +
2) = 4/5.

– Precision is T P/(T P + FP): fraction of samples that were positive from the
group that the classifier predicted to be positive. From the example confusion
matrix, the precision is 12/(12+ 8) = 3/5.

5 Principal Component Analysis 213

Fig. 6.3 The ROC curve for
an example model shown by
the green line

Each point in a ROC curve is a (TPR, FPR) pair for a particular choice of the
threshold in the classifier. The straight dashed black line in Fig. 6.3 represents a
random model. The green line shows the ROC curve of the model—importantly it
is should always be above the line. The perfect model would exhibit a TPR of unity
for all FPRs, so that there is no area above the curve.

The advantage of this performance measure is that it is robust to class imbalance,
e.g. rare positive events. This is not true of classification accuracy which leads to
misinterpretation of the quality of the fit when the data is imbalanced. For example,
a constant model Ŷ = f (X) = 1 would be x% accurate if the data consists of x%
positive events. Additional related metrics can be derived. Common ones include
Area Under the Curve (AUC), which is the area under the green line in Fig. 6.3.

The F1-score is the harmonic mean of the precision and recall and is also
frequently used. The F1-score reaches its best value at unity and worst at zero and is
given by F1 = 2·precision·recall

precision+recall . From the example above F1 = 2×3/5×6/7
3/5+6/7 = 0.706.

4.2 Time Series Cross-Validation

Cross-validation—the method of hyperparameter tuning by rotating through K folds
(or subsets) of training-test data—differs for time series data. In prediction models
over time series data, no future observations can be used in the training set. Instead,
a sliding window must be used to train and predict out-of-sample over multiple
repetitions to allow for parameter tuning as illustrated in Fig. 6.4. One frequent
challenge is whether to fix the length of the window or allow it to “telescope”
by including the ever extending history of observations as the window is “walked
forward.” In general, the latter has the advantage of including more observations
in the training set but can lead to difficulty in interpreting the confidence of the
parameters, due to the loss of control of the sample size.

5 Principal Component Analysis

The final section in this chapter approaches data modeling from quite a different
perspective, with the goal being to reduce the dimension of multivariate time series

214 6 Sequence Modeling

In-sample period

Out-of-
sample
period

split

Historical period

Aggregate test period

Verification:
tuning hyper-
parameters

Testing: assess
performance

Fig. 6.4 Times series cross-validation, also referred to as “walk forward optimization,” is used
instead of standard cross-validation for cross-sectional data to preserve the ordering of observations
in time series data. This experimental design avoids look-ahead bias in the fitted model which
occurs when one or more observations in the training set are from the future

data. The approach is widely used in finance, especially when the dimensionality of
the data presents barriers to computational tractability or practical risk management
and trading challenges such as hedging exposure to market risk factors. For example,
it may be advantageous to monitor a few risk factors in a large portfolio rather than
each instrument. Moreover such factors should provide economic insight into the
behavior of the financial markets and be actionable from an investment management
perspective.

Formally, let
{
yi
}N
i=1 be a set of N observation vectors, each of dimension n. We

assume that n ≤ N . Let Y ∈ R
n×N be a matrix whose columns are

{
yi
}N
i=1,

Y =
⎡

⎣
| |

y1 · · · yN
| |

⎤

⎦ .

The element-wise average of the N observations is an n dimensional signal which
may be written as:

ȳ = 1

N

N∑

i=1

yi =
1

N
Y1N,

where 1N ∈ R
N×1 is a column vector of all-ones. Denote Y0 as a matrix

whose columns are the demeaned observations (we center each observation yi by
subtracting ȳ from it):

5 Principal Component Analysis 215

Y0 = Y− ȳ1TN .

Projection

A linear projection from R
m to R

n is a linear transformation of a finite dimensional
vector given by a matrix multiplication:

xi = WT yi ,

where yi ∈ R
n, xi ∈ R

m, and W ∈ R
n×m. Each element j in the vector xi is an

inner product between yi and the j -th column of W, which we denote by wj .
Let X ∈ R

m×N be a matrix whose columns are the set of N vectors of

transformed observations, let x̄ = 1
N

N∑
i=1

xi = 1
N

X1N be the element-wise average,

and X0 = X− x̄1TN the demeaned matrix. Clearly, X = WTY and X0 = WTY0.

5.1 Principal Component Projection

When the matrix WT represents the transformation that applies principal component
analysis, we denote W = P, and the columns of the orthonormal matrix,7 P, denoted{
pj
}n
j=1

, are referred to as loading vectors. The transformed vectors {xi}Ni=1 are
referred to as principal components or scores.

The first loading vector is defined as the unit vector with which the inner products
of the observations have the greatest variance:

p1 = max
w1

wT1 Y0YT0 w1 s.t. wT1 w1 = 1. (6.50)

The solution to Eq. 6.50 is known to be the eigenvector of the sample covariance
matrix Y0YT0 corresponding to its largest eigenvalue.8

Next, p2 is the unit vector which has the largest variance of inner products
between it and the observations after removing the orthogonal projections of the
observations onto p1. It may be found by solving:

p2 = max
w2

wT2
(

Y0 − p1pT1 Y0

) (
Y0 − p1pT1 Y0

)T
w2 s.t. wT2 w2 = 1. (6.51)

7That is, P−1 = PT .
8We normalize the eigenvector and disregard its sign.

216 6 Sequence Modeling

The solution to Eq. 6.51 is known to be the eigenvector corresponding to the
largest eigenvalue under the constraint that it is not collinear with p1. Similarly,
the remaining loading vectors are equal to the remaining eigenvectors of Y0YT0
corresponding to descending eigenvalues.

The eigenvalues of Y0YT0 , which is a positive semi-definite matrix, are non-
negative. They are not necessarily distinct, but since it is a symmetric matrix it
has n eigenvectors that are all orthogonal, and it is always diagonalizable. Thus, the
matrix P may be computed by diagonalizing the covariance matrix:

Y0YT0 = P"P−1 = P"PT ,

where " = X0XT0 is a diagonal matrix whose diagonal elements {λi}ni=1 are sorted
in descending order.

The transformation back to the observations is Y = PX. The fact that the
covariance matrix of X is diagonal means that PCA is a decorrelation transformation
and is often used to denoise data.

5.2 Dimensionality Reduction

PCA is often used as a method for dimensionality reduction, the process of reducing
the number of variables in a model in order to avoid the curse of dimensionality.
PCA gives the first m principal components (m < n) by applying the truncated
transformation

Xm = PTmY,

where each column of Xm ∈ R
m×N is a vector whose elements are the first m

principal components, and Pm is a matrix whose columns are the first m loading
vectors,

Pm =
⎡

⎣
| |

p1 · · · pm
| |

⎤

⎦ ∈ R
n×m.

Intuitively, by keeping onlym principal components, we are losing information, and
we minimize this loss of information by maximizing their variances.

6 Summary 217

An important concept in measuring the amount of information lost is the total
reconstruction error ‖Y − Ŷ‖F , where F denotes the Frobenius matrix norm. Pm is
also a solution to the minimum total squared reconstruction

min
W∈Rn×m

∥∥∥Y0 −WWTY0

∥∥∥
2

F
s.t.WTW = Im×m. (6.52)

The m leading loading vectors form an orthonormal basis which spans the m
dimensional subspace onto which the projections of the demeaned observations have
the minimum squared difference from the original demeaned observations.

In other words, Pm compresses each demeaned vector of length n into a vector
of length m (where m ≤ n) in such a way that minimizes the sum of total squared
reconstruction errors.

The minimizer of Eq. 6.52 is not unique: W = PmQ is also a solution, where
Q ∈ R

m×m is any orthogonal matrix, QT = Q−1. Multiplying Pm from the right by
Q transforms the first m loading vectors into a different orthonormal basis for the
same subspace.

6 Summary

This chapter has reviewed foundational material in time series analysis and econo-
metrics. Such material is not intended to substitute more comprehensive and formal
treatment of methodology, but rather provide enough background for Chap. 8
where we shall develop neural networks analogues. We have covered the following
objectives:

– Explain and analyze linear autoregressive models;
– Understand the classical approaches to identifying, fitting, and diagnosing

autoregressive models;
– Apply simple heteroscedastic regression techniques to time series data;
– Understand how exponential smoothing can be used to predict and filter time

series; and
– Project multivariate time series data onto lower dimensional spaces with principal

component analysis.

It is worth noting that in industrial applications the need to forecast more than
a few steps ahead often arises. For example, in algorithmic trading and electronic
market making, one needs to forecast far enough into the future, so as to make
the forecast economically realizable either through passive trading (skewing of the
price) or through aggressive placement of trading orders. This economic realization
of the trading signals takes time, whose actual duration is dependent on the
frequency of trading.

218 6 Sequence Modeling

We should also note that in practice linear regressions predicting the difference
between a future and current price, taking as inputs various moving averages, are
often used in preference to parametric models, such as GARCH. These linear
regressions are often cumbersome, taking as inputs hundreds or thousands of
variables.

7 Exercises

Exercise 6.1
Calculate the mean, variance, and autocorrelation function (acf) of the following
zero-mean AR(1) process:

yt = φ1yt−1 + εt ,

where φ1 = 0.5. Determine whether the process is stationary by computing the root
of the characteristic equation (z) = 0.

Exercise 6.2
You have estimated the following ARMA(1,1) model for some time series data

yt = 0.036+ 0.69yt−1 + 0.42ut−1 + ut ,

where you are given the data at time t − 1, yt−1 = 3.4 and ût−1 = −1.3. Obtain the
forecasts for the series y for times t, t + 1, t + 2 using the estimated ARMA model.

If the actual values for the series are −0.032, 0.961, 0.203 for t, t + 1, t + 2,
calculate the out-of-sample Mean Squared Error (MSE) and Mean Absolute Error
(MAE).

Exercise 6.3
Derive the mean, variance, and autocorrelation function (ACF) of a zero mean
MA(1) process.

Exercise 6.4
Consider the following log-GARCH(1,1) model with a constant for the mean
equation

yt = μ+ ut , ut ∼ N(0, σ 2
t)

ln(σ 2
t) = α0 + α1u

2
t−1 + β1lnσ

2
t−1

– What are the advantages of a log-GARCH model over a standard GARCH
model?

Appendix 219

– Estimate the unconditional variance of yt for the values α0 = 0.01, α1 =
0.1, β1 = 0.3.

– Derive an algebraic expression relating the conditional variance with the uncon-
ditional variance.

– Calculate the half-life of the model and sketch the forecasted volatility.

Exercise 6.5
Consider the simple moving average (SMA)

St = Xt +Xt−1 +Xt+2 + . . .+Xt−N+1

N
,

and the exponential moving average (EMA), given by E1 = X1 and, for t ≥ 2,

Et = αXt + (1− α)Et−1,

where N is the time horizon of the SMA and the coefficient α represents the degree
of weighting decrease of the EMA, a constant smoothing factor between 0 and 1. A
higher α discounts older observations faster.

a. Suppose that, when computing the EMA, we stop after k terms, instead of going
after the initial value. What fraction of the total weight is obtained?

b. Suppose that we require 99.9% of the weight. What k do we require?
c. Show that, by picking α = 2/(N + 1), one achieves the same center of mass in

the EMA as in the SMA with the time horizon N .
d. Suppose that we have set α = 2/(N+1). Show that the firstN points in an EMA

represent about 87.48% of the total weight.

Exercise 6.6
Suppose that, for the sequence of random variables {yt }∞t=0 the following model
holds:

yt = μ+ φyt−1 + εt , |φ| ≤ 1, εt ∼ i.i.d.(0, σ 2).

Derive the conditional expectation E[yt | y0] and the conditional variance
Var[yt | y0].

Appendix

Hypothesis Tests

220 6 Sequence Modeling

Table 6.3 A short summary of some of the most useful diagnostic tests for time series modeling
in finance

Name Description

Chi-squared test Used to determine whether

the confusion matrix of a classifier

is statistically significant, or merely white noise

t-test Used to determine whether the output

of two separate regression models

are statistically different on i.i.d. data

Mariano-Diebold test Used to determine whether the output of two separate

time series models are statistically different

ARCH test The ARCH Engle’s test is constructed based on

the property that if the residuals are heteroscedastic,

the squared residuals are autocorrelated. The Ljung–Box

test is then applied to the squared residuals

Portmanteau test A general test for whether the error

in a time series model is auto-correlated

Example tests include the Box-Ljung and the Box-Pierce test

Python Notebooks

Please see the code folder of Chap. 6 for e.g., implementations of ARIMA models
applied to time series prediction. An example, applying PCA to decompose stock
prices is also provided in this folder. Further details of these notebooks are included
in the README.md file for Chap. 6.

Reference

Tsay, R. S. (2010). Analysis of financial time series (3rd ed.). Wiley.

Chapter 7
Probabilistic Sequence Modeling

This chapter presents a powerful class of probabilistic models for financial data.
Many of these models overcome some of the severe stationarity limitations of the
frequentist models in the previous chapters. The fitting procedure demonstrated is
also different—the use of Kalman filtering algorithms for state-space models rather
than maximum likelihood estimation or Bayesian inference. Simple examples of
hidden Markov models and particle filters in finance and various algorithms are
presented.

1 Introduction

So far we have seen how sequences can be modeled using autoregressive processes,
moving averages, GARCH, and similar methods. There exists another school of
thought, which gave rise to hidden Markov models, Baum–Welch and Viterbi
algorithms, Kalman and particle filters.

In this school of thought, one assumes the existence of a certain latent process
(say X), which evolves over time (so we may write Xt). This unobservable, latent
process drives another, observable process (say Yt), which we may observe either at
all times or at some subset of times.

The evolution of the latent process Xt , as well as the dependence of the
observable process Yt on Xt , may be driven by random factors. We therefore talk
about a stochastic or probabilistic model. We also refer to such a model as a state-
space model. The state-space model consists in a description of the evolution of the
latent state over time and the dependence of the observables on the latent state.

We have already seen probabilistic methods presented in Chaps. 2 and 3. These
methods primarily assume that the data is i.i.d. On the other hand, the time series
methods presented in the previous chapter are designed for time series data but are
not probabilistic. This chapter shall build on these earlier chapters by considering a

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_7

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_7

222 7 Probabilistic Sequence Modeling

powerful class of models for financial data. Many of these models overcome some of
the severe stationarity limitations of the frequentist models in the previous chapters.
The fitting procedure is also different—we will see the use of Kalman filtering
algorithms for state-space models rather than maximum likelihood estimation or
Bayesian inference.

Chapter Objectives

By the end of this chapter, the reader should expect to accomplish the following:

– Formulate hidden Markov models (HMMs) for probabilistic modeling over
hidden states;

– Gain familiarity with the Baum–Welch algorithmic for fitting HMMs to time
series data;

– Use the Viterbi algorithm to find the most likely path;
– Gain familiarity with state-space models and the application of Kalman filters to

fit them; and
– Apply particle filters to financial time series.

2 Hidden Markov Modeling

A hidden Markov model (HMM) is a probabilistic model representing probability
distributions over sequences of observations. HMMs are the simplest “dynamic”
Bayesian network1 and have proven a powerful model in many applied fields
including finance. So far in this book, we have largely considered only i.i.d.
observations.2 Of course, financial modeling is often seated in a Markovian setting
where observations depend on, and only on, the previous observation.

We shall briefly review HMMs in passing as they encapsulate important ideas
in probabilistic modeling. In particular, they provide intuition for understanding
hidden variables and switching. In the next chapter we shall see the examples
of switching in dynamic recurrent neural networks, such as GRUs and LSTMs,
which use gating. However, this gating is an implicit modeling step and cannot be
controlled explicitly as may be needed for regime switching in finance.

Let us assume at time t that the discrete state, st , is hidden from the observer.
Furthermore, we shall assume that the hidden state is a Markov process. Note this
setup differs from mixture models which treat the hidden variable as i.i.d. The time
t observation, yt , is assumed to be independent of the state at all other times. By the
Markovian property, the joint distribution of the sequence of states, s := {st }Ti=1,

1Dynamic Bayesian networks models are a graphical model used to model dynamic processes
through hidden state evolution.
2With the exception of heteroscedastic modeling in Chap. 6.

2 Hidden Markov Modeling 223

Fig. 7.1 This figure shows the probabilistic graph representing the conditional dependence
relations between the observed and the hidden variables in the HMM

and sequence of observations, y = {yt }Tt=1 is given by the product of transition
probability densities p(st | st−1) and emission probability densities, p(yt | st):

p(s, y) = p(s1)p(y1 | s1)
T∏

t=2

p(st | st−1)p(yt | st). (7.1)

Figure 7.1 shows the Bayesian network representing the conditional dependence
relations between the observed and the hidden variables in the HMM. The condi-
tional dependence relationships define the edges of a graph between parent nodes,
Yt , and child nodes St .

Example 7.1 Bull or Bear Market?

Suppose that the market is either in a Bear or Bull market regime represented by
s = 0 or s = 1, respectively. Such states or regimes are assumed to be hidden.
Over each period, the market is observed to go up or down and represented
by y = −1 or y = 1. Assume that the emission probability matrix—the
conditional dependency matrix between observed and hidden variables—is
independent of time and given by

P(yt = y | st = s) =
⎡

⎣
y/ s 0 1
−1 0.8 0.2
1 0.2 0.8

⎤

⎦ , (7.2)

and the transition probability density matrix for the Markov process {St } is
given by

A =
[

0.9 0.1
0.1 0.9

]
, [A]ij := P(St = si | St−1 = sj). (7.3)

Given the observed sequence {−1, 1, 1} (i.e., T = 3), we can compute the
probability of a realization of the hidden state sequence {1, 0, 0} using Eq. 7.1.
Assuming that P(s1 = 0) = P(s1 = 1) = 1

2 , the computation is

(continued)

224 7 Probabilistic Sequence Modeling

Example 7.1 (continued)

P(s, y) = P(s1 = 1)P(y1 = −1 | s1 = 1)P(s2 = 0 | s1 = 1)P(y2 = 1 | s2 = 0)

P(s3 = 0 | s2 = 0)P(y3 = 1 | s3 = 0),

= 0.5 · 0.2 · 0.1 · 0.2 · 0.9 · 0.2 = 0.00036.

We first introduce the so-called forward and backward quantities, respectively,
defined for all states st ∈ {1, . . . , K} and over all times

Ft(s) := P(st = s, y1:t) and Bt(s) := p(yt+1:T | st = s) (7.4)

with the convention that BT (s) = 1. For all t ∈ {1, . . . , T } and for all r, s ∈
{1, . . . , K} we have

P(st = s, y) = Ft(s)Bt (s), (7.5)

and combining the forward and backward quantities gives

P(st−1 = r, st = s, y) = Ft−1(r)P(st = s | st−1 = r)p(yt | st = s)Bt (s). (7.6)

The forward–backward algorithm, also known as the Baum–Welch algorithm, is an
unsupervised learning algorithm for fitting HMMs which belongs to the class of EM
algorithms.

2.1 The Viterbi Algorithm

In addition to finding the probability of the realization of a particularly hidden state
sequence, we may also seek the most likely sequence realization. This sequence can
be estimated using the Viterbi algorithm.

Suppose once again that we observe a sequence of T observations,

y = {y1, . . . , yT }.

However, for each 1 ≤ t ≤ T , yt ∈ O, where O = {o1, o2, . . . , oN }, N ∈ N, is
now in some observation space.

We suppose that, for each 1 ≤ t ≤ T , the observation yt is driven by a (hidden)
state st ∈ S, where S := {∫1, . . . , ∫K}, K ∈ N, is some state space. For example,
yt might be the credit rating of a corporate bond and st might indicate some latent
variable such as the overall health of the relevant industry sector.

Given y, what is the most likely sequence of hidden states,

x = {x1, x2, . . . , xT }?

2 Hidden Markov Modeling 225

To answer this question, we need to introduce a few more constructs. First, the
set of initial probabilities must be given:

π = {π1, . . . , πK },

so that πi is the probability that s1 = ∫i , 1 ≤ i ≤ K .
We also need to specify the transition matrix A ∈ R

K×K , such that the element
Aij , 1 ≤ i, j ≤ K is the transition probability of transitioning from state ∫i to state
∫j .

Finally, we need the emission matrix B ∈ R
K×N , such that the element Bij ,

1 ≤ i ≤ K , 1 ≤ j ≤ N is the probability of observing oj from state ∫i .
Let us now consider a simple example to fix ideas.

Example 7.2 The Crooked Dealer

A dealer has two coins, a fair coin, with P(Heads) = 1
2 , and a loaded coin,

with P(Heads) = 4
5 . The dealer starts with the fair coin with probability 3

5 . The
dealer then tosses the coin several times. After each toss, there is a 2

5 probability
of a switch to the other coin. The observed sequence is Heads, Tails, Heads,
Tails, Heads, Heads, Heads, Tails, Heads.

In this case, the state space and observation space are, respectively,

S = {∫1 = Fair, ∫2 = Loaded}, O = {o1 = Heads, o2 = Tails},

with initial probabilities

π = {π1 = 0.6, π2 = 0.4},

transition probabilities

A =
(

0.6 0.4
0.4 0.6

)
,

and the emission matrix is

B =
(

0.5 0.5
0.8 0.2

)
.

Given the sequence of observations

y = (Heads,Tails,Heads,Tails,Heads,Heads,Heads,Tails,Heads),

we would like to find the most likely sequence of hidden states, s =
{s1, . . . , sT }, i.e., determine which of the two coins generated which of the
coin tosses.

226 7 Probabilistic Sequence Modeling

One way to answer this question is by applying the Viterbi algorithm as detailed
in the notebook Viterbi.ipynb. We note that the most likely state sequence s,
which produces the observation sequence y = {y1, . . . , yT }, satisfies the recurrence
relations

V1,k = P(y1 | s1 = ∫k) · πk,
Vt,k = max

1≤i≤K
(
P(yt | st = ∫k) · Aik · Vt−1,i

)
,

where Vt,k is the probability of the most probable state sequence {s1, . . . , st } such
that st = ∫k ,

Vt,k = P(s1, . . . , st , y1, . . . , yt | st = ∫k).

The actual Viterbi path can be obtained by, at each step, keeping track of which
state index i was used in the second equation. Let ξ(k, t) be the function that returns
the value of i that was used to compute Vt,k if t > 1, or k if t = 1. Then

sT = ∫arg max
1≤i≤K (VT,k)

,

st−1 = ∫ξ(st ,t).

We leave the application of the Viterbi algorithm to our example as an exercise
for the reader.

Note that the Viterbi algorithm determines the most likely complete sequence
of hidden states given the sequence of observations and the model specification,
including the known transition and emission matrices. If these matrices are known,
there is no reason to use the Baum–Welch algorithm. If they are unknown, then the
Baum–Welch algorithm must be used.

2.1.1 Filtering and Smoothing with HMMs

Financial data is typically noisy and we need techniques which can extract the
signal from the noise. There are many techniques for reducing the noise. Filtering
is a general term for extracting information from a noisy signal. Smoothing is a
particular kind of filtering in which low-frequency components are passed and high-
frequency components are attenuated. Filtering and smoothing produce distributions
of states at each time step. Whereas maximum likelihood estimation chooses the
state with the highest probability at the “best” estimate at each time step, this may
not lead to the best path in HMMs. We have seen that the Baum–Welch algorithm
can be deployed to find the optimal state trajectory, not just the optimal sequence of
“best” states.

3 Particle Filtering 227

2.2 State-Space Models

HMMs belong in the same class as linear Gaussian state-space models. These are
known as “Kalman filters” which are continuous latent state analogues of HMMs.
Note that we have already seen examples of continuous state-space models, which
are not necessarily Gaussian, in our exposition on RNNs in Chap. 8.

The state transition probability p(st | st−1) can be decomposed into deterministic
and noise:

st = Ft(st−1)+ εt , (7.7)

for some deterministic function and εt is zero-mean i.i.d. noise. Similarly, the
emission probability p(yt | st) can be decomposed as:

yt = Gt(st)+ ξt , (7.8)

with zero-mean i.i.d. observation noise. If the functions Ft and Gt are linear and
time independent, then we have

st = Ast−1 + εt , (7.9)

yt = Cst + ξt , (7.10)

where A is the state transition matrix and C is the observation matrix. For
completeness, we contrast the Kalman filter with a univariate RNN, as described
in Chap. 8. When the observations are predictors, xt , and the hidden variables are st
we have

st = F(st−1, yt) := σ(Ast−1 + Byt), (7.11)

yt = Cst + ξt , (7.12)

where we have ignored the bias terms for simplicity. Hence, the RNN state equation
differs from the Kalman filter in that (i) it is a non-linear function of both the
previous state and the observation; and (ii) it is noise-free.

3 Particle Filtering

A Kalman filter maintains its state as moments of the multivariate Gaussian
distribution, N(m,P). This approach is appropriate when the state is Gaussian, or
when the true distribution can be closely approximated by the Gaussian. What if the
distribution is, for example, bimodal?

228 7 Probabilistic Sequence Modeling

Arguably the simplest way to approximate more or less any distribution,
including a bimodal distribution, is by data points sampled from that distribution.
We refer to those data points as “particles.”

The more particles we have, the more closely we can approximate the target
distribution. The approximate, empirical distribution is then given by the histogram.
Note that the particles need not be univariate, as in our example. They may
be multivariate if we are approximating a multivariate distribution. Also, in our
example the particles all have the same weight. More generally, we may consider
weighted particles, whose weights are unequal.

This setup gives rise to the family of algorithms known as particle filtering
algorithms (Gordon et al. 1993; Kitagawa 1993). One of the most common of them
is the Sequential Importance Resampling (SIR) algorithm:

3.1 Sequential Importance Resampling (SIR)

a. Initialization step: At time t = 0, draw M i.i.d. samples from the initial
distribution τ0. Also, initializeM normalized (to 1) weights to an identical value
1
M

. For i = 1, . . . ,M , the samples will be denoted x̂(i)0 | 0 and the normalized

weights λ(i)0 .

b. Recursive step: At time t = 1, . . . , T , let (x̂(i)t−1 | t−1)i=1,...,M be the particles
generated at time t − 1.

– Importance sampling: For i = 1, . . .M , sample x̂(i)t | t−1 from the Markov

transition kernel τt (· | x̂(i)t−1 | t−1). For i = 1, . . . ,M , use the observation
density to compute the non-normalized weights

ω
(i)
t := λ(i)t−1 · p(yt | x̂(i)t | t−1)

and the values of the normalized weights before resampling (“br”)

brλ
(i)
t := ω

(i)
t∑M

k=1 ω
(k)
t

.

– Resampling (or selection): For i = 1, . . . ,M , use an appropriate resampling
algorithm (such as multinomial resampling—see below) to sample x(i)t | t from
the mixture

M∑

k=1

brλ
(k)
t δ(xt − x(k)t | t−1),

3 Particle Filtering 229

where δ(·) denotes the Dirac delta generalized function, and set the normalized
weights after resampling, λ(i)t , appropriately (for most common resampling
algorithms this means λ(i)t := 1

M
).

Informally, SIR shares some of the characteristics of genetic algorithms; based
on the likelihoods p(yt | x̂(i)t | t−1), we increase the weights of the more “successful”
particles, allowing them to “thrive” at the resampling step.

The resampling step was introduced to avoid the degeneration of the particles,
with all the weight concentrating on a single point. The most common resampling
scheme is the so-called multinomial resampling which we now review.

3.2 Multinomial Resampling

Notice, from above, that we are using with the normalized weights computed before
resampling, brλ

(1)
t , . . . ,

brλ
(M)
t :

a. For i = 1, . . . ,M , compute the cumulative sums

br"
(i)
t =

i∑

k=1

brλ
(k)
t ,

so that, by construction, br"
(M)
t = 1.

b. GenerateM random samples fromU(0, 1), u1, u2, . . . , uM .
c. For each i = 1, . . . ,M , choose the particle x̂(i)t | t = x̂(j)t | t−1 with j ∈
{1, 2, . . . ,M − 1} such that ui ∈

[
br"

(j)
t ,

br"
(j+1)
t

]
.

Thus we end up with M new particles (children), x(1)t | t , . . . , x
(M)
t | t sampled from

the existing set x(1)t | t−1, . . . , x
(M)
t | t−1, so that some of the existing particles may

disappear, while others may appear multiple times. For each i = 1, . . . ,M the
number of times x(i)t | t−1 appears in the resampled set of particles is known as the

particle’s replication factor, N(i)t .
We set the normalized weights after resampling: λ(i)t := 1

M
. We could view

this algorithm as the sampling of the replication factors N(1)t , . . . N
(M)
t from the

multinomial distribution with probabilities brλ
(1)
t , . . . ,

brλ
(M)
t , respectively. Hence

the name of the method. �

230 7 Probabilistic Sequence Modeling

3.3 Application: Stochastic Volatility Models

Stochastic Volatility (SV) models have been studied extensively in the literature,
often as applications of particle filtering and Markov chain Monte Carlo (MCMC).
Their broad appeal in finance is their ability to capture the “leverage effect”—the
observed tendency of an asset’s volatility to be negatively correlated with the asset’s
returns (Black 1976).

In particular, Pitt, Malik, and Doucet apply the particle filter to the stochastic
volatility with leverage and jumps (SVLJ) (Malik and Pitt 2009, 2011a,b; Pitt et al.
2014). The model has the general form of Taylor (1982) with two modifications. For
t ∈ N ∪ {0}, let yt denote the log-return on an asset and xt denote the log-variance
of that return. Then

yt = εt ext /2 + Jt#t , (7.13)

xt+1 = μ(1− φ)+ φxt + σvηt , (7.14)

where μ is the mean log-variance, φ is the persistence parameter, σv is the volatility
of log-variance.

The first modification to Taylor’s model is the introduction of correlation between
εt and ηt :

(
εt

ηt

)
∼ N(0, �), � =

(
1 ρ
ρ 1

)
.

The correlation ρ is the leverage parameter. In general, ρ < 0, due to the leverage
effect.

The second change is the introduction of jumps. Jt ∈ {0, 1} is a Bernoulli counter
with intensity p (thus p is the jump intensity parameter),#t ∼ N(0, σ 2

J) determines
the jump size (thus σJ is the jump volatility parameter).

We obtain a stochastic volatility with leverage (SVL), but no jumps, if we delete
the Jt#t term or, equivalently, set p to zero. Taylor’s original model is a special
case of SVLJ with p = 0, ρ = 0.

This, then, leads to the following adaptation of SIR, developed by Doucet,
Malik, and Pitt, for this special case with nonadditive, correlated noises. The initial
distribution of x0 is taken to be N

(
0, σ 2

v /(1− φ2)
)
.

a. Initialization step: At time t = 0, draw M i.i.d. particles from the initial
distribution N(0, σ 2

v /(1 − φ2)). Also, initialize M normalized (to 1) weights to
an identical value of 1

M
. For i = 1, 2, . . . ,M , the samples will be denoted x̂(i)0 | 0

and the normalized weights λ(i)0 .

b. Recursive step: At time t ∈ N, let (x̂(i)t−1 | t−1)i=1,...,M be the particles generated
at time t − 1.

4 Point Calibration of Stochastic Filters 231

i Importance sampling:

– First,

– For i = 1, . . . ,M , sample ε̂(i)t−1 from p(εt−1 | xt−1 = x̂(i)t−1 | t−1, yt−1). (If no

yt−1 is available, as at t = 1, sample from p(εt−1 | xt−1 = x̂(i)t−1 | t−1)).

– For i = 1, . . . ,M , sample x̂(i)t | t−1 from p(xt | xt−1 = x̂(i)t−1 | t−1, yt−1, ε̂
(i)
t−1).

– For i = 1, . . . ,M , compute the non-normalized weights:

ω
(i)
t := λ(i)t−1 · pγt (yt | x̂(i)t | t−1), (7.15)

using the observation density

p(yt | x̂(i)t | t−1, p, σ
2
J) = (1− p)

[(
2πex̂

(i)
t | t−1

)−1/2

exp

(
−y2

t /(2e
x̂
(i)
t | t−1)

)]
+

p

[(
2π(ex̂

(i)
t | t−1 + σ 2

J)

)−1/2

exp

(
−y2

t /(2e
x̂
(i)
t | t−1 + 2σ 2

J)

)]
,

and the values of the normalized weights before resampling (‘br’):

brλ
(i)
t := ω

(i)
t∑M

k=1 ω
(k)
t

.

ii Resampling (or selection): For i = 1, . . . ,M , use an appropriate resampling
algorithm (such as multinomial resampling) sample x̂(i)t | t from the mixture

M∑

k=1

brλ
(k)
t δ(xt − x̂(k)t | t−1),

where δ(·) denotes the Dirac delta generalized function, and set the normalized
weights after resampling, λ(i)t , according to the resampling algorithm.

4 Point Calibration of Stochastic Filters

We have seen in the example of the stochastic volatility model with leverage and
jumps (SVLJ) that the state-space model may be parameterized by a parameter
vector, θ ∈ R

dθ , dθ ∈ N. In that particular case,

232 7 Probabilistic Sequence Modeling

θ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

μ

φ

σ 2
η

ρ

σ 2
J

p

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

We may not know the true value of this parameter. How do we estimate it? In
other words, how do we calibrate the model, given a time series of either historical
or generated observations, y1, . . . , yT , T ∈ N.

The frequentist approach relies on the (joint) probability density function of
the observations, which depends on the parameters, p(y1, y2, . . . , yT | θ). We can
regard this as a function of θ with y1, . . . , yT fixed, p(y1, . . . , yT | θ) =: L(θ)—
the likelihood function.

This function is sometimes referred to as marginal likelihood, since the hidden
states, x1, . . . , xT , are marginalized out. We seek a maximum likelihood estimator
(MLE), θ̂ML, the value of θ that maximizes the likelihood function.

Each evaluation of the objective function,L(θ), constitutes a run of the stochastic
filter over the observations y1, . . . , yT . By the chain rule (i), and since we use a
Markov chain (ii),

p(y1, . . . , yT)
(i)=

T∏

t=1

p(yt | y0, . . . , yt−1)
(ii)=

T∏

t=1

∫
p(yt | xt)p(xt | y0, . . . , yt−1) dxt .

Note that, for ease of notation, we have omitted the dependence of all the probability
densities on θ , e.g., instead of writing p(y1, . . . , yT ; θ).

For the particle filter, we can estimate the log-likelihood function from the non-
normalized weights:

p(y1, . . . , yT) =
T∏

t=1

∫
p(yt | xt)p(xt | y0, . . . , yt−1) dxt ≈

T∏

t=1

(
1

M

M∑

k=1

ω
(k)
t

)
,

whence

ln(L(θ)) = ln

{
T∏

t=1

(
1

M

M∑

k=1

ω
(k)
t

)}
=

T∑

t=1

ln

(
1

M

M∑

k=1

ω
(k)
t

)
. (7.16)

This was first proposed by Kitagawa (1993, 1996) for the purposes of approxi-
mating θ̂ML.

In most practical applications one needs to resort to numerical methods, perhaps
quasi-Newton methods, such as Broyden–Fletcher–Goldfarb–Shanno (BFGS) (Gill
et al. 1982), to find θ̂ML.

5 Bayesian Calibration of Stochastic Filters 233

Pitt et al. (2014) point out the practical difficulties which result when using the
above as an objective function in an optimizer. In the resampling (or selection) step
of the particle filter, we are sampling from a discontinuous empirical distribution
function. Therefore, ln(L(θ)) will not be continuous as a function of θ . To remedy
this, they rely on an alternative, continuous, resampling procedure. A quasi-Newton
method is then used to find θ̂ML for the parameters θ = (μ, φ, σ 2

v , ρ, p, σ
2
J)

ᵀ of
the SVLJ model.

We note in passing that Kalman filters can also be calibrated using a similar
maximum likelihood approach.

5 Bayesian Calibration of Stochastic Filters

Let us briefly discuss how filtering methods relate to Markov chain Monte Carlo
methods (MCMC)—a vast subject in its own right; therefore, our discussion will be
cursory at best. The technique takes its origin from Metropolis et al. (1953).

Following Kim et al. (1998) and Meyer and Yu (2000); Yu (2005), we demon-
strate how MCMC techniques can be used to estimate the parameters of the SVL
model. They calibrate the parameters to the time series of observations of daily
mean-adjusted log-returns, y1, . . . , yT to obtain the joint prior density

p(θ , x0, . . . , xT) = p(θ)p(x0 | θ)
T∏

t=1

p(xt | xt−1, θ)

by successive conditioning. Here θ := (μ, φ, σ 2
v , ρ)

ᵀ is, as before, the vector of the
model parameters. We assume prior independence of the parameters and choose the
same priors (as in Kim et al. (1998)) for μ, φ, and σ 2

v , and a uniform prior for ρ. The
observation model and the conditional independence assumption give the likelihood

p(y1, . . . , yT | θ , x0, . . . , xT) =
T∏

t=1

p(yt | xt),

and the joint posterior distribution of the unobservables (the parameters θ and the
hidden states x0, . . . , xT ; in the Bayesian perspective these are treated identically
and estimated in a similar manner) follows from Bayes’ theorem; for the SVL
model, this posterior satisfies

p(θ , x0, . . . , xT | y1, . . . , yT) ∝ p(μ)p(φ)p(σ 2
v)p(ρ)

T∏

t=1

p(xt+1 | xt , μ, φ, σ 2
v)

T∏

t=1

p(yt | xt+1, xt , μ, φ, σ
2
v , ρ),

234 7 Probabilistic Sequence Modeling

where p(μ), p(φ), p(σ 2
v), p(ρ) are the appropriately chosen priors,

xt+1 | xt , μ, φ, σ 2
v ∼ N

(
μ(1− φ)+ φxt , σ 2

v

)
,

yt | xt+1, xt , μ, φ, σ
2
v , ρ ∼ N

(
ρ

σv
ext /2 (xt+1 − μ(1− φ)− φxt) , ext (1− ρ2)

)
.

Meyer and Yu use the software package BUGS3 (Spiegelhalter et al. 1996; Lunn
et al. 2000) represent the resulting Bayesian model as a directed acyclic graph
(DAG), where the nodes are either constants (denoted by rectangles), stochastic
nodes (variables that are given a distribution, denoted by ellipses), or deterministic
nodes (logical functions of other nodes); the arrows either indicate stochastic
dependence (solid arrows) or logical functions (hollow arrows). This graph helps
visualize the conditional (in)dependence assumptions and is used by BUGS to
construct full univariate conditional posterior distributions for all unobservables. It
then uses Markov chain Monte Carlo algorithms to sample from these distributions.

The algorithm based on the original work (Metropolis et al. 1953) is now known
as the Metropolis algorithm. It has been generalized by Hastings (1930–2016) to
obtain the Metropolis–Hastings algorithm (Hastings 1970) and further by Green to
obtain what is known as the Metropolis–Hastings–Green algorithm (Green 1995).
A popular algorithm based on a special case of the Metropolis–Hastings algorithm,
known as the Gibbs sampler, was developed by Geman and Geman (1984) and,
independently, Tanner and Wong (1987).4 It was further popularized by Gelfand and
Smith (1990). Gibbs sampling and related algorithms (Gilks and Wild 1992; Ritter
and Tanner 1992) are used by BUGS to sample from the univariate conditional
posterior distributions for all unobservables. As a result we perform Bayesian
estimation—obtain estimates of the distributions of the parameters μ, φ, σ 2

v , ρ—
rather than frequentist estimation, where a single value of the parameters vector,
which maximizes the likelihood, θ̂ML, is produced. Stochastic filtering, sometimes
in combination with MCMC, can be used for both frequentist and Bayesian
parameter estimation (Chen 2003). Filtering methods that update estimates of the
parameters online, while processing observations in real-time, are referred to as
adaptive filtering (see Sayed (2008); Vega and Rey (2013); Crisan and Míguez
(2013); Naesseth et al. (2015) and references therein).

We note that a Gibbs sampler (or variants thereof) is a highly nontrivial piece
of software. In addition to the now classical BUGS/WinBUGS there exist powerful
Gibbs samplers accessible via modern libraries, such as Stan, Edward, and PyMC3.

3An acronym for Bayesian inference Using Gibbs Sampling.
4Sometimes the Gibbs sampler is referred to as data augmentation following this paper.

7 Exercises 235

6 Summary

This chapter extends Chap. 2 by presenting probabilistic methods for time series
data. The key modeling assumption is the existence of a certain latent process
Xt , which evolves over time. This unobservable, latent process drives another,
observable process. Such an approach overcomes limitations of stationarity imposed
on the methods in the previous chapter. The reader should verify that they have
achieved the primary learning objectives of this chapter:

– Formulate hidden Markov models (HMMs) for probabilistic modeling over
hidden states;

– Gain familiarity with the Baum–Welch algorithm for fitting HMMs to time series
data;

– Use the Viterbi algorithm to find the most likely path;
– Gain familiarity with state-space models and the application of Kalman filters to

fit them; and
– Apply particle filters to financial time series.

7 Exercises

Exercise 7.1: Kalman Filtering of Autoregressive Moving AverageARMA(p, q)
Model
The autoregressive moving average ARMA(p, q) model can be written as

yt = φ1yt−1 + . . .+ φpyt−p + ηt + θ1ηt−1 + . . .+ θqηt−q,

where ηt ∼ N(0, σ 2) and includes as special cases all AR(p) and MA(q) models.
Such models are often fitted to financial time series. Suppose that we would like to
filter this time series using a Kalman filter. Write down a suitable process and the
observation models.

Exercise 7.2: The Ornstein–Uhlenbeck Process
Consider the one-dimensional Ornstein–Uhlenbeck (OU) process, the stationary
Gauss–Markov process given by the SDE

dXt = θ(μ−Xt) dt + σ dWt ,

where Xt ∈ R, X0 = x0, and θ > 0, μ, and σ > 0 are constants. Formulate the
Kalman process model for this process.

Exercise 7.3: Deriving the Particle Filter for Stochastic Volatility with Leverage
and Jumps

236 7 Probabilistic Sequence Modeling

We shall regard the log-variance xt as the hidden states and the log-returns yt as
observations. How can we use the particle filter to estimate xt on the basis of the
observations yt?

a. Show that, in the absence of jumps,

xt = μ(1− φ)+ φxt−1 + σvρyt−1e
−xt−1/2 + σv

√
1− ρ2ξt−1

for some ξt
i.i.d.∼ N(0, 1).

b. Show that

p(εt | xt , yt) =δ(εt − yte−xt /2)P[Jt = 0 | xt , yt]
+ φ(εt ;μεt | Jt=1, σ

2
εt | Jt=1)P[Jt = 1 | xt , yt],

where

μεt | Jt=1 = yt exp(xt/2)

exp(xt)+ σ 2
J

and

σ 2
εt | Jt=1 =

σ 2
J

exp(xt)+ σ 2
J

.

c. Explain how you could implement random sampling from the probability
distribution given by the density p(εt | xt , yt).

d. Write down the probability density p(xt | xt−1, yt−1, εt−1).
e. Explain how you could sample from this distribution.
f. Show that the observation density is given by

p(yt | x̂(i)t | t−1, p, σ
2
J) = (1− p)

[(
2πex̂

(i)
t | t−1

)−1/2

exp

(
−y2

t /(2e
x̂
(i)
t | t−1)

)]
+

p

[(
2π(ex̂

(i)
t | t−1 + σ 2

J)

)−1/2

exp

(
−y2

t /(2e
x̂
(i)
t | t−1 + 2σ 2

J)

)]
.

Exercise 7.4: The Viterbi Algorithm and an Occasionally Dishonest Casino
The dealer has two coins, a fair coin, with P(Heads) = 1

2 , and a loaded coin, with
P(Heads) = 4

5 . The dealer starts with the fair coin with probability 3
5 . The dealer

then tosses the coin several times. After each toss, there is a 2
5 probability of a switch

to the other coin. The observed sequence is Heads, Tails, Tails, Heads, Tails, Heads,
Heads, Heads, Tails, Heads. Run the Viterbi algorithm to determine which coin the
dealer was most likely using for each coin toss.

References 237

Appendix

Python Notebooks

The notebooks provided in the accompanying source code repository are designed
to gain familiarity with how to implement the Viterbi algorithm and particle filtering
for stochastic volatility model calibration. Further details of the notebooks are
included in the README.md file.

References

Black, F. (1976). Studies of stock price volatility changes. In Proceedings of the Business and
Economic Statistics Section.

Chen, Z. (2003). Bayesian filtering: From Kalman filters to particle filters, and beyond. Statis-
tics, 182(1), 1–69.

Crisan, D., & Míguez, J. (2013). Nested particle filters for online parameter estimation in discrete-
time state-space Markov models. ArXiv:1308.1883.

Gelfand, A. E., & Smith, A. F. M. (1990, June). Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410), 398–409.

Geman, S. J., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
721–741.

Gilks, W. R., & Wild, P. P. (1992). Adaptive rejection sampling for Gibbs sampling, Vol. 41, pp.
337–348.

Gill, P. E., Murray, W., & Wright, M. H. (1982). Practical optimization. Emerald Group Publishing
Limited.

Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEE Proceedings F (Radar and Signal Processing).

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4), 711–32.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika, 57(1), 97–109.

Kim, S., Shephard, N., & Chib, S. (1998, July). Stochastic volatility: Likelihood inference and
comparison with ARCH models. The Review of Economic Studies, 65(3), 361–393.

Kitagawa, G. (1993). A Monte Carlo filtering and smoothing method for non-Gaussian nonlinear
state space models. In Proceedings of the 2nd U.S.-Japan Joint Seminar on Statistical Time
Series Analysis (pp. 110–131).

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space
models. Journal of Computational and Graphical Statistics, 5(1), 1–25.

Lunn, D. J., Thomas, A., Best, N. G., & Spiegelhalter, D. (2000). WinBUGS – a Bayesian
modelling framework: Concepts, structure and extensibility. Statistics and Computing, 10, 325–
337.

Malik, S., & Pitt, M. K. (2009, April). Modelling stochastic volatility with leverage and jumps:
A simulated maximum likelihood approach via particle filtering. Warwick Economic Research
Papers 897, The University of Warwick, Department of Economics, Coventry CV4 7AL.

Malik, S., & Pitt, M. K. (2011a, February). Modelling stochastic volatility with leverage and
jumps: A simulated maximum likelihood approach via particle filtering. document de travail
318, Banque de France Eurosystème.

238 7 Probabilistic Sequence Modeling

Malik, S., & Pitt, M. K. (2011b). Particle filters for continuous likelihood evaluation and
maximisation. Journal of Econometrics, 165, 190–209.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation
of state calculations by fast computing machines. Journal of Chemical Physics, 21.

Meyer, R., & Yu, J. (2000). BUGS for a Bayesian analysis of stochastic volatility models.
Econometrics Journal, 3, 198–215.

Naesseth, C. A., Lindsten, F., & Schön, T. B. (2015). Nested sequential Monte Carlo methods. In
Proceedings of the 32nd International Conference on Machine Learning.

Pitt, M. K., Malik, S., & Doucet, A. (2014). Simulated likelihood inference for stochastic volatility
models using continuous particle filtering. Annals of the Institute of Statistical Mathematics, 66,
527–552.

Ritter, C., & Tanner, M. A. (1992). Facilitating the Gibbs sampler: The Gibbs stopper and the
Griddy-Gibbs sampler. Journal of the American Statistical Association, 87(419), 861–868.

Sayed, A. H. (2008). Adaptive filters. Wiley-Interscience.
Spiegelhalter, D., Thomas, A., Best, N. G., & Gilks, W. R. (1996, August). BUGS 0.5: Bayesian

inference using Gibbs sampling manual (version ii). Robinson Way, Cambridge CB2 2SR:
MRC Biostatistics Unit, Institute of Public Health.

Tanner, M. A., & Wong, W. H. (1987, June). The calculation of posterior distributions by data
augmentation. Journal of the American Statistical Association, 82(398), 528–540.

Taylor, S. J. (1982). Time series analysis: theory and practice. Chapter Financial returns modelled
by the product of two stochastic processes, a study of daily sugar prices, pp. 203–226. North-
Holland.

Vega, L. R., & H. Rey (2013). A rapid introduction to adaptive filtering. Springer Briefs in
Electrical and Computer Engineering. Springer.

Yu, J. (2005). On leverage in a stochastic volatility model. Journal of Econometrics, 127, 165–178.

Chapter 8
Advanced Neural Networks

This chapter presents various neural network models for financial time series
analysis, providing examples of how they relate to well-known techniques in
financial econometrics. Recurrent neural networks (RNNs) are presented as non-
linear time series models and generalize classical linear time series models such
as AR(p). They provide a powerful approach for prediction in financial time
series and generalize to non-stationary data. This chapter also presents convolution
neural networks for filtering time series data and exploiting different scales in the
data. Finally, this chapter demonstrates how autoencoders are used to compress
information and generalize principal component analysis.

1 Introduction

The universal approximation theorem states that a feedforward network is capable
of approximating any function. So why do other types of neural networks exist? One
answer to this is efficiency. In this chapter, different architectures shall be explored
for their ability to exploit the structure in the data, resulting in fewer weights. Hence
the main motivation for different architectures is often parsimony of parameters
and therefore less propensity to overfit and reduced training time. We shall see that
other architectures can be used, in particular ones that change their behavior over
time, without the need to retrain the networks. And we will see how neural networks
can be used to compress data, analogously to principal component analysis.

There are other neural network architectures which are used in financial applica-
tions but are too esoteric to list here. However, we shall focus on three other classes
of neural networks which have proven to be useful in the finance industry. The first
two are supervised learning techniques and the latter is an unsupervised learning
technique.

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_8

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_8

240 8 Advanced Neural Networks

Recurrent neural networks (RNNs) are non-linear time series models and gener-
alize classical linear time series models such as AR(p). They provide a powerful
approach for prediction in financial time series and share parameters across time.
Convolution neural networks are useful as spectral transformations of spatial and
temporal data and generalize techniques such as wavelets, which use fixed basis
functions. They share parameters across space. Finally, autoencoders are used to
compress information and generalize principal component analysis.

Chapter Objectives

By the end of this chapter, the reader should expect to accomplish the following:

– Characterize RNNs as non-linear autoregressive models and analyze their stabil-
ity;

– Understand how gated recurrent units and long short-term memory architectures
give a dynamic autoregressive model with variable memory;

– Characterize CNNs as regression, classification, and time series regression of
filtered data;

– Understand principal component analysis for dimension reduction;
– Formulate a linear autoencoder and extract the principal components; and
– Understand how to build more complex networks by aggregating these different

concepts.

The notebooks provided in the accompanying source code repository demonstrate
many of the methods in this chapter. See Appendix “Python Notebooks” for further
details.

2 Recurrent Neural Networks

Recall that if the data D := {xt , yt }Nt=1 is auto-correlated observations of X and
Y at times t = 1, . . . , N , then the prediction problem can be expressed as a
sequence prediction problem: construct a non-linear times series predictor, ŷt+h, of
a response, yt+h, using a high-dimensional input matrix of T length sub-sequences
Xt :

ŷt+h = f (Xt) where Xt := seqT,t (X) = (xt−T+1, . . . , xt),

where xt−j is a j th lagged observation of xt , xt−j = Lj [xt], for j = 0, . . . , T − 1.
Sequence learning, then, is just a composition of a non-linear map and a vectoriza-
tion of the lagged input variables. If the data is i.i.d., then no sequence is needed
(i.e., T = 1), and we recover a feedforward neural network.

2 Recurrent Neural Networks 241

Recurrent neural networks (RNNs) are times series methods or sequence learners
which have achieved much success in applications such as natural language under-
standing, language generation, video processing, and many other tasks (Graves
2012). There are many types of RNNs—we will just concentrate on simple RNN
models for brevity of notation. Like multivariate structural autoregressive models,
RNNs apply an autoregressive function f (1)

W(1),b(1)
(Xt) to each input sequence Xt ,

where T denotes the look back period at each time step—the maximum number of
lags. However, rather than directly imposing an autocovariance structure, a RNN
provides a flexible functional form to directly model the predictor, Ŷ .

As illustrated in Fig. 8.1, this simple RNN is an unfolding of a single hidden
layer neural network (a.k.a. Elman network (Elman 1991)) over all time steps in
the sequence, j = 0, . . . , T − 1. For each time step, j , this function f (1)

W(1),b(1)
(Xt,j)

generates a hidden state zt−j from the current input xt and the previous hidden state
zt−1 and Xt,j = seqT,t−j (X) ⊂ Xt :

z1
t−5

zit−5

zHt−5

xt−5

z1
t−4

zit−4

zHt−4

xt−4

z1
t−3

zit−3

zHt−3

xt−3

z1
t−2

zit−2

zHt−2

xt−2

z1
t−1

zit−1

zHt−1

xt−1

z1
t

zit

zHt

xt

ŷt+h

Fig. 8.1 An illustrative example of a recurrent neural network with one hidden layer, “unfolded”
over a sequence of six time steps. Each input xt is in the sequenceXt . The hidden layer containsH
units and the ith output at time step t is denoted by zit . The connections between the hidden units

are recurrent and are weighted by the matrixW(1)
z . At the last time step t , the hidden units connect

to a single unit output layer with continuous ŷt+h

242 8 Advanced Neural Networks

response: ŷt+h = f (2)W(2),b(2)
(zt) := σ (2)(W(2)zt + b(2)),

hidden states: zt−j = f (1)W(1),b(1)
(Xt,j)

:= σ (1)(W(1)
z zt−j−1 +W(1)

x xt−j + b(1)), j ∈ {T − 1, . . . , 0},

where σ (1) is an activation function such as tanh(x), and σ (2) is either a softmax
function or identity map depending on whether the response is categorical or
continuous, respectively. The connections between the extremal inputs xt and theH
hidden units are weighted by the time invariant matrixW(1)

x ∈ R
H×P . The recurrent

connections between the H hidden units are weighted by the time invariant matrix
W
(1)
z ∈ R

H×H . Without such a matrix, the architecture is simply a single-layered
feedforward network without memory—each independent observation xt is mapped
to an output ŷt using the same hidden layer.

The sets W(1) = (W
(1)
x ,W

(1)
z) refer to the input and recurrence weights. W(2)

denotes the weights tied to the output of the H hidden units at the last time step,
zt , and the output layer. If the response is a continuous vector, Y ∈ R

M , then
W(2) ∈ R

M×H . If the response is categorical, with K states, then W(2) ∈ R
K×H .

The number of hidden units determines the degree of non-linearity in the model and
must be at least the dimensionality of the input p. In our experiments the hidden
layer is generally under a hundred units, but can increase to thousands in higher
dimensional datasets.

There are a number of issues in the RNN design. How many times should
the network being unfolded? How many hidden neurons H in the hidden layer?
How to perform “variable selection”? The answer to the first question lies in tests
for autocorrelation of the data—the sequence length needed in a RNN can be
determined by the largest significant lag in an estimated “partial autocorrelation”
function. The answer to the second is no different to the problem of how to choose
the number of hidden neurons in a MLP—the bias–variance tradeoff being the most
important consideration. And indeed the third question is also closely related to
the problem of choosing features in a MLP. One can take a principled approach to
feature selection, first identifying a subset of features using a Granger-causality test,
or the “laissez-machine” approach of including all potentially relevant features and
allowing auto-shrinkage to determine the most important weights are more aligned
with contemporary experimental design in machine learning. One important caveat
on feature selection for RNNs is that each feature must be a time series and therefore
exhibit autocorrelation.

We shall begin with a simple, univariate, example to illustrate how a RNN,
without activation, is a AR(p) time series model.

2 Recurrent Neural Networks 243

Example 8.1 RNNs as Non-linear AR(p) Models

Consider the simplest case of a RNN with one hidden unit, H = 1, no
activation function, and the dimensionality of the input vector is P = 1.
Suppose further that W(1)

z = φz, |φz| < 1, W(1)
x = φx , Wy = 1, bh = 0 and

by = μ. Then we can show that f (1)
W(1),b(1)

(Xt) is of an autoregressive, AR(p),
model of order p with geometrically decaying autoregressive coefficients
φi = φxφi−1

z :

zt−p = φxxt−p
zt−T+2 = φzzt−T+1 + φxxt−T+2

. . . = . . .
zt−1 = φzzt−2 + φxxt−1

x̂t = zt−1 + μ

then

x̂t = μ+ φx(L+ φzL2 + · · · + φp−1
z Lp)[xt]

= μ+
∑

i=1

φixt−i

This special type of autoregressive model x̂t is “stable” and the order can be
identified through autocorrelation tests on X such as the Durbin–Watson, Ljung–
Box, or Box–Pierce tests. Note that if we modify the architecture so that the
recurrence weights W(1)

z,i = φz,i are lag dependent then the unactivated hidden
layer is

zt−i = φz,izt−i−1 + φxxt−i (8.1)

which gives

x̂t = μ+ φx(L+ φz,1L2 + · · · +
p−1∏

i=1

φz,iL
p)[xt], (8.2)

and thus the weights in this AR(p) model are φj = φx
∏j−1
i=1 φz,i which allows

a more flexible presentation of the autocorrelation structure than the plain RNN—
which is limited to geometrically decaying weights. Note that a linear RNN with
infinite number of lags and no bias corresponds to an exponential smoother, zt =
αxt + (1− α)zt−1 whenWz = 1− α,Wx = α, andWy = 1.

244 8 Advanced Neural Networks

The generalization of a linear RNN from AR(p) to VAR(p) is trivial and can be
written as

x̂t=μ+
p∑

j=1

φjxt−j , φj :=W(2)(W(1)
z)

j−1W(1)
x ,μ := W(2)

p∑

j=1

(W(1)
z)

j−1b(1)+b(2),
(8.3)

where the square matrix φj ∈ R
P×P and bias vector μ ∈ R

P .

2.1 RNN Memory: Partial Autocovariance

Generally, with non-linear activation, it is more difficult to describe the RNN as
a classical model. However, the partial autocovariance function provides some
additional insight here. Let us first consider a RNN(1) process. The lag-1 partial
autocovariance is

γ̃1 = E[yt − μ, yt−1 − μ] = E[ŷt + εt − μ, yt−1 − μ], (8.4)

and using the RNN(1) model with, for simplicity, a single recurrence weight, φ:

ŷt = σ(φyt−1) (8.5)

gives

γ̃1 = E[σ(φyt−1)+ εt − μ, yt−1 − μ] = E[yt−1σ(φyt−1)], (8.6)

where we have assumed μ = 0 in the second part of the expression. Checking that
we recover the AR(1) covariance, set σ := Id so that

γ̃1 = φE[y2
t−1] = φV[yt−1]. (8.7)

Continuing with the lag-2 autocovariance gives:

γ̃2 = E[yt − P(yt | yt−1), yt−2 − P(yt−2 | yt−1)], (8.8)

and P(yt | yt−1) is approximated by the RNN(1):

ŷt = σ(φyt−1). (8.9)

Substituting yt = ŷt + εt into the above gives

γ̃2 = E[εt , yt−2 − P(yt−2 | yt−1)]. (8.10)

2 Recurrent Neural Networks 245

Approximating P(yt−2 | yt−1) with the backward RNN(1)

ŷt−2 = σ(φ(ŷt−1 + εt−1)), (8.11)

we see, crucially, that ŷt−2 depends on εt−1 but not on εt . yt−2 − P(yt−2 | yt−1),
hence depends on {εt−1, εt−2, . . . }. Thus we have that γ̃2 = 0.

As a counterexample, consider the lag-2 partial autocovariance of the RNN(2)
process

ŷt−2 = σ
(
φσ(φ(ŷt + εt)+ εt−1)

)
, (8.12)

which depends on εt and hence the lag-2 partial autocovariance is not zero.
It is easy to show that the partial autocorrelation τ̃s = 0, s > p and, thus, like

the AR(p) process, the partial autocorrelation function for a RNN(p) has a cut-off at
p lags. The partial autocorrelation function is independent of time. Such a property
can be used to identify the order of the RNN model from the estimated PACF.

2.2 Stability

We can generalize the stability constraint on AR(p) models presented in Sect. 2.3 to
RNNs by considering the RNN(1) model:

yt = −1(L)[εt] = (1− σ(WzL+ b))−1 [εt], (8.13)

where we have set Wy = 1 and by = 0 without loss of generality, and dropped
the superscript ()(1) for ease of notation. Expressing this as an infinite dimensional
non-linear moving average model

yt = 1

1− σ(WzL+ b) [εt] =
∞∑

j=0

σ j (WzL+ b)[εt], (8.14)

and the infinite sum will be stable when the σ j (·) terms do not grow with j , i.e.
|σ | ≤ 1 for all values of φ and yt−1. In particular, the choice tanh satisfies the
requirement on σ . For higher order models, we follow an induction argument and
show first that for a RNN(2) model we obtain

yt = 1

1− σ(Wzσ(WzL2 + b)+WxL+ b) [εt]

=
∞∑

j=0

σ j (Wzσ(WzL
2 + b)+WxL+ b)[εt],

246 8 Advanced Neural Networks

which again is stable if |σ | ≤ 1 and it follows for any model order that the stability
condition holds.

It follows that lagged unit impulses of the data strictly decay with the order of the
lag when |σ | ≤ 1. Again by induction, at lag 1, the output from the hidden layer is

zt = σ(Wz1+Wx0+ b) = σ(Wz1+ b). (8.15)

The absolute value of each component of the hidden variable under a unit vector
impulse at lag 1 is strictly less than 1:

|zt |j = |σ(Wz1+ b)|j < 1, (8.16)

if |σ(x)| ≤ 1 and each element of Wz1 + b is finite. Additionally if σ is strictly
monotone increasing, then |zt |j under a lag two unit innovation is strictly less than
|zt |j under a lag one unit innovation

|σ(Wz1)+ b)j | > |σ(Wzσ(Wz1+ b)+ b)|j . (8.17)

The implication of this stability result is the reassuring attribute that past random
disturbances decay in the model and the effect of lagged data becomes less relevant
to the model output with increasing lag.

2.3 Stationarity

For completeness, we mention in passing the extension of stationarity analysis
in Sect. 2.4 to RNNs. The linear univariate RNN(p), considered above, has a
companion matrix of the form

C :=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1 0
...

...
. . .

. . .
. . .

...

0 0 0 0 1
φ−p −φ−p+1 . . . −φ−2 −φ−1,

⎞

⎟⎟⎟⎟⎟⎟⎠
(8.18)

and it turns out that for φ �= 0 this model is non-stationary. We can hence rule out
the choice of a linear activation since this would leave us with a linear RNN. Hence,
it appears that some non-linear activation is necessary for the model to be stationary,
but we cannot use the Cayley–Hamilton theorem to prove stationarity.

2 Recurrent Neural Networks 247

Half-Life

Suppose that the output of the RNN is in R
d . The half-life of the lag is the

smallest number of function compositions, k, of σ̃ (x) := σ(Wzx + b) with itself
such that the normalized j th output is

r
(k)
j = (Wyσ̃ ◦1 σ̃ ◦2 · · · ◦k−1 σ̃ (1)+ by)j

(Wyσ̃ (1)+ by)j ≤ 0.5, k ≥ 2,∀j ∈ {1, . . . , d}.
(8.19)

Note the output has been normalized so that the lag-1 unit impulse ensures that the
ratio, r(1)j = 1 for each j . This modified definition exists to account for the effects of
the activation function and the semi-affine transformation which are not present in
AR(p) model. In general, there is no guarantee that the half-life is finite but we can
find parameter values for which the half-life can be found. For example, suppose for
simplicity that a univariate RNN is given by x̂t = zt−1 and

zt = σ(zt−1 + xt).
Then the lag-1 impulse is x̂t = σ̃ (1) = σ(0+1), the lag-2 impulse is x̂t = σ(σ(1)+
0) = σ̃ ◦ σ̃ (1), and so on. If σ(x) := tanh(x) and we normalize over the output
from the lag-1 impulse to give the values in Table 8.1.

Table 8.1 The half-life characterizes the memory decay of the architecture by measuring the
number of periods before a lagged unit impulse has at least half of its effect at lag 1. The
calculation of the half-life involves nested composition of the recursion relation for the hidden
layer until r(k)j is less than a half. The calculations are repeated for each j , hence the half-life may
vary depending on the component of the output. In this example, the half-life of the univariate
RNN is 9 periods

Lag k r(k)

1 1.000

2 0.843

3 0.744

4 0.673

5 0.620

6 0.577

7 0.543

8 0.514

9 0.489

•? Multiple Choice Question 1

Which of the following statements are true:

a. An augmented Dickey–Fuller test can be applied to time series to determine
whether they are covariance stationary.

248 8 Advanced Neural Networks

b. The estimated partial autocorrelation of a covariance stationary time series can be
used to identify the design sequence length in a plain recurrent neural network.

c. Plain recurrent neural networks are guaranteed to be stable, namely lagged unit
impulses decay over time.

d. The Ljung–Box test is used to test whether the fitted model residual error is auto-
correlated.

e. The half-life of a lag-1 unit impulse is the number of lags before the impulse has
half its effect on the model output.

2.4 Generalized Recurrent Neural Networks (GRNNs)

Classical RNNs, such as those described above, treat the error as homoscedastic—
that is, the error is i.i.d. We mention in passing that we can generalize RNNs to
heteroscedastic models by modifying the loss function to the squared Mahalanobis
length of the residual vector. Such an approach is referred to here as generalized
recurrent neural networks (GRNNs) and is mentioned briefly here with the
caveat that the field of machine learning in econometrics is nascent and therefore
incomplete and such a methodology, while appealing from a theoretic perspective,
is not yet proven in practice. Hence the purpose of this subsection is simply to
illustrate how more complex models can be developed which mirror some of the
developments in parametric econometrics.

In its simplest form, we solve a weighted least squares minimization problem
using data,Dt :

minimize
W,b

f (W, b)+ λφ(W, b), (8.20)

L�(Y, Ŷ) := (Y − Ŷ)T �−1(Y − Ŷ), �tt = σ 2
t , �tt ′ = ρtt ′σtσ ′t , (8.21)

f (W, b) = 1

T

T∑

t=1

L�(yt , ŷt), (8.22)

where � := E[εεT | Xt] is the conditional covariance matrix of the residual error
and φ(W, b) is a regularization penalty term.

The conditional covariance matrix of the error must be estimated. This is
performed as follows using the notation ()T to denote the transpose of a vector
and ()′ to denote model parameters fitted under heteroscedastic error.

1) For each t = 1, . . . , T , estimate the residual error over the training set, εt ∈ R
N ,

using the standard (unweighted) loss function to find the weights, Ŵt , and biases,
b̂t where the error is

3 Gated Recurrent Units 249

εt = yt − FŴt ,b̂t (Xt). (8.23)

2) The sample conditional covariance matrix �̂ is estimated accordingly:

�̂ = 1

T − 1

T∑

i=1

εtε
T
t . (8.24)

3) Perform the generalized least squares minimization using Eq. 8.20 to obtain a
fitted heteroscedastic neural network model, with refined error

ε′t = yt − FŴ ′
t ,b̂

′
t
(Xt). (8.25)

The fitted GRNN F
Ŵ ′
t ,b̂

′
t

can then be used for forecasting without any further
modification. The effect of the sample covariance matrix is to adjust the
importance of the observation in the training set, based on the variance of its
error and the error correlation. Such an approach can be broadly viewed as a
RNN analogue of how GARCH models extend AR models. Of course, GARCH
models treat the error distribution as parametric and provide a recurrence
relation for forecasting the conditional volatility. In contrast, GRNNs rely on
the empirical error distribution and do not forecast the conditional volatility.
However, a separate regression could be performed over diagonals of the
empirical conditional volatility � by using time series cross-validation.

3 Gated Recurrent Units

The extension of RNNs to dynamical time series models rests on extending
foundational concepts in time series analysis. We begin by considering a smoothed
RNN with hidden state ĥt . Such a RNN is almost identical to a plain RNN, but with
an additional scalar smoothing parameter, α, which provides the network with “long
memory.”

3.1 α-RNNs

Let us consider a univariate α-RNN(p) model in which the smoothing parameter is
fixed:

ŷt+1 = Wyĥt + by, (8.26)

ĥt = σ(Uhh̃t−1 +Whyt + bh), (8.27)

250 8 Advanced Neural Networks

h̃t = αĥt−1 + (1− α)h̃t−1, (8.28)

with the starting condition in each sequence, ĥt−p+1 = yt−p+1. This model
augments the plain RNN by replacing ĥt−1 in the hidden layer with an exponentially
smoothed hidden state h̃t−1. The effect of the smoothing is to provide infinite
memory when α �= 1. For the special case when α = 1, we recover the plain
RNN with short memory of length p .

We can easily study this model by simplifying the parameterization and consid-
ering the unactivated case. Setting by = bh = 0, Uh = Wh = φ andWy = 1:

ŷt+1 = ĥt , (8.29)

= φ(h̃t−1 + yt), (8.30)

= φ(αĥt−1 + (1− α)h̃t−2 + yt). (8.31)

Without loss of generality, consider p = 2 lags in the model so that ĥt−1 = φyt−1.
Then

ĥt = φ(αφyt−1 + (1− α)h̃t−2 + yt) (8.32)

and the model can be written in the simpler form

ŷt+1 = φ1yt + φ2yt−1 + φ(1− α)h̃t−2, (8.33)

with autoregressive weights φ1 := φ and φ2 := αφ2. We now see, in comparison
with an AR(2) model, that there is an additional term which vanishes when α =
1 but provides infinite memory to the model since h̃t−2 depends on y0, the first
observation in the whole time series, not just the first observation in the sequence.
The α-RNN model can be trained by treating α as a hyperparameter. The choice
to fix α is obviously limited to stationary time series. We can extend the model to
non-stationary time series by using a dynamic version of exponential smoothing.

3.1.1 Dynamic αt -RNNs

Dynamic exponential smoothing is a time-dependent, convex, combination of the
smoothed output, ỹt , and the observation yt :

ỹt+1 = αtyt + (1− αt)ỹt , (8.34)

where αt ∈ [0, 1] denotes the dynamic smoothing factor which can be equivalently
written in the one-step-ahead forecast of the form

ỹt+1 = ỹt + αt (yt − ỹt). (8.35)

3 Gated Recurrent Units 251

Hence the smoothing can be viewed as a form of dynamic forecast error correction;
When αt = 0, the forecast error is ignored and the smoothing merely repeats the
current hidden state h̃t to the effect of the model losing its memory. When αt = 1,
the forecast error overwrites the current hidden state h̃t .

The smoothing can also be viewed a weighted sum of the lagged observations,
with lower or equal weights, αt−s

∏s
r=1(1 − αt−r+1) at the lag s ≥ 1 past

observation, yt−s :

ỹt+1 = αtyt +
t−1∑

s=1

αt−s
s∏

r=1

(1− αt−r+1)yt−s +
t−1∏

r=0

(1− αt−r)ỹ1, (8.36)

where the last term is a time-dependent constant and typically we initialize the
exponential smoother with ỹ1 = y1. Note that for any αt−r+1 = 1, the prediction
ỹt+1 will have no dependency on all lags {yt−s}s≥r . The model simply forgets the
observations at or beyond the rth lag.

In the special case when the smoothing is constant and equal to 1 − α, then the
above expression simplifies to

ỹt+1 = α (L)−1yt , (8.37)

or equivalently written as a AR(1) process in ỹt+1:

 (L)ỹt+1 = αyt , (8.38)

for the linear operator (z) := 1+ (α − 1)z and where L is the lag operator.

3.2 Neural Network Exponential Smoothing

Let us suppose now that instead of smoothing the observed time series {ys}s≤1, we
instead smooth a hidden vector ĥt with α̂t ∈ [0, 1]H to give a filtered time series

h̃t = α̂t ◦ ĥt + (1− α̂t) ◦ h̃t−1, (8.39)

where ◦ denotes the Hadamard product between vectors. This smoothing is a
vectorized form of the above classical setting, only here we note that when (αt)i =
1, the ith component of the hidden variable is unmodified and the past filtered hidden
variable is forgotten. On the other hand, when the (αt)i = 0, the ith component of
the hidden variable is obsolete, instead setting the current filtered hidden variable
to its past value. The smoothing in Eq. 8.39 can be viewed then as updating long-
term memory, maintaining a smoothed hidden state variable as the memory through
a convex combination of the current hidden variable and the previous smoothed
hidden variable.

252 8 Advanced Neural Networks

The hidden variable is given by the semi-affine transformation:

ĥt = σ(Uhh̃t−1 +Whxt + bh) (8.40)

which in turns depends on the previous smoothed hidden variable. Substituting
Eq. 8.40 into Eq. 8.39 gives a function of h̃t−1 and xt :

h̃t = g(h̃t−1, xt ;α) := α̂t ◦ σ(Uhh̃t−1 +Whxt + bh)+ (1− α̂t) ◦ h̃t−1. (8.41)

We see that when αt = 0, the smoothed hidden variable h̃t is not updated by the
input xt . Conversely, when αt = 1, we observe that the hidden variable locally
behaves like a non-linear autoregressive series. Thus the smoothing parameter can
be viewed as the sensitivity of the smoothed hidden state to the input xt .

The challenge becomes how to determine dynamically how much error cor-
rection is needed. GRUs address this problem by learning α̂ = F(Wα,Uα,bα)(X)

from the input variables with a plain RNN parameterized by weights and biases
(Wα,Uα, bα). The one-step-ahead forecast of the smoothed hidden state, h̃t , is the
filtered output of another plain RNN with weights and biases (Wh,Uh, bh). Putting
this together gives the following α − t model (simple GRU):

smoothing : h̃t = α̂t ◦ ĥt + (1− α̂t) ◦ h̃t−1 (8.42)

smoother update : α̂t = σ (1)(Uαh̃t−1 +Wαxt + bα) (8.43)

hidden state update : ĥt = σ(Uhh̃t−1 +Whxt + bh), (8.44)

where σ (1) is a sigmoid or Heaviside function and σ is any activation function.
Figure 8.2 shows the response of a αt -RNN when the input consists of two
unit impulses. For simplicity, the sequence length is assumed to be 3 (i.e., the
RNN has a memory of 3 lags), the biases are set to zero, all the weights are
set to one, and σ(x) := tanh(x). Note that the weights have not been fitted
here, we are merely observing the effect of smoothing on the hidden state for
the simplest choice of parameter values. The RNN loses memory of the unit
impulse after three lags, whereas the RNNs with smooth hidden states maintain
memory of the first unit impulse even when the second unit impulse arrives. The
difference between the dynamically smoothed RNN (the αt -RNN) and α-RNN
with a fixed smoothing parameter appears insignificant. Keep in mind however that
the dynamical smoothing model has much more flexibility in how it controls the
sensitivity of the smoothing to the unit impulses.

In the above αt -RNN, there is no means to directly occasionally forget the
memory. This is because the hidden variables update equation always depends on
the previous smoothed hidden state, unless Uh = 0. However, it can be expected
that the fitted recurrence weight Ûh will not in general be zero and thus the model
is without a “hard reset button.”

GRUs also have the capacity to entirely reset the memory by adding an additional
reset variable:

3 Gated Recurrent Units 253

Fig. 8.2 An illustrative example of the response of an αt -RNN and comparison with a plain RNN
and a RNN with an exponentially smoothed hidden state, under a constant α (α-RNN). The RNN(3)
model loses memory of the unit impulse after three lags, whereas the α-RNN(3) models maintain
memory of the first unit impulse even when the second unit impulse arrives. The difference between
the αt -RNN (the toy GRU) and the α-RNN appears insignificant. Keep in mind however that the
dynamical smoothing model has much more flexibility in how it controls the sensitivity of the
smoothing to the unit impulses

smoothing : h̃t = α̂t ◦ ĥt + (1− α̂t) ◦ h̃t−1 (8.45)

smoother update : α̂t = σ (1)(Uαh̃t−1 +Wαxt + bα) (8.46)

hidden state update : ĥt = σ(Uhr̂t ◦ h̃t−1 +Whxt + bh) (8.47)

reset update : r̂t = σ (1)(Ur h̃t−1 +Wrxt + br). (8.48)

The effect of introducing a reset, or switch, r̂t , is to forget the dependence of ĥt on
the smoothed hidden state. Effectively, we turn the update for ĥt from a plain RNN
to a FFN and entirely neglect the recurrence. The recurrence in the update of ĥt is
thus dynamic. It may appear that the combination of a reset and adaptive smoothing
is redundant. But remember that α̂t effects the level of error correction in the update
of the smoothed hidden state, h̃t , whereas r̂t adjusts the level of recurrence in the
unsmoothed hidden state ĥt . Put differently, α̂t by itself cannot disable the memory
in the smoothed hidden state (internal memory), whereas r̂t in combination with α̂t
can. More precisely, when αt = 1 and r̂t = 0, h̃t = ĥt = σ(Whxt + bh) which
is reset to the latest input, xt , and the GRU is just a FFNN. Also, when αt = 1
and r̂t > 0, a GRU acts like a plain RNN. Thus a GRU can be seen as a more
general architecture which is capable of being a FFNN or a plain RNN under certain
parameter values.

These additional layers (or cells) enable a GRU to learn extremely complex long-
term temporal dynamics that a plain RNN is not capable of. The price to pay for
this flexibility is the additional complexity of the model. Clearly, one must choose
whether to opt for a simpler model, such as an αt -RNN, or use a GRU. Lastly, we

254 8 Advanced Neural Networks

comment in passing that in the GRU, as in a RNN, there is a final feedforward layer
to transform the (smoothed) hidden state to a response:

ŷt = WY h̃t + bY . (8.49)

3.3 Long Short-Term Memory (LSTM)

The GRU provides a gating mechanism for propagating a smoothed hidden state—a
long-term memory—which can be overridden and even turn the GRU into a plain
RNN (with short memory) or even a memoryless FFN. More complex models using
hidden units with varying connections within the memory unit have been proposed
in the engineering literature with empirical success (Hochreiter and Schmidhuber
1997; Gers et al. 2001; Zheng et al. 2017). LSTMs are similar to GRUs but have
a separate (cell) memory, Ct , in addition to a hidden state ht . LSTMs also do
not require that the memory updates are a convex combination. Hence they are
more general than exponential smoothing. The mathematical description of LSTMs
is rarely given in an intuitive form, but the model can be found in, for example,
Hochreiter and Schmidhuber (1997).

The cell memory is updated by the following expression involving a forget gate,
α̂t , an input gate ẑt , and a cell gate ĉt

ct = α̂t ◦ ct−1 + ẑt ◦ ĉt . (8.50)

In the language of LSTMs, the triple (α̂t , r̂t , ẑt) are, respectively, referred to as the
forget gate, output gate, and input gate. Our change of terminology is deliberate and
designed to provide more intuition and continuity with GRUs and econometrics.
We note that in the special case when ẑt = 1 − α̂t we obtain a similar exponential
smoothing expression to that used in the GRU. Beyond that, the role of the input gate
appears superfluous and difficult to reason with using time series analysis. Likely
it merely arose from a contextual engineering model; however, it is tempting to
speculate how the additional variable provides the LSTM with a more elaborate
representation of complex temporal dynamics.

When the forget gate, α̂t = 0, then the cell memory depends solely on the
cell memory gate update ĉt . By the term α̂t ◦ ct−1, the cell memory has long-term
memory which is only forgotten beyond lag s if α̂t−s = 0. Thus the cell memory
has an adaptive autoregressive structure.

The extra “memory,” treated as a hidden state and separate from the cell memory,
is nothing more than a Hadamard product:

ht = r̂t ◦ tanh(c)t , (8.51)

which is reset if r̂t = 0. If r̂t = 1, then the cell memory directly determines the
hidden state.

4 Python Notebook Examples 255

Thus the reset gate can entirely override the effect of the cell memory’s
autoregressive structure, without erasing it. In contrast, the GRU has one memory,
which serves as the hidden state, and it is directly affected by the reset gate.

The reset, forget, input, and cell memory gates are updated by plain RNNs all
depending on the hidden state ht .

Reset gate : r̂t = σ(Urht−1 +Wrxt + br) (8.52)

Forget gate : α̂t = σ(Uαht−1 +Wαxt + bα) (8.53)

Input gate : ẑt = σ(Uzht−1 +Wzxt + bz) (8.54)

Cell memory gate : ĉt = tanh(Ucht−1 +Wcxt + bc). (8.55)

Like the GRU, the LSTM can function as a short memory, plain RNN; just set
αt = 0 in Eq. 8.50. However, the LSTM can also function as a coupling of FFNs;
just set r̂t = 0 so that ht = 0 and hence there is no recurrence structure in any of
the gates. Both GRUs and LSTMs, even if the nomenclature does not suggest it, can
model long- and short-term autoregressive memory. The GRU couple these through
a smoothed hidden state variable. The LSTM separates out the long memory,
stored in the cellular memory, but uses a copy of it, which may additionally be
reset. Strictly speaking, the cellular memory has long-short autoregressive memory
structure, so it would be misleading in the context of time series analysis to strictly
discern the two memories as long and short (as the nomenclature suggests). The
latter can be thought of as a truncated version of the former.

•? Multiple Choice Question 2

Which of the following statements are true:

a. A gated recurrent unit uses dynamic exponential smoothing to propagate a hidden
state with infinite memory.

b. The gated recurrent unit requires that the data is covariance stationary.
c. Gated recurrent units are unconditionally stable, for any choice of activation

functions and weights.
d. A GRU only has one memory, the hidden state, whereas a LSTM has an

additional, cellular, memory.

4 Python Notebook Examples

The following Python examples demonstrate the application of RNNs and GRUs to
financial time series prediction.

256 8 Advanced Neural Networks

Fig. 8.3 A comparison of out-of-sample forecasting errors produced by a RNN and GRU trained
on minute snapshots of Coinbase mid-prices

4.1 Bitcoin Prediction

ML_in_Finance-RNNs-Bitcoin.ipynb provides an example of how
TensorFlow can be used to train and test RNNs for time series prediction. The
example dataset is for predicting minute head mid-prices from minute snapshots of
the USD value of Coinbase over 2018.

Statistical methods for stationarity and autocorrelation shall be used to charac-
terize the data, identify the sequence length needed in the RNN, and to diagnose
the model error. Here we accept the Null as the p-value is larger than 0.01 in
absolute value and thus we cannot reject the ADF test at the 99% confidence
level. Since plain RNNs are not suited to non-stationary time series modeling,
we can use a GRU or LSTM to model non-stationarity data, since these models
exhibit dynamic autocorrelation structure. Figure 8.3 compares the out-of-sample
forecasting errors produced by a RNN and GRU. See the notebook for further details
of the architecture and experiment.

4.2 Predicting from the Limit Order Book

The dataset is tick-by-tick, top of the limit order book, data such as mid-prices and
volume weighted mid-prices (VWAP) collected from ZN futures. This dataset is
heavily truncated for demonstration purposes and consists of 1033492 observations.
The data has also been labeled to indicate whether the prices up-tick (1), remain

5 Convolutional Neural Networks 257

Fig. 8.4 A comparison of out-of-sample forecasting errors produced by a plain RNN and GRU
trained on tick-by-tick smart prices of ZN futures

the same, or down-tick (−1) over the next tick. For demonstration purposes, the
timestamps have been removed. In the simple forecasting experiment, we predict
VWAPs (a.k.a. “smart prices”) from historical smart prices. Note that a classification
experiment is also possible but not shown here.

The ADF test is performed over the first 200k observations as it is compu-
tationally intensive to apply it to the entire dataset. The ADF test statistic is
−3.9706 and the p-value is smaller in absolute value than 0.01 and we thus reject
the Null of the ADF test at the 99% confidence level in favor of the data being
stationary (i.e., there are no unit roots). The Ljung–Box test is used to identify
the number of lags needed in the model. A comparison of out-of-sample VWAP
prices produced by a plain RNN and GRU is shown in Fig. 8.4. Because the
data is stationary, we observe little advantage in using a GRU over a plain RNN.
See ML_in_Finance-RNNs-HFT.ipynb for further details of the network
architectures and experiment.

5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are feedforward neural networks that can
exploit local spatial structures in the input data. Flattening high-dimensional time
series, such as limit order book depth histories, would require a very large number
of weights in a feedforward architecture. CNNs attempt to reduce the network size
by exploiting data locality (Fig. 8.5).

258 8 Advanced Neural Networks

Fig. 8.5 Convolutional
neural networks. Source: Van
Veen, F. & Leijnen, S. (2019),
“The Neural Network Zoo”,
Retrieved from https://www.
asimovinstitute.org/neural-
network-zoo

Deep CNNs, with multiple consecutive convolutions followed by non-linear
functions, have shown to be immensely successful in image processing (Krizhevsky
et al. 2012). We can view convolutions as spatial filters that are designed to select
a specific pattern in the data, for example, straight lines in an image. For this
reason, convolution is frequently used for image processing, such as for smoothing,
sharpening, and edge detection of images. Of course, in financial modeling, we
typically have different spatial structures, such as the limit order book depths or
the implied volatility surface of derivatives. However, the CNN has established its
place in time series analysis too.

5.1 Weighted Moving Average Smoothers

A common technique in time series analysis and signal processing is to filter the
time series. We have already seen exponential smoothing as a special case of a
class of smoothers known as “weighted moving average (WMA)” smoothers. WMA
smoothers take the form

x̃t = 1∑
i∈Iwi

∑

i∈I
wixt−i , (8.56)

where x̃t is the local mean of the time series. The weights are specified to emphasize
or deemphasize particular observations of xt−i in the span |I|. Examples of well-
known smoothers include the Hanning smoother h(3):

x̃t = (xt−1 + 2xt + xt+1)/4. (8.57)

Such smoothers have the effect of reducing noise in the time series. The moving
average filter is a simple low pass finite impulse response (FIR) filter commonly
used for regulating an array of sampled data. It takes |I| samples of input at a time
and takes the weighted average of those to produce a single output point. As the

https://www.asimovinstitute.org/neural-network-zoo
https://www.asimovinstitute.org/neural-network-zoo
https://www.asimovinstitute.org/neural-network-zoo

5 Convolutional Neural Networks 259

length of the filter increases, the smoothness of the output increases, whereas the
sharp modulations in the data are smoothed out.

The moving average filter is in fact a convolution using a very simple filter
kernel. More generally, we can write a univariate time series prediction problem
as a convolution with a filter as follows. First, the discrete convolution gives the
relation between xi and xj :

xt−i =
t−1∑

j=0

δij xt−j , i ∈ {0, . . . , t − 1} (8.58)

where we have used the Kronecker delta δ. The kernel filtered time series is a
convolution

x̃t−i =
∑

j∈J
Kj+k+1xt−i−j , i ∈ {k + 1, . . . , p − k}, (8.59)

where J := {−k, . . . , k} so that the span of the filter |J | = 2k+ 1, where k is taken
as a small integer, and the kernel is K . For simplicity, the ends of the sequence
are assumed to be unfiltered but for notational reasons we set x̃t−i = xt−i for i ∈
{1, . . . , k, p − k + 1, . . . , p}. Then the filtered AR(p) model is

x̂t = μ+
p∑

i=1

φix̃t−i (8.60)

= μ+ (φ1L+ φ2L
2 + · · · + φpLp)[x̃t] (8.61)

= μ+ [L,L2, . . . , Lp]φ[x̃t], (8.62)

with coefficients φ := [φi, . . . , φp]. Note that there is no look-ahead bias because
we do not filter the last k values of the observed data {xs}ts=1. We have just written
our first toy 1D CNN consisting of a feedforward output layer and a non-activated
hidden layer with one unit (i.e., kernel):

x̂t = Wyzt + by, zt = [x̃t−1, . . . , x̃t−p]T , Wy = φT , by = μ, (8.63)

where x̃t−i is the ith output from a convolution of the p length input sequence with a
kernel consisting of 2k+1 weights. These weights are fixed over time and hence the
CNN is only suited to prediction from stationary time series. Note also, in contrast
to a RNN, that the size of the weight matrix Wy increases with the number of lags
in the model.

The univariate CNN predictor with p lags and H activated hidden units
(kernels) is

x̂t = Wyvec(zt)+ by (8.64)

260 8 Advanced Neural Networks

[zt]i,m = σ(
∑

j∈J
Km,j+k+1xt−i−j + [bh]m) (8.65)

= σ(K ∗ xt + bh), (8.66)

where m ∈ {1, . . . , H } denotes the index of the kernel and the kernel matrix K ∈
R
H×2k+1, hidden bias vector bh ∈ R

H and output matrixWy ∈ R
1×pH .

Dimension Reduction

Since the size of Wy increases with both the number of lags and the number of
kernels, it may be preferable to reduce the dimensionality of the weights with an
additional layer and hence avoid over-fitting. We will return to this concept later,
but one might view it as an alternative to auto-shrinkage or dropout.

Non-sequential Models

Convolutional neural networks are not limited to sequential models. One might,
for example, sample the past lags non-uniformly so that I = {2i}pi=1 then the
maximum lag in the model is 2p. Such a non-sequential model allows a large
maximum lag without capturing all the intermediate lags. We will also return to
non-sequential models in the section on dilated convolution.

Stationarity

A univariate CNN predictor, with one kernel and no activation, can be written in
the canonical form

x̂t = μ+ (1− (L))[K ∗ xt] = μ+K ∗ (1− (L))[xt] (8.67)

= μ+ (φ̃1L+ . . . φ̃pLp)[xt] (8.68)

:= μ+ (1− ̃(L))[xt], (8.69)

where, by the linearity of (L) in xt , the convolution commutes and thus we can
write φ̃ := K ∗ φ. Finding the roots of the characteristic equation

 ̃(z) = 0, (8.70)

it follows that the CNN is strictly stationary and ergodic if all the roots lie outside
the unit circle in the complex plane, |λi | > 1, i ∈ {1, . . . , p}. As before, we would
compute the eigenvalues of the companion matrix to find the roots. Provided that
 ̃(L)−1 forms a divergent sequence in the noise process {εs}ts=1 then the model is
stable.

5 Convolutional Neural Networks 261

5.2 2D Convolution

2D convolution involves applying a small kernel matrix (a.k.a. a filter), K ∈
R

2k+1×2k+1, over the input matrix (called an image), X ∈ R
m×n, to give a filtered

image, Y ∈ R
m−2k×n−2k . In the context of convolutional neural networks, the

elements of the filtered image are referred to as the feature map values and are
calculated according to the following formula:

yi,j = [K ∗X]i,j =
k∑

p,q=−k
Kk+1+p,k+1+qxi+p+1,j+q+1,

i ∈ {1, . . . , m}, j ∈ {1,n}. (8.71)

It is instructive to consider the following example to illustrate the 2D convolution
with a small kernel matrix.

Example 8.2 2D Convolution

Consider the 4× 4 input, 3× 3 kernel, and 2× 2 output matrices

X =

⎡

⎢⎢⎣

1 0 0 2
0 0 0 3
2 0 1 0
0 2 1 0

⎤

⎥⎥⎦ , K =
⎡

⎣
0 −1 1
0 1 0
1 −1 0

⎤

⎦ , Y =
[

2 1
−2 5

]
. The calculation of the

outputs for the case when i = j = 1 is

yi,j = [K ∗X]i,j =
k∑

p,q=−k
Kk+1+p,k+1+qxi+p+1,j+q+1,

i ∈ {1, . . . , m}, j ∈ {1, . . . , n}
= 0 · 1+−1 · 0+ 1 · 0+ 0 · 0+ 1 · 0+ 0 · 0+ 1 · 2+−1 · 0+ 0 · 1
= 2

We leave it as an exercise for the reader to compute the output for the remaining
values of i and j .

As in the example above, when we perform convolution over the 4 × 4 image with
a 3× 3 kernel, we get a 2× 2 feature map. This is because there are only 4 unique
positions where we can place our filter inside this image.

As convolutional neural networks were designed for image processing, it is
common to represent the color values of the pixels with c color channels. For

262 8 Advanced Neural Networks

example, RGB values are represented with three channels. The general form of the
convolution layer map for a m × n × c input tensor and outputs m × n × H (with
stride 1 and padding) is

θ : Rm×n×c → R
m×n×H .

Writing

f =
⎛

⎜⎝
f1
...

fc

⎞

⎟⎠ (8.72)

we can then write the layer map as

θ(f) = K ∗ f + b, (8.73)

where K ∈ R
[(2k+1)×(2k+1)]×H×c, b ∈ R

m×n×H given by b := 1m×n⊗ b and 1m×n
is a m× n matrix with all elements being 1.

In component form, the operation (8.73) is

[θ(f)]j =
c∑

i=1

[K]i,j ∗ [f]i + bj , j ∈ {1, . . . , H }, (8.74)

where [·]i,j contracts the 4-tensor to a 2-tensor by indexing the ith third component
and j th fourth component of the tensor and for any g ∈ R

m×n and H ∈
R
(2k+1)×(2k+1)

[H ∗ g]i,j =
k∑

p,q=−k
Hk+1+p,k+1+qgi+p,j+q, i ∈ {1, . . . , m}, j ∈ {1,n}.

(8.75)
By analogy to a fully connected feedforward architecture, the weights in the layer
are given by the kernel tensor, K , and the biases, b are H -vectors. Instead of a
semi-affine transformation, the layer is given by an activated convolution σ(θ(f)).

Furthermore, we note that not all neurons in the two consecutive layers are
connected to each other. In fact, only the neurons which correspond to inputs within
a 2k + 1 × 2k + 1 square connect to the same output neuron. Thus the filter size
controls the receptive field of each output. We note, therefore, that some neurons
share the same weights. Both of these properties result in far fewer parameters to
learn than a fully connected feedforward architecture.

Padding is needed to extend the size of the image f so that the filtered image
has the same dimensions as the original image. Specifically padding means how to
choose fi+p,j+q when (i + p, j + q) is outside of {1, . . . , m} or {1, . . . , n}. The
following three choices are often used

5 Convolutional Neural Networks 263

fi+p,j+q =

⎧
⎪⎪⎨

⎪⎪⎩

0, zero padding,

f(i+p) (mod m),(s+q) (mod n), periodic padding,

f|i−1+p|,|j−1+q|, reflected padding,

(8.76)

if

i + p /∈ {1, . . . , m} or j + q /∈ {1, . . . , n}. (8.77)

Here d (mod m) ∈ {1, · · · ,m} means the remainder when d is divided by m.
The operation in Eq. 8.75 is also called a convolution with stride 1. Informally,

we performed the convolution by sliding the image area by a unit increment. A
common choice in CNNs is to take s = 2. Given an integer s ≥ 1, a convolution
with stride s for f ∈ R

m×n is defined as

[K ∗s f]i,j =
k∑

p,q=−k
Kp,qfs(i−1)+1+p,s(j−1)+1+q, i ∈ {1, . . . , %m

s
&},

j ∈ {1, . . . , %n
s
&}. (8.78)

Here %m
s
& denotes the smallest integer greater than m

s
.

5.3 Pooling

Data with high spatial structure often results in observations which have similar
values within a neighborhood. Such a characteristic leads to redundancy in data
representation and motivates the use of data reduction techniques such as pooling.
In addition to a convolution layer, a pooling layer is a map:

R̄�+1
� : Rm�×n� → R

m�+1×n�+1 . (8.79)

One popular pooling is the so-called average pooling Ravr which can be a
convolution with stride 2 or bigger using the kernel K in the form of

K = 1

9

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ . (8.80)

Non-linear pooling operator is also used, for example, the (2k + 1) × (2k + 1)
max-pooling operator with stride s as follows:

[Rmax(f)]i,j = max−k≤p,q≤k{fs(i−1)+1+p,s(j−1)+1+q}. (8.81)

264 8 Advanced Neural Networks

5.4 Dilated Convolution

In addition to image processing, CNNs have also been successfully applied to time
series. WaveNet, for example, is a CNN developed for audio processing (van den
Oord et al. 2016).

Time series often displays long-term correlations. Moreover, the dependent vari-
able(s) may exhibit non-linear dependence on the lagged predictors. The WaveNet
architecture is a non-linear p-autoregression of the form

yt =
p∑

i=1

φi(xt−i)+ εt (8.82)

where the coefficient functions φi , i ∈ {1, . . . , p} are data-dependent and optimized
through the convolutional network.

To enable the network to learn these long-term, non-linear, dependencies
Borovykh et al. (2017) use stacked layers of dilated convolutions. A dilated
convolution effectively allows the network to operate on a coarser scale than
with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input (van den Oord et al. 2016).

In a dilated convolution the filter is applied to every dth element in the input
vector, allowing the model to efficiently learn connections between far-apart data
points. For an architecture with L layers of dilated convolutions � ∈ {1, . . . , L}, a
dilated convolution outputs a stack of “feature maps” given by

[K(�) ∗d(�) f (�−1)]i =
k∑

p=−k
K(�)p f

(�−1)
d(�)(i−1)+1+p, i ∈ {1, . . . , %

m

d(�)
&}, (8.83)

where d is the dilation factor and we can choose the dilations to increase by a factor
of two: d(�) = 2�−1. The filters for each layer, K(�), are chosen to be of size 1 ×
(2k + 1) = 1× 2.

An example of a three-layer dilated convolutional network is shown in Fig. 8.6.
Using the dilated convolutions instead of regular ones allows the output y to be
influenced by more nodes in the input. The input of the network is given by the time
series X. In each subsequent layer we apply the dilated convolution, followed by a
non-linearity, giving the output feature maps f (�), � ∈ {1, . . . , L}.

Since we are interested in forecasting the subsequent values of the time series,
we will train the model so that this output is the forecasted time series Ŷ = {ŷt }Nt=1.

The receptive field of a neuron was defined as the set of elements in its input that
modifies the output value of that neuron. Now, we define the receptive field r of the
model to be the number of neurons in the input in the first layer, i.e. the time series,
that can modify the output in the final layer, i.e. the forecasted time series. This then
depends on the number of layers L and the filter size 2k + 1, and is given by

5 Convolutional Neural Networks 265

Fig. 8.6 A dilated
convolutional neural network
with three layers. The
receptive field is given by
r = 8, i.e. one output value is
influenced by eight input
neurons. Source: van den
Oord et al. (2016)

r := 2L−1(2k + 1). (8.84)

In Fig. 8.6, the receptive field is given by r = 8, one output value is influenced by
eight input neurons.

•? Multiple Choice Question 3

Which of the following statements are true:

a. CNNs apply a collection of different, but equal width, filters to the data before
using a feedforward network for regression or classification.

b. CNNs are sparse networks, exploiting locality of the data, to reduce the number
of weights.

c. A dilated CNN is appropriate for multi-scale time series analysis—it captures a
hierarchy of patterns at different resolutions (i.e., dependencies on past lags at
different frequencies, e.g. days, weeks, months)

d. The number of layers in a CNN is automatically determined during training.

5.5 Python Notebooks

ML_in_Finance-1D-CNNs.ipynb demonstrates the application of 1D CNNs
to predict the next element in a uniform sequence of integers. The CNN uses
a sequence length of 50 and 4 kernels each of width 5. See Exercise 8.7 for a
programming challenge involving applying this 1D CNN for time series to the HFT
dataset described in the previous section on RNNs.

For completeness, ML_in_Finance-2D-CNNs.ipynb demonstrates the
application of a 2D CNN to image data from the MNIST dataset. Such an
architecture might be appropriate for learning volatility surfaces but is not
demonstrated here.

266 8 Advanced Neural Networks

6 Autoencoders

An autoencoder is a self-supervised deep learner which trains the architecture to
approximate the identity function, Y = F(Y), via a bottleneck structure. This
means we fit a model Ŷ = FW,b(Y) which aims to very efficiently concentrate
the information required to recreate Y . Put differently, an autoencoder is a form of
compression that creates a much more cost-effective representation of Y .

Its output layer has the same number of nodes as the input layer, and the cost
function is some measure of the reconstruction error, Y − Ŷ . Autoencoders are often
used for the purpose of dimensionality reduction and noise reduction. A simple
autoencoder that implements dimensionality reduction is a feedforward autoencoder
with at least one layer that has a smaller number of nodes, which functions as a
bottleneck. After training the neural network using back-propagation, it is separated
into two parts: the layers up to the bottleneck are used as an encoder, and the
remaining layers are used as a decoder. In the simplest case, there is only one
hidden layer (the bottleneck), and the layers in the network are fully connected.
The compression capacity of autoencoders motivates their application in finance
as a non-parametric, non-linear, analogue of the heavily used principal component
analysis (PCA). It has been well known since the pioneering work of Baldi and
Hornik (1989) that autoencoders are closely related to PCA. We follow Plaut (2018)
and begin with a brief review of PCA and then show how exactly linear autoencoders
enable PCA.

Example 8.3 A Simple Autoencoder

For example, under a L2-loss function, we wish to solve

minimize
W,B

||FW,b(X)− Y ||2F

subject to a regularization penalty on the weights and offsets. An autoencoder
with two layers can be written as a feedforward network:

Z(1) =f (1)(W(1)Y + b1)),

Ŷ =f (2)(W(2)Z(1) + b(2)),

where Z(1) is a low-dimensional representation of Y . We find the weights and
biases so that the number of rows of W(1) equals the number of columns of
W(2) and the number of rows is much smaller than the columns, which looks
like the architecture in Fig. 8.7.

6 Autoencoders 267

Fig. 8.7 Autoencoders.
Source: Van Veen, F. &
Leijnen, S. (2019), “The
Neural Network Zoo”,
Retrieved from https://www.
asimovinstitute.org/neural-
network-zoo

6.1 Linear Autoencoders

In the case that no non-linear activation function is used, xi = W(1)yi + b(1) and
ŷi = W(2)xi + b(2). If the cost function is the total squared difference between
output and input, then training the autoencoder on the input data matrix Y solves

min
W(1),b(1),W(2),b(2)

∥∥∥Y−
(

W(2)
(
W(1)Y+ b(1)1TN

)
+ b(2)1TN

)∥∥∥
2

F
. (8.85)

If we set the partial derivative with respect to b2 to zero and insert the solution into
(8.85), then the problem becomes

min
W(1),W(2)

∥∥∥Y0 −W(2)W(1)Y0

∥∥∥
2

F

Thus, for any b1, the optimal b2 is such that the problem becomes independent of
b1 and of ȳ. Therefore, we may focus only on the weightsW(1),W(2).

Linear autoencoders give orthogonal projections, even though the columns of the
weight matrices are not orthogonal. To see this, set the gradients to zero,W(1) is the
left Moore–Penrose pseudoinverse of W(2) (and W(2) is the right pseudoinverse of
W(1)):

W(1) = (W(2))
† =

(
W(2)T W(2)

)−1
(W(2))T

The minimization with respect to a single matrix is

min
W(2)∈Rn×m

∥∥∥Y0 −W(2)(W(2))†Y0

∥∥∥
2

F
(8.86)

The matrix W(2)(W(2))† = W(2)
(
(W(2))T W(2)

)−1
(W(2))T is the orthogonal

projection operator onto the column space of W(2) when its columns are not

https://www.asimovinstitute.org/neural-network-zoo
https://www.asimovinstitute.org/neural-network-zoo
https://www.asimovinstitute.org/neural-network-zoo

268 8 Advanced Neural Networks

necessarily orthonormal. This problem is very similar to (6.52), but without the
orthonormality constraint.

It can be shown that W(2) is a minimizer of Eq. 8.86 if and only if its column
space is spanned by the first m loading vectors of Y.

The linear autoencoder is said to apply PCA to the input data in the sense that
its output is a projection of the data onto the low-dimensional principal subspace.
However, unlike actual PCA, the coordinates of the output of the bottleneck are
correlated and are not sorted in descending order of variance. The solutions for
reduction to different dimensions are not nested: when reducing the data from
dimension n to dimension m1, the first m2 vectors (m2 < m1) are not an optimal
solution to reduction from dimension n to m2, which therefore requires training an
entirely new autoencoder.

6.2 Equivalence of Linear Autoencoders and PCA

Theorem The firstm loading vectors of Y are the firstm left singular vectors of the
matrixW(2) which minimizes (8.86). ��

A sketch of the proof now follows. We train the linear autoencoder on the original
dataset Y and then compute the first m left singular vectors ofW(2) ∈ R

n×m, where
typically m << N . The loading vectors may also be recovered from the weights of
the hidden layer,W(1), by a singular value decomposition, IfW(2) = U�VT , which
we assume is full-rank, then

W(1) = (W(2))† = V�†UT

and

W2W†
2 = U�VTV�†UT = U��†UT = UmUTm, (8.87)

where we used the fact that
(
VT

)† = V and that �† ∈ R
m×n is a matrix whose

diagonal elements are 1
σj

(assuming σj �= 0, and 0 otherwise).

The matrix ��† is a diagonal matrix whose first m diagonal elements are equal
to one and the other n−m elements are equal to zero. The matrix Um ∈ R

n×m is a
matrix whose columns are the first m left singular vectors of W2. Thus, the first m
left singular vectors of (W(1))T ∈ R

n×m are also equal to the firstm loading vectors
of Y .

A common application of PCA is in fixed income modeling—the principal
components are used to characterize the daily movement of the yield curve. Because
the components explain most of the variability in the curve, investors can hedge
their exposures with only a few instruments from different sectors (Litterman and

6 Autoencoders 269

Fig. 8.8 This figure shows the yield curve over time, each line corresponds to a different maturity
in the term structure of interest rates

Scheinkman 1991). Figure 8.8 shows the yield curve over a 25-year period, where
each line corresponds to each of the maturities in the term structure of fixed income
securities.

We can illustrate the comparison by finding the principal components of the
sample covariance matrix from the time series of the yield curve, as shown in
Fig. 8.9a. The eigenvalues are the diagonal of the transformed matrix, are all
positive, and arranged in descending order. In this case we have plotted the first
m = 3 components from a high-dimensional dataset where n > m. The percentage
of variance attributed to these components is 95.6%, 4.07%, 0.34%, respectively.
Figure 8.9c shows the decomposition of the sample covariance matrix using the left
singular vectors of the autoencoder weights and observed to be similar to Fig. 8.9a.
The percentage of variance attributed to the components is 95.63%, 4.10%, 0.27%.
For completeness, Fig. 8.9b shows the transformation using W(2), which results in
correlated values.

Performing PCA on the daily change of the yield curve leads to more inter-
pretable components: the first eigenvalue can be attributed to parallel shift of the
curve, the second to twist, and the third to curvature (a.k.a. butterfly). Figure 8.10
compares the first two principal components of �Y0 using either the m = 3 loading
vectors, Pm or the m = 3 singular vectors, Um. For the purposes of interpreting the
behavior of the yield curve over time, both give similar results. Periods in which

270 8 Advanced Neural Networks

(a) (b) (c)

Fig. 8.9 The covariance matrix of the data in the transformed coordinates, according to (a) the
loading vectors computed by applying SVD to the entire dataset, (b) the weights of the linear
autoencoder, and (c) the left singular vectors of the autoencoder weights. (a) PTmY0YT0 Pm, (b)
(W(2))TY0YT0W

(2), (c) UTmY0YT0 Um

(a) (b)

Fig. 8.10 The first two principal components of �Y0, projected using Pm are shown in (a). The
first two approximated principal components (up to a sign change) using Um. The first principal
component is represented by the x-axis and the second by the y-axis. (a) PTm�Y0. (b) UTm�Y0

the yield curve is dominated by parallel shift exhibit a large absolute first principal
component compared to the second component. And conversely, periods exhibiting
a large second component compared to the first indicates that the curve movement
is dominated by twist. The latter phenomenal often occurs when the curve moves
from an upward sloping to a download sloping regime. In both cases, we note that
the period following the financial crisis, 2009, exhibits a relatively large amount of
shift and twist when compared to other years.

6.3 Deep Autoencoders

As we saw in the previous chapter, merely adding more layers to the linear
autoencoder does not change the properties of the autoencoder—it remains a linear

7 Summary 271

(a) (b)

Fig. 8.11 The reconstruction error in Y is shown for (a) the linear encoder and (b) a deep
autoencoder, with two tanh activated layers for each of the encoder and decoders

autoencoder and if there are L layers in the encoder, then the first m singular
values ofW(1)W(2) . . .W(L) will correspond to the loading vectors. With non-linear
activation, the autoencoder can no longer resolve the loading vectors. However, the
addition of a more expressive, non-linear, model is used to reduce the reconstruction
error for a given compression dimensionm. Figure 8.11 compares the reconstruction
error in Y using the linear autoencoder and a deep autoencoder, with two tanh
activated layers in each of the encoder and decoder.

Recently, the application of deep autoencoders to statistical equity factor models
has been demonstrated by Heaton et al. (2017). The authors compress the asset
returns in a portfolio to give a small set of deep factors which explain the variability
in the portfolio returns more reliably than PCA or fundamental equity factors.
Such a representation provides a general portfolio selection process which relies
on encoding of the asset return histories into deep factors and then decoding, to
predict the asset returns. One practical challenge with this approach, and indeed all
statistical factor models, is their lack of investability and hedgeability. For ReLU
activated autoencoders, deep factors can be interpreted as compositions of financial
put and call options on linear combinations of the assets represented. As such,
the authors speculate that deep factors could be potentially investable and hence
hedgeable.

See the notebook ML_in_Finance-Autoencoders.ipynb for an imple-
mentation of the methodology and results presented in this section.

7 Summary

In this chapter we have seen how different neural network architectures can be used
to exploit the structure in the data, resulting in fewer weights, and broadening their
application as a wider class of models than regression and classification.

272 8 Advanced Neural Networks

– We characterize RNNs as non-linear autoregressive models with geometrically
decaying lagged coefficients. RNNs can be shown to exhibit unconditional
stability under certain constraints on the activation function. In particular, a tanh
activation will lead to a stable architecture;

– We combine hypothesis tests from classical time series analysis to guide the
experimental design and diagnose the RNN output. In particular, we can sample
the partial autocorrelation to determine the sequence length if the data is
stationarity and we can check for autocorrelation in the model error to determine
if the model has under-fitted.

– Gated recurrent units and long short-term memory architectures give a dynamic
autoregressive model with variable memory. Adaptive exponential smoothing
is used to propagate a hidden variable with potentially infinite memory. These
architectures have the ability to behave as plain RNNs or even as feedforward
architectures, i.e. they behave as static non-linear autoregressive models or linear
regression as a special case.

– CNNs filter the data and then exploit data locality, either spatial, temporal, or
even spatio-temporal, to efficiently represent the input data. When applied to
time series, CNNs are non-linear autoregressive models which can be designed
to capture multiple scales in the data using dilated convolution.

– Principal component analysis is one of the most powerful techniques for
dimension reduction and uses orthogonal projection to decorrelate the features.

– The firstm singular values of the weight matrix in a linear autoencoder are them
loading vectors used as an orthogonal basis for projection.

– We can combine these different architectures together to build powerful regres-
sions and compression methods. For example, we might use a GRU-autoencoder
to compress non-stationary time series where as we might use a CNN autoen-
coder to compress spatial data.

8 Exercises

Exercise 8.1*
Calculate the half-life of the following univariate RNN

x̂t = Wyzt−1 + by,
zt−1 = tanh(Wzzt−2 +Wxxt−1),

whereWy = 1,Wz = Wx = 0.5, bh = 0.1 and by = 0.

Question 8.2: Recurrent Neural Networks
– State the assumptions needed to apply plain recurrent neural networks to time

series data.
– Show that a linear RNN(p) model with bias terms in both the output layer and

the hidden layer can be written in the form

8 Exercises 273

ŷt = μ+
p∑

i=1

φiyt−i

and state the form of the coefficients {φi}.
– State the conditions on the activation function and weights in a plain RNN under

which the model is stable? (i.e., lags do not grow)

Exercise 8.3*
Using Jensen’s inequality, calculate the lower bound on the partial autocovariance
function of the following zero-mean RNN(1) process:

yt = σ(φyt−1)+ ut ,

for some monotonically increasing, positive and convex activation function, σ(x)
and positive constant φ. Note that Jensen’s inequality states that E[g(X)] ≥
g(E[X]) for any convex function g of a random variable X.

Exercise 8.4*
Show that the discrete convolution of the input sequence X = {3, 1, 2} and the filter
F = {3, 2, 1} given by Y = X ∗ F where

yi = X ∗ Fi =
∞∑

j=−∞
xjFi−j

is Y = {9, 9, 11, 5, 2}.
Exercise 8.5*
Show that the discrete convolution x̂t = F ∗ xt defines a univariate AR(p) if a
p-width filter is defined as Fj := φj for some constant parameter φ.

8.1 Programming Related Questions*

Exercise 8.6***
Modify the RNN notebook to predict Coindesk prices using a univariate RNN
applied to the data coindesk.csv. Then complete the following tasks

a. Determine whether the data is stationary by applying the augmented Dickey–
Fuller test.

b. Estimate the partial autocorrelation and determine the optimum lag at the 99%
confidence level. Note that you will not be able to draw conclusions if your data
is not stationary. Choose the sequence length to be equal to this optimum lag.

c. Evaluate the MSE in-sample and out-of-sample as you vary the number of hidden
neurons. What do you conclude about the level of over-fitting?

274 8 Advanced Neural Networks

d. Apply L1 regularization to reduce the variance.
e. How does the out-of-sample performance of a plain RNN compare with that of a

GRU?
f. Determine whether the model error is white noise or is auto-correlated by

applying the Ljung–Box test.

Exercise 8.7***
Modify the CNN 1D time series notebook to predict high-frequency mid-prices with
a single hidden layer CNN, using the data HFT.csv. Then complete the following
tasks

a. Confirm that the data is stationary by applying the augmented Dickey–Fuller test.
b. Estimate the partial autocorrelation and determine the optimum lag at the 99%

confidence level.
c. Evaluate the MSE in-sample and out-of-sample using 4 filters. What do you

conclude about the level of over-fitting as you vary the number of filters?
d. Apply L1 regularization to reduce the variance.
e. Determine whether the model error is white noise or is auto-correlated by

applying the Ljung–Box test.

Hint: You should also review the HFT RNN notebook before you begin this exercise.

Appendix

Answers to Multiple choice questions

Question 1
Answer: 1,2,4,5. An augmented Dickey–Fuller test can be applied to time series to
determine whether they are covariance stationary.

The estimated partial autocorrelation of a covariance stationary time series can
be used to identify the design sequence length in a plain RNN because the network
has a fixed partial autocorrelation matrix.

Plain recurrent neural networks are not guaranteed to be stable—the stability
constraint restricts the choice of activation in the hidden state update.

Once the model is fitted, the Ljung–Box test is used to test whether the residual
error is auto-correlated. A well-specified model should exhibit white noise error
both in and out-of-sample.

The half-life of a lag-1 unit impulse is the number of lags before the impulse has
half its effect on the model output.

Question 2
Answer: 1,4. A gated recurrent unit uses dynamic exponential smoothing to
propagate a hidden state with infinite memory. However, there is no requirement for

References 275

covariance stationarity of the data in order to fit a GRU, or LSTM. This is because
the later are dynamic models with a time-dependent partial autocorrelation structure.

Gated recurrent units are conditionally stable—the choice of activation in the
hidden state update is especially important. For example, a tanh function for the
hidden state update satisfies the stability constraint. A GRU only has one memory,
the hidden state, whereas a LSTM indeed has an additional, cellular, memory.

Question 3
Answer: 1,2,3.

CNNs apply a collection of different, but equal width, filters to the data. Each
filter is a unit in the CNN hidden layer and is activated before using a feedforward
network for regression or classification. CNNs are sparse networks, exploiting
locality of the data, to reduce the number of weights. CNNs are especially relevant
for spatial, temporal, or even spatio-temporal datasets (e.g., implied volatility
surfaces). A dilated CNN, such as the WaveNet architecture, is appropriate for multi-
scale time series analysis—it captures a hierarchy of patterns at different resolutions
(i.e., dependencies on past lags at different frequencies, e.g., days, weeks, months).
The number of layers in a CNN must be determined manually during training.

Python Notebooks

The notebooks provided in the accompanying source code repository implement
many of the techniques presented in this chapter including RNNs, GRUs, LSTMs,
CNNs, and autoencoders. Example datasets include 1-minute snapshots of Coinbase
prices and a HFT dataset. Further details of the notebooks are included in the
README.md file.

References

Baldi, P., & Hornik, K. (1989, January). Neural networks and principal component analysis:
Learning from examples without local minima. Neural Netw., 2(1), 53–58.

Borovykh, A., Bohte, S., & Oosterlee, C. W. (2017, Mar). Conditional time series forecasting with
convolutional neural networks. arXiv e-prints, arXiv:1703.04691.

Elman, J. L. (1991, Sep). Distributed representations, simple recurrent networks, and grammatical
structure. Machine Learning, 7(2), 195–225.

Gers, F. A., Eck, D., & Schmidhuber, J. (2001). Applying LSTM to time series predictable through
time-window approaches (pp. 669–676). Berlin, Heidelberg: Springer Berlin Heidelberg.

Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Studies in
Computational intelligence. Heidelberg, New York: Springer.

Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: deep portfolios.
Applied Stochastic Models in Business and Industry, 33(1), 3–12.

Hochreiter, S., & Schmidhuber, J. (1997, November). Long short-term memory. Neural Com-
put., 9(8), 1735–1780.

276 8 Advanced Neural Networks

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems (pp. 1097–1105).

Litterman, R. B., & Scheinkman, J. (1991). Common factors affecting bond returns. The Journal
of Fixed Income, 1(1), 54–61.

Plaut, E. (2018, Apr). From principal subspaces to principal components with linear autoencoders.
arXiv e-prints, arXiv:1804.10253.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., et al. (2016).
WaveNet: A generative model for raw audio. CoRR, abs/1609.03499.

Zheng, J., Xu, C., Zhang, Z., & Li, X. (2017, March). Electric load forecasting in smart grids using
long-short-term-memory based recurrent neural network. In 2017 51st Annual Conference on
Information Sciences and Systems (CISS) (pp. 1–6).

Part III
Sequential Data with Decision-Making

Chapter 9
Introduction to Reinforcement Learning

This chapter introduces Markov Decision Processes and the classical methods of
dynamic programming, before building familiarity with the ideas of reinforcement
learning and other approximate methods for solving MDPs. After describing Bell-
man optimality and iterative value and policy updates before moving to Q-learning,
the chapter quickly advances towards a more engineering style exposition of the
topic, covering key computational concepts such as greediness, batch learning, and
Q-learning. Through a number of mini-case studies, the chapter provides insight
into how RL is applied to optimization problems in asset management and trading.

1 Introduction

In the previous chapters, we dealt with supervised and unsupervised learning. Recall
that supervised learning involves training an agent to produce an output given an
input, where a teacher provides some training examples of input–output pairs. The
task of the agent is to generalize from these examples, that is to find a function that
produces outputs given inputs which are consistent with examples provided by the
teacher. In unsupervised learning, the task is again to generalize, i.e. provide some
outputs given inputs; however, there is no teacher to provide examples of a “ground
truth.”

In this chapter, we address a different type of learning where an agent should
learn to act optimally, given a certain goal, in a setting of sequential decision-making
given a state of its environment. The latter serves as an input, while the agent’s
actions are outputs. Acting optimally given a goal is mathematically formulated
as a problem of maximization of a certain objective function. Problems of such
sort belong to the area of machine learning known as of reinforcement learning
(RL). Such an area of machine learning is tremendously important in trading and
investment management.

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_9

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_9

280 9 Introduction to Reinforcement Learning

Chapter Objectives

By the end of this chapter, the reader should expect to accomplish the following:

– Gain familiarity with Markov Decision Processes;
– Understand the Bellman equation and classical methods of dynamic program-

ming;
– Gain familiarity with the ideas of reinforcement learning and other approximate

methods of solving MDPs;
– Understand the difference between off-policy and on-policy learning algorithms;

and
– Gain insight into how RL is applied to optimization problems in asset manage-

ment and trading.

The notebooks provided in the accompanying source code repository accompany
many of the examples in this chapter. See Appendix “Python Notebooks” for further
details.

The task of finding an optimal mapping of inputs into outputs given an objective
function looks superfluously similar to tasks of both supervised and unsupervised
learning. Indeed, in all these cases, and in a sense in all problems of machine
learning in general, the objective is always formulated as a sample-based problem
of mapping some inputs into some outputs given some criteria for optimality of
such mapping. This can be generally viewed as a special case of optimization or
alternatively as a special case of function approximation. There are however at least
three distinct differences between the problem setting in RL and the settings of both
supervised learning and unsupervised learning.

The first difference is the presence and role of a teacher. In RL, like supervised
learning and unlike unsupervised learning, there is a teacher. However, a feedback
provided by the teacher to an agent is different from a feedback from a teacher in
supervised learning. In the latter case, a teacher gives correct outputs for a given
training dataset. The role of a supervised learning algorithm is to generalize from
such explicit examples, i.e. to provide a function that maps any inputs to outputs,
including inputs not encountered in the training set.

In reinforcement learning , a teacher provides only a partial feedback for actions
taken by an agent. Such a partial feedback is given in terms of rewards that the agent
receives upon taking a certain action. Rewards have numerical values, therefore a
higher reward for a particular action generally implies that this particular action
taken by the agent is better than other actions that would produce lower rewards.
However, there is no explicit information from a teacher on what action is the best
or is “right” to produce the highest reward possible. Therefore, a teacher in this case
provides only a partial feedback to an agent during training. The goal of a RL agent
is to maximize a total cumulative reward over a sequence of steps.

1 Introduction 281

This brings us to a second key difference of reinforcement learning from
supervised and unsupervised learning, which stems from a presence of a feedback
loop from actions of the agent to a state of environment. This means that when the
agent acts in a certain state of the environment, the action of the agent can change the
state of the environment. Because reinforcement learning tasks involve sequential
decision-making in an environment that is typically evolving stochastically on its
own, as well as can be impacted by agent’s action via a feedback loop, reinforcement
learning usually involves planning .

The presence of a feedback loop and the need for planning are unique to rein-
forcement learning. No feedback loop ever appears in supervised or unsupervised
learning. Indeed, consider, for example, binary classification, a classical problem of
supervised learning introduced in Chap. 1 and covered in more depth in Chap. 8.
Assigning an output label to any particular input data can be viewed as an “action”
of an agent in this setting. A classical zero-one loss function can be viewed as a
negative reward. A distribution of true output labels in the remaining data points
after a next data point is classified can be viewed as a state of an environment.
Clearly, any particular choice of a label for a given data point in a test sample
does not change true labels on the remaining data points. In other words, there
is no feedback loop in such setting—the environment does not change as a result
of “actions” of the agent. This is an important differentiator in finance when the
actions change the environment, such as trades changing the state of the order book
or consumption from a fund which changes the fund’s wealth.

Finally, a third difference between reinforcement learning and other types of
learning is related to the previous two. Because the maximum attainable reward is
not known to the agent, even when it achieves a high reward from performing a given
action in a given state, there is always a possibility that taking some other action in
the same state would produce yet a higher reward. The agent is therefore faced
with a task of exploration, i.e. randomly selecting some other actions, in its quest
for maximizing the total cumulative reward. On the other hand, by not reselecting
actions that previously were found to produce high rewards, the agent can miss
an opportunity for exploitation. Exploitation amounts to simply repeating actions
producing “good” rewards, instead of taking the risk of producing smaller rewards
as a result of exploration.

The agent is therefore faced with the so-called exploration-exploitation dilemma
that conceptualizes the problem of choosing between exploration and exploitation
at each step of a learning process. Additional complexity is introduced by the
presence of a feedback loop. A particular action taken in a given state may produce
a high local reward, but it may also change the environment and change future
rewards as a result. Therefore, in choosing at each time step between exploration
and exploitation, the agent should also do forecasting of future states that may be
impacted by an agent’s actions.

The exploration-exploitation dilemma is specific to reinforcement learning and
does not arise in supervised or unsupervised learning, because neither a partial
feedback via rewards nor a feedback loop is present in these settings.

282 9 Introduction to Reinforcement Learning

However, it is important to note that the exploration-exploitation dilemma is
only applicable in a regime of “real-time” or on-line reinforcement learning. In
this setting, an agent has access to a physical or simulated environment, and is
therefore free to choose various actions and explore consequences, i.e. to engage
in exploration.

Another situation arises in batch-mode, or off-line reinforcement learning. In
this case, an agent does not have an on-demand access to an environment. Instead, it
only has access to a dataset that stores a history of interactions of some other agents
(human or machine) with this environment. These data should contain records of
states of the environment, actions taken, and rewards received, for each time step
in the history. In such a setting, the agent cannot explore, therefore the exploration-
exploitation dilemma does not arise in this case. Batch-mode reinforcement learning
is essentially a problem of inference of best possible actions given batch data of a
recorded sequence of states, actions, and rewards received.

Batch-model reinforcement learning is important for finance, as its setting is
similar to a traditional setting of financial models that are usually trained off-line,
using some historical data. Our examples in the following chapters will mostly
consider batch reinforcement learning, rather than its online version. On the other
hand, batch and online reinforcement learning can be combined in certain cases. For
example, an agent can be first trained off-line using batch reinforcement learning,
and then be exposed to a real-time environment, where it can continue training
online. Alternatively, online learning can be implemented as a version of batch
learning using the so-called experience replay method, which amounts to adding
each new combination of a state, action, and reward to a dataset of previously
recorded such combinations, and gradually removing old observations so that the
size of the experience replay buffer stays the same.

•> Thompson Sampling

If interactions of an agent with its environment do not involve a feedback loop
effect from the agent’s action on the evolution of the environment, a multi-step
optimization of a total expected reward becomes equivalent to a sequence of
independent one-step episodes, where states st of the environment provide a
“context” for a decision policy π(a|s = st). If a set of possible actions a ∈ A
is discrete of size K , the problem is equivalent to a contextual Multi-Armed
Bandit (MAB).

In applications such as online advertising or cloud design, arms of a bandit
correspond to different features selected in order to optimize a certain score,
e.g. a conversion rate of online users. In the setting of MABs as one-step
reinforcement learning without a feedback loop, different arms correspond
to different possible actions given the context st , while the objective of
maximization of a total reward over a certain time horizon. In the financial

(continued)

1 Introduction 283

context, a MAB setting may be well suited to describe long-term investors
who choose between different stationary “all weather” strategies1to maximize
a cumulative risk-adjusted reward.

Thompson sampling, also known as posterior sampling or probability
matching, was first proposed by Thompson (1993, 1935) for two-armed bandit
problems arising in clinical trials. Later it was established that the Thompson
policy provides an optimal, in a certain sense, way to combine exploration
and exploitation and manage their tradeoff for MAB problems. Thompson
sampling (TS) is a simple Bayesian method which, at each time step, samples
a list of arm means from the posterior distribution of optimal action, and
chooses the best arm according to this sample. After that, the agent updates
the posterior distribution using a Bayesian update with a reward observed as
a result of picking the arm. In the financial setting, TS might serve as a useful
technique to provide an optimal balance of exploration in exploitation in intra-
day trading, where arms would correspond to different trading strategies, or
different specifications of the same trading strategy.

In more details, let rt = (r1, . . . , rt) be a sequence of rewards obtained up
to time t , where all rewards are considered for simplicity binary rt = {0, 1}.
We can consider a binomial bandit with the probability of success fθ (yt =
1|st) = g(θT st)where g(·) is a link function bounded to the interval [0, 1], for
example, it can be taken as a sigmoid function g(z) = σ(z) = 1/(1+exp(−z),
and θ is a vector of model parameters. We denote ak ∈ {1, . . . , K} be the
integer-valued arm (action) given the state st .

Let μa(θ) = E [yt |θ, at] be the expected reward from the distribution
fa(y|θ). If θ were known, then the optimal long-term strategy would be to
always pick the arm with the highest value ofμa(θ). Thompson sampling uses
a prior distribution on the parameter vector p(θ). After sampling of value of
θ from this distribution, the best arm is decided according to the highest value
of μa(θ) across different arms. When an arm with a highest expected reward
is executed, the posterior distribution of θ at time t becomes

p(θ |yt) ∼ p(θ)
t∏

τ=1

faτ (yτ |θ). (9.1)

The posterior probability p(θ |yt) is then used to update the best arm according
to the highest expected reward criterion, and the execution continues to the
next time step.

1These are portfolio strategies that are not adaptive to changing macro-economical conditions and
thus do not need to be rebalanced frequently.

284 9 Introduction to Reinforcement Learning

2 Elements of Reinforcement Learning

Now that we have discussed the exploration-exploitation dilemma as a seminal
concept in experimental design, we turn to more practical challenges of modeling
with RL. The four main elements of reinforcement learning are (i) rewards; (ii) a
value function; (iii) a policy; and (iv) an environment. In this section, we provide a
high-level overview of these concepts.

2.1 Rewards

A reward function determines the goal of a reinforcement learning problem. The
goal of an agent is to maximize the total (or average) reward received over a certain
period of time. The reward received by an agent upon performing a certain action
in a certain state can be thought as a measure of “happiness” from taking this
action. For biological agents such as animals or humans, rewards can be considered
numerical expressions of the experiences of pleasure or pain. The latter experiences
could be represented as a set of rank-ordered (and possibly continuous) values that
can be assigned to a specified interval.

The local (one-step) reward received by the agent in any given state of the
environment is what determines the agent’s next action. Mathematically, we can
write it as rt = rt (St , at), i.e. a function that in general can depend on the current
state St of the environment, and the action at taken in this state. In addition, for
time-dependent problems, the reward can explicitly depend on time t , as implied by
the index t in the expression for rt . For time-independent problems, the time index
can be omitted. In addition, the reward can have a random component that does not
depend on the state St or action at . In this case, we deal with random rewards.

Sometimes, but not always, the best action that the agent can take is simply to
choose an action that maximize the local reward. This is a standard optimization
problem that can be solved either exactly (if, e.g., the reward is a quadratic
polynomial in action at), or numerically, for more complex forms of the reward
function. This produces significant simplifications. For more insight, let us assume
that the goal of an agent is to maximize the total reward obtained over T time steps.
If rewards obtained at different steps are independent of each other, this problem is
easy to solve: at every time step and in any state, the agent should simply pick the
action that maximizes its local reward.

However, many cases of practical interest do not fit into this scheme. Complica-
tions arise due to the presence of a feedback loop that was mentioned above. Actions
of an agent can change the environment. One simple example in finance is provided
by the presence of market impact effect: if you trade a substantial amount of stocks
or other asset, you move market prices by your action.

2 Elements of Reinforcement Learning 285

Because, in this case, actions of the agent can potentially change the evolution
of the environment, rewards obtained by the agent at different time steps are
no longer independent. Respectively, the problem of maximization of the total
(cumulative) reward over T steps does not decompose into a set of T independent
optimization problems. The problem then acquires a time dimension and becomes
substantially more complex, calling for dedicated optimization methods. As we
will see below, dynamic programming and reinforcement learning, as its extension,
provide computationally efficient methods for “learning by acting” with a feedback
loop. To illustrate the challenge of time-dependent optimization with actions which
change the environment, let us consider the following optimal stock execution
problem.

Example 9.1 Optimal Stock Execution

Optimal stock execution is a common problem that has to be solved thousands
of times a day by large broker-dealers or trading desks of larger money
managers. Assume a portfolio manager wants to sell a certain (large) quantity
V of stocks of AMZN on NASDAQ within the next T = 10 min, and the
objective is to maximize the total payoff. However, the latter is uncertain, due
to both market fluctuations and a potential impact of trades to be executed
following this order on the market price of the stock. If the broker who executes
the order simultaneously sells at ' 1 shares, this may drive the market price
of the company down, so that executing the remaining shares will proceed at a
smaller price, at a loss to the seller. A simple way to model market stock price
dynamics with market impact is to use a linear impact model:

St+1 = St (1− μat)+ σZt , (9.2)

where St and St+1 are stock prices at times t and t +�t , respectively, at > 0
is the trading volume of the sold stock, Zt ∼ N(0, 1) is a standard Gaussian
noise, and σ is the stock volatility. The problem faced by the broker is to find
an optimal partitioning of the sell order into smaller blocks of shares that are
to be executed sequentially, for example, each minute over the T = 10 min
time period. This can also be formulated as a Markov Decision Process (MDP)
problem (see Sect. 3 for further details) with a state variable Xt given by the
number of shares outstanding (plus potentially other relevant variables such as
limit order book data). For a one-step reward rt of selling at shares at step t ,
we could consider a risk-adjusted payoff given by the total expected payoff
μ := atSt penalized by the variance of the remaining inventory price at the
next step t + 1: rt = μ − λVar [St+1Xt+1]. We will return to the optimal
stock execution problem later in this chapter, after we introduce the relevant
mathematical constructs.

286 9 Introduction to Reinforcement Learning

2.2 Value and Policy Functions

In addition to an action chosen by the agent, its local reward depends on the state St
of the environment. Different states of the environment can have different amount
of attractiveness, or value, for the agent. Certain states may not exhibit any good
options to receive high rewards. Furthermore, states of the environment in general
change over a multi-step sequence of actions taken by the agent, and their future may
be partly driven by their present state (and possibly actions of the agent). Therefore,
reinforcement learning uses the concept of a value function as a numerical value of
attractiveness of a state St for the agent, with a view on a multi-step character of an
optimization problem faced by the agent.

To relate it to the goal of reinforcement learning of maximization the cumulative
reward over a period of time, a value function can be specified as a mean (expected)
cumulative reward, that can be obtained by starting from this state, over the whole
period (but as we will see below, there are other choices too). However, such a
quantity would be under-specified as it stands, because rewards depend on actions
at , in addition to their dependence on the state St . If we want to define the value
function of a current (time-t) expected value of the cumulative reward obtained in
T steps, we must know beforehand how the agent should act in any given possible
state of the environment.

This rule is specified by a policy function πt (St) for how the agent should
act at time t given the state St of the environment. A policy function may be
a deterministic function of the state St , or alternatively it can be a probability
distribution over a range of possible actions, specified by the current value of St . A
value function V π(St) is therefore a function of the current state St and a functional
of the policy π .

2.3 Observable Versus Partially Observable Environments

Finally, to complete the list of main concepts of reinforcement learning, we have
to specify the notion of the state St , as well as define the law of its evolution. This
process of an agent perceiving the environment and taking actions is extended over
a certain period of time. During this period, the state of the environment changes.
These changes might be determined by the previous history of the environment, and
in addition, can be partially driven by some random factors, as well as an agent’s
own actions. An immediate problem to be addressed is therefore how we model
evolution of the environment. We start by describing autonomous evolution of the
environment without any impact from the agent, and then generalize below to the
case when such impact, i.e. a feedback loop, is present.

In a most general form, the joint probability p0:T = p(s0, . . . , sT−1) of a
particular path (S0 = s0, . . . , ST−1 = sT−1) can be written as follows:

2 Elements of Reinforcement Learning 287

p(s0, s1, . . . , sT−1) =
T−1∏

i=1

p(si |s0:i−1). (9.3)

Note that this expression does not make any assumptions about the true data-
generating process—only the composition law of joint probabilities is used here.
Unfortunately this expression is too general and useless in practice. This is because,
for most problems of practical interest, the number of time steps encountered is
in the tens or hundreds. Modeling path probabilities for sequences of states only
relying on this general expression would lead to an exponential growth of the
number of model parameters. We have to make some further assumptions in order
to have a practically useful sequence model for the evolution of the environment.

The simplest, and in many practical cases a reasonable “first order approxima-
tion” approach is to additionally assume Markovian dynamics where one assumes
that conditional probabilities p(xi |x0:i−1) depend only on K most recent values,
rather than on the whole history:

p(st |s0:t−1) = p(st |st−K:i−1). (9.4)

The most common case isK = 1 where probabilities of states at time t only depend
on the previously observed values of the state. Following the common tradition in
the literature, unless specifically mentioned, in what follows we refer to K = 1
Markov processes as simply “Markov processes.” This is also the basic setting for
more general Markov processes with K > 1: such cases can be still viewed as
Markov processes with K = 1 but with an extended definition of a time-t state
St → Ŝt = (St , St−1, . . . , St−K).

If we assume Markov dynamics for the evolution of the environment, this results
in tractable formulations for sequence modeling. But in many practical cases,
dynamics of a system cannot be as simple as a Markov process with a sufficiently
low value of K , say 1 < K < 10. For example, financial markets often have
longer memories than 10 time steps. For such systems, approximating essentially
non-Markov dynamics by Markov dynamics with K ∼ 10 may not be satisfactory.

A better and still tractable way to model a non-Markov environment is to use
hidden variables zt . The dynamics is assumed to be jointly Markov in the pair (st , zt)
so that path probabilities factorize into the product of single-step probabilities:

p(s0:T−1, z0:T−1) = p(s0, s0)
T−1∏

t=1

p(zt |zt−1)p(st |zt). (9.5)

Such processes with joint Markov dynamics in a pair (st , zt) of an observable and
unobservable components of a state are called hidden Markov models (HMM). Note
that the dynamics of the marginal xt alone in HMMs would be in general non-
Markovian.

288 9 Introduction to Reinforcement Learning

Remarkably, introducing hidden variables zt , we may construct models that
both produce rich dynamics of observables, and have a substantially lower number
of parameters than we would need with order K Markov processes. This means
that such models might need considerably less data for training, and may behave
better out-of-sample than Markov models. At the same time, models that are
Markov in the pair (st , zt) can be implemented in computationally efficient ways.
Multiple examples in applications to speech and text recognition, robotics, finance
demonstrated that HMMs are able to produce highly complex and sufficiently
realistic sequences and time series.

The key question in any type of HMM model is how to model a hidden state zt .
Should it have a discrete or a continuous distribution? How many states are there?
How should we specify the dynamics of hidden states, etc?

While these are all practically important questions, here we want to focus on
the conceptual aspect of modeling. First, introduction of hidden variables zt has
a strong intuitive appeal. Traditionally, many important factors, e.g. political risk,
are left outside of financial models, therefore they are “unknown” to the model.
Treating such unknown risks as a de-correlated noise at each time step may be
insufficient because such hidden risk factors usually include strong autocorrelations.
This provides a second motivation to incorporate hidden processes in modeling
of financial markets as not only a conventional tool to account for complex time
dependencies of observable quantities xt , but also on their own, as a way to account
for risk factors that we do not directly include in an observable state of the model.
HMMs with their Markov dynamics in the pair (xt , zt) provide a rather flexible
set of non-Markov dynamics in observables xt . Even richer types of non-Markov
dynamics can be obtained with recurrent extensions (such as RNN and LSTM neural
networks) where hidden state probabilities depend on a long history of previous
hidden states rather than just on a single last hidden state.

While this implies that hidden variables might be very useful for financial
machine learning, modeling decision-making of an agent in such a partially observ-
able environment is more difficult than when an environment is fully observable.
Therefore, in the rest of this chapter we will deal with models of decision-making
within fully observable systems whose dynamics are assumed to be Markovian. The
agent’s actions are added to the framework of Markov modeling, producing Markov
Decision Process (MDP) based model. We will consider this topic next.

Example 9.2 Portfolio Trading and Reinforcement Learning

The problem of multi-period portfolio management can be described as a
problem of stochastic optimal control. Consider a portfolio of stocks and a
single Treasury bond, where stocks are considered risky investments with
random returns, while the Treasury bond is a risk-free investment with a fixed
return determined by a risk-free discount rate. Let pn(t) with n = 1, . . . , N
be investments at time t in N different stocks, and bt is the investment in the

(continued)

3 Markov Decision Processes 289

Example 9.2 (continued)

bond. Let Xt be a vector of all other relevant portfolio-specific and market-
wide dynamic variables that may impact an investment decision at time t . The
vector Xt may, e.g., include market prices of all stocks in the portfolio, plus
market indices such as SPY500 and various sector indices, macroeconomic
factors such as the inflation rate, etc.

The total state vector for such system is then st = (pt , bt ,Xt). The action
at would be an (N + 1)-dimensional vector of capital allocations to all stocks
and the bond at time t .

If all components of vector Xt are observable, we can model its dynamics
as Markov. Otherwise, if some components of vector Xt are non-observable,
we can use an HMM formulation for the dynamics. The dynamics of some
components of Xt can be partially affected by actions of the trader agent,
for example, market prices of stock can be moved by large trades via market
impact mechanisms. A model of the interaction of the trader agent and its
environment (the “market”) can therefore include feedback loop effects.

The objective of multi-step portfolio optimization is to maximize the
expected cumulative reward. We can, e.g., consider one-step random rewards
given by the one-step portfolio return r$(st , at) at time step t , penalized by
the one-step variance of the return: R(st , at) = r$(st , at) − λVar [r$(st , at)],
where λ is a risk-aversion rate. Taking the expectation of this random reward,
we recover the classical Markowitz quadratic reward (utility) function for
portfolio optimization. Therefore, reinforcement learning with random rewards
R(st , at) extends Markowitz single-period portfolio optimization to a sample-
based, multi-period setting.

3 Markov Decision Processes

Markov Decision Process models extend Markov models by adding new degrees
of freedom describing controls. In reinforcement learning, control variables can
describe agents’ actions. Controls are decided upon by the agent, and via the
presence of a feedback loop, can modify the future evolution of the environment.
When we embed the idea of controls with a feedback loop into the framework of
Markov processes, we obtain Markov Decision Process (MDP) models.

The MDP framework provides a stylized description of goal-directed learning
from interaction. It describes the agent–environment interaction as message-passing
of three signals: a signal of actions by the agent, a signal of the state of an
environment, and a signal defining the agent’s reward, i.e. the goal.

In mathematical terms, a Markov Decision Process is defined by a set of discrete
time steps t0, . . . , tn and a tuple

{
S,A(s), p(s′|s, a),R, γ } with the following

elements. First, we have a set of states S, so that each observed state St ∈ S. The

290 9 Introduction to Reinforcement Learning

space S can be either discrete or continuous. If S is finite, we have a finite MDP,
otherwise we have a MDP with a continuous state space.

Second, a set of actions A(s) defines possible actions At ∈ A(s) that can be
taken in a state St = s. Again, the set A(s) can be either discrete or continuous. In
the former case, we have a MDP model with a discrete action space, and in the latter
case we obtain a continuous-action MDP model.

Next, a MDP is specified by transition probabilities p(s′|s, a) = p(St =
s′|St−1 = s, at−1 = a) of a next state St given a previous state St−1 and an action
At−1 taken in this state. Slightly more generally, we may specify a joint probability
of a next state s′ and reward r ∈ R where R is a set of all possible rewards:

p(s′, r|s, a) = Pr
[
St = s′, Rt = r|St−1 = s, at−1 = a

]
, (9.6)

∑

s′∈S,r∈R
p(s′, r|s, a) = 1, ∀s ∈ S, a ∈ A.

This joint probability specifies the state transition probabilities

p(s′|s, a) = Pr
[
St = s′|St−1 = s, at−1 = a

] =
∑

r∈R
p(s′, r|s, a), (9.7)

as well as the expected reward function r : S×A×S→ R that gives the expected
value of a random reward Rt received in the state St−1 = s upon taking action
at−1 = a:

r(s, a, s′) = E
[
Rt |St−1 = s, At−1 = a, St = s′

]

=
∑

r∈R
r
p
[
St = s′, Rt = r|St−1 = s, at−1 = a

]

p [St = s′|St−1 = s, at−1 = a]
. (9.8)

Finally, a MDP needs to specify a discount factor γ which is a number between 0
and 1. We need the discount factor γ to compute the total cumulative reward given
by the sum of all single-step rewards, where each next term gets an extra power of
γ in the sum:

R(s0, a0)+ γR(s1, a1)+ γ 2R(s2, a2)+ (9.9)

This means that as long as γ < 1, receiving a larger reward now and a smaller
reward later is preferred to receiving a smaller reward now and a larger reward later.
The discount factor γ just controls by how much the first scenario is preferable to
the second one. This means that the discount factor for a MDP plays a similar role
to a discount factor in finance, as it reflects the time value of rewards. Therefore,
in financial application the discount factor γ can be identified with a continuously-

3 Markov Decision Processes 291

Fig. 9.1 The causality diagram for a Markov Decision Process

compounded interest rate. Note that for infinite-horizon MDPs, a value γ < 1 is
required in order to have a finite total reward.2

A diagram describing a Markov Decision Process is shown in Fig. 9.1. The blue
circles show the evolving state of the system St at discrete-time steps. These states
are connected by arrows representing causality relations. We have only one arrow
that enters each blue circle from a previous blue circle, emphasizing a Markov
property of the dynamics: each next state depends only on the previous state, but
not on the whole history of previous states. The green circles denote actions At
taken by the agent. The upwards pointing arrow denote rewards Rt received by the
agent upon taking actions At .

The goal in a Markov Decision Process problem or in reinforcement learning is
to maximize the expected total cumulative reward (9.9). This is achieved by a proper
choice of a decision policy that specifies how the agent should act in each possible
state.

3.1 Decision Policies

Let us now consider how we can actually achieve the goals of maximizing the
expected total rewards for Markov Decision Processes. Recall that the goal of
reinforcement learning is to maximize the expected total reward from all actions
performed in the future. Because this problem has to be solved now, but actions will
be performed in the future, to solve this problem, we have to define a “policy”.

A policy π(a|s) is a function that takes a current state St = s, and translates it
into an actionAt = a. In other words, this function maps a state space onto an action
space in the Markov Decision Process. If a system is currently in a state described
by a vector St , then the next action At is given by a policy function π(St). If the

2An alternative formulation for infinite-horizon MDPs is to consider maximization of an average
reward rather than total reward. Such approach allows one to proceed without introducing a
discount factor. We will not pursue reinforcement learning with average rewards in this book.

292 9 Introduction to Reinforcement Learning

policy function is a conventional function of its argument St , then the output At will
be a single number. For example, if the policy function is π(St) = 0.5St , then for
each possible value of St we will have one action to take. Such specification of a
policy is called a deterministic policy.

Another way to analyze policies in MDPs is to consider stochastic policies. In
this case, a policy π(a|s) describes a probability distribution rather than a function.
For example, suppose that there are two actions a0 and a1, then the stochastic
policy might be given by the logistic function π0 := π(a = a0|s) = σ(θT s) =

1
1+exp (−θT s) and π1 := π(a = a1|s) = 1− π0.

Now we take a look at differences between these two specifications in slightly
more detail.

First, consider deterministic policies. In this case, the action At to take is given
by the value of a deterministic policy function π(St) applied to a current state St . If
the RL agent finds itself in the same state St of the system more than once, each time
it will act exactly the same way. How it will act depends only on the current state
St , but not on any previous history. This assumption is made to ensure consistency
with the Markov property of the system dynamics, where probabilities to observe
specific future states depend only on the current state, but not on any previous states.
It can actually be proven that an optimal deterministic policy π always exists for a
Markov Decision Process, so our task is simply to identify it among all possible
deterministic policies.

As long as that is the case, it might look like deterministic policies is all we ever
need to solve Markov Decision Processes. But it turns out that the second class of
policies, namely stochastic policies, are also often useful for reinforcement learning.

For stochastic policies, a policy π(a|s) becomes a probability distribution over
possible actionsAt = a. This distribution may depend on the current value of St = s
as a parameter of such distribution. So, if we use a stochastic policy instead of
a deterministic policy, when an agent visits the same state again, it might take a
different action from an action it took the last time in this state. Note that the class
of stochastic policies is wider than the class of deterministic policies, as the latter
can always be thought as limits of stochastic policies where a distribution collapses
to a Dirac delta-function. For example, if a stochastic policy is given by a Gaussian
distribution with variance σ 2, then a deterministic Dirac-like policy can be obtained
in this setting by taking the limit σ 2 → 0.

We might consider stochastic policies as a more general specification, but why
would we want to consider such stochastic policies? It turns out that in certain cases,
introducing stochastic policies might be an unnecessary complication. In particular,
if we know transition probabilities in the MDP, then we can just consider only
deterministic policies to find an optimal deterministic policy. For this, we just need
to solve the Bellman equation that we introduce in the next section.

But if we do not know the transition probabilities, we must either estimate them
from data and use them to solve the Bellman equation, or we have to rely on
samples, following the reinforcement learning approach. In this case, randomization

3 Markov Decision Processes 293

of possible actions following some stochastic policy may provide some margin for
exploration—for a better estimation of the model.

A second case when a stochastic policy may be useful is when instead of a
fully observed (Markov) process, we use a partially observed dynamic model of
an environment which can be implemented as, e.g. a HMM process. Introducing
additional control variables in this model would produce a Partially Observable
Markov Decision Process, or POMDP for short. Stochastic policies may be optimal
for POMDP processes, which is different from a fully observable MDP case where
the best policy can always be found within the class of deterministic policies.

While many problems of practical interest in finance would arguably lend
themselves to a POMDP formulation, we leave such formulations outside the scope
of this book where we rather focus on reinforcement learning for fully observed
MDP settings.

3.2 Value Functions and Bellman Equations

As mentioned above, a common auxiliary task of learning by acting is to evaluate a
given state of the environment. Because it is defined by a sequence of actions taken
by the agent, we want to relate it to local rewards obtained by the agent. One way
to define the value function V π(s) for policy π is to specify it as an expected total
reward that can be obtained starting from state St = s and following policy π :

V πt (s) = E
π
t

[
T−t−1∑

i=0

γ iR (St+i , at+i , St+i+1)

∣∣∣∣∣ St = s
]
, (9.10)

where R (St+i , at+i , St+i+1) is a random future reward at time t + i, T is the
planning time horizon (an infinite-horizon case corresponds to T = ∞), and
E
π
t [·| St = s] means time-t averaging (conditional expectation) over all future

states of the world given that future actions are selected according to policy π .
The value function (9.10) can be used for two main settings for reinforcement

learning. For episodic tasks, the problem of the agent learning naturally breaks
into episodes which can be either of fixed or variable length T < ∞. For such
tasks, using a discount factor γ for future rewards is not strictly necessary, and we
could set there γ = 1 if so desired. On the other hand, for continuing tasks, the
agent–environment interaction does not naturally break into episodes. Such tasks
corresponds to the case T = ∞ in (9.10), which makes it necessary to keep γ < 1
to ensure convergence of an infinite series of rewards.

The state-value function V πt (s) is therefore given by a conditional expectation
of the total cumulative reward, also known in reinforcement learning as the random
return Gt :

294 9 Introduction to Reinforcement Learning

Gt =
T−t−1∑

i=0

γ iR (St+i , at+i , St+i+1) . (9.11)

For each possible state St = s, the state-value function V π(s) gives us the “value”
of this state for the task of maximizing the total reward using policy π . The state-
value function V πt (s) is thus a function of s and a functional (i.e., a function of a
function) of a decision policy π . For time-homogeneous problems, the time index
can be omitted, V πt (s)→ V π(s).

Similarly, we can specify a value of simultaneously being in state s and take
action a as a first action, and following policy π for all the following actions. This
defines the action-value functionQπ(s, a):

Qπt (s, a) = E
π
t

[
T−t−1∑

i=0

γ iR (St+i , at+i , St+i+1)

∣∣∣∣∣ St = s, at = a
]
. (9.12)

Note that in comparison to the state-value function V πt (s), the state-value function
Qπ(s, a) depends on an additional argument a which is an action taken at time
step t . While we may consider arbitrary inputs a ∈ A to the action-value function
Qπ(s, a), it is of a particular interest to consider a special case when the first action
a is also drawn from policy π(a|s). In this case, we obtain a relation between the
state-value function and the action-value function:

V πt (s) = E
π
[
Qπt (s, a)

] =
∑

a∈A
π(a|s)Qπt (s, a). (9.13)

(Note that while we assume a finite MDP formulation in this section, the same
formulas applied to continuous-state MDPs model provided by replace sums by
integrals).

Both the state-value function V πt (s) and action-value functionQπt (s, a) are given
by conditional expectations of the return Gt from states. Therefore, they could be
estimated directly from data if we have observations of total returns Gt obtained
in different states. The simplest case arises for a finite MDP model. Let us assume
that we have K discrete states, and for each state, we have data referring observed
sequences of states, actions, and rewards obtained while starting in each one of
the K states. Then values functions in different states can be estimated empirically
using these observed (or simulated) sequences. Such methods are referred to in
reinforcement learning literature as Monte Carlo methods.

Another useful way to analyze value functions is to rely on their particular
structure defined as an expectation of cumulative future rewards. As we will see
next, this can be used to derive certain equations for the state-value function (9.10)
and action-value function (9.12).

3 Markov Decision Processes 295

Consider first the state-value function (9.10). We can separate the first term from
the sum, and write the latter as the first term plus a similar sum but starting with the
second term:

V πt (s) = E
π
t [R (s, at , St+1)]+ γEπt

[
T−t−1∑

i=1

γ iR (St+i , at+i , St+i+1)

∣∣∣∣∣ St = s
]
.

Note that the first term in the right-hand side of this equation is just the expected
reward from the current step. The second term is the same as the expectation of the
value function at the next time step t + 1 in some other state s′, multiplied by the
discount factor γ . This gives

V πt (s) = E
π
t

[
Rt

(
s, a, s′

)]+ γEπt
[
V πt+1(s

′).
]

(9.14)

Equation (9.14) then gives an expression for a value of the state as a sum of
immediate expected reward and a discounted expectation of the expected next state
value. Note further that the conditional time-t expectations Eπt [·] in this expression
involve conditioning on the current state St = s.

Equation (9.14) thus presents a simple recursive scheme that enables computa-
tion of the value function at time t in terms of its future values at time t+1 by going
backward in time, starting with t = T − 1. This relation is known as the “Bellman
equation for the value function”. Later on we will introduce a few more equations
that are also called Bellman equations. It was proposed in 1950s by Richard Bellman
in the context of his pioneering work on dynamic programming. Note that this
is a linear equation, because the second expectation term is a linear functional of
V πt+1(s

′). In particular, for a finite MDP withN distinct states, the Bellman equation
produces a set of N linear equations defining the value function at time t for each
state in terms of expected immediate rewards, and transition probabilities to states at
time t + 1 and next-period value functions V πt+1(s

′) that enter the expectation in its
right-hand side. If transition probabilities are known, we can easily solve this linear
system using methods of linear algebra.

Finally, note that we could repeat all steps leading to the Bellman equation (9.14),
but starting with the action-value function rather than the state-value function. This
produces the Bellman equation for the action-value function:

Qπt (s, a) = E
π
t

[
Rt

(
s, a, s′

)]+ γEπt
[
V πt+1(s

′)
]
. (9.15)

Similarly to (9.14), this is a linear equation that can be solved backward in time
using linear algebra for a finite MDP model.

296 9 Introduction to Reinforcement Learning

•> Learning with a Finite vs Infinite Horizon

While an MDP problem is formulated in the same way for both cases of a
finite T <∞ or infinite T →∞ time horizon, computationally they produce
different algorithms. For infinite-horizon MDP problems with rewards that
do not explicitly depend on time, a state- and action-value function should
also not depend explicitly on time: Vt (st) → V (st) and similarly for
Gt(st , at) → G(st , at), which expresses time-invariance of such problem.
For time-invariant problems, the Bellman equation (9.15) becomes a fixed-
point equation for the same function Q(s, t) rather than a recursive relation
between different functionsQt(st , at) andQt+1(st+1, at+1).

While many of existing textbooks and other resources are often focused on
presenting and pursuing algorithms for MDP and RL for a time-independent
setting, including analyses of convergence, a proper question to ask is
which one of the two types of MDP problem is more relevant for financial
applications? We tend to suggest that finite-horizon MDP problems are
more common in finance, as most of goals in quantitative finance focus
on performance over some pre-specified time horizon such as one day, one
month, one quarter, etc. For example, an annual performance time horizon
of T = 1Y for a mutual fund or an ETF sets up a natural time horizon
for planning in the MDP formulation. On the other hand, a given fixed time
horizon may consist of a large number of smaller time steps. For example, a
daily fund performance can result from multiple trades executed on a minute
scale during the day. Alternatively, multi-period optimization of a long-term
retirement portfolio with a time horizon of 30 years can be viewed at the
scale of monthly or quarterly steps. For such cases, it may be reasonable
to approximate an initially time-dependent problem with a fixed but large
number of time steps by a time-independent infinite-horizon problem. The
latter is obtained as an approximation of the original problem when the
number of time steps goes to infinity. Therefore, an infinite-horizon MDP
formulation can serve as a useful approximation for problem involving long
sequences.

3.3 Optimal Policy and Bellman Optimality

Next, we introduce an optimal value function V %t . The optimal value function for a
state is simply the highest value function for this state among all possible policies.
So, the optimal value function is attained for some optimal policy that we will call
π%. The important point here is that an optimal policy π% is optimal for all states of
the system. This means that V %t should be larger or equal than V πt with any other

3 Markov Decision Processes 297

policy π , and for any state S, i.e. π% > π if V %t := V π%t (s) ≥ V π(s),∀s ∈ S. We
may therefore express V% as follows:

V %t (s) := V π%t (s) = max
π
V πt (s), ∀s ∈ S. (9.16)

Equivalently, the optimal policy π% can be determined in terms of the action-value
function:

Q%t (s, a) := Qπ%t (s, a) = max
π
Qπt (s, a), ∀s ∈ S. (9.17)

This function gives the expected reward from taking action a in state s, and
following an optimal policy thereafter. The optimal action-value function can
therefore be represented by the following Bellman equation that can be obtained
from Eq. (9.15):

Q%t (s, a) = E
%
t

[
Rt(s, a, s

′)
]+ γE%t

[
V %t+1(s

′)
]
. (9.18)

Note that this equation might be inconvenient to work with in practice, as it involves
two optimal functions Q%t (s, a) and V %t (s), rather than values of the same function
at different time steps, as in the Bellman equation (9.14). However, we can obtain
a Bellman equation for the optimal action-value function Q%t (s, a) in terms of this
function only, if we use the following relation between two optimal value functions:

V %t (s) = max
a
Q%t (s, a). (9.19)

We can now substitute Eq. (9.19) evaluated at time t + 1 into Eq. (9.18). This
produces the following equation:

Q%t (s, a) = E
%
t

[
Rt(s, a, s

′)+ γ max
a′
Q%t+1(s

′, a′)
]
. (9.20)

Now, unlike Eq. (9.18), this equation relates the optimal action-value function to
its values at a later time moment. This equation is called the Bellman optimality
equation for the action-value function, and it plays a key role in both dynamic
programming and reinforcement learning. This expresses the famous Bellman’s
principle of optimality, which states that optimal cumulative rewards should be
obtained by taking an optimal action now, and following an optimal policy later.

Note that unlike Eq. (9.18), the Bellman optimality equation (9.20) is a non-
linear equation, due to the max operation inside of the expectation. Respectively,
the Bellman optimality equation is harder to solve than the linear Bellman equation
(9.14) that holds for an arbitrary fixed policy π . The Bellman optimality equation is
usually solved numerically. We will discuss some classical methods of solving it in
the next sections.

298 9 Introduction to Reinforcement Learning

The Bellman equation for the optimal state-value function V %t (s) can be obtained
using Eqs. (9.18) and (9.19):

V %t (s) = max
a

E
%
t

[
Rt(s, a, s

′)+ γV %t+1(s
′)
]
. (9.21)

Like Eq. (9.20), the Bellman optimality equation (9.21) for the state-value function
is a non-linear equation due to the presence of the max operator.

If the optimal state-value or action-value function is already known, then
finding the optimal action is simple, and essentially amounts to “greedy” one-
step maximization. The term “greedy” is used in computer science to describe
algorithms that are based only on intermediate (single-step) considerations but not
on considerations of longer-term implications. If we already know the optimal state-
value function V %t (s), this implies that all actions at all time steps implied in this
value function are already optimal. This still does not determine on its own what
action should be chosen at a current time step. However, because we know that
actions at the subsequent steps are already optimal, to find the best next action
in this setting we need only perform a greedy one-step search that just takes into
account the immediate successor states for the current state. In other words, when
the optimal state-value function V %t (s) is used, a one-step-ahead search for optimal
action produces long-term optimal actions.

With the optimal action-value function Q%t (s, a), the search of an optimal action
at the current step is even simpler, and amounts to simply maximizingQ%t (s, a) with
respect to a. This does not require using any information about possible successor
states and their values. This means that all relevant information of the dynamics is
already encoded inQ%t (s, a).

The Bellman optimality equations (9.20) and (9.21) are central objects for
decision-making under the formalism of MDP models. The methods of dynamic
programming focus on exact or numerical solutions of these equations. Many
(though not all) methods of reinforcement learning are also based on approximate
solutions to the Bellman optimality equations (9.20) and (9.21). As we will see in
more details later on, the main difference of these methods from traditional dynamic
programming methods is that they rely on empirically observed transitions rather
than on a theoretical model of transitions.

•> Existence of Bellman Equations: Infinite-Horizon vs Finite Horizon Cases

For time-homogeneous (infinite horizon) problems, a value function does not
explicitly depend on time, and the Bellman equation (9.14) can be written in
this case in a compact form

T πV π = V π, (9.22)

(continued)

4 Dynamic Programming Methods 299

where T π : RS→ R
S stands for the Bellman operator

(
T πV

)
(s) = r(s, π(s))+ γ

∑

s′∈S
p(s′, s, π(s))V (s′), ∀s ∈ S. (9.23)

Therefore, for time-stationary MDP problems the Bellman equation becomes
a fixed-point equation. If 0 < γ < 1, then T π is a maximum-norm contraction
and the fixed-point equation (9.22) has a unique solution, see, e.g., Bertsekas
(2012).

Similarly, the Bellman optimality equation (9.21) can be written in a time-
stationary case as

T %V % = V %, (9.24)

where T % : RS→ R
S is for the Bellman optimality operator

(
T πV

)
(s) = max

a∈A

{
r(s, a)+ γ

∑

s′∈S
p(s′, s, a)V (s′)

}
, ∀s ∈ S. (9.25)

Again, if 0 < γ < 1, then T % is a maximum-norm contraction and the fixed-
point equation (9.22) has a unique solution, see Bertsekas (2012).

For finite-horizon MDP problem the Bellman equations (9.14) and
(9.21) become recursive relations between different functions V πt (st) and
V πt+1(st+1). The existence of a solution for this case can be established by
mapping the finite-horizon MDP problem onto a stochastic shortest-path
(SSP) problem. SSP problems have a certain terminal (absorbing) state, and
the problem of an agent is to incur a minimum expected total cost on a path
to the terminal state. For details on existence of the Bellman equation for
the SSP, see Vol II of Bertsekas (2012). In a finite-horizon MDP, time t can
be thought of as a stage of the process, such that after N stages the system
enters the absorbing state with probability one. The finite-horizon problem is
therefore mapped onto a SSP problem with an augmented state s̃t = (st , t).

4 Dynamic Programming Methods

Dynamic programming (DP), pioneered by Bellman (1957), is a collection of
algorithms that can be used to solve problems of finding optimal policies when
an environment is Markov and fully observable, so that we can use the formalism
of Markov Decision Processes. Dynamic programming approaches work for finite
MDP models with typically a low number of states, and moreover assume that the

300 9 Introduction to Reinforcement Learning

model of the environment is perfectly known. Both cases are rarely encountered
in problems of practical interest where a model of the environment is typically not
known beforehand, and a state space is often either discrete and high-dimensional,
or continuous, or continuous with multiple dimensions. Methods of DP which find
exact solutions for finite MDP become infeasible for such situations.

Still, while they are normally not very useful for practical problems, methods of
DP have fundamental importance for understanding other methods that do work in
“real-world” applications and are applied in reinforcement learning, as well as in
other related approaches such as approximate dynamic programming. For example,
we may use DP methods to validate RL algorithms applied to simulated data with
known probability transition matrix. Here we want to analyze the most popular DP
algorithms.

A common feature in all these algorithms is that they all rely on the notion
of a state-value function (or action-value function, or both) as a condensed
representation of quality of both policies and states. Respectively, extensions of such
algorithms to (potentially high-dimensional) sample-based approached performed
by RL methods are generically called the value function based RL.

Some RL methods do not rely on the notion of a value function, and operate only
with policies. In this book, we will focus mostly on the value function based RL
but we shall occasionally see examples of an alternative approach based on “policy
iteration.”

In addition, all approaches considered in this section imply that a state-action
space is discrete. While usually not explicitly specified, the dimensionality of a state
space is assumed to be sufficiently low, so that the resulting computational algorithm
would be feasible in practice. DP approaches are also used for systems with a con-
tinuous state by discretizing a range of values. For a multi-dimensional continuous
state space, we could discretize each individual component, and then produce a
discretized uni-dimensional representation by taking a direct product of individual
grids, and indexing all resulting states. However, this approach is straightforward
and feasible when the number of continuous dimensions is sufficiently low, e.g. do
not exceed 3 or 4. For higher dimensional continuous problems a naive discretization
by forming cross-products of individual grids produces an exponential explosion of
a number of discretized steps, and quickly becomes infeasible in practice.

4.1 Policy Evaluation

As we mentioned above, the state-value function V πt (s) gives the value of the
current state St = s provided the agent follows policy π in choosing its actions.
For a time-stationary MDP, which will be considered in this section, the time-
independent version of the Bellman equation (9.14) reads

V π(s) = E
π
t

[
R (s, at , St+1)+ γV π(s′)

]
, (9.26)

4 Dynamic Programming Methods 301

while the time-independent version of the Bellman optimality equation (9.21) is

V %(s) = max
a

E
%
t

[
R(s, a, s′)+ γV %(s′)] . (9.27)

Thus, for time-stationary problems, the problem of finding the state-value function
V π(s) for a given policy π amounts to solving a set of |S| linear equations, where
|S| stands for the dimensionality of the state space. As solving such a system directly
(in one step) involves matrix inversion, such a solution can be costly when the
dimensionality |S| of the state-space grows.

As an alternative, the Bellman equation (9.26) can be used to set up a recursive
approach to solve it. While this produces a multi-step numerical algorithm to find
the state-value function rather than an explicit one-step formulas obtained with the
linear algebra approach, in practice it often works better than the latter.

The idea is simply to view the Bellman equation (9.26) as a stationary point at
convergence as k→∞ of an iterative map indexed by steps k = 0, 1, . . ., which is
obtained by applying the Bellman operator

T π [V] := E
π
t

[
R (s, at , St+1)+ γV (s′)

]
, (9.28)

to the previous iteration V (π)k (s) of the value function. Here the lower index k
enumerates iterations, and replaces the time index t which is omitted because we
work in this section with time-homogeneous MDPs. This produces the following
update rule:

V πk (s) = E
π
t

[
R (s, at , St+1)+ γV πk−1(s

′)
]
. (9.29)

The informal way to understand this relation is to think about a recursion as a
sequential process. The sequential nature of the process can be mapped onto some
notion of time. Therefore, if we formally replace T − t → k in the original
time-dependent Bellman equation (9.14), it produces Eq. (9.29). The relation (9.29)
is often referred to as the Bellman iteration. The Bellman iteration is proven
to converge under some technical conditions on the Bellman operator (9.28). In
particular, rewards need to be bounded to guarantee convergence of the map.

For any given policy π , policy evaluation algorithm amounts to a repeated
application of the Bellman iteration (9.29) starting with some initial guess, e.g.
V
(π
0 (s) = 0. The iteration continues until convergence at a given tolerance level

is achieved, or alternatively it can run for a pre-specified number of steps. Each
iteration involves only linear operations, therefore it can be performed very fast.
Recall here that the model of the environment is assumed to be perfectly known
in the DP approach, therefore all expectations are linear and fast to compute. The
method is scalable to high-dimensional discrete state spaces.

While a policy evaluation algorithm can be quite fast in evaluating a single policy
π , the ultimate goal of both dynamic programming and reinforcement learning
approaches is to find the optimal policy π%. This opens the door to a plethora of
different approaches. In one class of approaches, we consider a set of candidate

302 9 Introduction to Reinforcement Learning

policies {π} and we find the policy π% by selecting between them. These methods are
called “policy iteration” algorithms, and they use the policy evaluation algorithms
as their integral part. We will consider such algorithms next.

4.2 Policy Iteration

Policy iteration is a classical algorithm for finite MDP models. Again, we consider
here only stationary problems, therefore we again replace the time index by an
iteration index V πT−t (s)→ V %k (s). We can also omit the index π here as the purpose
of this algorithm is to find the optimal π = π%.

To produce a policy iteration algorithm, we need two features: a way to evaluate
a given policy and a way to improve a given policy. Both can be considered sub-
algorithms in an overall algorithm. Note that the first component in this scheme
is already available, and is given by the policy evaluation method just presented.
Therefore, to have a complete algorithms, our only remaining task is to supplement
this with a method to improve a given policy.

To this end, consider the Bellman equation for the action-value function

Qπ(s, a) = Et

[
R(s, a, s′)+ γV π(s′)] =

∑

s′,r
p(s′, r|s, a) [R(s, a, s′)+ γV π(s′)] .

(9.30)
The current action a is a control variable here. If we follow policy π in choosing a,
then the action taken is a = π(s), and the action value is Qπ(s, π(s)) = V π(s).
This means that by taking different actions a ∼ π ′ (with another policy π ′) rather
than prescribed by policy π , we can produce higher values Qπ(s, π ′(s)). It can be
shown that this implies that the new policy also improves the state-value function,
i.e. V π

′
(s) ≥ V π(s) for all states s ∈ S (the latter statement is called the policy

improvement theorem, see, e.g., Sutton and Barto (2018) or Szepesvari (2010) for
details.)

Now imagine we want to choose action a in Eq. (9.30) so that to maximize
Qπ(s, a). Maximizing a→ a% means that we find a value a% such thatQπ(s, a%) ≥
Q(s, a) for any a �= a%. This can be equivalently thought of as a greedy policy π ′
that is given by π except for the state s, where it should be such that a% = π ′(s). If
some greedy policy π ′ �= π can be found by maximizing Qπ(s, a), or equivalently
the right-hand side of Eq. (9.30), then it will satisfy the policy improvement theorem,
and then can be used to find the optimal policy via policy iteration. Therefore, an
inexpensive search for a better greedy policy π ′ by a local optimization over possible
next actions a ∈ A is guaranteed to produce a sequence of policies that are either
better than the previous ones, or at worst keep them unchanged.

This observation underlies the policy iteration algorithm which proceeds as
follows. We start with some initial policy π(0). Often, a purely random initialization
is used. After that, we repeat the following set of two calculations, for a fixed number
of steps or until convergence:

4 Dynamic Programming Methods 303

– Policy evaluation: For a given policy π(k−1), compute the value function V (k−1)

by solving the Bellman equation (9.26)
– Policy improvement: Calculate new policy

π(k) = arg max
a∈A

∑

s′
p(s′|s, a)

[
R(s, a, s′)+ γV (k−1)(s′)

]
. (9.31)

In words, at each iteration step we first compute the value function using the
previous policy, and then update the policy using the current value function. The
algorithm is guaranteed to converge for a finite state MDP with bounded rewards.

Note that if the dimensionality of the state space is large, multiple runs of
policy evaluation can be quite costly, because it would involve high-dimensional
systems of linear equations. But many practical problems of optimal control involve
large discrete state-action spaces, or continuous state-action space. In these settings,
methods of DP introduced by Bellman (1957), and algorithms like policy iteration
(or value iteration, to be presented next), do not work anymore. Reinforcement
learning methods were developed in particular as a practical answer to such
challenges.

4.3 Value Iteration

Value iteration is another classical algorithm for finite and time-stationary MDP
models. Unlike the policy iteration method, it bypasses the policy improvement
stage, and uses a recursive procedure to directly find the optimal state-value function
V %(s).

The value iteration method works by applying the Bellman optimality equation
as an update rule in an iterative scheme. In more detail, we start with initialization
of the value function at some initial values V (s) = V (0)(s) for all states, with
some choice of function V (0)(s), e.g. V (0)(s) = 0. Then we continue iterating
the evaluation of the value function using the Bellman optimality equation as the
definition of the update rule. That is, for each iteration k = 1, 2, . . ., we use the
result of the previous iteration to compute the right-hand side of the equation:

V (k)(s)= max
a

E
%
t

[
R(s, a, s′)+γV (k−1)(s′)

]
= max

a

∑

s′,r
p(s′, r|s, a)

[
r+γV (k−1)

]
.

(9.32)
This can be thought of as combining the two steps of policy improvement and policy
evaluation into one update step. Note that the new value iteration update rule (9.32)
is similar to the policy evaluation update (9.29) except that it also involves taking a
maximum over all possible actions a ∈ A.

Now, there are a few ways to update the value function in such a value iteration.
One approach is to complete re-computing the value function for all states s ∈ S,

304 9 Introduction to Reinforcement Learning

and then simultaneously update the value function over all states, V (k−1)(s) →
V (k)(s). This is referred to as synchronous updating.

The other approach is to update the value function V (k−1)(s) on the fly, as it
is re-computed in the current iteration k. This is called asynchronous updating.
Asynchronous updates are often used for problems with large state-action spaces.
When only a relatively small number of states matter for an optimal solution,
updating all states after a complete sweep, as is done with synchronous updates,
might be inefficient for high-dimensional state-action spaces. For either way of
updating, it can be proven that the algorithm converges to the optimal value function
V %(s). After V %(s) is found, the optimal policy π% can be found using the same
formula as before.

As one can see, the basic algorithm is very simple, and works well, as long your
state-action space is discrete and has a small number of states. However, similarly
to policy iteration, the value iteration algorithm quickly becomes unfeasible in high-
dimensional discrete or continuous state spaces, due to exponentially large memory
requirements. This is known as the curse of dimensionality in the DP literature.3

Given that the time needed for DP solutions to be found is polynomial in the number
of states and actions, this may also produce prohibitively long computing times.4

For low-dimensional continuous state-action spaces, the standard approach
enabling applications of DP is to discretize variables. This method can be applied
only if the state dimensionality is very low, typically not exceeding three or four.
For higher dimensions, a simple enumeration of all possible states leads to an
exponential growth of the number of discretized states, making the classical DP
approaches unfeasible for such problems due to memory and speed limitations.
On the other hand, as will be discussed in details below, the RL approach relies
on samples, which are always discrete-valued even for continuous distributions.
When a sampling-based approach of RL is joined with some reasonable choices
for a low-dimensional bases in such continuous spaces (i.e., using some methods of
function approximation), RL is capable of working with continuously valued multi-
dimensional states and action.

Recall that DP methods aim for a numerically exact calculation of optimal value
function at all points of a discrete state space. However, what is often needed in
high-dimensional problems is an approximate way of computing the value functions
using simultaneously a lower, and often much lower, number of parameters than
the original dimensionality of the state space. Such methods are called approximate
dynamic programming, and can be applied in situations when the model of the world
is known (or independently estimated beforehand from data), but the dimensionality
of a (discretized) state space is too large to apply the standard value or policy

3While high dimensionality is a curse for DP approaches as it makes them infeasible for high-
dimensional problems, with some other approaches this may rather bring simplifications, in which
case the “curse of dimensionality” is replaced by the “blessing of dimensionality.”
4Computing times that are polynomial in the number of states and actions are obtained for
worst-case scenarios in DP. In practical applications of DP, convergence is sometimes faster than
constraints given by worst-case scenarios.

4 Dynamic Programming Methods 305

iteration methods. On the other hand, the reinforcement learning approach works
directly with samples from data. When it is combined with a proper method of
function approximation to handle a high-dimensional state space, it provides a
sample-based RL approach to optimal control—which is the topic we will pursue
next.

Example 9.3 Financial Cliff Walking

Consider an over-simplified model of household finance. Let St be the amount
of money the household has in a bank account at time t . We assume for

simplicity that St can only take values in a discrete set
{
S(i)

}N−1
i=0 . The account

has to be maintained for T time steps, after which it should be closed, so T
is the planning horizon. The zero level S(0) = 0 is a bankruptcy level—it has
to be avoided, as reaching it means inability to pay on household’s liabilities.
At each step, the agent can deposit to the account S(i) → S(i+1) (action a+),
withdraw from the account S(i)→ S(i−1) (action a−), or keep the same amount
S(i) → S(i) (action a0). The initial amount in the account is zero. For any
step before the final step T , if the agent moves to the zero level S0 = 0, it
receives a negative reward of−100, and the episode terminates. Otherwise, the
agent continues for all T steps. Any action not leading to the zero level gets a
negative reward of −1. At the terminal time, if the final state is ST > 0, the
reward is -1, but if the account goes back to zero exactly at time T , i.e. ST = 0,
the last action gets a positive reward of +10. The learning task is to maximize
the total reward over T time steps (Fig. 9.2). The RL agent has to learn the
optimal depository policy online, by trying different actions during a training
episode. Note that while this is a time-dependent problem, we can map it onto a
stationary problem with an episodic task and a target state, such as the original
cliff walking problem in Sutton and Barto (2018).

Balance

Time

Optimal path

BankruptcyS G

Fig. 9.2 The financial cliff walking problem is closely based on the famous cliff walking problem
by Sutton and Barto (2018). Given a bank account with an initial zero balance (“start”), the
objective is to deposit and deplete the account by a unit of currency so that the account ends
with a zero balance at the final time step (“goal”). Premature depletion is labeled as a bankruptcy
and terminates the game. Reaching the final time with a surplus amount in the account results in
a penalty. At each time step, the agent may choose from a number of actions if the account is not
zero: deposit (“U”), withdraw (“D”), or do nothing (“Z”). Transactions costs are imposed so that
the optimal policy is to hold the balance at unity

306 9 Introduction to Reinforcement Learning

5 Reinforcement Learning Methods

Reinforcement learning methods aim at the same goal of solving MDP models as do
the DP methods. The main differences are in how the problems of data processing
and computational design are approached. This section provides a brief overview
of some of the most popular reinforcement learning methods for solving MDP
problems.

Three main classes of approaches to reinforcement learning are Monte Carlo
methods, policy search methods, and value-based RL. The first two methods do not
rely on Bellman equations, and thus do not have direct links to the Bellman equation
introduced in this chapter. While we present a brief overview of Monte Carlo and
policy search methods, most of the material presented in the later chapters of this
book uses value-based RL. In what follows in later sections, we will often refer to
value-based RL as simply “RL”.

As we just mentioned, these RL approaches use the Bellman optimality equations
(9.20) and (9.21); however, they proceed differently. With DP approaches, one
attempts to solve these equations exactly. This is only feasible if a perfect model
of the world is known and the dimensionality of the state-action space is sufficiently
low. As we remarked earlier, both assumptions do not hold in most problems of
practical interest.

Reinforcement learning approaches do not assume that a perfect model of the
world is known. Instead, they simply rely on actual data that are viewed as samples
from a true data-generating distribution. The problem of estimating this distribution
can be bypassed altogether with reinforcement learning. In particular, model-free
reinforcement learning operates directly with samples of data, and relies only on
samples when optimizing its policy. This is not to say, of course, that models of the
future are useless for reinforcement learning. Model-based reinforcement learning
approaches build an internal model of the world as a part of their ultimate goal of
policy optimization. We will discuss model-based reinforcement learning later in
this book, but in this section, we will generally restrict consideration to model-free
RL.

Related to the first principle of relying on the data is the second key difference
of reinforcement learning methods from DP methods. Because data is always noisy,
reinforcement learning cannot aim at an exact solution as the standard DP methods,
but rather aim at some good approximate, rather than exact, solutions. Clearly,
this does not prevent an exploration of the behavior of RL solutions when the
number of data points becomes infinite. If we knew an exact model of the world,
we could reconstruct it exactly in this limit. Therefore, theoretically sound (rather
than purely empirically driven) RL algorithms should demonstrate convergence to
known solutions in this asymptotic limit. In particular, if we deal with a sufficiently
low-dimensional system, such solutions can be independently calculated using
the standard DP methods. This can be used for testing and benchmarking RL
algorithms, as will be discussed in more details in later sections of this book.

5 Reinforcement Learning Methods 307

Finally, the last key difference of reinforcement learning methods from DP is
that they do not seek the best solution, they simple seek a “sufficiently good”
solution. The main motivation for such a paradigm change is the “curse of
dimensionality” that was mentioned above. DP methods for finite MDPs operate
with tabular representations of value functions, rewards, and transition probabil-
ities. Memory requirements and speed constraints make this approach infeasible
for high-dimensional discrete or continuous state-action spaces. Therefore, when
working with such problems, reinforcement learning approaches rely on function
approximation for quantities of interest such as value functions or action policies.
Reinforcement learning algorithms with function approximation will be discussed
later in this section, after we introduce tabulated versions of these algorithms for
finite MDPs with sufficiently low dimensionality of discrete-valued state and action
spaces.

The purpose of this section is to introduce some of the most popular RL
algorithms for both finite and continuous-state MDP problems. We will start with
methods developed for finite MDPs, and then later show how they can be extended
to continuous state-action spaces using function approximation approaches.

•? Multiple Choice Question 1

Select all the following correct statements:

a. Unlike DP, RL needs to know rewards and transition probability functions.
b. Unlike DP, RL does not need to know reward and transition probability functions,

as it relies on samples.

c. The information set Ft for RL includes a triplet
(
X
(n)
t , a

(n)
t , X

(n)
t+1

)
for each step.

d. The information set Ft for RL includes a tuplet
(
X
(n)
t , a

(n)
t , R

(n)
t , X

(n)
t+1

)
for each

step.

5.1 Monte Carlo Methods

Monte Carlo methods, as other methods of reinforcement learning, do not assume
complete knowledge of the environment, nor do they rely on any model of the
environment. Instead, Monte Carlo methods rely on experience, that is samples
of states, actions, and rewards. When working with real data, this amounts to
learning without any prior knowledge of the environment. Experience can also be
simulated. In this case, Monte Carlo methods provide a simulation-based approach
to solving MDP problems. Recall that the DP approach requires knowledge of exact
transition probabilities to perform iteration steps in policy iteration or value iteration
algorithms. With reinforcement learning Monte Carlo methods, only samples from
these distributions are needed, but not their explicit form.

308 9 Introduction to Reinforcement Learning

Monte Carlo methods are normally restricted to episodic task with a finite
planning horizon T < ∞. Rather than relying on Bellman equations, they operate
directly with the definition of the action-value function

Qπt (s, a)=E
π
t

[
T−1∑

i=0

γ t−iR (St+i , at+i , St+i+1)

∣∣∣∣∣ St= s, at = a
]
=E

π
t [Gt | St=s, at=a] ,

(9.33)
where Gt is the total return, see Eq. (9.11). If we have access to data consistent of
N set of T -step trajectories each producing return G(n)t , then we could estimate the
action-value function at the state-action values (s, a) using the empirical mean:

Qπt (s, a) (
1

N

N∑

n=1

[
Q
(n)
t

∣∣∣ St = s, at = a
]
. (9.34)

Note that for each trajectory, a complete T -step trajectory should be observed, so
that its return can be observed and used to update the action-value function.

It is worth clarifying the meaning of index π in this relation. With the Monte
Carlo estimation of Eq. (9.34), π should be understood as a policy that was applied
when collecting the data. This means that this Monte Carlo method is an on-policy
algorithm. On-policy algorithms are only able to learn an optimal policy from
samples if these samples themselves are produced using the optimal policy.

Conversely, off-policy algorithms are able to learn an optimal policy from data
generated using other, sub-optimal policies. Off-policy Monte Carlo methods will
not be addressed here, and the interested reader is referred to Sutton and Barto
(2018) for more details on this topic.

As indicated by Eq. (9.33), the action-value process should be calculated sep-
arately for each combination of a state and action in a finite MDP assumed
here. The number of such combinations will be |S| · |A|. Respectively, for each
combination of s and a from this set, we should only select those trajectories that
encounter such a combination, and only include returns from these trajectories in
the sum in Eq. (9.34). For every combination of (s, a), the empirical estimate (9.34)
asymptotically converges to the exact answer in the limit N → ∞. Also note that
these estimates are independent for different values of (s, a). This could be useful, as
it enables a trivial parallelization of the calculation. On the other hand, independence
of estimates for different pairs (s, a) means that this algorithm does not bootstrap,
i.e. it does not use previous or related evaluations to estimate the action-value
function at node (s, a). Such a method may miss some regularities observed or
expected in true solutions (e.g., smoothness of the value function with respect to
its arguments), and therefore may produce some spurious jumps in estimated state-
value functions produced due to noise in the data.

Beyond empirical estimation of the action-value function as in Eq. (9.34) or the
state-value function, Monte Carlo methods can also be used to find the optimal
control, provided the Monte Carlo RL agent has access to a real-world or simulated
environment. To this end, the agent should produce trajectories using different trial

5 Reinforcement Learning Methods 309

policies. For each policy π , a number ofN trajectories are sampled using this policy.
The action-value function is estimated using an empirical mean as in Eq. (9.34).
After this, one follows with the policy improvement step which coincides with the
greedy update of the policy iteration method: π ′(s) = arg maxa Qπ(s, a). The
new policy is used to sample a new set of trajectories, and the process runs until
convergence or for a fixed number of steps.

Note that generating new trajectories corresponding to newly improved policies
may not always be feasible. For example, an agent may only have access to one fixed
set of trajectories obtained using a certain fixed policy. In such cases, one may resort
to importance sampling techniques which use trajectories obtained under different
policies to estimate the return under a given policy. This is achieved by re-weighting
observed trajectories by likelihood ratio factors obtained as ratios of probabilities of
observing given reward under the trial policy π ′ and the policy π used in the data
collection stage.

Instead of updating the action-value function (or the state-value function) simul-
taneously after all N trajectories are sampled, which is a batch mode evaluation,
we could convert the problem into an online learning problem where updates occur
after observing each individual trajectory according to the following rule:

Q(s, a)← Q(s, a)+ α [Gt(s, a)−Q(s, a)] , (9.35)

where 0 < α < 1 is a step-size parameter usually referred to as the “learning
rate.” It can be shown that such iterative update converges to true empirical and
theoretical averages in the limitN →∞. Yet this update is not entirely real time, as
it requires finishing each T -step trajectory, until its total returnGt can be used in the
update (9.35). This may be inefficient, especially if multiple trajectory generations
and evaluations are required as a part of policy optimization. As we will show below,
there are other methods of learning that are free of this drawback.

5.2 Policy-Based Learning

In value-based RL, the optimal policy is obtained from an optimal value function,
and thus is not modeled separately. Policy-based reinforcement learning takes a
different approach, and directly models policy. Unlike the value-based RL where we
considered deterministic policies, policy-based RL operates with stochastic policies
πθ (a|s) that define probability distributions over a set of possible actions a ∈ A,
where θ defines parameters of this distribution.

Recall that deterministic policies can be considered special cases of stochastic
policies where a distribution of possible actions degenerates into a Dirac delta-
function concentrated in a single action prescribed by the policy: πθ(a|s) = δ(a −
a%(s, θ)) where a%(s, θ) is a fixed map from states to actions, parameterized by θ .
With either deterministic or stochastic policies, learning is performed by tuning the
free parameters θ to maximize the total expected reward.

310 9 Introduction to Reinforcement Learning

Policy-based methods are based on a simple relation commonly known as
the “log-likelihood trick” which is obtained by computing the derivative of an
expectation J (θ) = Eπθ (a) [G(a)]. Here function G(a) can be arbitrary, but to
connect to reinforcement learning, we will generally mean that G(a) stands for the
expectation of the random return (9.11), which we write here as G(a) to emphasize
its dependence on the actions taken. The gradient of the expectation with respect to
parameters θ can be computed as follows:

∇θ J (θ)=
∫
G(a)∇θπθ (a)dz=

∫
G(a)

∇θπθ (a)
πθ (a)

πθ (a)da=Eπθ (a)

[
G(a)∇θ logπθ (a)

]
.

(9.36)
This shows that the gradient of J with respect to θ is the expected value of the
functionG(a)∇θ logπθ(a). Therefore, if we can sample from the distribution πθ (a),
we can compute this function and have an unbiased estimate of the gradient of
G(a) by sampling. This is the reason the relation (9.36) is called the “log-likelihood
trick”: it allows one to estimate the gradient of the functional J (θ) by sampling or
simulation.

The log-likelihood trick underlies the simplest policy search algorithm called
REINFORCE. The algorithm starts with some initial values of parameters θ0 and
the iteration counter is k = 0. Using a size-step hyperparameter α, the update of θk
amounts to first sampling ak ∼ pπk (a), and then updating the vector of parameters
using the incremental version of Eq. (9.36)

θk+1 = θk + αkG(ak)∇θ logπθk (ak). (9.37)

Here α is a learning rate parameter defining the speed of updates along the negative
of the gradient of G(a). The algorithm continues until convergence, or for a fixed
number of steps. As one can see, this algorithm is very simple to implement as
long as sampling from distribution πθ (a) is easy. On the other hand, Eq. (9.37) is
a version of stochastic gradient descent which can be noisy and thus produce high
variance estimators.

The REINFORCE algorithm (9.37) is a pure policy search method that does not
use any value function. A more sophisticated version of learning can be obtained
where we simultaneously model both the policy and the action-value functions.
Such methods are called actor-critic methods , where “actor” is an algorithm that
generates a policy from a family πθ (a|x), and “critic” evaluates the results of
applying the policy, expressing it in terms of a state-value or action-value function.
Following such terminology, the REINFORCE algorithm could be considered an
“actor-only” algorithm, while SARSA or Q-learning, to be presented below, could
be viewed as “critic-only” methods.

One advantage of policy-based algorithms is that they admit very flexible
parameterizations of action policies, which can also work for continuous action
spaces. One popular and quite general type of action policies is the so-called softmax
in actions policy

5 Reinforcement Learning Methods 311

πθ (a|s) = eh(s,a,θ)∑
a′ e

h(s,a′,θ) . (9.38)

Functions h(s, a, θ) in this expression would be interpreted as action preferences.
They could be taken linear functions in parameters θ , for example

h(s, a, θ) = θT U(s, a), (9.39)

where U(s, a) would be a vector of features constructed on the product space
S×A. Models of this kind are known as linear architecture models. Alternatively,
preference functions h(s, a, θ) could be modeled non-parametrically using neural
networks (or some other universal approximators such as decision trees). Parameters
θ in this case would be weights of such neural network. Indeed many implemen-
tations of actor-critic algorithms involve using two separate neural networks that
serve as general function approximations for the action policy and value functions,
respectively. More on actor-critic algorithms can be found in Sutton and Barto
(2018), Szepesvari (2010).

5.3 Temporal Difference Learning

We have seen that Monte Carlo methods must wait until the end of each episode
to determine the increment of the action-value function update (9.35). Temporal
difference (TD) methods perform updates differently, by waiting only until the next
time step, and incrementing the value function at each time step. TD methods can
be used for both policy evaluation and policy improvements. Here we focus on how
they can be used to evaluate a given policy π by computing a state-value function
V πt .

How it can be done can be seen from the Bellman equation (9.14) which we
repeat here for convenience:

V πt (s) = E
π
t

[
Rt(s, a, s

′)+ γV πt+1(s
′)
]
. (9.40)

As we discussed above, this equation can be converted into an update equation, if the
state-value function from a previous iteration is used to evaluate the right-hand side
to define the update rule. This idea was used in value iteration and policy iteration
algorithms of DP. TD methods use the same idea, and add to this an estimation of the
expectation entering Eq. (9.40) from a single observation—which is the observation
obtained at the next time step. Without relying on a theoretical model of the world
which, similarly to the DP approach, would calculate the expectation in Eq. (9.40)
exactly, TD methods rely on a simplest possible estimation of this expectation,
essentially by computing an empirical mean from a single observation!

312 9 Introduction to Reinforcement Learning

Clearly, relying on a single observation to estimate an empirical mean can lead to
very volatile updates, but this is the price one should be prepared to pay for a truly
online method. On the other hand, it is extremely fast. Even if it might bring only a
marginal improvement (on average) for maximization of a value function, it might
produce a workable and efficient algorithm, because such updates may be repeated
many times and at a low cost the during steps of policy improvement.

A TD method, when applied to the state-value function V πt (s), takes a mismatch
between the right-hand side of Eq. (9.40) (estimated with a single observation) and
its left-hand side as a measure of an error δt , also called the TD error:

δt = Rt(s, a, s′)+ γVt+1(s
′)− Vt (s). (9.41)

Note as we deal here with updating the state-value function for a fixed policy π , we
omitted explicit upper indices π in this relation. This error defines the rule of update
of the state-value function at node s:

Vt (s)← V (s)+ α [Rt(s, a, s′)+ γVt+1(s
′)− Vt (s)

]
, (9.42)

where α is a learning rate. Note that the learning rate should not be a constant, but
rather can vary with the number of iterations. In fact, as we will discuss shortly,
a certain decay schedule for the learning rate α = αt should be implemented to
guarantee convergence where the number of updates goes to infinity.

Note that the TD error δt is not actually available at time t as it depends on the
next-step value s′, and is therefore only available at time t + 1. The update (9.42)
relies only on the information from the next step, and is therefore often referred to
as the one-step TD update, also known as the TD(0) rule. It is helpful to compare
this with Eq. (9.35) that was obtained for a Monte Carlo (MC) method. Note the
Eq. (9.35) requires observing a whole episode in order to compute the full trajectory
returnGt . Rewards observed sequentially do not produce updates of a value function
until a trajectory is completed. Therefore, the MC method cannot be used in an
online setting.

On the other hand, the TD update rule (9.42) enables updates of the state-value
function after each individual observation, and therefore can be used as an online
algorithm that bootstraps by combining a reward signal observed in a current step
with an estimation of a next-period value function, where both values are estimated
from a sample. TD methods thus combine the bootstrapping properties of DP with
a sample-based approach of Monte Carlo methods. That is, updates in TD methods
are based on samples, while in DP they are based on computing expectations of
next-period value functions using a specific model of the environment. For any
fixed policy π , the TD(0) rule (9.42) can be proved to converge to a true state-value
function if the learning rate α slowly decreases with the number of iterations. Such
proofs of convergence hold for both finite MDPs and for MDPs with continuous

5 Reinforcement Learning Methods 313

state-action spaces—with the latter case only established with a linear function
approximation, but not with more general non-linear function approximations.5

The ability of TD learning to produce updates after each observation turns out
to be very important in many practical applications. Some RL tasks involve long
episodes, and some RL problems such as continuous learning do not have any
unambiguous definition of finite-length episodes. Whether an episodic learning
appears natural or ad hoc, delaying learning until the end of each episode can slow it
down and produce inefficient algorithms. Because each update of model parameters
requires re-running of all episodes, Monte Carlo methods become progressively
more inefficient in comparison to TD methods with increased model complexity.

There exist several versions of TD learning. In particular, instead of applying it to
learning a state-value function Vt (s), we could use a similar approach to update the
action-value function Qt(s, a). Furthermore, for both types of TD learning, instead
of one-step updates such as the TD(0) rule (9.42), one could use multi-step updates,
leading to more general TD(λ) methods and n-step TD methods. We refer the reader
to Sutton and Barto (2018) for a discussion on these algorithms, while focusing in
the next section on one-step TD learning methods for an action-value function.

5.4 SARSA and Q-Learning

We now arrive at arguably the most important material in this chapter. In applying
TD methods to learn an action-value function Q(s, a) instead of a state-value
function V (s), one should differentiate between on-policy and off-policy algorithms.
Recall that on-policy algorithms assume that policy used to produce a dataset used
for learning is an optimal policy, and the task is therefore is to learn the optimal
policy function from the data. In contrast, off-policy algorithms assume that the
policy used in a particular dataset may not necessarily be an optimal policy, but can
be sub-optimal or even purely random. The purpose of off-policy algorithms is to
find an optimal policy when data is collected under a different policy. This task is in
general more difficult than the first case of on-policy learning which can be viewed
as a direct inference problem of fitting a function (a policy function, in this case) to
observed data.

For both on-policy and off-policy learning with TD methods, the starting point is
the Bellman optimality equation (9.20) that we repeat here

Q%t (s, a) = E
%
t

[
Rt(s, a, s

′)+ γ max
a′
Q%t+1(s

′, a′)
]
. (9.43)

5We will discuss function approximations below, after we present TD algorithms in a tabulated
setting that is appropriate for finite MDPs with a sufficiently low number of possible states and
actions.

314 9 Introduction to Reinforcement Learning

The idea of TD methods for the action-value function is the same as before,
to estimate the right-hand side of Eq. (9.43) from observations, and then use a
mismatch between the right- and left-hand sides of this equation to define the rule of
an update. However, details of such procedure depend on whether we use on-policy
or off-policy learning.

Consider first the case of on-policy learning. If we know that data was collected
under an optimal policy, the max operator in Eq. (9.43) becomes redundant, as
observed actions should in this case correspond to maximum of a value function.
Similar to the TD method for the state-value function, we replace the expectation
in (9.43) by its estimation based on a single observation. The update in this case
becomes

Qt(s, a)← Qt(s, a)+ α
[
Rt(s, a, s

′)+ γQt+1(s
′, a′)−Qt(s, a)

]
. (9.44)

This on-policy algorithm is known as SARSA, to emphasize that it uses a quintuple
(s, a, r, s′, a′) to make an update. The TD error for this case is

δt = Rt(s, a, s′)+ γQt+1(s
′, a′)−Qt(s, a). (9.45)

Convergence of the SARSA algorithm depends on a policy used to generate data. If
the policy converges to a greedy policy in the limit of an infinite number of steps,
SARSA converges to the true policy and action-value functions in the limit when
each state-action pair is visited an infinite number of times.

•> SARSA vs Q-Learning

– SARSA is an On-Policy method, which means that it computes the Q-value
according to a certain policy and then the agent follows that policy.

– Q-learning is an Off-Policy method. It consists of computing the Q-value
according to a greedy policy, but the agent does not necessarily follow the
greedy policy.

Now consider the case of off-policy learning. In this case, the data available for
learning is collected using some sub-optimal, or possibly even purely random policy.
Can we still learn from such data? The answer to this question is in the affirmative
- we simply replace the expectation in (9.43) by its estimate obtained from a single
observation, as in SARSA, but keeping this time the max operator over next-step
actions a′:

Qt(s, a)← Qt(s, a)+ α
[
Rt(s, a, s

′)+ γ max
a′
Qt+1(s

′, a′)−Qt(s, a)
]
.

(9.46)

5 Reinforcement Learning Methods 315

This is known as Q-learning. It was proposed by Watkins in 1989, and since then has
become one of the most popular approaches in reinforcement learning. Q-learning
is provably convergent for finite MDPs when the learning rate α slowly decays with
the number of iterations, in the limit when each state-action pair is visited an infinite
number of times. Extensions of a tabulated-form Q-learning (9.46) for finite MDPs
to systems with a continuous state space will be presented in the following sections.
Q-learning is thus a TD(0) learning applied to an action-value function.

Note the key difference between SARSA and Q-learning in an online setting
when an agent has to choose actions during learning. In SARSA, we use the same
policy (e.g., an ε-greedy policy, see Exercise 9.8) to generate both the current action
a and the next action a′. In contrast to that, in Q-learning the next action a′ is a
greedy action that maximizes the action-value functionQt+1(s

′, a′) at the next time
moment. It is exactly the choice of a greedy next action a′ that makes Q-learning an
off-policy algorithm that can learn an optimal policy from different and sub-optimal
execution policies.

The reason Q-learning works as an off-policy method is that the TD(0) rule (9.46)
does not depend on the policy used to obtain data for training. Such dependence
enters the TD rule only indirectly, via an assumption that this policy should be such
that each state-action pair is encountered in the data many times—in fact, an infinite
number of times asymptotically, when the number of observations goes to infinity.
The TD rule (9.46) does not try to answer the question how the observed values
of such pairs are computed. Instead, it directly uses these observed values to make
updates in values of the action-value function.

It is its ability to learn from off-policy data that makes Q-learning particularly
attractive for many tasks in reinforcement learning. In particular, in batch rein-
forcement learning, an agent should learn from some data previously produced by
some other agent. Assuming that the agent that produced the historical data was
acting optimally may in many cases be too stringent or unrealistic an assumption.
Moreover, in certain cases the previous agent might have been acting optimally,
but an environment could change due to some trend (drift) effects. Even though a
policy used in the data could be optimal for previous periods, due to the drift, this
becomes off-policy learning. In short, it appears there are more examples of off-
policy learning in real-world applications than of on-policy learning.

The ability to use off-policy data does not come without a price which is related
to the presence of the max operator in Eq. (9.46). This operator in fact provides a
mechanism for comparison between different policies during learning. In particular,
Eq. (9.46) implies that one cannot learn an optimal policy from a single observed
transition (s, a) → (r, s′, a′) and nothing else, as the chosen next action a′ may
not necessarily be an optimal action that maximizes Q%t+1(s

′, a′), as required in the
Q-learning update rule (9.46).

This suggests that online Q-learning could maintain a tabulated representation
of the action-value function Q(s, a) for all previously visited pairs (s, a), and use
it in order to estimate the maxa′ Q%t+1(s

′, a′) term using both the past data and
a newly observed transition. Such a method could be viewed as an incremental
version of batch learning where a batch dataset is continuously updated by

316 9 Introduction to Reinforcement Learning

adding new observations, and possibly remove observations that are too old and
possibly correspond to very sub-optimal policies. This approach is called experience
replay in the reinforcement learning literature. The same procedure of adding one
observation (or a few of them) at the time can also be used in a pure batch-mode Q-
learning as a computational method that allows one to make updates as processing
trajectories stored in the datafile. The difference between online Q-learning with
experience replay and a pure batch-mode Q-learning therefore amounts to different
rules of updating the batch file. In batch-mode Q-learning, it stays the same during
learning, but could also be built in increments of one or a few observations to
speed up the learning process. In online Q-learning, the experience replay buffer
is continuously updated by adding new observations, and removing distant ones to
keep the buffer size fixed.

Example 9.4 Financial Cliff Walking with SARSA and Q-Learning

The “financial cliff walking” example introduced earlier in this chapter can
serve as a simple test case for SARSA and Q-learning for a finite MDP. We
assume N = 4 values of possible funds in the account, and assume T = 12
time steps. All combinations of state and time can then be represented as a
two-dimensional grid of size N × T = 4× 12. A time-dependent action-value
function Qt(st , at) with three possible actions at = {a+, a−, a0} can then be
stored as a rank-three tensor of dimension 4× 12× 3.

To facilitate exploration required in online applications of RL, we can use
a ε-greedy policy. The ε-greedy policy is a simple stochastic policy where the
agent takes an action that maximizes the action-value function with probability
1−ε, and takes a purely random action with probability ε. The ε-greedy policy
is used to produce both actions a, a′ in the SARSA update (9.44), while with
Q-learning it is only used to pick the action at the current step. A comparison
of the optimal policies is given in Table 9.1. For sufficiently small α and under
tapering of ε (see Fig. 9.3, both methods are shown by Fig. 9.4 to converge
to the same cumulative reward. This example is implemented in the financial
cliff walking with Q-learning notebook. See Appendix “Python Notebooks”
for further details.

5.5 Stochastic Approximations and Batch-Mode Q-learning

A more systematic view of TD methods is given by their interpretation as stochastic
approximations to solve Bellman equations. As we will show in this section, such
a view both helps to better understand the meaning of TD update rules presented
above, as well as to extend them to learning using batches of observations in each
step, instead of taking all individual observations one by one.

5 Reinforcement Learning Methods 317

Table 9.1 The optimal policy for the financial cliff walking problem using (top) SARSA (S) and
(below) Q-learning (Q). The row indices denote the balance and the column indices denote the
time period. Note that the two optimal policies are almost identical. Starting with a zero balance,
both optimal policies will almost surely result in the agent following the same shortest path, with
a balance of 1, until the final time period

S 0 1 2 3 4 5 6 7 8 9 10 11

3 Z Z Z Z Z Z Z Z Z Z Z Z

2 Z Z Z Z Z Z Z Z Z D Z Z

1 Z Z Z Z Z Z Z Z Z Z D Z

0 U Z Z Z Z Z Z Z Z Z Z G

Q 0 1 2 3 4 5 6 7 8 9 10 11

3 Z Z Z Z Z Z Z Z Z Z Z Z

2 Z Z Z Z Z Z Z Z Z D D Z

1 Z Z Z Z Z Z Z Z Z Z D Z

0 U Z Z Z Z Z Z Z Z Z Z G

Episode

E
ps

ilo
n

0.10

0.08

0.06

0.04

0.02

0.00

0 250 500 750 1000 1250 1500 1750 2000

Fig. 9.3 This figure illustrates how ε is tapered in the financial cliff walking problem with
increasing episodes so that Q-learning and SARSA converge to the same optimal policy and
cumulative reward as shown in Table 9.1 and Fig. 9.4

When the model on an environment is unknown, we try to approximately
solve the Bellman optimality equation (9.20) by replacing expectations entering
this equation by their empirical averages. Stochastic approximations such as the
Robbins–Monro algorithm (Robbins and Monro 1951) take this idea one step
further, and estimate the mean without directly summing the samples.

We can illustrate the idea behind this method using a simple example of
estimation of a mean value 1

K

∑K
k=1 xk of a sequence of observations xk with

k = 1, . . . , K . Instead of waiting for all K observations, we can add them one
by one, and iteratively update the running estimation of the mean x̂k , where k is the
number of iteration, or the number of data points in a dataset:

318 9 Introduction to Reinforcement Learning

Sarsa

Q-Learning

Episodes

S
um

 o
f r

ew
ar

ds
 d

ur
in

g
ep

is
od

e
–20

0

–40

–60

–80

–100
0 250 500 750 1000 1250 1500 1750 2000

Fig. 9.4 Q-learning and SARSA are observed to converge to almost the same optimal policy and
cumulative reward in the financial cliff walking problem under the ε-tapering schedule shown in
Fig. 9.3. Note that the cumulative rewards are averaged over twenty simulations

x̂k+1 = (1− αk)x̂k + αkxk, (9.47)

and where αk < 1 denotes the step size (learning rate) at step k, that should satisfy
the following conditions:

lim
K→∞

K∑

k=1

αk = ∞ , lim
K→∞

K∑

k=1

(αk)
2 <∞. (9.48)

Robbins and Monro have shown that under these constraints, an iterative method of
computing the mean (9.47) converges to a true mean with probability one (Robbins
and Monro 1951). In general, the optimal choice of a (step-dependent) learning rate
αk is not universal but specific to a problem, and may require some experimentation.

Q-learning presented in Eq. (9.46) can now be understood as the Robbins–Monro
stochastic approximation (9.47) to estimate the unknown expectation in Eq. (9.43)
as a current estimate Q(k)t (s, a) corrected by a current observation Rt

(
s, a, s′

) +
γ maxa′∈AQ(k)t+1

(
s′, a′

)
:

Q
(k+1)
t (s, a) = (1− αk)Q(k)t (s, a)+ αk

[
Rt

(
s, a, s′

)+ γ max
a′∈A

Q
(k)
t+1

(
s′, a′

)]
.

(9.49)
The single-observation Q-update in Eq. (9.49) corresponds to a pure online

version of the Robbins–Monro algorithm. Alternatively, stochastic approximations
can be employed in an off-line manner, by using a chunk of data, instead of a single
data point, to iteratively update model parameters. Such approaches are useful when
working with large datasets, and are frequently used in machine learning, e.g. for a
mini-batch stochastic gradient descent method, as a way to more efficiently train a

5 Reinforcement Learning Methods 319

model by feeding it mini-batches of data. In addition, batch versions of stochastic
approximation methods are widely used when doing reinforcement learning in
continuous state-action spaces, which is a topic we discuss next.

•? Multiple Choice Question 2

Select all the following correct statements:

a. Q-learning is obtained by using the Robbins–Monro stochastic approximation to
estimate the max(·) term in the Bellman optimality equation.

b. Q-learning is obtained by using the Robbins–Monro stochastic approximation to
estimate the unknown expectation in the Bellman optimality equation.

c. The optimal Q-function in Q-learning is obtained when an optimal learning rate
αk = α

k
where α (1/137 is used for learning.

d. The optimal Q-function is learned in Q-learning iteratively, where each step (Q-
iteration) implements one iteration of the Robbins–Monro algorithm.

Example 9.5 Optimal Stock Execution with SARSA and Q-Learning

A setting that is very similar to the “financial cliff walking” example introduced
earlier in this chapter can serve to develop a toy MDP model for optimal stock
execution.

Assume that the broker has to sell N blocks of shares with n shares in each
block, e.g. we can have N = 10, n = 1000. The state of the inventory at time t
is then given by the variable Xt taking values in a set X with N = 10 states
X(n), so that the start point at t = 0 is X0 = X(N−1) and the target state is
XT = X(0) = 0. In each step, the agent has four possible actions at = a(i) that
measure the number of blocks of shares sold at time t where a(0) = 0 stands
for no action, and a(i) = i with i = 1, . . . , 3 is the number of blocks sold. The
update equation is

Xt+1 = (Xt − at)+ . (9.50)

Trades influence the stock price dynamics through a linear market impact

St+1 = Ste(1−νat) + σStZt , (9.51)

where ν is a market friction parameter. To map onto a finite MDP problem, a
range of possible stock prices S can be discretized to M values, e.g. M = 12.
The state space of the problem is given by a direct product of states X × S of
dimension N × M = 10 · 12 = 120. The dimension of the extended space
including the time is then 120 · 10 = 1200.

(continued)

320 9 Introduction to Reinforcement Learning

Example 9.5 (continued)

The payoff of selling at blocks of shares when the stock price is St is natSt .
A risk-adjusted payoff adds a penalty on variance of the remaining inventory
price at the next step t + 1: rt = natSt − λnVar [St+1Xt+1]. All combinations
of state and time can then be represented as a three-dimensional grid of size
N ×M × T = 10 · 12 · 10. A time-dependent action-value functionQt(st , at)
with four possible actions at = {a0, a1, a2, a3} can then be stored as a rank-
four tensor of dimension 10× 12× 10× 4.

We can now apply SARSA or Q-learning to learn optimal stock execution
in such a simplified setting. For exploration needed for online learning, one
can use a ε-greedy policy. At each time step, a time-dependent optimal policy
is therefore found with 10× 12 (for inventory and stock price level) states and
four possible actions at = {a0, a1, a2, a3} can be viewed as a 10×12 matrix as
shown, for the second time step, in Table 9.2. This example is implemented in
the market impact problem with Q-learning notebook. See Appendix “Python
Notebooks” for further details (Fig. 9.5).

Fig. 9.5 The optimal execution problem: how to break up large market orders into smaller orders
with lower market impact? In the finite MDP formulation, the state space is the inventory, shown
by the number of blocks, stock price, and time. In this illustration, the agent decides whether to
sell {0, 1, 2, 3} blocks at each time step. The problem is whether to retain inventory, thus increasing
market risk but reduces the market impact, or quickly sell inventory to reduce exposure but increase
the market impact

5 Reinforcement Learning Methods 321

Ta
bl

e
9.

2
T

he
op

tim
al

po
lic

y,
at

tim
e

st
ep
t
=

2,
fo

r
th

e
tr

ad
e

ex
ec

ut
io

n
pr

ob
le

m
us

in
g

(l
ef

t)
SA

R
SA

an
d

(r
ig

ht
)

Q
-l

ea
rn

in
g.

T
he

ro
w

s
de

no
te

th
e

in
ve

nt
or

y
le

ve
la

nd
th

e
co

lu
m

ns
de

no
te

th
e

st
oc

k
pr

ic
e

le
ve

l.
E

ac
h

el
em

en
td

en
ot

es
an

ac
tio

n
to

se
ll
{0,

1,
2,

3}
bl

oc
ks

of
sh

ar
es

t
=

2
Pr

ic
e

le
ve

l
t
=

2
Pr

ic
e

le
ve

l

In
ve

nt
or

y
1

2
3

4
5

6
7

8
9

10
11

12
In

ve
nt

or
y

1
2

3
4

5
6

7
8

9
10

11
12

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0

2
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0

3
0

0
0

0
0

0
0

0
0

0
0

0
3

0
2

0
0

0
0

0
0

0
0

0

4
0

1
0

0
0

0
0

0
0

0
0

0
4

0
2

0
0

0
0

0
0

0
0

0

5
0

3
1

0
0

0
0

0
0

0
0

0
5

0
2

0
0

0
0

0
0

0
0

0

6
0

3
2

3
0

0
0

0
0

0
0

0
6

0
1

0
1

0
0

0
0

0
0

0

7
0

3
2

2
0

0
0

0
0

0
0

0
7

0
3

2
2

0
0

0
0

0
0

0

8
0

0
0

2
1

0
0

0
0

0
0

0
8

0
0

0
2

3
0

3
0

0
0

0

9
0

0
0

0
0

0
0

0
0

0
0

0
9

0
0

0
0

0
0

0
0

0
0

0

322 9 Introduction to Reinforcement Learning

Example 9.6 Electronic Market Making with SARSA and Q-Learning

We can build on the previous two examples by considering the problem of
high-frequency market making. Unlike the previous example, we shall learn a
time-independent optimal policy.

Assume that a market maker seeks to capture the bid–ask spread by placing
one lot best bid and ask limit orders. They are required to strictly keep their
inventory between −1 and 1. The problem is when to optimally bid to buy
(“b”), bid to sell (“s”), or hold (“h”), each time there is a limit order book
update. For example, sometimes it may be more advantageous to quote a bid
to close out a short position if it will almost surely yield an instantaneous net
reward, other times it may be better to wait and capture a larger spread.

In this toy example, the agent uses the liquidity imbalance in the top of
the order book as a proxy for price movement and, hence, fill probabilities.
The example does not use market orders, knowledge of queue positions,
cancelations, and limit order placement at different levels of the ladder. These
are left to later material and exercises.

A simple illustration of the market making problem is shown in Fig. 9.6.
At each non-uniform time update, t , the market feed provides best prices and
depths {pat , pbt , qat , qbt }. The state space is the product of the inventory, Xt ∈
{−1, 0, 1}, and gridded liquidity ratio R̂t = � qat

qat +qbt N� ∈ [0, 1], where N is

the number of grid points and qat and qbt are the depths of the best ask and
bid. R̂t → 0 is the regime where the mid-price will go up and an ask is filled.
Conversely for R̂t → 1. The dimension of the state space is chosen to be
3 · 5 = 15.

A bid is filled with probability εt := R̂t and an ask is filled with probability
1− εt . The rewards are chosen to be the expected total P&L. If a bid is filled to
close out a short holding, then the expected reward rt = −εt (�pt + c), where
�pt is the difference between the exit and entry price and c is the transaction
cost. For example, if the agent entered a short position at time s < t with a filled
ask at pas = 100 and closed out the position with a filled bid at pbt = 99, then
�pt = 1. The agent is penalized for quoting an ask or bid when the position is
already short or long, respectively.

As with previous examples, we apply SARSA or Q-learning to optimize
market making. For exploration needed for online learning, one can use a ε-
greedy policy. A comparison of the optimal policies is given in Table 9.3. For
sufficiently large number of iterations in each episode and under tapering of
ε, both methods are observed to converge to the same cumulative reward in
Fig. 9.7. This example is implemented in the electronic market making with
Q-learning notebook. See Appendix “Python Notebooks” for further details.

5 Reinforcement Learning Methods 323

Cumulated PnL: 12.40 ~ Position: short ~ Entry Price: 2243.00 Probability of fill

bid ask

1.0

0.8

0.6

0.4

0.2

0.0

Iteration
6050403020100

2240

2240

2240

12.5

10.0

7.5

5.0

2.5

0.0
0 10 20 30 40 50 60

Iteration

P
ric

es
T

ot
al

 P
nL

Fig. 9.6 The market making problem requires the placement of bid and ask quotes to maximize
P&L while maintaining a position within limits. For each limit order book update, the agent must
anticipate which quotes shall be filled to capture the bid–ask spread. Transaction costs, less than a
tick, are imposed to penalize trading. This has the net effect of rewarding trades which capture at
least a tick. A simple model is introduced to determine the fill probabilities and the state space is
the product of the position and gridded fill probabilities

Table 9.3 The optimal policy for the market making problem using (top) SARSA (S) and (below)
Q-learning (Q). The row indices denote the position and the column indices denote the predicted
ask fill probability buckets. Note that the two optimal policies are almost identical

S 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0

Flat b b b b b b s s s s

Short b b b b b b b b b h

Long h s s s s s s s s s

Q 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0

Flat b b b b b b s b b s

Short b b b b b b b b b b

Long s s s s s s s s s s

5.6 Q-learning in a Continuous Space: Function
Approximation

Our previous presentation of reinforcement learning algorithms assumed a setting
of a finite MDP model with discrete state and action spaces. For this case, all
combinations of state-action pairs are enumerable. Therefore, the action-value and
state-value functions can be maintained in a tabulated form, while TD methods such
as Q-learning (9.49) can be used to compute the action-value function values at
these nodes in an iterative manner.

While such methods are simple and can be proven to converge in a tabulated
setting, they also quickly run into their limitations for many interesting real-world

324 9 Introduction to Reinforcement Learning

15500

15000

14500

14000

13500

S
um

 o
f r

ew
ar

ds
 d

ur
in

g
ep

is
od

e

Episodes

13000

12500

12000

11500

0 20 40 60 80 100 120 140

SARSA

Q-Learning

Fig. 9.7 Q-learning and SARSA are observed to converge to almost the same optimal policy and
cumulative reward in the market making problem

problems. The latter are often high-dimensional in discrete or continuous state-
action spaces. If we use a straightforward discretization of each continuous state
and/or action variable, and then enumerate all possible combinations of states and
actions, we end up with an exponentially large number of state-action pairs. Even
storing such data can pose major challenges with memory requirements, not to speak
about an exponential slow-down in a cost of computations, where all such pairs
essentially become parameters of a very high-dimensional optimization problem.
This calls for approaches based on function approximation methods where functions
in (high-dimensional) discrete or continuous spaces are represented in terms of a
relatively small number of freely adjustable parameters.

To motivate linear function approximations, let us start with a finite MDP with
a set of nodes {sn}Mn=1 where M is the number of nodes. The state-value function
V (s) in this case is determined by a set of node values Vn for each node of the state
grid. We can present this set using an “index-free” notation:

V (s) =
M∑

n=1

Vnδs,sn , (9.52)

where δs,sn is the Kronecker symbol:

δs,sn =
{

1 if s = sn
0 otherwise.

(9.53)

5 Reinforcement Learning Methods 325

Eq. (9.52) can be viewed as an approach to conveniently and simultaneously
represent all values Vn of the value function on the grid in the form of a map V (s)
that points to a given node value Vn for any particular choice s = sn.

Now we can write the same equation (9.52) in a more suggestive form as an
expansion over a set of basis functions

V (s) =
M∑

n=1

Vnδs,sn =
M∑

n=1

Vnφn(s), (9.54)

with “one-hot” basis functions φn(s):

φn(s) = δs,sn =
{

1 if s = sn
0 otherwise.

(9.55)

The latter form helps to understand how this setting can now be generalized for a
continuous state space. In a discrete-state representation (9.54), we use “one-hot”
(Dirac-like) basis functions φn(s) = δs,sn . We can now envision a transition to a
continuous time limit as a process of adding new points to the grid, while at the
same time keeping the sizeM of the sum in Eq. (9.54) by aggregating (taking partial
sums) within some neighborhoods of a set of M node points. Each term in such a
sum would be given by the product of an average mass of nodes Vn and a smoothed-
out version of the original Dirac-like basis function of a finite MDP. Such partial
aggregation of neighboring points produces a tractable approximation to the actual
value function defined in a continuous limit. A function value at any point of a
continuous space is now mapped onto aM-dimensional approximation. The quality
of such finite-dimensional function approximation is determined by the number of
terms in the expansion, as well as the functional form of the basis functions.

A smoothed-out localized basis could be constructed using, e.g., B-splines or
Gaussian kernels, while for a multi-dimensional continuous-state case one could use
multivariate B-splines or radial basis functions (RBFs). A set of one-dimensional
B-spline basis functions is illustrated in Fig. 9.8. As one can see, B-splines produce
well localized basis functions that differ from zero only on a limited segment of a
total support region. Other alternatives, for example, polynomials or trigonometric
functions, can also be considered for basis functions; however, they would be
functions of a global, rather than local, variation.

Similar expansions can be considered for action-value functions Q(s, a). Let us
assume that we have a set of basis functions ψk(s, a) with k = 0, 1, . . . , K defined
on the direct product S × A. Respectively, we could approximate an action-value
function as follows:

Q(s, a) =
K−1∑

k=0

θkψk(s, a). (9.56)

326 9 Introduction to Reinforcement Learning

1.0

0.8

0.6

0.4

0.2

0.0

4.0 4.2 4.4 4.6 4.8 5.0 5.2

Fig. 9.8 B-spline basis functions

Here coefficients θk of such expansion can be viewed as free parameters. Respec-
tively, we can find the values of these parameters which provide the best fit to the
Bellman optimality equation. For a fixed and finite set ofK basis functionsψk(s, a),
the problem of functional optimization of the action-value function Q(s, a) is
reduced by Eq. (9.56) to a much simpler problem of K-dimensional numeric
optimization over parameters θk , irrespective of the actual dimensionality of the
state space.

Note that having only a finite (and not too large) value of K , we can at best
hope only for an approximate match between the optimal value function obtained
in this way with a “true” optimal value function. The latter could in principle be
obtained with the same basis function expansion (9.56), provided the set {ψk(s, a)}
is complete, by taking the limit K →∞.

Equation (9.56) thus provides an example of function approximation, where a
function of interest is represented as expansion over a set of K basis functions
ψk(s, a), with coefficients θk being adjustable parameters. Such linear function
representations are usually referred to as linear architectures in the machine learning
literature. Functions of interest such as value functions and/or policy functions are
represented and computed in these linear architecture methods as linear functions
of parameters θk and basis functions ψk(s, a).

The main advantage of linear architecture approaches is their relative robustness
and computational simplicity. The possible amount of variation in functions being
approximated is essentially determined by a possible amount of variation in basis
functions, and thus can be explicitly controlled. Furthermore, because Eq. (9.56)
is linear in θ , this can produce analytic solutions if a loss function is quadratic,
or unique and easily computed numerical solutions when a loss function is non-
quadratic but convex. Reinforcement learning methods with linear architectures are
provably convergent.

5 Reinforcement Learning Methods 327

On the other hand, the linear architecture approach is not free of drawbacks. The
main one is that it gives no guidance on how to choose a good set of basis functions.
For a bounded one-dimensional continuous state, it is not difficult to derive a good
set of basis functions. For example, we could use a trigonometric basis, or splines,
or even a polynomial basis. However, with multiple continuous dimensions, to find a
good set of basis functions is non-trivial. This goes beyond reinforcement learning,
and is generally known in machine learning as a feature construction (or extraction)
problem.

One possible approach to deal with such cases is to use non-linear architectures
that use generic function approximation tools such as trees or neural networks, in
order to have flexible representations for functions of interest that do not rely on
any pre-defined set of basis functions. In particular, deep reinforcement learning
is obtained when one uses a deep neural network to approximate value functions
or action policy (or both) in reinforcement learning tasks. We will discuss deep
reinforcement learning below, after we present an off-line version of Q-learning
that for both discrete and continuous state spaces while operating with mini-batches
of data, instead of updating each observation.

5.7 Batch-Mode Q-Learning

Assume that we have a set of basis functions ψk(s, a) with k = 0, 1, . . . , K defined
on the direct product S × A, and the action-value function is represented by the
linear expansion (9.56). Such a representation applies to both finite and continuous
MDP problems—as we have seen above, a finite MDP case can be considered a
special case of the linear architecture (9.56) with Dirac delta-functions taken as
basis functions ψk(s, a). Therefore, using the linear specification (9.56), we can
provide a unified description of algorithms of Q-learning for both cases of finite and
continuous MDPs.

Solving the Bellman optimality equation (9.20) now amounts to finding param-
eters θk . Clearly, if we want to find all K > 1 such parameters, observing just one
data point in each iteration would be insufficient to determine them, or update their
previous estimation in a unique and well-specified way. To this end, we need to
tackle at least K observations (and, to avoid high variance estimations, a multiple
of this number) to produce such estimate. In other words, we need to work in the
setting of batch-mode, or off-line, reinforcement learning. With batch reinforcement
learning, an agent does not have access to an environment, but rather can only
operate with some historical data collected by observing actions of another agent
over a period of time. Based on the law of large numbers, one can expect that
whenever batch reinforcement learning can be used for training a reinforcement
learning algorithm, it can provide estimators with lower variance than those obtained
with a pure online learning.

To obtain a batch version of Q-learning, the one-step Bellman optimality
equation (9.20) is interpreted as regression of the form

328 9 Introduction to Reinforcement Learning

Rt
(
s, a, s′

)+ γ max
a′∈A

Q%t+1

(
s′, a′

) =
K−1∑

k=0

θkψk(s, a)+ εt , (9.57)

where εt is a random noise at time t with mean zero. Parameters θk now
appear as regression coefficients of the dependent variable Rt

(
s, a, s′

) +
γ maxa′∈AQ%t+1

(
s′, a′

)
on the regressors given by the basis functions ψk(s, a).

Equations (9.57) and (9.20) are equivalent in expectations, as taking the expectation
of both sides of (9.57), we recover (9.20) with function approximation (9.56) used
for the optimal Q-functionQ%t (s, a).

A batch data file consists of tuples (s, a, r, s′) = (st , at , rt , st+1) for t =
0, . . . , T − 1. Each tuple record (s, a, r, s′) contains the current state s = st , action
taken a = at , reward received r = rt , and the next state s′. If we know the next-step
action-value function Q%t+1

(
s′, a′

)
as a function of state s′ and action a′ (via either

an explicit formula or a numerical algorithm), the tuple record (s, a, r, s′) could be
used to view them as pairs (s, y) of a supervised regression with the independent
variable s = st and dependent variable y := r + γ maxa′∈AQ%t+1

(
s′, a′

)
.

Note that there is a nuance here related to taking the max maxa′∈A over all actions
in the next time step. We will return to this point momentarily, but for now let us
assume that this operation can be performed in one way or another, so that each
tuple (s, a, r, s′) can indeed be used as an observation for the regression (9.57).

Assume that for each time step t , we have samples from N trajectories.6 Using
a conventional squared loss function, coefficients θk can be found by solving the
standard least-square optimization problem:

Lt (θ) =
N∑

k=1

(
Rt

(
skak, s

′
k

)+ γ max
a′∈A

Q%t+1

(
s′, a′

)−
K−1∑

k=0

θkψk(s, a)

)2

.

(9.58)
This is known as the Fitted Q Iteration (FQI) method. We will discuss an application
of this method in the next chapter when we present reinforcement learning for option
pricing.

Let us now address the challenge of computing the term maxa′∈AQ%t+1

(
s′, a′

)

that appears in the regression (9.57) when we are only given samples of transitions
in form of tuples (s, a, r, s′). One simple way would be to replace the theoretical
maximum by an empirical maximum observed in the dataset. This would amount
to using the same dataset to estimate both the optimal action and the optimal Q-
function.

It turns out that such a procedure leads to an overestimation of maxa′ Q%t+1

(
s, a′

)

in the Bellman optimality equation (9.20), due to Jensen’s inequality and con-
vexity of the max(·) function: E [max f (x)] ≤ maxE [f (x)], where f (x) is an
arbitrary function. Indeed, by replacing expected maximum of Q(s′, a′) by an
empirical maximum, we replace the expected maximum E

[
maxa′ Q(s′, a′)

]
by

6These may be Monte Carlo trajectories or trajectories obtained from real-world data.

5 Reinforcement Learning Methods 329

maxa′ E
[
Q(s′, a′)

]
, and then further use a sample-based estimation of the inner

expectation in the last expression. Due to Jensen’s inequality, such replacement gen-
erally leads to overestimation of the action-value function. When repeated multiple
times during iterations over time steps or during optimization over parameters, this
overestimation can lead to distorted and sometimes even diverging value functions.
This is known in the reinforcement learning literature as the overestimation bias
problem.

There are two possible approaches to address a potential overestimation bias
with Q-learning. One of them is to use two different datasets to train the action-
value function and the optimal policy. But this is not directly implementable with
Q-learning where policy is determined by the action-value functionQ(s, a). Instead
of optimizing both the action-value function and the policy on different subsets of
data, a method known as Double Q-learning (van Hasselt 2010) introduces two
action-value functions QA(s, a) and QB(s, a). At each iteration, when presented
with a new mini-batch of data, the Double Q-learning algorithm randomly choses
between an update of QA(s, a) and update of QB(s, a). If one chooses to update
QA(s, a), the optimal action is determined by finding a maximum a% ofQA(s′, a′),
and then QA(s, a) is updated using the TD error of r + γQB(s′, a%) − QA(s, a).
If, on the other hand, one chooses to update QB(s, a), then the optimal action a%
is calculated by maximizing QB(s′, a′), and then updating QB(s, a) using the TD
error of r + γQA(s′, a%)−QB(s, a). As was shown by van Hasselt (2010), action-
value functions QA(s, a) and QB(s, a) converge in Double Q-learning to the same
limit when the number of observation grows. The method avoids the overestimation
bias problem of a naive sample-based Q-learning, though it can at times lead to
underestimation of the action-value function. Double Q-learning is often used with
model-free Q-learning using neural networks to represent an action-value function
Qθ(s, a) where θ is a set of parameters of the neural network.

Another possibility arises if the action-value function Q(s, a) has a specific
parametric form, so that the maximum over the next-step action a′ can be performed
analytically or numerically. In particular, for linear architectures (9.56) the maxi-
mum can be computed once the form of basis functions ψk(s, a) and coefficients
θk are fixed. With such an independent calculation of the maximum in the Bellman
optimality equation, splitting a dataset into two separate datasets for learning the
action-value function and optimal policy, as is done with Double Q-learning, can
be avoided. As we will see in later chapters, such scenarios can be implemented for
some problems in quantitative trading, including in particular option pricing.

•> Bellman Equations and Non-expansion Operators

As we saw above, a non-analytic term in the Bellman optimality equation
involving a max over all actions at the next step poses certain computational
challenges. It turns out that this term can be relaxed using differentiable
parameterized operators constructed in such a way that the “hard” max
operator is recovered in a certain parametric limit. It turns out that operators

(continued)

330 9 Introduction to Reinforcement Learning

of certain type, called non-expansion operators, can replace the max operator
in a Bellman equation without loosing the existence of a solution, such as a
fixed-point solution for a time-stationary MDP problem.

Let h be a real-valued function over a finite set I , and let * be a summary
operator that maps values of function h onto a real number. The maximum
operator maxi∈I h(i) and the minimum operators mini∈I h(i) are examples
of summary operators. A summary operator * is called a non-expansion if it
satisfies two properties

min
i∈I h(i) ≤ *h(i) ≤ max

i∈I h(i) (9.59)

and

∣∣*h(i)−*h′(i)∣∣ ≤ max
i∈I

∣∣h(i)− h′(i)∣∣ , (9.60)

where h′ is another real-valued function over the same set. Some examples of
non-expansion include the mean and max operator, as well as epsilon-greedy
operator epsε (X) = εmean (X)+ (1− ε)max (X).

As was shown by Littman and Szepasvari (1996), value iteration for the
action-value function

Q̂(s, a)← r(s, a)+ γ
∑

s′∈S
p(s, a, s′)max

a′∈A
Q̂(s′, a′) (9.61)

can be replaced by a generalized value iteration

Q̂(s, a)← r(s, a)+ γ
∑

s′∈S
p(s, a, s′)*a′∈A Q̂(s′, a′) (9.62)

which converges to a unique fixed point if operator* is a non-expansion with
respect to the infinity norm:

∣∣∣*Q̂(s, a)−*Q̂′(s, a)
∣∣∣ ≤ max

a

∣∣∣Q̂(s, a)− Q̂′(s, a)
∣∣∣ (9.63)

for any Q̂, Q̂′, s.

•? Multiple Choice Question 3

Select all the following correct statements:

a. Fitted Q Iteration is a method to accelerate on-line Q-learning.

5 Reinforcement Learning Methods 331

b. Similar to the DP approach, Fitted Q Iteration looks at only one trajectory at each
update, so that Q-iteration fits better when extra noise from other trajectories is
removed.

c. Fitted Q Iteration works only for discrete state-action spaces.
d. Fitted Q Iteration works only for continuous state-action spaces.
e. Fitted Q Iteration works for both discrete and continuous state-action spaces.

•> Online Learning with MDPs

Recall that in Chap. 1, we presented the Multi-Armed Bandit (MAB) as an
example of online sequential learning. Similar to the MAB formulation, for a
more general setting of online learning with Markov Decision Processes,7a
training algorithm A aims at minimization of the regret of A defined as
follows:

RAT = RAT − Tρ%, (9.64)

where RAT = ∑T−1
t=0 Rt+1 is the total reward received up to time T while

followingA, and ρ% stands for the optimal long-run average reward:

ρ% = max
π
ρπ = max

π

∑

s∈S
μπ(s)R(s, π(s)), (9.65)

where μπ(s) is a stationary distribution of states induced by policy π . The
problem of minimization of regret is clearly equivalent to maximization of
the total reward. For a discussion of algorithms for online learning with the
MDP, see Szepesvari (2010).

Online learning with MDP can be of interest in the financial context
for certain tasks that may require real-time adjustments of policy following
new data received, such as intraday trading. As we mentioned earlier, a
combination of off-line and online learning using experience replay is often
found to produce better and more stable behavior than pure online learning.

5.8 Least Squares Policy Iteration

Recall that for every MDP, there exists an optimal policy, π∗, which maximizes the
expected, discounted return of every state. As discussed earlier in this chapter, policy
iteration is a method of discovering this policy by iterating through a sequence of

7See Sect. 3 for further details of MDPs.

332 9 Introduction to Reinforcement Learning

monotonically improving policies. Each iteration consists of two phases: (i) Value
determination computes the state-action values for a policy, π by solving the above
system; (ii) Policy improvement defines the next policy π ′. These steps are repeated
until convergence.

The Least Squares Policy Iteration (LSPI) (Lagoudakis and Parr 2003) is a
model-free off-policy method that can efficiently use (and re-use at each iteration)
sample experiences collected using any policy .

The LSPI method can be understood as a sample-based and model-free approx-
imate policy iteration method that uses a linear architecture where an action-value
functionQt(xt , at) is sought as a linear expansion in a set of basis functions.

The LSPI approach proceeds as follows. Assume we have a set of K basis
functions {�k(x, a)}Kk=1. While particular choices for such basis functions will be
presented below, in this section their specific form does not matter, as long as the set
of basis function is expressive enough so that the true optimal action-value function
approximately lies in a span of these basis functions. Provided such a set is fixed,
we use a linear function approximation for the action-value function:

Qπt (xt , at) = Wt
 (xt , at) =
K∑

k=1

Wtk�k(xt , at). (9.66)

Note that a dependence on a policy π enters this expression through a dependence
of coefficients Wik on π . The LSPI method can be thought of a process of finding
an optimal policy via adjustments of weights Wik . The policy π is a greedy policy
that maximizes the action-value function:

a%t (xt) = πt (xt) = argmax
a

Qt (xt , at) . (9.67)

The LSPI algorithm continues iterating between computing coefficients Wtk (and
hence the action-value function Qt(xt , at)) and computing the policy given the
action-value function using Eq. (9.74). This is done for each time step, proceeding
backward in time for t = T − 1, . . . , 0.

To find coefficients Wt for a given time step, we first note that a linear Bellman
equation (9.18) for a fixed policy π can be expressed in a form that only involve the
action-value function, by noting that for an arbitrary policy π , we have

V πt (xt) = Qπt (xt , π(xt)). (9.68)

Using this in the Bellman equation (9.18), we write it in the following form:

Qπt (xt , at) = Rt(xt , at)+ γEt
[
Qπt+1 (Xt+1, π(Xt+1))

∣∣ xt , at
]
. (9.69)

Similar to Eq. (9.57), we can interpret Eq. (9.69) as regression of the form

5 Reinforcement Learning Methods 333

Rt (xt , at , xt+1)+ γQπt+1 (xt+1, π(xt+1)) = Wt
 (xt , at)+ εt , (9.70)

where Rt (xt , at , xt+1) is a random reward, and εt is a random noise at time t with

mean zero. Assume we have access to sample transitions
(
X
(k)
t , a

(k)
t , R

(k)
t , X

(k)
t+1

)

with k = 1, . . . , N for each t = T − 1, . . . , 0. For a given policy π , coefficients Wt

can then found by solving the following least squares optimization problem, which
is similar to Eq. (9.58) above:

Lt (Wt) =
N∑

k=1

(
Rt

(
X
(k)
t , a

(k)
t , X

(k)
t+1

)

+γQπt+1

(
X
(k)
t+1, π

(
X
(k)
t+1

))
−Wt

(
X
(k)
t , a

(k)
t

))2
.

(9.71)

For a solution of this equation, see Exercise 9.14.
Note that for an MDP with a finite state-action space, finding an optimal policy

using (9.67) is straightforward, and achieved by enumeration of possible actions
for each state. When the action space is continuous, it takes more effort. Consider,
for example, the case where both the state and action spaces are one-dimensional
continuous spaces. To use Eq. (9.67) in such setting, we discretize the range of
values of xt to a set of discrete values xn. We can first compute the optimal action
for these values, and then use splines to interpolate for the rest of values of xt . For
a given set of coefficients Wtk , the policy πt (xt) is then represented by a spline-
interpolated function.

Example 9.7 LSPI for Optimal Allocation

Recall from Chap. 1 the problem of an investor who starts with an initial wealth
W0 = 1 at time t = 0 and, at each period t = 0, . . . , T − 1 allocates a fraction
ut = ut (St) of the total portfolio value to the risky asset, and the remaining
fraction 1 − ut is invested in a risk-free bank account that pays a risk-free
interest rate rf = 0. If the wealth process is self-financing and the one-step
rewards Rt for t = 0, . . . , T − 1 are the risk-adjusted portfolio returns

Rt = rt − λVar [rt |St] = utφt − λu2
t Var [φt |St] (9.72)

then the optimal investment problem for T − 1 steps is given by

V π(s) = max
ut

E

[
T∑

t=0

Rt

∣∣∣∣∣ St = s
]
= max

ut
E

[
T∑

t=0

utφt − λu2
t Var [φt |St]

∣∣∣∣∣ St = s
]
.

(9.73)

(continued)

334 9 Introduction to Reinforcement Learning

Example 9.7 (continued)

where we allow for short selling in the ETF (i.e., ut < 0) and borrowing of
cash ut > 1. We apply the LSPI algorithm to N = 2000 simulated stock
prices over T = 10 periods: {{S(i)t }Ni=1}Tt=1. At each time period, we construct
a basis {�k(s, a)}Kk=1 over the state-action space usingK = 256 B-spline basis

functions, where s ∈ [min({S(i)t }Ni=1),max({S(i)t }Ni=1)] and a ∈ [−1, 1].
Note that in this particular simple problem, the actions are independent

of the state space and hence the basis construction over state-action space is
not really needed. However, our motive here is to show that we can obtain
an estimate close to the exact solution, u∗t = E[φt]

2λVar[φt]
using a more general

methodology.
aT−1 is initialized with uniform random samples at time step t = T − 1.

In subsequent time steps, at , t ∈ {T − 1, T − 2, . . . , 0}, we initialize with
the previous optimal action, at = a∗t+1. LSPI updates the policy iteratively
πk−1 → πk until convergence of the value function. The Q-function is
maximized over a gridded state-action space, �h, with 200 stock values and
20 action values, to give the optimal action

akt (s) = πkt (s) = argmax
a

Qπ
k−1

t (s, a) , (s, a) ∈ �h. (9.74)

For each time step, LSPI updates the policy πk until the following stopping
criterion is satisfied ||V πk − V πk−1 ||2 ≤ τ where τ = 1 × 10−6. The
optimal allocation using the LSPI algorithm (red) is compared against the
exact solution (blue) in Fig. 9.9. The implementation of the LSPI and its
application to this optimal allocation problem is given in the Python notebook
ML_in_Finance_LSPI_Markowitz.ipynb.

120

110

100

90

80

70

0 2 4 6 8 10
Time Steps

(a) (b)

S
t

–0.30

–0.32

–0.34

–0.36

–0.38

0 2 4 6 8

ac
tio

n

time

Fig. 9.9 Stock prices are simulated using an Euler scheme over a one year horizon. At each of ten
periods, the optimal allocation is estimated using the LSPI algorithm (red) and compared against
the exact solution (blue). (a) Stock price simulation. (b) Optimal allocation

5 Reinforcement Learning Methods 335

5.9 Deep Reinforcement Learning

A good choice of basis functions that could be used in linear architectures
(9.56) may be a hard problem for many practical applications, especially if the
dimensionality of data grows, or if data become highly non-linear, or both. This
problem is also known as the feature engineering problem, and it is common for
all types of machine learning, rather than being specific to reinforcement learning.
Learning representative features is an interesting and actively researched topic in
the machine learning literature, and various supervised and unsupervised algorithms
have been suggested to address such tasks.

Instead of pursuing hand-engineered or algorithm-driven features defined in
general as parameter-based functional transforms of original data, we can resort
to universal function approximation methods such as trees or neural networks
considered as parameterized “black-box” algorithms. In particular, deep reinforce-
ment learning approaches rely on multi-level neural networks to represent value
functions and/or policy functions. For example, if an action-value function Q(s, a)
is represented by a multilayer neural network, one way of thinking about it
would be in terms of the linear architecture specification (9.56) where parameters
θk represent the weight of a last linear layer of a neural network, while the
previous layer generates certain “black-box”-type basis functions ψk(s, a) that
can be parameterized in terms of their own parameters θ ′. This approach may be
advantageous when an action-value function is highly non-linear and no clear-cut
choice of a good set of basis function can be immediately suggested. In particular,
functions of high variations appear in analysis of images, videos, and video games.
For such applications, using deep neural networks as function approximation is very
useful. A strong push to this area of research was initiated by Google’s DeepMind’s
work on using deep Q-learning for playing Atari video games.

5.9.1 Preliminaries

Since we cannot reasonably learn and store a Q value for each state-action tuple
when the state space is continuous, we will represent our Q values as a function
q̂(s, a,w) where w are parameters of the function (typically, a neural network’s
weights and bias). In this approximation setting, our update rule becomes

w = w+ α
(
r + γ max

a′∈A
q̂
(
s′, a′,w

)− q̂ (s, a,w)
)
∇wq̂(s, a,w). (9.75)

In other words, we seek to minimize

L(w) = Es,a,r,s′
[
r + γ max

a′∈A
q̂
(
s′, a′,w

)− q̂(s, a,w)
]2

. (9.76)

336 9 Introduction to Reinforcement Learning

5.9.2 Target Network

DeepMind (Mnih et al. 2015) maintain two sets of parameters, w (to compute
q̂(s, a)) and w− (target network, to compute q̂(s′, a′)) s.t. our update rule becomes

w = w+ α
(
r + γ max

a′∈A
q̂
(
s′, a′,w−

)− q̂ (s, a,w)
)
∇wq̂(s, a,w). (9.77)

The target network’s parameters are updated with the Q-network’s parameters occa-
sionally and are kept fixed between individual updates. Note that when computing
the update, we do not compute gradients with respect to w− (these are considered
fixed weights).

5.9.3 Replay Memory

As we play, we store our transitions (s, a, r, s′) in a buffer. Old examples are deleted
as we store new transitions. To update our parameters, we sample a mini-batch from
the buffer and perform a stochastic gradient descent update.

ε-Greedy Exploration Strategy

During training, we use an ε-greedy heuristic strategy. DeepMind (Mnih et al.
2015) decrease ε from 1 to 0.1 during the first million steps. At test time, the agent
chooses a random action with probability ε = 0.05.

π(a|s) =
{

1− ε, a = argmaxa Qt(s, a)

ε/|A|, a �= argmaxa Qt(s, a)

There are several points to note:

a. w updates every learning_freq steps by using a mini-batch of experi-
ences sampled from the replay buffer.

b. DeepMind’s deep Q-network takes as input the state s and outputs a vector of
size = number of actions. In our environment, we have |A| actions, thus q̂(s,w) ∈
R
|A|.

c. The input of the deep Q-network can be based on both the current and history of
observations of the environment.

The practice of using Deep Q-learning on finance problems is problematic. The
sheer number of parameters that need to be tuned and configured renders the
approach much more complex than Q-learning, LSPI, and of course deep learning
in a supervised learning setting. However, deep Q-learning is one of the few
approaches which scales to high-dimensional discrete and/or continuous state and
action spaces.

7 Exercises 337

6 Summary

This chapter has introduced the reader to reinforcement learning, with some toy
examples of how it is useful for solving problems in finance. The emphasis of the
chapter is on understanding the various algorithms and RL approaches. The reader
should check the following learning objectives:

– Gain familiarity with Markov Decision Processes;
– Understand the Bellman equation and classical methods of dynamic program-

ming;
– Gain familiarity with the ideas of reinforcement learning and other approximate

methods of solving MDPs;
– Understand the difference between off-policy and on-policy learning algorithms;

and
– Gain insight into how RL is applied to optimization problems in asset manage-

ment and trading.

The next chapter will present much more in depth examples of how RL is applied
in more realistic financial models.

7 Exercises

Exercise 9.1
Consider an MDP with a reward function rt = r(st , at). Let Qπ(s, a) be an action-
value function for policy π for this MDP, and π%(a|s) = arg maxπ Qπ(s, a) be
an optimal greedy policy. Assume we define a new reward function as an affine
transformation of the previous reward: r̃(t) = wrt + b with constant parameters b
and w > 0. How does the new optimal policy π̃% relate to the old optimal policy π%?

Exercise 9.2
With True/False questions, give a short explanation to support your answer.

– True/False: Value iteration always find the optimal policy, when run to conver-
gence. [3]

– True/False: Q-learning is an on-policy learning (value iteration) algorithm and
estimates updates to the action-value function,Q(s, a) using actions taken under
the current policy π . [5]

– For Q-learning to converge we need to correctly manage the exploration vs.
exploitation tradeoff. What property needs to hold for the exploration strategy?
[4]

– True/False: Q-learning with linear function approximation will always converge
to the optimal policy. [2]

338 9 Introduction to Reinforcement Learning

Table 9.4 The reward
function depends on fund
wealth w and time

w t0 t1

2 0 0

1 0 −10

Exercise 9.3*
Consider the following toy cash buffer problem. An investor owns a stock, initially
valued at St0 = 1, and must ensure that their wealth (stock + cash) is not less than a
certain threshold K at time t = t1. Let Wt = St + Ct denote their at time t , where
Ct is the total cash in the portfolio. If the wealth Wt1 < K = 2 then the investor is
penalized with a -10 reward.

The investor chooses to inject either 0 or 1 amounts of cash with a respective
penalty of 0 or −1 (which is not deducted from the fund).

Dynamics The stock price follows a discrete Markov chain with P(St+1 = s | St =
s) = 0.5, i.e. with probability 0.5 the stock remains the same price over the time
interval. P(St+1 = s + 1 | St = s) = P(St+1 = s − 1 | St = s) = 0.25. If the
wealth moves off the grid it simply bounces to the nearest value in the grid at that
time. The states are grid squares, identified by their row and column number (row
first). The investor always starts in state (1,0) (i.e., the initial wealthWt0 = 1 at time
t0 = 0—there is no cash in the fund) and both states in the last column (i.e., at time
t = t1 = 1) are terminal (Table 9.4).

Using the Bellman equation (with generic state notation), give the first round of
value iteration updates for each state by completing the table below. You may ignore
the time value of money, i.e. set γ = 1.

Vi+1(s) = max
a
(
∑

s′
T (s, a, s′)(R(s, a, s′)+ γVi(s′)))

(w,t) (1,0) (2,0)

V0(w) 0 0

V1(w) ? NA

Exercise 9.4*
Consider the following toy cash buffer problem. An investor owns a stock, initially
valued at St0 = 1, and must ensure that their wealth (stock + cash) does not fall
below a threshold K = 1 at time t = t1. The investor can choose to either sell the
stock or inject more cash, but not both. In the former case, the sale of the stock at
time t results in an immediate cash update st (you may ignore transactions costs).
If the investor chooses to inject a cash amount ct ∈ {0, 1}, there is a corresponding
penalty of −ct (which is not taken from the fund).

7 Exercises 339

Let Wt = St + Ct denote their wealth at time t , where Ct is the total cash in the
portfolio.

Dynamics The stock price follows a discrete Markov chain with P(St+1 = s | St =
s) = 0.5, i.e. with probability 0.5 the stock remains the same price over the time
interval. P(St+1 = s + 1 | St = s) = P(St+1 = s − 1 | St = s) = 0.25. If the
wealth moves off the grid it simply bounces to the nearest value in the grid at that
time. The states are grid squares, identified by their row and column number (row
first). The investor always starts in state (1,0) (i.e., the initial wealthWt0 = 1 at time
t0 = 0—there is no cash in the fund) and both states in the last column (i.e., at time
t = t1 = 1) are terminal.

Using the Bellman equation (with generic state notation), give the first round of
value iteration updates for each state by completing the table below. You may ignore
the time value of money, i.e. set γ = 1.

Vi+1(s) = max
a
(
∑

s′
T (s, a, s′)(R(s, a, s′)+ γVi(s′)))

(w,t) (0,0) (1,0)
V0(w) 0 0
V1(w) ? ?

Exercise 9.5*
Deterministic policies such as the greedy policy pi%(a|s) = arg maxπ Qπ(s, a)
are invariant with respect to a shift of the action-value function by an arbitrary
function of a state f (s): π%(a|s) = arg maxπ Qπ(s, a) = arg maxπ Q̃π (s, a) where
Q̃π (s, a) = Qπ(s, a)− f (s). Show that this implies that the optimal policy is also
invariant with respect to the following transformation of an original reward function
r(st , at , st+1):

r̃(st , at , st+1) = r(st , at , st+1)+ γf (st+1)− f (st).

This transformation of a reward function is known as reward shaping (Ng, Russell
1999). It has been used in reinforcement learning to accelerate learning in certain
settings. In the context of inverse reinforcement learning, reward shaping invariance
has far-reaching implications, as we will discuss later in the book.

Exercise 9.6**
Define the occupancy measure ρπ : S×A→ R by the relation

Table 9.5 The reward
function depends on fund
wealth w and time

w t0 t1

1 0 0

0 0 −10

340 9 Introduction to Reinforcement Learning

ρπ(s, a) = π(a|s)
∞∑

t=0

γ tPr (st = s|π) ,

where Pr (st = s|π) is the probability density of the state s = st at time t following
policy π . The occupancy measure ρπ(s, a) can be interpreted as an unnormalized
density of state-action pairs. It can be used, e.g., to specify the value function as an
expectation value of the reward: V =< r(s, a) >ρ .

a. Compute the policy in terms of the occupancy measure ρπ .
b. Compute a normalized occupancy measure ρ̃π (s, a). How different the policy

will be if we used the normalized measure ρ̃π (s, a) instead of the unnormalized
measure ρπ?

Exercise 9.7**
Theoretical models for reinforcement learning typically assume that rewards rt :=
r(st , at , st+1) are bounded: rmin ≤ rt ≤ rmax with some fixed values rmin, rmax .
On the other hand, some models of rewards used by practitioners may produce
(numerically) unbounded rewards. For example, with linear architectures, a popular
choice of a reward function is a linear expansion rt =∑K

k=1 θk�k(st , at) over a set
of K basis functions �k . Even if one chooses a set of bounded basis functions, this
expression may become unbounded via a choice of coefficients θt .

a. Use the policy invariance under linear transforms of rewards (see Exercise 9.1)
to equivalently formulate the same problem with rewards that are bounded to the
unit interval [0, 1], so they can be interpreted as probabilities.

b. How could you modify a linear unbounded specification of reward rθ (s, a, s′) =∑
k=1K θk�k(s, a, s

′) to a bounded reward function with values in a unit interval
[0, 1]?

Exercise 9.8
Consider an MDP with a finite number of states and actions in a real-time setting
where the agent learns to act optimally using the ε-greedy policy. The ε-greedy
policy amounts to taking an action a% = argmaxa′ Q(s, a

′) in each state s with
probability 1−ε, and taking a random action with probability ε. Will SARSA and Q-
learning converge to the same solution under such policy, using a constant value of
ε? What will be different in the answer if ε decays with the epoch, e.g. as εt ∼ 1/t?

Exercise 9.9
Consider the following single-step random cost (negative reward)

C (st , at , st+1) = ηat + (K − st+1 − at)+ ,

where η andK are some parameters. You can use such a cost function to develop an
MDP model for an agent learning to invest. For example, st can be the current assets
in a portfolio of equities at time t , at be an additional cash added to or subtracted
from the portfolio at time t , and st+1 be the portfolio value at the end of time interval

7 Exercises 341

[t, t + 1). The second term is an option-like cost of a total portfolio (equity and
cash) shortfall by time t + 1 from a target valueK . Parameter η controls the relative
importance of paying costs now as opposed to delaying payment.

a. What is the corresponding expected cost for this problem, if the expectation is
taken w.r.t. to the stock prices and at is treated as deterministic?

b. Is the expected cost a convex or concave function of the action at?
c. Can you find an optimal one-step action a%t that minimizes the one-step expected

cost?

Hint: For Part (i), you can use the following property:

d

dx
[y − x]+ =

d

dx
[(y − x)H(y − x)] ,

where H(x) is the Heaviside function.

Exercise 9.10
Exercise 9.9 presented a simple single-period cost function that can be used in
the setting of model-free reinforcement learning. We can now formulate a model
based formulation for such an option-like reward. To this end, we use the following
specification of the random end-of-period portfolio state:

st+1 = (1+ rt)st
rt = G(Ft)+ εt .

In words, the initial portfolio value st + at in the beginning of the interval [t, t + 1)
grows with a random return rt given by a function G(Ft) of factors Ft corrupted by
noise ε with E [ε] = 0 and E

[
ε2
] = σ 2.

a. Obtain the form of expected cost for this specification in Exercise 9.9.
b. Obtain the optimal single-step action for this case.
c. Compute the sensitivity of the optimal action with respect to the i-th factor Fit

assuming the sigmoid link functionG(Ft) = σ
(∑

i ωiFit
)

and a Gaussian noise
εt .

Exercise 9.11
Assuming a discrete set of actions at ∈ A of dimension K show that deterministic
policy optimization by greedy policy of Q-learning Q(st , a%t) = maxat∈AQ(st , at)
can be equivalently expressed as maximization over a set probability distributions
π(at) with probabilities πk for at = Ak , k = 1, . . . K (this relation is known as
Fenchel duality):

max
at∈A

Q(st , at) = max{π}k

K∑

k=1

πkQ (st , Ak) s.t. 0 ≤ πi ≤ 1,
K∑

k=1

πk = 1.

342 9 Introduction to Reinforcement Learning

Exercise 9.12**
The reformulation of a deterministic policy search in terms of search over proba-
bility distributions given in Exercise 9.11 is a mathematical identity where the end
result is still a deterministic policy. We can convert it to a probabilistic policy search
if we modify the objective function

max
at∈A

Q(st , at) = max{π}k

K∑

k=1

πkQ (st , Ak) s.t. 0 ≤ πi ≤ 1,
K∑

k=1

πk = 1

by adding to it a KL divergence of the policy π with some reference (“prior”)
policy ω:

G%(st , at) = max
π

K∑

k=1

πkQ (st , Ak)− 1

β

K∑

k=1

πi log
πk

ωk
,

where β is a regularization parameter controlling the relative importance of the two
terms that enforce, respectively, maximization of the action-value function and a
preference for a previous reference policy ω with probabilities ωk . When parameter
β < ∞ is finite, this produces a stochastic rather than deterministic optimal policy
π%(a|s).

Find the optimal policy π%(a|s) from the entropy-regularized functional
G(st , at) (Hint: use the method of Lagrange multipliers to enforce the normalization
constraint

∑
k πk = 1).

Exercise 9.13**
Regularization by KL-divergence with a reference distribution ω introduced in the
previous exercise can be extended to a multi-period setting. This produces maximum
entropy reinforcement learning which augments the standard RL reward by an
additional entropy penalty term in the form of KL divergence. The optimal value
function in MaxEnt RL is

F%(s) = max
π

E

[∞∑

t=0

γ t
(
r(st , at , st+1)− 1

β
log

π(at |st)
π0(at |st)

)∣∣∣∣∣ s0 = s
]
, (9.78)

where E [·] stands for an average under a stationary distribution ρπ(a) =∑
s μπ(s)π(a|s) where μπ(s) is a stationary distribution over states induced by the

policy π , and π0 is some reference policy. Show that the optimal policy for this
entropy-regularized MDP problem has the following form:

π%(a|s) = 1

Zt
π0(at |st)eβGπt (st ,at), Zt ≡

∑

at

π0(at |st)eβGπt (st ,at), (9.79)

7 Exercises 343

where Gπt (st , at) = E
π [r(st , at , st+1)]+ γ ∑st+1

p(st+1|st , at)Fπt+1(st+1). Check
that the limit β → ∞ reproduces the standard deterministic policy, that is
limβ→∞ V %(s) = maxπ V π(s), while in the opposite limit β → 0 we obtain
a random and uniform policy. We will return to entropy-regularized value-based
RL and stochastic policies such as (9.79) (which are sometimes referred to as
Boltzmann policies) in later chapters of this book.

Exercise 9.14*
Show that the solution for the coefficients Wtk in the LSPI method (see Eq. (9.71))
is

W%
t = S−1

t Mt ,

where St is a matrix and Mt is a vector with the following elements:

S(t)nm =
N∑

k=1

�n

(
X
(k)
t , a

(k)
t

)
�m

(
X
(k)
t , a

(k)
t

)

M(t)
n =

N∑

k=1

�n

(
X
(k)
t , a

(k)
t

) (
Rt

(
X
(k)
t , a

(k)
t , X

(k)
t+1

)
+ γQπt+1

(
X
(k)
t+1, π

(
X
(k)
t+1

)))
.

Exercise 9.15**
Consider the Boltzmann weighted average of a function h(i) defined on a binary set
I = {1, 2}:

Boltzβ h(i) =
∑

i∈I
h(i)

eβh(i)∑
i∈I eβh(i)

a. Verify that this operator smoothly interpolates between the max and the mean of
h(i) which are obtained in the limits β →∞ and β → 0, respectively.

b. By taking β = 1, h(1) = 100, h(2) = 1, h′(1) = 1, h′(2) = 0, show that
Boltzβ is not a non-expansion.

c. (Programming) Using operators that are not non-expansions can lead to a loss
of a solution in a generalized Bellman equation. To illustrate such phenomenon,
we use the following simple example.Consider the MDP problem on the set I =
{1, 2} with two actions a and b and the following specification: p(1|1, a) =
0.66, p(2|1, a) = 0.34, r(1, a) = 0.122 and p(1|1, b) = 0.99, p(1|1, b) =
0.01, r(1, b) = 0.033. The second state is absorbing with p(1|2) = 0, p(2|2) =
1. The discount factor is γ = 0.98. Assume we use the Boltzmann policy

π(a|s) = eβQ̂(s,a)

∑
a e
βQ̂(s,a)

.

344 9 Introduction to Reinforcement Learning

Show that the SARSA algorithm

Q̂(s, a)← Q̂(s, a)+ α
[
r(s, a)+ γ Q̂(s′, a′)− Q̂(s, a)

]
,

where a, a′ are drawn from the Boltzmann policy with β = 16.55 and α = 0.1,
leads to oscillating solutions for Q̂(s1, a) and Q̂(s1, a) that do not achieve stable
states with an increased number of iterations.

Exercise 9.16**
An alternative continuous approximation to the intractable max operator in the
Bellman optimality equation is given by the mellowmax function (Asadi and Littman
2016)

mmω(X) = 1

ω
log

(
1

n

n∑

i=1

eωxi

)

a. Show that the mellowmax function recovers the max function in the limit ω →
∞.

b. Show that mellowmax is a non-expansion.

Appendix

Answers to Multiple Choice Questions

Question 1
Answer: 2, 4.

Question 2
Answer: 2, 4

Question 3
Answer: 5

Python Notebooks

The notebooks provided in the accompanying source code repository accompany
many of the examples in this chapter, including Q-learning and SARSA for the
financial cliff walking problem, the market impact problem, and electronic market
making. The repository also includes an example implementation of the LSPI
algorithm for optimal allocation in a Markowitz portfolio. Further details of the
notebooks are included in the README.md file.

References 345

References

Asadi, K., & Littman, M. L. (2016). An alternative softmax operator for reinforcement learning.
Proceedings of ICML.

Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Princeton University Press.
Bertsekas, D. (2012). Dynamic programming and optimal control (vol. I and II), 4th edn. Athena

Scientific.
Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning

Research, 4, 1107–1149.
Littman, M. L., & Szepasvari, S. (1996). A generalized reinforcement-learning model: convergence

and applications. In Machine Learning, Proceedings of the Thirteenth International Conference
(ICML ’96), Bari, Italy.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015).
Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. Ann. Math. Statistics, 22,
400–407.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction, 2nd edn. MIT.
Szepesvari, S. (2010). Algorithms for reinforcement learning. Morgan & Claypool.
Thompson, W. R. (1935). On a criterion for the rejection of observations and the distribution of the

ratio of deviation to sample standard deviation. Ann. Math. Statist., 6(4), 214–219.
Thompson, W. R. (1993). On the likelihood that one unknown probability exceeds another in view

of the evidence of two samples. Biometrika, 25(3), 285–94.
van Hasselt, H. (2010). Double Q-learning. Advances in Neural Information Processing Systems.

http://papers.nips.cc/paper/3964-double-q-learning.pdf.

http://papers.nips.cc/paper/3964-double-q-learning.pdf

Chapter 10
Applications of Reinforcement Learning

This chapter considers real-world applications of reinforcement learning in finance,
as well as further advances in the theory presented in the previous chapter. We start
with one of the most common problems of quantitative finance, which is the problem
of optimal portfolio trading in discrete time. Many practical problems of trading or
risk management amount to different forms of dynamic portfolio optimization, with
different optimization criteria, portfolio composition, and constraints. This chapter
introduces a reinforcement learning approach to option pricing that generalizes the
classical Black–Scholes model to a data-driven approach using Q-learning. It then
presents a probabilistic extension of Q-learning called G-learning and shows how it
can be used for dynamic portfolio optimization. For certain specifications of reward
functions, G-learning is semi-analytically tractable and amounts to a probabilistic
version of linear quadratic regulators (LQR). Detailed analyses of such cases are
presented, and show their solutions with examples from problems of dynamic
portfolio optimization and wealth management.

1 Introduction

In this chapter, we consider real-world applications of reinforcement learning
in finance. We start with one of the most common problems of quantitative
finance, which is the problem of optimal portfolio trading. Many practical problems
of trading or risk management amount to different forms of dynamic portfolio
optimization, with different optimization criteria, portfolio composition, and con-
straints. For example, the problem of optimal stock execution can be viewed as
a problem of optimal dynamic management of a portfolio of stocks of the same
company, with the objective being minimization of slippage costs of selling the
stock. A more traditional example of dynamic portfolio optimization is given
by asset managers and mutual or pension funds who usually manage investment

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_10

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_10

348 10 Applications of Reinforcement Learning

portfolios over long time horizons (months or years). Intra-day trading which
is more typical of hedge funds can also be thought of as a dynamic portfolio
optimization problem with a different portfolio choice, time step, constraints, and
so on. In addition to different time horizons and objective functions, details of
a portfolio optimization problem determine choices for features and hence for a
state description. For example, management of long-horizon investment portfolios
typically involves macroeconomic factors but not the limit order book data, while
for intra-day trading it is the opposite case.

Dynamic portfolio management is a problem of stochastic optimal control where
control variables are represented by changes in positions in different assets in a
portfolio made by a portfolio manager, and state variables describe the current
composition of the portfolio, prices of its assets, and possibly other relevant features
including market indices, bid–ask spreads, etc. If we consider a large market player
whose trade can move the market, actions of such trader may produce a feedback
loop effect. The latter is referred to in the financial literature as a “market impact
effect.”

All the above elements of dynamic portfolio management make it suitable for
applying methods of dynamic programming and reinforcement learning. While
the previous chapter introduced the main concepts and methods of reinforcement
learning, here we want to take a more detailed look at practical applications for
portfolio management problems.

When viewed as problems of optimal control to be addressed using reinforcement
learning, such problems typically have a very high-dimensional state-action space.
Indeed, even if we constrain ourselves by actively traded US stocks, we get around
three thousands stocks. If we add to this other assets such as futures, exchange-
traded funds, government and corporate bonds, etc., we may end up with state spaces
of dimensions of many thousands. Even in a more specialized case of an equity fund
whose objective is to beat a given benchmark portfolio, the investment universe may
be tens or hundreds of stocks. This means that such applications of reinforcement
learning in finance have to handle (very) high-dimensional and typically continuous
(or approximately continuous) state-action spaces.

Clearly, such high-dimensional RL problems are far more complex than simple
low-dimensional examples typically used to test reinforcement learning methods,
such as inverted pendulum or cliff walking problems described in the Sutton–Barto
book, or the “financial cliff walking” problem presented in the previous chapter.
Modern RL methods applied to problems outside of finance typically operate
with action space dimensions measured in tens but not hundreds or thousands,
and typically have a far larger signal-to-noise ratio than financial problems. Low
signal-to-noise ratios and potentially very high dimensionality are therefore two
marked differences of applications of reinforcement learning in finance as opposed
to applications to video games and robotics.

As high-dimensional optimal control problems are harder than low-dimensional
ones, we first want to explore applications of reinforcement learning with low-
dimensional portfolio optimization problems. Such an approach both sets the

2 The QLBS Model for Option Pricing 349

grounds for more complex high-dimensional applications and can be of independent
interest when applied to practically interesting problems falling in this general class
of dynamic portfolio optimization.

The first problem that we address in this chapter is exactly of this kind: it is both
low-dimensional and of practical interest on its own, rather than being a toy example
for a multi-asset portfolio optimization. Namely, we will consider the classical
problem of option pricing, in a formulation that closely resembles the framework
of the celebrated Black–Scholes–Merton (BSM) model , also known as the Black–
Scholes (BS) model, one of the cornerstones of modern quantitative finance (Black
and Scholes 1973; Merton 1974).

Chapter Objectives

This chapter will present a few practical cases of using reinforcement learning in
finance:

– RL for option pricing and optimal hedging (QLBS);
– G-learning for stock portfolios and linear quadratic regulators;
– RL for optimal consumption using G-learning; and
– RL for portfolio optimization using G-learning.

The chapter is accompanied by two notebooks implementing the QLBS model
for option pricing and hedging, and G-learning for wealth management. See
Appendix “Python Notebooks” for further details.

2 The QLBS Model for Option Pricing

The BSM model was initially developed for the so-called plain vanilla European call
and put options. A European call option is a contract that allows a buyer to obtain a
given stock at some future time T for a fixed priceK . If ST is the stock price at time
T , then the payoff to the option buyer at time T is (ST −K)+. Similarly, a buyer
of a European put option has a right to sell the stock at time T for a fixed price
K , with a terminal payoff of (K − ST)+. European call and put options are among
the simplest and most popular types of financial derivatives whose value is derived
from (or driven by) the underlying stock (or more generally, the underlying asset).

The core idea of the BSM model is that options can be priced using the relative
value approach to asset pricing, which prices assets in terms of other tradable assets.
The relative pricing method for options is known as dynamic option replication. It is
based on the observation that an option payoff depends only on the price of a stock
at expiry of the option. Therefore, if we neglect other sources of uncertainty such
as stochastic volatility, the option value at arbitrary times before the expiry should
only depend on the stock value. This makes it possible to mimic the option using a
simple portfolio made of the underlying stock and cash, which is called the hedge

350 10 Applications of Reinforcement Learning

portfolio. The hedge portfolio is dynamically managed by continuously rebalancing
its wealth between the stock and cash. Moreover, this is done in a self-financing
way, meaning that there are no cash inflows/outflows in the portfolio except at the
time of inception. The objective of dynamic replication is to mimic the option using
the hedge portfolio as closely as possible.

In the continuous-time setting of the original BSM model, it turns out that such
dynamic replication can be made exact by a continuous rebalancing of the hedge
portfolio between the stock and cash, such that the amount of stock coincides with
the option price sensitivity with respect to the stock price. This makes the total
portfolio made of the option and the hedge portfolio instantaneously risk-free, or
equivalently it makes the option instantaneously perfectly replicable in terms of
the stock and cash. Risk of mis-hedging between the option and its underlying is
instantaneously eliminated; therefore, the full portfolio involving the option and its
hedge should earn a risk-free rate. The option price in this limit does not depend on
risk preferences of investors.

Such analysis performed in the continuous-time setting gives rise to the cele-
brated Black–Scholes partial differential equation (PDE) for option prices, whose
solution produces option prices as deterministic functions of current stock prices.
The Black–Scholes PDE can be derived using analysis of the hedge portfolio in
discrete time with time steps�t , and then taking the continuous-time limit�t → 0,
see, e.g., Wilmott (1998). It can be shown that the resulting continuous-time BSM
model does not amount to a problem of sequential decision making and does not in
general reduce to any sort of optimization problem.

However, in option markets, rebalancing of option replication (hedge) portfolio
occurs at finite frequency, e.g. daily. A frequent rebalancing can be costly due to
transaction costs which are altogether neglected in the classical BSM model. When
transaction costs are added, a formal continuous-time limit may not even exist as
it leads to formally infinite option prices due to an infinite number of portfolio
rebalancing acts.

With a finite rebalancing frequency, perfect replication is no longer feasible, and
the replicating portfolio will in general be different from the option value according
to the amount of hedge slippage. The latter depends on the stock price evolution
between consecutive rebalancing acts for the portfolio. Respectively, in the absence
of perfect replication, a hedged option position carries some mis-hedging risk which
the option buyer or seller should be compensated for. This means that once we revert
from the idealized setting of continuous-time finance to a realistic setting of discrete-
time finance, option pricing becomes dependent on investors’ risk preferences.

If we take a view of an option seller agent in such a discrete-time setting, its
objective should be to minimize some measures of slippage risk, also referred to as
a “risk-adjusted cost of hedging” the option, by dynamic option replication. When
viewed over the lifetime of an option, this setting can be considered a sequential
decision-making process of minimization of slippage cost (or equivalently max-
imization of rewards determined as negative costs). While such a discrete-time
approach converges to the Black–Scholes formulation in the limit of vanishing
time steps, it offers both a more realistic setting, and allows one to focus on the

2 The QLBS Model for Option Pricing 351

key objective of option trading and pricing, which is risk minimization by hedging
in a sequential decision-making process. This makes option pricing amenable to
methods of reinforcement learning, and indeed, as we will see below, option pricing
and hedging in discrete time amounts to reinforcement learning.

Casting option pricing as a reinforcement learning task offers a few interesting
insights. First, if we select a specific model for the stock price dynamics, we
can use model-based reinforcement learning as a powerful sample-based (Monte
Carlo) computational approach. The latter may be advantageous to other numerical
methods such as finite differences for computing option prices and hedge ratios,
especially when dimensionality of the state space goes beyond three or four. Second,
we may rely on model-free reinforcement learning methods such as Q-learning, and
bypass the need to build a model of stock price dynamics altogether. RL provides
a framework for model-free learning of option prices and hedges.1 While we only
consider the simplest setting for a reinforcement learning approach to pricing and
hedging of European vanilla options (e.g., put or call options), the approach can
be extended in a straightforward manner to more complex instruments including
options on multiple assets, early exercises, option portfolios, market frictions, etc.

The model presented in this chapter is referred to as the QLBS model, in
recognition of the fact that it combines the Q-learning method of Watkins (1989);
Watkins and Dayan (1992) with the method of dynamic option replication of the
(time-discretized) Black–Scholes model. As Q-learning is a model-free method, this
means that the QLBS model is also model-free. More accurately, it is distribution-
free: option prices in this approach depend on the chosen utility function, but do
not rely on any model for the stock price distribution, and instead use only samples
from this distribution.

The QLBS model may also be of interest as a financial model which relates to
the literature on hedging and pricing in incomplete markets (Föllmer and Schweizer
1989; Schweizer 1995; Cerný and Kallsen 2007; Potters et al. 2001; Petrelli et al.
2010; Grau 2007). Unlike many previous models of this sort, QLBS ensures a full
consistency of hedging and pricing at each time step, all within an efficient and data-
driven Q-learning algorithm. Additionally, it extends the discrete-time BSM model.
Extending Markowitz portfolio theory (Markowitz 1959) to a multi-period setting,
Sect. 3 incorporates a drift in a risk/return analysis of the option’s hedge portfolio.
This extension allows one to consider both hedging and speculation with options in
a consistent way within the same model, which is a challenge for the standard BSM
model or its “phenomenological” generalizations, see, e.g., Wilmott (1998).

Following this approach, it turns out that all results of the classical BSM model
(Black and Scholes 1973; Merton 1974) can be obtained as a continuous-time limit
�t → 0 of a multi-period version of the Markowitz portfolio theory (Markowitz
1959), if the dynamics of stock prices are log-normal, and the investment portfolio

1Here we use the notion of model-free learning in the same context as it is normally used in the
machine learning literature, namely as a method that does not rely on an explicit model of feature
dynamics. Option prices and hedge ratios in the framework presented in this section depend on a
model of rewards, and in this sense are model-dependent.

352 10 Applications of Reinforcement Learning

is self-replicating. However, this limit is degenerate: all fluctuations of the “true”
option price asymptotically decay in this limit, resulting in a deterministic option
price which is independent of risk preferences of an investor. However, as long as
the time step �t is kept finite, both risk of option mis-hedging and dependence of
the option price on investor risk preferences persist.

To the extent that option pricing in discrete time amounts to either DP (a.k.a.
model-based RL), if a model is known, or RL if a model is unknown, we may say
that the classical continuous-time BSM model corresponds to the continuous-time
limit of model-based reinforcement learning. In such a limit, all data requirements
are reduced to just two numbers—the current stock price and volatility.

3 Discrete-Time Black–Scholes–Merton Model

We start with a discrete-time version of the BSM model. As is well known, the
problem of option hedging and pricing in this formulation amounts to a sequential
risk minimization. The main open question is how to define risk in an option. In
this part, we follow a local risk minimization approach pioneered in the work of
Föllmer and Schweizer (1989), Schweizer (1995), Cerný and Kallsen (2007). A
similar method was developed by physicists Potters et al. (2001), see also the work
by Petrelli et al. (2010). We use a version of this approach suggested in Grau (2007).

In this approach, we take the view of a seller of a European option (e.g., a put
option) with maturity T and the terminal payoff ofHT (ST) at maturity, that depends
on a final stock price ST at that time. To hedge the option, the seller uses proceeds
of the sale to set up a replicating (hedge) portfolio$t composed of the stock St and
a risk-free bank deposit Bt . The value of hedge portfolio at any time t ≤ T is

$t = utSt + Bt , (10.1)

where ut is a position in the stock at time t , taken to hedge risk in the option.

3.1 Hedge Portfolio Evaluation

As usual, the replicating portfolio tries to exactly match the option price in all
possible future states of the world. If we start at maturity T when the option position
is closed, the hedge ut should be closed at the same time, thus we set uT = 0 and
therefore

$T = BT = HT (ST), (10.2)

3 Discrete-Time Black–Scholes–Merton Model 353

which sets a terminal condition for BT that should hold in all future states of the
world at time T .2

To find an amount needed to be held in the bank account at previous times t < T ,
we impose the self-financing constraint which requires that all future changes in
the hedge portfolio should be funded from an initially set bank account, without
any cash infusions or withdrawals over the lifetime of the option. This implies the
following relation that ensures conservation of the portfolio value by a re-hedge at
time t + 1:

utSt+1 + er�tBt = ut+1St+1 + Bt+1. (10.3)

This relation can be expressed recursively in order to calculate the amount of cash
in the bank account to hedge the option at any time t < T using its value at the next
time step:

Bt = e−r�t [Bt+1 + (ut+1 − ut) St+1] , t = T − 1, . . . , 0. (10.4)

Substituting this into Eq. (10.1) produces a recursive relation for $t in terms of its
values at later times, which can therefore be solved backward in time, starting from
t = T with the terminal condition (10.2), and continued through to the current time
t = 0:

$t = e−r�t [$t+1 − ut�St] , �St = St+1 − er�tSt , t = T − 1, . . . , 0.
(10.5)

Note that Eqs. (10.4) and (10.5) imply that both Bt and $t are not measurable at
any t < T , as they depend on the future. Respectively, their values today B0 and$0
will be random quantities with some distributions. For any given hedging strategy
{ut }Tt=0, these distributions can be estimated using Monte Carlo simulation, which
first simulatesN paths of the underlying S1 → S2 → . . .→ SN , and then evaluates
$t going backward on each path. Note that because the choice of a hedge strategy
does not affect the evolution of the underlying, such simulation of forward paths
should only be performed once, and then re-used for future evaluations of the hedge
portfolio under difference hedge strategy scenarios. Alternatively, the distribution
of the hedge portfolio value $0 can be estimated using real historical data for
stock prices, together with a pre-determined hedging strategy {ut }Tt=0 and a terminal
condition (10.2).

To summarize, the forward pass of Monte Carlo simulation is done by simulating
the process S1 → S2 → . . . → SN , while the backward pass is performed using
the recursion (10.5) which takes a prescribed hedge strategy, {ut }Tt=0, and back-
propagates uncertainty in the future into uncertainty today, via the self-financing
constraint (10.3) (Grau 2007) which serves as a “time machine for risk.”

2When transaction costs are neglected, taking uT = 0 simply means converting all stock into cash.
For more details on the choice uT = 0, see Grau (2007).

354 10 Applications of Reinforcement Learning

As a result of such “back-propagation of uncertainty” from the future to the
current time t , the option replicating portfolio $t at time t is a random quantity
with a certain distribution. The option price acceptable to the option seller would
then be determined by risk preferences of the option seller. The option price can,
for example, be taken to be the mean of the distribution of $t , plus some premium
for risk. Clearly, the option price can be determined only after the seller decides on
a hedging strategy, {ut }Tt=0, to be used in the future, which would be applied in the
same way (as a mapping) for any future value, {$t }Tt=0. The choice of an optimal
hedge strategy, {ut }Tt=0, will therefore be discussed next.

3.2 Optimal Hedging Strategy

Unlike the recursive calculation of the hedge portfolio value (10.5) which is
performed path-wise, optimal hedges are computed using a cross-sectional analysis
that operates simultaneously over all paths. This is because we need to learn a
hedging strategy, {ut }Tt=0, which would apply to all states that might be encountered
in the future, but each given path only produces one value St at time t . Therefore, to
compute an optimal hedge, ut (St), for a given time step t , we need cross-sectional
information on all concurrent paths.

As with the portfolio value calculation, the optimal hedges, {ut }Tt=0, are com-
puted backward in time, starting from t = T . However, because we cannot know
the future when we compute a hedge, for each time t , any calculation of an
optimal hedge, ut , can only condition on the information Ft available at time t .
This calculation is similar to the American Monte Carlo method of Longstaff and
Schwartz (2001).

•> Longstaff–Schwartz American Monte Carlo Option Pricing

While the objective of the American Monte Carlo method of Longstaff and
Schwartz (2001) is altogether different from the problem addressed in this
chapter (a risk-neutral valuation of an American option vs a real-measure
discrete-time hedging/pricing of a European option), the mathematical setting
is similar. Both problems look for an optimal strategy, and their solution
requires a backward recursion in combination with a forward simulation. Here
we provide a brief outline of their method.

The main idea of the LSM approach of Longstaff and Schwartz (2001) is
to treat the backward-looking stage of the security evaluation as a regression
problem formulated in a forward-looking manner which is more suited for

(continued)

3 Discrete-Time Black–Scholes–Merton Model 355

a Monte Carlo (MC) setting. The starting point is the (backward-looking)
Bellman equation, the most fundamental equation of the stochastic optimal
control (otherwise known as stochastic optimization). For an American
option on a financial underlying, the control variable is binary: “exercise”
or “not exercise.” The Bellman equation for this particular case produces the
continuation value, Ct(St), at time t as a function of the current underlying
value St :

Ct(St) = E
[
e−r�t max (ht+�t(St+�t), Ct+�t (St+�t))

∣∣Ft
]
. (10.6)

Here hτ (Sτ) is the option payoff at time τ . For example, for an American
put option, hτ (Sτ) = (K − Sτ)+. Note that for American options, the
continuation value should be estimated as a function Ct(x) of the value
x = Xt , as long we want to know whether it is larger or smaller than the
intrinsic value, H(Xt), for a particular realization Xt = x of the process Xt
at time t . The problem is, of course, that each Monte Carlo path has exactly
one value of Xt at time t . One way to estimate a function Ct(St) is to use
all paths, i.e. use the cross-sectional information. To this end, the one-step
Bellman equation (10.6) is interpreted as a regression of the form

max (ht+�t (St+�t), Ct+�t (St+�t)) = er�tCt (St)+ εt (St), (10.7)

where εt (St) is a random noise at time t with mean zero, which may in general
depend on the underlying value St at that time. Clearly (10.7) and (10.6) are
equivalent in expectations, as taking the expectation of both sides of (10.7),
we recover (10.6). Next the unknown function Ct(St) is expanded in a set of
basis functions:

Ct(x) =
∑

n

an(t)φn(x), (10.8)

for some particular choice of the basis {φn(x)}, and the coeffi-
cients an(t) are then calculated using the least squares regression of
max (ht+�t (St+�t), Ct+�t (St+�t)) on the value St of the underlying at time
t across all Monte Carlo paths.

The optimal hedge, u%(St), in this model is obtained from the requirement that the
variance of $t across all simulated paths at time t is minimized when conditioned
on the currently available cross-sectional information Ft , i.e.

356 10 Applications of Reinforcement Learning

u%t (St) = argmin
u

V ar [$t |Ft]
= argmin

u
V ar [$t+1 − ut�St |Ft] , t = T − 1, . . . , 0. (10.9)

Note the first expression in Eq. (10.9) implies that all uncertainty in $t is due to
uncertainty regarding the amount Bt needed to be held in the bank account at time
t in order to meet future obligations at the option maturity T . This means that an
optimal hedge should minimize the cost of a hedge capital for the option position at
each time step t .

The optimal hedge can be found analytically by setting the derivative of (10.9)
to zero. This gives

u%t (St) =
Cov ($t+1,�St |Ft)
V ar (�St |Ft) , t = T − 1, . . . , 0. (10.10)

This expression involves one-step expectations of quantities at time t+1, conditional
on time t . How they can be computed depends on whether we deal with a continuous
or a discrete state space. If the state space is discrete, then such one-step conditional
expectations are simply finite sums involving transition probabilities of an MDP
model. If, on the other hand, we work in a continuous-state setting, these conditional
expectations can be calculated in a Monte Carlo setting by using expansions in basis
functions, similar to the LSMC method of Longstaff and Schwartz (2001), or real-
measure MC methods of Grau (2007), Petrelli et al. (2010), Potters et al. (2001).

In our exposition below, we use a general notation as in Eq. (10.10) to denote
similar conditional expectations where Ft denotes cross-sectional information set
at time t , which lets us keep the formalism general enough to handle both cases of
a continuous and a discrete state spaces, and discuss simplifications that arise in a
special case of a discrete-state formulation separately, whenever appropriate.

3.3 Option Pricing in Discrete Time

We start with the notion of a fair option price Ĉt defined as a time-t expected value
of the hedge portfolio $t :

Ĉt = Et [$t |Ft] . (10.11)

Using Eq. (10.5) and the tower law of conditional expectations, we obtain

Ĉt = Et

[
e−r�t$t+1

∣∣Ft
]− ut (St)Et [�St |Ft]

= Et

[
e−r�tEt+1 [$t+1|Ft+1]

∣∣Ft
]− ut (St)Et [�St |Ft] (10.12)

= Et

[
e−r�t Ĉt+1

∣∣∣Ft
]
− ut (St)Et [�St |Ft] , t = T − 1, . . . , 0.

3 Discrete-Time Black–Scholes–Merton Model 357

Note that we can similarly use the tower law of conditional expectations to express
the optimal hedge in terms of Ĉt+1 instead of $t+1:

u%t (St) =
Cov ($t+1,�St |Ft)
V ar (�St |Ft) =

Cov
(
Ĉt+1,�St

∣∣∣Ft
)

V ar (�St |Ft) . (10.13)

If we now substitute (10.13) into (10.12) and re-arrange terms, we can put the
recursive relation for Ĉt in the following form:

Ĉt = e−r�tEQ̂

[
Ĉt+1

∣∣∣Ft
]
, t = T − 1, . . . , 0, (10.14)

where Q̂ is a signed measure with transition probabilities

q̃ (St+1| St) = p (St+1| St)
[

1− (�St − Et [�St])Et [�St]

V ar (�St |Ft)
]
, (10.15)

and where p (St+1| St) are transition probabilities under the physical measure P.
Note that for sufficiently large moves of�St , this expression may become negative.
This means that Q̂ is not a genuine probability measure, but rather only a signed
measure (a signed measure, unlike a regular measure, can take both positive and
negative values).

A potential for a negative fair option price, Ĉt , is a well-known property
of quadratic risk minimization schemes (Cerný and Kallsen 2007; Föllmer and
Schweizer 1989; Grau 2007; Potters et al. 2001; Schweizer 1995). However, we
note that the “fair” (expected) option price (10.11) is not a price a seller of the
option should charge. The actual fair risk-adjusted price is given by Eq. (10.16)
below, which can always be made non-negative by a proper level of risk-aversion λ
which is defined by the seller’s risk preferences.3

The reason why the fair option price is not yet the price that the option seller
should charge for the option is that she is exposed to the risk of exhausting the bank
account Bt at some time in the future, after any fixed amount B̂0 = E0 [B0] is paid
into the bank account at time t = 0 upon selling the option. If necessary, the option
seller would need to add cash to the hedge portfolio and she has to be compensated
for such a risk. One possible specification of a risk premium, that the dealer has
to add on top of the fair option price, is her own optimal ask price to add to the
cumulative expected discounted variance of the hedge portfolio along all time steps
t = 0, . . . , N , with a risk-aversion parameter λ:

3If it is desired to have non-negative option prices for arbitrary levels of risk-aversion, the
method developed below can be generalized by using non-quadratic utility functions instead of the
quadratic Markowitz utility. This would incur a moderate computational overhead of numerically
solving a convex optimization problem at each time step, instead of a quadratic optimization that
is solved semi-analytically.

358 10 Applications of Reinforcement Learning

C
(ask)
0 (S, u) = E0

[
$0 + λ

T∑

t=0

e−rtV ar [$t |Ft]
∣∣∣∣∣ S0 = S, u0 = u.

]
(10.16)

In order to proceed further, we first note that the problem of minimization of a fair
(to the dealer) option price (10.16) can be equivalently expressed as the problem of
maximization of its negative Vt = −C(ask)t , where

Vt (St) = Et

[
−$t − λ

T∑

t ′=t
e−r(t ′−t)V ar [$t ′ |Ft ′]

∣∣∣∣∣Ft

]
. (10.17)

Example 10.8 Option pricing with non-quadratic utility functions

The fact that the “fair” option price, Ĉt , can become negative when price
fluctuations are large is attributed to the non-monotonicity of the Markowitz
quadratic utility. Non-monotonicity violates the Von Neumann–Morgenstern
conditions U ′(a) ≥ 0, U ′′(a) ≤ 0 on a utility function U(a) of a rational
investor. While this problem with the quadratic utility function can be resolved
by adding a risk premium to the fair option price, this may require that the
risk-aversion parameter, λ, exceeds some minimal value. We can obtain non-
negative option prices with arbitrary values of risk-aversion if, instead of
a quadratic utility, we use utility functions that satisfy the Von Neumann-
Morgenstern conditions. In particular, one popular choice is given by the
exponential utility function

U(X) = − exp(−γX), (10.18)

where γ is a risk-aversion parameter whose meaning is similar to parameter
ρ in the quadratic utility. As shown in Halperin (2018), the hedges and prices
corresponding to the quadratic risk minimization scheme can be obtained with
the exponential utility in the limit of a small risk-aversion γ → 0, alongside
calculable corrections via an expansion in powers of γ .

Note that while the idea of adding an option price premium proportional
to the variance of the hedge portfolio as done in Eq. (10.16) was initially sug-
gested on the intuitive grounds by Potters et al. (2001), a utility-based approach
presented in Halperin (2018) actually derives it as a quadratic approximation
to a utility-based option price, which also establishes an approximate relation
between a risk-aversion parameter λ of the quadratic risk optimization and a
parameter γ of the exponential utility U(X) = − exp(−γX):

λ (1

2
γ. (10.19)

3 Discrete-Time Black–Scholes–Merton Model 359

3.4 Hedging and Pricing in the BS Limit

The framework presented above provides a smooth transition to the strict BS limit
�t → 0. In this limit, the BSM model dynamics under the physical measure P

is described by a continuous-time geometric Brownian motion with a drift, μ, and
volatility, σ :

dSt

St
= μdt + σdWt , (10.20)

whereWt is a standard Brownian motion.
Consider first the optimal hedge strategy (10.13) in the BS limit �t → 0. Using

the first-order Taylor expansion

Ĉt+1 = Ct + ∂Ct
∂St

�St +O (�t) (10.21)

in (10.13), we obtain

uBSt (St) = lim
�t→0

u%t (St) =
∂Ct

∂St
, (10.22)

which is the correct optimal hedge in the continuous-time BSM model.
To find the continuous-time limit of the option price, we first compute the limit

of the second term in Eq. (10.12):

lim
�t→0

ut (St)Et [�St |Ft] = lim
dt→0

uBSt St (μ− r)dt = lim
dt→0

(μ− r)St ∂Ct
∂St

dt.

(10.23)
To evaluate the first term in Eq. (10.12), we use the second-order Taylor expansion:

Ĉt+1 = Ct + ∂Ct
∂t
dt + ∂Ct

∂St
dSt + 1

2

∂2Ct

∂S2
t

(dSt)
2 + . . . (10.24)

= Ct + ∂Ct
∂t
dt + ∂Ct

∂St
St (μdt + σdWt)

+ 1

2

∂2Ct

∂S2
t

S2
t

(
σ 2dW 2

t + 2μσdWtdt
)
+O

(
dt2

)
.

Substituting Eqs. (10.23) and (10.24) into Eq. (10.12), using E [dWt] = 0 and
E
[
dW 2

t

] = dt , and simplifying, we find that the stock drift μ under the physical
measure P drops out from the problem, and Eq. (10.12) becomes the celebrated
Black–Scholes equation in the limit dt → 0:

∂Ct

∂t
+ rSt ∂Ct

∂St
+ 1

2
σ 2S2

t

∂2Ct

∂S2
t

− rCt = 0. (10.25)

360 10 Applications of Reinforcement Learning

Therefore, if the stock price is log-normal, both our hedging and pricing formulae
become the original formulae of the Black–Scholes–Merton model in the strict limit
�t → 0.

•? Multiple Choice Question 1

Select all the following correct statements:

a. In the Black–Scholes limit�t → 0, the optimal hedge ut is equal to the BS delta
∂2Ct
∂S2
t

.

b. In the Black–Scholes limit�t → 0, the optimal hedge ut is equal to the BS delta
∂Ct
∂St

.
c. The risk-aversion parameter λ drops from the problem of option pricing and

hedging in the limit �t → 0.
d. For finite �t , the optimal hedge ut depends on λ.

4 The QLBS Model

We shall now re-formulate and generalize the discrete-time BSM presented in
Sect. 3 using the framework of Markov Decision Processes (MDPs). The key idea
is that the risk-based pricing and hedging in discrete time can be understood as an
MDP problem with the value function to be maximized determined by Eq. (10.17).
Recall that we defined this value function as the negative of a risk-adjusted option
price for the option seller.

The availability of an MDP formulation for option pricing is beneficial in
multiple ways. First, it generalizes the BSM by providing a consistent option
pricing and hedging method which can take the expected return of the option into
decision making, and thus can be used by both types of market players that trade
options: hedgers and speculators. Previous incomplete-market models for option
pricing either do not ensure consistency of hedging and pricing, or do not allow
for incorporation of stock returns into analysis, or both.4 Therefore, the MDP
formulation improves the original discrete-time BSM model by making it more
generally applicable.

Second, the MDP formulation can be used to formulate new computational
approaches to option pricing and hedging. Particular methods are chosen depending
on assumptions on a data-generating stock price process. If we assume it is known,
so that both transition probabilities and a reward function are known, the option

4The standard continuous-time BSM model is equivalent to using a risk-neutral pricing measure
for option valuation. This approach only enables pure risk-based option hedging, which might be
suitable for a hedger but not for an option speculator.

4 The QLBS Model 361

pricing problem can be solved by solving a Bellman optimality equation using
dynamic programming or approximate dynamic programming. For the simplest one-
stock model formulation, we will show how it can be solved using a combination of
Monte Carlo simulation of the underlying process and a recursive semi-analytical
procedure that only involves matrix linear algebra (OLS linear regression) for
a numerical implementation. Similar methods based on approximate dynamic
programming can also be applied to more complex multi-dimensional extensions
of the model.

On the other hand, we might know only the general structure of an MDP model,
but not its specifications such as transition probability and reward function. In this
case, we should solve a backward recursion for the Bellman optimality equation
relying only on samples of data. This is the setting of reinforcement learning. It turns
out that a Bellman optimality equation for our MDP model, without knowing model
dynamics by relying only on data, can be easily solved (also semi-analytically, due
to a quadratic reward function) using Q-learning or its modifications.

A particular choice between different versions of Q-learning is determined by
how the state space is modeled. One can discretize the state and action spaces and
work with Markov chain approximation to continuous stock price dynamics, see,
e.g., Duan and Simonato (2001). If such a finite-state approximation to dynamics
converges to the actual continuous-state dynamics, optimal option prices and hedge
ratios computed with this approach also converge to their continuous-state limits. If
the log-normal model is indeed the data generation process, prices and hedge ratios
convergence to the classical BSM limits, once one further takes the limit �t →
0, λ→ 0 in resulting expressions.

Another possibility is to keep the state space continuous and work with approx-
imate methods to represent a Q-function. In particular, if linear architectures are
used, we can use the Fitted Q-iteration (FQI) method (Ernst et al. 2005). For non-
linear architectures, neural Q-iteration methods use neural networks to represent a
Q-function. Our presentation below is mostly focused on the continuous-state FQI
method for the basic single-stock option setting that uses a linear architecture and
a fixed set of basis functions. However, all formulas presented below can be easily
adjusted to a finite-state formulation by using “one-hot” basis functions.

4.1 State Variables

As stock price dynamics typically involve a deterministic drift term, we can consider
a change of state variable such that new, time-transformed variables would be
stationary, i.e. non-drifting. For a given stock price process St , we can achieve this
by defining a new variable Xt by the following relation:

Xt = −
(
μ− σ

2

2

)
t + log St . (10.26)

362 10 Applications of Reinforcement Learning

The advantage of this representation can be clearly seen in a special case when St is
a geometric Brownian motion (GBM). For this case, we obtain

dXt = −
(
μ− σ

2

2

)
dt + d log St = σdWt . (10.27)

Therefore, when the true dynamics of St is log-normal, Xt is a standard Brownian
motion, scaled by volatility, σ . If we know the value of Xt in a given MC scenario,
the corresponding value of St is given by the formula

St = eXt+
(
μ− σ2

2

)
t
. (10.28)

Note that as long as {Xt }Tt=0 is a martingale, i.e. E [dXt] = 0,∀t , on average it
should not run too far away from an initial valueX0 during the lifetime of an option.
The state variable, Xt , is time-uniform, unlike the stock price, St , which has a drift
term. But the relation (10.28) can always be used in order to map non-stationary
dynamics of St onto stationary dynamics of Xt . The martingale property of Xt is
also helpful for numerical lattice approximations, as it implies that a lattice should
not be too large to capture possible future variations of the stock price.

The change of variables (10.26) and its reverse (10.28) can also be applied when
the stock price dynamics are not GBM. Of course, the new state variable Xt will
not in general be a martingale in this case; however, it is intrinsically useful for
separating non-stationarity of the optimization task from non-stationarity of state
variables.

4.2 Bellman Equations

We start by re-stating the risk minimization procedure outlined above in Sect. 3.2 in
the language of MDP problems. In particular, time-dependent state variables, St , are
expressed in terms of time-homogeneous variablesXt using Eq. (10.28). In addition,
we will use the notation at = at (Xt) to denote actions expressed as functions of
time-homogeneous variables Xt . Actions, ut = ut (St), in terms of stock prices are
then obtained by the substitution

ut (St) = at (Xt (St)) = at
(

log St −
(
μ− σ

2

2

)
t

)
, (10.29)

where we have used Eq. (10.26).
To differentiate between the actual hedging decisions, at (xt), where xt is a

particular realization of a random state Xt at time t , and a hedging strategy that
applies for any state Xt , we introduce the notion of a time-dependent policy,
π (t,Xt). We consider deterministic policies of the form:

4 The QLBS Model 363

π : {0, . . . , T − 1} × X → A, (10.30)

which is a deterministic policy that maps the time t and the current state, Xt = xt ,
to the action at ∈ A:

at = π(t, xt). (10.31)

We start with the value maximization problem of Eq. (10.17), which we rewrite here
in terms of a new state variableXt , and with an upper index to denote its dependence
on the policy π :

V πt (Xt) = Et

[
−$t(Xt)− λ

T∑

t ′=t
e−r(t ′−t)V ar [$t ′(Xt ′)|Ft ′]

∣∣∣∣∣Ft

]
(10.32)

= Et

⎡

⎣−$t(Xt)− λV ar [$t]− λ
T∑

t ′=t+1

e−r(t ′−t)V ar [$t ′(Xt ′)|Ft ′]
∣∣∣∣∣∣
Ft

⎤

⎦ .

The last term in this expression, which involves a sum from t ′ = t + 1 to t ′ = T ,
can be expressed in terms of Vt+1 using the definition of the value function with a
shifted time argument gives:

−λEt+1

⎡

⎣
T∑

t ′=t+1

e−r(t ′−t)V ar [$t ′ |Ft ′]
⎤

⎦ = γ (Vt+1 + Et+1 [$t+1]) , γ := e−r�t .

(10.33)
Note that parameter γ , introduced in the last relation, is a discrete-time discount
factor which in our framework is fixed in terms of a continuous-time risk-free
interest rate r of the original BSM model.

Substituting this into (10.32), re-arranging terms and using the portfolio process
Eq. (10.5), we obtain the Bellman equation for the QLBS model:

V πt (Xt) = E
π
t

[
R(Xt , at , Xt+1)+ γV πt+1 (Xt+1)

]
, (10.34)

where the one-step time-dependent random reward is defined as follows5:

Rt(Xt , at , Xt+1) = γ at�St (Xt ,Xt+1)− λV ar [$t |Ft] , t = 0, . . . , T − 1 (10.35)

= γ at�St (Xt ,Xt+1)− λγ 2
Et

[
$̂2
t+1 − 2at�Ŝt $̂t+1 + a2

t

(
�Ŝt

)2
]
,

5Note that with our definition of the value function Eq. (10.32), it is not equal to a discounted sum
of future rewards.

364 10 Applications of Reinforcement Learning

where we used Eq. (10.5) in the second line, and $̂t+1 := $t+1 − $̄t+1, and
where $̄t+1 is the sample mean of all values of $t+1, and similarly for �Ŝt . For
t = T , we have RT = −λV ar [$T] , where $T is determined by the terminal
condition (10.2).

Note that Eq. (10.35) implies that the expected reward, Rt , at time step t is
quadratic in the action variable at :

Et [Rt (Xt , at , Xt+1)] = γ atEt [�St] (10.36)

− λγ 2
Et

[
$̂2
t+1 − 2at�Ŝt $̂t+1 + a2

t

(
�Ŝt

)2
]
.

This expected reward has the same mathematical structure as a risk-adjusted return
of a single-period Markowitz portfolio model for a special case of a portfolio made
of cash and a single stock. The first term gives the expected return from such
portfolio, while the second term penalizes for its quadratic risk. Note further that
when λ→ 0, the expected reward is linear in at , so it does not have a maximum.

As the one-step reward in our formulation incorporates variance of the hedge
portfolio as a risk penalty, this approach belongs to a class of risk-sensitive
reinforcement learning. With our method, risk is incorporated to a traditional risk-
neutral RL framework (which only aims at maximization of expected rewards) by
modifying the one-step reward function. A similar construction of a risk-sensitive
MDP by adding one-step variance penalties to a finite-horizon risk-neutral MDP
problem was suggested in a different context by Gosavi (2015).

The action-value function, or Q-function, is defined by an expectation of the
same expression as in Eq. (10.32), but conditioned on both the current state Xt and
the initial action a = at , while following a policy π afterwards:

Qπt (x, a) = Et [−$t(Xt)|Xt = x, at = a] (10.37)

− λEπt
[
T∑

t ′=t
e−r(t ′−t)V ar [$t ′(Xt ′)|Ft ′]

∣∣∣∣∣Xt = x, at = a
]
.

The optimal policy π%t (·|Xt) is defined as the policy which maximizes the value
function V πt (Xt), or alternatively and equivalently, maximizes the action-value
functionQπt (Xt , at):

π%t (Xt) = argmaxπ V
π
t (Xt) = argmaxat∈AQ

%
t (Xt , at). (10.38)

The optimal value function satisfies the Bellman optimality equation

V %t (Xt) = E
π%

t

[
Rt(Xt , ut = π%t (Xt),Xt+1)+ γV %t+1 (Xt+1)

]
. (10.39)

4 The QLBS Model 365

The Bellman optimality equation for the action-value function reads for t =
0, . . . , T − 1

Q%t (x, a) = Et

[
Rt (Xt , at , Xt+1)+ γ max

at+1∈A
Q%t+1 (Xt+1, at+1)

∣∣Xt = x, at = a
]
,

(10.40)
with a terminal condition at t = T

Q%T (XT , aT = 0) = −$T (XT)− λV ar [$T (XT)] , (10.41)

and where $T is determined by Eq. (10.2). Recall that V ar [·] here means variance
with respect to all Monte Carlo paths that terminate in a given state.

4.3 Optimal Policy

Substituting the expected reward (10.36) into the Bellman optimality equa-
tion (10.40), we obtain

Q%t (Xt , at) = γEt
[
Q%t+1

(
Xt+1, a

%
t+1

)+ at�St
]

(10.42)

− λγ 2
Et

[
$̂2
t+1 − 2at $̂t+1�Ŝt + a2

t

(
�Ŝt

)2
]
, t = 0, . . . , T − 1.

Note that the first term Et

[
Q%t+1

(
Xt+1, a

%
t+1

)]
depends on the current action

only through the conditional probability p (Xt+1|Xtat). However, the next-state
probability depends on the current action, at , only when there is a feedback loop of
trading in the option’s underlying stock on the stock price. In the present framework,
we follow the standard assumptions of the Black–Scholes model which assumes an
option buyer or seller does not produce any market impact.

Neglecting the feedback effect, the expectation Et

[
Q%t+1

(
Xt+1, a

%
t+1

)]
does

not depend on at . Therefore, with this approximation, the action-value function
Q%t (Xt , at) is quadratic in the action variable at .

•> The Black–Scholes Limit

Note that in the limit of zero risk-aversion λ→ 0, this equation becomes

Q%t (Xt , at) = γEt
[
Q%t+1

(
Xt+1, a

%
t+1

)+ at�St
]
. (10.43)

(continued)

366 10 Applications of Reinforcement Learning

As in this limit Q%t (Xt , at) = −$(Xt , at), using the fair option price
definition (10.11), we obtain

Ĉt = γEt
[
Ĉt+1 − at�St

]
. (10.44)

This equation coincides with Eq. (10.12), showing that the recursive for-
mula (10.42) correctly rolls back the BS fair option price Ĉt = Et [$t], which
corresponds to first taking the limit λ→ 0, and then taking the limit �t → 0
of the QLBS price (while using the BS delta for at in Eq. (10.44), see below).

As Q%t (Xt , at) is a quadratic function of at , the optimal action (i.e., the hedge)
a%t (St) that maximizesQ%t (Xt , at) is computed analytically:

a%t (Xt) =
Et

[
�Ŝt $̂t+1 + 1

2γ λ�St

]

Et

[(
�Ŝt

)2
] . (10.45)

If we now take the limit of this expression as �t → 0 by using Taylor expansions
around time t as in Sect. 3.4, we obtain (see also Problem 1):

lim
�t→0

a%t =
∂Ĉt

∂St
+ μ− r

2λσ 2

1

St
. (10.46)

Note that if we set μ = r , or alternatively if we take the limit λ→ ∞, it becomes
identical to the BS delta, while the finite-�t delta in Eq. (10.45) coincides in these
cases with a local risk-minimization delta given by Eq. (10.10). Both these facts
have related interpretations. The quadratic hedging that approximates option delta
(see Sect. 3.4) only accounts for risk of a hedge portfolio, while here we extend it by
adding a drift term Et [$t] to the objective function, see Eq. (10.17), in the style of
Markowitz risk-adjusted portfolio return analysis (Markowitz 1959). This produces
a linear first term in the quadratic expected reward (10.36). Resulting hedges are
therefore different from hedges obtained by only minimizing risk. Clearly, a pure
risk-focused quadratic hedge corresponds to either taking the limit of infinite risk-
aversion rate in a Markowitz-like risk-return analysis, or setting μ = r in the
above formula, to achieve the same effect. Both factors appearing in Eq. (10.46)
show these two possible ways to obtain pure risk-minimizing hedges from our
more general hedges. Such hedges can be applied when an option is considered
for investment/speculation, rather than only as a hedge instrument.

4 The QLBS Model 367

To summarize, the local risk-minimization hedge and fair price formulae of
Sect. 3 are recovered from Eqs. (10.45) and (10.42), respectively, if we first set
μ = r in Eq. (10.45), and then set λ = 0 in Eq. (10.42). After that, the continuous-
time BS formulae for these expressions are reproduced in the final limit �t → 0 in
these resulting expressions, as discussed in Sect. 3. Note that the order of taking the
limits is to start with the hedge ratio (10.46), set thereμ = r , then substitute this into
the price equation (10.42), and take the limit λ → 0 there, leading to Eq. (10.44).
The latter relation yields the Black–Scholes equation in the limit �t → 0 as shown
in Eq. (10.25). This order of taking the BS limit is consistent with the principle of
hedging first and pricing second, which is implemented in the QLBS model, as well
as consistent with market practices of working with illiquid options.

Substituting Eq. (10.45) back into Eq. (10.42), we obtain an explicit recursive
formula for the optimal action-value function for t = 0, . . . , T − 1:

Q%t (Xt , a
%
t) = γEt

[
Q%t+1(Xt+1, a

%
t+1)− λγ $̂2

t+1 + λγ
(
a%t (Xt)

)2
(
�Ŝt

)2
]
,

(10.47)
where a%t (Xt) is defined in Eq. (10.45). Note that this relation does not have the
right risk-neutral limit when we set λ→ 0 in it. The reason is that setting λ→ 0 in
Eq. (10.47) is equivalent to setting λ→ 0 in Eq. (10.45), but, as we just discussed,
this would not be the right way to reproduce the BS option price equation (10.25).
The correct procedure of taking the limit λ → 0 in the recursion for the Q-
function is given by Eq. (10.43) which implies that action at used there is obtained
as explained above by setting μ = r in Eq. (10.46).

The backward recursion given by Eqs. (10.45) and (10.47) proceeds all the way
backward starting at t = T − 1 to the present t = 0. At each time step, the problem
of maximization over possible actions amounts to convex optimization which is
done analytically using Eq. (10.45), which is then substituted into Eq. (10.47) for the
current time step. Note that such simplicity of action optimization in the Bellman
optimality equation is not encountered very often in other SOC problems. As
Eq. (10.47) provides the backward recursion directly for the optimal Q-function,
neither continuous nor discrete action space representation is required in our setting,
as the action in this equation is always just one optimal action. If we deal with
a finite-state QLBS model, then the values of the optimal time-t Q-function for
each node are obtained directly from sums of values of the next-step expectation in
various states at time t + 1, times one-step probabilities to reach these states.

The end result of the backward recursion for the action-value function is its
current value. According to our definition of the option price (10.16), it is exactly the
negative of the optimalQ-function. We therefore obtain the following expression for
the fair ask option price in our approach, which we can refer to as the QLBS option
price:

C
(QLBS)
t (St , ask) = −Qt

(
St , a

%
t

)
. (10.48)

368 10 Applications of Reinforcement Learning

It is interesting to note that while in the original BSM model the price and the hedge
for an option are given by two separate expressions, in the QLBS model, they are
parts of the same expression (10.48) simply because its option price is the (negative
of the) optimal Q-function, whose second argument is by construction the optimal
action—which corresponds to the optimal hedge in the setting of the QLBS model.

Equations (10.48) and (10.45) that give, respectively, the optimal price and the
optimal hedge for the option, jointly provide a complete solution of the QLBS model
(when the dynamics are known) that generalizes the classical BSM model towards
a non-asymptotic case �t > 0, while reducing to the latter in the strict BSM limit
�t → 0. In the next section, we will see how they can be implemented.

4.4 DP Solution: Monte Carlo Implementation

In practice, the backward recursion expressed by Eqs. (10.45) and (10.47) is solved
in a Monte Carlo setting, where we use N simulated (or real) paths for the state
variable Xt . In addition, we assume that we have chosen a set of basis functions
{ n(x)}.

We can then expand the optimal action (hedge) a%t (Xt) and optimal Q-function
Q%t

(
Xt, a

%
t

)
in basis functions, with time-dependent coefficients:

a%t (Xt) =
M∑

n

φnt n (Xt) , Q
%
t

(
Xt, a

%
t

) =
M∑

n

ωnt n (Xt) . (10.49)

Coefficients φnt and ωnt are computed recursively backward in time for t = T −
1, . . . , 0.

First, we find coefficients φnt of the optimal action expansion. This is found by
minimization of the following quadratic functional that is obtained by replacing the
expectation in Eq. (10.42) by a MC estimate, dropping all at -independent terms,
substituting the expansion (10.49) for at , and changing the overall sign to convert
maximization into minimization:

Gt(φ) =
NMC∑

k=1

⎛

⎝−
∑

n

φnt n

(
Xkt

)
�Skt + γ λ

(
$̂kt+1 −

∑

n

φnt n

(
Xkt

)
�Ŝkt

)2
⎞

⎠ .

(10.50)
This formulation automatically ensures averaging over market scenarios at time t .

Minimization of Eq. (10.50) with respect to coefficients φnt produces a set of
linear equations:

M∑

m

A(t)nmφmt = B(t)n , n = 1, . . . ,M (10.51)

4 The QLBS Model 369

where

A(t)nm :=
NMC∑

k=1

 n

(
Xkt

)
 m

(
Xkt

) (
�Ŝkt

)2

B(t)n :=
NMC∑

k=1

 n

(
Xkt

) [
$̂kt+1�Ŝ

k
t +

1

2γ λ
�Skt

]
(10.52)

which produces the solution for the coefficients of expansions of the optimal action
a%t (Xt) in a vector form:

φ%t = A−1
t Bt , (10.53)

where At and Bt are a matrix and vector, respectively, with matrix elements
given by Eq. (10.52). Note a similarity between this expression and the general
relation (10.45) for the optimal action.

Once the optimal action a%t at time t is found in terms of its coefficients (10.53),
we turn to the problem of finding coefficients ωnt of the basis function expan-
sion (10.49) for the optimal Q-function. To this end, the one-step Bellman optimality
equation (10.40) for at = a%t is interpreted as regression of the form

Rt
(
Xt, a

%
t , Xt+1

)+ γ max
at+1∈A

Q%t+1 (Xt+1, at+1) = Q%t (Xt , a%t)+ εt , (10.54)

where εt is a random noise at time t with mean zero. Clearly, taking expectations of
both sides of (10.54), we recover Eq. (10.40) with at = a%t ; therefore, Eqs. (10.54)
and (10.40) are equivalent in expectations when at = a%t .

Coefficients ωnt are therefore found by solving the following least square
optimization problem:

Ft (ω) =
NMC∑

k=1

(
Rt

(
Xt, a

%
t , Xt+1

)+ γ max
at+1∈A

Q%t+1 (Xt+1, at+1)−
M∑

n

ωnt n

(
Xkt

))2

.

(10.55)
Introducing another pair of a matrix Ct and a vector Dt with elements

C(t)nm :=
NMC∑

k=1

 n

(
Xkt

)
 m

(
Xkt

)
(10.56)

D(t)n :=
NMC∑

k=1

 n

(
Xkt

)(
Rt

(
Xt, a

%
t , Xt+1

)+ γ max
at+1∈A

Q%t+1 (Xt+1, at+1)

)
.

370 10 Applications of Reinforcement Learning

We obtain the vector-valued solution for optimal weights ωt defining the optimal
Q-function at time t :

ω%t = C−1
t Dt . (10.57)

Equations (10.53) and (10.57) computed jointly and recursively for t = T −1, . . . , 0
provide a practical implementation of the backward recursion scheme of Sect. 4.3 in
a continuous-space setting using expansions in basis functions. This approach can
be used to find optimal price and optimal hedge when the dynamics are known.

•? Multiple Choice Question 2

Select all the following correct statements:

a. The coefficients of expansion of the Q-function in the QLBS model are obtained
in the DP solution from the Bellman equation interpreted as a classification
problem, which is solved using deep learning.

b. The coefficients of expansion of the Q-function in the QLBS model are obtained
in the DP solution from the Bellman equation interpreted as a regression problem,
which is solved using least square minimization.

c. The DP solution requires rewards to be observable.
d. The DP solution computes rewards as a part of the hedge optimization.

4.5 RL Solution for QLBS: Fitted Q Iteration

When the transition probabilities and reward functions are not known, the QLBS
model can be solved using reinforcement learning. In this section, we demonstrate
this approach using a version of Q-learning that is formulated for continuous state-
action spaces and is known as Fitted Q Iteration.

Our setting assumes a batch-mode learning, when we only have access to some
historically collected data. The data available is given by a set of NMC trajectories
for the underlying stock St (expressed as a function of Xt using Eq. (10.26)), hedge
position at , instantaneous reward Rt , and the next-time value Xt+1:

F (n)t =
{(
X
(n)
t , a

(n)
t , R

(n)
t , X

(n)
t+1

)}T−1

t=0
, n = 1, . . . , NMC. (10.58)

We assume that such dataset is available either as a simulated data, or as a real
historical stock price data, combined with real trading data or artificial data that
would track the performance of a hypothetical stock-and-cash replicating portfolio
for a given option.

4 The QLBS Model 371

A starting point of the Fitted Q Iteration (FQI) (Ernst et al. 2005; Murphy 2005)
method is a choice of a parametric family of models for quantities of interest, namely
optimal action and optimal action-value function. We use linear architectures where
functions sought are linear in adjustable parameters that are next optimized to find
the optimal action and action-value function.

We use the same set of basis functions { n(x)} as we used above in Sect. 4.4. As
the optimal Q-functionQ%t (Xt , at) is a quadratic function of at , we can represent it
as an expansion in basis functions, with time-dependent coefficients parameterized
by a matrix Wt :

Q%t (Xt , at) =
(

1, at ,
1

2
a2
t

) ⎛

⎝
W11(t) W12(t) · · · W1M(t)

W21(t) W22(t) · · · W2M(t)

W31(t) W32(t) · · · W3M(t)

⎞

⎠

⎛

⎜⎝
 1(Xt)
...

 M(Xt)

⎞

⎟⎠

:= ATt Wt�(Xt) := ATt UW(t,Xt). (10.59)

Equation (10.59) is further re-arranged to convert it into a product of a parameter
vector and a vector that depends on both the state and the action:

Q%t (Xt , at) = ATt Wt�(X) =
3∑

i=1

M∑

j=1

(
Wt *

(
At ⊗�T (X)

))

ij

= Wt · vec
(

At ⊗�T (X)
)
:= Wt
 (Xt , at) . (10.60)

Here* and⊗ stand for an element-wise (Hadamard) and outer (Kronecker) product
of two matrices, respectively. The vector of time-dependent parameters Wt is
obtained by concatenating columns of matrix Wt , and similarly,
 (Xt , at) =
vec

(
At ⊗�T (X)

)
denotes a vector obtained by concatenating columns of the outer

product of vectors At and �(X).
Coefficients Wt can now be computed recursively backward in time for t =

T − 1, . . . , 0. To this end, the one-step Bellman optimality equation (10.40) is
interpreted as regression of the form

Rt (Xt , at , Xt+1)+ γ max
at+1∈A

Q%t+1 (Xt+1, at+1) = Wt
 (Xt , at)+ εt , (10.61)

where εt is a random noise at time t with mean zero. Equations (10.61) and (10.40)
are equivalent in expectations, as taking the expectation of both sides of (10.61),
we recover (10.40) with function approximation (10.59) used for the optimal Q-
functionQ%t (x, a).

Coefficients Wt are therefore found by solving the following least square
optimization problem:

372 10 Applications of Reinforcement Learning

Lt (Wt) =
NMC∑

k=1

(
Rt (Xt , at , Xt+1)+ γ max

at+1∈A
Q%t+1 (Xt+1, at+1)−Wt
 (Xt , at)

)2

.

(10.62)
Note that this relation holds for a general off-model, off-policy setting of the Fitted
Q Iteration method of RL.

Performing minimization, we obtain

W%
t = S−1

t Mt , (10.63)

where

S(t)nm :=
NMC∑

k=1

�n

(
Xkt , a

k
t

)
�m

(
Xkt , a

k
t

)
(10.64)

M(t)
n :=

NMC∑

k=1

�n

(
Xkt , a

k
t

)(
Rt

(
Xkt , a

k
t , X

k
t+1

)
+ γ max

at+1∈A
Q%t+1

(
Xkt+1, at+1

))

To perform the maximization step in the second equation in (10.64) analytically,
note that because coefficients Wt+1 and hence vectors UW(t + 1, Xt+1) :=
Wt+1�(Xt+1) (see Eq. (10.59)) are known from the previous step, we have

Q%t+1

(
Xt+1, a

%
t+1

) = U(0)W (t + 1, Xt+1)+ a%t+1U(1)W (t + 1, Xt+1)

+
(
a%t+1

)2

2
U(2)W (t + 1, Xt+1) . (10.65)

We emphasize here that while this is a quadratic expression in a%t+1, it would be
wrong to use a point of its maximum as a function of a%t+1 as such an optimal
value in Eq. (10.65). This would amount to using the same dataset to estimate
both the optimal action and the optimal Q-function, leading to an overestimation
of Q%t+1

(
Xt+1, a

%
t+1

)
in Eq. (10.64), due to Jensen’s inequality and convexity of

the max(·) function. The correct approach for using Eq. (10.65) is to input a value
of a%t+1 computed using the analytical solution Eq. (10.45) (implemented in the
sample-based approach in Eq. (10.53)), applied at the previous time step. Due to
the availability of the analytical optimal action (10.45), a potential overestimation
problem—a classical problem of Q-learning that is sometimes addressed using such
methods as Double Q-learning (van Hasselt 2010)—is avoided in the QLBS model,
leading to numerically stable results.

Equation (10.63) gives the solution for the QLBS model in a model-free and
off-policy setting, via its reliance on Fitted Q Iteration which is a model-free and
off-policy algorithm (Ernst et al. 2005; Murphy 2005).

4 The QLBS Model 373

•? Multiple Choice Question 3

Select all the following correct statements:

a. Unlike the classical Black–Scholes model, the discrete-time QLBS model explic-
itly prices mis-hedging risk of the option because it maximizes the Q-function
which incorporates mis-hedging risk as a penalty.

b. Counting by the number of parameters to learn, the RL setting for the QLBS
model has more unknowns, but also a higher dimensionality of data (more
features per observation) than the DP setting.

c. The BS solution is recovered from the RL solution in the limit �t → 0 and
λ→ 0.

d. The RL solution is recovered from the BS solution in the limit �t → ∞ and
λ→∞.

4.6 Examples

Here we illustrate the performance of the QLBS model using simulated stock price
histories St with the initial stock price S0 = 100, stock drift μ = 0.05, and volatility
σ = 0.15. Option maturity is T = 1 year, and a risk-free rate is r = 0.03. We
consider an ATM (“at-the-money”) European put option with strike K = 100. Re-
hedges are performed bi-weekly (i.e., �t = 1/24). We use N = 50, 000 Monte
Carlo scenarios of the stock price trajectory and report results obtained with two
MC runs (each having N paths), where the error reported is equal to one standard
deviation calculated from these runs. In our experiments, we use pure risk-based
hedges, i.e. omit the second term in the numerator in Eq. (10.45), for ease of
comparison with the BSM model.

We use 12 basis functions chosen to be cubic B-splines on a range of values of
Xt between the smallest and largest values observed in a dataset.

In our experiments below, we pick the Markowitz risk-aversion parameter λ =
0.001. This provides a visible difference of QLBS prices from BS prices, while
being not too far away from BS prices. The dependence of the ATM option price on
λ is shown in Fig. 10.1.

Simulated path and solutions for optimal hedges, portfolio values, and Q-
function values corresponding to the DP solution of Sect. 4.4 are illustrated in
Fig. 10.2.

The resulting QLBS ATM put option price is 4.90 ± 0.12 (based on two MC
runs), while the BS price is 4.53.

We first report results obtained with on-policy learning with λ = 0.001. In this
case, optimal actions and rewards computed as a part of a DP solution are used
as inputs to the Fitted Q Iteration algorithm of Sect. 4.5 and the IRL method of
Sect. 10.2, in addition to the paths of the underlying stock. Results of two MC

374 10 Applications of Reinforcement Learning

Fig. 10.1 The ATM put option price vs risk-aversion parameter. The time step is �t = 1/24. The
horizontal red line corresponds to the continuous-time BS model price. Error bars correspond to
one standard deviation of two MC runs

batches with Fitted Q Iteration algorithm of Sect. 4.5 are shown (respectively, in the
left and right columns, with a random selection of a few trajectories) in Fig. 10.3.
Similar to the DP solution, we add a unit matrix with a regularization parameter
of 10−3 to invert matrix Ct in Eq. (10.63). Note that because here we use on-
policy learning, the resulting optimal Q-function Q%t (Xt , at) and its optimal value
Q%t

(
Xt, a

%
t

)
are virtually identical in the graph. The resulting QLBS RL put price

is 4.90 ± 0.12 which is identical to the DP value. As expected, the IRL method of
Sect. 10.2 produces the same result.

In the next set of experiments we consider off-policy learning. The risk-aversion
parameter is λ = 0.001. To generate off-policy data, we multiply, at each time step,
optimal hedges computed by the DP solution of the model by a random uniform
number in the interval [1 − η, 1 + η], where 0 < η < 1 is a parameter controlling
the noise level in the data. We will consider the values of η = [0.15, 0.25, 0.35, 0.5]
to test the noise tolerance of our algorithms. Rewards corresponding to these sub-
optimal actions are obtained using Eq. (10.35). In Fig. 10.4 we show results obtained
for off-policy learning with 10 different scenarios of sub-optimal actions obtained
by random perturbations of a fixed simulated dataset. Note that the impact of sub-
optimality of actions in recorded data is rather mild, at least for a moderate level
of noise. This is as expected as long as Fitted Q Iteration is an off-policy algorithm.
This implies that when dataset is large enough, the QLBS model can learn even from
data with purely random actions. In particular, if the stock prices are log-normal, it
can learn the BSM model itself.

Results of two MC batches for off-policy learning with the noise parameter η =
0.5 with Fitted Q Iteration algorithm are shown in Fig. 10.5.

4 The QLBS Model 375

Fig. 10.2 The DP solution for the ATM put option on a subset of MC paths

4.7 Option Portfolios

Thus far we have only considered the problem of hedging and pricing of a single
European option by an option seller that does not have any pre-existing option
portfolio. Here we outline a simple generalization to the case when the option seller
does have such a pre-existing option portfolio, or alternatively if she seeks to sell a
few options simultaneously.

In this case, she is concerned with consistency of pricing and hedging of all
options in her new portfolio. In other words, she has to solve the notorious volatility
smile problem for her particular portfolio. Here we outline how she can solve it using
the QLBS model, illustrating the flexibility and data-driven nature of the model.
Such flexibility facilitates adaptation to arbitrary consistent volatility surfaces.

376 10 Applications of Reinforcement Learning

Fig. 10.3 The RL solution (Fitted Q Iteration) for on-policy learning for the ATM put option on a
subset of MC paths for two MC batches

Assume the option seller has a pre-existing portfolio of K options with market
prices C1, . . . , CK . All these options reference an underlying state vector (market)
Xt which can be high-dimensional such that each particular option Ci with i =
1, . . . , K references only one or a few components of market state Xt .

Alternatively, we can add vanilla option prices as components of the market state
Xt . In this case, our dynamic replicating portfolio would include vanilla options,
along with underlying stocks. Such hedging portfolio would provide a dynamic
generalization of static option hedging for exotics introduced by Carr et al. (1988).

We assume that we have a historical dataset F which includes N observations of
trajectories of tuples of vector-valued market factors, actions (hedges), and rewards
(compare with Eq. (10.58)):

4 The QLBS Model 377

Optimal option price vs noise in action data

5.4

5.2

5.0

4.8

4.6

4.4

4.2

4.0

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Noise level

O
pt

im
al

 o
pt

io
n

pr
ic

e

On-policy value = 5.02

Fig. 10.4 Means and standard deviations of option prices obtained with off-policy FQI learning
with data obtained by randomization of DP optimal actions by multiplying each optimal action
by a uniform random variable in the interval [1 − η, 1 + η] for η = [0.15, 0.25, 0.35, 0.5]. Error
bars are obtained with 10 scenarios for each value of η. The horizontal red line shows the value
obtained with on-policy learning corresponding to η = 0

F (n)t =
{(

X(n)t , a
(n)
t ,R

(n)
t ,X

(n)
t+1

)}T−1

t=0
, n = 1, . . . , N. (10.66)

We now assume that the option seller seeks to add to this pre-existing portfolio
another (exotic) option Ce (or alternatively, she seeks to sell a portfolio of options
C1, . . . , CK,Ce). Depending on whether the exotic option Ce was traded before in
the market or not, there are two possible scenarios. We shall analyze these scenarios
one by one.

In the first case, the exotic option Ce was previously traded in the market (by the
seller herself, or by someone else). As long as its deltas and related P&L impacts
marked by a trading desk are available, we can simply extend vectors of actions
a(n)t and rewards R(n)t in Eq. (10.66), and then proceed with the FQI algorithm of
Sect. 4.5 (or with the IRL algorithm of Sect. 10.2, if rewards are not available). The
outputs of the algorithm will be the optimal price Pt of the whole option portfolio,
plus optimal hedges for all options in the portfolio. Note that as long as FQI is an
off-policy algorithm, it is quite forgiving to human or model errors: deltas in the data
should not even be perfectly mutually consistent (see single-option examples in the
previous section). But of course, the more consistency in the data, the less data is
needed to learn an optimal portfolio price Pt .

Once the optimal time-zero value P0 of the total portfolio C1, . . . , CK,Ce is
computed, a market-consistent price for the exotic option is simply given by a
subtraction:

378 10 Applications of Reinforcement Learning

Fig. 10.5 The RL solution (Fitted Q Iteration) for off-policy learning with noise parameter η = 0.5
for the ATM put option on a subset of MC paths for two MC batches

Ce = P0 −
K∑

i=1

Ci. (10.67)

Note that by construction, the price Ce is consistent with all option prices
C1, . . . , CK and all their hedges, to the extent they are consistent between
themselves (again, this is because Q-learning is an off-policy algorithm).

Now consider a different case, when the exotic option Ce was not previously
traded in the market, and therefore there are no available historical hedges for this
option. This can be handled by the QLBS model in essentially the same way as in
the previous case. Again, because Q-learning is an off-policy algorithm, it means
that a delta and a reward of a proxy option C

′
e (that was traded before) to Ce could

be used in the scheme just described in lieu of their actual values for option Ce.

4 The QLBS Model 379

Consistent with common intuition, this will just slow down the learning, so that
more data would be needed to compute the optimal price and hedge for the exotic
Ce. On the other hand, the closer the traded proxy C

′
e to the actual exotic Ce the

option seller wants to hedge and price, the more it helps the algorithm on the data
demand side.

4.8 Possible Extensions

So far we have presented the QLBS model in its most basic setting where it is
applied to a single European vanilla option such as a put or call option. This
framework can be extended or generalized along several directions. Here we
overview them, in the order of increasing complexity of changes that would be
needed on top of the basic computational framework presented above.

The simplest extension of the basic QLBS setting is to apply it to European
options with a non-vanilla terminal payoff, e.g. to a straddle option. Clearly, the
only change needed to the basic QLBS setting in this case would be a different
terminal condition for the action-value function.

The second extension that is easy to incorporate in the basic QLBS setting are
early exercise features for options. This can be added to the QLBS model in much
the same way as they are implemented in the American Monte Carlo method of
Longstaff and Schwartz. Namely, in the backward recursion, at each time step where
an early option exercise is possible, the optimal action-value function is obtained by
comparing its value from the next time step continued to the current time step with
an intrinsic option value. The latter is defined as a payoff from an immediate exercise
of the option, see also Exercise 10.2.

One more possible extension involves capturing higher moments of the replicat-
ing portfolio. This assumes using a non-quadratic utility function. One approach is
to use an exponential utility function as was outlined above (see also in Halperin
(2018)). On the computational side, using a non-quadratic utility gives rise to the
need to solve a convex optimization problem at each time step, instead of quadratic
optimization.

The basic QLBS framework can also be extended by incorporating transaction
costs. This requires re-defining the state and action spaces in the problem. As in
the presence of transaction costs holding cash is not equivalent to holding a stock,
for this case we can use changes in the stock holding as action variables, while
the current stock holding and the stock market price should now be made parts of
a state vector. Depending on a functional model for transaction cost, the resulting
optimization problem can be either quadratic (if both the reward and transaction cost
functions are quadratic in action), or convex, if both these functions are convex.

Finally, the basic framework can be generalized to a multi-asset setting, including
option portfolios. The main challenge of such task would be to specify a good set
of basis functions. In multiple dimensions, this might be a challenging problem.
Indeed, a simple method to form a basis in a multi-dimensional space is to take a

380 10 Applications of Reinforcement Learning

direct (cross) product of individual bases, but this produces an exponential number
of basis functions. As a result, such a naive approach becomes intractable beyond a
rather low (< 10) number of dimensions.

Feature selection in high-dimensional spaces is a general problem in machine
learning, which is not specific to reinforcement learning or the QLBS approach.
The latter can benefit from methods developed in the literature. Rather than pursuing
this direction, we now turn to a different and equally canonical finance application,
namely the multi-period optimization of stock portfolios. We will show that such a
multi-asset setting may entirely avoid the need to choose basis functions.

5 G-Learning for Stock Portfolios

5.1 Introduction

In this section, we consider a multi-dimensional setting with a multi-asset invest-
ment portfolio. Specifically, we consider a stock portfolio, although similar methods
can be used for portfolios of other assets, including options.

As we mentioned above in this chapter, one challenge with scaling to multiple
dimensions with reinforcement learning is the computational cost and the problem
of under-sampling due to the curse of dimensionality. Another potential (and
related) issue is the pronounced importance of noise in data. With finite samples,
estimations of functions such as the action-value function or the policy function
with noisy high-dimensional data can become quite noisy themselves. Rather than
relying on deterministic policies as in Q-learning, we may prefer to work with
probabilistic methods where such noise can be captured.

A framework that is presented below is designed as a probabilistic approach that
scales to a very high-dimensional setting. Again, for ease of exposition, we consider
methods for quadratic (Markowitz) reward functions; however, the approach can be
generalized to include other reward (utility) functions.

Our approach is based on a probabilistic extension of Q-learning known in
the literature as “G-learning.” While G-learning was initially formulated for finite
MDPs, here we extend it to a continuous-state and continuous-action case. For
an arbitrary reward function, this requires relying on a set of pre-specified basis
functions, or using universal function approximators (e.g., neural networks) to
represent the action-value function. However, as we will see below, when a reward
function is quadratic, neither approach is needed, and the portfolio optimization
procedure is semi-analytic.

5 G-Learning for Stock Portfolios 381

5.2 Investment Portfolio

We adopt the notation and assumption of the portfolio model suggested by Boyd
et al. (2017). In this model, dollar values of positions in n assets i = 1, . . . , n are
denoted as a vector xt with components (xt)i for a dollar value of asset i at the
beginning of period t . In addition to assets xt , an investment portfolio includes a
risk-free bank cash account bt with a risk-free interest rate rf . A short position in
any asset i then corresponds to a negative value (xt)i < 0. The vector of mean of bid
and ask prices of assets at the beginning of period t is denoted as pt , with (pt)i > 0
being the price of asset i. Trades ut are made at the beginning of interval t , so that
asset values x+t immediately after trades are deterministic:

x+t = xt + ut . (10.68)

The total portfolio value is

vt = 1T xt + bt , (10.69)

where 1 is a vector of ones. The post-trade portfolio is therefore

v+t = 1T x+t + b+t = 1T (xt + ut)+ b+t = vt + 1T ut + b+t − bt . (10.70)

We assume that all rebalancing of stock positions are financed from the bank cash
account (additional cash costs related to the trade will be introduced below). This
imposes the following “self-financing” constraint:

1T ut + b+t − bt = 0, (10.71)

which simply means that the portfolio value remains unchanged upon an instanta-
neous rebalancing of the wealth between the stock and cash:

v+t = vt . (10.72)

The post-trade portfolio, v+t and cash are invested at the beginning of period t until
the beginning of the next period. The return of asset i over period t is defined as

(rt)i = (pt+1)i − (pt)i
(pt)i

, i = 1, . . . , n. (10.73)

Asset positions at the next time period are then given by

xt+1 = x+t + rt ◦ x+t , (10.74)

382 10 Applications of Reinforcement Learning

where ◦ denotes an element-wise (Hadamard) product, and rt ∈ R
n is the vector of

asset returns from period t to period t + 1. The next-period portfolio value is then
obtained as follows:

vt+1 = 1T xt+1 (10.75)

= (1+ rt)T x+t (10.76)

= (1+ rt)T (xt + ut). (10.77)

Given a vector of returns rt in period t , the change of the portfolio value in excess
of a risk-free growth is

�vt := vt+1 − (1+ rf)vt = (1+ rt)T (xt + ut)+ (1+ rf)b+t
−(1+ rf)1T xt − (1+ rf)bt

= (rr − rf1)T (xt + ut), (10.78)

where in the second equation we used Eq. (10.71).

5.3 Terminal Condition

As we generally assume a finite-horizon portfolio optimization with a finite
investment horizon T , we must supplement the problem with a proper terminal
condition at time T .

For example, if the investment portfolio should track a given benchmark portfolio
(e.g., the market portfolio), a terminal condition is obtained from the requirement
that at time T , all stock positions should be equal to the actual observed weights of
stocks in the benchmark xBT . This implies that xT = xBT . By Eq. (10.68), this fixes
the action uT at the last time step:

uT = xMT − xT−1. (10.79)

Therefore, action uT at the last step is deterministic and is not subject to optimiza-
tion that should be applied to T remaining actions uT−1, . . . ,u0.

Alternatively, the goal of the investment portfolio can be maximization of a risk-
adjusted cumulative reward of the portfolio. In this case, an appropriate terminal
condition could be xT = 0, meaning that any remaining long stock positions should
be converted to cash at time T .

5 G-Learning for Stock Portfolios 383

5.4 Asset Returns Model

We assume the following linear specification of one-period excess asset returns:

rt − rf1 = Wzt −MT ut + εt , (10.80)

where zt is a vector of predictors with factor loading matrix W, M is a matrix of
permanent market impacts with a linear impact specification, and εt is a vector of
residuals with

E [εt] = 0, V [εt] = �r, (10.81)

where E [·] denotes an expectation with respect to the physical measure P.
Equation (10.80) specifies stochastic returns rt , or equivalently the next-step

stock prices, as driven by external signals zt , control (action) variables ut , and
uncontrollable noise εt .

Though they enter “symmetrically” in Eq. (10.80), two drivers of returns zt and
ut play entirely different roles. While signals zt are completely external for the
agent, actions ut are controlled degrees of freedom. In our approach, we will be
looking for optimal controls ut for the market-wise portfolio. When we set up a
proper optimization problem, we solve for an optimal action ut . As will be shown
in this section, this optimal control turns out to be a linear function of xt , plus noise.

5.5 Signal Dynamics and State Space

Our approach is general and works for any set of predictors zt that might be relevant
at the time scale of portfolio rebalancing periods�t . For example, for daily portfolio
trading with time steps �t (1/250, predictors zt may include news and various
market indices such as VIX and MSCI indices. For portfolio trading on monthly
or quarterly steps, additional predictors can include macroeconomic variables. In
the opposite limit of intra-day or high-frequency trading, instead of macroeconomic
variables, variables derived from the current state of the limit order book (LOB)
might be more useful.

As a general rule, a predictor zt may be of interest if it satisfies three require-
ments: (i) it correlates with equity returns, (ii) is predictable itself, to a certain degree
(e.g., it can be a mean-reverting process); and (iii) its characteristic times τ are larger
than the time step�t . In particular, for a mean-reverting signal zt , a mean reversion
parameter κ gives rise to a characteristic time scale τ (1/κ .

The last requirement simply means that if τ , �t and the mean level of zt
is zero, then fluctuations of zt will be well described by a stationary white noise
process, and thus will be indistinguishable from the white noise term that is already
present in Eq. (10.80). It is for this reason that it would be futile to, e.g., include

384 10 Applications of Reinforcement Learning

any features derived from the LOB for portfolio construction designed for monthly
rebalancing.

For dynamics of signals zt , similar to Garleanu and Pedersen (2013), we will
assume a simple multivariate mean-reverting Ornstein–Uhlenbeck (OU) process for
a K-component vector zt :

zt+1 = (I−) ◦ zt + εzt , (10.82)

where εzt ∼ N (0, �z) is the noise term, and is a diagonal matrix of mean
reversion rates.

It is convenient to form an extended state vector yt of size N + K by
concatenating vectors xt and zt :

yt =
[

xt
zt

]
. (10.83)

The extended vector, yt , describes a full state of the system for the agent that has
some control of its x-component, but no control of its z-component.

5.6 One-Period Rewards

We first consider an idealized case when there are no costs of taking action ut at
time step t . An instantaneous random reward received upon taking such action is
obtained by substituting Eq. (10.80) in Eq. (10.78):

R
(0)
t (yt ,ut) =

(
Wzt −MT ut + εt

)T
(xt + ut) . (10.84)

In addition to this reward that would be obtained in an ideal friction-free market,
we must add (negative) rewards received due to instantaneous market impact and
transaction fees.6 Furthermore, we must include a negative reward due to risk in
a newly created portfolio position at time t + 1. Following Boyd et al. (2017),
we choose a simple quadratic measure of such risk penalty, as the variance of the
instantaneous reward (10.84) conditional on the new state xt +ut , multiplied by the
risk-aversion parameter λ:

R
(risk)
t (yt ,ut) = −λV

[
R
(0)
t (yt ,ut)

∣∣∣ xt + ut
]
= −λ(xt + ut)T �r(xt + ut).

(10.85)
To specify negative rewards (costs) of an instantaneous market impact and trans-
action costs, it is convenient to represent each action uti as a difference of two
non-negative action variables u+t i , u

−
t i ≥ 0:

6We assume no short sale positions in our setting, and therefore do not include borrowing costs.

5 G-Learning for Stock Portfolios 385

uti = u+t i − u−t i , |uti | = u+t i + u−t i , u+t i , u−t i ≥ 0, (10.86)

so that uti = u+t i if uti > 0 and uti = −u−t i if uti < 0. The instantaneous market
impact and transaction costs are then given by the following expressions:

R
(impact)
t (yt ,ut) = −xTt �

+u+t − xTt �
−u−t − xTt ϒzt

R
(f ee)
t (yt ,ut) = −ν+T u+t − ν−T u−t . (10.87)

Here �+, �−, ϒ and ν+, ν− are, respectively, matrix-valued and vector-valued
parameters which in the simplest case can be parameterized in terms of single
scalars multiplied by unit vectors or matrices.

Combining Eqs. (10.84, (10.85), (10.87), we obtain our final specification of a
risk- and cost-adjusted instantaneous reward function for the problem of optimal
portfolio liquidation:

Rt(yt ,ut) = R(0)t (yt ,ut)+ R(risk)t (yt ,ut)+ R(impact)t (yt ,ut)+ R(f ee)t (yt ,ut).
(10.88)

The expected one-step reward given action ut = u+t − u−t is given by

R̂t (yt ,ut) = R̂(0)t (yt ,ut)+ R(risk)t (yt ,ut)+ R(impact)t (yt ,ut)+ R(f ee)t (yt ,ut),
(10.89)

where

R̂
(0)
t (yt ,ut) = Et,u

[
R
(0)
t (yt ,ut)

]
=
(

Wzt −MT (u+t − u−t)
)T (

xt + u+t − u−t
)
,

(10.90)
and where Et,u [·] := E [·|yt ,ut] denotes averaging over next-periods realizations
of market returns.

Note that the one-step expected reward (10.89) is a quadratic form of its inputs.
We can write it more explicitly using vector notation:

R̂(yt , at) = yTt Ryyyt + aTt Raaa+ aTt Rayyt + aTt Ra, (10.91)

where

at =
(

u+t
u−t

)
, Raa =

[−M− λ�r M+ λ�r
M+ λ�r −M− λ�r

]
, Ryy =

[−λ�r W− ϒ
0 0

]
,

Ray =
[[−M− 2λ�r − �+

M+ 2λ�r − �−
]
,

[
W
W

]]
, Ra = −

[
ν+
ν+

]
. (10.92)

386 10 Applications of Reinforcement Learning

5.7 Multi-period Portfolio Optimization

Multi-period portfolio optimization is equivalently formulated either as maximiza-
tion of risk- and cost-adjusted returns, as in the Markowitz portfolio model, or as
minimization of risk- and cost-adjusted trading costs. The latter specification is
usually used in problems of optimal portfolio liquidation.

The multi-period risk- and cost-adjusted reward maximization problem is defined
as

maximize Et

[∑T−1
t ′=t γ t

′−t R̂t ′(yt ′ , at ′)
]

(10.93)

where R̂t (yt , at) = yTt Ryyyt + aTt Raaa+ aTt Rayyt + aTt Ra

w.r.t. at =
(

u+t
u−t

)
≥ 0,

subject to xt + u+t − u−t ≥ 0.

Here 0 < γ ≤ 1 is a discount factor. Note that the sum over future periods t ′ =
[t, . . . , T − 1] does not include the last period t ′ = T , because the last action is
fixed by Eq. (10.79).

The last constraint in Eq. (10.93) is appropriate for a long-only portfolio and can
be replaced by other constraints, for example, a constraint on the portfolio leverage.
With any (or both) of these constraints, the problem belongs to the class of convex
optimization with constraints, and thus can be solved in a numerically efficient way
(Boyd et al. 2017).

An equivalent cost-focused formulation is obtained by flipping the sign of the
above problem and re-phrasing it as minimization of trading costs Ĉt (yt , at) =
−R̂t (yt , at):

minimize Et

[∑T−1
t ′=t γ t

′−t Ĉt ′(yt ′ , at ′)
]

(10.94)

where Ĉt (yt , at) = −R̂t (yt , at), (10.95)

subject to the same constraints as in (10.93).

5.8 Stochastic Policy

Note that the multi-period portfolio optimization problem (10.93) assumes that an
optimal policy that determines actions at is a deterministic policy that can also be
described as a delta-like probability distribution

π(at |yt) = δ
(
at − a%t (yt)

)
, (10.96)

5 G-Learning for Stock Portfolios 387

where the optimal deterministic action a%t (yt) is obtained by maximization of the
objective (10.93) with respect to controls at .

But the actual trading data may be sub-optimal, or noisy at times, because of
model mis-specifications, market timing lags, human errors, etc. Potential presence
of such sub-optimal actions in data poses serious challenges, if we try to assume
deterministic policy (10.96) that assumes the action chosen is always an optimal
action. This is because such events should have zero probability under these model
assumptions, and thus would produce vanishing path probabilities if observed in
data.

Instead of assuming a deterministic policy (10.96), stochastic policies described
by smoothed distributions π(at |yt) are more useful for inverse problems such as the
problem of inverse portfolio optimization. In this approach, instead of maximization
with respect to deterministic policy/action at , we re-formulate the problem as
maximization over probability distributions π(at |yt):

maximize Eqπ

[∑T−1
t ′=t γ t

′−t R̂t (yt ′ , at ′)
]

(10.97)

where R̂(yt , at) = yTt Ryyyt + aTt Raaa+ aTt Rayyt + aTt Ra

w.r.t. qπ(x̄, ā|y0) = π(a0|y0)
∏T−1
t=1 π(at |yt)P (yt+1|yt , at)

subject to
∫
dat π (at |yt) = 1.

Here Eqπ [·] denotes expectations with respect to path probabilities defined accord-
ing to the third line in Eqs. (10.97).

Note that due to inclusion of a quadratic risk penalty in the risk-adjusted return,
R̂(xt , at), the original problem of risk-adjusted return optimization is re-stated in
Eq. (10.97) as maximizing the expected cumulative reward in the standard MDP
setting, thus making the problem amenable to a standard risk-neutral approach of
MDP models. Such simple risk adjustment based on one-step variance penalties was
suggested in a non-financial context by Gosavi (2015) and used in a reinforcement
learning based approach to option pricing in Halperin (2018, 2019).

Another comment that is due here is that a probabilistic approach to actions
in portfolio trading appears, on many counts, a more natural approach than a
formalism based on deterministic policies. Indeed, even in a simplest one-period
setting, because the Markowitz-optimal solution for portfolio weights is a function
of estimated stock means and covariances, they are in fact random variables. Yet
the probabilistic nature of portfolio optimization is not recognized as such in the
Markowitz-type single-period or multi-period optimization settings such as (10.93).
A probabilistic portfolio optimization formulation was suggested in a one-period
setting by Marschinski et al. (2007).

388 10 Applications of Reinforcement Learning

5.9 Reference Policy

We assume that we are given a probabilistic reference (or prior) policy π0(at |yt)
which should be decided upon prior to attempting the portfolio optimization (10.97).
Such policy can be chosen based on a parametric model, past historic data, etc. We
will use a simple Gaussian reference policy

π0(at |yt) = 1√
(2π)N

∣∣�p
∣∣

exp

(
−1

2

(
at − â(yt)

)T
�−1
p

(
at − â(yt)

))
,

(10.98)
where â(yt) can be a deterministic policy chosen to be a linear function of a state
vector yt :

â(yt) = Â0 + Â1yt . (10.99)

A simple choice of parameters in (10.98) could be to specify them in terms of only
two scalars â0, â1 as follows: Â0 = â01|A| and Â1 = â11|A|×|A|, where |A| is the
size of vector at , 1A and 1A×A are, respectively, a vector and matrix made of ones.
The scalars â0 and â1 would then serve as hyperparameters in our setting. Similarly,
covariance matrix �p for the prior policy can be taken to be a simple matrix with
constant correlations ρp and constant variances σp.

As will be shown below, an optimal policy has the same Gaussian form as the
prior policy (10.98), with updated parameters Â0, Â1, and �p. These updates will
be computed iteratively starting with their initial values defining the prior (10.98).
Respectively, updates at iteration k will be denoted by upper subscripts, e.g. Â(k)0 ,

Â(k)1 .
Furthermore, it turns out that a linear dependence on yt at iteration k, driven by

the value of Â(k)1 arises even if we set Â1 = Â(0)1 = 0 in the prior (10.98). Such
choice of a state-independent prior π0(at |yt) = π0(at), although not very critical,
reduces the number of free parameters in the model by two, as well as simplifies
some of the analyses below, and hence will be assumed going forward. It also
makes it unnecessary to specify the value of ȳt in the prior (10.98) (equivalently, we
can initialize it at zero). The final set of hyperparameters defining the prior (10.98)
therefore includes only three values of â0, ρa, �p.

5.10 Bellman Optimality Equation

Let

V %t (yt) = max
π(·|y)

E

[
T−1∑

t ′=t
γ t

′−t R̂t ′(yt ′ , at ′)
∣∣∣∣∣ yt

]
. (10.100)

5 G-Learning for Stock Portfolios 389

The optimal state-value function V %t (xt) satisfies the Bellman optimality equation

V %t (yt) = max
at
R̂t (yt , at)+ γEt,at

[
V %t+1(yt+1)

]
. (10.101)

The optimal policy π% can be obtained from V % as follows:

π%t (at |yt) = arg max
at
R̂t (yt , at)+ γEt,at

[
V %t+1(yt+1)

]
. (10.102)

The goal of reinforcement learning (RL) is to solve the Bellman optimality equation
based on samples of data. Assuming that an optimal value function is found by
means of RL, solving for the optimal policy π% takes another optimization problem
as formulated in Eq. (10.102).

5.11 Entropy-Regularized Bellman Optimality Equation

We start by reformulating the Bellman optimality equation using a Fenchel-type
representation:

V %t (yt) = max
π(·|y)∈P

∑

at∈At
π(at |yt)

(
R̂t (yt , at)+ γEt,at

[
V %t+1(yt+1)

])
. (10.103)

Here P = {
π : π ≥ 0,1T π = 1

}
denotes a set of all valid distributions. Equa-

tion (10.103) is equivalent to the original Bellman optimality equation (10.100),
because for any x ∈ R

n, we have maxi∈{1,...,n} xi = maxπ≥0,||π ||≤1 π
T x. Note that

while we use discrete notations for simplicity of presentation, all formulas below can
be equivalently expressed in continuous notations by replacing sums by integrals.
For brevity, we will denote the expectation Eyt+1|yt ,at [·] as Et,a [·] in what follows.

The one-step information cost of a learned policy π(at |yt) relative to a reference
policy π0(at |yt) is defined as follows (Fox et al. 2015):

gπ(y, a) = log
π(at |yt)
π0(at |yt) . (10.104)

Its expectation with respect to the policy π is the Kullback–Leibler (KL) divergence
of π(·|yt) and π0(·|yt):

Eπ

[
gπ(y, a)

∣∣ yt
] = KL[π ||π0](yt) :=

∑

at

π(at |yt) log
π(at |yt)
π0(at |yt) . (10.105)

The total discounted information cost for a trajectory is defined as follows:

390 10 Applications of Reinforcement Learning

Iπ (y) =
T∑

t ′=t
γ t

′−t
E
[
gπ(yt ′ , at ′)

∣∣ yt = y
]
. (10.106)

The free energy function Fπt (yt) is defined as the value function (10.103) augmented
by the information cost penalty (10.106):

Fπt (yt) = V πt (yt)−
1

β
Iπ(yt)

=
T∑

t ′=t
γ t

′−t
E

[
R̂t ′(yt ′ , at ′)− 1

β
gπ(yt ′ , at ′)

]
. (10.107)

Note that β in Eq. (10.107) serves as the “inverse temperature” parameter that
controls a tradeoff between reward optimization and proximity to the reference
policy, see below. The free energy, Fπt (yt), is the entropy-regularized value
function, where the amount of regularization can be tuned to the level of noise in the
data.7 The reference policy, π0, provides a “guiding hand” in the stochastic policy
optimization process that we now describe.

A Bellman equation for the free energy function Fπt (yt) is obtained
from (10.107):

Fπt (yt) = Ea|y
[
R̂t (yt , at)− 1

β
gπ(yt , at)+ γEt,a

[
Fπt+1(yt+1)

]]
. (10.108)

For a finite-horizon setting, Eq. (10.108) should be supplemented by a terminal
condition

FπT (yT) = R̂T (yT , aT)
∣∣∣
aT=−xT−1

(10.109)

(see Eq. (10.79)). Eq. (10.108) can be viewed as a soft probabilistic relaxation of
the Bellman optimality equation for the value function, with the KL information
cost penalty (10.104) as a regularization controlled by the inverse temperature β. In
addition to such a regularized value function (free energy), we will next introduce
an entropy regularized Q-function.

7Note that in physics, free energy is defined with a negative sign relative to Eq. (10.107). This
difference is purely a matter of a sign convention, as maximization of Eq. (10.107) can be re-stated
as minimization of its negative. Using our sign convention for the free energy function, we follow
the reinforcement learning and information theory literature.

5 G-Learning for Stock Portfolios 391

5.12 G-Function: An Entropy-Regularized Q-Function

Similar to the action-value function, we define the state-action free energy function
Gπ(x, a) as (Fox et al. 2015)

Gπt (yt , at) = R̂t (yt , at)+ γE
[
Fπt+1(yt+1)

∣∣ yt , at
]

(10.110)

= R̂t (yt , at)+ γEt,a
⎡

⎣
T∑

t ′=t+1

γ t
′−t−1

(
R̂t ′(yt ′ , at ′)− 1

β
gπ(yt ′ , at ′)

)⎤

⎦

= Et,a

[
T∑

t ′=t
γ t

′−t
(
R̂t ′(yt ′ , at ′)− 1

β
gπ(yt ′ , at ′)

)]
,

where in the last equation we used the fact that the first action at in the G-function
is fixed, and hence gπ(yt , at) = 0 when we condition on at = a.

If we now compare this expression with Eq. (10.107), we obtain the relation
between the G-function and the free energy Fπt (yt):

Fπt (yt) =
∑

at

π(at |yt)
[
Gπt (yt , at)−

1

β
log

π(at |yt)
π0(at |yt)

]
. (10.111)

This functional is maximized by the following distribution π(at |yt):

π(at |yt) = 1

Zt
π0(at |yt)eβGπt (yt ,at) (10.112)

Zt =
∑

at

π0(at |yt)eβGπt (yt ,at).

The free energy (10.111) evaluated at the optimal solution (10.112) becomes

Fπt (yt) =
1

β
logZt = 1

β
log

∑

at

π0(at |yt)eβGπt (yt ,at). (10.113)

Using Eq. (10.113), the optimal action policy can be written as follows :

π(at |yt) = π0(at |yt)eβ(Gπt (yt ,at)−Fπt (yt)). (10.114)

Equations (10.113), (10.114), along with the first form of Eq. (10.110) repeated here
for convenience:

Gπt (yt , at) = R̂t (yt , at)+ γEt,a
[
Fπt+1(yt+1)

∣∣ yt , at
]
, (10.115)

392 10 Applications of Reinforcement Learning

constitute a system of equations that should be solved self-consistently by backward
recursion for t = T − 1, . . . , 0, with terminal conditions

GπT (yT , aT) = R̂T (yT , aT) (10.116)

FπT (yT) = GπT (yT , aT) = R̂T (yT , aT).

Equations (10.113, 10.114, 10.115) (Fox et al. 2015) constitute a system of
equations that should be solved self-consistently for π(at |yt), Gπt (yt , at), and
Fπt (yt). Before proceeding with methods of solving it, we want to digress on an
alternative interpretation of entropy regularization in Eq. (10.107), that can be useful
later in the book.

•> Adversarial Interpretation of Entropy Regularization

A useful alternative interpretation of the entropy regularization term in
Eq. (10.107) can be suggested using its representation as a Legendre–Fenchel
transform of another function (Ortega and Lee 2014):

− 1

β

∑

at

π(at |yt) log
π(at |yt)
π0(at |yt) = min

C(at ,yt)

∑

at

(−π(at |yt) (1+ C(at , yt))

+ π0(at |yt)eβC(at ,yt)
)
, (10.117)

where C(at , yt) is an arbitrary function. Equation (10.117) can be verified by
direct minimization of the right-hand side with respect to C(at , yt).

Using this representation of the KL term, the free energy maximization
problem (10.111) can be re-stated as a max–min problem

F%t (yt)=max
π

min
C

∑

at

π(at |yt)
[
Gπt (yt , at)−C(at , yt)−1

]+π0(at |yt)eβC(at ,yt).
(10.118)

The imaginary adversary’s optimal cost obtained from (10.118) is

C%(at , yt) = 1

β
log

π(at |yt)
π0(at |yt) . (10.119)

Similar to Ortega and Lee (2014), one can check that this produces an
indifference solution for the imaginary game between the agent and its
adversarial environment where the total sum of the optimal G-function and the

(continued)

5 G-Learning for Stock Portfolios 393

optimal adversarial cost (10.119) is constant:G%t (yt , at)+C%(at , yt) = const,
which means that the game of the original agent and its adversary is in a Nash
equilibrium .

Therefore, portfolio optimization in a stochastic environment by a single
agent is mathematically equivalent to studying a Nash equilibrium in a two-
party game of our agent with an adversarial counterparty with an exponential
budget given by the last term in Eq. (10.118).

5.13 G-Learning and F-Learning

In the RL setting when rewards are observed, the system Eqs. (10.113, 10.114, 10.115)
can be reduced to one non-linear equation. Substituting the augmented free
energy (10.113) into Eq. (10.115), we obtain

Gπt (y, a) = R̂(yt , at)+ Et,a

⎡

⎣γ
β

log
∑

at+1

π0(at+1|yt+1)e
βGπt+1(yt+1,at+1)

⎤

⎦ .

(10.120)
This equation provides a soft relaxation of the Bellman optimality equation for
the action-value Q-function, with the G-function defined in Eq. (10.110) being
an entropy-regularized Q-function (Fox et al. 2015). The “inverse-temperature”
parameter β in Eq. (10.120) determines the strength of entropy regularization. In
particular, if we take β →∞, we recover the original Bellman optimality equation
for the Q-function. Because the last term in (10.120) approximates the max(·)
function when β is large but finite, Eq. (10.120) is known, for the special case of
a uniform reference policy π0, as “soft Q-learning”.

For finite values β < ∞, in a setting of reinforcement learning with observed
rewards, Eq. (10.120) can be used to specify G-learning (Fox et al. 2015): an
off-policy time-difference (TD) algorithm that generalizes Q-learning to noisy
environments where an entropy-based regularization might be needed. The G-
learning algorithm of Fox et al. (2015) was specified in a tabulated setting where
both the state and action space are finite. In our case, we deal with high-dimensional
continuous state and action spaces. Respectively, we cannot rely on a tabulated G-
learning and need to specify a functional form of the action-value function, or use
a non-parametric function approximation such as a neural network to represent its
values. An additional challenge is to compute a multi-dimensional integral (or a
sum) over all next-step actions in Eq. (10.120). Unless a tractable parameterization is
used for π0 and Gt , repeated numerical integration of this integral can substantially
slow down the learning.

394 10 Applications of Reinforcement Learning

•> G-Learning vs Q-Learning

– Q-learning is an off-policy method with a deterministic policy.
– G-learning is an off-policy method with a stochastic policy. Because

the G-learning operates with stochastic policies, it gives rise to gener-
ative models. G-learning can be considered as an entropy-regularized
Q-learning.

Another possible approach is to bypass the G-function (i.e., the entropy-regulated
Q-function) altogether, and proceed with the Bellman optimality equation for the
free energy F-function (10.107). In this case, we have a pair of equations for Fπt (yt)
and π(at |yt):

Fπt (yt) = Ea|x
[
R̂(yt , at)− 1

β
gπ(yt , at)+ γEt,a

[
Fπt+1(yt+1)

]]

π(at |yt) = 1

Zt
π0(at |yt)eR̂(yt ,at)+γEt,a

[
Fπt+1(yt+1)

]
. (10.121)

Here the first equation is the Bellman equation (10.108) for the F-function, and the
second equation is obtained by substitution of Eq. (10.115) into Eq. (10.112). Also
note that the normalization constant Zt in Eq. (10.121) is in general different from
the normalization constant in Eq. (10.112).

We will return to solutions of G-learning with continuous states and actions in
the next chapter where we will address inverse reinforcement learning.

•> G-Learning for Stationary Problems

For time-stationary (infinite-horizon) problems, the “soft Q-learning” (G-
learning) equation (10.120) becomes

(continued)

5 G-Learning for Stock Portfolios 395

Gπ(y, a) = R̂(y, a)+ γ
β

∑

y′
ρ(y′|y, a)

[
log

∑

a′
π0(a′|y′)eβGπ (y′,a′)

]

(10.122)
This is a non-linear integral equation. For example, if both the state and action
space are one-dimensional, the resulting integral equation is two-dimensional.
Therefore, computationally, G-learning for time-stationary problems amounts
to solution of a non-linear integral equation (10.122). Existing numerical
methods could be used to address this problem, see also Exercise 10.4.

5.14 Portfolio Dynamics with Market Impact

A state equation for the portfolio vector xt is obtained using Eqs. (10.74)
and (10.80):

xt+1 = xt + ut + rt ◦ (xt + ut)

= xt + ut +
(
rf1+Wzt −MT ut + εt

)
◦ (xt + ut) (10.123)

= (1+ rf)(xt + ut)+ diag (Wzt −Mut) (xt + ut)+ ε(xt ,ut)

Here we assumed that the matrix M of market impacts is diagonal with elements
μi , and set

M = diag (μi) , ε(xt ,ut) := εt ◦ (xt + ut) (10.124)

Eq. (10.123) shows that the dynamics are non-linear in controls ut due to the market
impact∼ M. More specifically, when friction parameters μi > 0, the state equation
is linear in xt , but quadratic in controls ut . In the limit μ→ 0, the dynamics become
linear. On the other hand, the reward (10.91) is quadratic for either case μi = 0 or
μi > 0.

The fact that the dynamics are non-linear (quadratic) when μi > 0 has far-
reaching implications both on the practical (computational) and theoretical side.
Before discussing the non-linear case, we want to first analyze a simpler case when
μi = 0, i.e. market impact effects are neglected, and the dynamics are linear.

When dynamics are linear while rewards are quadratic, the problem of optimal
portfolio management with a deterministic policy amounts to a well-known linear
quadratic regulator (LQR) whose solution is known from control theory. In the next
section we present a probabilistic version of the LQR problem that is particularly
well suited for dynamic portfolio optimization.

396 10 Applications of Reinforcement Learning

5.15 Zero Friction Limit: LQR with Entropy Regularization

When the market impact is neglected, so that μi = 0 for all i, the portfolio
optimization problem simplifies because dynamics become linear with the following
state equation:

xt+1 =
(
1+ rf +Wzt + εt

) ◦ (xt + ut). (10.125)

We can equivalently write it as follows:

xt+1 = At (xt + ut)+ (xt + ut) ◦ εt (10.126)

where

At = A(zt) = diag
(
1+ rf +Wzt

)
(10.127)

Unlike the previous section where we assumed proportional transaction costs, here
we assume convex transaction costs ηuTt Cut , where η is a transaction cost parameter
and C is a matrix which can be taken to be a diagonal unit matrix. We neglect other
costs such as holding costs. The expected one-step reward at time t is then given by
the following expression:

R̂t (xt ,ut) = (xt + ut)T Wzt − λ (xt + ut)T �r (xt + ut)− ηuTt Cut . (10.128)

If we assume that our problem is to maximize the risk-adjusted return of the
portfolio for a pre-specified time horizon T , then the natural terminal condition for
xT would be to set xT = 0, meaning that all stock positions should be converted
to cash at maturity of the portfolio. This implies that the last action is deterministic
rather than stochastic and is determined by the stock holding at time T − 1:

uT−1 = xT − xT−1 = −xT−1. (10.129)

The last reward is therefore a quadratic functional of xT−1:

R̂T−1 = −ηuTT−1CuT−1. (10.130)

As the last action is deterministic, optimization amounts to choosing the remaining
T − 1 portfolio adjustments u0, . . . ,uT−2.

We now show that reinforcement learning with G-learning can be solved semi-
analytically in this setting using Gaussian time-varying policies (GTVP) . We start
by specifying a functional form of the value function as a quadratic form of xt :

Fπt (xt) = xTt F(xx)t xt + xTt F(x)t + F (0)t , (10.131)

5 G-Learning for Stock Portfolios 397

where F(xx)t , F(x)t , F
(0)
t are parameters that depend on time both explicitly (for finite

horizon problems) and implicitly, via their dependence on the signals zt .
As for the last time step we have FπT−1(xT−1) = R̂T−1, using Eqs. (10.130)

and (10.131), we obtain the terminal conditions for coefficients in Eq. (10.131):

F(xx)T−1 = −ηC, F(x)T−1 = 0, F(0)T−1 = 0. (10.132)

For an arbitrary time step t = T − 2, . . . , 0, we use Eq. (10.126) and independence
of noise terms for xt and zt to compute the conditional expectation of the next-period
F-function in Eq. (10.115) as follows:

Et,a
[
Fπt+1(xt+1)

] = (xt + ut)T
(

ATt F̄(xx)t+1 At +�r ◦ F̄(xx)t+1

)
(xt + ut)

+ (xt + ut)T ATt F̄(x)t+1 + F̄(0)t+1, (10.133)

where F̄(xx)t+1 := Et

[
F(xx)t+1

]
, and similarly for F̄(x)t+1 and F̄(0)t+1. Importantly, this is a

quadratic function of xt and ut . Combining it with the quadratic reward R̂(xt , at)
in (10.131) in the Bellman equation (10.115), we see that the action-value function
Gπt (xt ,ut) should also be a quadratic function of xt and ut :

Gπt (xt ,ut) = xTt Q(xx)t xt + uTt Q(uu)t ut + uTt Q(ux)t xt + uTt Q(u)t + xTt Q(x)t +Q(0)t ,
(10.134)

where

Q(xx)t = −λ�r + γ
(

ATt F̄(xx)t+1 At +�r ◦ F̄(xx)t+1

)

Q(uu)t = −ηC+Q(xx)t

Q(ux)t = 2Q(xx)t (10.135)

Q(x)t = Wzt + γATt F̄(x)t+1

Q(u)t = Q(x)t

Q
(0)
t = γF (0)t+1.

Having computed the G-functionGπt (xt ,ut) in terms of its coefficients (10.135), the
F-function for the current step can be found using Eq. (10.113) which we repeat here
in terms of the original variables xt ,ut , and replacing summation by integration:

Fπt (xt) =
1

β
log

∫
π0(ut |xt)eβGπt (xt ,ut)dut . (10.136)

We assume that a reference policy π0(ut |xt) is Gaussian:

398 10 Applications of Reinforcement Learning

π0(ut |xt) = 1√
(2π)n

∣∣�p
∣∣
e−

1
2 (ut−ût)

T
�−1
p (ut−ût), (10.137)

where the mean value ût is a linear function of the state xt :

ût = ūt + v̄txt . (10.138)

Here ūt and v̄t are parameters that can be considered time-independent (so that the
time index can be omitted) in the prior distribution (10.137). The reason we keep
the time label is that, as we will see shortly, the optimal policy obtained from G-
learning with linear dynamics (10.126) is also a Gaussian that can be written in
the same form as (10.137) but with updated parameters ūt and v̄t that will become
time-dependent due to their dependence on signals zt .

If no constraints are imposed on ut , integration over ut in Eq. (10.136) with
a Gaussian reference policy π0 can be easily performed analytically as long
as Gπt (xt ,ut) is quadratic in ut .8 Using the n-dimensional Gaussian integration
formula gives:

∫
e−

1
2 xTAx+xT Bdnx =

√
(2π)n

|A| e
1
2 BT A−1B, (10.139)

where |A| denotes the determinant of matrix A. Using this relation to calculate the
integral in Eq. (10.136) and introducing auxiliary parameters

Ut = βQ(ux)t +�−1
p v̄t

Wt = βQ(u)t +�−1
p ūt (10.140)

̄p = −1
p − 2βQ(uu)t ,

we find that the resulting F -function has the same structure as in Eq. (10.131), where
the coefficients are now computed in terms of coefficients of the Q-function (see
Exercise 10.3):

Fπt (xt) = xTt F(xx)t xt + xTt F(x)t + F (0)t
F(xx)t = Q(xx)t + 1

2β

(
UTt ̄

−1
p Ut − v̄Tt −1

p v̄t
)

8As in the present formulation actions are constrained by the self-financing condition, an
independent Gaussian integration may produce inaccurate results. For a constrained version of
the integral with a constraint on the sum of variables, see Exercise 10.6. In the next section we will
present a case where an unconstrained Gaussian integration works better.

5 G-Learning for Stock Portfolios 399

F(x)t = Q(x)t + 1

β

(
UTt ̄

−1
p Wt − v̄Tt −1

p ūt
)

(10.141)

F(0)t = Q(0)t + 1

2β

(
WT
t ̄

−1
p Wt − ūTt −1

p ūt
)
− 1

2β

(
log

∣∣p
∣∣+ log

∣∣̄p
∣∣) .

Finally, the optimal policy for the given step can be found using Eq. (10.114) which
we again rewrite here in terms of the original variables xt ,ut :

π(ut |xt) = π0(ut |xt)eβ(Gπt (xt ,ut)−Fπt (xt)). (10.142)

As Gπt (xt ,ut) is a quadratic function of ut , this produces a Gaussian policy
π(ut |xt):

π(ut |xt) = 1
√
(2π)n

∣∣∣̃p
∣∣∣
e−

1
2 (ut−ũt−ṽtxt)

T
̃
−1
p (ut−ũt−ṽtxt), (10.143)

with updated parameters

̃
−1
p = −1

p − 2βQ(uu)t

ũt = ̃p

(
−1
p ūt + βQ(u)t

)
(10.144)

ṽt = ̃p

(
−1
p v̄t + βQ(ux)t

)
.

Therefore, policy optimization with the entropy-regularized LQR with signals
expressed by Eq. (10.142) amounts to the Bayesian update of the prior distribu-
tion (10.137) with parameters updates ūt , v̄t , p to the new values ũt , ṽt , ̃p
defined in Eqs. (10.144). These quantities depend on time via their dependence on
zt .

Note that the third of equations (10.144) indicates that even if we started with
v̄t = 0 (meaning a state-independent mean level in Eq. (10.137)), the optimal
policy has a mean that is linear in state xt as long as Q(ux)t �= 0. Therefore,
the entropy-regularized LQR produces a Gaussian optimal policy whose mean is
a linear function of the state xt . This provides a probabilistic generalization of a
regular (deterministic) LQR where an optimal policy itself is a linear function of the
state.

Another interesting point to note about the Bayesian update (10.144) is that
even if we start with time-independent values ūt , v̄t = ū, v̄, the updated values
ũt , ṽt will be time-dependent as parameters Q(ux)t and Q(u)t depend on time via
their dependence on signals zt , see Eqs. (10.135).

For a given time step t , the G-learning algorithm keeps iterating between the
policy optimization step that updates policy parameters according to Eq. (10.144)

400 10 Applications of Reinforcement Learning

for fixed coefficients of the F - and G-functions, and the policy evaluation step that
involves Eqs. (10.134, 10.135, 10.141) and solves for parameters of the F - and G-
functions given policy parameters.

At convergence of this iteration for time step t , Eqs. (10.134, 10.135, 10.141)
and (10.143) together solve one step of G-learning for the entropy-regularized linear
dynamics. The calculation then proceeds by moving to the previous step t → t − 1,
and repeating the calculation. To accelerate convergence, optimal parameters of the
policy at time t can be used as parameters of a prior distribution for time step t − 1.
The whole procedure is then continued all the way back to the present time. Note
that as parameters in Eq. (10.141) depend on the signals zt , their expected next-step
values will have to be computed as indicated in Eq. (10.133).

•? Multiple Choice Question 4

Select all the following correct statements:

a. In G-learning, the conventional action-value function and value function are
recovered from F- and G-functions in the limit β → 0.

b. In G-learning, the conventional action-value function and value function are
recovered from F- and G-functions in the limit β →∞.

c. Linearization of portfolio dynamics with G-learning is needed to get a locally
linear G-function and F-function.

d. Linearization of portfolio dynamics with G-learning is needed to get a locally
quadratic G-function and F-function.

5.16 Non-zero Market Impact: Non-linear Dynamics

As we just demonstrated, in the limit of vanishing market impact parameters,
dynamic portfolio optimization using G-learning with quadratic rewards and Gaus-
sian reference policies amounts to a probabilistic version of a linear quadratic
regulator (LQR) and provides a convenient and fast semi-analytical calculation
method to optimize an investment policy for a multi-asset and multi-period port-
folio. This provides a probabilistic and multi-period RL-based generalization of the
classical Markowitz portfolio optimization problem.

If we turn the market impact parameters μi on, this leads to drastic changes in
the problem: it is no longer analytically tractable due to non-linearity of dynamics
for μi > 0. The state equation in this case is

xt+1 = (1+ rf)(xt + ut)+ diag (Wzt −Mut) (xt + ut)+ ε(xt ,ut),

where M = diag (μi) and ε(xt ,ut) := εt ◦ (xt + ut) (see Eqs. (10.123), (10.124)).

6 RL for Wealth Management 401

When dynamics are non-linear, one possibility is to iteratively linearize the
dynamics, similar to the working of an extended Kalman filter. For problems with
deterministic policies, an iterative quadratic regulator (IQR) can be used to linearize
the dynamics around a reference path at each step of a policy iteration (Todorov and
Li 2005). Other methods can be applied when working with stochastic policies.
In particular, Halperin and Feldshteyn (2018) explore a variational EM algorithm
where Gaussian random hidden variables are used to linearize dynamics, providing
a probabilistic version of the IQR. Such approaches, needed when the dynamics are
non-linear, are more technically involved that the linear LQR case, and the reader is
referred to the literature for details.

Beyond and above of purely computational issues, non-linearity of dynamics
leads to important theoretical implications. The problem of optimal control is to find
the optimal action u%t as a function of the state xt . When this is done, the resulting
expression can be substituted back to obtain non-linear open-loop dynamics (i.e.,
the dynamics where action variables are substituted by their optimal values). As
will be discussed later in this book, the ensuing non-linearity of dynamics might
have important consequences for capturing the behavior of real markets.

6 RL for Wealth Management

6.1 The Merton Consumption Problem

Our two previous use cases for reinforcement learning in quantitative finance,
namely option pricing and dynamic portfolio optimization, operate with self-
financing portfolios. Recall that self-financing portfolios are asset portfolios that do
not admit cash injections or withdrawals at any point in a lifetime of a portfolio,
except at its inception and closing. For these classical financial problems, the
assumption of a self-financing portfolio is well suited and reasonably matches actual
financial practices.

There is yet another wide class of classical problems in finance where a self-
financing portfolio is not a good starting point for modeling. Financial planning
and wealth management are two good examples of such problems. Indeed, a typical
investor in a retirement plan makes periodic investments in the portfolio while being
employed and periodically draws from the account when in retirement. In addition
to adding or withdrawing capital to the portfolio, the investor can also re-balance
the portfolio by selling and buying different assets (e.g., stocks).

The problem of optimal consumption with an investment portfolio is frequently
referred to as the Merton consumption problem, after the celebrated work of Robert
Merton who considered this problem as a problem of continuous-time optimal
control with log-normal dynamics for asset prices (Merton 1971). As optimiza-
tion in problems involving cash injections instead of cash withdrawals formally
corresponds to a sign change of one-step consumption in the Merton formulation,

402 10 Applications of Reinforcement Learning

we can collectively refer to all types of wealth management problems involving
injections or withdrawals of funds at intermediate time steps as a generalized Merton
consumption problem. We shall begin with a simple example which involves a
combination of asset allocation and consumption under a specific choice of utility
of wealth and lifetime consumption.

Example 10.9 Discrete time Merton consumption with CRRA utility

To illustrate the basic setup, let us consider the problem of allocating wealth
between a risky asset and a risk-free asset, in addition to wealth consumption.
The optimal consumption problem is formulated in a discrete-time, finite-
horizon setting rather than the classical continuous-time approach of Merton
(1971). Following Cheung and Yang (2007), we will assume that the invest-
ment horizon T ∈ N is fixed. We further assume that at the beginning of each
time period, an investor can decide the allocation of wealth between the risky
asset and the level of consumption, which should be non-negative and less than
her total wealth at that time.

Denote the wealth of the investor at time t asWt , and the random return from
the risk assets in time period [t, t+1] is denoted as Rt . The time t consumption
level is denoted as ct ∈ [0,Wt]. After consumption, a proportion αt ∈ [0, 1]
of the remaining amount will be invested in the risky asset and the rest in the
risk-free asset. We refer to these constraints as the “budget constraints.” The
discrete-time wealth evolution equation is given by

Wt+t = (Wt − ct)[(1− αt)R�t + αtRf�t]. (10.145)

with an initial positive wealth W0 at time t = 0. The sequence of maps
(C, α) = {(c0, α0), . . . , (cT−1, αT−1)} that satisfies the budget constraints is
called the “investment-consumption strategy.”

The expected sum of the rewards for consumption (i.e., a utility of consump-
tion) with a terminal reward is used as a criterion to measure the performance
of an investment-consumption strategy. In RL, we are free to choose any
reward function which is concave in the actions. Writing down the optimization
problem:

max
(c0,α0),...,(CT−1,αT−1

E[
T−1∑

t=0

γ tR(Wt , (ct , αt),Wt+1)+ γ T R(WT)|W0 = w],
(10.146)

(continued)

6 RL for Wealth Management 403

Example 10.9 (continued)

the optimal investment strategy is given by

Vt (w) = max
(ct ,αt),...,(CT−1,αT−1

E[
T−1∑

s=t
γ s−tR(Ws, (cs, αs),Ws+1)+γ T−tR(WT)|W0 = w],

(10.147)
which can be solved from the Bellman Equation for the value function updates:

Vt (w) = max
(ct ,αt)

E[γVt+1(Wt+1)|Wt = w],∀t ∈ {0, . . . , T − 1}, (10.148)

and some terminal condition for VT (w). A common choice of utility function,
which leads to closed-form solutions, is to choose a constant relative risk
aversion (CRRA) utility function of the form U(x) = 1

γ ′ x
γ ′ , with γ ′ ∈ (0, 1).

Then the state function reduces to

Vt (w) = w
γ ′

γ ′
[
1+ (γ YHt)1/(1−γ ′)

]1−γ ′
, (10.149)

with optimal consumption, linear in the wealth:

ĉt (w) = w

(1+ (γ YtHt)1/(1−γ ′))
≤ w, (10.150)

where the expected returns of the fund under optimal allocation at time t are

Yt = E[(α∗t Rt + (1− α∗t)Rf)γ
′] (10.151)

and the recurrent variable is given by the recursion relation

Ht = 1+ (γ Yt+1Ht+1)
1/(1−γ ′), (10.152)

and we assume HT = 0. Note that there is a unique α∗t ∈ [0, 1] such that Yt is
maximized. To show that Yt is concave in α∗t , we see that

γ ′(γ − 1)′(α∗t E[Rt] + (1− α∗t)Rf)γ
′−2(E[Rt] − Rf)2 ≤ 0, (10.153)

(continued)

404 10 Applications of Reinforcement Learning

Example 10.9 (continued)

since γ ′(γ−1)′ < 0, (E[Rt]−Rf)2 ≥ 0, and (α∗t E[Rt]+(1−α∗t)Rf)γ ′−2 > 0
for non-negative risk-free rates and average stock returns. In the absence of
transaction costs, clearly when the expected return of the risky asset is above
Rf , we allocate the wealth to the risky asset and when the expected return is
below, we choose to entirely invest in the risk-free account.

We can therefore simplify the optimization problem under the CRRA utility
function to solve for the optimal consumption from Eq. (10.150). Figure 10.6
illustrates the optimal consumption under simulated stock prices. The optimal
allocation is not shown here but alternates between 0 and 1 depending on
whether the mean return of the risk asset is, respectively, above or below the
risk-free rate.

The analytic approach of Cheung and Yang (2007) in the above example is
limited to the choice of utility function and single asset portfolio. One can solve
the same problem with flexibility in the choice of utility functions using the LSPI
algorithm, but such an approach does not extend to higher dimensional portfolios.
We therefore turn to a G-learning approach which scales to high-dimensional
portfolios while providing some flexibility in the choice of utility functions.

In the following section, we will consider a class of wealth management
problems: optimization of a defined contribution retirement plan, where cash is
injected (rather than withdrawn) at each time step. Instead of relying on a utility
of consumption, along the lines of the approach just previously described, we
will adopt a more “RL-native” approach by directly specifying one-step rewards.
Another difference is that, as in the previous section, we define actions as absolute
(dollar-valued) changes of asset positions, instead of defining them in fractional
terms, as in the Merton approach. As we will see shortly, this enables a simple
transformation into an unconstrained optimization problem and provides a semi-
analytical solution for a particular choice of the reward function.

160

140

120

100

80

S
t

0 2 4 6 8 10
t

(a) (b)

t*

Wealth (W)
0 10 20 30 40 50

30

25

20

15

10

5

0

(o
pt

im
al

 c
on

su
m

pt
io

n)
c

Fig. 10.6 Stock prices are simulated using an Euler scheme over a one-year horizon. At each of
ten periods shown by ten separate lines, the optimal consumption is estimated using the closed-
form formula in Eq. (10.150). The optimal investment is monotonically increasing in time. (a)
Simulated stock prices. (b) Optimal consumption against wealth

6 RL for Wealth Management 405

6.2 Portfolio Optimization for a Defined Contribution
Retirement Plan

Here we consider a simplified model for retirement planning. We assume a discrete-
time process with T steps, so that T is the (integer-valued) time horizon. The
investor/planner keeps the wealth in N assets, with xt being the vector of dollar
values of positions in different assets at time t , and ut being the vector of changes
in these positions. We assume that the first asset with n = 1 is a risk-free bond, and
other assets are risky, with uncertain returns rt whose expected values are r̄t . The
covariance matrix of return is r of size (N − 1)× (N − 1). Note that our notation
in this section is different from the previous section where xt was used to denote a
vector of risky asset holding values.

Optimization of a retirement plan involves optimization of both regular contri-
butions to the plan and asset allocations. Let ct be a cash installment in the plan at
time t . The pair (ct ,ut) can thus be considered the action variables in a dynamic
optimization problem corresponding to the retirement plan.

We assume that at each time step t , there is a pre-specified target value P̂t+1 of
a portfolio at time t + 1. We assume that the target value P̂t+1 at step t exceeds the
next-step value Vt+1 = (1 + rt)(xt + ut) of the portfolio, and we want to impose
a penalty for under-performance relative to this target. To this end, we can consider
the following expected reward for time step t :

Rt(xt ,ut , ct) = −ct−λEt
[(
P̂t+1 − (1+ rt)(xt + ut)

)

+

]
−uTt �ut . (10.154)

Here the first term is due to an installment of amount ct at the beginning of time
period t , the second term is the expected negative reward from the end of the
period for under-performance relative to the target, and the third term approximates
transaction costs by a convex functional with the parameter matrix � and serves as
a L2 regularization.

The one-step reward (10.154) is inconvenient to work with due to the rectified
non-linearity (·)+ := max(·, 0) under the expectation. Another problem is that
decision variables ct and ut are not independent but rather satisfy the following
constraint:

N∑

n=1

utn = ct , (10.155)

which simply means that at every time step, the total change in all positions should
equal the cash installment ct at this time.

We therefore modify the one-step reward (10.154) in two ways: we replace
the first term using Eq. (10.155) and approximate the rectified non-linearity by a
quadratic function. The new one-step reward is

406 10 Applications of Reinforcement Learning

Rt(xt ,ut) = −
N∑

n=1

utn − λEt
[(
P̂t+1 − (1+ rt)(xt + ut)

)2
]
− uTt �ut .

(10.156)
The new reward function (10.156) is attractive on two counts. First, it explicitly
resolves the constraint (10.155) between the cash injection ct and portfolio alloca-
tion decisions, and thus converts the initial constrained optimization problem into an
unconstrained one. This differs from the Merton model where allocation variables
are defined as fractions of the total wealth, and thus are constrained by construction.
The approach based on dollar-measured actions both reduces the dimensionality
of the optimization problem and makes it unconstrained. When the unconstrained
optimization problem is solved, the optimal contribution ct at time t can be obtained
from Eq. (10.155).

The second attractive feature of the reward (10.156) is that it is quadratic in
actions ut and is therefore highly tractable. On the other hand, the well-known
disadvantage of quadratic rewards (penalties) is that they are symmetric, and
penalize both scenarios Vt+1 ' P̂t+1 and Vt+1 , P̂t+1, while in fact we only want
to penalize the second class of scenarios. To mitigate this drawback, we can consider
target values P̂t+1 that are considerably higher than the time-t expectation of the
next-period portfolio value. In what follows we assume this is the case, otherwise
the value of P̂t+1 can be arbitrary. For example, one simple choice could be to set
the target portfolio as the current portfolio growing with a fixed and sufficiently high
return.

We note that a quadratic loss specification relative to a target time-dependent
wealth level is a popular choice in the recent literature on wealth management.
One example is provided by Lin et al. (2019) who develop a dynamic optimization
approach with a similar squared loss function for a defined contribution retirement
plan. A similar approach that relies on a direct specification of a reward based on a
target portfolio level is known as “goal-based wealth management” (Browne 1996;
Das et al. 2018).

•> Goal-Based Wealth Management

Mean–variance Markowitz optimization remains one of the most commonly
used tools in wealth management. Portfolio objectives in this approach are
defined in terms of expected returns and covariances of asset in the portfolio,
which may not be the most natural formulation for retail investors. Indeed, the
latter typically seek specific financial goals for their portfolios. For example,
a contributor to a retirement plan may demand that the value of their portfolio

(continued)

6 RL for Wealth Management 407

at the age of his or her retirement be at least equal to, or preferably larger than,
some target value PT .

Goal-based wealth management offers some interesting perspectives into
optimal structuring of wealth management plans such as retirement plans or
target date funds. The motivation for operating in terms of wealth goals can be
more intuitive (while still tractable) than the classical formulation in terms of
expected excess returns and variances. To see this, let VT be the final wealth
in the portfolio, and PT be a certain target wealth level at the horizon T . The
goal-based wealth management approach of Browne (1996) and Das et al.
(2018) uses the probability P [VT − PT ≥ 0] of final wealth VT to be above
the target level PT as an objective for maximization by an active portfolio
management. This probability is the same as the price of a binary option on the
terminal wealth VT with strike PT : P [VT − PT ≥ 0] = Et

[
1VT >PT

]
. Instead

of a utility of wealth such as a power or logarithmic utility, this approach uses
the price of this binary option as the objective function. This idea can also be
modified by using a call option-like expectation Et

[
(VT − PT)+

]
, instead of

a binary option. Such an expectation quantifies how much the terminal wealth
is expected to exceed the target, rather than simply providing the probability
of such an event.

The square loss reward specification is very convenient, as we have already seen
on many occasions in this chapter, as it allows one to construct optimal policies
semi-analytically. Here we will show how to build a semi-analytical scheme for
computing optimal stochastic consumption-investment policies for a retirement
plan—the method is sufficiently general for either a cumulation or de-cumulation
phase. For other specifications of rewards, numerical optimization and function
approximations (e.g., neural networks) would be required.

The expected reward (10.156) can be written in a more explicit form if we denote
asset returns as rt = r̄t + ε̃t where the first component r̄0(t) = rf is the risk-free
rate (as the first asset is risk-free), and ε̃t = (0, εt), where εt is an idiosyncratic
noise with covariance r of size (N − 1)× (N − 1). Substituting this expression in
Eq. (10.156), we obtain

Rt(xt ,ut) = −λP̂ 2
t+1 − uTt 1+ 2λP̂t+1(xt + ut)T (1+ r̄t)

− λ (xt + ut)T �̂t (xt + ut)− uTt �ut , (10.157)

where we defined

̂t =
[

0 0
0 r

]
+ (1+ r̄t)(1+ r̄t)T . (10.158)

408 10 Applications of Reinforcement Learning

The quadratic one-step reward (10.157) has a similar structure to the rewards we
considered in the previous section, see, e.g., Eq. (10.128). In contrast to the setting
in Sect. 5.15, instead of a self-financing portfolio, here we deal with a portfolio with
periodic cash installments ct . However, because the latter are related to allocation
decision variables by the constraint (10.155), the resulting quadratic reward (10.157)
has the same quadratic structure as the linear LQR reward (10.128).

6.3 G-Learning for Retirement Plan Optimization

As we have just mentioned, the quadratic one-step reward (10.157) is very similar
to the reward Eq. (10.128) which we considered in Sect. 5.15 for a self-financing
portfolio. The main difference is the presence of the first term −λP̂ 2

t+1 in (10.157)
which is independent of a state or action. This term does not impact the policy
optimization task, and can be trivially accounted for, if needed, e.g., to compute the
total reward, by a direct summation from all time steps in the plan lifeline.

As in Sect. 5.15, we use a similar semi-analytical formulation of G-learning with
Gaussian time-varying policies (GTVP). We start by specifying a functional form
of the value function as a quadratic form of xt :

Fπt (xt) = xTt F(xx)t xt + xTt F(x)t + F (0)t , (10.159)

where F(xx)t , F(x)t , F
(0)
t are parameters that can depend on time via their depen-

dence on the target values P̂t+1 and the expected returns r̄t (in the formulation in
Sect. 5.15, the latter were encoded in signals zt). The dynamic equation now reads
(compare with Eq. (10.126))

xt+1 = At (xt + ut)+ (xt + ut) ◦ ε̃t , At := diag (1+ r̄t) , ε̃t := (0, εt)
(10.160)

Coefficients of the value function (10.159) are computed backward in time starting
from the last maturity t = T − 1. For t = T − 1, the quadratic reward (10.157) can
be optimized analytically by the following action:

uT−1 = ̃
−1
T−1

(
P̃T − �̂T−1xT−1

)
, (10.161)

where we defined parameters ̃T−1 and P̃T as follows:

̃T−1 := ̂T−1 + 1

λ
�, P̃T := P̂T (1+ r̄T−1)− 1

2λ
. (10.162)

Note that the optimal action is a linear function of the state, as in our previous
section. Another interesting point to note is that the last term ∼ � that describes

6 RL for Wealth Management 409

convex transaction costs in Eq. (10.157) produces regularization of matrix inversion
in Eq. (10.161).

As for the last time step we have FπT−1(xT−1) = R̂T−1, coefficients

F(xx)T−1, F(x)T−1, F
(0)
T−1 can be computed by plugging Eq. (10.161) back in Eq. (10.157),

and comparing the result with Eq. (10.159) with t = T − 1. This provides terminal
conditions for parameters in Eq. (10.159):

F(xx)T−1 = −λ�T
T−1̂T−1�T−1 − ̂T−1̃

−1
T−1�̃

−1
T−1̂T−1

F(x)T−1 = ̂T−1̃
−1
T−11+ 2λP̂T�T

T−1(1+ r̄T−1)

− 2λ�T
T−1̂T−1̃

−1
T−1P̃T + 2̂T−1̃

−1
T−1�̃

−1
T−1P̃T (10.163)

F
(0)
T−1 = −λP̂ 2

T − P̃TT ̃
−1
T−11+ 2λP̂T (1+ r̄T−1)

T ̃
−1
T−1P̃T

− λP̃TT ̃
−1
T−1̂T−1̃

−1
T−1P̃T − P̃TT ̃

−1
T−1�̃

−1
T−1P̃T , .

where we defined �T−1 := I − ̃
−1
T−1̂T−1. For an arbitrary time step t = T −

2, . . . , 0, we use Eq. (10.160) to compute the conditional expectation of the next-
period F-function in the Bellman equation (10.115) as follows:

Et,a
[
Fπt+1(xt+1)

] = (xt + ut)T
(

ATt F̄(xx)t+1 At + ̃r ◦ F̄(xx)t+1

)
(xt + ut)

+ (xt + ut)T ATt F̄(x)t+1 + F̄ (0)t+1, ̃r :=
[

0 0
0 r

]
,(10.164)

where F̄(xx)t+1 := Et

[
F(xx)t+1

]
, and similarly for F̄(x)t+1 and F̄ (0)t+1. This is a quadratic

function of xt and ut and has the same structure as the quadratic reward R̂(xt , at) in
Eq. (10.157). Plugging both expressions in the Bellman equation

Gπt (yt , at) = R̂t (yt , at)+ γEt,a
[
Fπt+1(yt+1)

∣∣ yt , at
]

we see that the action-value functionGπt (xt ,ut) should also be a quadratic function
of xt and ut :

Gπt (xt ,ut) = xTt Q(xx)t xt + xTt Q(xu)t ut + uTt Q(uu)t ut + xTt Q(x)t + uTt Q(u)t +Q(0)t ,
(10.165)

where

Q(xx)t = −λ̂t + γ
(

ATt F̄(xx)t+1 At + ̃r ◦ F̄(xx)t+1

)

Q(xu)t = 2Q(xx)t

Q(uu)t = Q(xx)t −� (10.166)

410 10 Applications of Reinforcement Learning

Q(x)t = 2λP̂t+1(1+ r̄t)+ γATt F̄(x)t+1

Q(u)t = Q(x)t − 1

Q
(0)
t = −λP̂ 2

t+1 + γF (0)t+1.

Note that the quadratic action-value function in Eq. (10.165) is similar to
Eq. (10.134)—the only difference is the specification of the parameters.

Beyond different expressions for coefficients of the value function Ft(xt) and
action-value function Gt(xt , ut) and a different terminal condition, the rest of
calculations to perform one step of G-learning is the same as in Sect. 5.15. The
F-function for the current step can be found using Eq. (10.136) repeated again here:

Fπt (xt) =
1

β
log

∫
π0(ut |xt)eβGπt (xt ,ut)dut . (10.167)

A reference policy π0(ut |xt) is Gaussian:

π0(ut |xt) = 1√
(2π)n

∣∣�p
∣∣
e−

1
2 (ut−ût)

T
�−1
p (ut−ût), (10.168)

where the mean value ût is a linear function of the state xt :

ût = ūt + v̄txt . (10.169)

Again as in Sect. 5.15, integration over ut in Eq. (10.167) is performed analytically
using Eq. (10.139). The difference is that in Sect. 5.15 we considered a self-
financing asset portfolio, which constrains actions ut . Ignoring such a constraint
can produce numerical inaccuracies. In contrast, in the present case we do not
impose constraints on actions ut ; therefore, an unconstrained multivariate Gaussian
integration should be superior in this case. Remarkably, this implies that once
the decision variables are chosen appropriately, portfolio optimization for wealth
management tasks may in a sense be an easier problem than portfolio optimization
with self-financing.

Performing the Gaussian integration and comparing the resulting expression with
Eq. (10.159), we obtain for its coefficients:

Fπt (xt) = xTt F(xx)t xt + xTt F(x)t + F (0)t
F(xx)t = Q(xx)t + 1

2β

(
UTt ̄

−1
p Ut − v̄Tt −1

p v̄t
)

F(x)t = Q(x)t + 1

β

(
UTt ̄

−1
p Wt − v̄Tt −1

p ūt
)

(10.170)

F(0)t = Q(0)t + 1

2β

(
WT
t ̄

−1
p Wt − ūTt −1

p ūt
)
− 1

2β

(
log

∣∣p
∣∣+ log

∣∣̄p
∣∣) ,

6 RL for Wealth Management 411

where we use the auxiliary parameters

Ut = βQ(ux)t +�−1
p v̄t

Wt = βQ(u)t +�−1
p ūt (10.171)

̄p = −1
p − 2βQ(uu)t .

The optimal policy for the given step can be found using Eq. (10.142) repeated again
here:

π(ut |xt) = π0(ut |xt)eβ(Gπt (xt ,ut)−Fπt (xt)). (10.172)

Using here the quadratic action-value function (10.165) produces a new Gaussian
policy π(ut |xt):

π(ut |xt) = 1
√
(2π)n

∣∣∣�̃p
∣∣∣
e−

1
2 (ut−ũt−ṽtxt)

T
�̃−1
p (ut−ût−ṽtxt), (10.173)

where

�̃−1
p = −1

p − 2βQ(uu)t

ũt = �̃p
(
−1
p ūt + βQ(u)t

)
(10.174)

ṽt = �̃p
(
−1
p v̄t + βQ(ux)t

)

Therefore, policy optimization for G-learning with quadratic rewards and Gaussian
reference policy amounts to the Bayesian update of the prior distribution (10.168)
with parameters updates ūt , v̄t , �p to the new values ũt , ṽt , �̃p defined in
Eqs. (10.174). These quantities depend on time via their dependence on the targets
P̂t and expected asset returns r̄t .

As in Sect. 5.15, for a given time step t , the G-learning algorithm keeps iterating
between the policy optimization step that updates policy parameters according
to Eq. (10.174) for fixed coefficients of the F - and G-functions, and the policy
evaluation step that involves Eqs. (10.165, 10.166, 10.170) and solves for parameters
of the F - and G-functions given policy parameters. Note that convergence of

iterations for ũt , ṽt is guaranteed as
∣∣∣�̃p−1

p

∣∣∣ < 1. At convergence of iteration for

time step t , Eqs. (10.165, 10.166, 10.170) and (10.143) together solve one step of
G-learning. The calculation then proceeds by moving to the previous step t → t−1,
and repeating the calculation, all the way back to the present time.

412 10 Applications of Reinforcement Learning

The additional step needed from G-learning for the present problem is to
find the optimal cash contribution for each time step by using the budget con-
straint (10.155). As G-learning produces Gaussian random actions ut , Eq. (10.155)
implies that the time-t optimal contribution ct is Gaussian distributed with mean
c̄t = 1T (ūt + v̄txt). The expected optimal contribution c̄t thus has a part ∼ ūt that
is independent of the portfolio value, and a part ∼ v̄t that depends on the current
portfolio. This is similar, e.g., to a linear specification of the defined contribution
with a deterministic policy in Lin et al. (2019).

It should be noted that in practice, we may want to impose some constraints on
cash installments ct . For example, we could impose band constraints 0 ≤ ct ≤
cmax with some upper bound cmax . Such constraints can be easily added to the
framework. To this end, we need to replace the exactly solvable unconstrained least
squares problem with a constrained least squares problem. This can be done without
a substantial increase of computational time using efficient off-the-shell convex
optimization software. An illustration of an optimal solution trajectory obtained
without enforcing any constraints is shown in Fig. 10.7 which presents simulation
results for a portfolio of 100 assets with 30 time steps. For the specific choice
of model parameters used in this example, the model optimally chooses to invest
approximately equal contributions around $500 that slightly increase towards the
end of the plan without enforcing constraints, which is achieved by setting a high
target portfolio. However, in a more general setting adding constraints might be
desirable.

Optimal cash installment and portfolio value

optimal cash installments
expected portfolio value
realized target portfolio

30000

20000

15000

10000

5000

0

0 5 10 15 20 25 30
Time Steps

25000

Fig. 10.7 An illustration of G-learning with Gaussian time-varying policies (GTVP) for a
retirement plan optimization using a portfolio with 100 assets

7 Summary 413

6.4 Discussion

To summarize, we have shown how the same G-learning method with quadratic
rewards that we used in the previous section to construct an optimal policy for
dynamic portfolio optimization can also be used for wealth management problems,
provided we use absolute (dollar-nominated) asset position changes as action
variables and choose a reward function which is quadratic in these actions. As
shown in Sect. 5.15, we found that G-learning applied in the current setting with
a quadratic reward and Gaussian reference policy gives rise to an entropy-regulated
LQR as a tool for wealth management tasks. This approach results in a Gaussian
optimal policy whose mean is a linear function of the state xt .

The method we presented enables extensions to other formulations including
constrained versions or other specifications of the reward function. One possibility
is to use the definition (10.154) with the constraint (10.155), which provides an
example of a non-quadratic concave reward. Such cases should be dealt with
using flexible function approximations for the action-value function such as neural
networks.

7 Summary

The main underlying idea of this chapter was to show that reinforcement learn-
ing provides a very natural framework for some of most classical problems of
quantitative finance: option pricing and hedging, portfolio optimization, and wealth
management problems. As trading in individual assets (or pairs, or buckets of assets)
is a particular case of the general portfolio optimization problem, we can say that
this list covers most cases for quantitative trading or planning problems in finance.

We saw that for option pricing with reinforcement learning, batch-mode Q-
learning can be used as a way to produce a distribution-free discrete-time approach
to pricing and hedging of options. In the simplest case when transaction costs
and market impact are neglected, as in the classical Black–Scholes model, the
reinforcement learning approach is semi-analytical and only requires solving linear
matrix equations. In other cases, for example, if the exponential utility is used to
enforce a strict no-arbitrage, analytic quadratic optimization should be replaced by
numerical convex optimization.

We then presented a multivariate and probabilistic extension of Q-learning
known as G-learning, as a tool for using reinforcement learning for portfolio
optimization with multiple assets. Unlike the previous case of the QLBS model
that neglects transaction costs and market impact, the G-learning approach captures
these effects. When the reward function is quadratic as in the Markowitz mean–
variance approach and market impact is neglected, the G-learning approach again
yields a semi-analytical solution to the dynamic portfolio optimization, that is
given by a probabilistic version of the classical linear quadratic regulator (LQR).

414 10 Applications of Reinforcement Learning

For other cases (e.g., when market impact is incorporated, or when rewards are
not quadratic), the G-learning approach should rely on more involved numerical
optimization methods and/or use function approximations such as neural networks.

In addition to demonstrating how G-learning can be applied for portfolio
management, we also showed how it can be used for tasks of wealth management,
which differ from the former case by intermediate cash-flows as additional controls.
We showed that both these classical financial problems can be treated using the
same computational method (G-learning) with different parameter specifications.
Therefore, the reinforcement learning approach is capable of providing a unified
approach to these classes of problems, which are traditionally treated as different
problems because of a different definition of control variables. What we showed
is that when using absolute (dollar-nominated) decision variables, both problems
can be treated in the same way. Moreover, with this approach wealth management
problems turn out to be simpler, not harder, than traditional portfolio optimization
problems, as they amount to unconstrained optimization.9

While our presentation in this chapter used general RL methods (Q-learning
and G-learning), we mostly focused on cases with quadratic rewards which enable
semi-analytical and hence easily understandable computational methods. Different
reward specifications are possible, of course, but they require relying on function
approximations (e.g., neural networks—giving rise to deep reinforcement learning)
and numerical optimization for optimizing parameters of these networks. Further-
more, other methods of reinforcement learning (e.g., LSPI, policy-gradient methods,
actor-critic, etc.) can also be used, see, e.g., Sato (2019) for a review.

8 Exercises

Exercise 10.1
Derive Eq. (10.46) that gives the limit of the optimal action in the QLBS model in
the continuous-time limit.

Exercise 10.2
Consider the expression (10.121) for optimal policy obtained with G-learning

π(at |yt) = 1

Zt
π0(at |yt)eR̂(yt ,at)+γEt,at

[
Fπt+1(yt+1)

]

where the one-step reward is quadratic as in Eq. (10.91):

R̂(yt , at) = yTt Ryyyt + aTt Raaa+ aTt Rayyt + aTt Ra.

9Or, if we want to put additional constraints on the resulting cash-flows, to optimization with one
constraint, instead of two constraints as in the Merton approach.

8 Exercises 415

How does this relation simplify in two cases: (a) when the conditional expectation
Et,a

[
Fπt+1(yt+1)

]
does not depend on the action at , and (b) when the dynamics are

linear in at as in Eq. (10.125)?

Exercise 10.3
Derive relations (10.141).

Exercise 10.4
Consider G-learning for a time-stationary case, given by Eq. (10.122):

Gπ(y, a) = R̂(y, a)+ γ
β

∑

y′
ρ(y′|y, a) log

∑

a′
π0(a′|y′)eβGπ (y′,a′)

Show that the high-temperature limit β → 0 of this equation reproduces the fixed-
policy Bellman equation for Gπ(y, a) where the policy coincides with the prior
policy, i.e. π = π0.

Exercise 10.5
Consider policy update equations for G-learning given by Eqs. (10.174):

�̃−1
p = −1

p − 2βQ(uu)t

ũt = �̃p
(
−1
p ūt + βQ(u)t

)

ṽt = �̃p
(
−1
p v̄t + βQ(ux)t

)

(a) Find the limiting forms of these expressions in the high-temperature limit β →
0 and low-temperature limit β →∞.

(b) Assuming that we know the stable point (ūt , v̄t) of these iterative equations,
as well as the covariance �̃p, invert them to find parameters of Q-function in

terms of stable point values ūt , v̄t . Note that only parameters Q(uu)t , Q(ux)t , and
Q(u)t can be recovered. Can you explain why parameters Q(xx)t and Q(x)t are lost
in this procedure? (Note: this problem can be viewed as a prelude to the topic
of inverse reinforcement learning covered in the next chapter.)

Exercise 10.6***
The formula for an unconstrained Gaussian integral in n dimensions reads

∫
e−

1
2 xTAx+xT Bdnx =

√
(2π)n

|A| e
1
2 BT A−1B.

Show that when a constraint
∑n
i=1 xi ≤ X̄ with a parameter X̄ is imposed on the

integration variables, a constrained version of this integral reads

416 10 Applications of Reinforcement Learning

∫
e−

1
2 xT Ax+xT Bθ

(
X̄−

n∑

i=1

xi

)
dnx =

√
(2π)n

|A| e
1
2 BT A−1B

(
1−N

(
BTA−11− X̄√

1TA−11

))

where N(·) is the cumulative normal distribution.
Hint: use the integral representation of the Heaviside step function

θ(x) = lim
ε→0

1

2πi

∫ ∞

−∞
eizx

z− iε dz.

Appendix

Answers to Multiple Choice Questions

Question 1
Answer: 2, 3.

Question 2
Answer: 2, 4.

Question 3
Answer: 1, 2, 3.

Question 4
Answer: 2, 4.

Python Notebooks

This chapter is accompanied by two notebooks which implement the QLBS model
for option pricing and optimal hedging, and G-learning for wealth management.
Further details of the notebooks are included in the README.md file.

References

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3), 637–654.

Boyd, S., Busetti, E., Diamond, S., Kahn, R., Koh, K., Nystrup, P., et al. (2017). Multi-period
trading via convex optimization. Foundations and Trends in Optimization, 1–74.

Browne, S. (1996). Reaching goals by a deadline: digital options and continuous-time active
portfolio management. https://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/841/
sidbrowne_deadlines.pdf.

https://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/841/sidbrowne_deadlines.pdf
https://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/841/sidbrowne_deadlines.pdf

References 417

Carr, P., Ellis, K., & Gupta, V. (1988). Static hedging of exotic options. Journal of Finance, 53(3),
1165–1190.

Cerný, A., & Kallsen, J. (2007). Hedging by sequential regression revisited. Working paper, City
University London and TU München.

Cheung, K. C., & Yang, H. (2007). Optimal investment-consumption strategy in a discrete-time
model with regime switching. Discrete and Continuous Dynamical Systems, 8(2), 315–332.

Das, S. R., Ostrov, D., Radhakrishnan, A., & Srivastav, D. (2018). Dynamic portfolio alloca-
tion in goals-based wealth management. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
3211951.

Duan, J. C., & Simonato, J. G. (2001). American option pricing under GARCH by a Markov chain
approximation. Journal of Economic Dynamics and Control, 25, 1689–1718.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch model reinforcement learning.
Journal of Machine Learning Research, 6, 405–556.

Föllmer, H., & Schweizer, M. (1989). Hedging by sequential regression: An introduction to the
mathematics of option trading. ASTIN Bulletin, 18, 147–160.

Fox, R., Pakman, A., & Tishby, N. (2015). Taming the noise in reinforcement learning via soft
updates. In 32nd Conference on Uncertainty in Artificial Intelligence (UAI). https://arxiv.org/
pdf/1512.08562.pdf.

Garleanu, N., & Pedersen, L. H. (2013). Dynamic trading with predictable returns and transaction
costs. Journal of Finance, 68(6), 2309–2340.

Gosavi, A. (2015). Finite horizon Markov control with one-step variance penalties. In Conference
Proceedings of the Allerton Conferences, Allerton, IL.

Grau, A. J. (2007). Applications of least-square regressions to pricing and hedging of financial
derivatives. PhD. thesis, Technische Universit"at München.

Halperin, I. (2018). QLBS: Q-learner in the Black-Scholes(-Merton) worlds. Journal of Deriva-
tives 2020, (to be published). Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=3087076.

Halperin, I. (2019). The QLBS Q-learner goes NuQLear: Fitted Q iteration, inverse RL,
and option portfolios. Quantitative Finance, 19(9). https://doi.org/10.1080/14697688.2019.
1622302, available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3102707.

Halperin, I., & Feldshteyn, I. (2018). Market self-learning of signals, impact and optimal trading:
invisible hand inference with free energy, (or, how we learned to stop worrying and love
bounded rationality). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3174498.

Lin, C., Zeng, L., & Wu, H. (2019). Multi-period portfolio optimization in a defined contribution
pension plan during the decumulation phase. Journal of Industrial and Management Optimiza-
tion, 15(1), 401–427. https://doi.org/10.3934/jimo.2018059.

Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation - a simple
least-square approach. The Review of Financial Studies, 14(1), 113–147.

Markowitz, H. (1959). Portfolio selection: efficient diversification of investment. John Wiley.
Marschinski, R., Rossi, P., Tavoni, M., & Cocco, F. (2007). Portfolio selection with probabilistic

utility. Annals of Operations Research, 151(1), 223–239.
Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model.

Journal of Economic Theory, 3(4), 373–413.
Merton, R. C. (1974). Theory of rational option pricing. Bell Journal of Economics and Manage-

ment Science, 4(1), 141–183.
Murphy, S. A. (2005). A generalization error for Q-learning. Journal of Machine Learning

Research, 6, 1073–1097.
Ortega, P. A., & Lee, D. D. (2014). An adversarial interpretation of information-theoretic bounded

rationality. In Proceedings of the Twenty-Eighth AAAI Conference on AI. https://arxiv.org/abs/
1404.5668.

Petrelli, A., Balachandran, R., Siu, O., Chatterjee, R., Jun, Z., & Kapoor, V. (2010). Optimal
dynamic hedging of equity options: residual-risks transaction-costs. working paper.

Potters, M., Bouchaud, J., & Sestovic, D. (2001). Hedged Monte Carlo: low variance derivative
pricing with objective probabilities. Physica A, 289, 517–525.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3211951
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3211951
https://arxiv.org/pdf/1512.08562.pdf
https://arxiv.org/pdf/1512.08562.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3087076
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3087076
https://doi.org/10.1080/14697688.2019.1622302
https://doi.org/10.1080/14697688.2019.1622302
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3102707
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3174498
https://doi.org/10.3934/jimo.2018059
https://arxiv.org/abs/1404.5668
https://arxiv.org/abs/1404.5668

418 10 Applications of Reinforcement Learning

Sato, Y. (2019). Model-free reinforcement learning for financial portfolios: a brief survey. https://
arxiv.org/pdf/1904.04973.pdf.

Schweizer, M. (1995). Variance-optimal hedging in discrete time. Mathematics of Operations
Research, 20, 1–32.

Todorov, E., & Li, W. (2005). A generalized iterative LQG method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In Proceeding of the American Control
Conference, Portland OR, USA, pp. 300–306.

van Hasselt, H. (2010). Double Q-learning. Advances in Neural Information Processing Systems.
http://papers.nips.cc/paper/3964-double-q-learning.pdf.

Watkins, C. J. (1989). Learning from delayed rewards. Ph.D. Thesis, Kings College, Cambridge,
England.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(179–192), 3–4.
Wilmott, P. (1998). Derivatives: the theory and practice of financial engineering. Wiley.

https://arxiv.org/pdf/1904.04973.pdf
https://arxiv.org/pdf/1904.04973.pdf
http://papers.nips.cc/paper/3964-double-q-learning.pdf

Chapter 11
Inverse Reinforcement Learning and
Imitation Learning

This chapter provides an overview of the most popular methods of inverse rein-
forcement learning (IRL) and imitation learning (IL). These methods solve the
problem of optimal control in a data-driven way, similarly to reinforcement learning,
however with the critical difference that now rewards are not observed. The problem
is rather to learn the reward function from the observed behavior of an agent.
As behavioral data without rewards is widely available, the problem of learning
from such data is certainly very interesting. This chapter provides a moderate-
level technical description of the most promising IRL methods, equips the reader
with sufficient knowledge to understand and follow the current literature on IRL,
and presents examples that use simple simulated environments to evaluate how
these methods perform when the “ground-truth” rewards are known. We then
present use cases for IRL in quantitative finance which include applications in
trading strategy identification, sentiment-based trading, option pricing, inference of
portfolio investors, and market modeling.

1 Introduction

One of the challenges faced by researchers when applying reinforcement learning
to solve real-world problems is how to choose the reward function. In general, a
reward function should encourage a desired behavior of an agent, but often there
are multiple approaches to specify it. For example, assume that we seek to solve
an index tracking problem, where the task is to replicate a certain market index
(e.g., the S&P 500) P targett by a smaller portfolio of stocks whose value at time t

is P trackt . We can view expressions
∣∣∣P trackt − P targett

∣∣∣ or
(
P trackt − P targett

)2
, or

(
P trackt − P targett

)

+ as possible reward functions. Clearly the optimal choice of the

reward here is equivalent to the optimal choice of an expected risk-adjusted return

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_11

419

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_11

420 11 Inverse Reinforcement Learning and Imitation Learning

in the corresponding multi-period portfolio optimization problem. Therefore, the
choice of a reward function is as non-unique as the choice of a risk function for
portfolio optimization.

Challenges of defining a good reward function to teach an agent to perform a
certain task are well known in other fields that use machine learning. For example,
teaching physical robots to perform simple (for humans) tasks such as carrying a
cup of coffee between two tables by hand-engineering a reward function in a multi-
dimensional space of robot joints’ positions and velocities at each time step may be
as difficult as defining the execution policy directly, without relying on any reward
function. Therefore the need to pre-specify a reward function considerably limits
the applicability of reinforcement learning for many cases of practical interest. In
finance, traders do not often think in terms of any specific utility (reward) function,
but rather in terms of strategies (or policies, using the language of RL).

In response to such practical challenges, researchers in machine learning devel-
oped a number of alternatives to the classical setting of dynamic programming and
reinforcement learning that do not require a reward (utility) function to be specified.
Learning to act without a reward function is known as learning from demonstrations
or learning from behavior. As behavioral data is often produced in abundance (think
of GPS monitoring data, cell phone data, web browsing data, etc.), the notion of
learning from observed behavior of other agents (humans or machines) is certainly
appealing, and has a wide range of potential industrial and business applications.

But what exactly does it mean to learn from demonstrations? One possible
answer to this question is that it means learning the optimal policy from the observed
behavior given only observations of actions produced by this policy (or a similar
one). This is called imitation learning. This is similar to the batch-mode RL that we
considered in the previous chapter, but without knowledge of the rewards. That is,
we observe a series of states and actions taken by an agent, and our task is to find the
optimal policy solely from this data. As with batch-mode RL, this is an inference
problem of a distribution (policy) from data. In contrast to batch-mode RL, however,
the problem of learning from demonstrations is ill-defined. Indeed for any particular
trajectory of states and actions, there exist an infinite number of policies consistent
with this trajectory. The same holds for any finite set of observed trajectories. The
problem of learning a policy from a finite set of observed trajectories is therefore an
ill-posed inverse problem.

•> Ill-Posed Inverse Problems

Ill-posed inverse problems usually exhibit an infinite number of solutions
or no solution at all. Classical examples of such inverse problems include
the problems of restoring a signal after passing a filter and contaminated by

(continued)

1 Introduction 421

an additive noise. A simple financial example is implying the risk-neutral
distribution p(sT |s0) of future stock prices from observed prices of European
options. If F(sT ,K) is a discounted payoff of a liquid European option with
maturity T , the observed market mid-price of the option can be written as

C(st ,K) =
∫
dstp(sT |s0)F (sT ,K)+ εt ,

where εt stands for an observation noise. Having market prices for a finite
number of quoted options is not sufficient to reconstruct a conditional density
p(sT |s0) in a model-independent way, as a model-independent specification
is equivalent to an infinite number of observations. The inverse problem
is ill-posed in the sense that it does not have a unique solution. Various
forms of regularization are needed in order to select the “best” solution. For
example, one may use Lagrange multipliers to enforce constraints on the
entropy of p(sT |s0) or its KL divergence with some reference (“prior”1).
What constitutes the “best” solution of the inverse problem is therefore
only specified after a regularization function is chosen. A good choice of a
regularization function may be problem- or domain-specific and go beyond
a KL regularization or, e.g., a simple L2 or L1 regularization. Essentially, as
the choice of regularization amounts to the choice of a “regularization model,”
we may assert that a purely model-independent method for inverse problems
does not exist.

We may be tempted to reason that such a problem is scarcely different from the
conventional setting of supervised learning. Indeed, we could treat the observed
states and actions in a training dataset as, respectively, features and outputs. We
could then try to directly construct a policy as either a classifier or a regressor,
considering each action as a separate observation.

This approach is indeed possible and is known as behavioral cloning. While it
is simple (any supervised method can be used), it also has a number of serious
drawbacks that render it impractical. The main problem is that it often does not
generalize well to new unseen states. This is simply because as an action policy
is estimated from each individual state using supervised learning, it passes no
information on how these states can be related to each other. This can be contrasted
with TD methods (such as Q-learning) that use transitions as observations. As

1It is convenient to regard the reference distribution as a prior, however it is not strictly a prior in
the context of Bayesian estimation. MaxEnt or Minimum Cross-Entropy finds a distribution that is
compatible with all available constraints and minimizes a KL distance to this reference distribution.
In contrast, Bayesian learning involves using Bayes’ rule to incrementally update the posterior.

422 11 Inverse Reinforcement Learning and Imitation Learning

a result, generalization of the policy to unseen states obtained using supervised
learning with behavioral cloning loses any connection to the actual dynamics of
the environment. If such a learned policy is executed over multiple steps, errors can
compound, and an induced state distribution can shift away from the actual one used
in demonstrations.

Therefore, a combination of different methods is usually required when rewards
are not available. Such a multi-faceted approach sounds reasonable in principle but
the devil is in the detail. For example, we could use a recurrent neural network to
capture the state dynamics, and use a feedforward network to directly parameterize
the policy. Parameters of both networks would then be learned from the data using,
e.g., stochastic gradient descent methods.

The main potential problem with such an approach is that it may not be easily
portable to other environments, when the model is used with dynamics that are
different from those used for model training. But in an approach similar to the one
described above, dynamics and the learned policy are intertwined in complex ways.
Therefore, we can expect that a learned policy would become sub-optimal once the
dynamics (environment) changes.

On the other hand, a reward function is portable, as it depends only on states and
actions, but is not concerned with how these states are reached. If we find a way
to learn the reward function from demonstrated behavior, this function would be
portable to other environments, as it expresses properties of the agent but not of the
environment. The idea of learning the reward function as a condensed and portable
representation of an agent’s preferences was suggested by Russell (1998). Methods
centered around this idea have collectively became known as inverse reinforcement
learning (IRL). Clearly, if the reward function is found from IRL, then the optimal
policy with any new environment can be found using the conventional (direct) RL.

In this chapter, we provide an overview of the most popular methods of IRL, as
well as methods of imitation learning that do not rely on a learned reward function.
We hasten to add that so far, IRL was only adopted for financial applications in a
handful of publications, despite several successful applications in robotics and video
games. Nevertheless, we believe that methods of IRL are potentially very useful for
quantitative finance.

Both because the whole field of IRL is still nascent and keeps evolving,
and because there are only a few published papers on using IRL for financial
applications, this chapter is mostly focused on theoretical concepts of IRL. Our
task in this chapter is three-fold: (i) provide a reasonably high-level description of
the most promising IRL methods; (ii) equip the reader with enough knowledge to
understand and follow the current literature on IRL; and (iii) present use cases for
IRL in quantitative finance including applications to trading strategy identification,
sentiment-based trading, option pricing, inference of portfolio investors, and market
modeling.

Chapter Objectives

This chapter will review some of the most pertinent aspects of inverse reinforcement
learning and their application to finance:

2 Inverse Reinforcement Learning 423

– Introduce methods of inverse reinforcement learning (IRL) and imitation learning
(IL);

– Provide a review of recent adversarial approaches to IRL and IL;
– Introduce IRL methods which can surpass a demonstrator; and
– Review existing and potential applications of IRL and IL in quantitative finance.

The chapter is accompanied by a notebook comparing various IRL methods for
the financial cliff walking problem. See Appendix “Python Notebooks” for further
details.

2 Inverse Reinforcement Learning

The key idea of Russell (1998) is that the reward function should provide the most
succinct representation of agents’ preferences while being transferable between
both environments and agents. Before we turn to finance applications, imagine for
a moment examples in everyday life—an adaptive smart home that learns from
the habits of its occupants in scheduling different tasks such as pre-heating food,
placing orders to buy other food, etc. In autonomous cars, the control system could
learn from drivers’ preferences to set up an autonomous driving style that would
be comfortable to a driver when taken for a ride as a passenger. In marketing
applications, knowing preferences of customers or potential buyers, quantified as
their utility functions, can inform marketing strategies tuned to their perceived
preferences. In financial applications, knowing the utility of a counterparty may be
useful in bilateral trading, e.g. over-the-counter (OTC) trades in derivatives or credit
default swaps. Other financial applications of IRL, such as option pricing, will be
discussed later in this chapter once we present the most popular IRL methods.

Just as reinforcement learning is rooted in dynamic programming, IRL has
also its analog (or predecessor) in inverse optimal control (ICO). As with IRL,
the objective of ICO is to learn the cost function. However, in the ICO setting,
the dynamics and optimal policy are assumed to be known. Faithful to a data-
driven approach of (direct) reinforcement learning, IRL does not assume that
state dynamics or policy functions are known, and instead constructs an empirical
distribution.2

Inverse reinforcement learning (IRL) therefore provides a useful extension (or
inversion, hence justifying its name) of the (direct) RL paradigm. In the context
of batch-mode learning used in the previous chapter, the setting of IRL is nearly
identical to that of RL (see Eq. (10.58)), except that there is no information about
the rewards:

F (n)t =
{(
X
(n)
t , a

(n)
t , X

(n)
t+1

)}T−1

t=0
, n = 1, . . . , N. (11.1)

2Methods of ICO that assume that dynamics are known are sometimes referred to as model-based
IRL in the machine learning literature.

424 11 Inverse Reinforcement Learning and Imitation Learning

The objective of IRL is typically two-fold: (i) find the rewards R(n)t most consistent
with observed states and action and (ii) find the optimal policy and action-value
function (as in RL). One can distinguish between on-policy IRL and off-policy IRL.
In the former case, we know that observed actions were optimal actions. In the latter
case, observed actions may not necessarily follow an optimal policy and can be sub-
optimal or noisy.

In general, IRL is a harder problem than RL. Indeed, not only must the optimal
policy be found from data, which is the same task as in RL, but under the additional
complexity that the rewards are unobserved. It appears that information about
rewards is frequently missing in many potential real-world applications of RL/IRL.
In particular, this is typically the case when RL methods are applied to study human
behavior, see, e.g., Liu et al. (2013). IRL is also widely used in robotics as a useful
alternative to direct RL methods via training robots by demonstrations (Kober et al.
2013).

It appears that IRL offers a very attractive, at least conceptually, approach for
many financial applications that use rational agents involved in a sequential decision
process, where no information about rewards received by an agent is available
to a researcher. Some examples of such (semi-) rational agents would be retail
or institutional investors, loan or mortgage borrowers, deposit or saving account
holders, credit card holders, consumers of utilities such as cloud computing, mobile
data, electricity, etc.

In the context of trading applications, such an IRL setting may arise when a trader
seeks to learn a strategy of a counterparty. She observes the counterparty’s actions
in their bilateral trades, but not the counterparty’s rewards. Clearly, if she reverse-
engineered the most likely counterparty’s rewards from the observed actions to find
the counterparty’s objective (strategy), she could use it to design her own strategy.
This typifies an IRL problem.

Example 11.1 IRL for Financial Cliff Walking

Consider our financial cliff walking (FCW) example from Chap. 9 where we
presented it as a toy problem for RL control—an over-simplified model of
household finance. Now let us consider an IRL formulation of this problem
where we would be given a set of trajectories sampled from some policy, and
attempt to find both the rewards and the policy.

Clearly, as you will recall, the optimal policy for the FCW example is to
deposit the minimum amount in the account at time t = 0, then take no further
action until the very last step, at which point the account should be closed, with
the reward of 10. However, sampling from this policy, possibly randomized by
adding a random component, may miss the important penalty for breaching the
bankruptcy level, and rather treat any examples of such events in the training
data as occasional “sub-optimal” trajectories. As we will show in Sect. 9, the
conventional IRL indeed misses the higher importance of not breaching the
bankruptcy level than of achieving the final-step rewards.

2 Inverse Reinforcement Learning 425

2.1 RL Versus IRL

A very convenient concept for differentiating between the IRL and the direct RL
problem is the occupancy measure ρπ(s, a) : S ×A → R (see (Putterman 1994)
and Exercise 9.6 in Chap. 9):

ρπ(s, a|s0) = π(a|s)
∞∑

t=0

γ tPr (st = s|π, s0) , (11.2)

where Pr (st = s|π) is the probability density of the state s = st at time t following
policy π . The occupancy measure is also a function of the current state s0 at time
t = 0. The value function V = V (s0) of the current state can now be defined as an
expectation of the reward function:

V (s0) =
∫
ρπ(s, a|s0)r(s, a) dsda. (11.3)

Recall from Exercise 9.1 that due to an invariance of the optimal policy under
a common rescaling of all rewards r(s, a) → αr(s, a) for some fixed α > 0,
the occupancy measure ρπ(s, a|s0) can be interpreted as a normalized probability
density of state-action pairs, even though the correct normalization is not explicitly
enforced in the definition (11.2).

Here we arrive at the central difference between RL and IRL. In RL, we are
given numerical values of an unknown reward function r(st , at), where sampled
trajectories τ = {st , at }Tt=0 of length T are obtained by using an unknown “expert”
policy πE (for batch-mode RL), or alternatively for on-line RL by sampling from
the environment when executing a model policy πθ (a|s). The problem of (direct)
RL is to find an optimal policy π%, and hence an optimal measure ρ% that maximizes
the expectation (11.3) given the sampled data in the form of tuplets (st , at , rt , st+1).
Because we observe numerical rewards, a value function can be directly estimated
from data using Monte Carlo methods. Note that the optimal measure ρ% cannot be
an arbitrary probability density function, but rather should satisfy time consistency
constraints imposed by model dynamics, known as Bellman flow constraints.

Now compare this setting with IRL. In IRL, data consists of tuplets (st , at , st+1)

without rewards rt . In other words, all we observe are trajectories—sequences of
states and actions τ = {st , at }Tt=0. In terms of maximization of the value function
as the expected value (11.3), the IRL setting amounts to providing a set of pairs
{st , at }Tt=0 that is assumed to be informative for a Monte Carlo based estimate of the
expectation (11.3) of a (yet unknown) reward function r(st , at).

Clearly, to build any model of the reward function given the observed trajectories,
we should assume that trajectories demonstrated are sufficiently representative of
true dynamics, and that the expert policy used in the recorded data is optimal or at
least “sufficiently close” to an optimal policy. If either of these assumptions do not

426 11 Inverse Reinforcement Learning and Imitation Learning

hold, it is highly implausible that a “true” reward function can be recovered from
such data.

On the other hand, if demonstrated trajectories are obtained from an expert,
actions taken should be optimal from the viewpoint of Monte Carlo sampling of
the expectation (11.3). A simple model that relates observed actions with rewards
and encourages taking optimal actions could be a stochastic policy π(a|s) ∼
exp (β(r(s, a)+ F(s, a))), where β > 0 is a parameter (inverse temperature),
r(s, a) is the expected reward for a single step, and F(s, a) is a function that
incorporates information of future rewards into decision-making at time t .

As we saw in the previous chapter, Maximum Entropy RL produces exactly this
type of policy, where r(s, a) + F(s, a) = Gπt (st , at) = E

π [r(st , at , st+1)] +
γ
∑
st+1
p(st+1|st , at)Fπt+1(st+1) is the G-function (the “soft” Q-value), see also

Exercise 9.13 in Chap. 9. Due to exponential dependence of this policy on
instantaneous rewards r(st , at , st+1) or equivalently on expected rewards r(st , at) =
E
π [r(st , at , st+1)], the optimal policy optimizes the expected total reward.

The idea of Maximum Entropy IRL (MaxEnt IRL) is to preserve the functional
form of Boltzmann-like policies πθ (a|s) produced by MaxEnt RL, where θ is a
vector of model parameters. As they are explicit functions of states and actions, we
can now use them differently, as probabilities of data in terms of observed values
of states st and actions at . Parameters of the MaxEnt Boltzmann policy πθ (a|s)
can therefore be inferred using the standard maximum likelihood method. We shall
return to MaxEnt IRL later in this chapter.

2.2 What Are the Criteria for Success in IRL?

In the absence of a “ground truth” expected reward function r(s, a), what are the
performance criteria for any IRL method that learns a parameterized reward policy
rθ (s, a) ∈ R, where R is the space of all admissible reward functions?

Recall that the task of IRL is to learn both the reward function and optimal policy
π and hence the state-action occupation measure ρπ from the data. Therefore, once
both functions are learned, we can use them both to compute the value function
obtained with these inferred reward and policy functions. The quality of the IRL
method would thus be determined by the value function obtained using these reward
and policy functions.

We conclude that performance criteria for IRL involve solving a direct RL
problem with a learned reward function. Moreover, we can make maximization of
the expected reward an objective of IRL, such that each iteration over parameters
θ specifying a parameterized expected reward function rθ (s, a) ∈ R will involve
solving a direct RL problem with a current reward function. But such an IRL
method could easily become very time-consuming and infeasible in practice for
problems with large state-action space, where a direct RL problem would become
computationally intensive.

2 Inverse Reinforcement Learning 427

Some methods of imitation learning or IRL avoid the need to solve a direct RL
problem in an inner loop. For example, MaxEnt IRL methods that we mentioned
above reduce IRL to a problem of inference in a graphical (more precisely,
exponential) model. This changes the computational framework, but produces
another computational burden, as it requires estimation of a normalization constant
Z of a MaxEnt policy (also known as a partition function). Early versions of MaxEnt
IRL for discrete state-action spaces computed such normalization constants using
dynamic programming (Ziebart et al. 2008), see later in this chapter for more details.
While more recent MaxEnt IRL approaches rely on different methods of estimation
of the partition function Z (e.g., using importance sampling), this suggests that
improving the computational efficiency of IRL methods by excluding RL from the
internal loop is a hard problem. Such an approach is addressed by GAIL and related
methods that will be presented later in this chapter.

2.3 Can a Truly Portable Reward Function Be Learned
with IRL?

Recall the basic premise of reinforcement learning is that a reward function is the
most compact form of expressing preferences of an agent. As an expected reward
function r(st , at) depends only on the current state and actions and does not depend
on the dynamics, once it specified, it can be used with direct RL to find an optimal
policy for any environment.

In the setting of IRL, we do not observe rewards but rather learn them from an
observed behavior. As expected rewards are only functions of states and actions,
and are independent of an environment, it appears appealing to try to estimate them
by fitting a parameterized action policy πθ to observations, and conjecture that the
inferred reward would produce optimal policies in environments different from the
one used for learning.

The main question, of course, is how realistic is such a conjecture? Note that
this question is different (and in a sense harder) than the aforementioned problem of
ill-posedness of IRL.

As an inverse problem, IRL is sensitive to the choice of a regularization method.
A particular regularization may address the problem of incomplete data for learning
a function, but it does not ensure that a reward learned with one environment would
produce an optimal policy when an agent with a learned reward is deployed in a new
environment that differs from an environment used for learning.

The concept of reward shaping suggested by Ng and Russell in 1999 (see
Exercise 9.5 in Chap. 9) suggests that the problem of learning a portable (robust)
reward function from demonstrations can be challenging. The main result of
this analysis is that the optimal policy remains unchanged under the following
transformation of the instantaneous reward function r(s, a, s′):

428 11 Inverse Reinforcement Learning and Imitation Learning

r̃(s, a, s′) = r(s, a, s′)+ γ (s′)− (s) (11.4)

for an arbitrary function : S ×A → R. As we will see next, the reward shape
invariance of reinforcement learning may indicate that the problem of learning
robust (portable) rewards may be quite challenging and infeasible to solve in a
model-independent way.

To see this, assume that we have two MDPs M and M ′ that have identical
rewards and differ only in transition probabilities that we will denote as T and T ′,
respectively. A simple example would be deterministic dynamics T (s, a) → s′. If
a “true” reward function is of the form (11.4), it can be expressed as r(s, a, s′) +
γ T (T (s, a)) − (s). If the new dynamics is such that T ′(s, a) �= T (s, a), such
reward will not be in the equivalence class of shape invariance for dynamics T ′ (Fu
et al. 2019).

On the other hand, the same argument suggests an approach for constructing a
reward function that could be transferred to other environments. To this end, we
could simply constrain the inferred expected reward not to contain any additive
contributions that would depend only on the state st . In other words, we can learn a
reward function only up to an arbitrary additive function of the state. Due to the
reward shape invariance of an optimal policy, this function is of no interest for
finding the optimal policy, and thus can be set to zero for all practical purposes.

•? Multiple Choice Question 1

Select all the following correct statements:

a. The task of inverse reinforcement learning is to learn the dynamics from the
observed behavior.

b. The task of inverse reinforcement learning is to find the worst, rather than the
best policy for the agent.

c. The task of inverse reinforcement learning is to find both the reward function and
the policy from observations of the states and actions of the agent.

3 Maximum Entropy Inverse Reinforcement Learning

In learning from demonstrations, it is important to understand which assumptions
are made regarding actions performed by an agent. As both the policy and rewards
are unknown in the setting of IRL, we have to make additional assumptions when
solving this problem. A natural assumption would be to expect that the demonstrated
actions are optimal or close to optimal. In other words, it means that the agent acts
optimally or close to optimally.

If we assume that the agent follows a deterministic policy, then the above
assumption implies that every action should be optimal. But this leaves little margin

3 Maximum Entropy Inverse Reinforcement Learning 429

for any errors resulting from model bias, noisy parameter estimations, etc. Under
a deterministic policy model, a trajectory that contains a single sub-optimal action
has an infinite negative log-likelihood—which exactly expresses the impossibility
of such scenarios with deterministic policies.

A more forgiving approach is to assume that the agent followed a stochastic
policy πθ (a|s). Under such a policy, sub-optimal actions can be observed, though
they are expected to be suppressed according to a model for πθ (a|s). Once a
parametric model for the stochastic policy is specified, its parameters can be
estimated using standard methods such as maximum likelihood estimation.

In this section, we present a family of probabilistic IRL models with a particular
exponential specification of a stochastic policy:

πθ (a|s) = 1

Zθ(s)
er̂θ (s,a), Zθ (s) =

∫
er̂θ (s,a). (11.5)

Here r̂θ (s, a) is some function that will be related to the reward and action-value
functions of reinforcement learning. We have already seen stochastic policies with
such exponential specification in Chap. 9 when we discussed “softmax in action”
policies (see Eq. (9.38)), and in Chap. 10 when we introduced G-learning (see
Eq. (10.114)).

While in the previous sections a stochastic policy with an exponential param-
eterization such as Eq. (11.5) was occasionally referred to as a softmax policy, in
the setting of inverse reinforcement learning, it is often referred to as a Boltzmann
policy, in recognition of its links to statistical mechanics and work of Ludwig
Boltzmann in the nineteenth century (see the box below).

Methods leading to stochastic policies of the form (11.5) are generally based
on maximization of entropy or minimization of the KL divergence in a space of
parameterized action policies. The objective of this section is to provide an overview
of such approaches.

•> The Boltzmann Distribution in Statistical Mechanics

In statistical mechanics, exponential distributions similar to (11.5) appear
when considering closed systems with a fixed composition, such as molecular
gases, that are in thermal equilibrium with their environment. The first
formulation was suggested by Ludwig Boltzmann in 1868 in his work that
developed a probabilistic approach to molecular gases in thermal equilibrium.
The Boltzmann distribution characterizes states of a macroscopic system,
such as a molecular gas, in terms of their energies Ei , where index i
enumerates possible states. When such a system is at equilibrium with its

(continued)

430 11 Inverse Reinforcement Learning and Imitation Learning

environment that has temperature T , the Boltzmann distribution gives the
probabilities of different energy states in the following form:

pi = 1

Z
e
− Ei
kBT ,

where kB is a constant parameter called the Boltzmann constant, and Z is a
normalization factor of the distribution, which is referred to as the partition
function in statistical mechanics. The Boltzmann distribution can be obtained
as a distribution which maximizes the entropy of the system

H = −
∑

i

pi logpi,

where the sum is taken over all energy states accessible to the system, subject
to the constraint

∑
i piEi = Ē, where Ē is some average mean energy. The

Boltzmann distribution was extensively investigated and generalized beyond
molecular gases to a general setting of systems at equilibrium by Josiah
Willard Gibbs in 1902. It is therefore often referred to as the Boltzmann–
Gibbs distribution in physics. In particular, Gibbs introduced the notion of a
statistical ensemble as an idealization consisting of virtual copies of a system,
such that each copy represents a possible state that the real system might be
in. The physics-based notion of an ensemble corresponds to the notion of
a probability space in mathematics. The Boltzmann distribution arises for the
so-called canonical ensemble that is obtained for a system with a fixed number
of particles at thermal equilibrium with its environment (called a heat bath in
physics) at a fixed temperature T . The Boltzmann–Gibbs distribution serves
as the foundation for the modern approach to equilibrium statistical mechanics
(Landau and Lifshitz 1980).

3.1 Maximum Entropy Principle

The Maximum Entropy (MaxEnt) principle (Jaynes 1957) is a general and highly
popular method for ill-posed inversion problems where a probability distribution
should be learned from a finite set of integral constraints on this distribution.
The main idea of the MaxEnt method for inference of distributions from data
given constraints is that beyond matching such constraints, the inferred distribution

3 Maximum Entropy Inverse Reinforcement Learning 431

should be maximally non-informative, i.e. it should produce the highest possible
uncertainty of a random variable described by this distribution.

As an amount of uncertainty in a distribution can be quantified by its entropy,
the MaxEnt method amounts to finding the distribution that maximizes the entropy
while matching all available integral constraints. The MaxEnt principle provides a
practical implementation of Laplace’s principle of insufficient reason, and has roots
in statistical physics (Jaynes 1957).

Here we show the working of the MaxEnt principle using an example of
learning the action policy in a simple single-step reinforcement setting. Such a
setting is equivalent to removing time from the problem. This simplifies the setup
considerably, because all data can now be assumed i.i.d., and there is no need to
consider future implications of a current action. The resulting time-independent
version of the MaxEnt principle is a version originally proposed by Jaynes in 1957.
To understand this approach, we shall elucidate it from a statistical mechanics
perspective.

Let π(a|s) be an action policy. Consider a one-step setting, with a single reward
r(s, a) to be received for different combinations of (s, a). An optimal policy should
maximize the value function V π(s) = ∫

r(s, a)π(a|s)da. However, the value
function is a linear functional of π(a|s) and does not exhibit an optimal value of
π(a|s) per se. Assuming that the rewards r(s, a) are known, a concave optimization
problem is obtained if we add an entropy regularization and consider the following
functional:

Fπ(s) := V π(s)+ 1

β
H [π(a|s)] =

∫
π(a|s)

[
r(s, a)− 1

β
logπ(a|s)

]
da,

(11.6)
where 1/β is a regularization parameter. If we take the variational derivative of this
expression with respect to π(a|s) and set it to zero, we obtain the optimal action
policy (see Exercise 11.1)

π(a|s) = 1

Zβ(s)
eβr(s,a), Zβ(s) :=

∫
eβr(s,a)da. (11.7)

Clearly, this expression assumes that the reward function r(s, a) is such that the
integral defining the normalization factor Zβ(s) converges for all attainable values
of s. Equation (11.7) has the same exponential form as Eq. (11.5) if we choose a
parametric specification βr(s, a) = rθ (s, a).

The expression (11.7) is obtained above as a solution of an entropy-regularized
maximization problem. The same form can also be obtained in a different way, by
maximizing the entropy of π(a|s) conditional on matching a given average reward
r̄(s). This is achieved by maximizing the following functional:

F̃ π (s) = −
∫
π(a|s) logπ(a|s)+ λ

(∫
π(a|s)r(s, a)da − r̄(s)

)
, (11.8)

432 11 Inverse Reinforcement Learning and Imitation Learning

where λ is a Lagrange multiplier. The optimal distribution is

π(a|s) = 1

Zλ(s)
eλr(s,a), Zλ(s) =

∫
eλr(s,a)da. (11.9)

This has the same form as (11.7) with β = 1/λ. On the other hand, for problems
involving integral constraints, the value of λ can be fixed in terms of the expected
reward r̄ . To this end, we substitute the solution (11.9) into Eq. (11.8) and minimize
the resulting expression with respect to λ to give:

min
λ

logZλ − λr̄(s). (11.10)

This produces

1

Zλ(s)

∫
r(s, a)eλr(s,a)da = r̄(s), (11.11)

which is exactly the integral constraint on π(a|s). The optimal value of λ is found
by solving Eq. (11.11) or equivalently by numerical minimization of (11.10). Note
that this produces a unique solution as the optimization problem (11.10) is convex
(see Exercise 11.1).

•> Links with Statistical Mechanics

As especially suggested by the second derivation, Eq. (11.7) or (11.9) can also
be seen as a Boltzmann distribution of a statistical ensemble with energies
E(s, a) = −r(s, a) on a space of state-action pairs. In statistical mechanics,
a distribution of states x ∈ X in a space of state X with energies E(x)
for a canonical ensemble with a fixed average energy is given by the same
Boltzmann form, albeit with a different functional form of the energy E.
In statistical mechanics, parameter β has a specific form β = 1/(kBT),
where kB is the Boltzmann constant, and T is a temperature of the system.
For this reason, parameter β in Eq. (11.7) is often referred to as the inverse
temperature.

A direct generalization of the MaxEnt principle is given by the minimum cross-
entropy (MCE) principle that replaces the absolute entropy with a KL divergence
with some reference distribution π0(a|s). In this case, instead of (11.8), we consider
the following KL-regularized value function:

3 Maximum Entropy Inverse Reinforcement Learning 433

Fπ(s) =
∫
π(a|s)

[
r(s, a)− 1

β
log

π(a|s)
π0(a|s)

]
da. (11.12)

The optimal action policy for this case is

π(a|s) = 1

Zβ(s)
π0(a|s)eβr(s,a), Zβ(s) :=

∫
π0(a|s)eβr(s,a)da. (11.13)

The common feature of all methods based on MaxEnt or MCE principles is therefore
the appearance of an exponential energy-based probability distribution.

For a simple single-step setting with reward r(s, a), the MaxEnt optimal policy
is exponential in r(s, a). As we will see next, an extension of entropy-based analysis
also produces an exponential specification for the action policy in a multi-step case.

3.2 Maximum Causal Entropy

In general, reinforcement learning or inverse reinforcement learning involves
trajectories that extend over multiple steps. In the most general form, we have a
series of states ST = S0:T and a series of actions AT = A0:T with some trajectory
length T > 1. Sequences of states and actions in an MDP can be thought of as
two interacting random processes S0:T and A0:T . The problem of learning a policy
can be viewed as a problem of inference of a distribution of actions A0:T given a
distribution of states S0:T .

Unlike MaxEnt inference problems for i.i.d. data, the time dependence of such
problems requires some care. Indeed, a naive definition of a distribution of actions
conditioned on states could involve conditional probabilities defined on the whole
paths, such as P [A0:T |S0:T]. A problem with such a definition would be that
it could violate causality, as conditioning on a whole path of states involves
conditioning on the future. For Markov Decision Processes, actions at time t can
depend only on the current state. If memory effects are important, they can be
handled by using higher-order MDPs, or by switching to autoregressive models such
as recurrent neural networks. Clearly, in both cases, to preserve causality, actions
now (at time t) cannot depend on the future.

When each variable at is conditioned only on a portion S0:t of all variables S0:T ,
the probability of A causally conditioned on S reads

P
(

AT
∣∣∣
∣∣∣ST

)
=

T∏

t=0

P (At |S0:t ,A0:t−1) . (11.14)

Note that the standard definition of conditional probability would involve condition-
ing on the whole path S0:T—which would violate causality. The causal conditional

434 11 Inverse Reinforcement Learning and Imitation Learning

probability (11.14) implies, in particular, that any joint distribution P
(
AT ,ST

)
can

be factorized as P
(
AT ,ST

) = P (
AT

∣∣∣∣ST
)
P
(

ST
∣∣∣∣AT−1

)
.

The causal entropy (Kramer 1998) is defined as follows:

H
(

AT
∣∣∣
∣∣∣ ST

)
= EA,S

[
− logP

(
AT

∣∣∣
∣∣∣ ST

)]
=

T∑

t=0

H (At ||S0:t ,A0:t) .

(11.15)
In this section, we assume that the dynamics are Markovian, so that P

(
ST

∣∣∣∣AT−1
)

= ∏
t P (st+1| st , at). In addition, we assume a setting of an infinite-horizon MDP.

For this case, we should use a discounted version of the causal entropy:

H (A0:∞||S0:∞) =
T∑

t=0

γ tH (At ||S0:t ,A0:t) , (11.16)

with a discount factor γ ≤ 1.
The causal entropy (11.16) (or (11.15), for a finite-horizon case) presents a

natural extension of an entropy of a conditional distribution to a dynamic setting
where conditional information changes over time. This is precisely the case for
learning policies for Markov Decision Processes. In this setting, states st of a system
can be considered conditioning information, while actions at are the subject of
learning.

For a first-order MDP, probabilities of actions at time t depend only on the state at
time t , and the causal entropy of the action policy takes a simpler form that depends
only on a policy distribution π(at |st):

H (A0:∞||S0:∞) =
∞∑

t=0

γ tH (at || st) = −ES

[∞∑

t=0

γ t
∫
π(at |st) logπ(at |st)dat

]
,

(11.17)
where the expectation is taken over all future values of st . Importantly, because the
process is Markov, this expectation depends only on marginal distributions of st at
t = 0, 1, . . ., but not on their joint distribution.

The causal entropy can be maximized under available constraints, providing an
extension of the MaxEnt principle to dynamic processes. Let us assume that some
feature functions F (S,A) are observed in a demonstration with T step and that
feature functions are additive in time, i.e. F (S,A) = ∑

t F (st , at). In particular,
a total reward obtained from a trajectory

(
ST ,AT

)
is additive in time; therefore, it

would fit such a choice. For additive feature functions, we have

E
π
A,S [F (S,A)] = E

π
A,S

[∞∑

t=0

γ tF (st , at)

]
. (11.18)

3 Maximum Entropy Inverse Reinforcement Learning 435

Here E
π
A,S [·] denotes expectation w.r.t. a distribution over future states and actions

induced by the policy π(at |st) and transition dynamics of the system expressed via
conditional transition probabilities P(st+1|st , at).

Suppose we seek a policy π(a|s) which matches empirical feature expectations

Ẽemp [F (S,A)] = Eemp

[∞∑

t=0

γ tF (st , at)

]
= 1

T

T−1∑

t=0

γ tF (st , at). (11.19)

Maximum Causal Entropy optimization can now be formulated as follows:

argmax
π

H
(

AT
∣∣∣
∣∣∣ST

)

Subject to: E
π
A,S [F (S,A)] = ẼA,S [F (S,A)] (11.20)

and
∑

at

π(at |st) = 1, π(at |st) ≥ 0, ∀st .

Here ẼA,S [·] stands for the empirical feature expectation as in Eq. (11.19). In
contrast to a single-step MaxEnt problem, constraints now refer to feature expecta-
tions collected over whole paths rather than single steps. Causality is not explicitly
enforced in (11.21); however, a causally conditioned policy in an MDP factorizes
as

∏∞
t=0 πt (at |st). Therefore, using the factors π(at |st) as decision variables, the

policy π is forced to be causally conditioned.
Equivalently, we can swap the objective and the constraints, and consider the

following dual problem:

argmax
π

E
π
A,S [F (S,A)]− ẼA,S [F (S,A)]

Subject to: H
(

AT
∣∣∣
∣∣∣ST

)
= H̄ (11.21)

and
∑

at

π(at |st) = 1, π(at |st) ≥ 0, ∀st ,

where H̄ is some value of the entropy that is fixed throughout the optimization.
Unlike the previous formulation that is non-concave and involves an infinite number
of constraints, the dual formulation is concave, and involves only one constraint on
the entropy (in addition to normalization constraints).

The dual form (11.21) of the Max-Causal Entropy method can be used for
both direct RL and IRL. We first consider applications of this approach to direct
reinforcement learning problems where rewards are observed.

436 11 Inverse Reinforcement Learning and Imitation Learning

•? Multiple Choice Question 2

Select all the following correct statements:

a. The Maximum Causal Entropy method provides an extension of the maxi-
mum entropy method for sequential decision-making inference which preserves
causality relations between actions and future states.

b. The dual form of Maximum Causality Entropy produces multiple solutions as it
amounts to a non-concave optimization.

c. A causality-conditioned policy with the Maximum Causality Entropy method is
ensured by adding causality constraints.

d. A causality-conditioned policy with the Maximum Causality Entropy method is
ensured by the MDP factorization of the process.

3.3 G-Learning and Soft Q-Learning

To apply the Max-Causal Entropy model (11.21) to reinforcement learning with
observed rewards, we take expected instantaneous rewards r(st , at) as features, i.e.
set F(st , at) = r(st , at). Furthermore, for direct reinforcement learning, the second
term in the objective function (11.21) depends only on the empirical measure but not
the policy π(a|s), and therefore it can be dropped from the optimization objective
function. Finally, we extend the Max-Causal Entropy method by switching to a
KL divergence with some reference policy π0(a|s) instead of using the entropy of
π(a|s) as a regularization. The latter case can always be recovered from the former
one by choosing a uniform reference density π0(a|s).

The Kullback–Leibler (KL) divergence of π(·|st) and π0(·|st) is

KL[π ||π0](st) :=
∑

at

π(at |st) log
π(at |st)
π0(at |st) = Eπ

[
gπ(s, a)

∣∣ st
]
, (11.22)

where

gπ(s, a) = log
π(at |st)
π0(at |st) (11.23)

is the one-step information cost of a learned policy π(at |st) relative to a reference
policy π0(at |st).

The problem of policy optimization expressed by Eqs. (11.21), generalized here
by using the KL divergence (11.22) instead of the causal entropy, can now be
formulated as a problem of maximization of the following functional:

3 Maximum Entropy Inverse Reinforcement Learning 437

Fπt (st) =
T∑

t ′=t
γ t

′−t
E

[
r(st ′, at ′)− 1

β
gπ(st ′, at ′)

]
. (11.24)

where 1/β is a Lagrange multiplier. Note that we dropped the second term in the
objective function (11.21) in this expression. The reason is that this term depends
only on the reward function but not on the policy. Therefore, it can be omitted for
the problem of direct reinforcement learning. Note however that it should be kept
for IRL as we will discuss later.

The expression (11.24) is a value function of a problem with a modified KL-
regularized reward r(st ′, at ′) − 1

β
gπ (st ′, at ′) that is sometimes referred to as the

free energy function. Note that β in Eq. (11.24) serves as the “inverse-temperature”
parameter that controls a tradeoff between reward optimization and proximity to the
reference policy. The free energy Fπt (st) is the entropy-regularized value function,
where the amount of regularization can be calibrated to the level of noise in the data.

The optimization problem (11.24) is exactly the one we studied in Chap. 10
where we presented G-learning. We recall a self-consistent set of equations that
need to be solved jointly in G-learning:

Fπt (st) =
1

β
logZt = 1

β
log

∑

at

π0(at |st)eβGπt (st ,at). (11.25)

π(at |st) = π0(at |st)eβ(Gπt (st ,at)−Fπt (st)). (11.26)

Gπt (st , at) = r(st , at)+ γEt,a
[
Fπt+1(st+1)

∣∣ st , at
]
. (11.27)

Here the G-function Gπt (st , at) is a KL-regularized action-value function.
Equations (11.25, 11.26, 11.27) constitute a system of equations that should be

solved self-consistently for π(at |yt),Gπt (yt , at), and Fπt (yt) (Fox et al. 2015). For a
finite-horizon problem of length T , the system can be solved by backward recursion
for t = T − 1, . . . , 0, using appropriate terminal conditions at t = T .

If we substitute the augmented free energy (11.25) into Eq. (11.27), we obtain

Gπt (s, a) = r(st , at)+
γ

β
Et,a

⎡

⎣log
∑

at+1

π0(at+1|st+1)e
βGπt+1(st+1,at+1)

⎤

⎦ . (11.28)

This equation is a soft relaxation of the Bellman optimality equation for the
action-value function (Fox et al. 2015). The “inverse-temperature” parameter β in
Eq. (11.28) determines the strength of entropy regularization. In particular, if we
take β → ∞, we recover the original Bellman optimality equation for the Q-
function. Because the last term in (11.28) approximates the max(·) function when
β is large but finite, Eq. (11.28) is known, for a special case of a uniform reference
density π0, as “soft Q-learning.”

438 11 Inverse Reinforcement Learning and Imitation Learning

Note that we could also bypass the G-function altogether, and proceed with the
Bellman optimality equation for the free energy F-function (11.24). In this case, we
have a pair of equations for Fπt (st) and π(at |st):

Fπt (st) = Ea

[
r(st , at)− 1

β
gπ(st , at)+ γEt,a

[
Fπt+1(st+1)

]]

π(at |st) = 1

Zt
π0(at |st)er(st ,at)+γEt,a

[
Fπt+1(st+1)

]
. (11.29)

Equation (11.29) shows that one-step rewards r(st , at) do not form an alternative
specification of single-step action probabilities π(at |st). Rather, a specification of
the sum r(st , at) + γEt,a

[
Fπt+1(st+1)

]
is required (Ortega et al. 2015). However,

in a special case when dynamics are linear and rewards r(st , at) are quadratic, the
term Et,a

[
Fπt+1(st+1)

]
has the same parametric form as the time-t reward r(st , at);

therefore, addition of this term amounts to a “renormalization” of parameters of the
one-step reward function (see Exercise 11.3). When the objective is to learn a policy,
such renormalized parameters can be directly learned from data, bypassing the need
to separate them into the current reward and an expected future-reward.

We see that the G-learning (or equivalently the Max-Causal Entropy) optimal
policy (11.26) for an MDP formulation is still given by the familiar Boltzmann
form as in (11.7), but with a different energy function F̂ (st , at), which is now given
by the G-function. Unlike the previous single-step case, in a multi-period setting
this function is not available in a closed form, but rather defined recursively by the
self-consistent G-learning equations (11.25, 11.26, 11.27).

3.4 Maximum Entropy IRL

The G-learning (Max-Causal Entropy) framework can be used for both direct and
inverse reinforcement learning. Here we apply it for the task of IRL.

In this section, we assume a time-homogeneous MDP with an infinite time
horizon. We also assume that a time-stationary action-value function G(st , at) is
specified as a parametric model (e.g., a neural network) with parameters θ , so we
write it as Gθ(st , at). The objective of IRL inference is to learn parameters θ from
data.

We start with the G-learning equations (11.25) expressed in terms of the policy
function π(at |st) and the parameterized G-function Gθ(st , at):

πθ (at |st) = 1

Zθ(st)
π0(at |st)eβGθ (st ,at), Zθ (st) :=

∫
π0(at |st)eβGθ (st ,at) dat ,

(11.30)
where the G-function (a.k.a. a soft Q-function) satisfies a soft relation of the Bellman
optimality equation

3 Maximum Entropy Inverse Reinforcement Learning 439

Gθ(s, a) = r(st , at)+ γ
β
Et,a

⎡

⎣log
∑

at+1

π0(at+1|st+1)e
βGθ (st+1,at+1)

⎤

⎦ . (11.31)

Under MaxEnt IRL, the stochastic action policy (11.30) is used as a probabilistic
model of observed data made of pairs (st , at). A loss function in terms of parameters
θ can therefore be obtained by applying the conventional maximum likelihood
method to this model.

To gain more insight, let us start with the likelihood of a particular path τ :

P(τ) = p(s0)

T−1∏

t=0

πθ (at |st)P (st+1|st , at)

= p(s0)

T−1∏

t=0

1

Zθ(st)
π0(at |st)eβGθ (st ,at)P (st+1|st , at). (11.32)

Now we take a negative logarithm of this expression to get the negative log-
likelihood, where we can drop contributions from the initial state distribution p(s0)

and state transition probabilities P(st+1|st , at), as neither depends on the model
parameters θ :

L(θ) =
T−1∑

t=0

(logZθ(st)− βGθ(st , at)) . (11.33)

Minimization of this loss function with respect to parameters θ gives an optimal soft
Q-function Gθ(st , at). Once this function is found, if needed or desired, we could
use Eq. (11.31) in reverse to estimate one-step expected rewards r(st , at).

Gradients of the loss function (11.33) can be computed as follows:

∂L(θ)
∂θ

=
T−1∑

t=0

(∫
πθ (a|st) ∂Gθ (st , a)

∂θ
da− ∂Gθ(st , at)

∂θ

)

= 〈∂Gθ(s, a)
∂θ

〉model − 〈∂Gθ(s, a)
∂θ

〉data. (11.34)

The second term in this expression can be computed directly from the data for
any given value of θ , and thus does not pose any issues. The problem is with
the first term in (11.34) that gives the gradient of the log-partition function in
Eq. (11.33). This term involves an integral over all possible actions at each step
of the trajectory, computed with the probability density πθ (a|st). For a discrete-
action MDP, the integral becomes a finite sum that can be computed directly, but
for continuous and possibly high-dimensional action spaces, an accurate calculation
of this integral for a fixed value of θ might be time-consuming. Given that this

440 11 Inverse Reinforcement Learning and Imitation Learning

integral should be evaluated multiple times during optimization of parameters θ ,
unless evaluated analytically, the computational burden of this step can be very high
or even prohibitive.

Leaving these computational issues aside for a moment, the intermediate conclu-
sion is that the task of IRL can be solved using the maximum likelihood method
for the action policy produced by G-learning, and without explicitly solving the
Bellman optimality equation. The solution approach used here is to model the whole
soft action-value functionGθ(st , at) using a flexible function approximation method
such as a neural network. As Gθ(st , at) defines the action policy πθ (a|st), by
making inference of the policy, we can directly learn the soft action-value function.

We note, however, that such apparent relief from the need to solve the (soft)
Bellman optimality equation at each internal step of the IRL task has a flip side.
In the form presented above, the MaxEnt IRL approach is identical to behavioral
cloning with the G-function Gθ(st , at) that is fitted to data in the form of pairs
(st , at). This is different from TD methods such as Q-learning or its “soft” versions
that consider triplets of transitions (st , at , st+1), and thus capture dynamics of the
system without estimating them explicitly. Therefore, all problems with behavioral
cloning mentioned above in this chapter will also arise here. In particular, a soft
value function using only pairs (st , at) and maximum likelihood estimation could
produce a G-function that would be compatible with the data, and yet produce
implausible single-step reward functions when Eq. (11.31) is used at the last step
with the estimated G-function.

To preclude such potential problems arising, instead of using a parametric
model for the G-function, we could directly specify a parametric single-step reward
function rθ (st , at). For example, with linear architectures, a reward function is linear
in a set of K pre-specified features �k(st , at):

rθ (st , at) =
K∑

k=1

θk�k(st , at). (11.35)

Alternatively, a reward function can be non-linear in parameters θ , and could be
defined using, e.g., a neural network or a Gaussian process.

•> IRL with Bounded Rewards

As we discussed in Chap. 9, reinforcement learning requires that rewards
should be bounded from above by some value rmax . On the other hand, it
also has certain invariances with respect to transformations of the reward
function, namely the policy remains unchanged under affine transformations

(continued)

3 Maximum Entropy Inverse Reinforcement Learning 441

of the reward function r(s, a) → ar(s, a) + b, where a > 0 and b are fixed
parameters. We can use this invariance in order to fix the highest possible
reward to be zero: rmax = 0 without any loss of generality. Let us assume the
following functional form of the reward function:

r(s, a) = logD(s, a), (11.36)

where D(s, a) is another function of the state and action. Assume that the
domain of function D(s, a) is a unit interval, i.e. 0 ≤ D(s, a) ≤ 1. In this
case, the reward is bounded from above by zero, as required:−∞ < r(s, a) ≤
0.

Now, because 0 ≤ D(s, a) ≤ 1, we can interpret D(s, a) as a probability
of a binary classifier. If D(s, a) is chosen to be the probability that the given
action a in state s was generated by the expert, then according to Eq. (11.36),
maximization of the reward corresponds to maximization of log-probability
of the expert trajectory.

Let us use a simple logistic regression model for D(s, a) = σ (θ�(s, a)),
where σ(x) is the logistic function, θ is a vector of model parameters of size
K , and �(s, a) is a vector of K basis functions. For this specification, we
obtain the following parameterization of the reward function:

r(s, a) = − log
(

1+ e−θ�(s,a)
)
. (11.37)

As one can check, this reward function is concave in a if basis functions
�k(s, a) are linear in a while having an arbitrary dependence on s (see
Exercise 11.2). Therefore, such a reward can be used as an alternative to a
linear specification (11.35) for risk-averse RL and IRL. We will return to the
reward specification (11.36) below when we discuss imitation learning.

Once the reward function is defined, the parametric dependence of the G-function
is fixed by the soft Bellman equation (11.31). The latter will also define gradients of
the G-function that enter Eq. (11.34). The gradients can be estimated using samples
from the true data-generating distribution πE and the model distribution πθ .

Clearly, solving the IRL problem in this way would make estimated rewards
rθ (st , at) more consistent with dynamics than in the previous version that directly
works with a parameterized G-function. However, this forces the IRL algorithm
to solve the direct RL problem of finding the optimal soft action-value function
Gθ(st , at) at each step of optimization over parameters θ . Given that solving
the direct RL problem even once might be quite time-consuming, especially in
high-dimensional continuous action spaces, this can render the computational cost

442 11 Inverse Reinforcement Learning and Imitation Learning

of directly inferring one-step rewards very high and impractical for real-world
applications.

Another and computationally more feasible option is to define the BC-like
loss function (11.33) to be more consistent with the dynamics. We introduce
a regularization that depends on observed triplet transitions (st , at , st+1). One
simple idea in this direction is to add a regularization term equal to the squared
Bellman error, i.e. the squared difference between the left- and right-hand sides of
Eq. (11.31), where the one-step reward is set to be a fixed number, rather than a
function of state and action. Such an approach was applied in robotics where it was
called SQIL (Soft Q Imitation Learning) (Reddy et al. 2019).

We will return to the topic of regularization in IRL in the next section, where
we will consider IRL in the context of imitation learning. In passing, we shall
consider other computational aspects of the IRL problem that persist with or without
regularization.

3.5 Estimating the Partition Function

After parameters θ are optimized, Eq. (11.31) can be used in order to estimate
one-step expected rewards r(st , at). In practice, computing the gradients of the
resulting loss function involves integration over a (multi-dimensional) action space.
This produces the main computational bottleneck of the MaxEnt IRL method. Note
that the same bottleneck arises in direct reinforcement learning with G-learning
Eqs. (11.25) that also involves computing integrals over the action space.

One commonly used approach to numerically computing integrals involving
probability distributions is importance sampling. If μ̂(at |st) is a sampling distribu-
tion, then the integral appearing in the gradient (11.34) can be evaluated as follows:

∫
πθ (at |st) ∂Gθ (st , at)

∂θ
dat =

∫
μ̂(at |st)πθ (at |st)

μ̂(at |st)
∂Gθ (st , at)

∂θ
dat , (11.38)

which replaces integration with respect to the original distribution with the sampling
distribution μ̂(at |st), with the idea that this distribution might be easier to sample
from than the original probability density. When this distribution is used for
sampling, the gradients ∂Gθ/∂θ are multiplied by the likelihood ratios πθ/μ̂.

Importance sampling becomes more accurate when the sampling distribution
μ̂(at |st) is close to the optimal action policy πθ (at |st). This observation could be
used to produce an adaptive sampling distribution μ̂(at |st). For example, we could
envision a computational scheme with updates of the G-function according to the
gradients

∂L(θ)
∂θ

=
T−1∑

t=0

(∫
μ̂(at |st)πθ (at |st)

μ̂(at |st)
∂Gθ (st , a)

∂θ
da− ∂Gθ(st , at)

∂θ

)
, (11.39)

4 Example: MaxEnt IRL for Inference of Customer Preferences 443

which would be intermittent with updates of the sampling distribution μ̂(at |st)
that would depend on values of θ from a previous iteration. Such methods are
known in robotics as “guided cost learning” (Finn et al. 2016). We will discuss a
related method in Sect. 5 where we consider alternative approaches to learning from
demonstrations. Before turning to such advanced methods, we would like to present
a tractable formulation of MaxEnt IRL where the partition function can be computed
exactly so that approximations are not needed. Without too much loss of generality,
we will present such a formulation in the context of a problem of inference of
customer preferences and price sensitivity. Such a problem can also be viewed as
a special case of a consumer credit problem. Similar examples in consumer credit
might include prepaid household utility payment plans where the consumer prepays
their utilities and is penalized for overage and lines of credit in payment processing
and ATM services. Other examples include consumer loans and mortgages where
different loan products are offered to the consumer, with varying interest rates and
late payment penalties, and the user chooses when to make principal payments.

•? Multiple Choice Question 3

Select all the following correct statements:

a. Maximum Entropy IRL provides a solution of the self-consistent system of G-
learning without access to the reward function that fits observable sequences of
states and actions.

b. “Soft Q-learning” is a method of relaxation of the Bellman optimality equation
for the action-value function that is obtained from G-learning by adopting a
uniform reference action policy.

c. Maximum Entropy IRL assumes that all demonstrations are strictly optimal.
d. Taking the limit β → ∞ in Maximum Entropy IRL is equivalent to assuming

that all demonstrations are strictly optimal.

4 Example: MaxEnt IRL for Inference of Customer
Preferences

The previous section presented a general formulation of the MaxEnt IRL approach.
While this approach can be formulated for both discrete and continuous state-
action spaces, for the latter case, computing the partition function is often the main
computational burden in practical applications.

These computational challenges should not overshadow the conceptual simplic-
ity of the MaxEnt IRL approach. In this section we present a particularly simple
version of this method which can be derived using quadratic rewards and Gaussian
policies. We will present this formulation in the context of a problem of utmost
interest in marketing, which is the problem of learning preferences and price
sensitivities of customers of a recurrent utility service.

444 11 Inverse Reinforcement Learning and Imitation Learning

We will also use this simple example to provide the reader with some intuition on
the amount of data needed to apply IRL. As we will show below, caution should be
exercised when applying IRL to real-world noisy data. In particular, using simulated
examples, we will show how the observational noise, inevitable in any finite-sample
data, can masquerade itself as an apparent heterogeneity of agents.

4.1 IRL and the Problem of Customer Choice

Understanding customer choices, demand, and preferences, with customers being
consumers or firms, is a central tenet in the marketing literature. One important
class of such problems is dynamic consumer demand for recurrent utility-like plans
and services such as cloud computing plans, internet data plans, utility plans (e.g.,
electricity, gas, phone), etc. Consumer actions in this settings extend over a period
of time, such as the term of a contract or a period between regular payments for a
plan, and can therefore be considered a multi-step decision-making problem.

If customers are modeled as utility-maximizing rational agents, the problem is
well suited for methods of inverse optimal control or inverse reinforcement learning.
In the marketing literature, the inverse optimal control approach to learning the
customer utility is often referred to as structural models, see, e.g., Marschinski et al.
(2007). This approach has the advantage over purely statistical regression based
models in its ability to discern true consumer choices and demand preferences from
effects induced by particular marketing campaigns. This enables the promotion of
new products and offers, whose attractiveness to consumers could then be assessed
based on the learned consumer utility.

Structural models view forward-looking consumers as rational agents maximiz-
ing their streams of expected utilities of consumption over a planning horizon
rather than their one-step utility. Structural models typically specify a model for
a consumer utility, and then estimate such a model using methods of dynamic
programming and stochastic optimal control.

Using the language of reinforcement learning, structural models require methods
of dynamic programming or approximate dynamic programming using determin-
istic policies. As we mentioned earlier in this chapter, using deterministic policies
to infer agents’ utilities may be problematic if the demonstrated behavior is sub-
optimal. A deterministic policy which assumes that each step should be strictly
optimal, will assign a zero probability to any path that is not strictly optimal. This
would rule out any data where the demonstrated behavior is expected to deviate in
any way from a strictly optimal behavior. Needless to say, available data is almost
always sub-optimal to a various extent.

To relax the assumption of strict optimality for all demonstrations, structural
models usually add a random component to the one-step customer utility, which
is sometimes referred to as “user shocks.” An example of such an approach can
be found in Xu et al. (2015) who applied it to infer reward (utility) functions
of consumers of mobile data plans. While this enables sub-optimal trajectories,

4 Example: MaxEnt IRL for Inference of Customer Preferences 445

this approach requires optimization of the reward parameters using Monte Carlo
simulation, where unobserved and simulated “user shocks” are added in the
parameter estimation procedure.

Instead of pursuing such an approach, MaxEnt IRL offers an alternative and more
computationally efficient way to manage possible sub-optimality in data by using
stochastic policies instead of deterministic policies. This approach provides some
degree of tolerance to certain occasional, non-excessive, deviations from a strictly
optimal behavior, which are described as rare fluctuations according to the model
with optimal parameters.

We will now present a simple parametric specification of the MaxEnt IRL method
that we introduced in this chapter. As we will show, it leads to a very lightweight
computational method, in comparison to Monte Carlo based methods for structural
models.

4.2 Customer Utility Function

More formally, consider a customer that purchased a single-service plan with the
monthly price F , initial quota q0, and price p to be paid for the unit of consumption
upon breaching the monthly quota on the plan.3 We specify a single-step utility
(reward) function of a customer at time t = 0, 1, . . . , T − 1 (where T is a length of
a payment period, e.g., a month) as follows:

r(at , qt , dt) = μat − 1

2
βa2
t + γ atdt − ηp(at − qt)+ + κqt1at=0. (11.40)

Here at ≥ 0 is the daily consumption on day t , qt ≥ 0 is the remaining allowance at
the start of day t , and dt is the number of remaining days until the end of the billing
cycle, and we use a short notation x+ = max(x, 0) for any x. The fourth term
in Eq. (11.40) is proportional to the payment p(at − qt)+ made by the customer
once the monthly quota q0 is exhausted. Parameter η gives the price sensitivity of
the customer, while parameters μ, β, γ specify the dependence of the user reward
on the state-action variables qt , dt , at . Finally, the last term ∼ κqt1at=0 gives the
reward received upon zero consumption at = 0 at time t (here 1at=0 is an indicator
function that is equal to one if at = 0, and is zero otherwise). Model calibration
amounts to estimation of parameters η,μ, β, γ, κ given the history of the user’s
consumption.

Note that the reward (11.40) can be equivalently written as an expansion over
K = 5 basis functions:

3For plans that do not allow breaching the quota q0, the present formalism still applies by setting
the price p to infinity.

446 11 Inverse Reinforcement Learning and Imitation Learning

r(at , qt , dt) = �T�(at , qt , dt) =
K−1∑

k=0

θk k(at , qt , dt), (11.41)

where

θ0 = μ〈at 〉, θ1 = −1

2
β〈a2

t 〉, θ2 = γ 〈atdt 〉,
θ3 = −ηp〈(at − qt)+〉, θ4 = κ〈qt1at=0〉

(here 〈X〉 stands for the empirical mean of X), and the following set of basis
functions { k}K−1

k=0 is used:

 0(at , qt , dt) = at/〈at 〉,
 1(at , qt , dt) = a2

t /〈a2
t 〉,

 2(at , qt , dt) = atdt /〈atdt 〉, (11.42)

 3(at , qt , dt) = (at − qt)+/〈(at − qt)+〉
 4(at , qt , dt) = qt1at=0/〈qt1at=0〉.

As we explained above, structural models attempt to reconcile deterministic policies
and a possible sub-optimal behavior by adding random “user shocks” to the user
utility. For example, such “user shocks” can be added to parameter μ. A drawback
of such an approach is that for model estimation, it requires Monte Carlo simulation
of user shock paths.

This can be compared with MaxEnt IRL. Because MaxEnt IRL is a probabilistic
approach that assigns probabilities to observed paths, it does not require introducing
a random shock to the utility function in order to reconcile the model with a
possible sub-optimal behavior. Therefore, MaxEnt IRL does not need Monte Carlo
simulation to estimate parameters of the user utility, and instead can use standard
maximum likelihood estimation (MLE). For the reward defined in Eq. (11.40),
MLE amounts to a convex optimization with 5 variables, which can be performed
efficiently using the standard off-the-shelf convex optimization software. Moreover,
our specification (11.40) can be easily generalized by adding more basis functions
while keeping the rest of the methodology intact.

4.3 Maximum Entropy IRL for Customer Utility

We use an extension of the MaxEnt IRL called Relative Entropy IRL (Boularias
et al. 2011) which replaces the uniform distribution in the MaxEnt method by a
non-uniform benchmark (or “prior”) distribution π0(at |qt , dt). This produces the
exponential single-step transition probability:

4 Example: MaxEnt IRL for Inference of Customer Preferences 447

P (qt+1 = qt − at , at |qt , dt) := π(at |qt , dt) (11.43)

= π0(at |qt , dt)
Zθ (qt , dt)

exp (r(at , qt , dt)) = π0(at |qt , dt)
Zθ (qt , dt)

exp
(
�T�(at , qt , dt)

)
,

where Zθ(qt , dt) is a state-dependent normalization factor

Zθ(qt , dt) =
∫
π0(at |qt , dt) exp

(
�T�(at , qt , dt)

)
dat . (11.44)

We note that most applications of MaxEnt IRL use multi-step trajectories as prime
objects, and define the partition function Zθ on the space of trajectories. While
the first applications of MaxEnt IRL calculated Zθ exactly for small discrete state-
action spaces as in (Ziebart et al. 2008, 2013), for large or continuous state-action
spaces we resort to approximate dynamic programming, or other approximation
methods. For example, the Relative Entropy IRL approach of (Boularias et al. 2011)
uses importance sampling from a reference (“background”) policy distribution to
calculate Zθ . It is this calculation that poses the main computational bottleneck for
applications of MaxEnt/RelEnt IRL methods for large or continuous state-action
spaces.

With a simple piecewise-quadratic reward such as Eq. (11.40), we can proceed
differently: we define state-dependent normalization factorsZθ(qt , dt) for each time
step. Because we trade a path-dependent “global” partition function Zθ for a local
state-dependent factor Zθ(qt , dt), we do not need to rely on exact or approximate
dynamic programming to calculate this factor. This is similar to the approach of
Boularias et al. (2011) (as it also relies on the Relative Entropy minimization), but
in our case both the reference distribution π0(at |qt , dt) and normalization factor
Zθ(qt , dt) are defined on a single time step, and calculation of Zθ(qt , dt) amounts
to computing the integral (11.44). As we show below, this integral can be calculated
analytically with a properly chosen distribution π0(at |qt , dt).

We shall use a mixture of discrete and continuous distribution for the reference
(“prior”) action distribution π0(at |qt , dt):

π0(at |qt , dt) = ν̄0δ(at)+ (1− ν̄0)π̃0(at |qt , dt)Iat>0, (11.45)

where δ(x) stands for the Dirac delta-function, and Ix>0 = 1 if x > 0 and zero
otherwise. The continuous component π̃0(at |qt , dt) is given by a spliced Gaussian
distribution

π̃0(at |qt , dt) =
⎧
⎨

⎩
(1− ω0(qt , dt))φ1

(
at ,

μ0+γ0dt
β0

, 1
β0

)
if 0 < at ≤ qt

ω0(qt , dt)φ2

(
at ,

μ0+γ0dt−η0p
β0

, 1
β0

)
if at ≥ qt

, (11.46)

where φ1(at , μ1, σ
2
1) and φ2(at , μ2, σ

2
2) are probability density functions of two

truncated normal distributions defined separately for small and large daily con-
sumption levels, 0 ≤ at ≤ qt and at ≥ qt , respectively (in particular, they both

448 11 Inverse Reinforcement Learning and Imitation Learning

are separately normalized to one). The mixing parameter 0 ≤ ω0(qt , dt) ≤ 1 is
determined by the continuity condition at at = qt :

(1−ω0(qt , dt))φ1

(
qt ,
μ0 + γ0dt

β0
,

1

β0

)
= ω0(qt , dt)φ2

(
qt ,
μ0 + γ0dt − η0p

β0
,

1

β0

)
.

(11.47)
As this matching condition may involve large values of qt where the normal
distribution would be exponentially small, in practice it is better to use it by taking
logarithms of both sides:

ω0(qt , dt) = 1

1+ exp
{

logφ2

(
qt ,

μ0+γ0dt−η0p
β0

, 1
β0

)
− logφ1

(
qt ,

μ0+γ0dt
β0

, 1
β0

)} .

(11.48)
The prior mixing-spliced distribution (11.45), albeit represented in terms of simple
distributions, leads to potentially quite complex dynamics that make intuitive sense
and appear largely consistent with observed patterns of consumption. In particular,
note that Eq. (11.46) indicates that large fluctuations at > qt are centered around
a smaller mean value μ−γ dt−ηp

β
than the mean value μ−γ dt

β
of smaller fluctuations

0 < at ≤ qt . Both a reduction of the mean upon breaching the remaining allowance
barrier and a decrease of the mean of each component with time appear quite
intuitive in the current context. As will be shown below, a posterior distribution
π(at |qt , dt) inherits these properties while also further enriching the potential
complexity of dynamics.4

The advantage of using the mixed-spliced distribution (11.45) as a reference dis-
tribution π0(at |qt , dt) is that the state-dependent normalization constant Zθ(qt , dt)
can be evaluated exactly with this choice:

Zθ(qt , dt) = ν̄0e
κqt + (1− ν̄0) (I1(θ, qt , dt)+ I2(θ, qt , dt)) , (11.49)

where

I1(θ, qt , dt) = (1− ω0(qt , dt))

√
β0

β0 + β exp

{
(μ0 + μ+ (γ0 + γ)dt)2

2(β0 + β) − (μ0 + γ0dt)
2

2β0

}

×
N
(
−μ0+μ+(γ0+γ)dt−(β0+β)qt√

β0+β
)
−N

(
−μ0+μ+(γ0+γ)dt√

β0+β
)

N
(
−μ0+γ0dt−β0qt√

β0

)
−N

(
−μ0+γ0dt√

β0

)

I2(θ, qt , dt) = ω0(qt , dt)

√
β0

β0 + β exp

{
(μ0 + μ− (η0 + η)p + (γ0 + γ)dt)2

2(β0 + β) (11.50)

4In particular, it promotes a static mixing coefficient ν0 to a state- and time-dependent variable
νt = ν(qt , dt).

4 Example: MaxEnt IRL for Inference of Customer Preferences 449

− (μ0 − η0p + γ0dt)
2

2β0
+ ηpqt

}
×

1−N
(
−μ0+μ−(η0+η)p+(γ0+γ)dt−(β0+β)qt√

β0+β
)

1−N
(
−μ0−η0p+γ0dt−β0qt√

β0

) ,

where N(x) is the cumulative normal probability distribution.

Probabilities of T -steps paths τi =
{
ait , q

i
t , d

i
t

}T
t=0 (where i enumerates different

user-paths) are obtained as products of single-step probabilities:

P (τi) =
∏

(at ,qt ,dt)∈τi

π0(at |qt , dt)
Zθ (qt , dt)

exp
(
�T�(at , qt , dt)

)
∼ exp

(
�T�(τi)(at , qt , dt)

)
.

(11.51)

Here �(τi)(at , qt , dt) =
{

(τi)
k (at , qt , dt)

}K−1

k=0
are cumulative feature counts along

the observed path τi :

(τi)
k (at , qt , dt) =

∑

(at ,qt ,dt)∈τi
 k(at , qt , dt). (11.52)

Therefore, the total path probability in our model is exponential in the total reward
along a trajectory, as in the “classical” MaxEnt IRL approach (Ziebart et al. 2008),
while the pre-exponential factor is computed differently as we operate with one-
step, rather than path probabilities.

Parameters � defining the exponential path probability distribution (11.51)
can be estimated by the standard maximum likelihood estimation (MLE) method.
Assume we have N historically observed single-cycle consumption paths, and
assume these path probabilities are independent.5 The total likelihood of observing
these data is

L(θ) =
N∏

i=1

∏

(at ,qt ,dt)∈τi

π0(at |qt , dt)
Zθ (qt , dt)

exp
(
�T�(at , qt , dt)

)
. (11.53)

The negative log-likelihood is therefore, after omitting the term logπ0(at |qt , dt)
that does not depend on �,6 and rescaling by 1/N ,

− 1

N
logL(θ) = 1

N

N∑

i=1

⎛

⎝
∑

(qt ,dt)∈τi
logZθ(qt , dt)−

∑

(at ,qt ,dt)∈τi
�T�(at , qt , dt)

⎞

⎠

5A more complex case of co-dependencies between rewards for individual customers can be
considered, but we will not pursue this approach here.
6Note that Zθ (qt , dt) still depends on π0(at |qt , dt), see Eq. (11.44).

450 11 Inverse Reinforcement Learning and Imitation Learning

= 1

N

N∑

i=1

⎛

⎝
∑

(qt ,dt)∈τi
logZθ(qt , dt)−�T�(τi)(at , qt , dt)

⎞

⎠ . (11.54)

Given an initial guess for the optimal parameter θ(0)k , we can also consider a
regularized version of the negative log-likelihood:

− 1

N
logL(θ) = 1

N

N∑

i=1

⎛

⎝
∑

(qt ,dt)∈τi
logZθ(qt , dt)−�T�(τi)(at , qt , dt)

⎞

⎠+λ||θ−θ(0)||q,

(11.55)
where λ is a regularization parameter, and q = 1 or q = 2 stands for the
L1- and L2-norms, respectively. The regularization term can also be given a
Bayesian interpretation as the contribution of a prior distribution on θk when the
MLE estimation (11.53) is replaced by a Bayesian maximum a posteriori (MAP)
estimation.

Using the well-known property that exponential models like (11.51) give rise
to convex negative log-likelihood functions, our final objective function (11.55)
is convex in parameters � (as can also be verified by a direct calculation), and
therefore has a unique solution for any value of θ(0) and λ. This ensures stability
of the calibration procedure and a smooth evolution of estimated model parameters
� between individual customers or between groups of customers.

The regularized negative log-likelihood function (11.55) can be minimized using
a number of algorithms for convex optimization. If λ = 0 (i.e., no regularization is
used), or q = 2, the objective function is differentiable, and gradient-based methods
can be used to calibrate parameters θk . When λ > 0 and the L1-regularization is
used, the objective function is non-differentiable at zero, which can be addressed by
using the Orhant-Wise variant of the L-BFGS algorithm (Kalakrishnan et al. 2013).

4.4 How Much Data Is Needed? IRL and Observational Noise

IRL is typically harder than direct reinforcement learning because it is based on less
data since the rewards are not observed. It is well known that training RL is often
data intensive. For example, deep reinforcement learning often uses training datasets
measured in millions of feature vector observations. For financial applications, even
simple RL models with quadratic rewards that do not involve sophisticated function
approximations may require tens of thousands of examples for sufficiently accurate
results.

Given that IRL is typically harder than RL and that RL is typically so data
intensive—for IRL to be successful, a natural first question we could ask is do we
have enough data?

The answer to this question clearly depends on several factors. First, it depends
on the model and its number of free parameters to tune. Second, it depends on the

4 Example: MaxEnt IRL for Inference of Customer Preferences 451

purpose of using IRL. Consider, for example, the application of IRL to clustering of
financial agents. The standard approach to clustering in general is to predetermine
a set of features and then perform clustering with a metric defined on the Euclidean
space of such features, such as a vector norm.

When the objects of clustering are not some abstract data points but rather
financial agents, IRL offers an interesting and on many accounts very attractive
alternative to this standard approach. The idea is to use the reward function that is
learned by IRL for defining useful features for clustering. If clustering is performed
in this way, the resulting clusters would differentiate between themselves by features
that are correlated with an agents’ rewards, and thus would be meaningful by
construction.

This idea can be implemented in a very straightforward way. Assume that we
have a set of N trajectories obtained with N different agents. Further assume that
the reward function for each agent can be represented as an expansion over a set of
K basis functions �k(st , at):

r(st , at) =
∑

k=1

θk�k(st , at). (11.56)

If IRL is performed separately for each agent, this results in a learned set of param-
eters {θk} that would in general be different for each agent. The learned parameters
{θk}Kk=1 could then be used to define a metric, for example, the Euclidean distance

between vectors between two agents i and j defined asDij =∑K
k=1

(
θ
(i)
k − θ(j)k

)2
.

Clearly, for this program to work, the differences between parameters θ should
be statistically significant. Otherwise, heterogeneity of agents obtained in this way
could be just an artifact of noise in data.

A prudent approach to discerning true heterogeneity in IRL data from spurious
effects of sampling error is to rely on estimations on efficiency (e.g., rates of
convergence) of different finite-sample estimators. In classical statistics, such rates
can be obtained when the likelihood is analytically tractable. This is, for example,
the case with maximum likelihood estimation using a squared loss function. In other
cases, for example, in non-parametric models, the likelihood does not have a closed-
form expression, and analytical results for convergence rates of pre-asymptotic
(finite-sample) estimators are not available.

In such cases, a practical alternative to analytical formulae is to rely on Monte
Carlo simulation. As parameters θ learned with IRL on a finite-size data can be
viewed as statistical estimators, efficiency of such estimators and the impact of
observational finite-sample noise on them can be explored by using them on data
simulated from the same model. In other words, a model learned by IRL is assumed
to be a true model of the world. If the model is generative, we can simulate from
it using some fixed and plausible parameters, and produce an unlimited amount of
data on demand. We can then plot histograms of predicted parameter values obtained
for any given length T of observed sequences, and compare them with true values
(those used to simulate the data), in order to assess finite-sample performance of
IRL estimators.

452 11 Inverse Reinforcement Learning and Imitation Learning

The simple MaxEnt IRL framework, developed in this section, can help develop
intuition on the amount of data needed to differentiate the true heterogeneity across
agents from spurious effects of observational noise. As the model is generative and
enables easy simulation, it can be used for assessing finite-sample performance
using Monte Carlo simulation as we will describe next.

4.5 Counterfactual Simulations

After the model parameters � are estimated using the MLE method of Eq. (11.54)
or (11.55), the model can be used for counterfactual simulations of total user
rewards assuming that users adopt plans with different upfront premia Fj , prices
pj , and initial quota qj (0). To this end, note that given the daily consumption at
and the previous values qt−1, dt−1, the next values are deterministic: qt = (qt−1 −
at)+, dt = dt−1−1. Therefore in our model, path probabilities are solely defined by
action probabilities, and the probability density of different actions at ≥ 0 at time
t can be obtained from a one-step probability P(τ) ∼ exp (r(at , qt , dt)). Using
Eqs. (11.40) and (11.43), this gives

π(at |qt , dt) = π0(at |qt , dt)
Zθ (qt , dt)

exp

{
μat − 1

2
βa2
t + γ atdt − ηp(at − qt)+ + κqt1at=0

}
.

(11.57)
Using the explicit form of a mixture discrete-continuous prior distribution
π0(at |qt , dt) given by Eq. (11.45), we can express the “posterior” distribution
π(at |qt , dt) in the same form:

π(at |qt , dt) = νt δ(at)+ (1− νt)π̃(at |qt , dt)Iat>0, (11.58)

where the mixture weight becomes state- and time-dependent:

νt = ν̄0 exp{κqt }
Zθ(qt , dt)

= ν̄0 exp{κqt }
ν̄0eκqt + (1− ν̄0) (I1(θ, qt , dt)+ I2(θ, qt , dt)) , (11.59)

(here we used Eq. (11.49)), and the spliced Gaussian component is

π̃(at |qt , dt) =
⎧
⎨

⎩
(1− ω(θ, qt , dt))φ1

(
at ,

μ0+μ+(γ0+γ)dt
β0+β , 1

β0+β
)

if 0 < at ≤ qt
ω(θ, qt , dt)φ2

(
at ,

μ0+μ−(η0+η)p+(γ0+γ)dt
β0+β , 1

β0+β
)

if at ≥ qt
,

(11.60)

where the weight ω(θ, qt , dt) can be obtained using Eqs. (11.57) and (11.49). After
some algebra, this produces the following formula:

ω(θ, qt , dt) = I2(θ, qt , dt)

I1(θ, qt , dt)+ I2(θ, qt , dt) =
1

1+ I1(θ,qt ,dt)
I2(θ,qt ,dt)

, (11.61)

4 Example: MaxEnt IRL for Inference of Customer Preferences 453

where functions I1(θ, qt , dt), I2(θ, qt , dt) are defined above in Eqs. (11.50). The
ratio I1(θ, qt , dt)/I2(θ, qt , dt) can be equivalently represented in the following
form:

I1(θ, qt , dt)

I2(θ, qt , dt)

= e−p(η0+η)
(
qt− μ0+μ+(γ0+γ)dt

β0+β
)
− p2(η0+η)2

2(β0+β)
∫ qt

0 e
− 1

2 (β0+β)
(
at− μ0+μ+(γ0+γ)dt

β0+β
)2

dat

∫∞
qt
e
− 1

2 (β0+β)
(
at− μ0+μ+(γ0+γ)dt−(η0+η)p

β0+β
)2

dat

.

(11.62)

It can be checked by a direct calculation that Eq. (11.61) with the ratio
I1(θ, qt , dt)/I2(θ, qt , dt) given by Eq. (11.62) coincides with the formula for the
weight that would be obtained from a continuity condition at at = qt if we started
directly with Eq. (11.60). This would produce, similarly to Eq. (11.48),

ω0(qt , dt) = 1

1+ exp

{
log

φ2

(
qt ,

μ0+μ+(γ0+γ)dt−(η0+η)p
β0+β , 1

β0+β
)

φ1

(
qt ,

μ0+μ+(γ0+γ)dt
β0+β , 1

β0+β
)

} . (11.63)

The fact that two expressions (11.61) and (11.63) coincide means that the “poste-
rior” distribution π(at |qt , dt) is continuous at at = qt as long as the “prior” distribu-
tion π0(at |qt , dt) is continuous there. Along with continuity at at = qt , the optimal
(or “posterior”) action distribution π(at |qt , dt) has the same mixing discrete-
spliced Gaussian structure as the reference (“prior”) distribution π0(at |qt , dt), while
mixing weights, means, and variances of the component distributions are changed.
Such a structure-preserving property of our model is similar in a sense to the
structure-preservation property of conjugated priors in Bayesian analysis. Note that
simulation from the spliced Gaussian distribution (11.60) is only slightly more
involved than simulation from the standard Gaussian distribution. This involves first
simulating a component of the spliced distribution, and then simulating a truncated
normal random variable from this distribution. Different consumption paths are
obtained by a repeated simulation from the mixing distribution (11.58), along with
deterministic updates of the state variables qt , dt .

An example of simulated daily consumption using the mixed-spliced pol-
icy (11.58) is shown in Fig. 11.1, while the resulting trajectories for the remaining
allowance are shown in Fig. 11.2 using model parameter values: q0 = 600, p =
0.55, μ = 0.018, β = 0.00125, γ = 0.0005, η = 0.1666, κ = 0.0007. In addition,
we set μ0 = μ, β0 = β, γ0 = γ, η0 = η, κ0 = κ , and ν0 = 0.05.

Note that consumption may vary quite substantially from one month to another
(e.g., a customer can saturate their quota at about 80% of the time period, or can
have a residual unused quota at the end of the month) purely due to the observational
noise, even though the utility function remains the same.

454 11 Inverse Reinforcement Learning and Imitation Learning

Daily consumption scenarios

0

1

2

3

4

5

6

7

8

9

da
ily

 c
on

su
m

pt
io

n

80

70

60

50

40

30

20

10

0
0 5 10 15 20 25

days

Fig. 11.1 Simulated daily consumption

Remaining allowance scenarios

days

da
ily

 c
on

su
m

pt
io

n

600

500

400

300

200

100

0
0 5 10 15 20 25

0

1

2

3

4

5

6

7

8

9

Fig. 11.2 Simulated remaining allowance

4.6 Finite-Sample Properties of MLE Estimators

While the maximum likelihood estimation (MLE) is known to provide asymp-
totically unbiased results for estimated model parameters, in practice we have to
process data that has limited history at the granularity of individual customers. For
example, the structural model of Xu et al. (2015) was trained on 9 months of data
for 1000 customers. While the number of customers to be included for analysis can
potentially be increased by collecting more data, collecting long individual-level
consumption histories might be more difficult due to a number of factors such as,
e.g., customer mobility.

4 Example: MaxEnt IRL for Inference of Customer Preferences 455

In view of such potential limitations in the availability of long time series
for service consumption, it is important to investigate finite-sample properties of
the MLE estimators in the setting of our model. In particular, note that even if
two customers have the same “true” model parameters, their finite-sample MLE
estimates would in general be different for these customers.

Therefore, the ability of the model to differentiate between individual customers
hinges upon the amount of bias and variance of its MLE estimator in realistically
expected settings, with potentially limited amounts of data available for analysis. We
note that Xu et al. (2015) reported a substantial heterogeneity of estimated model
parameters for their dataset of 9 months of observations for 1000 users; however,
they did not address the finite-sample properties of their estimators, thus ruling
out the simplest interpretation of their results as being attributed to “observational
noise” in their estimators. Such noise would be observed even for a perfectly
homogeneous set of customers.

We have estimated the empirical distribution of MLE estimators for our model
by repeatedly sampling Nm months of consumption history, which is performed
Np times, while keeping the model parameters fixed as per above. For each model
parameter, we produce a histogram of its Np estimated values.

The results are presented in Figs. 11.3, 11.4, 11.5, where we show the resulting
histograms forNm = 10, 100, and 1000 months of data, respectively, while keeping
the number of experiments Np = 100 for all graphs. Note that for all parameters
except β, the standard deviation of the MLE estimate forNm = 10 is nearly equal its
mean. This implies that two users with 10 months of daily observations can hardly
be differentiated by the model unless their implied parameters differ by a factor of
two or more.

This might cast some doubts on a model-implied customer heterogeneity sug-
gested in a similar setting by Xu et al. (2015), and suggests that some, if not all,
of this heterogeneity can simply be explained by a finite-sample noise of a model
estimation procedure, while all customers are actually undistinguishable from the
model perspective.

On the other hand, one can see how both the bias and variance of MLE estimators
decrease, as they should, with an increased span of the observation period from
10 user-months to 1000 user-months. These results suggest that in practice, the
model should be calibrated using groups of customers with a similar consumption
behavior. This can be implemented using widely available techniques for clustering
time series.

4.7 Discussion

We have presented a tractable version of Maximum Entropy Inverse Reinforcement
Learning (IRL) for a dynamic consumer demand estimation, which can be applied
for designing appropriate marketing strategies for new products and services. The
same approach can be applied, upon proper modifications to similar problems

456 11 Inverse Reinforcement Learning and Imitation Learning

Histogram for m Histogram for b

Histogram for g Histogram for h

Histogram for

25

20

15

10

5

0
–2 –1 0 1 2 3 4 5 6

1e-2 1e-3

1e-3 1e-1

1e-3

0
–4 –3 –2 –1 0 1 2 3 4

30

25

20

15

10

5

20

15

10

5

0
–1.0 –0.5 0.0 0.5 1.0 1.5 2.0

16
14
12
10

8
6
4
2
0
–2 –1 0 1 2 3 4 5 6 7

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0

5

10

15

20
mean = 1.99e-02
std = 1.46e-02

mean = 1.29e-03
std = 3.66e-04

mean = 2.26e-01
std = 1.97e-01

mean = 4.85e-04
std = 4.77e-04

mean = 5.70e-04
std = 1.06e-03

Fig. 11.3 Distributions of MLE estimators for Nm = 10 months of data

in marketing and pricing of recurrent utility-like services such as cloud plans,
internet plans, electricity and gas plans, etc. The model enables easy simulations,
which is helpful for conducting counterfactual experiments. On the IRL/machine
learning side, unlike most of other versions of the Maximum Entropy IRL, our
model does not have to solve a Bellman optimality equation even once. The model
estimation in our approach amounts to convex optimization in a low-dimensional
space, which can be solved using a standard off-the-shelf optimization software.
This is much easier computationally than structural models that typically rely
on Monte Carlo simulation for model parameter estimation. The availability of
lightweight estimators in this model enables estimations of their finite-sample
performance. In turn, this facilitates detection of true heterogeneity in data from
spurious heterogeneity due to observational noise in the data.

5 Adversarial Imitation Learning and IRL 457

1e-2 1e-3
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.6

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0

Histogram for m Histogram for b

Histogram for g Histogram for h

Histogram for

mean = 1.85e-02
std = 4.40e-03

mean = 4.97e-04
std = 1.82e-04

mean = 1.58e-01
std = 8.35e-02

mean = 6.81e-04
std = 2.84e-04

mean = 1.26e-03
std = 1.18e-04

1e-3

1e-3 1e-1

1.50.5 1.0 1.5 2.0 2.5 3.0

–0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.5 4.03.0–0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

–0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fig. 11.4 Distributions of MLE estimators for Nm = 100 months of data

5 Adversarial Imitation Learning and IRL

5.1 Imitation Learning

Imitation learning is the second main class of models for learning from demonstra-
tions. Unlike inverse reinforcement learning, imitation learning does not attempt
to recover a reward function of an agent, but rather attempts to directly model the
action policy given an observed behavior.

In imitation learning, the goal is to recover the expert policy rather than the
reward function—it is clearly somewhat less ambitious than the goal of IRL which
tries to find the reward function itself. While the latter is portable and can be used
with a different environment, the former is not portable. Still, in many problems
of practical interest, we do not need true portability. For example, in some trading

458 11 Inverse Reinforcement Learning and Imitation Learning

Histogram for m Histogram for b

Histogram for g Histogram for h

Histogram for

1e-2 1e-3

1e-4

mean = 1.83e-02
std = 1.42e-03

mean = 1.25e-03
std = 4.07e-05

mean = 1.68e-01
std = 2.84e-02

mean = 4.96e-04
std = 6.50e-05

mean = 6.86e-04
std = 9.10e-05

1e-4 1e-1

25

20

15

10

5

0

20

15

10

5

0

20

15

10

5

0

0

30

25

20

15

10

5

0

30

25

20

15

10

5

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.62.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

4 5 6 7 8 9

1.6 2.0 2.2 2.41.8 10 1.15 1.20 1.25 1.30 1.35 1.40

Fig. 11.5 Distributions of MLE estimators for Nm = 1000 months of data

applications—for short to intermediate time horizons (days or weeks)—we may
reasonably posit approximate stationarity of the market dynamics, so that policies
learned from historical data can be used to make trading decisions. In addition, as
we saw in the previous section, a “true” reward function can only be learned up to
some invariance transformations. These ambiguities of reward learning may make
applications of IRL across different environments a delicate matter.

Imitation learning has approximately as long a history as IRL, but it substantially
gained in popularity over the last few years among researchers who apply methods
of RL and IRL in robotics and video games. For clarity of exposition, we note
that behavioral cloning (BC) methods could also formally classify as imitation
learning, as long as they do not explicitly introduce a reward function. Following
the modern literature, in this book we shall not include BC as an imitation learning
methods. Rather we shall build upon a stream of the literature that started with the
generative adversarial imitation learning (GAIL) model of Ho and Ermon. Even

5 Adversarial Imitation Learning and IRL 459

though GAIL does not recover the reward function, its generalizations, that we
present later, do aim at recovering both the reward and policy function. Therefore,
following conventions in the literature, we will sometimes refer to these methods as
adversarial IRL.

5.2 GAIL: Generative Adversarial Imitation Learning

To introduce the idea of GAIL, recall the dual form of the Max-Causal Entropy
method (11.21). In the previous section, we explained how Maximum Entropy
IRL can be obtained using maximum likelihood inference of the model obtained
by using Eq. (11.21) using the direct RL (more specifically, G-learning). With the
latter approach, a generic feature F (S,A) is replaced by a one-step expected reward
function r(st , at).

This line of reasoning thus proceeds in two steps: (i) assume a fixed and unknown
reward function, and solve the direct RL problem with this function to produce
an optimal policy and (ii) calibrate parameters of the reward function using the
resulting optimal policy as a probabilistic model of observed actions with the
conventional maximum likelihood method.

In practical IRL implementations, we usually rely on a parametric specification
of a reward function. This implies that one should solve one direct RL problem
per each iteration of the IRL optimization with respect to the reward function
optimization.

Alternatively, we can consider a different IRL approach that is still based on the
Max-Causal Entropy approach (11.21), but attempts to avoid solving the direct RL
problem.

To this end, instead of solving a direct RL problem, assuming a fixed but
unknown reward function and then maximizing the likelihood of data obtained with
such model, we could replace a generic feature F (S,A) by an unknown true reward
function r(s, a) ∈ R, and simultaneously optimize with respect to both the policy π
and reward r(s, a):

max
r(s,a)∈R

(
max
π

Eρπ [r (s, a)]− EρE [r (s, a)]
)
,

where ρπ(s, a) and ρE(s, a) are the joint state-action distributions induced by the
learned policy π and the expert policy πE (when the latter is available via samples),
respectively, subject to a constraint on the causal entropy. Note the difference here
with the previous formulation that skipped the second term as it is independent of
π : When the true reward is unknown, this term should be kept.

To conform to a more common notation in the literature, we replace a reward
function with a cost function (a negative reward) c(s, a), and, respectively, replace
maximization with respect to π by minimization. This produces the following IRL
problem:

460 11 Inverse Reinforcement Learning and Imitation Learning

max
c(s,a)∈C

min
π

Eρπ [c (s, a)]− EρE [c (s, a)]

Subject to: Hcausal (π) = H̄ , (11.64)

where Hcausal (π) = Eρπ [π(a|s)] is the causal entropy, and H̄ is some pre-
specified value of the causal entropy that is supposed to be fixed in optimization.
We skipped here the normalization constraint for the policy π , though it is still
assumed to hold for a solution of Eqs. (11.64).

•> Maximum Entropy IRL and Apprenticeship Learning

The meaning of optimization in Eq. (11.64) is that we attempt to find an
optimal policy π which produces at least as low total cost as an expert policy
with the unknown cost function c(s, a). We thus find the maximum over all
such functions:

max
c(s,a)∈C

min
π

Eρπ [c (s, a)]− EρE [c (s, a)] .

Clearly, such a problem is severely ill-posed in its present form, and the causal
entropy regularization (the second line in (11.64)) selects a unique “best”
solution among an infinite number of potential candidate solutions. While
entropy regularization is a natural and very popular approach to regularization
of IRL, it is not the only possible approach. In particular, the 2004 paper
of Abbeel and Ng, “Apprenticeship Learning via Inverse Reinforcement
Learning,” used a different regularization that amounts to maximizing the
margin between the best policy and the second-best policy. The latter problem
is similar to the problem of finding a maximum margin separation hyperplane
in support vector machines (SVM) and, like the latter, the method of Abbeel
and Ng relies on quadratic programming (QP).

Using a soft relaxation of the entropy constraint, this can be formulated as the
following minimization problem:

IRL (πE) = max
c(s,a)∈C

min
π
−Hcausal(π)+ Eρπ (s,a) [c(s, a)]− EρE(s,a) [c(s, a)] .

(11.65)
At the minimum, the objective function returns the optimal cost function given the
expert policy πE . This optimization problem requires solving the direct RL problem

5 Adversarial Imitation Learning and IRL 461

RL(c) = min
π
−Hcausal(π)+ Eρπ (s,a) [c(s, a)] (11.66)

in the inner loop of IRL optimization with respect to the true cost function.

•? Where Is the Lagrange Multiplier?

Soft relaxation of Lagrange optimization problems with constraints typically
amounts to replacing such constraints with soft penalties which are added
directly to the objective function with a certain fixed weight. Unlike the true
Lagrange multiplier, it is not subject to optimization, but is rather kept as
a fixed parameter. In the limit when this parameter is taken to infinity, we
recover a solution where the constraint is satisfied exactly. Still, note that
we did not explicitly include any fixed regularization parameter in front of
the entropy term in (11.65) (or equivalently, we set such a parameter to
unity). Can you explain why this expression is still correct without losing any
generality? Hint: Recall the previous discussion on ambiguities of recovering
the true reward (or cost) function.

5.3 GAIL as an Art of Bypassing RL in IRL

GAIL focuses on problems where our final goal is to find an optimal policy (i.e.,
to solve the direct RL problem) when rewards are not observed, just as in the IRL
setting. This can be stated as the problem of learning a policy π using RL with
costs c̃(s, a) that are recovered by IRL from the input expert policy πE via samples
collected with this policy. Formally, this can be written as a composite function

RL ◦ IRL(πE). (11.67)

In this formula, optimization of the cost function is implied in the first layer of the
composition, IRL(πE), according to Eq. (11.65). The standard approach to IRL is
to assume a parametric function cθ (s, a) and then try to learn its parameters. But
this involves solving a direct RL problems multiple times in the inner loop of IRL,
as we have just discussed. Our objective here is to find a framework that would
avoid explicitly solving the direct RL problem when finding an optimal policy from
demonstrations that do not include rewards.

462 11 Inverse Reinforcement Learning and Imitation Learning

An explicit RL problem could be avoided if we replaced a parametric specifica-
tion with a non-parametric cost function defined on a space of all admissible costs
functions. If optimization over such cost functions could be done analytically rather
than numerically, the composite function (11.67) defining the combined RL-IRL
objective could be implemented without solving a direct RL problem in the internal
loop.

To see how this can be done, let us return to Eq. (11.65) and now add a
regularization using a convex function ψ(c):

IRL(πE) = max
c(s,a)∈C

min
π
−ψ(c)−Hcausal(π)+Eρπ (s,a) [c(s, a)]−EρE(s,a) [c(s, a)] .

(11.68)

•? Why Is Regularization So Important for Imitation Learning?

We use this opportunity to make an important general remark about the role
of regularization in machine learning. In some applications, regularization
plays a somewhat secondary role relative to a main objective function.
For example, ridge (L2) regularization is frequently used for regression
tasks, often providing a well-behaved solution of a least square optimization
problem, often without significantly changing its functional form. In contrast,
GAIL regularization is a critical key input to the model. As was found by Ho
and Ermon, different choices of the regularization function ψ(c)may produce
many different practical implementations of imitation learning, including both
the conventional behavioral cloning (BC) approaches and potentially new
methods.

If we do not add any regularization, when optimized in a full functional
space, Eq. (11.65) produces the result ρπ = ρE , which is not useful in practice
as it merely states that the agent should replicate the expert policy. When
the available data does not cover the entire state-action space, this result is
insufficient to produce a unique solution, calling for additional constraints.
This is of course as expected since, without any constraints at all, the
IRL problem is vastly ill-posed. To overcome this issue, we modify the
objective (11.65) by adding a convex regularization function ψ(c), so that
it becomes (11.68).

Next, we note that the objective function in (11.68) is convex in π and concave in
c(s, a), due to convexity of the regularizer ψ(c) (see Exercise 11.5). This means
that the optimal solution (π%, c%(s, a)) is a saddle-point (a max–min solution) of

5 Adversarial Imitation Learning and IRL 463

the objective (11.68). Instead of performing minimization first and maximization
next, the order of these operations could be swapped for a saddle-point, producing
an equivalent min–max solution, instead of a max–min solution (this is known
as a strong duality in convex analysis). In other words, the two operations are
exchangeable for the optimization problem (11.68). Using this, we write Eq. (11.68)
as follows:

RL ◦ IRL(πE) = min
π
−Hcausal(π)+ max

c(s,a)∈C
−ψ(c)

+ Eρπ (s,a) [c(s, a)]− EρE(s,a) [c(s, a)] . (11.69)

Note that we wrote the result as RL ◦ IRL(πE) rather than as IRL(πE) as in
Eq. (11.65), bearing in mind that the meaning of a min–max solution of (11.69)
is equivalent to the meaning of the composite function (11.67), where we solve the
IRL problem in the inner layer, and then use the learned cost function to find the
optimal policy in the outer (RL) layer.

Now we can formally integrate out the cost c(s, a) in Eq. (11.69) as follows:

RL ◦ IRL(πE) = min
π
−Hcausal(π)

+ max
c(s,a)∈C

(
∑

s,a

(ρπ (s, a)− ρE(s, a)) c(s, a)− ψ(c)
)

= min
π
−Hcausal(π)+ ψ% (ρπ − ρE) , (11.70)

where ψ% : RS×A→ R̄ is called the convex conjugate of the regularizer ψ :

ψ%(x) = sup
y∈RS×A

xT y− ψ(y). (11.71)

•> Convex Conjugate

The convex conjugate function ψ% is also known as a Fenchel conjugate.
The transform (11.71) is also known as the Fenchel–Legendre transform.
When the function ψ(y) is convex and differentiable, as in our case, the
convex conjugate coincides with the Legendre transform. If ψ% is everywhere
differentiable, then the pair ψ,ψ% is dual in the sense that ψ%% = ψ (see
Exercise 11.4). Respectively, the inverse transform reads ψ(x) = supx yT x−
ψ%(x).

464 11 Inverse Reinforcement Learning and Imitation Learning

The objective of the composite RL/IRL task (11.70) can therefore be formulated
as finding the policy π that minimizes the difference between the occupancy
measures ρπ(s, a) and ρE(s, a), as measured by the convex conjugate ψ% of the
regularizer ψ , which is regularized by the causal entropy (Ho and Ermon 2016).
Interestingly, Eq. (11.70) offers an interpretation of the cost function c(s, a) as
a (state-action dependent) Lagrange multiplier enforcing matching of occupancy
measures ρπ(s, a) and ρE(s, a).

To summarize so far, we have managed to eliminate the cost function opti-
mization in (11.68), by switching to the convex conjugate ψ%. However, in its
most general form, with an arbitrary convex function ψ(c), this is only a formal
improvement, as it simply substitutes maximization over c(s, a) in Eq. (11.68) by
another maximization in the definition of the convex conjugate (11.71). However,
as was shown by Ho and Ermon, certain choices of regularization ψ(c) can lead
to practically implementable schemes where the convex conjugate ψ% is known in
closed form. We will discuss such practical settings of GAIL next.

5.4 Practical Regularization in GAIL

Following Ho and Ermon (2016), we choose the Jensen–Shannon divergence
DJS (ρπ , ρE) for the convex conjugate regularization �% in Eq. (11.70), where

DJS (ρπ , ρE) = DKKL
(
ρπ ||1

2
(ρπ + ρE)

)
+DKKL

(
ρE ||1

2
(ρπ + ρE)

)
.

(11.72)
As the JS divergence is given by a linear combination of KL divergences both of
which are non-negative by construction, it is also non-negative, and it vanishes only
when ρπ = ρE . Because it is symmetric with respect to the occupancy measures
ρπ and ρE , non-negative, and vanishes when ρπ = ρE , the JS divergence is a valid
metric defining the “distance” between measures ρπ and ρE .

•> F-Divergencies

The Jensen–Shannon (JS) divergence is not the only way to define a measure
of similarity between two distributions. A more general definition which
incorporates the JS distance as a special case is given by the notion of f-
divergences. For any convex and lower-semi-continuous function f : R+ →

(continued)

5 Adversarial Imitation Learning and IRL 465

R satisfying f (1) = 0, the f-divergence of two distributions P,Qwith density
functions p and q is defined as follows:

Df (P ||Q) =
∫
q(x)f

(
p(x)

q(x)

)
dx. (11.73)

In particular, if we take f (x) = x log x, the f-divergence coincides with the
KL divergence DKL (P ||Q), while f (x) = − log x gives rise to the reverse
KL divergence DKL (Q||P). A f-divergence of two distributions P,Q is
called symmetric if we have Df (P ||Q) = Df (Q||P). In particular, the
symmetric JS divergence is obtained with the choice f (x) = x log x − (x +
1) log x+1

2 (see Exercise 11.5). We will return to f-divergences in the next
section.

The GAIL imitation learning algorithm is therefore defined as a problem of finding
a policy π whose occupancy measure ρπ minimizes the JS distance to the expert
policy πE , with regularization by the causal entropy of the policy π :

RL ◦ IRL(πE) = min
π
DJS (ρπ , ρE)− λHcausal(π). (11.74)

The JS distance regularization can also be interpreted as a loss function of a binary
classification problem. LetD(s, a) be the probability that the state-action pair (s, a)
is generated by the expert policy πE , and 1−D(s, a) be the probability that this pair
is generated by policy π . Such a classifier is referred to as a discriminator in GAIL,
as it differentiates between policies π and πE for state-action pairs generated from
these policies. The JS divergence can then be written as follows:

�%GA (ρπ − ρE) = DJS (ρπ , ρE) = max
D∈[0,1]S×A

EπE

[
logD(s, a)

]

+ Eπ

[
log (1−D(s, a))] , (11.75)

where maximization is performed over all admissible classifiers D(s, a). As the
reader can easily verify, such unconstrained maximization over a full functional
space gives the result

D(s, a) = ρE(s, a)

ρπ (s, a)+ ρE(s, a) . (11.76)

Substituting this expression back into Eq. (11.75) gives the JS divergence (11.72),
plus a constant term (see Exercise 11.3).

466 11 Inverse Reinforcement Learning and Imitation Learning

•> Trajectory Discriminator

Assume that we observed N state-action pairs (si, ai), where each pair is
marked by a binary flag bi = {0, 1}, where bi = 1 if the pair (si, ai) is
generated by πE , and bi = 0 otherwise. The log-likelihood of such data is
obtained as a log-product of Bernoulli likelihoods:

L = 1

N
log

N∏

i=1

[D(s, a)]bi [1−D(s, a)]1−bi

= 1

N

∑

i=1

bi logD(si, ai)+ (1− bi) log (1−D(si, ai)) . (11.77)

When the number of observations is large, the ratios
∑
i bi/N and

∑
i (1 −

bi)/N approach, respectively, the induced state-action densities ρE and ρπ ,
so that in this limit we obtain

L =
∑

s,a

ρE(s, a) logD(s, a)+ ρπ(s, a) log (1−D(s, a)) , (11.78)

which coincides with Eq. (11.75). Therefore, the log-likelihood of a binary
trajectory classifier provides an empirical estimation of the JS diver-
gence (11.72).

5.5 Adversarial Training in GAIL

Now we are ready to expand on the meaning of the word “adversarial” in
the acronym, GAIL. To this end, let us recall the analysis of the optimization
problem (11.74) with the binary log-loss (11.75). To compute the first term, we
must take expectations with respect to the current policy π . For a continuous high-
dimensional action space, this amounts to computing high-dimensional integrals in
this space.

As we mentioned in Sect. 3.5, such integrals could be computed at a reasonable
cost using importance sampling, if only we could find a convenient sampling dis-
tribution. As it is always the case with importance sampling, the optimal sampling
distribution would be equal to the policy π , as can be seen from Eq. (11.75).

5 Adversarial Imitation Learning and IRL 467

This suggests an iterative optimization procedure which keeps switching between
two steps of maximization of the loss function (11.75), until convergence. In even
steps, the loss function is computed using importance sampling for the first term,
with a fixed sampling distribution. In odd steps, we update the sampling distribution
to bring it closer to the optimal policy π and the expert policy πE .

Generally, intractable expectations such as the first term in (11.74) can be
computed using a parameterized transformation of random noise zt (which can
be, for example, white noise). More precisely, such a transformation can be
implemented using a parameterized function Gθ(st , zt), where zt is a random noise
with a simple distribution, e.g. a Gaussian noise. In particular, we can choose a
linear transform

πθ (at |st) = Gθ(st , zt) = fθ (st)+ σθ (st)zt , (11.79)

where fθ (st) and σθ (st) are two parameterized functions which can be implemented
as, e.g., neural networks. If the noise zt is Gaussian, zt ∼ N(0, 1), the output
of the generator Gθ will be a Gaussian with state-dependent mean and variance
given, respectively, by functions fθ (st) and σθ (st). Sampling from such Gaussian
distribution can be performed in numerically efficient ways. If needed or desired,
one can use a non-Gaussian noise zt , which would produce a non-Gaussian action
policy.

Using the policy πθ defined in Eq. (11.79), the derivative of the first term
in (11.74) with respect to θ is (hereW(s, a) := log (1−D(s, a)))

∇θEπθ [W(s, a)] = Ez [∇aW(s, a)∇θπθ (a|s)] (1

M

M∑

i=1

∇aW(s, a)∇θ πθ (a|s)|z=zi ,
(11.80)

where zi are samples from the distribution of noise zt . With adversarial learning,
Eq. (11.79) defines a generator whose objective is to produce samples from policy
π ∼ Gθ . The optimization problem (11.74) is then interpreted as a min–max game
between two players: the generator Gθ and the discriminator D implemented as
a parameterized function Dw(s, a) using, e.g., a neural network. The objective
function of this game is obtained from Eqs. (11.74) and (11.75), where we substitute
D→ Dw:

RL ◦ IRL(πE) = min
π∼Gθ

max
Dw∈[0,1]

EπE

[
logDw(s, a)

]+ Eπ

[
log (1−Dw(s, a))

]− λHcausal(π).
(11.81)

Optimization of this objective function (i.e., finding a saddle-point solution) is
achieved by iterating between the actions of both players. In odd steps, Eq. (11.81) is
maximized with respect to the discriminatorDw (i.e., with respect to its parameters)
using a gradient descend update. In even steps, Eq. (11.81) is minimized with respect
to parameters θ defining the action policy π ∼ Gθ according to Eq. (11.79).

The min–max game (11.81) between the discriminator Dw and the policy
generator Gθ employed by GAIL is a special case of generative adversarial
training proposed by (Goodfellow et al. 2014) in their celebrated GANs (generative

468 11 Inverse Reinforcement Learning and Imitation Learning

adversarial networks) paper. In the original GAN framework for image recognition,
a generator Gθ produces samples resembling real images. In GAIL, the generator
produces samples from an action policy distribution.

Note that besides the regularization term, it is only the second term in (11.81) that
depends on the policy π ∼ Gθ produced by the generator Gθ . Recall that Dw(s, a)
is the probability that the discriminator identifies a given pair (s, a) as produced
by expert policy πE rather than by the model policy πθ . Therefore, minimization
of this term with respect to parameters of the policy generator π ∼ Gθ attempts
to maximally confuse the discriminator, and maximize the probability that the pair
(s, a) produced by π is identified as being produced by the expert policy πE .7 This
suggests a simple metaphor of adversarial learning where the generator acts like a
counterfeiter who produces fake money, while the discriminator acts as a regulator
or intelligence agency attempting to eliminate counterfeit money (Goodfellow et al.
2014).

5.6 Other Adversarial Approaches*

The GAN paper by Goodfellow et al. (2014) has stimulated a substantial interest
in the machine learning community, and a large number of useful and interesting
extensions have followed. It was found that learning GANs turns out to be difficult
in many cases because of instability of training. The instability is partially caused by
the objective function of the original GAN, which suffers from vanishing gradients.
This makes it difficult to train the generator. In this section, we briefly review various
generalization and extensions of GAN.

5.7 f-Divergence Training*

As we already mentioned earlier in this section, the JS divergence is a special case
of a symmetric f-divergence. For a general (either symmetric or asymmetric) case,
the f-divergence is defined in Eq. (11.73) in Sect. 5.4, which we repeat here for
convenience:

Df (P ||Q) =
∫
q(x)f

(
p(x)

q(x)

)
dx. (11.82)

7The original GAN paper of Goodfellow et al. (2014) suggested that better performance is observed
if instead of minimization of the second term in (11.81) which is equal to Eπ

[
log (1−Dw(s, a))

]
,

one maximizes the expression Eπ

[
logDw(s, a)

]
to the same effect of maximally confusing the

discriminator.

5 Adversarial Imitation Learning and IRL 469

Here f : R+ → R is any convex and lower-semi-continuous function satisfying
f (1) = 0. In particular, the symmetric JS divergence is obtained with the choice
f (x) = x log x − (x + 1) log x+1

2 (see Problem 11.5).
As was shown by Nguyen et al. (2010) and Nowozin et al. (2016), one can use the

inverse relation for the convex conjugate f (x) = supt xt−f %(t) to get a variational
representation of the f-divergence:

Df (P ||Q) =
∫
q(x) sup

t∈domf %

{
t
p(x)

q(x)
− f %(t)

}
dx

≥ sup
T ∈T

(∫
p(x)T (x)dx −

∫
q(x)f % (T (x))

)

= sup
T ∈T

Ex∼P [T (x)]− Ex∼Q
[
f % (T (x))

]
. (11.83)

Here T : X→ R is an arbitrary function in a classT . Equation (11.83) gives a lower
bound on the f-divergence because of both Jensen’s inequality and the fact that theT
may contain only a subset of all possible functions. In practical realizations, function
T is implemented using a parameterized specification Tω, where ω denotes a vector
of tunable parameters, using, e.g., a neural network. This is used to construct an
iterative optimization scheme for matching an implicit model distribution Q to a
fixed distribution P using any f-divergence. The problem solved by this iterative
method is the saddle-point min–max optimization problem (f-GAN)

min
Q

max
Tω
F (θ, ω) = Ex∼P [Tω]− Ex∼Q

[
f % (Tω)

]
. (11.84)

Practical parameterization methods of Tω were considered in (Nowozin et al. 2016).
We will return to Eq. (11.83) in the next section where we will show how it can be
used to construct extensions of GAIL based on f-divergences that generalize the JS
divergence approach of GAIL.

5.8 Wasserstein GAN*

As we mentioned above, notwithstanding enthusiasm in the machine learning
community towards generative adversarial learning, practitioners found that training
GAN or GAIL networks can be difficult due to instability of training. As we alluded
to above, this instability is partially caused by the objective function of the original
GAN.

To better understand the source of this issue, recall the main idea of GAN:
Samples can be simulated from a model density Pθ by passing random noise
(uniform, Gaussian, etc.) through a parametric function Gθ . In this case, Pθ would
be an action policy for GAIL, or some other output, e.g. an image classifier for

470 11 Inverse Reinforcement Learning and Imitation Learning

other applications of GAN. If model parameters θ are trained using a loss function
L (Pθ , PE), it is desirable to have a differentiable loss function for numerical
efficiency. This implies that the mapping θ → Pθ should be differentiable
(continuous). As in GAN and GAIL the loss function is given by a metric of a
difference between distributions ρπ and ρE , this means that the metric should be
differentiable in θ .

For a continuous mapping θ → Pθ , convergence in iteration of model parameter
θ means convergence for the metric used for training (such as, e.g., the JS
divergence). This assumes, however, that a density Pθ exists, but the problem is
that such a density does not exist for some low-dimensional manifolds, as will be
illustrated shortly.

As an alternative to using the JS divergence, Arjovsky et al. (2017) use the Earth-
Mover distance, also known as the Wasserstein-1 distance:

W (P,Q) = inf
γ∈$(P,Q)E(x,y)∼γ [||x − y||1] , (11.85)

where $(P,Q) denotes the set of all joint distributions γ (P,Q) whose marginals
are P and Q, and || · ||1 stands for the L1 norm. The reason (11.85) is called the
Earth-Mover distance is that the value γ (x, y) can be interpreted as the amount of
mass that should be transported from x to y to transform distribution P intoQ.

In the following example, the EM distance provides a differentiable objective,
while JS divergence turns out to be non-differentiable.

Example 11.2 Learning a straight line

A simple example of a situation where the EM metric is differentiable and
learnable, but the JS divergence is not was proposed by Arjovsky et al. (2017).
To see this, let z ∼ U [0, 1] be a uniformly distributed noise source, and θ
be a single real-valued parameter. Samples from the model distribution Pθ are
obtained as pairs θ(θ, z) ∈ R

2 on a plane. On the other hand, samples from
an “expert distribution” PE are given by pairs (0, z) ∈ R

2. In other words,
distributions PE and Pθ describe two vertical lines on the plane, where PE
passes through the origin, while Pθ remains the distance |θ | from the origin.
Computing the EM distance (11.85) for this case gives W (P,Q) = |θ |,
which is continuous and differentiable for θ �= 0, and provides a non-
vanishing gradient for learning parameter θ . On the other hand, KL divergences
DKL (Pθ ||PE), DKL (PE ||Pθ), or the JS divergence DJS (Pθ , PE) produce
vanishing gradients that make it impossible to learn parameter θ (see Exercise
11.6).

Practical tests using Wasserstein GAN in Arjovsky et al. (2017), with genera-
tive adversarial training of image recognition networks, have shown significant
efficiency improvements of Wasserstein GAN over the conventional GAN with a
number of experiments with real-world image datasets.

6 Beyond GAIL: AIRL, f-MAX, FAIRL, RS-GAIL, etc. 471

5.9 Least Squares GAN*

Least squares GAN (LS-GAN) is another interesting extension of GAN that aims at
improving its performance in practice. To illustrate the idea of LS-GAN, recall the
min–max objective of GAN:

min
G

max
D
VGAN(D,G) = Ex∼pE(x)

[
logD(x)

]+ Ex∼pz(z)
[
log (1−D (G(z)))] .

(11.86)
In the classical GAN, the discriminator D(x) is a classifier that tells samples
generated by the expert from those generated by the generatorG(z). In this case, the
objective of the discriminator in Eq. (11.86) is a cross-entropy objective for binary
classification.

The use of the cross-entropy loss for the discriminator D(x) was found in
practice to produce problems with training of GAN models. It turns out that this
loss function can lead to vanishing gradients for training the generator, leading to
numerical instabilities in training. This happens because the cross-entropy loss does
not provide sufficient gradients w.r.t. weights for fake examples produced by the
generator, when they are on the right side of the decision boundary but are still far
from it (Mao et al. 2016).

The least squares GAN (LS-GAN) model (Mao et al. 2016) replaces the cross-
entropy discriminator with a least squares loss function. The objective is formulated
as a two-step procedure:

min
D
VLSGAN(D) = 1

2
Ex∼pE(x)

[
(D(x)− b)2

]
+ 1

2
Ex∼pz(z)

[
(D (G(z))− a)2

]

min
G
VLSGAN(G) = 1

2
Ex∼pz(z)

[
(D (G(z))− c)2

]
. (11.87)

Here parameters a and b specify the values (labels) for the fake and real data,
respectively, and parameter c gives the value that G wants D to believe in fake
data. It turns out that if parameters a, b, c satisfy the constraints b − c = 1 and
b − a = 2, then LS-GAN optimization in Eq. (11.87) is equivalent to minimization
of the Pearson χ2 divergence between the model density and a mixture of the expert
and agent densities (see Exercise 11.7). Experiments with image generations have
demonstrated improved performance of LS-GAN relatively to the standard GAN for
a number of use cases (Mao et al. 2016).

6 Beyond GAIL: AIRL, f-MAX, FAIRL, RS-GAIL, etc.*

Recall that the objective of GAIL is to recover the optimal policy that imitates
the expert policy, where the latter is provided via samples from this policy (expert
trajectories). The reward function of the agent is not learned in GAIL, and this is

472 11 Inverse Reinforcement Learning and Imitation Learning

why GAIL is a pure imitation learning (IL) algorithm. Indeed, GAIL minimizes the
JS distance DJS(ρπ , ρE) between the agent’s and the expert’s occupancy measures
using a representation of this measure as a maximum over classifiers D(s, a), see
Eq. (11.75). If maximization is performed in a full functional space of all admissible
classifiers, at the optimum, we would obtain the optimal value

D(s, a) = ρE(s, a)

ρπ (s, a)+ ρE(s, a) . (11.88)

In practical implementations of GAIL, the discriminator is chosen in some param-
eterized form Dw(s, a) such as a neural network, so that the optimal value of
Dw(s, a) is obtained for a particular vector of model parameters w. Inverting
Eq. (11.88) where we substitute D(s, a)→ Dw(s, a), we have an explicit relation

ρπ(s, a) = 1−Dw(s, a)

Dw(s, a)
ρE(s, a), (11.89)

which shows that the optimal discriminatorDw(s, a) should be close to zero at pairs
(s, a) generated by the expert policy πE in order for the measures ρπ and ρE to
match at these points. It is important to note here that for numerical implementation
all that is expected for a function approximation Dw(s, a) ∈ [0, 1] is that it should
be flexible enough in order to closely approximate its theoretical value (11.88).
Other than that, GAIL imposes no further restrictions on the functional form of the
discriminator Dw. In particular, there is no link with a reward function—GAIL is
a purely imitation learning algorithm that focuses on recovering the optimal policy,
but not rewards, from an observed behavior.

It turns out that certain simple modifications of the imitation learning approach
of GAIL enable extensions to the original setting of IRL, i.e. to recover both the
reward and optimal policy. In this section, we will consider a few such extensions.

6.1 AIRL: Adversarial Inverse Reinforcement Learning

Finn et al. (2016) proposed a special functional form for the discriminator function:

D(s, a) = eβfθ (s,a)

eβfθ (s,a) + π(a|s) . (11.90)

Here π(a|s) is the agent policy, while β and fθ (s, a) are, respectively, a parameter
and a function whose meaning will be clarified momentarily.

We define the reward function r̂(s, a) as the rescaled log-odds of the classifier
D(s, a):

r̂(s, a) = 1

β
log

D(s, a)

1−D(s, a) = fθ (s, a)−
1

β
logπ(a|s). (11.91)

6 Beyond GAIL: AIRL, f-MAX, FAIRL, RS-GAIL, etc. 473

Using these rewards for random trajectories, the value function V̂ (s) is given by a
discounted expected value of all future rewards:

V̂ (s) = E

[∞∑

t=0

γ t r̂(st , at)

∣∣∣∣∣ s0 = s
]

= E

[∞∑

t=0

γ t
(
fθ (s, a)− 1

β
logπ(a|s)

)∣∣∣∣∣ s0 = s
]
. (11.92)

Respectively, policy optimization amounts to maximizing the value func-
tion (11.92).

We can compare this with Eq. (11.24) that we used for the free energy (entropy-
regularized value function) in the setting of Maximum Causal Entropy IRL. These
expressions produce identical policies if we set fθ (s, a) = rθ (s, a) + g(s), where
g(s) is an arbitrary function of state. As we will see shortly, at the optimum fθ (s, a)
coincides with the advance function, providing an interpretation of the function
g(s).

The adversarial inverse reinforcement learning (AIRL) model (Finn et al. 2016;
Fu et al. 2015) amounts to using the special form (11.90) of the discriminator in
the GAIL objective (11.81), where optimization of a general function D(s, a) is
replaced by optimization of parameters θ of function fθ (s, a):

J (π, θ) = min
π

max
θ

EπE

[
log

eβfθ (s,a)

eβfθ (s,a) + π(a|s)

]

+ Eπ

[
log

π(a|s)
eβfθ (s,a) + π(a|s)

]
− λHcausal(π). (11.93)

The reader can verify (see Exercise 11.8) that gradients of this objective with respect
to parameters θ match gradients of an importance sampling method for the MaxEnt
IRL (see Eq. (11.38)).

AIRL is performed by iterating between steps of optimizing the discriminator
with respect to parameters, and optimizing the policy by maximizing the RL
objective maxπ Eτ∼π

[
γ t r̂(st , at)

]
, see Eq. (11.92). The global minimum of the

discriminator objective is achieved when D = 1
2 . At this point, using Eq. (11.90)

we obtain

π(a|s) = eβfθ (s,a). (11.94)

As the policy π(a|s) should be normalized to one, this means that we should have∫
eβfθ (s,a)da = 1.
Let us compare this with the policy (11.30) of Maximum Causal Entropy IRL for

a special case of a uniform reference policy π0(a|s), which we can write as follows:

474 11 Inverse Reinforcement Learning and Imitation Learning

πθ (at |st) = 1

Zθ(st)
eβGθ (st ,at), Zθ (st) :=

∫
eβGθ (st ,at) dat . (11.95)

This policy can be equivalently written as follows:

πθ (at |st) = eβ∗
(
Gθ−(st ,at)− 1

β
logZθ (st)

)

:= eβAθ (st ,at), (11.96)

where

Aθ(st , at) := Gθ(st , at)− 1

β
log

∫
eβGθ (st ,at)dat = Gθ(st , at)−Vθ (st) (11.97)

is the advantage function. Comparing Eq. (11.96) with Eq. (11.94), we find that
f %θ (s, a) = A%θ (s, a), where A%θ is the optimal advantage function. This means that
at the optimum discriminator, AIRL learns the advantage function (Fu et al. 2015).
The latter can be used to recover one-step rewards.

The AIRL method can also be extended to learn not only the reward function,
but also the shaping function (see Eq. (11.4)). When the shaping function is
learned alongside the reward, results of such learning can be transferred to a new
environment with dynamics different from those used for training (Fu et al. 2015).

6.2 Forward KL or Backward KL?

As we noted in Sect. 5.7, both the KL divergence and JS divergence are special cases
of a wider class of f-divergences. In particular, if we take f (x) = − log x, we obtain

Df (ρE(s, a)||ρπ(s, a)) = DKL (ρπ(s, a)||ρE(s, a)) . (11.98)

This divergence is often referred to as the “reverse” KL divergence.
On the other hand, if we take f (x) = x log x, we obtain

Df (ρE(s, a)||ρπ(s, a)) = DKL (ρE(s, a)||ρπ(s, a)) . (11.99)

This divergence is called the “ forward” KL divergence.
Given that both the “backward” and “forward” KL divergences are obtained

as special cases of f-divergence, and that they both evaluate how measure ρπ
is different from the “expert” measure ρE , one may wonder which one of these
measures, if any, should be preferred for tasks of imitation learning.

As it turns out, all types of imitation learning (IL) amount to minimization
of some statistical divergence of measures ρπ and ρE . For example, in BC, we
minimize the expected forward KL divergence:

6 Beyond GAIL: AIRL, f-MAX, FAIRL, RS-GAIL, etc. 475

LBC = EρE [KL(ρE(s, a)||ρπ(s, a))] = −EρE
[
log ρπ(s, a)

]−HρE (s, a).
(11.100)

Since the entropy HρE (s, a) of the expert policy is independent of the agent
policy πθ (a|s), this term can be dropped. Minimization of the first term is exactly
equivalent to minimization of the negative log-likelihood in maximum likelihood
method.

The forward and backward KL divergences exhibit a different behavior for a
learned policy π . While the forward KL divergence encourages a behavior that
matches π and πE only on average (as this is essentially what maximum likelihood
method does), minimization of the backward KL divergence enforces a “mode-
seeking” behavior of π , which tries to match the expert policy better in terms of
most plausible actions.

Example 11.3 Forward vs backward KL: mode-covering vs mode-
seeking

Here we illustrate the key differences between optimization of the forward KL
divergence

DKL (ρE(s, a)||ρπ(s, a)) =
∫
ρE(s, a) log

ρE(s, a)

ρπ (s, a)
ds da (11.101)

and the backward KL divergence

DKL (ρπ(s, a)||ρE(s, a)) =
∫
ρπ(s, a) log

ρπ(s, a)

ρE(s, a)
ds da. (11.102)

In both cases, the problem is to find policy π that minimizes (respectively, the
forward or backward) KL divergence with the expert policy πE .

Let us first consider the forward KL divergence (11.101). In this case,
the expert density serves as set of weights. Minimization of the forward KL
therefore tries to match π with πE wherever πE > 0. In other words, π tries
to match πE everywhere, as much as it can. This is called the mode-covering
behavior.

Now consider the backward KL divergence (11.102). In this case, it is the
agent’s policy π that serves as weights in minimization. If we set π to zero at
some values of a, where πE is non-zero, there is no penalty for this using the
backward KL divergence. This means that with this method, an agent’s policy
would try to match the expert policy only at some region of all trajectories,
rather than on all trajectories, as would be the case with the forward KL
divergence. In other words, minimization of the backward KL divergence
enforces the mode-seeking behavior.

(continued)

476 11 Inverse Reinforcement Learning and Imitation Learning

Example 11.3 (continued)

To illustrate these differences, let us assume that the expert policy πE is
bimodal, but we try to approximate it with a parameterized policy πθ that only
allows for uni-modal distributions. What sort of policies would be picked by
both KL divergences?

Minimization of the forward KL divergence tries to cover all observations
as much as it can, so it would put a uni-model density some way in between of
two maxima of the bimodal expert policy.

On the other hand, minimization of the backward KL divergence will
produce a uni-modal policy that will try to match the largest component of the
expert’s bimodal policy. Assume that the largest component in the expert policy
corresponds to optimal actions while the smaller component corresponds to
sub-optimal actions. In this case, we would say that the backward KL does the
right job—it focuses at optimal actions, instead of spreading over both optimal
and sub-optimal actions demonstrated by the expert.

While BC minimizes the forward KL divergence, as we will see next, both AIRL
and some of its extensions minimize the backward KL divergence.

6.3 f-MAX

Generalizations of AIRL can be obtained using other f-divergences. The f-MAX
method (Chasemiour et al. 2019) is based on optimization of the f-divergence
Df (ρE(s, a)||ρπ(s, a)). This is done using the following iterative optimization
procedure (see Eq. (11.84) in Sect. 5.7):

max
Tω
F (θ, ω) = Ex∼PπE [Tω]− Ex∼π

[
f % (Tω)

]

max
π

Eτ∼π

[
∑

t

f % (Tω)

]
. (11.103)

Here the first equation minimizes the f-divergence Df (ρE(s, a)||ρπ(s, a)) by
optimizing Tω. The policy optimization objective is equivalent to minimizing the
first equation in π , or equivalently maximizing the second equation. These equations
produce the f-MAX method for a general f-divergence.

Now assume we choose the backward KL divergence (11.98) as a special case
of f-divergence with Df (ρE(s, a)||ρπ(s, a)) = DKL (ρπ(s, a)||ρE(s, a)). This
corresponds to the choice f (x) = − log x. The convex dual for this case is f %(y) =
−1 − log(−y) and T πω (s, a) = − ρπ (s,a)ρE(s,a)

(Nowozin et al. 2016). Substituting these
expressions in the second of Eqs. (11.103), the latter is restated as follows:

6 Beyond GAIL: AIRL, f-MAX, FAIRL, RS-GAIL, etc. 477

max
π

Eτ∼π
[
∑

t

f %
(
T πω (st , at)

)
]
= max

π
Eτ∼π

[
∑

t

log ρE(st , at)− log ρπ (st , at)− 1

]
.

(11.104)
On the other hand, the policy objective of AIRL can also be expressed by
substituting the optimal discriminator (11.88) into Eq. (11.92) with r̂ defined in
Eq. (11.91). This gives

V̂ (s) = E

[∞∑

t=0

γ t r̂(st , at)

∣∣∣∣∣ s0 = s
]
= 1

β
E

[∞∑

t=0

γ t log
D(st , at)

1−D(st , at)

∣∣∣∣∣ s0 = s
]

= 1

β
Eτ∼π

[
∑

t

log ρE(st , at)− log ρπ(st , at)

]
. (11.105)

This equation differs from Eq. (11.104) only by unessential additive and multiplica-
tive constants; therefore, their maximization gives rise to identical solutions. This
shows that AIRL solves the MaxEnt IRL problem by minimizing the reverse KL
divergence (Chasemiour et al. 2019).

This example shows that AIRL can be considered a special case of a more general
f-MAX algorithm (11.103) that generalizes it to more general class of f-divergences.

Furthermore, as shown in Chasemiour et al. (2019), f-MAX can also be
considered a subset of the cost-regularized MaxEnt IRL framework of Ho and
Ermon, given in the general form by Eq. (11.70). To this end, we take the following
cost regularizer:

ψf (c) = EρE

[
f % (c(s, a))− c(s, a)] . (11.106)

With this choice, we obtain for the convex conjugate

ψ%f (ρπ(s, a)− ρE(s, a)) = Df (ρπ(s, a)||ρE(s, a)) , (11.107)

which produces a generalized Ho-Ermon objective

RL ◦ IRL(πE) = min
π
−Hcausal(π)+ ψ% (ρπ − ρE)

= min
π
−Hcausal(π)+Df (ρπ(s, a)||ρE(s, a)) . (11.108)

6.4 Forward KL: FAIRL

While f-MAX is a general method that supports many occupancy metric distances,
it turns out that it does not work for the forward KL divergence. There are a
few reasons for this property. First, forward KL corresponds to the following
specifications:

478 11 Inverse Reinforcement Learning and Imitation Learning

f (x) = x log x, f %(y) = exp(y − 1), T πω = 1+ log
ρE(s, a)

ρπ (s, a)
. (11.109)

With this choice, the objective of the policy optimization (the second of
Eqs. (11.103)) becomes

max
π

Eτ∼π

[
∑

t

f % (Tω)

]
= Eρπ

[
ρE(s, a)

ρπ (s, a)

]
= 1. (11.110)

This means that no signal is provided for training the policy with the choice of
forward KL divergence.

To produce a usable algorithm for optimizing forward KL divergence, let us
consider a simple modification of the AIRL reward function which produces a
forward KL counterpart of AIRL. Recall that AIRL chooses the following form
of the reward function:

r̂(s, a) = 1

β
log

D(s, a)

1−D(s, a) . (11.111)

Instead of this choice, FAIRL (“forward-AIRL”) (Chasemiour et al. 2019) uses a
different definition of the one-step reward:

r̂(s, a) = 1

β

D(s, a)

1−D(s, a) log
1−D(s, a)
D(s, a)

. (11.112)

As can be checked, for this choice we have

Eτ∼π

[
∑

t

γ t r̂(st , at)

]
∼ −DKL (ρE(s, a)||ρπ(s, a)) . (11.113)

Therefore, in FAIRL, policy optimization with the reward defined in Eq. (11.112) is
equivalent to minimization of the forward KL divergence. As we mentioned above,
forward KL divergence promotes a mode-covering behavior, as opposed to a mode-
seeking behavior that is obtained with AIRL. In certain situations, this can turn into
an advantage, as was found in experiments with simulated robots (Chasemiour et al.
2019).

•? How to Relate the Reward and the Discriminator?

AIRL and FAIRL provide two examples of a reward as a function of the
discriminator, expressed, respectively, in Eqs. (11.111) and (11.112). Both

(continued)

6 Beyond GAIL: AIRL, f-MAX, FAIRL, RS-GAIL, etc. 479

choices ensure the property that the reward increases whenD increases, which
enforces the assumption of near-optimality of expert’s actions.

We may ask if there are other useful ways to relate the reward and the
discriminator in the setting of adversarial imitation learning. To develop
some intuition, consider the following example. We assume that rewards are
bounded and are described by a logistic equation

r(s, a) = 1

1+ exp
(−θT �(s, a)) , (11.114)

where θ = (θ1, . . . , θK) is a vector of parameters, and �(s, a) =
(�1(s, a), . . . , �K(s, a)) is a set of K pre-specified basis functions. The
discriminator is a function of the same features (s, a), and is assumed to have
a similar form:

D(s, a) = 1

1+ b exp
(−θT �(s, a)) , (11.115)

where b is a parameter. Simple algebraic manipulation allows us to express
r(s, a) in terms of D(s, a):

r = r (D(s, a)) = D(s, a)

b + (1− b)D(s, a) . (11.116)

Evidently, this choice is similar to parameterizations of AIRL and FAIRL
in terms of monotonicity of a relation between D and r , except that in
Eq. (11.116), the reward is bounded, and satisfies r → 0 when D → 0, and
r → 1 when D → 1. If D is considered to be the tail probability (a.k.a. the
decumulative distribution function), then a bounded reward 0 ≤ r(D) ≤ 1
can be considered as a transformation of the ddf for the discriminator that
produces another ddf. This can be used to construct more general models than
Eq. (11.116). For example, parameter b in Eq. (11.116) can be made a function
b(s, a).

6.5 Risk-Sensitive GAIL (RS-GAIL)

As we discussed in previous chapters on reinforcement learning, in the standard
formulation of RL, one maximizes the expected total reward from a trajectory. This
trajectory is given by a sum of all one-step rewards. This is called the risk-neutral

480 11 Inverse Reinforcement Learning and Imitation Learning

approach: the standard RL depends on the mean of the total reward, but not on its
higher order moments, e.g. its variance or tail probabilities. On the other hand, for
financial applications, risk is often an integral and critical part of a decision-making
process such as trading certain positions in a portfolio. Outside of finance, risk-
sensitive imitation learning is often desirable for human and robot safety, and thus
is a topic of active research in the machine learning community.

In certain cases, simple modifications of the reward in the traditional risk-neutral
RL approach enable incorporating some measures of risk from taking actions. For
example, in the QLBS model of reinforcement learning for option pricing that we
presented in Chap. 10, one-step rewards incorporate risk penalties proportional to
the variance of the option hedging portfolio.

A more general approach to risk-sensitive imitation learning is to assume that
the agent tries to minimize the loss Cπ of policy π with respect to the expert cost
function c:

min
π

E [Cπ] , (11.117)

subject to the constraint

ρα [Cπ] ≤ ρα
[
CπE

]
. (11.118)

Here ρα is some risk measure, for example, CVaR at the confidence level α. The
meaning of the constraint (11.118) is that the agent should at most have the same risk
as the expert. Adding the constraint to the objective using the Lagrange multiplier
method produces the equivalent unconstrained problem

min
π

max
λ≥0

E [Cπ]− E
[
CπE

]+ λ (ρα [Cπ]− ρα
[
CπE

])
. (11.119)

As the cost is unobserved by the agent, we maximize this expression over all cost
functions c(s, a) ∈ C, with Cπ(c) being the loss of policy π with respect to the cost
function c(s, a). This produces the following min–max problem:

min
π

max
c∈C max

λ≥0
E [Cπ(c)]− E

[
CπE(c)

]+ λ (ρα [Cπ(c)]− ρα
[
CπE(c)

])
.

(11.120)
Finally, we swap minimization over π with maximization over λ, and add, similarly
to GAIL, the causal entropy and a convex regularizer ψ(c) to the objective. This
gives rise to the risk-sensitive GAIL (RS-GAIL) algorithm (Lacotte et al. 2018):

max
λ≥0

min
π
−Hcausal(π)+Lλ (π, πE)

Lλ (π, πE) := max
c∈C (1+ λ)

(
ρλα [Cπ(c)]− ρλα

[
CπE(c)

])− ψ(c),(11.121)

7 Gaussian Process Inverse Reinforcement Learning 481

where ρλα [Cπ(c)] := (E [Cπ]+ λρα [Cπ]) /(1 + λ) is the coherent risk measure
for policy π for mean-CVaR with the risk parameter λ. The parameter λ controls
the tradeoff between the mean performance and risk of the policy. The authors of
Lacotte et al. (2018) produced two versions of their algorithm by using regularizers
ψ(c) that yield either the JS or Wasserstein metrics between ρπ and ρE . They found
improved performance compared to GAIL, in terms of both mean rewards and risk
metrics, for a number of simulated robot environments.

6.6 Summary

In this section, we outlined a variety of extensions of generative adversarial imitation
learning (GAIL), which use different metrics instead of the JS divergence used by
GAIL, in order to learn both the optimal policy and reward function. As all imitation
learning algorithms amount to minimization of some metric between occupancy
measures induced by the action and the expert, exploring alternative formulations
by choosing different regularizers is helpful for exploring efficiency of imitation
learning for different environments. Models presented in this section cover both the
traditional risk-neutral setting of RL/IRL and risk-sensitive approaches. To reiterate,
most of the RL/IRL problems that we encounter in finance require some control of
risk inherent in decision-making, which makes risk-sensitive approaches especially
interesting for financial applications.

Inverse reinforcement learning and imitation learning are actively pursued by
researchers in the machine learning community. While the main activity in these
direction seems to be largely driven by applications to robotics and video games,
there is also research into applications of methods of IRL and IL in neuroscience,
marketing, consumer research, and, last but not least, in finance. Before turning to
financial applications of IRL, in the next few sections, we consider other methods
for IRL that show promising utility in financial applications.

7 Gaussian Process Inverse Reinforcement Learning

The IRL methods presented thus far in this chapter describe probabilistic models
which treat the (unknown) reward function as a fixed deterministic function of
features (or, equivalently, basis functions). Given a representative set of K basis
functions of states and actions �k(s, a) with k = 1, . . . , K , one common approach
is to construct a reward function as a linear expansion in features r(s, a) =∑
k θk�k(s, a). We assume that basis functions are bounded, so that the resulting

482 11 Inverse Reinforcement Learning and Imitation Learning

reward would also be bounded for finite coefficients θk .8 The problem of learning
the reward reduces to the problem of finding a finite set of coefficients θk .

While conceptually simple, this approach has obvious limitations, as it requires
a pre-defined set of “good” basis functions. Constructing a simple and manageable
set of basis functions is relatively straightforward in low-dimensional continuous
state-action spaces. For example, for one-dimensional and bounded state and action
spaces, we could simply construct two individual sets of basis functions (e.g., B-
splines) for both state and action spaces, and then take their direct product as a set of
basis functions in the state-action space. If both sets have N basis functions, we end
up with N2 basis functions for the joint state-action space. For higher dimensional
cases, such an approach based on using direct products of individual bases would
clearly be problematic, as it would lead to exponential growth of both the dimension
of the basis and the number of parameters to be estimated from data.

When the choice of basis functions (features) for IRL is not obvious, one possible
alternative approach is to use demonstrations to learn both the features and the
reward function. Note that the problem of learning high-level features from data
is a classical problem in supervised and unsupervised learning. For example, when
deep learning architectures are used for classification tasks, inner layers of a network
construct higher-level features out of raw data. Importantly, in supervised learning
there is a clear criterion for assessing the quality of such learned features—it
is measured by the quality of the classifier itself, and is learned through back-
propagation. In the setting of RL and IRL, this is the path followed, respectively,
by Deep RL and Deep IRL approaches.

In this section, we will consider different Bayesian approaches to IRL. Unlike
MaxEnt IRL that uses deterministic rewards and stochastic policies, in Bayesian
reinforcement learning, the reward is random, and has a certain probability distri-
bution on the state-action space. As in IRL, the reward is unobserved and can be
modeled with a Bayesian approach using a hidden (latent) variable. The objective
of Bayesian IRL is then to learn the probability distribution of this hidden variable
from observed data.

7.1 Bayesian IRL

Let us assume that r = r(s, a) is a random variable whose value may depend on
states and actions. We will collectively denote them in this section as X = (s, a).
Let p (r|X) be a prior probability distribution for the random reward given features
X. This distribution presents our views of rewards in different states of the world
that we hold prior to observing dataD consisting of sequences of states and actions
from expert demonstrations.

8Alternatively, we can consider unbounded basis functions but bounded non-linear functional
specifications of the reward function.

7 Gaussian Process Inverse Reinforcement Learning 483

For a fixed reward function r , the probability of observing data D is given
by some likelihood function p (D|r, θ), where θ are adjustable model parameters.
While the likelihood function can be explicitly computed using specific RL models,
here we temporarily leave it unspecified.

The joint probability to observe dataD and rewards r given input features X is

p (D, r|X) = p (r|X)p (D|r, θ) . (11.122)

In IRL, we do not observe rewards; therefore, we form the expected likelihood of
data by integrating over all possible values of r in Eq. (11.122). This produces

p (D|X) =
∫
p (r|X)p (D|r, θ) dr. (11.123)

To maximize the likelihood of observed expert data, this marginalized probability
should be maximized with respect to parameters θ . However, this expression
involves the integral over all attainable values of rewards. To compute it numerically,
this integral could be discretized to a set of M possible values of rewards. But this
would imply that we have to solve M direct reinforcement problems of computing
p (D|r, θ) in order to solve one IRL problem in Eq. (11.123).

As an alternative to a direct calculation of the integral (11.123) using dis-
cretization, we could alternatively estimate it using the Laplace (saddle-point)
approximation. The latter approximation applies when the integrand in Eq. (11.123)
has a strong peak around a certain value r% of the argument. The saddle-point
approximation is then obtained by expanding log (p (r|X)p (D|r, θ)) in a low-order
Taylor expansion around r%, and performing Gaussian integration over deviations
�r = r − r%.

Both these approaches assume a given parametric prior distribution p (r|X) of
rewards. In certain applications, e.g. in robotics, it is sometimes tedious or cumber-
some to devise such a parametric prior. Instead of using parametric priors, Gaussian
process (GP) IRL operates with very flexible non-parametric specifications of the
reward functions by operating with distributions over such functions.

7.2 Gaussian Process IRL

In the Gaussian process (GP) approach, the prior reward distribution is modeled as
a zero-mean GP prior:

r ∼ GP (0, kθ (xi , xj)
)
. (11.124)

Here kθ stands for the covariance function, e.g.

kθ (xi , xj) = σ 2
k e
− ξ2 (xi−xj)

T
(xi−xj) (11.125)

and θ = (σk, ξ) is the vector of model parameters.

484 11 Inverse Reinforcement Learning and Imitation Learning

For a finite sample of data, the GP prior induces the probability r ∼ N(0,KXX),
where KXX is the covariance matrix with elements [KXX]ij = kθ (xi , xj). Learning
of the reward amounts to learning parameters θ of the kernel function (11.125).

Recall from Chap. 3 that in GP regression, the objective is to evaluate values
of an unknown function without committing to a particular parametric form of this
function, given inputs x and values f of function f (x) at these points. The task is
to find the posterior distribution fstar on test data points x%. As the joint distribution
of f and f% is Gaussian, the posterior distribution of f% is also a Gaussian:

f%|x, x%, f ∼ N
(
Kx%,xK

−1
x,xf,Kx%,x% −Kx%,xK−1

x,xKx,x%

)
. (11.126)

In GPIRL, unlike GP regression, values of the function sought (i.e., the reward
function) are not observed. To link with observations, GPIRL uses MaxEnt IRL
(Levine et al. 2011). Let u denote the true reward, while r denotes its noisy version.
The posterior probability of u and θ given dataD and a set of “inducing points” Xu
is

P (u, θ |D, Xu) P (D, u, θ |Xu) = P (u, θ |Xu)
[∫

P (D|r) P (r|u, θ,Xu) dr
]
.

(11.127)

In this expression, P (D|r) is the probability of observations conditioned on a fixed
reward. To evaluate this expression, GPIRL uses a MaxEnt policy which involves the
exponential dependence on r . To compute the integral over r , it can be discretized,
or alternatively estimated using the saddle-point approximation. The limiting case
of the saddle-point approximation was used by Levine et al. (2011) who considered
the limit of zero noise in r , which makes P (r|u, θ,Xu) the delta-function δ(r − u).

8 Can IRL Surpass the Teacher?

All algorithms for IRL and imitation learning presented so far in this chapter share
the same common assumption that trajectories (behavior) demonstrated by a teacher
are optimal or nearly optimal. This assumption makes the problem somewhat easier
in the sense that if the agent knows that demonstrated behavior is nearly optimal, all
it needs to do is to imitate the teacher, rather than infer the teacher’s intention.

However, this assumption might be too stringent or unrealistic in many cases of
practical interest. For example, in teaching robots from human demonstrations, it is
not always easy to measure or control the level of sub-optimality of a demonstrator.
A combination of imitation learning (instead of learning of intent) with a possible
sub-optimality of demonstrations can lead to less controllable or understandable
learning policies and rewards.

8 Can IRL Surpass the Teacher? 485

Another potential objection to the standard paradigm of learning only from
optimal or nearly optimal demonstrations is that having access to failed (or strongly
non-optimal) demonstrations can often be very informative of the teacher’s goals.
For example, in our financial cliff walking example, the conventional IRL can
be trained using only high reward trajectories that do not fall from the cliff to
the bankruptcy state. Intuitively, we can expect that learning can be improved by
showing the agent failed trajectories that end up in the bankruptcy state, and passing
them to a policy optimization module as trajectories to be avoided. This would be
more similar to human learning, yet most of the existing IRL or IL approaches do
not incorporate such information, which may lead to less efficient and more data-
intensive algorithms. In this section, we present a powerful extension to MaxEnt
IRL that incorporates learning from both successful and failed demonstrations.

To understand the implications of this approach in financial applications, let us
consider introducing an agent that learns from a human investor or human trader.
As the human is subject to behavioral biases and takes sub-optimal or wrong trading
decisions from time to time, the best the agent that follows the standard IRL or IL
approach can do is to build an “AI alter ego” of the human that propagates such
errors and biases. But ideally we would not just want to imitate the trader’s strategy,
but rather to improve it by inferring the actual trader’s intentions and optimizing a
policy that captures these “true” intentions. Such an approach, of course, is the tip of
the iceberg in human–machine interaction. See Capponi et al. (2019) for an example
of human–machine interaction in the context of robo-advisory.

To surpass performance in demonstrations, an agent should learn from a variety
of demonstrations including not only optimal or nearly optimal ones, but also
severely sub-optimal or outright failed demonstrations. Indeed, the task of surpass-
ing rather than imitating a teacher amounts to extrapolation in a decision space,
but such extrapolation might be impossible, or would generalize poorly, if all
demonstrations are (nearly) optimal.

In this section we consider a few recent ideas in the machine learning literature
which aim at surpassing a teacher by capturing teacher’s intents rather than simply
imitating the behavior.

8.1 IRL from Failure

In many situations, providing high-quality expert data for training an IRL algorithm
can be costly or problematic. Consider, for example, a possible application of IRL
to mimic a human trader. Particular observed sequences of trader’s actions may not
be necessarily optimal, even from the point of view of internal goals of the trader.
Therefore, in this case, it would be difficult to quantify the amount of optimality
in demonstrated trajectories. On the other hand, traditional IRL schemes such as
MaxEnt IRL generally assume that demonstrated trajectories are close to optimal
ones, with only occasional deviations from the optimal behavior. This means that

486 11 Inverse Reinforcement Learning and Imitation Learning

a successful IRL model can at best only justify the behavior observed in expert
demonstration, rather than explain it.

The above example implies that insistence on optimality of demonstrations
may not always be feasible. But interestingly, this may not even be desirable
for many problems. Just as in human teaching, which provides examples of both
desired and undesired behavior, providing an artificial agent with information
about undesired behavior (policies) can be helpful with identifying optimal policies
from demonstrations using data that contains both successful and unsuccessful
demonstrations. Unsuccessful demonstrations might also be easier to produce than
successful ones.

The IRL from Failure (IRLF) model (Shiarlis et al. 2016) suggests an extension
of the “classical” Max-Causal Entropy IRL that operates with both successful and
failed demonstrations. The latter two sets of demonstrations are referred to asD and
F , respectively. The central idea of the IRLF model is to combine two criteria. First,
feature expectations of the learned policy should match their empirical expectations.
This part is the same as in the conventional MaxEnt IRL. The additional objective
that is new to IRLF is to also require these feature expectations be maximally
dissimilar to the empirical expectations of F . This may facilitate learning of
the reward that simultaneously encourages state-action pairs observed in D and
discourages those found in F.

More formally, assume there are K features φk(s, a), and rewards are linearly

parameterized in terms of these features as r(s, a) = (
wD + wF)T φ(s, a), where

wD and wF are two parameter vectors of length K whose meaning will be clarified
momentarily. Let μ̃Dk and μ̃Fk be empirical feature expectations for D and F ,
respectively, and μπk be feature expectations under policy π . The IRLF model
maximizes the following objective function:

J
(
π, θ, z,wD, wF

)
= H (A||S)− λ

2
||θ ||2 +

K∑

k=1

θkzk (11.128)

+
K∑

k=1

wDk

(
μπk

∣∣
D − μ̃Dk

)
+

K∑

k=1

wFk

(
μπk

∣∣
F − μ̃Fk − zk

)
.

Here H (A||S) stands for the causal entropy, π is the optimal policy, and wD, wF

are two sets of feature expansion coefficients that serve as Lagrange multipliers for
two classes of constraints. The first constraint is μπk

∣∣
D = μ̃Dk ensuring matching

successful trajectories using policy π . The second constraint reads μπk
∣∣
D − μ̃Fk =

zk , and involves auxiliary variables zk ∈ R. The objective (11.128) is maxi-
mized over variables zk alongside with maximization with respect to parameters
θ,wD, wF and policy π . Maximization with respect to zk in Eq. (11.128) achieves
the goal of producing feature expectations that would be dissimilar to empirical
features on failed trajectories. It is also computationally convenient as the final IRLF
formulation (11.128) amounts to convex optimization, see Shiarlis et al. (2016) for
details.

8 Can IRL Surpass the Teacher? 487

The IRLF method works in a similar way to MaxEnt IRL, iterating between

updating the reward function r(s, a) = (
wD + wF)T φ(s, a) and policy updates

via soft Q-iteration. Though the number of parameters in wD, wF is twice larger
than for the conventional MaxEnt IRL, update of parameters wF can be performed
analytically, so that the computational overhead in comparison to the standard
MaxEnt IRL is minimal. An interesting additional property of the IRLF model is that
it also handles cases where failed trajectories are similar to successful trajectories,
with respect to some of their features, and dissimilar with respect to others.

8.2 Learning Preferences

According to the standard RL approach, a reward function gives the most succinct
description of a demonstrator’s objectives. Respectively, the conventional IRL
approach focuses on learning the reward function from a set of demonstrations.
However, as we discussed earlier in this chapter, inference of the reward from
demonstrations is an ill-posed inverse problem that produces an infinite number
of solutions, unless a regularization is imposed on the solution (e.g., as it is
done in MaxEnt IRL). Furthermore, rewards can only be found up to arbitrary
linear rescaling and additive shaping transformations, which complicates transfer
of learned rewards and policies across different environments.

An alternative to learning reward functions as the most condensed expression
of a teacher’s goals is to instead learn the preferences of the teacher. Preferences
can be viewed as an alternative representation of the intentions of the teacher.
Unlike rewards that are defined for a single state-action combination, preferences
are specified for pairs of state-action combinations, or alternatively for pairs of
multi-step trajectories.

Preferences are formulated as rank-ordering (ordinal) relations that may or may
not rely on any quantitative measure of goodness of separate actions or trajectories.
Clearly, if one works with a reward function whose values are known for all state-
action pairs, any pair of trajectories can be rank-ordered based on accumulated
rewards. However, preference relations can also be established between trajectories
without specifying numerical rewards using only an ordinal measure. This is
somewhat similar to corporate bond ratings, e.g. AAA, AA, A, etc. The default
probability for a bond rated AA is assumed to be lower than for a A-rated bond;
however, ratings themselves do not convey information about the absolute levels of
default risk in different ratings categories.

Conceivably, there are many situations where defining pairwise-based qualitative
ranking over demonstrations might be easier or more intuitive than directly assign-
ing a numerical reward value to different individual trajectories. For example, a
portfolio manager could be more at ease by expressing relative rankings of different
stock purchase decisions rather than expressing her satisfaction from these trades in
terms of a single reward value.

488 11 Inverse Reinforcement Learning and Imitation Learning

It is therefore of interest to consider the problem of preference-based IRL where,
given a set of ranked trajectories, the objective is to infer why some trajectories are
better than others, i.e. to understand the intent of a demonstrator. The end result of
such inference is again compressed into a reward function, as in the conventional
IRL approaches. However, as this reward is based on inferred intent rather than
simply on mimicking demonstrator’s behavior, it can be further used with the
conventional RL approaches to learn policies that can improve the performance in
demonstrations, rather than simply mimic it, as in traditional IRL approaches.

Preference-based IRL can also be considered a natural extension of the approach
taken in the IRLF model. In the latter, all demonstrations are partitioned into
either successful and failed, without further specifying the amount of success or
failure. With preference-based IRL, one operates with a range of demonstrations
of varying quality, which are then rank-ordered using some success criterion (e.g.,
using a hidden reward of demonstrators). This can provide the IRL agent with more
refined information than a simple binary classification into the successful and failed
trajectories.

8.3 T-REX: Trajectory-Ranked Reward EXtrapolation

As we mentioned above, to improve upon the performance shown in demonstrations,
one needs to capture the user’s intent, rather than simply mimic the user, assuming
user’s near-optimality. If we manage to infer the user’s intent as a function of their
observed behavior, such a function can be extrapolated beyond the demonstrated
behavior, potentially exceeding the performance of the demonstrator.

This idea underlies the T-REX (Trajectory-ranked Reward EXtrapolation) model
suggested in Brown et al. (2019). The T-REX agent is provided with a number of
ranked demonstrations. Ranks of trajectories convey information about preferences
of the demonstrator. T-REX is flexible about the specific form of imposing ranking
relations on demonstrated trajectories. One possibility is to rank all trajectories
simultaneously based on some pre-specified measure of the quality of trajectories
(e.g., it can be an “internal reward” of the demonstrator, i.e., some sort of the
“ground-truth” cumulative reward9). Another possible specification avoids assign-
ing a numerical value to the quality, but rather defines it as an ordinal preference
relation defined on pairs of trajectories. As T-REX operates on pairs of (sub-)
trajectories, as we will describe below, the second form of rank ordering based
on pairwise comparison is sufficient for training of T-REX. On the other hand,
clearly pairwise preference relations can be easily deduced once a quantitative
absolute preference measure is provided for each individual trajectory, as in the
first specification.

9An extension of the T-REX model called D-REX, to be presented next, allows one to proceed
even when externally provided ranks are not available.

8 Can IRL Surpass the Teacher? 489

More formally, assume that we are given N ranked demonstrations τn that are
ranked in the ascending order, so that demonstration τ1 is the worst (has the lowest
rank), and demonstration τN is the best (has the higher rank). The preference
relations for a pair of trajectories τi , τj are written as τi ≺ τj if i < j .

The T-REX algorithm proceeds in two steps: (i) reward inference and (ii) policy
optimization. Only the first step in this procedure amounts to a form of IRL that
infers the (extrapolated) reward function from demonstrations. The second step
amounts to using this extrapolated reward function with any particular algorithm
for the direct RL in order to improve the performance by optimizing the RL policy.
In what follows we focus on the first, IRL, step of the T-REX model.

The objective of the reward inference step of the T-REX model is to find
a parameterized reward function r̂θ (s, a) which approximates the true reward
function that the demonstrator is trying to optimize. This is formulated as a
typical IRL objective, but the critical trick added by the T-REX model is that an
additional structural constraint is imposed on the reward function. More specifically,
cumulative rewards computed with this function should match the rank-ordering
relation:

∑

(s,a)∈τi
r̂θ (s, a) <

∑

(s,a)∈τj
r̂θ (s, a) if τi ≺ τj . (11.129)

Let Ĵθ (τi) = ∑
t γ
t r̂θ (st , at) be a discounted cumulative rewards on trajectory τi .

We train T-REX by minimizing the following loss function:

L(θ) = Eτi ,τj∼$
[
ξ
(
P
(
Ĵθ (τi) < Ĵθ (τj)

)
, τi ≺ τj

)]
, (11.130)

where $ is a distribution over pairs of demonstrations, and ξ is a binary loss
function. The binary event probability P in Eq. (11.130) is modeled as a softmax
distribution

P
(
Ĵθ (τi) < Ĵθ (τj)

)
=

exp
∑
s,a∈τj r̂θ (s, a)

exp
∑
s,a∈τi r̂θ (s, a)+ exp

∑
s,a∈τj r̂θ (s, a)

. (11.131)

For the loss function ξ(·), a cross-entropy loss is used, so that the loss function
becomes

L(θ) = −
∑

τi≺τj
log

exp
∑
s,a∈τj r̂θ (s, a)

exp
∑
s,a∈τi r̂θ (s, a)+ exp

∑
s,a∈τj r̂θ (s, a)

. (11.132)

This loss function trains a classifier to predict whether one trajectory is preferred
over another one based on their realized total returns, and compares it with the
preference label for this pair. The result is expressed in terms of a parameterized
one-step reward function, as in other IRL approaches. In contrast to other methods,

490 11 Inverse Reinforcement Learning and Imitation Learning

T-REX finds rewards that are most consistent with perceived goals of the demon-
strator, rather than with actual results of demonstrations. It is important to stress here
that demonstrations themselves can be highly sub-optimal—what matters is that T-
REX learns the intent of the demonstration, rather than simply assumes that they are
already (nearly) optimal, as is done in, e.g., MaxEnt IRL. Once the intent is codified
in a reward function, it can be extrapolated to other state-action combinations in the
process of policy optimization. This can produce results exceeding the performance
in demonstrations.

As was shown in Brown et al. (2019), T-REX produces better results than GAIL
and other state-of-the-art adversarial and behavioral cloning methods on a number
of tasks within the MuJoCo and Atari simulated environments. This implementation
used a deep convolutional neural network (CNN) as a model of parameterized
reward r̂θ (s, a). However, the T-REX approach is general, and can be applied using
different architectures as well. In particular, it can be used for a finite MDP, which
would require no function approximation at all. In the next section we will consider
a simple financial example of T-REX for IRL with a discrete MDP.

8.4 D-REX: Disturbance-Based Reward EXtrapolation

The T-REX algorithm that we have just presented appears simple and intuitively
appealing, but it depends on the availability of rank labels for trajectory pairs.
However, such ranking may not always be available. For example, a portfolio
manager might have historical records of past trading portfolios but be in trouble
providing pairwise ranking between them. The question is then what we can do
with such scenarios.

A method that generalizes T-REX and provides automatically ranked demon-
stration is called D-REX (Disturbance-based Reward EXtrapolation) (Brown et al.
2019). The idea of this method is to use a ranking-based imitation learning method
that injects different levels of noise into a policy learned using behavioral cloning.
As was shown in Brown et al. (2019), this can be used to provide automated ranking
to trajectories provided by a demonstrator, without any explicit ranking from the
demonstrator. Once ranking labels are generated in this way, the algorithm follows
the T-REX method.

9 Let Us Try It Out: IRL for Financial Cliff Walking

After some extensive theoretical introduction to inverse reinforcement learning
and imitation learning given so far, we are now ready to apply IRL to a simple
financial problem where results could be easily checked versus available ground-
truth rewards.

9 Let Us Try It Out: IRL for Financial Cliff Walking 491

Fig. 11.6 The distribution of
cumulative rewards for
simulated trajectories from
the financial cliff walking
(FCW) example

1600

1400

1200

1000

800

600

400

200

0

Trajectory rewards distribution

F
re

qu
en

cy

Total reward
3 4 5 6 7 8

In this section, we apply three IRL algorithms (Max-Causal Entropy IRL, IRLF,
and T-REX) with a discrete MDP, namely our financial cliff walking (FCW)
example from Chap. 9, which we mentioned earlier as a possible simple test case
for IRL.

Recall that the optimal policy for the FCW example is to deposit the minimum
amount at the account at time t = 0, then do nothing until the very last step, at which
point the account should be closed, with the reward of 10. We randomize this policy
by adding a purely random component, and use it to produce sampled trajectories
in the form of tuples (st , at , rt , st+1). The starting position is chosen to be (1, 0)
rather than (0, 0) as in our RL example, which is chosen to avoid a deterministic
move up at the first time step. Demonstrations with the total reward of 100 or
less (i.e., trajectories leading to a bankruptcy) are marked as failed trajectories, and
trajectories with a positive cumulative reward are marked as successful. Note that
not all of them are optimal—the optimal strategy has the total reward of 10 and
does not act until the very last step, only then withdrawing the entire amount. The
distribution of rewards for successful trajectories is shown in Fig. 11.6.

We now present the results of the experiments, using the three IRL methods on
this data, and compare them with the ground-truth rewards.

9.1 Max-Causal Entropy IRL

Recall that in MaxEnt IRL, all trajectories in demonstration are assumed to be
nearly optimal, with some occasional deviations from optimality. The distribution
of rewards in Fig. 11.6, obtained when only successful trajectories are given to the
agent, appears to be a credible case for such an assumption, given that most of the
trajectories have an optimal reward of 10 or a nearly optimal reward of 8.

The results of MaxEnt IRL are shown in Fig. 11.7. Evidently, MaxEnt IRL is
able to capture the high reward of moving downwards from the state (1,10) (see the
second graph on the right). The recovered reward for zero action is large as long as

492 11 Inverse Reinforcement Learning and Imitation Learning

Fig. 11.7 Results of MaxEnt IRL on the FCW problem. (Left) The ground-truth rewards for all
moves and the true value function. (Right) The recovered values

the agent is left with one unit of deposit until the last step. This does not correspond
to the ground truth, however: The true reward over these steps is zero. MaxEnt IRL
associates these state-action combinations with high-reward states simply because
they are sub-parts of the optimal trajectories. Even though the true trajectory reward
of 10 is obtained at the very last step, preceding steps on the optimal trajectory are
perceived by the MaxEnt IRL as steps with high local reward. Another observation
is that the MaxEnt IRL does not detect the cliff, while in fact avoiding the cliff is
more important, in terms of the total reward, than any other actions. The reason is of
course that MaxEnt IRL is oblivious to the cliff since it was only given successful
trajectories.

9.2 IRL from Failure

Next we consider the IRLF (IRL from Failure) model. Here we use both sets of
demonstrations with successful and unsuccessful trajectories. Both datasets have an
equal number of observations. The results of IRLD are shown in Fig. 11.8.

9 Let Us Try It Out: IRL for Financial Cliff Walking 493

Fig. 11.8 Results of IRLF on the FCW problem. On the left: the ground-truth rewards for all
moves and the true value function. On the right: the recovered values

IRLF shows a similar performance to MaxEnt IRL for our FCW problem.
Though it is also given failed demonstrations, it does not produce a marked imprint
of the strong negative reward from breaching the cliff. The recovered reward appears
similar to the reward found by the MaxEnt IRL method.

9.3 T-REX

For T-REX, we provide the agent with an equal number of successful and failed
trajectories which are not split into separate datasets, but rather given as elements
of the same dataset. Each trajectory is ranked by the corresponding ground-truth
rewards accumulated on it.

The results of T-REX are shown in Fig. 11.9. We can see that it performs better
than the other two IRL methods. First, it differentiates between the negative reward
of falling from the cliff from the first level from zero rewards obtained when already
in the bankruptcy state. It also appears to be less error prone with assigning rewards
for zero actions—instead of assigning positive rewards to all parts of trajectories

494 11 Inverse Reinforcement Learning and Imitation Learning

Fig. 11.9 Results of T-REX on the FCW problem. On the left: the ground-truth rewards for all
moves and the true value function. On the right: the recovered values

with zero actions, it tends to assign negative rewards in the beginning and positive
rewards at the end, which partially offset each other in terms of cumulative rewards.

9.4 Summary

As we have demonstrated with these simple examples, IRL is a challenging problem.
Recall that IRL is an inverse problem of recovering a hidden signal (the reward, in
our case) from noisy observations. Not every inverse problem enables a full recovery
of the signal, some information is inevitably lost. Our experiment with a simple
FCW environment confirms this. Because we operated in a discrete MDP setting,
no function approximation was involved, enabling us to focus on the performance of
the inference part itself. Our experiments demonstrate the reward ambiguity in IRL:
the absolute values of recovered reward do not correspond to the absolute values
of the ground-truth rewards. On the positive side, IRL methods, and especially the
T-REX method, appear to capture the general structure of ground-truth rewards.

10 Financial Applications of IRL 495

10 Financial Applications of IRL

In this section, we consider financial applications of IRL and IL. While to date there
are only a handful of published research papers on applications of IRL in finance, we
will consider a few interesting use cases from different areas of quantitative finance.

We will consider two types of IRL problems. In the first class, we consider
inference of a reward function of a particular market agent. Such as agent can
be either a human or a robot, i.e. a trading algorithm. We will discuss three use
cases that belong in this class. The first one is the problem of identification of
strategies in high-frequency futures trading. The second is the problem of learning
the reward function of a risk-averse option trader. The third use case presents an IRL
formulation for inference of the reward function of a portfolio investor.

The second type of IRL problems infers a “merged” reward function of all market
agents, assuming that some market signals or even market dynamics are impacted
by their collective actions. While this remains a single-agent IRL formulation, the
agent here becomes an embodiment of some collective mode in the market, which
can be informally interpreted as an “Invisible Hand” of the market. For this type
of IRL problems, we again consider two use cases. In the first one, the collective
action of all market participants is identified with the market investor sentiments
(proxied by news sentiments). In the second use case, the collective action is taken
to be the net inflow or outflow of capital in the given stock. As we will see below,
such applications of IRL are capable of providing new insights into modeling on
market dynamics.

10.1 Algorithmic Trading Strategy Identification

One of the first published financial applications of IRL was suggested by Yang
et al. (2015). They addressed the problem of identification of high-frequency trading
strategies (HFT) given observed trading histories. This problem is of particular
interest to market operators and regulators seeking to prevent fraud and unfair
trading practices. In addition, a systematic analysis of algorithmic trading practices
helps regulators to produce regulations and policies that maintain the overall health
of the market.

The identification of trading strategies is often addressed by practitioners using
unsupervised learning techniques such as clustering of all algorithmic strategies.
They use features obtained from cumulative statistics of activities on trading
accounts. Clearly, such reliance on various cumulative statistics of trading activity
appears a “blind” method that might be prone to identifying features that have little
association with real objectives of strategies’ operators. Respectively, relying on
such features to perform clustering of strategies might produce non-informative
clusters with little explanatory power.

496 11 Inverse Reinforcement Learning and Imitation Learning

Inverse reinforcement learning offers an alternative to such a purely statistical
(or data-mining) approach. If observed trading strategies are used to infer reward
functions of traders (or algorithmic strategies), the learned rewards may provide a
different set of more “intelligent” features—ones that are informative of perceived
goals of financial agents. As was found in Yang et al. (2015), clustering based on a
learned reward function provides better identified clusters of agents having similar
reward functions.

Data collected by Yang et al. (2015) amounted to a month of order book audit
trail data for E-Mini S&P 500 index traded on the Chicago Mercantile Exchange
(CME) Globex electronic trading platform. The audit trail data includes all the order
book events at a millisecond time resolution. Each record contains the following
inputs: date, time, confirmation time (i.e., the time the order is confirmed by the
order-matching engine), customer account, trader identification number, buy/sell
flag, price, quantity, order type (market or limit), message type, and order ID.

State features are constructed using order volume misbalances between the
best bid and the best ask prices, at three different levels of the limit order book.
These three variables are further discretized into three levels (“high,” “medium,”
“low”). In addition, the inventory level (holding position) is used as part of the
state description. The action space is discretized in the following way: All limit and
market orders are separately discretized into 10 buckets each. In addition, the market
agent can cancel an existing limit order, which produces two more binary degrees of
freedom. As a result, all possible actions are encoded in a binary vector of length 22.
The total vector of state-action features is obtained by stacking together discretized
values of states and actions.

Yang et al. (2015) use the Bayesian IRL approach of Ramachandran and Amirv
(2007). In Bayesian IRL, the reward is assumed to be an unobserved random
variable with a probability distribution p(r). Given an observation O of a next state
and action with transition probability p(s′, a|s), the posterior probability of a given
value of the reward is obtained as

p
(
r|s, a, s′) = p(r)p(s′, a|r, s)∑

r p(r)p(s
′, a|r, s) . (11.133)

Rewards related to a particular action am are modeled as Gaussian processes (GP)
with zero mean and covariance matrix Km, leading to r ∼ N (0,Km). Rewards are
therefore completely specified by the covariance matrix Km. Elements km(si, sj) of
the covariance matrix are taken to be squared exponential kernels:

km(si, sj) = ekm 1
2 (si−sj)2 + σ 2

mδsi ,sj . (11.134)

The model parameter vector θ is therefore given by the values of km, σm, σ , where
σ is a parameter controlling the noise level in the likelihood function. The GPIRL
algorithm of Yang et al. (2015) iterates between two steps:

– For given values of parameters θ , maximize the posterior p (r|O). This is
equivalent to minimization of − logp (O|r) − logp(r|θ). The output of this

10 Financial Applications of IRL 497

step is the maximum a posteriori (MAP) value of the reward rMAP (θ) which
maximizes the value of the numerator in Eq. (11.133).

– Optimize parameters θ by maximizing logp (O|θ, rMAP) which is obtained as
the Laplace approximation of p(θ |O).

As shown in Yang et al. (2015), maximum posterior calculation in this GPIRL
formulation can be reduced to convex optimization and thus can be done in a
numerically efficient manner. Features obtained from learned reward functions were
then used to perform clustering of algorithmic strategies. Clusters obtained in this
way were found to be purer and more interpretable than clusters obtained by using
features derived from cumulative account statistics.

10.2 Inverse Reinforcement Learning for Option Pricing

Inverse reinforcement learning can be used to infer the reward function of an option
trader who sells a fixed number of European put options with maturity T and strike
K on a stock whose value now (at time t) is St . To hedge exposure to fluctuations
of stock price ST at the option maturity, the option seller longs a portfolio made
of a certain quantity of the stock and some cash. The option seller dynamically re-
balances this hedge portfolio in order to mitigate risk of not meeting her obligation
to sell the stocks at price K in scenarios when the price ST > K . Rewards are
defined as risk-adjusted returns on the option hedge portfolio.

We assume the same settings as we used for the QLBS model for option pricing
in Chap. 10. Recall that the QLBS is a model of a small investor who does not move
the market. This assumption is the same as in the classical Black–Scholes (BS)
option pricing model. In contrast to the BS model, the QLBS model prices option
by discrete-time sequential risk minimization. It shows that a simple Markowitz-
like single-step (in time �t) reward (negative risk) with risk aversion λ produces
a semi-analytically tractable model that reduces, if the dynamics of the world are
log-normal, to the standard BS model in the limit �t → 0, λ→ 0.

In Chap. 10, we considered a direct reinforcement learning problem with the
QLBS model, where observed data includes states, actions, and rewards. Here
we are concerned with the problem of learning both the reward function and the
optimal policy assumed to be followed in the data. In other words, we take an IRL
perspective of the option pricing problem.

While typically IRL is a harder problem than RL, and both are computationally
hard, in the setting of the QLBS model both are about equally easy, due to a
quadratic form of the reward function (10.35) and the absence of a feedback loop of
traders’ actions on the market.

Indeed, learning of the reward function amounts in this case to finding just one
parameter λ using Eq. (10.35). To estimate this parameter, we adapt the setting of
MaxEnt IRL, which is based on the general equations for G-learning (11.29):

498 11 Inverse Reinforcement Learning and Imitation Learning

Fπt (st) = Ea

[
r(st , at)− 1

β
gπ(st , at)+ γEt,a

[
Fπt+1(st+1)

]]

π(at |st) = 1

Zt
π0(at |st)er(st ,at)+γEt,a

[
Fπt+1(st+1)

]
. (11.135)

As we remarked in Sect. 3.3, Eq. (11.135) shows that one-step rewards r(st , at) do
not in general form an alternative specification of single-step action probabilities
π(at |st), which also require the value of γEt,a

[
Fπt+1(st+1)

]
.

However, for a special case without market impact that we consider here, the
analysis simplifies. Note that the last expression depends on the action at via the
transition probabilities p(st+1|st , at). Under the assumption that the agent is a small
option trader whose actions do not impact market prices, we have p(st+1|st , at) =
p(st+1|st). In this case, the second term in the exponent in the policy formula, in
the second of Eqs. (11.135), becomes independent of action at , and thus cancels out
in the numerator and denominator of the policy equation. Therefore, for the special
case without market impact (a feedback loop from action), the MaxEnt policy can
be expressed solely in terms of one-step rewards:

π (at |Xt) = 1

Z
ert (Xt ,at), (11.136)

where Z is a normalization factor.
In the QLBS model, the expected one-step reward is (see Eq. (10.35))

rt (Xt , at) := Et [Rt(Xt , at , Xt+1)] = c0(λ)+ atc1(λ)− 1

2
a2
t c2(λ), (11.137)

where, omitting for brevity the dependence on Xt , we defined

c0(λ) = −λγ 2
Et

[
$̂2
t+1

]
, c1(λ) = γEt

[
�St + 2λγ�Ŝt $̂t+1

]
,

c2(λ) = 2λγ 2
Et

[(
�Ŝt

)2
]
. (11.138)

Combining this with the MaxEnt policy (11.136), we obtain

π (at |Xt) = 1

Z
ert (Xt ,at) =

√
c2(λ)

2π
exp

[
−c2(λ)

2

(
at − c1(λ)

c2(λ)

)2
]
. (11.139)

10 Financial Applications of IRL 499

Thus, by combining an exponential distribution of the MaxEnt method with
the quadratic expected reward (10.35), we ended up with a Gaussian action
policy (11.139).10

Using Eq. (11.139), the log-likelihood of observing data
{
X
(k)
t , a

(k)
t

}
)Nk=1 is

(omitting a constant factor − 1
2 log (2π) in the second expression)

LL(λ)= log
N∏

k=1

pλ

(
a
(k)
t

∣∣∣X(k)t
)
=

N∑

k=1

⎛

⎝1

2
log c(k)2 (λ)−

c
(k)
2 (λ)

2

(
a
(k)
t − c

(k)
1 (λ)

c
(k)
2 (λ)

)2
⎞

⎠,

(11.140)
where c(k)i (λ) with i = 1, 2 stands for expressions (11.138) evaluated on the k-th
path. As this is a concave function of λ, its unique maximum can be easily found
numerically using standard optimization packages.

Note that optimization in Eq. (11.140) refers to one particular value of t . This
calculation can be repeated independently for different times t , producing a curve
λimpl(t) that could be viewed as a term structure of implied risk-aversion parameter.

To summarize this example, we see that when there is no market impact (a
feedback loop in the system), MaxEnt IRL directly learns a one-step reward
function. Parameters of this reward function can be estimated using the conventional
maximum likelihood estimation with the MaxEnt stochastic policy.

10.3 IRL of a Portfolio Investor with G-Learning

In Chap. 10, we introduced G-learning with quadratic rewards and Gaussian time-
varying policies (GTVP) as a tool to optimize a dynamic asset portfolio. Such a
model-based approach to G-learning amounts to a probabilistic version of the well-
known Linear Quadratic Regulator. Thus far, we have considered two formulations
that correspond, respectively, to self-financing and non-self-financing portfolios.
While the first formulation is appropriate for modeling activities of asset managers,
the second formulation with cash-flows at intermediate times is appropriate for tasks
of wealth management and financial planning.

Here we shall take the second formulation of G-learning for an individual agent
such as a retirement plan contributor or an individual brokerage account manager,
and consider its inverse formulation. This problem was set in Dixon and Halperin
(2020) that presented two related algorithms called G-learner and GIRL (for G-
learning IRL) to perform, respectively, the direct and inverse reinforcement learning

10Such stochastic action policy is clearly different from the greedy policy obtained with Q-learning
used for direct reinforcement learning in the QLBS model. As MaxEnt IRL operates with stochastic
policies, the corresponding “direct” reinforcement learning formulation for option pricing with
stochastic policies would not be the QLBS model but rather its entropy-regularized version based
on G-learning.

500 11 Inverse Reinforcement Learning and Imitation Learning

with G-learning for the retirement planning problem. In this section, we outline the
GIRL algorithm from Dixon and Halperin (2020).

We assume that we are given a history of dollar-nominated asset positions in an
investment portfolio, jointly with a portfolio manager’s decisions that include both
injections or withdrawals of cash from the portfolio and asset allocation decisions.
Additionally, we are given historical values of asset prices and expected asset returns
for all assets in the investor universe. As a concrete example, we can consider a
portfolio of stocks and a single bond, but the same formalism can be applied to
other types of assets.

Recall that in Sect. 6.3 we obtained the stochastic policy (see Eq. (10.172))

π(ut |xt) = π0(ut |xt)eβ(Gπt (xt ,ut)−Fπt (xt)). (11.141)

The quadratic reward function considered in Sect. 6.3 corresponds to the quadratic
action-value function (see Eqs. (10.170) and (10.165))

Fπt (xt) = xTt F(xx)t xt + xTt F(x)t + F (0)t (11.142)

Gπt (xt ,ut) = xTt Q(xx)t xt + xTt Q(xu)t ut + uTt Q(uu)t ut + xTt Q(x)t + uTt Q(u)t +Q(0)t ,

where

Q(xx)t = −λ̂t + γ
(

ATt F̄(xx)t+1 At + ̃r ◦ F̄(xx)t+1

)

Q(xu)t = 2Q(xx)t

Q(uu)t = Q(xx)t −� (11.143)

Q(x)t = 2λP̂t+1(1+ r̄t)+ γATt F̄(x)t+1

Q(u)t = Q(x)t − 1

Q
(0)
t = −λP̂ 2

t+1 + γF (0)t+1.

Here P̂t is a target portfolio defined here as a mixture of a benchmark portfolio Bt
(e.g. an index or a multiple of an index), and the current portfolio with the value
1T x that grows at some fixed rate η, with ρ being the mixture coefficient.

P̂t+1 = (1− ρ)Bt + ρη1T x (11.144)

Assume that we have historical data that includes a set ofD trajectories ζi where
i = 1, . . . D of state-action pairs (xt , at), where trajectory i starts at some time t0i
and runs until time Ti . Consider a single trajectory ζ from this collection, and set
for this trajectory the start time t = 0 and the end time T . As individual trajectories
are considered independent, they will enter additively in the final log-likelihood of
the problem. We assume that dynamics are Markovian in the pair (xt ,ut), with a

10 Financial Applications of IRL 501

generative model pθ(xt+1,ut |xt) = πθ (ut |xt)pθ (xt+1|xt ,ut), where � stands for
a vector of model parameters.

The probability of observing trajectory ζ is given by the following expression:

P (x,u|�) = pθ(x0)

T−1∏

t=0

πθ (ut |xt)pθ (xt+1|xt ,ut) . (11.145)

Here p(x0) is a marginal probability of xt at the start of the i-th demonstration.
Assuming that the initial values x0 are fixed, this gives the following log-likelihood
for data {xt , at }Tt=0 observed for trajectory ζ :

LL(θ) := logP (x,u|�) =
∑

t∈ζ
(logπθ (ut |xt)+ logpθ (xt+1|xt ,ut)) .

(11.146)
Transition probabilities pθ (xt+1|xt ,ut) entering this expression can be obtained
from the state equation

xt+1 = At (xt + ut)+ (xt + ut) ◦ ε̃t , At := diag (1+ r̄t) , ε̃t := (0, εt),
(11.147)

where εt is a Gaussian noise with covariance r (see Eq. (10.160)). Writing xt =
(x
(0)
t , x

(r)
t), where x(0)t is the value of a bond position and x(r)t are the values

of positions in risky assets, and similarly for ut and At , this produces transition
probabilities

pθ (xt+1|xt , at) = e− 1
2 �Tt −1

r �t

√
(2π)N |r |

δ
(
x
(0)
t+1 − (1+ rf)x(0)t

)
, �t :=

x(r)t+1

x(r)t + u(r)t
−A(r)t ,

(11.148)

where the factor δ
(
x
(0)
t+1 − (1+ rf)x(0)t

)
captures the deterministic dynamics of the

bond part of the portfolio. As this term does not depend on model parameters, we can
drop it from the log-transition probability, along with a constant term ∼ log(2π).
This produces

logpθ (xt+1|xt , at) = −1

2
log |r | − 1

2
�Tt −1

r �t . (11.149)

Substituting Eqs. (11.141), (11.143), (11.149) into the trajectory log-likelihood
(11.146), we put it in the following form:

LL(θ) =
∑

t∈ζ

(
β
(
Gπt (xt ,ut)− Fπt (xt)

)− 1

2
log |r | − 1

2
�Tt −1

r �t

)
,

(11.150)
where Gπt (xt ,ut) and Fπt (xt) are defined by Eqs. (11.143).

502 11 Inverse Reinforcement Learning and Imitation Learning

Table 11.1 The G-learning
agent parameters used for
portfolio allocation together
with the values estimated by
GIRL

Parameter G-learner GIRL

ρ 0.4 0.406

λ 0.001 0.000987

η 1.01 1.0912

ω 0.15 0.149

The log-likelihood (11.150) is a function of model parameter vector θ =(
λ, η, ρ,Ω,Σr,Σp, ūt , v̄t

)
(recall that β is a regularization hyper-parameter which

should not be optimized in-sample). We can simplify the problem by setting v̄t = 0
and ūt = ū (i.e. take a constant mean in the prior). In this case, the vector of model
parameter to learn with IRL inference is θ = (

λ, η, ρ,Ω,Σr,Σp, ū
)
. A “proper”

IRL setting would correspond to only learning parameters of the reward function
(λ, η, ρ,Ω) while keeping parameters

(
Σr,Σp, ū

)
fixed (i.e. estimated outside of

the IRL model). The log-likelihood defined in Eq.(11.150) is concave and has a
unique maximum, or equivalently its negative is convex and has a unique minimum.

The GIRL algorithm thus amounts to convex optimization which can be per-
formed very efficiently using standard optimization software. The performance
of the algorithm was evaluated in Dixon and Halperin (2020) using a simulated
environment where an “alpha model" for expected returns needed as inputs to
the algorithm is designed to have a weak predictive power, as expected from the
performance of equity returns predictive models in the real life, see Fig. 11.11.

Experiments performed in Dixon and Halperin (2020) used a G-learning agent
with arbitrarily chosen reward parameters to generate sequences of nearly optimal
actions (cash inflows and portfolio rebalancing) that maximize the total expected
reward in the simulated environment. It was found that the GIRL algorithm is able
to accurately infer the correct reward parameters from the demonstrated behavior,
as illustrated in Table 11.1.

The G-learner takes as input the expected risky asset returns r̄t together with
the covariance of the risk asset return, Σr . As shown in Figure 11.10, even using
arbitrary reward parameters chosen in Table 11.1 results in superior Sharpe ratios
when compared with an equally weighted portfolio that is never rebalanced over
the investment horizon. The G-learner uses the alpha-model to consistently produce
superior returns in a multi-period setting using a locally quadratic reward function.
The G-learner trains in a few seconds on a portfolio of 100 assets on standard
hardware.

GIRL imitates the G-learner by minimizing a loss function over the state-action
trajectories generated by the G-learner. The GIRL learned parameters in Table 11.1
are observed to be close to the G-learner parameters up to sampling error and
numerical accuracy. Consequently GIRL is observed to imitate the G-learner —
the sample averaged portfolio returns closely track each other in Figure 11.10. The
error in the learned G-learner parameters results in a marginal decrease in the Sharpe
ratio, as reported in the parentheses of the legend in Figure 11.10.

10 Financial Applications of IRL 503

Fig. 11.10 The sample mean portfolio returns are shown over a 30 quarterly period horizon (7.5
years). The black line shows the sample mean returns for an equally weighted portfolio without
rebalancing. The red line shows a G-learning agent, for the parameter values given in Table 11.1.
GIRL imitates the G-learning agent and generates returns shown by the blue dashed line. Sharpe
ratios are shown in parentheses

0.06

0.05

0.04

0.03

0.02

0.01

0.00

–0.01

–0.02

0 5 10 15 20 25 30

Realized returns vs expected returns

Time Steps

expected return
realized return

Fig. 11.11 The sample mean realized returns are plotted against the sample mean expected returns
and observed to be weakly correlated

504 11 Inverse Reinforcement Learning and Imitation Learning

The two algorithms, G-Learner and GIRL, can be used either separately or in
a combination. In particular, their combination could be used in robo-advising by
modeling the actual human agents as G-learners, and then use GIRL to infer the
latent objectives (rewards) of these G-learners. GIRL would then be able to imitate
the best human investors, and thus could be offered as a robo-advising service to
clients that would allow them to perform on par with best performers among all
investors.

10.4 IRL and Reward Learning for Sentiment-Based Trading
Strategies

Market prices of tradable securities such as stocks or bonds are significantly
impacted by trading activities and resulting volume misbalances. Consequently,
trading decisions of market participants are driven by both common factors pre-
dictive of future asset performance (those that are shared by all market players
in their decision-making), and idiosyncratic decision-making factors that might be
more tuned to specific objectives or strategies of market operators.

One of the common factors commonly accounted for by a majority of market
participants is investor sentiment. Various proxies to such investor sentiment
were considered in the financial literature. One popular approach is to use news
sentiment scores computed by companies such as Bloomberg, Thomson-Reuters, or
RavenPack, as measures of investor sentiment that expresses a general public mood
towards a given stock.

One way to explore a link between a proxy to investor sentiment and future
market movements is to use regressions where investor sentiments are used as
inputs, and stock returns serve as outputs. This is a supervised learning approach.
It does not try to view market sentiment as the result of some decision-making, but
rather treats them as given and fixed inputs to the prediction problem.

Another approach is to treat investor sentiments as actions of market players
observed in different states of the market. This sets up an MDP formulation for
the problem. The advantage of this approach is that market sentiments might be
adaptive to the state of the market, in the same way as a policy in an MDP problem
is a function of a state. The MDP formulation therefore captures co-dependencies
between sentiments and market states.

As rewards corresponding to actions defined by investor sentiments are not
observable, we deal here with learning without rewards, which is the setting of IRL.
Such an IRL view on learning the link between investor sentiments and market price
dynamics was suggested by Yang et al. (2018). The objective of such modeling is to
find useful high-level features that can be used to construct better predictive models
for equity returns. In the IRL approach, these features are constructed by assuming
that observed investor sentiments (actions) are maximizing unknown cumulative
rewards over observed trajectories consisting of states and actions.

10 Financial Applications of IRL 505

For a practical implementation, the authors of Yang et al. (2018) used news
sentiments from Thomson-Reuters news analytics as a proxy of investor sentiments
towards the US equity market. Sentiment scores for all stocks in the S&P 500 index
(SPX) are aggregated into a common market-wide sentiment, which is considered
a “collective action” (or voting) by all market agents. This action space is further
discretized in three states corresponding, respectively, to high, medium, and low
sentiments. To learn the reward function, Yang et al. (2018) use a probabilistic
GPIRL approach, similar to one used in Yang et al. (2015). Experiments have shown
that an adaptive trading system based on learned reward functions performed better
than benchmark strategies based on supervised learning approaches.

We note that the approach of Yang et al. (2018) is intrinsically interesting as an
example of dimension reduction in an MDP problem. Indeed, an investor sentiment
is by construction a metric for the collective response of all market participants
simultaneously. Therefore, if we identify investor sentiment with actions of an
agent, such an agent should simultaneously embody all market participants. Even
though it deals with market dynamics that include many interacting financial agents,
the problem is formulated here as a single-agent IRL problem. This considerably
simplifies analysis. We will return to the idea of modeling market dynamics with a
single agent in the next section.

10.5 IRL and the “Invisible Hand” Inference

Investor sentiments, albeit collectively representing all market participants, are
nevertheless not directly related to actual actions of market players—the latter
amount to trading in different securities, rather than holding views on their future
values. We can arrive at another single-agent model that relates to the market as
a whole, if we start with a multi-agent view of a market. In this approach, agents
may invest in all stocks from a market portfolio (e.g., the SPX portfolio of the S&P
500 stocks). At each time step, different agents may buy or sell different stocks, or
simply hold their trading books.

In general, the market is filled with heterogeneous agents in various forms. There
are rational agents who maximize a certain utility function. Then there are agents
with bounded rationality, which is a term we will discuss in more details below.
There may even be totally irrational agents—“noisy traders.” At each given time
step, they would in general take different actions, as determined by their perceived
goals.

On the other hand, market dynamics are driven, at each step, by a combination
of trading signals, actions of all market agents, and an “innovation noise” resulting
from new information that becomes available to market agents. The SPX portfolio
obtained with these dynamics is a market-optimal portfolio which often serves as a
benchmark portfolios for active management funds that try to “beat the market.”

We may think of the dynamics of this market-optimal portfolio as stochastic
market dynamics partially affected by actions of one single agent. Such an agent

506 11 Inverse Reinforcement Learning and Imitation Learning

could be identified with a dynamic “collective mode,” or an “Invisible Hand” of the
market. In other words, this agent acts like the sum, rather than the average of all
agents in the market. Such an approach to modeling market dynamics was suggested
in Halperin and Feldshteyn (2018). Our exposition in this section provides a brief
overview of the IRL approach of Halperin and Feldshteyn (2018).

The objective of IRL for a market-wide agent is to find its reward function from
observed market dynamics. To gain insights into possible parametric specifications
for the reward function, it is instructive to first consider a simple one-period
portfolio optimization problem. In this case, the expected reward coincides with
the action-value function. Therefore, for this setting, finding an optimal investment
policy is equivalent to maximizing the expected reward (or expected utility) of the
investment.

Assume for the moment that the agent is rational11 and has a certain utility U(a),
where a is a vector of asset allocations, the direct portfolio optimization problem
amounts to maximizing U(a) given all its inputs, and subject to all constraints on
asset allocations a.

Instead of solving this direct optimal control problem, we can consider its
inverse. Indeed, the market-optimal portfolio is already known from the market itself
as market-optimal allocations are given by total market capitalizations of all stocks
in the market index. We could use this information to find the utility from the optimal
solution. This corresponds to an “inverse problem” of portfolio optimization.

This is exactly the approach of the celebrated Black–Litterman (BL) model of
optimal asset allocation (Black and Litterman 1991). The BL model inverts the
single-period (non-dynamic) Markowitz optimal portfolio theory. The Markowitz
model computes the optimal portfolio a given investors’ views of expected returns
r̄ and future covariances � of stock returns, by maximizing the utility function
U(a) = aT r̄−λaT �a, where λ is a risk-aversion parameter. Consequently, expected
returns r̄ depend on values of predictive signals z.

Flipping the problem on its head, the BL model takes as an input the market-
optimal portfolio, assuming that it is obtained by maximization of the Markowitz
utility, and infers from it market-implied views of expected returns. The latter
translate into market-implied views of common predictive signals z. Along with
learning market-implied views, the BL model enables the user to infer the potential
impact of investors private signals on the performance of the investment portfolio.

The BL model was explicitly reformulated as an inverse optimization problem
by Bertsimas et al. (2012). While this provides an inverse optimization perspective
of the BL approach, it remains a non-dynamic (one-period) formulation. This might
be problematic if we are interested in signals whose dynamics extends over a few
(or many) trading periods. Handling such effects requires a multi-period (dynamic)
model of market returns. As IRL is based on learning from state-action sequences,

11See below for more on the rationality assumption.

10 Financial Applications of IRL 507

it provides a convenient framework for a dynamic, agent-based extension of the
inverse optimization BL approach of Bertsimas et al. (2012).

Once we set on a single-agent formulation in the IRL approach to modeling
market dynamics, it is important to clarify an “amount of rationality” of this agent.
Traditional models of IRL or inverse stochastic control that are based on a concept
of fully rational agents may not be well suitable for such IRL problem. Indeed, as
market prices are impacted by actions of many individual investors, each potentially
pursuing different investment objectives, an agent obtained by a direct summation
of such real agents may not have a particular reward (utility) function that would
correspond to one fixed type of a rational behavior.

A better assumption would be to have a collective agent that is not fully rational,
but rather is only bounded-rational. A bounded-rational agent does not necessarily
act to increase its total cumulative rewards on the action-value function. Instead, its
objective function is made by a given parametric reward function penalized by an
information cost (11.23) of updating policy π from some reference policy π0. The
relative weight between the reward function and the information cost is controlled
by an “inverse-temperature” parameter β, such that the limit β → ∞ corresponds
to a fully rational behavior, while the limit β → 0 describes a maximally irrational
behavior that sticks to a prior belief π0 and is not adaptive to changes in processed
information. Mathematically, optimization of a bounded-rational agent is equivalent
to G-learning discussed in Sect. 3.3, where now the information cost is interpreted
as a rationality penalty for updating the policy.

•> Bounded Rationality

The concept of bounded rationality of financial agents was first suggested
by Simon (1956) when he proposed to go beyond the more traditional
rational investor models to better explain the behavior of real-world agents.
The latter models follow the Von Neumann–Morgenstern expected utility
approach in assuming that market agents are fully rational, and each of them
maximizes a well-defined utility (reward) function. If we further assume that
all agents have the same utility function, we obtain a model where a market-
optimal portfolio is controlled by one fully rational representative agent. In
particular, in the capital asset pricing model (CAPM), the utility function
of such an agent is the Markowitz quadratic utility. But the assumption of
perfect homogeneity of market agents might be too idealistic, as real financial
markets are often populated with very heterogeneous types of investors. A
formal approach to quantifying deviations from a perfectly rational behavior
is therefore desired for a single-agent modeling of market dynamics.

(continued)

508 11 Inverse Reinforcement Learning and Imitation Learning

A convenient computational framework for modeling bounded-rational
agents was proposed by Ortega and Braun (2013) who suggested to use
information costs (11.23) as a quantitative measure of differences from a
purely rational behavior. As was further discussed by Ortega et al. (2015),
this metric computes the number of bits an agent requires to update its policy
from a prior pre-specified policy π0.

Clearly, once we define a market-wide agent, its actions are not directly observ-
able because it represents the market as a whole. Such agent has no trading
counterparty—it trades with itself, which can be mathematically described as self-
learning by a self-play, as driven by its reward function.12 The agent’s actions
amount to maintaining a partial control of the market portfolio.

Though actions of such a market-wide agent are not directly observable, they
impact market prices via a price impact mechanism. Heating or cooling of the
market via a price impact is the only observable effect of actions of the “Invisible
Hand” agent. We assume a simple linear impact model for the impact of agent’s
actions on the environment (the market). The return on a stock is therefore modeled
as a linear function of the action, which is additionally contaminated by a noise
term that approximates an aggregated “non-coherent” part of trading decisions of
all market agents. In the simplest case, the noise can be modeled as a Gaussian
white noise; however, including more complex volatility dynamics is possible as
well.

Under these assumptions, the dynamic equation for the total market capitalization
xt of all stocks with agent’s controls ut is the same as those obtained in Eq. (10.123)
in Sect. 5.14 in Chap. 10, which we repeat here for convenience13:

xt+1 = (1+ rt) ◦ (xt + ut)

=
(

1+ rf +Wzt −MT ut + εt
)
◦ (xt + ut) (11.151)

= (1+ rf)(xt + ut)+ diag (Wzt −Mut) (xt + ut)+ ε(xt ,ut).

12Recall in this context the example in Sect. 5.13 in Chap. 10 that showed that a single-agent
learning in the setting of G-learning can be equivalently formulated as a solution for a Nash
equilibrium in a zero-sum two-agent game.
13Our presentation in Sect. 5.14 in Chap. 10 refers to a general investment portfolio, where xt
stands for a vector of dollar-valued positions in all stocks, and ut are adjustments of these positions.
Here we apply this formalism to the whole market portfolio, where xt becomes the vector of total
market capitalizations of all stocks in the market.

10 Financial Applications of IRL 509

Here ◦ stands for an element-wise (Hadamard) product, zt is the vector of predictive
signals, W are coefficients, andM is a matrix of market impacts that is assumed here
to be diagonal with elements μi , M := diag (μi), and

ε(xt ,ut) := εt ◦ (xt + ut) (11.152)

is the multiplicative noise term. Equation (11.151) shows that the dynamics are
non-linear in controls ut due to the market impacts ∼ μi . More specifically, when
friction parametersμi > 0, the state equation is linear in xt , but quadratic in controls
ut . In the limit when all μi → 0, the dynamics become linear.

For both cases of linear and non-linear dynamics, the model of a bounded-
rational market-wide agent is mathematically equivalent to a time-invariant version
of G-learning presented in Sect. 5.13 in Chap. 10. The reason is that the same KL
regularization used in G-learning is interpreted as an information cost of a bounded-
rational agent to update from a prior policy, and is therefore used to control the
amount of rationality of the agent, as was suggested in a different setting by Ortega
and Braun (2013), Ortega et al. (2015).

When dynamics are linear while rewards are quadratic, dynamic portfolio
optimization amounts to a probabilistic version of the Linear Quadratic Regulator
(LQR) . We have described the solution for this case in Sect. 5.15 in Chap. 10. As
we found there, in the zero-friction limit the optimal policy is a Gaussian policy
π(ut |xt) whose mean is linear in the state xt :

π(ut |xt) = 1
√
(2π)n

∣∣∣�̃p
∣∣∣
e−

1
2 (ut−ũt−ṽtxt)

T
�̃−1
p (ut−ût−ṽtxt), (11.153)

where ũt , ṽt , and �̃p are parameters defined in Sect. 5.15 in Chap. 10.
When dynamics are non-linear, i.e. market impacts μi > 0, analysis becomes

considerably more complicated. Furthermore, when IRL is applied for a single-
agent model of the market as a whole, actions of the agent become unobservable.
One possible approach to address non-linearity is to set up a computational scheme
that iterates between steps of tuning policy parameters and linearization of dynamics
equations, all while treating the agent’s actions as unobserved variables.

Such a computational method was developed in Halperin and Feldshteyn (2018)
using a variational EM algorithm. The most important implication from the analysis
of this algorithm is that even in the presence of market frictions μi > 0, and absent
of additional constraints, the optimal policy still has the same Gaussian form as in
Eq. (11.153), with a mean that is linear in the state xt , and parameters that can be
computed from the variational EM algorithm.

To obtain more constrained dynamics, we take a deterministic limit for this policy
for a special case of a zero intercept. This produces a linear deterministic policy

ut = txt , (11.154)

510 11 Inverse Reinforcement Learning and Imitation Learning

where t is a matrix of parameters that can be computed from the original model
parameters. In general, this parameter is time-dependent as it can depend linearly
on predictive signals zt . Note that the reason that Eq. (11.154) does not have an
intercept is that the agent should not invest in stocks with a strictly zero value.

The linear action policy (11.154) describes the optimal action of the market-wide
agent that maximized a specific quadratic (Markowitz) reward penalized by the KL
information cost term, as was presented in Sect. 5.13 in Chap. 10. Alternatively, we
could use G-learning with a different reward function.

Importantly, for different cost-adjusted reward functions, the resulting optimal
action policy would be different from a linear one. In a general case, a deterministic
policy in an MDP is a deterministic function of the state. We can write it as ut =
 (xt , zt), where (xt , zt) is a differentiable function that satisfies (0, zt) = 0.
Their functional form is determined by a particular reward function chosen for the
problem. In this case, Eq. (11.154) can be thought of as a leading-order Taylor
approximation that uses the general Taylor expansion of a non-linear function
 (xt , zt):

ut = (xt , zt) = ∂ (xt , zt)
∂xt

∣∣∣∣
xt=0

xt + 1

2

∂2 (xt , zt)

∂x2
t

∣∣∣∣
xt=0

x2
t + (11.155)

Assuming a deterministic policy such as (11.154) or (11.155), we may question
its implications for the dynamics. To this end, we note that once we establish the
policy (11.154) as a deterministic function of the state variable xt , we can simply
plug this expression into Eq. (11.151) to give a dynamic equation that does not
contain the control variable ut .

This produces drastically different results, depending on whether friction param-
eters are non-zero or ignored. Let us consider first the case of a linear action
policy (11.154). Substituting Eq. (11.154) into Eq. (11.151) and simplifying, we
obtain

�xt = μ ◦ φ ◦ (1+ φ) ◦ xt ◦
(
φ + (1+ φ)(rf + wzt)

μφ(1+ φ) − xt

)
+ (1+ φ) ◦ xt ◦ ε(r)t .

(11.156)
Introducing parameters

κ�t = μ◦φ ◦(1+φ), θ(zt) = φ + (1+ φ)(rf + wzt)
μφ(1+ φ) , σ (xt)

√
�t = (1+φ)◦xt

(11.157)
(here �t is a time step) and replacing ε(r)t → εt , we can write Eq. (11.156) more
suggestively as

�xt = κ ◦ xt ◦ (θ(zt)− xt) �t + σ(xt)
√
�t ◦ εt . (11.158)

Note that this equation has a quadratic drift term. It is quite different from models
with a linear drift such as the Ornstein–Uhlenbeck (OU) process. In the limit μ→

10 Financial Applications of IRL 511

0, φ→ 0, Eq. (11.158) reduces to the log-normal return model given by Eq. (10.80)
without the action term ut :

�xt
xt

= rf + wzt + εt . (11.159)

Therefore, the conventional log-normal return dynamics (with signals) is reproduced
in our framework in the limit μ → 0, φ → 0. However, when parameters μ, φ
are small but non-zero, Eqs. (11.159) and (11.158) describe qualitatively different
dynamics.

In particular, while Eq. (11.159) is scale invariant with respect to scale transfor-
mations xt → αxt with α being a scaling parameter, the non-linear mean-reverting
dynamics (11.158) are not scale invariant. This is of course due to the fact that
our market-wide agent aggregates all agents in the market. As their individual
trade impacts induce a dependence of dynamics on a dimensional market impact
parameter μ, scale invariance is broken in the resulting market dynamics (11.158).

Therefore, even if parameters κ , φ are small but non-vanishing, Eq. (11.158)
produces a potentially complex non-linear dynamics with broken scale invariance
and ensuing multi-period autocorrelations. These non-linear dynamics with a
dynamically generated mean reversion level θ(zt) are produced from simple linear
dynamics (11.151) with a linear control ut . Both the level and the speed of mean
reversion have very clear origins: as can be seen from Eqs. (11.158), the level θ(zt)
is driven by external signals zt , which makes intuitive sense. On the other hand,
the speed of reverting to such a “target” price is proportional to the market impact
parameter vector μ and is thus also intuitive.

We note that both the dynamically generated mean reversion which leads to long-
term correlations and a dynamic adaptation of an optimal agent’s actions to external
signals zt are phenomena that are typical for self-organizing systems, see, e.g.,
Yukalov and Sornette (2014). Therefore, the model of self-learning by a fictitious
self-playing agent, which imitates simultaneously all traders in the market proposed
in Halperin and Feldshteyn (2018), provides a specific illustration of equivalence
between self-organization and decision-making that was suggested in Yukalov and
Sornette (2014).

In a one-dimensional (1D) case with a constant mean reversion level θ(zt) = θ ,
Eq. (11.158) produces the following dynamics for a rescaled variable st = xt/θ :

�st = μst (1− st)+ σ
√
�tstεt , μ := κθ�t. (11.160)

Dynamics described by Eq. (11.160) or its noiseless limit σ → 0 are widely
encountered or used in physics and biology. In particular, the limit σ → 0 of
Eq. (11.160) describes the logistic map dynamics that arises, e.g., in the Malthus–
Verhulst model of population growth (see, e.g., Kampen (1981)), or in Feigenbaum
bifurcations in the logistic map chaos that arise when 3 ≤ μ < 4 in Eq. (11.160),
see, e.g., Sternberg (2010). When σ > 0, Eq. (11.160) describes a logistic map
with a multiplicative thermal noise, which may produce highly complex dynamics
(Baldovin and Robledo 2005).

512 11 Inverse Reinforcement Learning and Imitation Learning

We can also consider a continuous-time limit of 1D dynamics implied by
Eq. (11.158):

dxt = κxt (θ − xt) dt + σxt dWt , (11.161)

where Wt is a standard Brownian motion. This 1D process is known in the
economics and finance literature as a Geometric Mean Reversion (GMR) process.
The GMR model (11.161) was used by Dixit and Pindyck (1994), and its properties
were further studied by Ewald and Yang (2007) who have shown that this process
is bounded, non-negative, and has a stationary distribution under the constraint
2κθ > σ 2. Rather than postulating such mean-reverting dynamics, the model
presented in Halperin and Feldshteyn (2018) derives them (in a multivariate setting)
from an underlying dynamic optimization problem of a bounded-rational agent.

To summarize, the IRL approach to modeling the market dynamics as a partially
controlled MDP model with a linear optimal control produces, upon converting
the problem into an open loop control formulation, the non-stationary multivariate
GMR process (11.158) (or, in a one-dimensional setting, its 1D counterpart
Eq. (11.161)). This process has a quadratic drift, in contrast to the GBM or OU
models which have linear drifts. When applied to the market as a whole, IRL is
capable of producing dynamic market models with a non-linear drift.

An interesting question is how the resulting market dynamics equations would
change if we kept both the linear and quadratic term in the general form (11.155) of
the optimal policy function. Evidently, retaining this term would change the drift in
Eq. (11.158) from quadratic to cubic. As we will discuss in the next chapter, such
a modification of the resulting dynamic market model might be desirable in order
to extend the model to describe various market regimes, including in particular a
regime when the effective mean reversion rate κ < 0.

11 Summary

In this chapter, we presented the concepts and methods of inverse reinforcement
learning (IRL) and imitation learning (IL). As the whole field of IRL and IL is
currently being actively pursued (outside of finance) by many researchers in ML,
this chapter’s goal was to provide a sufficiently high-level review to help the reader
navigate the research literature and follow new developments. In particular, we
provided a review of adversarial approaches to IRL and IL that have been recently
trending in the ML literature.

As we mentioned in the introduction to this section, while the whole field of IRL
and IL continues to generate significant interest and new ideas among researchers
applying these methods in robotics and video games, current financial applications
are still scarce. Financial applications put stringent constraints on IRL or IL methods
to be applicable in finance: they need to operate with continuous (and sometimes
high-dimensional) state-action space, be tolerant to noise in demonstrations, and

12 Exercises 513

they should capture risk characteristics of rewards rather than just their expectations.
Furthermore, ideally we need IRL or IL methods that surpass the performance in
demonstrations, rather than merely mimicking it and assuming that the demon-
strated behavior is already nearly optimal. Such methods, including T-REX and
D-REX, have been suggested only very recently, and we included examples of them
in this chapter to motivate their adoption in finance.

Among applications of IRL to quantitative finance, we outlined applications that
focus on inference of individual traders, and those that makes inference of the whole
market dynamics.

For the first class of problems, as we demonstrated with the G-learner and GIRL
algorithms in Sect. 10.3, IRL is able to recover the reward function of a RL agent
or a human agent modelled as a RL agent. This suggests that IRL can be used for
applications to robo-advising and inference of investor preferences.

For the second class of IRL problems that deal with a single market-wide agent,
market dynamics can be related to the action of that agent. While multi-agent RL
formulations of market dynamics are available and useful for certain applications,
mapping onto one market-wide agent (the “Invisible Hand”) enables a view of IRL
as a tool for constructing new market models.

12 Exercises

Exercise 11.1
a. Derive Eq. (11.7).
b. Verify that the optimization problem in Eq. (11.10) is convex.

Exercise 11.2
Consider the policy optimization problem with one-dimensional state- and action-
spaces and the following parameterization of the one-step reward:

r(s, a) = − log
(

1+ e−θ�(s,a)
)
,

where θ is a vector of K parameters, and �(s, a) is a vector of K basis functions.
Verify that this is a concave function of a as long as basis functions �(s, a) are
linear in a.

Exercise 11.3
Verify that variational maximization with respect to classifierD(s, a) in Eq. (11.75)
reproduces the Jensen–Shannon divergence (11.72).

Exercise 11.4
Using the definition (11.71) of the convex conjugate function ψ% for a differentiable
convex function ψ(x) of a scalar variable x, show that (i) ψ% is convex, and (ii)
ψ%% = ψ .

514 11 Inverse Reinforcement Learning and Imitation Learning

Exercise 11.5
Show that the choice f (x) = x log x − (x + 1) log x+1

2 in the definition of
the f-divergence (11.73) gives rise to the Jensen–Shannon divergence (11.72) of
distributions P andQ.

Exercise 11.6
In the example of learning a straight line from Sect. 5.6, compute the KL divergence
DKL (Pθ ||PE), DKL (PE ||Pθ), and the JS divergence DJS (Pθ , PE).

Exercise 11.7
a. Show that minimization of the LS-GAN loss VLSGAN(D) in Eq. (11.87) produces

the following relation for the optimal discriminator:

D(s, a) = aρπ + bρE
ρπ + ρE .

b. Use this expression to show that minimization of the generator loss VLSGAN(G)
in Eq. (11.87) is equivalent to minimization of the Pearson χ2 divergence
between the model density and a mixture of the expert and agent densities, as
long as coefficients a, b, c satisfy the constraints b − c = 1 and b − a = 2.

Exercise 11.8
Compute the gradients of the AIRL objective (11.93) with respect to parameters θ
and show that they coincide with the gradients obtained using adaptive importance
sampling (11.39) to estimate gradients of the Max-Causal Entropy IRL objective
function.

Appendix

Answers to Multiple Choice Questions

Question 1
Answer: 3.

Question 2
Answer: 1, 4.

Question 3
Answer: 1, 2.

References 515

Python Notebooks

This chapter is accompanied by a notebook comparing various IRL methods for the
financial cliff walking problems. Further details of the notebook are included in the
README.md file.

References

Arjovsky, M., Chintala, S., & Bottoum, L. (2017). Wasserstein GAN. https://arxiv.org/abs/1701.
07875.

Baldovin, F., & Robledo, A. (2005). Parallels between the dynamics at the noise-perturbed onset
of chaos in logistic maps and the dynamics of glass formation. Phys. Rev. E, 72. https://arxiv.
org/pdf/cond-mat/0504033.pdf.

Bertsimas, D., Gupta, V., & Paschalidis, I. (2012). Inverse optimization: A new perspective on the
Black-Litterman model. Operations Research, 60(6), 1389–1403.

Black, F., & Litterman, R. (1991). Asset allocation combining investor views with market
equilibrium. Journal of Fixed Income, 1(2), 7–18.

Boularias, A., Kober, J., & Peters, J. (2011). Relative entropy inverse reinforcement learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
PMLR 15 (pp. 182–189).

Brown, D. S., Goo, W., Nagarajan, P., & Niekum, S. (2019). Extrapolating beyond suboptimal
demonstrations via inverse reinforcement learning from observations. arXiv:1904.06387.

Brown, D. S., Goo, W., & Niekum, S. (2019). Better-than-demonstrator imitation learning via
automatically-ranked-demonstrations. arXiv:1907.0397.

Capponi, A., Olafsson, S., & Zariphopoulou, T. (2019). Personalized robo-advising: Enhancing
investment through client interaction.

Chasemiour, S., Gu, S., & Zemel, R. (2019). Understanding the relation between maximum-
entropy inverse reinforcement learning and behaviour cloning. ICLP.

Dixit, A., & Pindyck, R. (1994). Investment under uncertainty. Princeton NJ: Princeton University
Press.

Dixon, M.F., & Halperin, I. (2020). G-Learner and GIRL: Goal Based Wealth Management with
Reinforcement Learning, available at https://papers.ssrn.com/sol3/papers.cfm?abstract$_$id=
3543852.

Ewald, C. O., & Yang, Z. (2007). Geometric mean reversion: formulas for the equilibrium density
and analytic moment matching. University of St. Andrews Economics Preprints.

Finn, C., Christiano, P., Abbeel, P., & Levine, S. (2016). A connection between generative adver-
sarial networks, inverse reinforcement learning, and energy-based models. arXiv:1611.03852.

Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: deep inverse optimal control via
policy optimization. arXiv:1603.00448.

Fox, R., Pakman, A., & Tishby, N. (2015). Taming the noise in reinforcement learning via soft
updates. In 32nd Conference on Uncertainty in Artificial Intelligence (UAI). https://arxiv.org/
pdf/1512.08562.pdf.

Fu, J., Luo, K., & Levine, S. (2015). Learning robust rewards with adversarial inverse reinforce-
ment learning. arXiv:1710.11248. https://arxiv.org/pdf/1512.08562.pdf.

Goodfellow, I., Pouget-Abadie, J., Mirza, B. X. M., Warde-Farley, D., Ozair, S., Corville, A., et al.
(2014). Generative adversarial nets. NIPS, 2672–2680.

Halperin, I., & Feldshteyn, I. (2018). Market self-learning of signals, impact and optimal trading:
Invisible hand inference with free energy, (or, how we learned to stop worrying and love
bounded rationality). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3174498.

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/pdf/cond-mat/0504033.pdf
https://arxiv.org/pdf/cond-mat/0504033.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract$_$id=3543852
https://papers.ssrn.com/sol3/papers.cfm?abstract$_$id=3543852
https://arxiv.org/pdf/1512.08562.pdf
https://arxiv.org/pdf/1512.08562.pdf
https://arxiv.org/pdf/1512.08562.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3174498

516 11 Inverse Reinforcement Learning and Imitation Learning

Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems 29. http://papers.nips.cc/paper/6391-generative-adversarial-
imitation-learning.pdf.

Jaynes, E. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630.
Kalakrishnan, M., Pastor, P., Righetti, L., & Schaal, S. (2013). Learning objective functions for

manipulations. In International Conference on Robotics and Automation (ICRA).
Kampen, N. G. V. (1981). Stochastic processes in physics and chemistry. North-Holland.
Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: a survey.

International Journal of Robotic Research, 32(11), 1238–1278.
Kramer, G. (1998). Directed information for channels with feedback. Ph.D. thesis, Technische

Wissenschaften ETH Zürich.
Lacotte, J., Ghavamzadeh, M., Chow, Y., & Pavone, M. (2018). Risk-sensitive generative adversar-

ial imitation learning. https://arxiv.org/pdf/1808.04468.pdf.
Landau, L., & Lifshitz, E. (1980). Statistical physics. Course of theoretical physics. vol. 5 (3 ed.).

Oxford: Pergamon Press.
Levine, S., Popovic, Z., & Koltun, V. (2011). Nonlinear inverse reinforcement learning with

Gaussian processes. Advances in Neural Information Processing Systems, 24.
Liu, S., Araujo, M., Brunskill, E., Rosetti, R., Barros, J., & R. Krishnan (2013). Understanding

Sequential Decisions via Inverse Reinforcement Learning. In IEEE 14th International Confer-
ence on Mobile Data Management.

Mao, X., Li, Q., Xie, H., Lau, R., Wang, Z., & Smolley, S. P. (2016). Least squares generative
adversarial networks. https://arxiv.org/abs/1611.04076.

Marschinski, R., Rossi, P., Tavoni, M., & Cocco, F. (2007). Portfolio selection with probabilistic
utility. Annals of Operations Research, 151(1), 223–239.

Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2010). Estimating divergence functionals and the
likelihood ratio by convex risk minimization. Information Theory. IEEE, 56(11), 5847–5861.

Nowozin, S., Sceke, B., & Tomioka, R. (2016). F-GAN: training generative neural samplers using
variational divergence minimization. https://arxiv.org/abs/1606.00709.

Ortega, P., & Braun, D. A. (2013). Thermodynamics as a theory of decision-making with
information processing costs. Proceedings of the Royal Society A. https://doi.org/10.1098/rspa.
2012.0683. https://arxiv.org/pdf/1204.6481.pdf.

Ortega, P. A., Braun, D. A., Dyer, J., Kim, K., & Tishby, N. (2015). Information-theoretic bounded
rationality. https://arxiv.org/pdf/1512.06789.pdf.

Putterman, M. L. (1994). Markov decision processes: discrete stochastic dynamic programming.
New York, NY, USA: John Wiley & Sons, Inc.

Ramachandran, D., & Amirv, E. (2007). Bayesian inverse reinforcement learning. Proc. IJCAI,
2586–2591.

Reddy, S., Dragan, A. D., & Levine, S. (2019). SQIL: imitation learning via regularized behavioral
cloning. https://arxiv.org/pdf/1905.11108.pdf.

Russell, S. (1998). Learning agents for uncertain environments. In Proceeding of the Eleventh
Annual Conference on Computational Learning Theory. COLT’ 98, ACM, New York, NY,
USA, pp. 101–103.

Shiarlis, K., Messias, J., & Whiteson, S. (2016). Inverse reinforcement learning from failure. In
J. Thangarajan, Tuyls, K., Jonker, C., Marcella, S. (Eds.) Proceedings of 15th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). Singapore.

Simon, H. (1956). Rational choice and the structure of the environment. Psychological Review,
63(2), 129–138.

Sternberg, S. (2010). Dynamic systems. Dover Publications.
Xu, L., Smith, J., Hu, Y., Cheng, Y., & Zhu, Y. (2015). A dynamic structural model for hetero-

geneous mobile data consumption and promotion design. Working paper, available at https://
www.krannert.purdue.edu/academics/MIS/workshop/Xu-etal_2015_DynamicMobileData.pdf.

Yang, S. Y., Qiao, Q., Beling, P. A., Scherer, W. T., & Kirilenko, A. A. (2015). Gaussian process-
based algorithmic trading strategy identification. Quantitative Finance, 15(10). https://doi.org/
10.1080/14697688..1011684.

http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
https://arxiv.org/pdf/1808.04468.pdf
https://arxiv.org/abs/1611.04076
https://arxiv.org/abs/1606.00709
https://doi.org/10.1098/rspa.2012.0683
https://doi.org/10.1098/rspa.2012.0683
https://arxiv.org/pdf/1204.6481.pdf
https://arxiv.org/pdf/1512.06789.pdf
https://arxiv.org/pdf/1905.11108.pdf
https://www.krannert.purdue.edu/academics/MIS/workshop/Xu-etal_2015_DynamicMobileData.pdf
https://www.krannert.purdue.edu/academics/MIS/workshop/Xu-etal_2015_DynamicMobileData.pdf
https://doi.org/10.1080/14697688..1011684
https://doi.org/10.1080/14697688..1011684

References 517

Yang, S. Y., Yu, Y., & Almahdi, S. (2018). An investor sentiment reward-based trading system
using Gaussian inverse reinforcement learning algorithm. Expert Systems with Applications,
114, 388–401.

Yukalov, B. I., & Sornette, D. (2014). Self-organization in complex systems as decision making.
Advances in Complex Systems, 3–4, 17.

Ziebart, B., Bagnell, J., & Dey, A. K. (2013). The principle of maximum causal entropy for
estimating interacting processes. IEEE Transactions on Information Theory, 59(4), 1966–1980.

Ziebart, B., Maas, A., Bagnell, J., & Dey, A. (2008). Maximum entropy inverse reinforcement
learning. AAAI, 1433–1438.

Chapter 12
Frontiers of Machine Learning
and Finance

This final chapter takes us forward to emerging research topics in quantitative
finance and machine learning. Among many interesting emerging topics, we focus
here on two broad themes. The first one deals with unification of supervised learning
and reinforcement learning as two tasks of perception-action cycles of agents.
We outline some recent research ideas in the literature including, in particular,
information theory-based versions of reinforcement learning, and discuss their
relevance for financial applications. We explain why these ideas have interesting
practical implications for RL financial models, where features are selected within
the general task of optimization of a long-term objective, rather than outside of
it, as is usually performed in “alpha-research.” The second topic presented in this
chapter deals with using methods of reinforcement learning to construct models of
market dynamics. We also introduce some advanced physics-based approaches for
computations for such RL-inspired market models.

1 Introduction

Over the last decade, machine learning experienced a surge in popularity among
both researchers and practitioners, and many interesting use cases for practical
applications across different fields have emerged. Outside of finance, applications to
digital services such as image recognition or speech recognition dominate the stream
of research publications on supervised and unsupervised learning. Applications of
reinforcement learning largely focus on robotics and video games, as evidenced by
research efforts of such companies as Google’s DeepMind or OpenAI.

The ongoing research into machine learning continues to produce new methods
that are intended to address the challenges of real-world applications better than
their more “classical” predecessors. One example of such a new approach in
machine learning are generative adversarial networks (GANs) that were discovered

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1_12

519

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41068-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-41068-1_12

520 12 Frontiers of Machine Learning and Finance

by (Goodfellow et al. 2014) only in 2014, but has already been cited 12,000 times
as of December 28, 2019. Many other successful algorithms of machine learning
that were mentioned in this book such as variational autoencoders, networks with
attention, deep reinforcement learning, etc. were developed over the last few years.
Therefore, it may not be an exaggeration to claim that the pace of innovation in
machine learning is at the scale of months rather than years. Clearly this means that
any attempt to cover the most recent cutting edge research in a graduate-level text-
book format would be futile, as such a book would be already outdated even before
it completes its journey from writing to printing. Such a goal would be futile, but on
the other hand it may not be one that we believe would be optimal for this book.

Precisely because our book is about ML in finance, rather than ML in general,
among many exciting developments in machine learning across different applica-
tions, our choice of topics is driven by their potential applicability in finance. The
idea is to give the reader both tips for further research and provide some nascent
alternative directions that can be used for financial applications.

Respectively, in this chapter we will try to provide a brief overview of various
new ideas that have been proposed in the recent literature but did not yet become
known to many practitioners of machine learning in finance. In particular, in the
first two sections we will talk about ideas from physics that might provide useful
insights into financial problems amenable to machine learning methods.

The second theme of this final chapter is related to ideas of universality and unifi-
cation. Machine learning is often presented as a fragmented set of algorithms that are
all tuned to solve one particular task. For example, the search of predictive signals
in quantitative trading amounts to finding observable (or computable) quantities that
would be predictive of future asset returns or risk. This is typically formulated as a
supervised learning problem that is solved by training on some historical data. As
formulated, it is detached from the problem of optimal trading which is supposed to
be based on the extracted signals. The latter problem of optimal trading given signals
is usually addressed using methods of reinforcement learning. In this setting, trading
signals are viewed as exogenous inputs computed outside of the RL model.

On the other hand, if we think of building a trading agent, the agent should be
capable of both forecasting the future (via inferred trading signals), and discovering
and executing an optimal policy. The first task is a task of perception, while the
second task is an action task.

In the setting of a multi-step trading, the agent would perpetually switch between
these two types of activities as it moves from one time step to another. In other
words, it lives through many repetitions of a perception-action cycle.

While most current methods treat these two tasks (episodes of a perception-action
cycle) separately, they are clearly subordinate: the task of producing an optimal
trading policy is the main task, while the task of finding predictive signals is a
secondary task. Ideally, we could think of machine learning approaches where these
tasks would be integrated together, rather than tackled in isolation. In this chapter,
we will present several recent approaches that aim at such a goal.

2 Market Dynamics, IRL, and Physics 521

Chapter Objectives

This chapter will provide an overview of the frontiers of machine learning and
reinforcement learning in finance covering:

– Market modeling beyond IRL using ideas from physics
– New physics-based ideas in machine learning
– Perception-action cycles
– Unification of inference and planning

2 Market Dynamics, IRL, and Physics

Recall that Chap. 11 outlined how inverse reinforcement learning (IRL) can be used
to model the dynamics of a market as a whole. To this end, we posed the problem
of finding the optimal reward and policy of an “Invisible Hand” agent identified
with the collective actions of all traders in the market. “Non-coherent” (or “zero-
intelligence”) traders are considered a part of the environment for the “Invisible
Hand” agent. As we discussed in Sect. 10.5, IRL for this setting with a quadratic
reward (Markowitz utility) produces a linear optimal policy (11.154). Once the
optimal policy is obtained as a linear function of the market capitalization of a stock
(or just of the stock price), it can be plugged back into the dynamic price equation
for the stock price. This produces a model of the market price of a stock with a non-
linear (quadratic) drift term. This model provides a multivariate extension of the
geometric mean reversion (GMR) model (Merton 1975; Dixit and Pindyck 1994;
Ewald and Yang 2007) in the presence of signals.

The IRL-based model of (Halperin and Feldshteyn 2018) that we presented in
Sect. 10.5 provides a mesoscopic description of market dynamics when viewed from
the prospective of a market-wide agent. This is a view “from within” the market. In
this approach, the agent’s actions ut are adjustments of all positions (by all traders in
the market) on a given stock at the beginning of the interval [t, t+�t]. This produces
a single-agent model of the market where the agent learns by a self-play, and the
environment is produced by non-coherent “noisy traders” whose trades provide a
stochastic component of the stock price evolution.

Instead of looking at market dynamics from “within” the market, we can
alternatively consider these dynamics from outside of the market. Indeed, because
we look at all traders in the market at once, it is natural to interpret their collective
action ut as an amount of new capital injected (or withdrawn, if it is negative) in
the market by outside investors at the beginning of the interval [t, t + �t]. As we
will see shortly, such a “dual” view generalizes the IRL-based market dynamics
model to describe not only a stable “growth” market phase (as implicitly assumed
in Halperin and Feldshteyn (2018)), but also more realistic market regimes with
corporate defaults and market crashes.

522 12 Frontiers of Machine Learning and Finance

2.1 “Quantum Equilibrium–Disequilibrium” (QED) Model

Let Xt be a total capitalization of a firm at time t , rescaled to a dimensionless
quantity of the order of one Xt ∼ 1, e.g. by dividing by a mean capitalization over
the observation period. We consider discrete-time dynamics described, in general
form, by the following equations:

Xt+�t = (1+ rt�t)(Xt − cXt�t + ut�t),
rt = rf + wT zt − μut + σ√

�t
εt , (12.1)

where�t is a time step, rf is a risk-free rate, c is a dividend rate (assumed constant
here), zt is a vector of predictors with weights w, μ is a market impact parameter
with a linear impact specification, ut := ut (Xt , zt) is a cash inflow/outflow from
outside investors, and εt ∼ N(0, 1) is white noise. Here the first equation defines
the change of the total market cap1 in the time step [t, t +�t] as a composition of
two changes to its time-t value Xt . First, at the beginning of the interval, a dividend
cXt�t is paid to the investors, while they also may inject the amount ut�t of capital
in the stock. After that, the new capital value Xt − cXt�t + ut�t grows at rate rt .
The latter is given by the second of Eqs. (12.1), where the term μut describes a
linear trade impact effect. Note that ut can be either zero or non-zero.

The reason that the same quantity ut appears in both equations in (12.1) is
simple. In the first equation, ut enters as a capital injection ut�t , while in the
second equation it enters via the market impact term μut because adding capital
ut�t means trading a quantity of the stock that is proportional to ut . Using a linear
impact approximation, this produces the impact term μut . As will be shown below,
this term is critical even for very small values of μ because the limit μ→ 0 of the
resulting model is non-analytic.

In general, the amount of capital ut�t injected by investors in the market at time
t should depend on the current market capitalization Xt , plus possibly other factors
(e.g., alpha signals). We consider a simplest possible functional form of ut , without
signals,

ut = φXt + λX2
t , (12.2)

with two parameters φ and λ. Note the absence of a constant term in this expression,
which ensures that no investor would invest in a stock with a strictly zero price.
Also note that Eq. (12.2) can always be viewed as a leading-order Taylor expansion
of a more general non-linear “capital supply” function u(Xt , zt) that can depend on
both Xt and signals zt . Respectively, parameters φ and λ could be slowly varying
functions of signals zt . Here we consider a limiting case when they are treated as

1Or, equivalently, the stock price, if the number of outstanding shares is kept constant.

2 Market Dynamics, IRL, and Physics 523

fixed parameters, which may be a reasonable assumption when an economic regime
does not change too much for an observational period in data.

Substituting Eq. (12.2) into Eqs. (12.1), neglecting terms O(�t)2, and taking
the continuous-time limit �t → dt we obtain the “Quantum Equilibrium–
Disequilibrium” (QED) model (Halperin and Dixon 2020):

dXt = κXt
(
θ

κ
−Xt − g

κ
X2
t

)
dt + σXt

(
dWt + wT zt

)
, (12.3)

where Wt is the standard Brownian motion, and parameters g, κ , and θ are defined
as follows:

g = μλ, κ = μφ − λ, θ = rf − c + φ. (12.4)

If we keep μ > 0 fixed, the mean reversion parameter κ can be of either sign,
depending on the values of φ and λ. If φ < λ/μ, then κ < 0, otherwise one for
φ ≥ λ/μ we get κ ≥ 0.

Equation (12.3) with g = 0 is known in physics and biology as the Verhulst
population growth model with a multiplicative noise, where it is usually written
in an equivalent form that can be obtained by a linear rescaling of the dependent
variable Xt that makes the coefficient in front of term X2

t equal one.
Note that the higher-order terms in the drift in (12.3) are responsible for a

possible saturation of the process. In population dynamics, this corresponds to a
population competing for a bounded food resource. In a financial context, this spells
a limited total wealth in a market without an injection of capital from the outside
world.

2.2 The Langevin Equation

Equation (12.3) is a special case of the Langevin equation

dxt = −U ′(xt)dt + σxtdWt , (12.5)

which describes an overdamped Brownian particle in an external potential U(x)
whose negative gradient gives a drift term in the equation, in the presence of a
multiplicative noise.

The Langevin equation is named after Paul Langevin whose 1908 paper
(Langevin 1908) extended the model of a free Brownian diffusion that was
developed in physics by Albert Einstein in 1905. Einstein’s model is for a Brownian
particle whose random dynamics is driven by interactions with other particles of
the same sort. In Langevin’s extension of Einstein’s theory, the collective impact
of other particles (e.g., an impact of large molecules on the dynamics of small
molecules in a solution) or external fields (e.g., an electric field acting on a charged

524 12 Frontiers of Machine Learning and Finance

particle) is codified into a potential U(x). Such a potential is in general given by
some non-linear function such as a polynomial.

A simple example is provided by a quadratic polynomial. Let U(x) = m
2 x

2,
where m is a parameter. Such a potential is called the harmonic oscillator potential
in physics. Note that this potential is convex and has a unique minimum (stable
point) at x = 0. Substituting it into the general Langevin equation (12.5), we obtain

dxt = −mxtdt + σxtdWt . (12.6)

This equation describes a particle (harmonic oscillator) with mass m that is subject
to a combination of a deterministic linear term∼ −mxt and a proportional diffusion
term ∼ σxt .

In physics, the case with a harmonic oscillator potential U(x) = m
2 x

2 is usually
understood as a quadratic expansion of a more general non-linear potential

U(x) = u0 + u1x + u2x
2 + . . . , (12.7)

where all O(x3) terms and higher powers of the state variable x are neglected.
It turns out that these higher-order terms are usually responsible for interactions
defining the structure and stable states in complex physical systems. For this reason,
in physics the case with a quadratic potentialU(x) ∼ x2 is often referred to as a non-
interacting case, though strictly speaking it has a harmonic oscillator (quadratic)
interaction potential.

Respectively, the Langevin equation (12.5) is interpreted as an equation for the
free harmonic oscillator subject to a multiplicative noise. The meaning of the word
“free” refers here to the fact that interesting, non-trivial effects of interactions of
Brownian particles with their media can be only captured by higher-order terms (a
cubic, a quartic, etc.) in the potential U(x).

2.3 The GBM Model as the Langevin Equation

We note that if we take the state variable xt in the general Langevin equation (12.5)
to be the stock price St , it looks very similar to the equation of the geometric
Brownian motion (GBM) model

dSt = μStdt + σStdWt . (12.8)

In its turn, the GBM model can be considered a linear specification with μ(St) =
μSt and σ(St) = σSt of a general Itô diffusion

dSt = μ(St)dt + σ(St)dWt . (12.9)

While both the Langevin equation (12.5) and the GBM equation (12.8) look very
similar if we substitute xt = St and setm = μ, there is a critical difference: the sign

2 Market Dynamics, IRL, and Physics 525

Fig. 12.1 The classical potential U(x) corresponding to the geometric Brownian motion model.
The firm stock price is described as the position of a particle influenced by this potential (the red
dots). The potential corresponds to a harmonic oscillator with a negative mass, and describes an
unstable system. A particle initially placed at position x = 0 will be unstable, and will quickly roll
down the hill

of the drift term. If we interpret the linear driftμxt of the GBM model as the negative
gradient of a potentialU(x) as suggested by the Langevin equation, this corresponds
to a harmonic oscillator with a negative mass. The potential for such a negative mass
harmonic oscillator is an inverted parabola that does not have a point of stability
at x = 0, as is the case for a harmonic oscillator with a positive mass m > 0.
In other words, the GBM model describes dynamics that are globally unstable, as
shown in Fig. 12.1. As a global instability can never be sustained indefinitely long,
this indicates that the GBM model is incomplete, and a fuller model should have
mechanisms to prevent such instability from proceeding indefinitely. As we will
explain next, the QED model provides such a stabilization of dynamics.

2.4 The QED Model as the Langevin Equation

Unlike the GBM model that corresponds to globally unstable dynamics, the QED
model in Eq. (12.3) corresponds to a quartic potential

U(x) = −1

2
θx2 + 1

3
κx3 + 1

4
gx4. (12.10)

If we compare this expression to the potential U(x) = − 1
2μx

2 of the GBM model,
the two expressions coincide if we set θ = μ and take the limit κ → 0, g → 0.

526 12 Frontiers of Machine Learning and Finance

Fig. 12.2 Under different parameter choices in the QED model, the potential U(x) takes different
forms. A stable state of the system corresponds to a minimum of the potential. The potential on
the left describes a metastable system with a local minimum at zero and a global minimum at
x = 3.3. For the potential in the center, the state x = 3.3 becomes unstable, and the state x = 0
is metastable. The potential on the right has two symmetric minima, and the particle can choose
any of them to minimize its energy. Such a scenario is called “spontaneous symmetry breaking” in
physics

Therefore, the QED model can be considered an extension of the GBM model with
a cubic drift.

Due to the presence of additional parameters κ and g controlling, respectively,
the cubic and quartic non-linear terms in the potential U(x), the latter can produce
a wide variety of shapes, depending on the values of parameters, as illustrated in
Fig. 12.2. As was shown in (Halperin and Dixon 2020), it is the potential in the
left graph in Fig. 12.2 that leads to the most interesting dynamics of a stock market
price. Instead of unstable dynamics of the GBM model, the QED model suggests
that the dynamics can instead be metastable. Such dynamics are different from
globally stable dynamics such as, e.g., the harmonic oscillator dynamics in that they
eventually change, though the time for this change to occur may be long, or very
long, depending on the parameters.

The explanation of how this happens is as follows. The potential shown on the
left of Fig. 12.2 has a potential barrier between a metastable point at the bottom
of the local well and the part of the potential for small values of x, where the
motion against the gradient of the potential means a fall to the zero price level
x = 0. Due to noise-induced fluctuations, a particle representing a stock with
value xt at time t placed initially to the right of the barrier can hop over to the
left of the barrier. In physics, solutions of dynamics equations that describe such
“barrier-hopping” transitions are called instantons. The reason for this nomenclature
is that the transitions between the metastable state and the regime of instability (a
“fall” to the zero level x = 0) happens almost instantaneously in time. What might
take a long time though is the time for this hopping to occur: depending on model
parameters, the waiting time can in principle even exceed the age of the observed
universe.

In financial terms, such an event of hopping over the barrier en route to the zero
level at x = 0 corresponds to a corporate bankruptcy (default). Due to the fact

2 Market Dynamics, IRL, and Physics 527

that the GBM model corresponds to the inverted harmonic potential where the point
x = 0 is unattainable, corporate defaults cannot be captured by the GBM model. In
financial models that need to capture the presence of corporate defaults in the price
dynamics, this is normally done by introducing additional degrees of freedom such
as hazard rates.

In contrast, in the QED model corporate defaults are perfectly possible, and
correspond to the instanton-type hopping transitions between different state of a
metastable potential on the left of Fig. 12.2. As was shown in (Halperin and Dixon
2020), the QED model (12.3) admits a set of parameters that represent an equity
model with a single degree of freedom (which is the stock price itself) that can
simultaneously fit the stock price data and data on a credit default swap (CDS)
referencing the same company (stock).

The QED model therefore amounts to non-linear Langevin dynamics with
multiplicative noise that contains a white noise and colored noise components.
The colored noise term describes signals used by investors. Such dynamics and
related phase transitions are well studied in physics, see, e.g., Schmittmann and Zia
(1995), den Broeck et al. (1997), Hinrichsen (2000). In particular, the problem of a
noise-induced instanton transition from a metastable potential minimum is known in
physics as the Kramer’s escape problem, and the corresponding probability is given
by a Kramer’s escape rate formula. The Langevin equation and Kramer’s escape
rate relation were previously considered in the econophysics literature, in particular
by Bouchaud and Cont (1998), Bouchaud and Potters (2004), and Sornette (2000,
2003) to describe market crashes.

2.5 Insights for Financial Modeling

The QED model of (Halperin and Dixon 2020) provides a number of interesting
insights into financial modeling. Starting with the classical geometric Brownian
motion (GBM) model, many other models of stock pricing such as local or
stochastic volatility models typically have a linear drift term, while complexity of
dynamics is ensured by making the noise (diffusion) term in the dynamics “more
interesting,” i.e. non-linear, stochastic, etc.

On the contrary, the QED model points at the critical importance of a proper
specification of the drift term to ensure the right behavior in the regime of very
small and very large stock prices. In particular, unlike the GBM model or stochastic
volatility models that are incompatible with the presence of corporate defaults in the
market, the QED model is a parsimonious model with only one degree of freedom
(the stock price itself) that enables defaults, and can be calibrated to both stock
price data and CDS data. This enables the use of CDS data to better estimate long-
term stock returns, and thus can be useful for long-term portfolio management. The
innovation brought by the QED model in comparison to the GBM model and its
direct descendants is that it incorporates capital inflows in the market and their
impact on asset prices. Both these phenomena are well known to have a substantial

528 12 Frontiers of Machine Learning and Finance

impact on the long-term behavior of asset prices, yet are not incorporated in most of
traditional asset pricing models used in practice.

As shown by the QED model, incorporating both capital inflows and their price
impact results in a quartic potential U(x) or equivalently a cubic drift in the stock
price. Such market frictions effects are often treated as “second-order” effects that
could be handled, as long as the friction parameters κ, g remain small, as corrections
to a regular behavior obtained in a friction-free limit κ = g = 0, using systematic
expansions in small parameters known as perturbation theory methods. However, as
was shown in (Halperin and Dixon 2020), the limit κ, g → 0 is discontinuous: it
does not exist as a limit of a smooth function. In particular, the instanton transitions
(and hence corporate defaults) cease to exist in this limit. Instantons are essentially
non-perturbative phenomena that cannot be uncovered using any finite order of
perturbation theory in small friction parameters. Instead, instanton effects are treated
in physics using non-perturbative methods that do not rely on perturbation theory
in small parameters. See Halperin and Dixon (2020) for a review and the references
to the relevant physics literature. The QED model suggests that non-perturbative
phenomena are important in finance, and that methods developed in physics can be
useful for modeling these phenomena.

2.6 Insights for Machine Learning

In addition to providing some new ideas into the modeling of dynamics of financial
markets, the QED model may also offer useful insights for machine learning in
general. Most importantly, it highlights the role of data that we normally do not
have. Indeed, corporate defaults or market crashes are examples of rare events.
When fitting a machine learning model to available stock price data, such rare events
are usually underrepresented or altogether missing in the data. This creates biased
data. For example, when traditional financial or machine learning models of equity
returns are calibrated to available market data, stocks that have defaulted in the past
are often removed from the dataset. The resulting dataset of equity returns becomes
biased as it conveys no information about the mere existence of corporate defaults.

One conventional approach to compensate for missing or unavailable data in
machine learning is to impose some generic regularization on a loss function.
Common choices of regularization include, e.g., the L2 and L1 regularization. The
QED model highlights the fact that the choice of the prior might be a fine art that
is critical for enforcing the right behavior of the resulting model. To ensure the
presence of a potential barrier separating the metastable and unstable states in the
QED model, (Halperin and Dixon 2020) used what they referred to as the “Kramer’s
regularization” as regularization that ensures that the potential has a barrier, so
that the Kramer’s escape rate formula can be applied to compute the hopping
probability. This suggests that more specialized regularization methods, and in
particular methods preserving or maintaining certain static or dynamic symmetries,
as opposed to the “generic” L2− and L1-regularization, can also be potentially
interesting in other areas of machine learning.

3 Physics and Machine Learning 529

3 Physics and Machine Learning

The previous section outlined an example where methods developed in physics are
able to enrich a pure data-driven approach of the traditional machine learning. In this
section, we continue with this theme in a slightly more general context, discussing
the role of physics in machine learning as well as outline new ideas from physics
that can be useful for problems amenable to machine learning methods.

Historically, many ideas among those that constitute the corpus of modern
machine learning machinery have roots in physics. This list includes such funda-
mental concepts of machine learning as Monte Carlo methods, Boltzmann machines
(that originate in the Ising model and other lattice models from physics), maximum
entropy inference, energy-based models, etc. Most of these methods have been
developed in physics in the nineteenth century and the first half of the twentieth
century. However, physics has kept its own momentum over approximately the last
50 years, and some of these developments have emerged in the machine learning
literature only very recently. In this section, we outline some of the most interesting
work in this field.

3.1 Hierarchical Representations in Deep Learning and
Physics

One of the central ideas of deep learning is hierarchical, multilayer compositions of
non-linear functions. Deep learning processes the input data over multiple layers of
non-linear transforms, providing a hierarchical representation of the original inputs.
In deep convolutional networks, the data are hierarchically aggregated by combining
inputs from a few neurons within a receptive field of a neuron in a higher layer,
and proceeding in the same way to the next layer. This can be thought of as a
hierarchical, multilayer coarse-graining of the initial data that produces gradually
more abstract features when moving to higher layer in the network.

The procedure of coarse-graining the original raw features by proceeding
hierarchically with multiple levels of abstractions has a clear parallel in physics
under the name of a renormalization group. Coarse-graining of the renormalization
group (RG) provides a systematic construction of the theory of large scales starting
from an underlying microscopic theory. Therefore, RG can be interpreted as a
mechanism to explain the emergence of large-scale structure, which is similar to
deep learning.

RG methods were originally introduced in physics by Kadanoff and others for
lattice models such as the Ising model and other models for discrete-valued systems
of spins. The goal of real-space RG (Efrati et al. 2014) is to coarse-grain a given
set of degrees of freedom X in a position space in order to integrate out short-
range fluctuations and retain only long-range correlations. This reduction results in
a new “effective” theory with a Hamiltonian function defined on the space of coarse-
grained variables. Note that the functional form of the Hamiltonian is preserved at

530 12 Frontiers of Machine Learning and Finance

the coarse-graining transformation: if H (X, θ) is the Hamiltonian in the original
variables X with parameters θ , then the new coarse-grained Hamiltonian H

(
X′, θ ′

)

will have the same functional form, but different parameters (or coupling constants
of the Hamiltonian, using physics terms). An iterative application of this procedure
gives rise to recursive relations between coupling constants of the Hamiltonian at
successive RG steps. These relations are referred to as the RG flow equations—
formalizing the relationship between effective theories at different length scales.

We can see that the real-space RG methods of physics appear similar to the input
processing in deep neural network, as both approaches proceed in a hierarchical
way. There are also some differences: with RG approaches in physics, connections
between subsequent representations should be such that the more abstract represen-
tation preserves the partition function. Therefore, RG flow equations determine the
structure of a network, rather than the dynamics of learning which is the focus in
deep learning applications.

Similarities and differences between RG and deep learning are interesting to
explore because, to date, theoretical explanations of deep learning are still in
their infancy. One may therefore only speculate that deep learning performs a
sophisticated coarse-graining. A number of recent works in the physics community
pursued the possibility that RG may provide a useful framework for a theoretical
analysis of deep learning. For example, de Mello Koch et al. (2019) used the
Ising model, a statistical mechanics model for a magnet, to train an unsupervised
restricted Boltzmann machine (RBM). They compared patterns generated by the
trained RBM to the configurations generated through a RG treatment of the Ising
model, and found some similarities between the RG flow and RBM flow. In
particular, they looked at correlation functions between hidden and visible neurons
as they turn out to be capable of diagnosing RG-like coarse-graining. Numerical
experiments in (de Mello Koch et al. 2019) found the presence of RG-like patterns in
correlation functions computed using the trained RBMs. This supports the idea that
pursuing similarities between physics and deep learning can provide new insights
into the theoretical explanation of deep learning.

3.2 Tensor Networks

One of the remarkable success stories of statistical physics in the last 30 years
was the development of methods that use tensor decompositions for the analysis
of quantum spin systems described by lattice models.

To explain the essence of this development, let us first revisit the definition of
tensors themselves. Tensors are essentially multi-dimensional arrays that extend
the notion of a matrix as a two-dimensional (2D) array or 2D table to multiple
dimensions. Tensors can be considered “multi-view tables.” An N -dimensional
tensor X is represented by its elements Xi1,...,iN which is indexed by a N -
dimensional integer-valued index i = (i1, . . . , iN). A regular matrix can be viewed

3 Physics and Machine Learning 531

as a tensor of dimension 2, a vector is a tensor of dimension 1, and a scalar is a
tensor of dimension zero.

Most of the data available for machine learning is naturally represented by
tensors, and it is not by accident that Google’s library for machine learning is
called TensorFlow—it operates with tensors as the most generic inputs. In finance,
tensors provide the most natural format for data. For example, historical stock data
for a given universe of stocks can be represented by a 3D tensor where the first
index is for the time step, the second index is for the stock, and the third index
enumerates stock features. If the size of the third dimension is one, so that it can
only carry one number, we can place the current stock return in this element, which
will produce the standard data matrix of returns. If the size of the third dimension
of the tensor is larger than one, it can keep other features of the stock/company such
as fundamentals ratios, sentiment scores, etc.

While input data may naturally exhibit a tensor format, it remains an open
question as to how we proceed with processing such data. Most of the modern
machine learning methods, including deep learning approaches, rely internally on a
vector, rather than tensor, representation of data. For example, a feedforward neural
network trained on 2D images (i.e., 2D tensors), such as the MNIST handwritten
numbers, first converts them into vectors (1D tensors) by stacking columns of input
2D matrices. However, such a procedure may break the correlation structure of
components of inputs in the original data. For example, in the MNIST example,
pixels in neighboring cells in the 2D image can strongly correlate but this correlation
can be lost (or, better to say, hidden) when the 2D matrix is converted to a vector by
stacking its columns.

Fortunately, methods developed in applied mathematics provide alternative, and
more tensor-focused methods of analysis of tensor-valued data. They are known
as tensor decompositions. Tensor decompositions can be considered as multi-
dimensional generalizations of matrix decomposition methods such as the singular
value decomposition (SVD). While SVD decomposes a matrix (2D tensor) into a
sum of direct products of eigenvectors (1D tensors), tensor decomposition provides
a systematic framework for similar decompositions of N -dimensional tensors into
lower-dimensional tensors. Classical methods of tensor decomposition such as the
CP and Tucker decompositions (see, e.g., (Kolda and Bader 2009) for a review) can
be considered multi-dimensional generalizations of the SVD and PCA methods of
linear algebra (i.e., 2D-tensors methods).

In physics, interest in tensor decompositions was inspired by the need for
numerical implementations of RG methods. A system of N quantum spins can be
represented by a tensor of order N . Such a tensor can be obtained, e.g., by taking a
direct product of individual wavefunctions�k(x)with k = 1, . . . , N . For numerical
implementations, the cost of storing a fullN -dimensional tensor of data obtained by
a direct product of all individual states would be prohibitive once N exceeds tens or
hundreds, and therefore some ways to compress such data would be required.

Tensor decompositions in physics generally seek a low-dimensional data repre-
sentation of data, where dimension reduction is achieved in a similar way to the

532 12 Frontiers of Machine Learning and Finance

Fig. 12.3 Different architectures for tensor networks: (top left) A Matrix Product State (MPS) or
tensor-train (TT) network factorizes a tensor into a chain product of three-index tensors; (top right)
A PEPS (projected entangled pair states) tensor network generalizes the one-dimensional MPS/TT
network to a network on an arbitrary graph; (bottom left) A tree tensor (hierarchical Tucker)
network stacks tensors in the Tucker format; (bottom right) A MERA (multi-scale entanglement
renormalization ansatz) tensor network is a tree network augmented with unitary disentangler
operations between branches at each scale. Source: http://tensornetwork.org, with permission for
use granted by Miles Stoudenmire

SVD and PCA methods, by expansion into a series of lower-order components.
A tensor network is a factorization of an order N tensor into the contracted
product of low-order tensors. Tensor networks break the curse of dimensionality
by allowing operations such as contracting very high-order tensors or retrieving
their components to be accomplished with polynomial cost by manipulating the
low-order factor tensors.

In particular, Matrix Product State (MPS) decompositions known in applied
mathematics as tensor-train decompositions have found many useful applications
in physics as tools to numerically implement RG. The MPS (or tensor-train)
decomposition represents a high-dimensional tensor as a sum of products of low-
rank tensors. While the MPS decomposition corresponds to a tensor network with
a linear architecture, there are also hierarchical versions of tensor networks as in
Fig. 12.3.

Tensor networks provide many interesting insights into deep learning. Similar
to deep learning, tensor networks build a hierarchical representation of data by
constructing progressively more abstract features by course-graining features from
the previous abstraction level. The most interesting difference is that while, in
general, the information in a neural network is stored in a full-rank tensor of network
weights at different layers, in a tensor network this information is compressed by
storing all relevant data in low-order rank tensors. Similar to the PCA, such a
decomposition does not provide an exact recovery of the input data, but rather stores
its “de-noised” version. De-noising the data thus becomes a part of data compression
within a tensor network.

http://tensornetwork.org

3 Physics and Machine Learning 533

Among many interesting recent proposals on applications of tensor networks to
data analysis and machine learning, we would like to outline one particular idea that
offers a way to use tensor networks to construct features in an unsupervised way
(Stoudenmire 2017).

The main idea of (Stoudenmire 2017) is to use tensor networks as a way to
produce high-level features starting with local feature maps. It goes as follows. We
assume that input data are described by some raw d-dimensional features x, and we
seek feature maps �(x) that map N raw inputs x of onto a space of dimension dN

with a tensor product structure. Such a map can be constructed starting with local
feature maps φsj (xj), where sj = 1, . . . , d. The full feature map is then constructed
by taking the direct product of local feature maps:

�s1s2...sN (x) = φs1(x1)φ
s2(x2) · · ·φxN (xN). (12.11)

Given the feature map (12.11), a data model can be represented as an expansion

f (x) =
∑

s1,s2,...,sN

Ws1s2...sN φ
s1(x1)φ

s2(x2) · · ·φsN (xN). (12.12)

Here W is a tensor of order N that stores dN coefficients of the expansion. The
expression (12.12) is a contraction of two order N tensors. Clearly, manipulating or
even storing dN parameters quickly becomes impractical asN increases. A solution
proposed in (Stoudenmire 2017) was to approximate the optimal weights W by
a tensor network. A simultaneous tensor network coarse-graining of local feature
maps and the coefficient tensor W was shown to produce a layered, hierarchical
way of producing high-level features in an unsupervised way.

As discussed in (Stoudenmire 2017), this procedure resembles the hierarchical
feature construction in deep neural networks. The difference is that with tensor
networks, tensor contraction operations are all linear operations, the only source
of non-linearity is in the construction of local feature maps φsj (xj) ((Stouden-
mire 2017) uses polynomial features). As linear tensor contraction operations are
fully theoretically controllable, this provides a controllable approach to extracting
abstract features from data. This is different from neural networks that are obtained
by stacking multiple non-linear layers that are harder to control theoretically.

Tensor networks thus offer a principled way to construct abstract high-level
features starting from arbitrary local feature maps. This may be useful for both
supervised learning and reinforcement learning. In particular, as we discussed on
a few occasions in Chaps. 9 and 10, a good choice of basis functions is important
in applications of reinforcement learning to multi-dimensional control tasks. Tensor
networks suggest a way to construct such bases in a bottom-up fashion starting with
local feature maps.

534 12 Frontiers of Machine Learning and Finance

3.3 Bounded-Rational Agents in a Non-equilibrium
Environment

Another area of physics where interesting recent developments have potential
applications in machine learning are non-equilibrium processes in mesoscopic
and macroscopic systems studied in statistical physics. We recall that classical
machine learning methods such as energy-based models, Boltzmann machines,
maximum entropy method, etc. are all based on concepts of equilibrium statistical
mechanics developed by physicists starting from the work of Ludwig Boltzmann in
the nineteenth century.

In thermodynamics and statistical mechanics, non-equilibrium processes are
often modeled by specifying a time-dependent external parameter λ(t) ∈ [0, 1]
that determines how the energy function Eλ(x) changes over time. For example,
with a linear switching on two potentials with energies E0(x) and E1(x), the energy
would be Eλ(x) = E0(x)+ λ (E1(x)− E0(x)). When the change in the parameter
λ is done infinitely slowly (i.e., quasi-statically), the system probability distribution
follows the path of equilibrium distributions pλ(x) = 1

Zλ
e−βEλ(x) for any value of

λ. However, when the switching of the parameter λ is done in finite time, the non-
equilibrium path of probability distributions can be in general different from the
equilibrium path.

To think of implications of the equilibrium assumption in finance, consider the
problem of building a financial trading agent. Let zt be market signals used by the
agent for trading decision-making. The implicit assumption made in many models is
that upon changes of trading signals zt , the market has enough time to “equilibrate”
and find a new stationary or quasi-stationary state where market prices fully absorb
the new information in the signals zt .

But this assumption should not necessarily hold in all market scenarios. When
there is a fast change in the environment due to changes in signals zt that play
the role of the external parameter λ(t) in thermodynamics, market dynamics are
unable to follow the path of equilibrium distributions, and instead evolve in a non-
equilibrium fashion. The difference between the equilibrium and non-equilibrium
can be clarified using the concept of characteristic times. If the characteristic time
τz of relaxation under changes of signals zt is larger than the frequency of trading,
the assumption of the equilibrium does not apply anymore—the dynamics will be
non-equilibrium in such a scenario. It is therefore of interest to financial applications
to consider decision-making agents in a changing, non-equilibrium environment.

As we already discussed in Sect. 10.5 in Chap. 11, the concept of bounded-
rational agents, initially proposed by Simon (1956) is a useful paradigm for finance.
It replaces perfectly rational agents of the von Neumann–Morgenstern expected
utility approach that assumes that market agents are fully rational, and each of
them maximizes a well-defined utility (reward) function, by the concept of an agent
with constrained information-processing resources. Due to a lack of computational
resources, a bounded-rational agent is unable to find a perfect action according to a
given utility function.

4 A “Grand Unification” of Machine Learning? 535

The bounded rationality theory of Simon has been enriched with tools from
information theory and thermodynamics (Tishby and Polani 2011; Ortega and
Braun 2013; Ortega et al. 2015). With this approach, a bounded-rational agent
maximizes an augmented reward function that incorporates the information cost
of updating from some prior (reference) policy π0. When the relative weight of
two components in the augmented reward function is determined by the inverse
temperature parameter β, this parameter also controls the degree of rationality
of the agent, such that in the high-temperature limit β → 0, the most optimal
behavior for the agent is not to update the “prior” policy π0 at all, i.e. to behave
in a fully irrational manner. For non-zero values of β, the optimal solution to
the problem of optimization of a tradeoff between maximization of the reward
and minimization of information costs takes the form of a Boltzmann distribution
analogous to equilibrium distributions in statistical physics. This implies that the
decision-making process of the agent can be understood as a change from a prior
policy π0 to a posterior policy π , where the change of the policy is triggered by a
change of the environment.

Mathematically, as we saw in Sect. 10.5, augmenting the reward function with
the KL information cost is equivalent to regularization of the value and action-value
function by the KL entropy as done in G-learning. In other words, the approach of
G-learning corresponds to the assumption of equilibrium dynamics for a bounded-
rational agent. With this approach, the optimal action of the agent is determined
by a Boltzmann-like policy, and is driven by the difference of free energies upon
a change of the environment. It is therefore of interest to consider an extension of
this approach to the case of a bounded-rational agent that operates in a changing,
non-equilibrium environment.

This problem was addressed in (Grau-Moya et al. 2018). When the environment
is out of equilibrium, a bounded-rational agent is not able to fully utilize the
difference in free energies of equilibrium states, and some of its utility gets lost
by dissipation and heating of the environment. Using recent results known in
non-equilibrium thermodynamics as generalized fluctuation theorems and Jarzyn-
ski equalities that extend the thermodynamic work relations to non-equilibrium
systems, (Grau-Moya et al. 2018) obtained relations for free energy changes of
a bounded-rational agent upon non-equilibrium changes of the environment, and
related them to the amount of dissipated energy. While the analysis in (Grau-Moya
et al. 2018) was in a one-step utility optimization setting, extending this work to a
multi-period case might be important for RL because the free energy directly relates
to the value function—which is the quantity that is maximized in RL.

4 A “Grand Unification” of Machine Learning?

In this book we considered three main types of machine learning: supervised
learning, unsupervised learning, and reinforcement learning (with IRL as a sub-class
of reinforcement learning). The first two types correspond to the class of perception

536 12 Frontiers of Machine Learning and Finance

tasks for an artificial agent. Reinforcement learning corresponds to a different class
of tasks for an artificial agent that are called action tasks.

So far, we largely presented these three types of machine learning as separate
tasks that can at times utilize each other’s methods. For example, reinforcement
learning can use features obtained using supervised or unsupervised learning. There
are also benefits that reinforcement learning brings to supervised learning. In
particular, reinforcement learning methods can perform real-time cost-efficient fea-
ture selection for supervised learning. More specifically for financial applications,
recurrent themes of this book are a unification of methods of econometrics and
machine learning for supervised learning in finance, and a unification of methods
of stochastic optimal control and reinforcement learning for portfolio optimization
tasks. All these would be examples of a mutual penetration of methods across
different branches of machine learning, and unification with tools developed outside
of machine learning.

In this section, we will provide a different view of an interplay between different
types of machine learning, and discuss why it is beneficial to consider these tasks of
machine learning jointly rather than separately. By this, we mean not just a technical
application of each other’s methods for achieving a narrowly formulated goal, but
rather their unified view within a higher-level of abstraction for modeling of artificial
agents.

To illustrate such potential benefits, consider the problem of building an artificial
agent for trading in equity markets. For such an agent, the supervised learning part
of training amounts to finding some “signals” (functions of observable market data)
that would be both predictive of their own future values (i.e., have a sufficiently
high autocorrelation), and predictive of future asset returns. The supervised learning
problem is then solved by training on some historical data.

The main problem with this approach is that it is not directly tied to the ultimate
goal of the agent, which is to make a profit by trading. A trading signal obtained
using supervised learning can be both predictive of its own future value, and
correlate with equity returns, and yet not be very practical to use. For example, a
strategy relying on such a signal may produce too high transaction costs that would
subtract from profits expected according to the trading signal analysis. But handling
such potential problems is outside of the supervised learning algorithms, because
transaction costs arise only from trading, i.e. actions, which are not considered a
part of the problem.

This means that as formulated, the supervised learning part of the trading agent’s
learning is detached from the problem of optimal trading which is supposed to be
based on the extracted signals. Once obtained using supervised learning, trading
signals are then used as exogenous inputs for a reinforcement learning agent who
attempts to optimize a trading strategy. Therefore, with this approach, the perception
task of forecasting the future via inference of trading signals and the action task of
trading optimally are viewed in isolation.

On the other hand, in the context of a multi-period trading, the agent alternates
between these two types of activities, as it moves from one time step to another. In
other words, it lives through many repetitions of a perception-action cycle.

4 A “Grand Unification” of Machine Learning? 537

While most current methods treat the perception and action tasks as separate
elements of a perception-action cycle, they have a clear hierarchical structure: the
task of producing an optimal trading policy is the main task, while the task of
finding predictive signals is a secondary task. This implies that the trading agent
is free to design a state representation and laws of dynamics that are specifically
tuned to agent’s ultimate goals, rather than build models of dynamics that might be
“right” abstractly but not be helpful in achieving the goal. In this section, we will
outline several recent approaches that aim at providing an integrated, “unified” view
of sub-tasks of perception and action for artificial agents, instead of treating them
separately.

4.1 Perception-Action Cycles

In the research literature on intelligent behavior in organisms, the perception-
action cycle describes the circular flow of information between an organism and its
environment in the course of a sensory guided sequence of actions towards a goal.
The same concept can also be applied to describe interactions of an artificial agent
with its environment. We can therefore approach this problem in general terms,
referring to both biological organisms and artificial agents simply as “agents.”

With feedback to the environment from actions of the agent, the cycle introduces
complex dependencies between perception and action tasks. As actions change the
environment, perception is not passive, but rather depends on actions that were
selected earlier by the agent. For a living organism, this implies that it can control,
to some extent, which sensor inputs it will experience in the future, or decide which
sensor inputs can be deemed irrelevant for planning. For an artificial agent such as
a trading agent, the role of sensory inputs is played by trading signals zt . Therefore,
within a cycle-focused view of perception and action tasks, they become tightly
intertwined.

As was shown in (Tishby and Polani 2011; Ortega and Braun 2013; Ortega et al.
2015), information-theoretic methods provide a unified and model-independent way
to describe such an interplay between perception and action within a perception-
action cycle. Within this approach, the information flow of the cycle is viewed as a
bi-directional information passing process.

First, there is an information flow from the environment to the agent. In our
example with a trading agent, this would be market information that is used to
construct trading signals zt .

Second, there is information that is passed from the agent to the environment.
Again, in the financial context it is easy to find an example of such information
transfer. When an agent takes a large position, other market participants often
conceive it as an evidence that the first agent possessed superior information that
allegedly facilitated the trade. Therefore, they might correct their estimates and
trading decisions accordingly—which jointly corresponds to a change of the market
environment.

538 12 Frontiers of Machine Learning and Finance

4.2 Information Theory Meets Reinforcement Learning

As we discussed on several occasions in both the previous chapters and this chapter,
information-theoretic tools are very useful for problems of reinforcement learning.
Recall that one example that we considered in Chap. 10 is G-learning. It provides
a probabilistic extension of Q-learning that incorporates information-processing
constraints for agents into their policy optimization (planning) objectives.

While having solid roots in information theory, G-learning offers valuable
practical benefits in being a generative model that is capable of processing noisy
high-dimensional data. As we saw in Sect. 10.5 and in the previous section, adding
KL penalties to augment the reward as performed in G-learning can also be viewed
as a way to model a bounded-rational agent, where the amount of rationality
is controlled by the magnitude of information-processing costs. This provides a
practical and principled information-theoretic implementation of the concept of a
bounded rational agent of Simon (1956).

G-learning is based on incorporating information-processing costs constraints
into decision-making of the agent. From the point of view of bi-directional
information flow between the agent and the environment, G-learning tackles the
information flow from the environment to the agent. It is therefore of interest to
extend this framework in order to also include the second information flow, from
the agent to the environment.

Such an extension of the information-based reinforcement learning was recently
developed in (Tiomkin and Tishby 2018). The authors considered the feedback
interaction between the agent and the environment as consisting of two asym-
metric information channels. Directed (causal) information from the environment
constrains the maximum expected reward that is considered in the standard RL
setting. Tiomkin and Tishby developed a Bellman-like recursion equation for the
causal information between the environment and the agent, in the setting of an
infinite-horizon Markov Decision Process problem. This relation can be combined
with the Bellman recursion for the value function into a unified Bellman equation
that drives both causal information flow and value function of the agent. As was
pointed out by (Tiomkin and Tishby 2018), this approach has potentially important
practical applications for the design criteria of intelligent agents. More specifically,
an information-processing rate of a “brain” of the agent (i.e., of its processor) should
be higher than the minimum information rate required to solve the related MDP
problem (Tiomkin and Tishby 2018).

The approach of (Tiomkin and Tishby 2018) applies to living organisms or
artificial agent operating with an infinite-horizon setting. For financial applications,
an infinite-horizon setting can never be exact, but might be a good approximation
for problems involving many time steps. For other tasks that involve a multi-step
decision-making with a fixed and small number of time steps, this may not be the
most suitable setting.

4 A “Grand Unification” of Machine Learning? 539

4.3 Reinforcement Learning Meets Supervised Learning:
Predictron, MuZero, and Other New Ideas

A related but different approach to building agents which are able to plan for
long-term goals that incorporate decision-making extended over many steps is
being pursued by researchers at Google’s DeepMind. Unlike the work of (Tiomkin
and Tishby 2018) that considers an infinite-horizon decision-making, this research
focuses on finite-horizon problems of multi-step planning based on a look-ahead
search. Examples of such planning problems are provided by video games such as
Atari 2600 games, or traditional games such as chess or Go.

The common feature of such planning problems is that they all require a search
for outcomes of an agent’s actions many steps into the future. In the setting of
reinforcement learning, this describes learning with delayed rewards, where for all
intermediate time steps, immediate rewards are all zeros, and it is only the reward
obtained at the very last step (e.g., a checkmate in the chess game) that defines the
overall score of the game. Planning for such problems should include a scenario
analysis of agent’s actions over multiple steps into the future.

Methods pursued by researchers at DeepMind are focused on solving such finite-
horizon planning tasks, and typically operate within neural network-based deep
reinforcement learning architectures. With these approaches, sufficiently complex
(deep) neural networks are used as universal function approximators for the value
function and/or policy function for a reinforcement learning agent. For types of
experiments that are commonly used to explore the performance of these methods
in the broader machine learning community, DeepMind and other researchers often
use simulated video games environments, or simulated games such as chess or Go,
or alternatively simulated environments for physical robots such as MuJoCo.

The approach taken by DeepMind belongs in the class of model-based reinforce-
ment learning where the task is to develop an end-to-end predictor of the value
function. The main idea of this approach is to construct an abstract MDP model that
is constrained by the requirement that planning in the abstract MDP is equivalent
to planning in the real environment. This is called value equivalence, and amounts
to the requirement that the cumulative reward through the trajectory in the abstract
MDP should match the cumulative reward of a trajectory in the real environment.

This idea was first implemented in the predictron that constructs neural network-
based value equivalent models for predicting the value function (Silver 2017). The
innovation of this approach is that beyond ensuring value equivalence, it does not
constrain in any way the resulting abstract MDP. In particular, states of such MDP
are considered hidden states that should not necessarily provide a condensed view
of the observed state, as is often assumed in unsupervised learning approaches.
Likewise, there is no requirement that transitions between states in the abstract MDP
should match transitions in the real environment. The only purpose of the abstract
MDP is to help finding the optimal solution of the planning problem.

This approach was further extended in DeepMind’s MuZero algorithm that
combines learning a model of the world with Monte Carlo tree search to achieve

540 12 Frontiers of Machine Learning and Finance

super-human performance for both Atari 2600 video games and the games of Go,
chess, and shogi without any knowledge of the game rules, and without any changes
in the architecture of the agent (Schrittwieser 2017). The MuZero agent learns
through self-play, without any supervision from a teacher. Learning is end-to-end,
and involves simultaneous learning of the hidden state, transition probabilities for
the hidden state, and the planning optimization algorithm.

The predictron and MuZero agents thus implement a unified approach to super-
vised learning and reinforcement learning where the task of supervised learning
is subordinate to the ultimate goal of planning optimization. Exploring similar
approaches for problems of financial planning and decision-making is a very
promising future direction for machine learning in finance.

References

Bouchaud, J., & Cont. R. (1998). A Langevin approach to stock market. Eur. Phys. J. B, 6(4),
543–550.

Bouchaud, J., & Potters, M. (2004). Theory of financial risk and derivative pricing, 2nd edn.
Cambridge: Cambridge University Press.

de Mello Koch, E., de Mello Koch, R., & Cheng, L. (2019). Is deep learning an RG flow? https://
arxiv.org/abs/1906.05212.

den Broeck, C. V., Parrondo, J., Toral, R., & Kawai, R. (1997). Nonequilibrium phase transitions
induced by multiplicative noise. Physical Review E, 55(4), 4084–4094.

Dixit, A., & Pindyck, R. (1994). Investment under uncertainty. Princeton NJ: Princeton University
Press.

Efrati, E., Wang, Z., Kolan, A., & Kadanoff, L. (2014). Real-space renormalization in statistical
mechanics. Review of Modern Physics, 86, 647–667.

Ewald, C. O., & Yang, Z. (2007). Geometric mean reversion: formulas for the equilibrium density
and analytic moment matching. University of St. Andrews Economics Preprints.

Goodfellow, I., Pouget-Abadie, J., Mirza, B. X. M., Warde-Farley, D., Ozair, S., Corville, A., et al.
(2014). Generative adversarial nets. NIPS, 2672–2680.

Grau-Moya, J., Kruger, M., & Braun, D. (2018). Non-equilibrium relations for bounded rational
decision-making in changing environments. Entropy, 20, 1. https://doi.org/10.3390/e20010001.

Halperin, I., & Dixon, M. (2020). “Quantum Equilibrium-Disequilibrium”: Asset price dynamics,
symmetry breaking, and defaults as dissipative instantons. Physica A: Statistical Mechanics
and Its Applications, 537. https://doi.org/10.1016/j.physa.2019.122187.

Halperin, I., & Feldshteyn, I. (2018). Market self-learning of signals, impact and optimal trading:
invisible hand inference with free energy, (or, how we learned to stop worrying and love
bounded rationality). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3174498.

Hinrichsen, H. (2000). Nonequilibrium critical phenomena and phase transitions into absorbing
states. Advances in Physics, 49(7).

Kolda, T., & Bader, B. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455–
500.

Langevin, P. (1908). Sur la théorie du mouvement brownien. Comps Rendus Acad. Sci. (Paris),
146, 530–533.

Merton, R. C. (1975). An asymptotic theory of growth under uncertainty. Review of Economic
Studies, 42(3), 375–393.

Ortega, P., & Braun, D. A. (2013). Thermodynamics as a theory of decision-making with
information processing costs. Proceedings of the Royal Society A. https://doi.org/10.1098/rspa.
2012.0683. https://arxiv.org/pdf/1204.6481.pdf.

https://arxiv.org/abs/1906.05212
https://arxiv.org/abs/1906.05212
https://doi.org/10.3390/e20010001
https://doi.org/10.1016/j.physa.2019.122187
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3174498
https://doi.org/10.1098/rspa.2012.0683
https://doi.org/10.1098/rspa.2012.0683
https://arxiv.org/pdf/1204.6481.pdf

References 541

Ortega, P. A., Braun, D. A., Dyer, J., Kim, K., & Tishby, N. (2015). Information-theoretic bounded
rationality. https://arxiv.org/pdf/1512.06789.pdf.

Schmittmann, B., & Zia, R. (1995). Statistical mechanics of driven diffusive systems: Vol 17: Phase
transitions and critical phenomena. In C. Domb, & J.L. Lebowitz (Ed.). Academic Press.

Schrittwieser, J. (2017). Mastering atari, go, chess and shogi by planning with a learned model.
https://arxiv.org/abs/1911.08265.

Silver, D. (2017). The predictron: end-to-end learning and planning. In ICML’17 Proceedings of
the 34th International Conference on Machine Learning (Vol. 70, pp. 3191–3199).

Simon, H. (1956). Rational choice and the structure of the environment. Psychological Review,
63(2), 129–138.

Sornette, D. (2000). Stock market speculations: spontaneous symmetry breaking of economic
valuation. Physica A, 284(1–4), 355–375.

Sornette, D. (2003). Why stock markets crash. Princeton: Princeton University Press.
Stoudenmire, E. M. (2017). Learning relevant features of data with multi-scale tensor networks.

Quantum Science and Technology, 3(3). https://iopscience.iop.org/article/10.1088/2058-9565/
aaba1a/meta, available at https://arxiv.org/pdf/1801.00315.pdf.

Tiomkin, S., & Tishby, N. (2018). A unified Bellman equation for causal information and value in
Markov decision processes. https://arxiv.org/abs/1703.01585.

Tishby, N., & Polani, D. (2011). Information theory of decisions and actions (pp. 601–636).
Perception-Action Cycle. New York, NY, USA: Springer.

https://arxiv.org/pdf/1512.06789.pdf
https://arxiv.org/abs/1911.08265
https://iopscience.iop.org/article/10.1088/2058-9565/aaba1a/meta
https://iopscience.iop.org/article/10.1088/2058-9565/aaba1a/meta
https://arxiv.org/pdf/1801.00315.pdf
https://arxiv.org/abs/1703.01585

Index

A
Absolute error, 54
Action-value function, 294
Actor-critic, 310
ADAM, 158
Adaptive filtering, 234
Adversarial inverse reinforcement learning

(AIRL), 472–474, 476
Adversarial IRL, 459
AI, see Artificial intelligence (AI)
AIC, see Akaike’s information criteria (AIC)
AIRL, see Adversarial inverse reinforcement

learning (AIRL)
Akaike’s information criteria (AIC), 64
Alpha-RNN, 249
Alternative data, 4
Area Under the Curve (AUC), 213
ARMA model, 202
AR process, 194
Artificial intelligence (AI), 4
Asymptotic behavior, 50
Asymptotic theory, 49
Asynchronous updates, 304
Autocorrelation, 193
Autocovariance, 193
Auto-encoder, 266
Autoregressive models, 192

B
Back-propagation, 158
Backshift operator, 194
Backward quantity, 224
BARRA model, 177
Batch-mode reinforcement learning, 282

Baum-Welch algorithm, 224
Bayes’ factor, 66
Bayesian data analysis, 48
Bayesian filtering, 62
Bayesian linear regression, 82
Bayesian model averaging (BMA), 69
Bayesian network, 72
Bayesian neural networks, 149
Behavioral cloning, 421
Bellman equation, 295
Bellman flow constrains, 425
Bellman iteration, 301
Bellman optimality equation, 297
Bernoulli random variable, 51
BFGS, see Broyden-Fletcher-Goldfarb-Shanno

(BFGS)
Bias, 54
Biased data, 528
Bias-variance dilemma, see Bias-variance

tradeoff
Bias-variance tradeoff, 112, 122, 141
Bi-directional information flow, 537
Bitcoin, see Cryptocurrencies
Black-Litterman (BL) model, 506
Black-Scholes-Merton (BSM), 349
Blockchain, 6, 7
BM, see Boltzmann machine (BM)
BMA, see Bayesian model averaging (BMA)
Boltzmann distribution, 429
Boltzmann machine (BM), 151
Boltzmann policy, 429
Bounded rationality, 507
Box-Jenkins, 205
Broyden-Fletcher-Goldfarb-Shanno (BFGS),

232

© Springer Nature Switzerland AG 2020
M. F. Dixon et al., Machine Learning in Finance,
https://doi.org/10.1007/978-3-030-41068-1

543

https://doi.org/10.1007/978-3-030-41068-1

544 Index

BSM, see Black-Scholes-Merton (BSM)
BUGS, 234

C
Calibration, 232
Call option, 349
Causal entropy, 434
Cayley-Hamilton theorem, 196
Children, 229
Coarse-grained variables, 529
Complexity penalty, 95
Conditionally independent, 71
Confusion matrix, 210
Conjugate distribution, 60
Constant relative risk aversion utility (CRRA),

403
Convex conjugate, 463
Convolutional neural network, 257
Corporate default, 526
Correlation breakdown, 73
Covariance kernel, 81
CRRA, see Constant relative risk aversion

utility (CRRA)
Cryptocurrencies, 6
Customer choice, 444

D
DAG, see Directed acyclic graph (DAG)
Data augmentation, 234
Data-feature map, 8
Data mining, 8
Decumulative distribution function, 479
Deep learning, 149
Defined contribution pension plan, 405
Deterministic policies, 292
DFT, see Discrete Fourier transform (DFT)
Dickey-Fuller test, 18
Dilated convolution, 264
Directed acyclic graph (DAG), 234
Discount factor, 290
Discrete Fourier transform (DFT), 97
Discrete mixture model, 73
Discriminative learning, 9
Disturbance-based reward extrapolation

(D-REX), 490
Double Q-learning, 329
D-REX, see Disturbance-based reward

extrapolation (D-REX)
Dropout, 149
Dynamic portfolio management, 348
Dynamic programming, 8, 299

E
Earth-mover distance, 470
Edward, 234
ELBO, see Evidence lower bound (ELBO)
Elman network, 241
EM, see Expectation maximization (EM)
Emission matrix, 225
Emission probability, 227
Entropy, 11
ε-greedy policy, 316
Equilibrium statistical mechanics, 430
Error, 53
Error covariance matrix, 54
Evidence, 56, 94
Evidence lower bound (ELBO), 152
Expectation maximization (EM), 74
Experience, 307
Experience replay, 316
Exploration-exploitation dilemma, 281

F
FAIRL, 478
Fast Fourier transform (FFT), 96
FCW, see Financial cliff walking (FCW)
F-divergencies, 464
Feedforward network, 14
Fenchel conjugate, 463
Fenchel-Legendre transform, 463
FFT, see Fast Fourier transform (FFT)
Financial cliff walking (FCW), 305
Financial planning, 401
Fintech, 6
FITC, see Fully independent training

conditional (FITC)
Fitted Q-iteration, 328
F-MAX, 476
Forward KL divergence, 474
Forward quantity, 224
Fraud, 6
Frequentist data analysis, 48
F-score, 64
F1-score, 210, 213
Fully independent training conditional (FITC),

97
Fundamental factor models, 177, 178

G
GAN, see Generative adversarial network

(GAN)
Gated recurrent unit (GRU), 222, 249
Gaussian mixture model, 72

Index 545

Gaussian process (GP), 83
Gaussian process IRL, 484
Gaussian process regression, 83, 91, 484
Gaussian time-varying policies (GTVP), 396,

408
Generalized Autoregressive Conditional

Heteroscedastic (GARCH), 202
Generalized recurrent neural networks

(GRNNs), 248
Generative adversarial network (GAN), 467,

468
Generative learning, 9
Gibbs sampler, 151, 234
G-learning, 393, 408
Goal based wealth management, 406, 407
GP, see Gaussian process (GP)
Greedy policies, 298
GRNNs, see Generalized recurrent neural

networks (GRNNs)
GVTP, see Gaussian time-varying policies

(GTVP)

H
Half-life, 204, 247
Harmonic oscillator, 524
Hedge portfolio, 350
Heteroscedasticity, 200
Hidden Markov model (HMM), 222
Hidden state, 224
Hidden variable, 73
Hierarchical clustering, 8
HMM, see Hidden Markov model (HMM)
Human-machine interaction, 485
Hyperparameter, 68
Hyperprior, 68

I
IBM Watson, 29
Ill-posed inverse problems, 420
Imitation learning, 420
Importance sampling, 228, 231
Inducing point method, 96
Inducing points, 484
Infinite horizon MDP, 296
Initial probabilities, 225
Instantons, 526
Interaction effects, 170
Inverse optimal control, 423
Inverse optimization, 506
Inverse reinforcement learning (IRL), 422
IQR, see Iterative quadratic regulator (IQR)
IRL, see Inverse reinforcement learning (IRL)

IRL from failure, 486
Iterative quadratic regulator (IQR), 401

J
Jensen-Shannon divergence, 464

K
Kalman filter, 227
Kernel interpolator, 91
Kernel learning, 91
KL divergence, see Kullback-Leibler (KL)

divergence
K-means clustering, 8
Knightian uncertainty, 149
Kolmogorov-Smirnoff test, 75
Kramers escape problem, 527
Kriging, 92
Kullback-Leibler (KL) divergence, 149

L
Langevin equation, 523
Laplace’s principle of indifference, 57
Latent state, see Hidden state
Latent variable, see Hidden variable
Learning from demonstrations, 420
Least squares GAN (LS-GAN), 471
Least squares policy iteration (LSPI), 332
Legendre-Fenchel transform, 392
Leverage, 230
Leverage effect, 230
Likelihood, 51
Likelihood function, 56, 232
Linear architectures, 326
Linear quadratic regulator (LQR), 396, 499,

509
Log-likelihood, 52
Log-likelihood trick, 310
Log-variance, 230
Long short term memory (LSTM), 222, 254
Loss function, 54
LQR, see Linear quadratic regulator (LQR)
LSPI, see Least squares policy iteration (LSPI)

M
Machine learning (ML), 8
Marginal likelihood, 50, 232
Marginal likelihood function, 65
Market contagion, 73
Market impact, 348, 400
Markov chain Monte Carlo (MCMC), 149,

230, 233

546 Index

Markov decision process, 289
Markov network, 72
Markov random field, 72
Markov transition kernel, 228
Massively scalable Gaussian process (MSGP),

96
Matern kernel (MK), 94
Matrix Product State (MPS) decomposition,

532
Maximum a posteriori (MAP), 69
Maximum Causal Entropy, 435
Maximum Entropy (MaxEnt) IRL, 439
Maximum entropy principle, 430
Maximum entropy RL, 342
Maximum likelihood estimate, 52
Maximum likelihood estimator (MLE),

232
MCMC, see Markov chain Monte Carlo

(MCMC)
MDP for option pricing, 360
Mean absolute error, 55
Mean squared error (MSE), 55
Merton consumption problem, 401
Mesh-free GPs, 101
Metropolis algorithm, 234
Metropolis-Hastings algorithm, 234
Metropolis-Hastings-Green algorithm, 234
Minimum mean squared error (MMSE), 55
Mixture models, 72
ML, see Machine learning (ML)
MLE, see Maximum likelihood estimator

(MLE)
MMSE, see Minimum mean squared error

(MMSE)
Model evidence, 66
Model fit, 95
Model selection, 65
Model weight, 69
Monte Carlo reinforcement learning methods,

307
MPS decomposition, see Matrix Product State

(MPS) decomposition
MSE, see Mean squared error (MSE)
MSGP, see Massively scalable Gaussian

process (MSGP)
Multi-GPs, 103
Multi-kernel, 94
Multinomial resampling, 228, 229

N
Naive Bayes’ classifier, 71
Nash equilibrium, 393
Natural language processing, 4

Nestov’s momentum, 158
Neural network, 152
Non-equilibrium thermodynamics, 534
Non-expansion operators, 329
Non-linear architectures, 327
Non-linear dynamics, 395, 401
Non-perturbative phenomena, 528
Normalized weights, 229

O
Observation, 224
Observation space, 224
Occam’s razor, 69
Occupancy measure, 425
Off-policy algorithms, 308, 313
One-hot encoding, 9
Online-learning, 62
Optimal stock execution, 285
Overestimation bias, 329

P
Parameter expansion MCMC (PX-MCMC),

151
Partial autocorrelation, 197
Partially observable Markov decision process

(POMDP), 293
Particle, 228
Particle filtering, 227, 228, 230
Partition function, 430
Perception-action cycle, 520, 536, 537
Planning, 281
Point estimate, 53
Point estimation, 49, 53
Policy, 291
Policy-based reinforcement learning, 309
Policy evaluation, 301
Policy function, 286
Policy iteration, 302
POMDP, see Partially observable Markov

decision process (POMDP)
Pooling, 263
Posterior distribution, 49
Posterior model probability, 65
Posterior odds, 67
Posterior odds ratio, 66
Posterior sampling, see Thompson sampling
Predicting events, 210
Prediction, 210
Predictron, 539
Preference-based IRL, 488
Preference learning, 487
Principal component analysis (PCA), 214

Index 547

Principle of insufficient reason, see Laplace’s
principle of indifference

Prior, 48
Probabilistic graphical models, 70
Put option, 349
PyMC3, 234

Q
QLBS, see Q-learning for the Black-Scholes

(QLBS) problem
Q-learning, 315
Q-learning for the Black-Scholes (QLBS)

problem, 380, 497
Quasi-Newton methods, 233

R
Radial basis functions (RBFs), 93, 325
Random sample, 53
Rare events, 528
Rashomon effect, 64
RBFs, see Radial basis function (RBFs)
RBM, see Restricted Boltzmann machine

(RBM)
Receiver Operating Characteristic (ROC), 212
Receiver Operating Characteristic (ROC)

curve, 210
Recurrent neural network, 222, 240
REINFORCE, 310
Reinforcement learning, 8, 280
Renormalization group (RG), 529–532
Reparameterization trick, 152
Replication factor, 229
Reproducing kernel Hilbert space (RKHS), 94
Resampling, 228, 231
Residual sum of squares (RSS), 63
Responsibility, 75
Restricted Boltzmann machine (RBM), 9, 72
Returns in reinforcement learning, 293
Reverse KL divergence, 474
Reward function, 284
Reward shaping, 427
RG, see Renormalization group (RG)
RG flow equations, 530
Risk-sensitive GAIL (RS-GAIL), 480
RKHS, see Reproducing kernel Hilbert space

(RKHS)
RMSE, see Root mean squared error (RMSE)
RMSProp, 158
Robbins-Monro algorithm, 317
Robo-advisors, 6
Robo-advisory, 485
Root mean squared error (RMSE), 55

RS-GAIL, see Risk-sensitive GAIL (RS-GAIL)
RSS, see Residual sum of squares (RSS)

S
Sampling uncertainty, 50
SARSA, 314
Selection, 228, 231
Self-financing portfolios, 401
Self-organizing maps, 8
Semi-affine function, 14
Sequential Bayesian update, 62
Sequential Importance Resampling (SIR),

228
SGD, see Stochastic gradient descent (SGD)
SIR, see Sequential Importance Resampling

(SIR)
SKI, see Structured kernel interpolation (SKI)
Softmax policy, 310
Soft Q-learning, 437
SoR, see Subset of regression (SoR)
Spline interpolator, 91
Squared error, 54
Stability, 195
Stan, 234
Standard error, 49
State space, 224
State-space model, 221
State-value function, 294
Stationarity, 18, 193, 195, 246
Stationary product kernel, 97
Statistical ensemble, 430
Statistical mechanics, 432
Statistical risk, 55
Stochastic gradient descent (SGD), 95, 142,

152
Stochastic policies, 292
Stochastic process, 192
Stochastic shortest path (SSP) problems, 299
Stochastic volatility, 230
Stochastic volatility with leverage (SVL), 230
Stochastic volatility with leverage and jumps

(SVLJ), 230
Structural models, 444
Structural models for consumer choice, 444
Structured kernel interpolation (SKI), 97
Subjective probability, 48
Subset of regression (SoR), 97
Supervised learning, 8
SVL, see Stochastic volatility with leverage

(SVL)
SVLJ, see Stochastic volatility with leverage

and jumps (SVLJ)
Synchronous updates, 304

548 Index

T
Target network, 336
TD error, 312
Temporal difference learning, 311
Tensor decompositions, 531
Tensor train decompositions, 532
Thompson sampling, 283
Tikhonov regularization, 91
Time series, 193
Time series cross-validation, 213
Time-stationary MDP, 299
Trajectory-ranked reward extrapolation

(T-REX), 488, 490
Transition matrix, 225
Transition probability, 225
T-REX, see Trajectory-ranked reward

extrapolation (T-REX)
True value, 54
T-TEX, 490

U
UGM, see Undirected graphical model (UGM)
Unbiased, 54
Uncertainty quantification, 150

Undirected graphical model (UGM), 72
Uninformative prior, 57
Unobservable, 233
Unsupervised learning, 8
Update a prior, 50

V
Value-at-risk, 73
Value-based reinforcement learning, 306
Value function, 286
Value iteration, 303
Variational inference, 149
VC-dimension, 121
Viterbi algorithm, 224, 226
Volatility shock, 73
Von Neumann–Morgenstern conditions, 358

W
Wealth management, 401, 407
Weighted moving average smoothers, 258
White noise, 193
WinBUGS, 234
Wold decomposition, 201

	Introduction
	Prerequisites
	Advantages of the Book
	Overview of the Book
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Source Code
	Scope
	Multiple-Choice Questions
	Exercises

	Instructor Materials
	Acknowledgements

	Contents
	About the Authors
	Part I Machine Learning with Cross-Sectional Data
	1 Introduction
	1 Background
	1.1 Big Data—Big Compute in Finance
	1.2 Fintech
	1.2.1 Robo-Advisors
	1.2.2 Fraud Detection
	1.2.3 Cryptocurrencies

	2 Machine Learning and Prediction
	2.1 Entropy
	2.2 Neural Networks

	3 Statistical Modeling vs. Machine Learning
	3.1 Modeling Paradigms
	3.2 Financial Econometrics and Machine Learning
	3.3 Over-fitting

	4 Reinforcement Learning
	5 Examples of Supervised Machine Learning in Practice
	5.1 Algorithmic Trading
	5.2 High-Frequency Trade Execution
	5.3 Mortgage Modeling
	5.3.1 Model Stability

	6 Summary
	7 Exercises
	Appendix
	Answers to Multiple Choice Questions

	References

	2 Probabilistic Modeling
	1 Introduction
	2 Bayesian vs. Frequentist Estimation
	3 Frequentist Inference from Data
	4 Assessing the Quality of Our Estimator: Bias and Variance
	5 The Bias–Variance Tradeoff (Dilemma) for Estimators
	6 Bayesian Inference from Data
	6.1 A More Informative Prior: The Beta Distribution
	6.2 Sequential Bayesian updates
	6.2.1 Online Learning
	6.2.2 Prediction

	6.3 Practical Implications of Choosing a Classical or Bayesian Estimation Framework

	7 Model Selection
	7.1 Bayesian Inference
	7.2 Model Selection
	7.3 Model Selection When There Are Many Models
	7.4 Occam's Razor
	7.5 Model Averaging

	8 Probabilistic Graphical Models
	8.1 Mixture Models
	8.1.1 Hidden Indicator Variable Representation of Mixture Models
	8.1.2 Maximum Likelihood Estimation

	9 Summary
	10 Exercises
	Appendix
	Answers to Multiple Choice Questions

	References

	3 Bayesian Regression and Gaussian Processes
	1 Introduction
	2 Bayesian Inference with Linear Regression
	2.1 Maximum Likelihood Estimation
	2.2 Bayesian Prediction
	2.3 Schur Identity

	3 Gaussian Process Regression
	3.1 Gaussian Processes in Finance
	3.2 Gaussian Processes Regression and Prediction
	3.3 Hyperparameter Tuning
	3.4 Computational Properties

	4 Massively Scalable Gaussian Processes
	4.1 Structured Kernel Interpolation (SKI)
	4.2 Kernel Approximations
	4.2.1 Structure Exploiting Inference

	5 Example: Pricing and Greeking with Single-GPs
	5.1 Greeking
	5.2 Mesh-Free GPs
	5.3 Massively Scalable GPs

	6 Multi-response Gaussian Processes
	6.1 Multi-Output Gaussian Process Regressionand Prediction

	7 Summary
	8 Exercises
	8.1 Programming Related Questions*

	Appendix
	Answers to Multiple Choice Questions
	Python Notebooks

	References

	4 Feedforward Neural Networks
	1 Introduction
	2 Feedforward Architectures
	2.1 Preliminaries
	2.2 Geometric Interpretation of Feedforward Networks
	2.3 Probabilistic Reasoning
	2.4 Function Approximation with Deep Learning*
	2.5 VC Dimension
	2.6 When Is a Neural Network a Spline?*
	2.7 Why Deep Networks?
	2.7.1 Approximation with Compositions of Functions
	2.7.2 Composition with ReLU Activation

	3 Convexity and Inequality Constraints
	3.1 Similarity of MLPs with Other Supervised Learners

	4 Training, Validation, and Testing
	5 Stochastic Gradient Descent (SGD)
	5.1 Back-Propagation
	5.1.1 Updating the Weight Matrices

	5.2 Momentum
	5.2.1 Computational Considerations
	5.2.2 Model Averaging via Dropout

	6 Bayesian Neural Networks*
	7 Summary
	8 Exercises
	8.1 Programming Related Questions*

	Appendix
	Answers to Multiple Choice Questions
	Back-Propagation
	Proof of Theorem 4.2
	Proof of Lemmas from Telgarsky (2016)
	Python Notebooks

	References

	5 Interpretability
	1 Introduction
	2 Background on Interpretability
	2.1 Sensitivities

	3 Explanatory Power of Neural Networks
	3.1 Multiple Hidden Layers
	3.2 Example: Step Test

	4 Interaction Effects
	4.1 Example: Friedman Data

	5 Bounds on the Variance of the Jacobian
	5.1 Chernoff Bounds
	5.2 Simulated Example

	6 Factor Modeling
	6.1 Non-linear Factor Models
	6.2 Fundamental Factor Modeling

	7 Summary
	8 Exercises
	8.1 Programming Related Questions*

	Appendix
	Other Interpretability Methods
	Proof of Variance Bound on Jacobian
	Russell 3000 Factor Model Description
	Python Notebooks

	References

	Part II Sequential Learning
	6 Sequence Modeling
	1 Introduction
	2 Autoregressive Modeling
	2.1 Preliminaries
	2.2 Autoregressive Processes
	2.3 Stability
	2.4 Stationarity
	2.5 Partial Autocorrelations
	2.6 Maximum Likelihood Estimation
	2.7 Heteroscedasticity
	2.8 Moving Average Processes
	2.9 GARCH
	2.10 Exponential Smoothing

	3 Fitting Time Series Models: The Box–Jenkins Approach
	3.1 Stationarity
	3.2 Transformation to Ensure Stationarity
	3.3 Identification
	3.4 Model Diagnostics

	4 Prediction
	4.1 Predicting Events
	4.2 Time Series Cross-Validation

	5 Principal Component Analysis
	Projection
	5.1 Principal Component Projection
	5.2 Dimensionality Reduction

	6 Summary
	7 Exercises
	Appendix
	Hypothesis Tests
	Python Notebooks

	Reference

	7 Probabilistic Sequence Modeling
	1 Introduction
	2 Hidden Markov Modeling
	2.1 The Viterbi Algorithm
	2.1.1 Filtering and Smoothing with HMMs

	2.2 State-Space Models

	3 Particle Filtering
	3.1 Sequential Importance Resampling (SIR)
	3.2 Multinomial Resampling
	3.3 Application: Stochastic Volatility Models

	4 Point Calibration of Stochastic Filters
	5 Bayesian Calibration of Stochastic Filters
	6 Summary
	7 Exercises
	Appendix
	Python Notebooks

	References

	8 Advanced Neural Networks
	1 Introduction
	2 Recurrent Neural Networks
	2.1 RNN Memory: Partial Autocovariance
	2.2 Stability
	2.3 Stationarity
	2.4 Generalized Recurrent Neural Networks (GRNNs)

	3 Gated Recurrent Units
	3.1 α-RNNs
	3.1.1 Dynamic αt-RNNs

	3.2 Neural Network Exponential Smoothing
	3.3 Long Short-Term Memory (LSTM)

	4 Python Notebook Examples
	4.1 Bitcoin Prediction
	4.2 Predicting from the Limit Order Book

	5 Convolutional Neural Networks
	5.1 Weighted Moving Average Smoothers
	5.2 2D Convolution
	5.3 Pooling
	5.4 Dilated Convolution
	5.5 Python Notebooks

	6 Autoencoders
	6.1 Linear Autoencoders
	6.2 Equivalence of Linear Autoencoders and PCA
	6.3 Deep Autoencoders

	7 Summary
	8 Exercises
	8.1 Programming Related Questions*

	Appendix
	Answers to Multiple choice questions
	Python Notebooks

	References

	Part III Sequential Data with Decision-Making
	9 Introduction to Reinforcement Learning
	1 Introduction
	2 Elements of Reinforcement Learning
	2.1 Rewards
	2.2 Value and Policy Functions
	2.3 Observable Versus Partially Observable Environments

	3 Markov Decision Processes
	3.1 Decision Policies
	3.2 Value Functions and Bellman Equations
	3.3 Optimal Policy and Bellman Optimality

	4 Dynamic Programming Methods
	4.1 Policy Evaluation
	4.2 Policy Iteration
	4.3 Value Iteration

	5 Reinforcement Learning Methods
	5.1 Monte Carlo Methods
	5.2 Policy-Based Learning
	5.3 Temporal Difference Learning
	5.4 SARSA and Q-Learning
	5.5 Stochastic Approximations and Batch-Mode Q-learning
	5.6 Q-learning in a Continuous Space: FunctionApproximation
	5.7 Batch-Mode Q-Learning
	5.8 Least Squares Policy Iteration
	5.9 Deep Reinforcement Learning
	5.9.1 Preliminaries
	5.9.2 Target Network
	5.9.3 Replay Memory

	6 Summary
	7 Exercises
	Appendix
	Answers to Multiple Choice Questions
	Python Notebooks

	References

	10 Applications of Reinforcement Learning
	1 Introduction
	2 The QLBS Model for Option Pricing
	3 Discrete-Time Black–Scholes–Merton Model
	3.1 Hedge Portfolio Evaluation
	3.2 Optimal Hedging Strategy
	3.3 Option Pricing in Discrete Time
	3.4 Hedging and Pricing in the BS Limit

	4 The QLBS Model
	4.1 State Variables
	4.2 Bellman Equations
	4.3 Optimal Policy
	4.4 DP Solution: Monte Carlo Implementation
	4.5 RL Solution for QLBS: Fitted Q Iteration
	4.6 Examples
	4.7 Option Portfolios
	4.8 Possible Extensions

	5 G-Learning for Stock Portfolios
	5.1 Introduction
	5.2 Investment Portfolio
	5.3 Terminal Condition
	5.4 Asset Returns Model
	5.5 Signal Dynamics and State Space
	5.6 One-Period Rewards
	5.7 Multi-period Portfolio Optimization
	5.8 Stochastic Policy
	5.9 Reference Policy
	5.10 Bellman Optimality Equation
	5.11 Entropy-Regularized Bellman Optimality Equation
	5.12 G-Function: An Entropy-Regularized Q-Function
	5.13 G-Learning and F-Learning
	5.14 Portfolio Dynamics with Market Impact
	5.15 Zero Friction Limit: LQR with Entropy Regularization
	5.16 Non-zero Market Impact: Non-linear Dynamics

	6 RL for Wealth Management
	6.1 The Merton Consumption Problem
	6.2 Portfolio Optimization for a Defined Contribution Retirement Plan
	6.3 G-Learning for Retirement Plan Optimization
	6.4 Discussion

	7 Summary
	8 Exercises
	Appendix
	Answers to Multiple Choice Questions
	Python Notebooks

	References

	11 Inverse Reinforcement Learning and Imitation Learning
	1 Introduction
	2 Inverse Reinforcement Learning
	2.1 RL Versus IRL
	2.2 What Are the Criteria for Success in IRL?
	2.3 Can a Truly Portable Reward Function Be Learned with IRL?

	3 Maximum Entropy Inverse Reinforcement Learning
	3.1 Maximum Entropy Principle
	3.2 Maximum Causal Entropy
	3.3 G-Learning and Soft Q-Learning
	3.4 Maximum Entropy IRL
	3.5 Estimating the Partition Function

	4 Example: MaxEnt IRL for Inference of Customer Preferences
	4.1 IRL and the Problem of Customer Choice
	4.2 Customer Utility Function
	4.3 Maximum Entropy IRL for Customer Utility
	4.4 How Much Data Is Needed? IRL and ObservationalNoise
	4.5 Counterfactual Simulations
	4.6 Finite-Sample Properties of MLE Estimators
	4.7 Discussion

	5 Adversarial Imitation Learning and IRL
	5.1 Imitation Learning
	5.2 GAIL: Generative Adversarial Imitation Learning
	5.3 GAIL as an Art of Bypassing RL in IRL
	5.4 Practical Regularization in GAIL
	5.5 Adversarial Training in GAIL
	5.6 Other Adversarial Approaches*
	5.7 f-Divergence Training*
	5.8 Wasserstein GAN*
	5.9 Least Squares GAN*

	6 Beyond GAIL: AIRL, f-MAX, FAIRL, RS-GAIL, etc.*
	6.1 AIRL: Adversarial Inverse Reinforcement Learning
	6.2 Forward KL or Backward KL?
	6.3 f-MAX
	6.4 Forward KL: FAIRL
	6.5 Risk-Sensitive GAIL (RS-GAIL)
	6.6 Summary

	7 Gaussian Process Inverse Reinforcement Learning
	7.1 Bayesian IRL
	7.2 Gaussian Process IRL

	8 Can IRL Surpass the Teacher?
	8.1 IRL from Failure
	8.2 Learning Preferences
	8.3 T-REX: Trajectory-Ranked Reward EXtrapolation
	8.4 D-REX: Disturbance-Based Reward EXtrapolation

	9 Let Us Try It Out: IRL for Financial Cliff Walking
	9.1 Max-Causal Entropy IRL
	9.2 IRL from Failure
	9.3 T-REX
	9.4 Summary

	10 Financial Applications of IRL
	10.1 Algorithmic Trading Strategy Identification
	10.2 Inverse Reinforcement Learning for Option Pricing
	10.3 IRL of a Portfolio Investor with G-Learning
	10.4 IRL and Reward Learning for Sentiment-Based Trading Strategies
	10.5 IRL and the ``Invisible Hand'' Inference

	11 Summary
	12 Exercises
	Appendix
	Answers to Multiple Choice Questions
	Python Notebooks

	References

	12 Frontiers of Machine Learning and Finance
	1 Introduction
	2 Market Dynamics, IRL, and Physics
	2.1 ``Quantum Equilibrium–Disequilibrium'' (QED) Model
	2.2 The Langevin Equation
	2.3 The GBM Model as the Langevin Equation
	2.4 The QED Model as the Langevin Equation
	2.5 Insights for Financial Modeling
	2.6 Insights for Machine Learning

	3 Physics and Machine Learning
	3.1 Hierarchical Representations in Deep Learningand Physics
	3.2 Tensor Networks
	3.3 Bounded-Rational Agents in a Non-equilibriumEnvironment

	4 A ``Grand Unification'' of Machine Learning?
	4.1 Perception-Action Cycles
	4.2 Information Theory Meets Reinforcement Learning
	4.3 Reinforcement Learning Meets Supervised Learning: Predictron, MuZero, and Other New Ideas

	References

	Index

