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Abstract. This work investigates the capabilities of two different
approaches for the analysis of thin-walled structures, both based on
enriched beam theories that include out-of-plane cross-section warping,
being the in-plane deformations neglected.

First approach relies on a three-dimensional beam finite element based
on a four-field mixed formulation, where cross-section warping displace-
ment is introduced as additional independent field to the standard rigid-
body displacements, strains, and stresses and is interpolated with the
definition of specific shape functions: along the element axis and over
the general cross-section. Geometric nonlinearity is included through a
corotational approach that considers the coupling between axial and tor-
sional stress/strain components, known as Wagner effect. As opposed
to the first approach, a simpler but coarse descriptor of warping dis-
placement field is adopted in the second approach, assuming a priori the
warping profile over the cross-section. By adopting nonlinear hyperelastic
relations, generalized cross-section constitutive responses are portrayed,
accounting for Wagner term. Geometric nonlinearity is also included.
In this case, the nonlinear equilibrium equations of the enriched beam
model are solved through a finite difference technique.

For selected specimens, modal decompositions and step-by-step incre-
mental analyses are conducted under small and large displacements, com-
paring the results obtained with both models with analytic solutions and
numerical outcomes. Advantages and disadvantages of each approach are
discussed, aiming at supplying the reliability ranges of the two models
and depict new potential research lines based on a suitable ‘combination’
of the relevant formulations.

Keywords: Thin-walled beams · Warping · Stability · Mixed finite
element formulation · Finite differences · Small imperfections

1 Introduction

Beam models are commonly used for the analysis of large scale structures
because of their computational efficiency in reproducing the structural response.
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However, most beam formulations used in engineering practice are based on
the assumption of rigid body cross-section and fail in correctly describing the
response of thin-walled structures, especially when elements with open cross-
sections are considered. Indeed, the mechanical behavior of thin-walled beams
is significantly influenced by cross-section warping, which causes multi-axial
stress/strain interaction and leads to complex nonlinear responses, even under
ordinary load conditions [1]. Moreover, due to their slenderness and low tor-
sional stiffness, instability phenomena are generally dominant in such structural
elements.

Starting from the pioneering work by Vlasov [2], many authors have pro-
posed enriched formulations that extend classic beam theories, aiming at captur-
ing warping deformations of the cross-section. Among them, thin-walled beam
models derived from enriched three-dimensional continua have been proposed
by Crespo da Silva [3], Simo and Vu-Quoc [4], Ascione and Feo [5], Di Egidio,
Luongo and Vestroni [6]; other authors, as Vlasov [2] and Møllmann [7] adopt a
two-dimensional support. Direct one-dimensional models are also available, e.g.
those proposed by Epstein [8] and Rizzi and Tatone [9]. A comprehensive review
on thin-walled beam modeling approaches for dynamic analyses is reported in
[10], while peculiar aspects concerning the design of this kind of elements is
discussed in [11]. However, many of these formulations are based on specific
kinematic and/or constitutive assumptions that limit their range of application
and prevent generalization to complex case studies.

This work explores two different approaches proposed by the authors: the first
relies on a three-dimensional beam finite element formulation [12–14], whereas
the second is a one-dimensional model endowed with a coarse scalar descriptor
of the warping displacement field [15]. The purpose of the paper is to move
a step forward in the knowledge through direct comparisons of the two beam
models. Modal decompositions and incremental analyses are conducted under
small and large displacements, comparing the results obtained for both models
and showing their relevant advantages and disadvantages. A reliability analysis
of the two modeling approaches is provided, together with the recognition of
new potential research lines intended to combine the relevant details of the two
formulations.

2 Mixed 3D Beam Finite Element

The main aspects of the 3D beam FE formulation presented in [14] are recalled
in the following. Considering a dynamic framework where the effects of inertia
forces are included, the beam formulation accounts for out-of-plane cross-section
warping by introducing an additional independent displacement field. Geometric
nonlinearities are included by means of the corotational formulation proposed
in [13] that accounts for the second order Wagner term and, thus, couples the
axial and torsional strain components of the beam.

The rigid displacement ur(x, y, z) at the cross-section material point m,
classically considered in Euler-Bernoulli and Timoshenko beam formulations, is
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enriched by adding to it the out-of-plane warping field uw(x, y, z) (Fig. 1), being
these two enforced to be orthogonal. The resulting displacement um(x, y, z) is
expressed as:

um(x, y, z) = ur(x, y, z) + uw(x, y, z) . (1)

Vector uw(x, y, z) =
{
uw(x, y, z) 0 0

}T contains only the out-of-plane compo-
nent directed along the beam axis x.
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Fig. 1. Warping displacement representation and interpolation scheme.

To interpolate the warping displacement field uw(x, y, z), 1D and 2D
Lagrange polynomials, Ni(x) and Mj(y, z), are used along the beam axis x and
over the cross-section (y, z), respectively, thus resulting:

uw(x, y, z) =
nw∑

i=1

Ni(x)M(y, z)uw i , (2)

where vector uw i collects the mw warping DOFs uw ij located on the i-th cross-
section and M(y, z) is a row vector containing the corresponding shape functions
Mj(y, z). Although a variable number nw of warping interpolation cross-sections
can be adopted along the beam axis x, here nw = 2 is selected and the two
warping interpolation cross-sections are placed at the beam end nodes I and J .

The warping DOFs uw ij defined on the cross-section at node I and J and
collected in the vectors uwI and uwJ are added to the standard kinematic trans-
lational, uJ and uJ , and rotational, ϕI and ϕJ , DOFs, as shown in Fig. 2(a).
Then, the two vectors uwI and uwJ are added to the element global displacement
vector, that is expressed as:

ũ =
{
uT

I ϕT
I uT

J ϕT
J uT

wI uT
wJ

}T =
{

u
uw

}
. (3)

The kinematic equations resulting from the corotational approach are used
to perform the geometric transformation of the standard element DOFs in u
from the global to local reference system in Fig. 2(b) [13]. Hence, by remov-
ing the element rigid body motions, the basic reference system is defined
and the six deformation displacement vector is derived, resulting as v =
{uxJ θzI θzJ θxJ θyI θyJ}T .
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Fig. 2. Finite element (a) global and (b) basic reference system and nodal displacement
variables.

In this system, an equilibrated approach is considered so that the generalized
section stress vector s(x) is expressed as function of the basic forces q work-
conjugate to v, as:

s(x) = b(x)q + sq(x) , (4)

with sq(x) containing the generalized section stresses due to distributed loads
qs(x) and b(x) being the equilibrium matrix. Vector s(x) collects the axial stress
N(x), bending moments Mz(x) and My(x), torsional moment Mx(x) and shear
stresses Ty(x) and Tz(x). The generalized section strain vector e(x), containing
axial strain εG(x), flexural curvatures χz(x) and χy(x), torsional curvature χx(x)
and shear strains γy(x) and γz(x), is related to the section stresses s(x) by means
of the incremental generalized section constitutive law, that is:

Δe(x) = k−1
ss (x)Δs(x) , (5)

with Δ� denoting the increment of variable � and kss(x) being the cross-section
tangent stiffness matrix.

Moreover, section compatibility conditions relate the generalized cross-
section strains e(x) to the generalized cross-section displacements us(x), defined
as:

us(x) =
{
u(x) v(x) w(x) θx(x) θy(x) θz(x)

}T
, (6)

where u(x), v(x) and w(x) are the rigid translations and θx(x), θy(x) and θz(x)
the rigid rotations.

The element governing equations are derived by enforcing the stationarity of
the following four-field extended Lagrangian functional L:

L(us, e, s, uw, u̇s, u̇w) = T (u̇s, u̇w) − Π(us, e, s, uw) (7)

with respect to the independent fields us(x), e(x), s(x) and uw(x, y, z), where
T and Π are the kinetic and internal potential energy, respectively. Then, the
nonlinear material constitutive law, the weak form of the element compatibility
and equilibrium and the section equilibrium conditions related to the warping
are accordingly obtained. The detailed formulation and numerical validation can
be found in [12–14,16].
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3 Direct 1D Beam Model

The beam model proposed in [15] is based on a direct one-dimensional contin-
uum, enriched with a scalar measure coarsely describing the warping displace-
ment field. Vlasov’s notions of bi-moment and bi-shear are considered and field
equations are geometrically exact. Hence, non-trivial equilibrium paths of open
thin-walled beams can be suitably attained. Here, symbols and notations adopted
in [15] are modified according to those presented in the previous section for the
3D beam FE.

In the reference shape of the beam, the centroidal center axis is straight and
parallel to the x-axis of an orthogonal Cartesian system. The latter is arranged
according to a right-handed unit basis (ax,ay,az), with ay,az parallel to the
cross-section principal axes of inertia. The current shape of the beam is described
through fields that only depend on the abscissa along the beam axis. Kinemat-
ics of the beam axis is described by introducing the vector displacement field
uo(x) = r̃o(x)−ro(x), being ro(x) and r̃o(x) the position vector of given points in
the reference and current shape, respectively. A proper orthogonal tensor field
R(x) characterizes the cross-section rotation from reference to current shape,
leading to the current basis ãi(x) = R(x)ai. A coarse scalar descriptor ξ(x) is
then superimposed to uo(x) to describe the cross-section warping.

By comparing the current and reference shapes and subtracting the rigid
transformations, three strain measures are obtained (i, j, k = x, y, z):

⎧
⎪⎨

⎪⎩

ε(x) = r̃′
o − R(x)ro

′(x) = r̃′
o − ãx = εG(x)ãx(x) + γy(x)ãy(x) + γz(x)ãz(x)

E(x) = R′(x)R�(x) = εijhχi(x)ãj(x) ∧ ãh(x)

ξ(x)

,

(8)
where the prime stands for derivation with respect to the abscissa x and εijh

is the permutation (Levi-Civita) operator. Equation (8) includes: elongation
εG(x) of the beam axis, shear strains γy(x), γz(x) between the beam axis and
the two principal axes of inertia, torsional curvature χx(x), bending curvatures
χy(x), χz(x) and warping ξ(x). This latter is related to the torsional curvature
χx(x) by the following condition:

ξ(x) = ηχx(x) ⇒ ξ′(x) = ηχ′
x(x) , (9)

being η a real constant. Therefore, balance equations of forces and couples and
the auxiliary equation for bi-shear and bi-moment are obtained by balancing
external and internal powers. Assuming that the internal power derives from
an inner Green-like energy, nonlinear hyperelastic constitutive relations can be
derived, keeping into account the coupling terms (extension-torsion-warping,
shear-torsion, shear-shear and flexural-torsion couplings). More details on the
governing equations are reported in [15].

Solution is provided by a numerical in-house code based on a centered finite
difference technique. The stability of (non-trivial) equilibrium positions is stud-
ied according to Ljapounov’s theory by superposing small perturbations, while
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the non-standard eigenvalue problem is solved by standard numerical codes. Both
conservative and non-conservative loadings, either stationary and non-stationary,
can be included in the balance equations. Hence, the model and the proposed
numerical technique may be used to analyze (non-trivial) equilibrium of thin-
walled beams and detect static (a.k.a. buckling or divergence) and dynamic
instabilities (a.k.a. flutter or Hopf bifurcation).

The proposed approach was numerically validated in [15,17], confirming the
reliability of the implemented technique and providing a quantitative measure
of warping effects and pre-critical equilibrium path on critical loadings. Experi-
mental validations are reported in [18,19].

4 Applications and Comparisons

A simply supported beam, loaded at both ends by bending couples, is considered.
The supports prevent torsional rotations and displacements of the axis, except
for the axial displacement at the end on the right-hand side. Warping is free.
Figure 3 shows the selected case study, with a sketch of the nonlinear equilibrium
configurations of the beam axis x, ranging from 0 to the length L.

My

x

L

M

Fig. 3. Case study.

Two different steel cross-sections are considered: IPE 200 (I-shape, dou-
bly symmetric) and L200×100×10 (L-shape, non-symmetric). The cross-section
dimensions are reported in Fig. 4, where o is the centroid, c the shear center and
y, z the central principal axes.

Beam data are summarized in Table 1, being (with i, j = y, z): L the beam
length, E the Young’s modulus, ν the Poisson ratio, ρ the mass density, A and Ai

the area and shear shape modified areas, Jt the Saint-Venant’s torsional inertia,
Ii the central principal moments of inertia, yc and zc the coordinates of the
shear center c, Aij the mixed shear shape modified areas, Ic the polar moment
of inertia (with respect to the shear centre c), Ifi the flexural-torsional constants
and Γ the warping inertia.

The comparison of the two beam models investigate the free frequencies of the
unloaded beams and the force-displacement path. The latter aims at implicitly
detecting instabilities phenomena as deviations of the force-displacement path
obtained by introducing small imperfections in the initial configuration. Unlike
the instability analyses developed as eigenvalues problem, this approach better



Enhanced Beam Formulations with Cross-Section Warping 1223

y

y

z

z

100

8.
5

5.6

20
0

o

c

co 20
0

10

10

100

14.8°

IPE 200 L200x100x10

Fig. 4. Cross-sections adopted in the simulations (values in mm).

reveals the effectiveness of the two models in describing actual beam element
behaviors under large displacements.

4.1 Computational Details for the Mixed 3D Beam FE

The evaluation of the beam cross-section response through the mixed 3D FE
approach is obtained by introducing a fiber discretization [12,20]. Linear elastic
material behavior is considered in this work and fibers are distributed over the
cross-section according to 2D Gauss-Legendre quadrature rule. Hence, the inte-
grals defined over the cross-section area to compute the resultant stresses and
stiffness matrices are evaluated in exact form. In particular, the cross-section
is subdivided into rectangular patches and a 2 × 2 fiber grid is defined in each
patch (blue dots in Fig. 5).

Table 1. Beam data and main characteristics of the cross-sections (on the top), and
properties due to warping and non-symmetry (on the bottom); dash stands for zero.

Beam
L E ν ρ A Ay Az Jt Iy Iz

[m] [N m−2] [−] [kg m−3] [cm2] [cm2] [cm2] [cm4] [cm4] [cm4]

I
5.00 210 · 109 0.30 7850

28.48 14.00 16.12 6.98 142.40 1943.00

L 29.20 16.58 7.29 10.66 135.00 1290.00

Beam
yc zc Ayz = Azy Ic Ify Ifz Γ

[cm] [cm] [cm2] [cm4] [cm5] [cm5] [cm6]

I – – – I2+I3 – – 12990.00

L −5.83 3.10 −2.26 2704.92 −2631.76 18352.00 229.78
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Round-shape fillets between webs and flanges can significantly increase the
torsional stiffness of open cross-sections [17]. In the 3D FE model, fillets are
included as additional fibers with area equal to (1 − π/4) r2 and monitoring
points located at a distance δf = 5/6−π/4

1−π/4 r from web and flange edges (i.e., at
the fillet centroid indicated with the green dot in Fig. 5), being r the radius of
the fillet external edge.

y

z

r

Fig. 5. Schematic of fiber discretization (mixed 3D beam FE) for the I-shaped cross-
section.

4.2 Results

Table 2 shows the comparison of the first six circular frequencies. As reference
values, analytic solutions (row ‘a. Analytic’) [21] are considered for the doubly
symmetric IPE 200, whereas a finite element solution based on shell elements
(rows ‘a. Shell FE’) is used for the non-symmetric L200×100×10. The latter was
computed with the software SAP2000 [22].

Both mixed 3D and direct 1D beam model were implemented in MATLAB
[23]. The results of the mixed 3D FE are collected for two cases: neglecting (row
‘b. Mixed 3D FE (n.f.)’) and considering (row ‘c. Mixed 3D FE’) the round-shape
fillets. The results provided by the 1D model are shown in row ‘d. Direct 1D’.

All meshes adopted in the numerical simulations (cases ‘a. Shell FE’, ‘b.
Mixed 3D FE (n.f.)’, ‘c. Mixed 3D FE’ and ‘d. Direct 1D’) consider an equally-
spaced discretization. The number of elements was determined through a mesh
refinement procedure, that is by progressively reducing the element size until the
variation observed for the first six frequency values resulted lower than 5‰. The
discrepancies between reference (‘a’) and adopted (‘b’, ‘c’ and ‘d’) models are
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Table 2. Comparison of the first six circular frequencies [rad/s].

Beam Model Mode

1 2 3 4 5 6

I a. Analytic 45.64 127.25 167.45 182.30 309.74 409.25

b. Mixed 3D FE (n.f.) 46.58 116.70 166.35 185.98 294.99 417.24

c. Mixed 3D FE 45.61 126.44 166.95 182.14 308.04 408.64

d. Direct 1D 45.65 127.29 167.29 182.56 310.14 410.58

Δab, % 2.1 −8.3 −0.7 2.0 −4.8 2.0

Δac, % −0.1 −0.6 −0.3 −0.1 −0.5 −0.1

Δad, % 0.0 0.0 −0.1 0.1 0.1 0.3

L a. Shell FE 42.98 121.44 157.16 191.51 301.38 328.79

b. Mixed 3D FE (n.f.) 43.35 121.49 157.99 191.74 301.35 327.27

c. Mixed 3D FE 43.59 122.35 159.26 192.31 304.77 330.20

d. Direct 1D 42.81 112.40 154.00 156.05 271.54 281.39

Δab, % 0.9 0.0 0.5 0.1 0.0 −0.5

Δac, % 1.4 0.7 1.3 0.4 1.1 0.4

Δad, % −0.4 −7.4 −2.0 −18.5 −9.9 −14.4

measured evaluating the percentage differences Δab, Δac, Δad that are reported
in the same table.

The percentage errors obtained for the doubly symmetric cross-section show
that, when fillets are properly modeled, both mixed 3D and direct 1D beam
models are able to correctly evaluate the first six frequencies. Therefore, in this
case, given its simplicity and lower computational effort, the adoption of the
direct 1D model appears more convenient than that of the mixed 3D FE. By
contrast, when the L-shape non-symmetric cross-section is considered, the mixed
3D FE is still in good agreement with the reference solution, whereas the direct
1D model is able to capture only the first and third frequencies.

Moreover, since there is only one fillet instead of four, for this section geome-
try their effect is less prominent than for the I-shaped beam. However, the model
without fillets seems to better reproduce the reference solution than the model
endowed with. This occurs because the shell model accounts for the fillets in an
approximate way by increasing the element thickness in correspondence of web
and flange intersections. This issue needs to be further investigated, for instance
by employing brick finite element models. However, it is out of the purposes of
the present paper and does not affect the results discussed above.

Step-by-step incremental analyses are developed imposing the following end
bending couples:

m = H M̄ay + H Maz, with H = {−1,+1} in x = {0, L} , (10)

where M̄ = 0.50 kNm plays the role of the small imperfection and M is the
evolutionary parameter. For the I-shaped cross-section, when imperfections are
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Fig. 6. Load-displacement paths with ‘small’ imperfections.

neglected, the following analytic solution holds for the critical values of M , when
couples are applied in the symmetry plane [24]:

Mn = ±n
π

L

√

EIyGJt

(
1 +

n2π2

L2

EΓ

GJt

)
n ∈ N , (11)

being G = E/(2(1 + ν)) the shear modulus. For n = 1, the first critical value
provided by Eq. (11) is obtained, resulting equal to M1 = 28.15 kNm. For the
non-symmetric L200×100×10 cross-section, the first critical value provided by
the FE analysis is M1 = 23.23 kNm.
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Load-displacement paths provided by mixed 3D and direct 1D model are
reported in Fig. 6, with the magnitude of the end couples in the vertical axis and
the displacement along z in the horizontal axis. Results are shown for ‘small’
(top) and ‘large’ (bottom) displacement amplitudes, for I-(left) and L-(right)
shaped cross-section. In the plots, the effect of the ‘small’ imperfection is clearly
appreciable, as non-zero displacement occurs for M = 0. For both section geome-
tries the initial imperfection is about L/1000 = 5 mm.

For ‘small’ displacement amplitudes (plots on the top), both models are able
to detect the onset of the instability phenomena of the beams. The values indi-
cated by the models are in agreement with the critical loads provided by the
analytic solution (for the I-shaped cross-section) and by the shell FE model (for
the L-shaped cross-section), although for the L-shape section the mixed 3D FE
slightly overestimates the critical load magnitude. Indeed, as this model adopts
a corotational approach, geometric nonlinearities are not described in exact form
and coupling between torsion and shear-flexural deformations, that is predomi-
nant for non-symmetric sections, is not perfectly captured. However, as observed
for the vibration frequencies, for the L-shape section the mixed 3D FE solution
seems to be closer to the reference results when fillets are neglected (blue dashed
curves). By contrast, for the I-shape section, this assumption leads to significant
underestimation of the critical load magnitude.

Similar comments hold true when ‘large’ displacement amplitudes (plots on
the bottom) are considered, but in these cases the direct 1D model moves from
the stable equilibrium path to the unstable one. This result is related to the
nonlinear solver used in the finite difference procedure, which is based on the
Levenberg-Marquardt algorithm (a.k.a. the damped least-squares method): even
assuming the previous step solution as initial guess for the solver and also reduc-
ing the loading step, the algorithm jumps to local minima which minimize the
amplitudes of displacement fields. Aiming at removing these transitions, other
types of nonlinear solvers and forcing techniques for the present algorithm are
under investigation.

5 Conclusions

Two different approaches for the analysis of thin-walled beams were analyzed
and compared. Both approaches are based on enriched beam theories including
out-of-plane cross-section warping. The first consists in a three-dimensional beam
finite element based on a four-field mixed formulation, while the second is a direct
one-dimensional model where a coarse descriptor of the warping displacement
field is introduced.

A simply supported beam has been chosen as paradigmatic case study to
show the capabilities of the approaches. Two analyses were performed: a modal
decomposition of the unloaded beam and a static incremental analysis. The latter
was performed introducing a small imperfection on the initial shape and allowed
to detect the onset of instabilities and investigate the numerical accuracy of the
approaches under large displacements.
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Analyses were developed considering two steel cross-sections: a doubly sym-
metric IPE 200 and a non-symmetric L200×100×10. The simulations showed
that for the doubly-symmetric cross-section the two approaches are both reli-
able in modal decomposition and results are close to the analytic solution; in this
case the direct 1D model is simpler to implement and could be advantageously
preferred to the mixed 3D FE. On the contrary, as shown by the comparison
with the shell model, for the non-symmetric cross-section the mixed 3D approach
was found superior in describing the free dynamic response of the beam. Refer-
ring to step-by-step incremental analyses, both approaches have proven effective
to detect the onset of instabilities, although the corotational approach adopted
for the mixed 3D FE slightly overestimates the critical load magnitude for the
non-symmetric L-shape section. When large displacements are considered, the
mixed 3D FE has proven robust in following the stable path, whereas the direct
1D one fell off to unstable paths.

Considering the advantages and disadvantages of each approach, new poten-
tial developments, based on suitable combinations of the two formulations, can
be depicted. As first enhancement, for symmetric cross-sections the direct 1D
model can be adopted to achieve eligible inner constraints for the mixed 3D app-
roach, thus reducing its computational effort. The nonlinear solver used in the
direct 1D model may be improved to prevent transitions among more equilibrium
paths. The corotational approach used in the mixed 3D FE can be revised to
improve the description of beams undergoing large displacements and endowed
with non-symmetric cross-sections.
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