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Abstract. Impinging jets are relevant in many applications, especially
those involving heating and cooling processes. In such context, several
techniques have been proposed to enhance the heat transfer at the wall:
in particular, experimental investigations demonstrated that the use of
a pulsating inlet with an appropriate pulsation frequency may result in
a 40% enhancement of heat transfer compared to a non-pulsating con-
figuration. Such a result is related to the enlargement of the generated
toroidal vortices which cause higher wall shear stresses. The mechanism
underlying the generation of these larger vortex rings at a specific fre-
quency is still unclear and the explanation of the effects of pulsation on
heat transfer is still an open question. In order to shed light on such pro-
cess, in this work, we present a modal analysis of a subsonic impinging jet
confined between two horizontal walls placed at a distance of 5D, being
D the diameter of the orifice in the uppermost wall from which the jet
issues. Initially, a direct numerical simulation (DNS) of a round jet with
a Mach number of 0.8 and a Reynolds number of 3300 is performed and
the main flow characteristics (including dominant frequencies and spatial
features) are retrieved through a dynamic mode decomposition (DMD)
analysis. Subsequently, a global stability analysis on the same physical
configuration is carried out and the spatial structures and frequencies of
the resulting leading unstable modes are discussed and compared with
the DMD and DNS data.

Keywords: Compressible flows · Impinging jets · Direct numerical
simulation · Dynamic mode decomposition · Stability analysis · Heat
transfer

1 Introduction

Impinging jets are relevant in a considerable number of industrial and natural
configurations. In particular, impinging jet systems are widely used in heating
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and cooling processes because they may enhance the local heat transfer by more
than an order of magnitude, compared to classical wall boundary layers [1].

In such context, the analysis of the jet geometry, the effects of the Reynolds
and Mach numbers, and the shape of the impacted surface received great atten-
tion in the last decades. In industrial applications, typical flow configurations
are confined in order to maximize the heat-transfer efficiency. Recent investiga-
tions proposed several techniques to increase this efficiency. In particular, it has
been demonstrated that the use of a pulsating inlet with an appropriate pulsa-
tion frequency can result in a 40% enhancement of heat transfer compared to a
non-pulsating configuration [2]. Such effect is related to the enlargement of the
generated toroidal vortices which cause a higher shear stresses at the wall.

In order to better understand the physics of such phenomenon and determine
the optimal forcing frequency it is fundamental to determine the modal charac-
teristics of the unforced jet flow. For this purpose, different kind of techniques
can be used: here we will make use of both modal linear stability analysis and
DMD analysis to unveil the behavior and the fundamental frequencies of the jet.

Linear modal theory [3] has been successfully used to characterize the sta-
bility and transition to turbulence in a wide range of applications, both in the
incompressible [4–9] and compressible [10] regimes. Meliga and Chomaz [9] inves-
tigated the planar impinging jet by using the linear stability theory. They pro-
posed two different adjoint-based control strategies and discussed an open-loop
control in which a small airfoil is introduced in the flow field. Yamouni et al.
[10] performed a full compressible global stability analysis of a flow over an open
cavity. Recently, Fani et al. [11] analyzed the sound generated by the flow around
a circular cylinder with particular attention to the study of the acoustic emis-
sions generated at low Mach and Reynolds numbers. The authors performed a
global stability analysis by using the compressible linearized Navier-Stokes equa-
tions (see the review paper by Fabre et al. [12] for further details). The resulting
leading modes provided detailed information related to the underlying hydrody-
namic instability and data on the acoustic field generated. The DMD analysis
is also adopted here to analyze the time-evolution of fluid flows. This technique
was first introduced by Schmid and Sesterhenn [13] and has soon received a wide
acceptance and interest from the fluid dynamics community.

Linear stability analysis and DMD can be regarded as two complementary
approaches to perform a modal analysis of fluid dynamic system. The DMD
attempts to decompose the fluid dynamic field into modes by using a series
of time snapshots of flow. Furthermore, it can be carried out, in principle, at
any Reynolds number, even when turbulence is fully developed. The necessary
time-series of data must be obtained from experimental investigations or three-
dimensional DNS computations. This is due to the fact that turbulence, with a
few special exceptions, is a three-dimensional phenomenon. The computation of a
DNS is generally expensive and its use is justified because it serves more purposes
than only that of source for DMD data. On the other hand, a linear stability
analysis can be often performed in a two-dimensional fashion when the third
homogeneity direction does not play a role in the onset of the instabilities. This
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reduces drastically the computational effort, if compared to a DNS of the same
case. However, the application range of the linear stability analysis is limited
by the transition to turbulence and by the fact it cannot take into account any
nonlinear effect.

2 Theoretical Framework

2.1 Flow Configuration and Governing Equations

We investigate the round impinging jet flow delimited by two horizontal flat
walls, as sketched in Fig. 1. The jet issues from an orifice of diameter D in the
uppermost wall and impinges on the lowermost one (target plate). The distance
between the walls is equal to 5D, whereas their temperature is kept constant at
373.15 K, higher than the total temperature of the jet core at the inlet which is
293.15 K. The remaining boundaries are outlets. The considered Newtonian fluid
is an ideal gas with a Prandtl number Pr = 0.7 and a heat capacity ratio γ = 1.4.

Fig. 1. Sketch of the computational domain, representing both the Cartesian and cylin-
drical reference systems adopted in this paper. Walls are colored in grey. D indicates
the orifice diameter.
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The flow dynamics is governed by the compressible Navier-Stokes equations1:

∂ρ

∂t
+ u · ∇ρ + ρ∇ · u = 0, (1a)

ρ
∂u

∂t
+ ρu · ∇u + ∇p − 1

Re
∇ · τ (u) = 0, (1b)

ρ
∂T

∂t
+ ρu · ∇T + (γ − 1) ρT∇ · u − γ (γ − 1)

M2

Re
τ (u) : S(u)

− γ

PrRe
∇2T = 0, (1c)

ρT − 1 − γM2p = 0, (1d)

where u(x, t) is the fluid velocity field, p(x, t) the pressure, ρ(x, t) the density,
T (x, t) the temperature, S(u) = 1

2

(∇u + ∇uT
)

is the strain tensor and τ (u) =[
2S(u) − 2

3 (∇ · u)I
]
is the stress tensor per unit viscosity. System (1a–d) is made

non-dimensional by using the incoming velocity U∞ and the related reference
density ρ∞, temperature T∞ and pressure p∞, being the last field normalized as
follows:

p =
P − p∞
p∞U2∞

(2)

with P the absolute dimensional pressure. The reference Reynolds and Mach
numbers are respectively defined as

Re =
ρ∞U∞D

μ
, M =

U∞√
γRT∞

(3)

where R is the specific ideal gas constant and μ the gas dynamic viscosity.
In order to mimic the (underdeveloped) flow issuing from a short nozzle, the

inlet velocity and temperature profiles are assumed to be described by hyperbolic
tangent functions, namely

u2 = T = − tanh
D − 2r

2Dft

/
tanh

1
2ft

, (4)

being u2 the fluid velocity in y direction, r the distance from the jet axis (sym-
metry axis) and ft = 0.1 a thickness parameter. The other components of the
velocity as well as the pressure are set to 0. The relative non-dimensional pressure
at the outlet surfaces is enforced to 0.

Taking advantage of the axial symmetry of the steady base flow, the stability
and sensitivity analysis is performed in a cylindrical reference system. Only
axially symmetric modes have been considered in this work, since it is well
known from theoretical and experimental investigations [14] that for subsonic
jets these are the dominant ones. Moreover, to avoid nonphysical reflections of
acoustic waves at the edge of the computational domain, sponges have been
implemented for both DNS and stability computations. Additional details are
available in the studies by Fani et al. [11] and Wilke and Sesterhenn [15].
1 Here, a non-conservative form of the Navier-Stokes equations is used because of their

better conditioning and because of the absence of shocks in the flow.
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2.2 Stability and Sensitivity Analysis

The stability analysis of the flow is based on the classical linear theory and
normal-mode analysis. The solution q(x, t) = {u, p, T, ρ} is expressed as the
sum of a steady state field qb(x) = {Ub, Pb, Tb, ρb}, referred to as the base flow,
and a small unsteady disturbance field q′(x, t) = {u′, p′, T ′, ρ′}, i.e.

q(x, t) = qb(x) + q′(x, t). (5)

In order to investigate the asymptotic stability of the flow, the evolution of the
perturbation is decomposed into modes of normal form [16]

q′(x, t) =
∑

i

q̂i(x) · exp(λit) + c.c. (6)

with c.c. indicating the complex conjugate. According to Eq. (5), perturbations
are described by the complex eigenmodes q̂i and the corresponding eigenvalues
λi = σi + iωi, where ωi is the eigenfrequency and σi the growth rate. By substi-
tuting Eq. (5) into Eqs. (1a–d), we obtain two sets of equations, namely one for
the underlying base flow, i.e.

Ub · ∇ρb + ρb∇ · Ub = 0, (7a)

ρbUb · ∇Ub + ∇Pb − 1
Re

∇ · τ (Ub) = 0, (7b)

ρbUb · ∇Tb + (γ − 1)ρbTb∇ · Ub − γ(γ − 1)
M2

Re
τ (Ub) : S(Ub)

− γ

PrRe
∇2Tb = 0, (7c)

ρbTb − 1 − γM2Pb = 0, (7d)

and a second one, a generalized eigenvalue problem, which provides eigenvalues
and eigenmodes of the system, i.e.

λiρ̂i + Ub · ∇ρ̂i + ûi · ∇ρb + ρb∇ · ûi + ρ̂i∇ · Ub = 0, (8a)
λiρbûi + ρ̂iUb · ∇Ub + ρbûi · ∇Ub + ρbUb · ∇ûi

+ ∇p̂i − 1
Re

∇ · τ(ûi) = 0, (8b)

ρbT̂iλi + ρ̂iUb · ∇Tb + ρbûi · ∇Tb + ρbUb · ∇T̂i

+ (γ − 1)
(
ρ̂iTb∇ · Ub + ρbT̂i∇ · Ub + ρbTb∇ · ûi

)

− γ(γ − 1)
M2

Re
[τ(ûi) : S(Ub) + τ(Ub) : S(ûi)]

− γ

PrRe
∇2T̂i = 0, (8c)

ρ̂iTb + ρbT̂i − γM2P̂i = 0. (8d)

The base flow problem (7a–d) is closed by the boundary conditions described
in Sect. 2.1. The boundary conditions for the stability problem (8a–d) are derived
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consistently. It is worth recalling, in conclusion, that a negative growth rate iden-
tifies a linearly stable mode, whereas a positive growth rate a linearly unstable
mode.

2.3 Dynamic Mode Decomposition

In the present paper we use also the DMD analysis to unveil the behavior and
the fundamental frequencies of the jet. Here, we briefly summarize the main
concepts of this theory.

Given a system that evolves over time, the dynamic mode decomposition
(DMD) allows the decomposition of its status into modes, each one associated
with a frequency and a corresponding growth or decay rate. Thanks to this
method, it is possible to approximate eigenvalues and eigenmodes of large sys-
tems whose transition matrices are unknown or hard to compute. In the following
we outline the DMD method applied to flow field data as discussed by Schmid
[17].

Let us consider a sequence of N snapshots of flow field data that are evenly
spaced in time by an interval Δt,

QN
1 = {q1, q2, q3, . . . , qN} . (9)

We assume the existence of a linear operator A that maps the i-th flow field qi

to the successive flow field qi+1, namely,

qi+1 = Aqi, (10)

being A constant over the sampling interval [0, (N − 1) Δt]. A sequence of flow
fields can then be expressed as a Krylov sequence

QN
1 =

{
q1,Aq1,A

2q1, . . . ,A
N−1q1

}
. (11)

With increasing time and thus N , it is assumed that the vectors in the sequence
QN

1 become linearly dependent. This means that with this approximation, if
N −1 is the maximum number of linearly independent flow fields, the N -th field
can be expressed as linear combination of the previous fields,

qN = a1q1 + a2q2 + . . . + aN−1qN−1 + r (12)

or equivalently
qN = QN−1

1 a + r (13)

where aT = {a1, a2, . . . , aN−1} and r the residual vector. By rewriting Eq. (9)
for N − 1 fields and left multiplying by A, one obtains

A {q1, q2, q3, . . . , qN−1} = {q2, q3, q4, . . . , qN} (14)

which, by using Eq. (12), yields

A {q1, q2, q3, . . . , qN−1} = A
{
q2, q3, q4, . . . , qN−1,Q

N−1
1 a

}
+ r

(
eN−1

)T
(15)
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or equivalently
AQN−1

1 = QN
2 = QN−1

1 S + r
(
eN−1

)T
(16)

with

eNi =

{
1 if i = N,

0 otherwise,
i = 1, . . . , N, (17)

and S a companion matrix with size (N − 1) × (N − 1),

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 a1

1 0 a2

. . . . . .
...

1 0 aN−2

1 aN−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (18)

The last column of S contains the unknown coefficients {a1, a2, . . . , aN−1}, which
express the linear representations of the last field qN in terms of the previous ones
{q1, q2, . . . , qN−1}. The eigenvalues of S approximate some of the eigenvalues
of A. The matrix A is in fact projected onto the subspace defined by QN−1

1 ,
similarly as in the Arnoldi method, where a matrix is projected onto successive
Krylov subspaces.

Although the vector a can be computed by least square solution of the Eq.
(13), a direct calculation of the modes based S is ill-conditioned and often does
not produce good results. Therefore, it is common to transform S into a similar
full matrix S̃ by means of singular value decomposition of the field sequence
QN−1

1 = UΣV H. By substituting UΣV H into Eq. (16) and rearranging, one
obtains

UHAU = UHQN
2 V Σ−1 ≡ S̃. (19)

Once the eigenvalues of S̃ are calculated, the modal structures of the dynamic
modes can be recovered by projecting its eigenvectors onto the basis U , namely

Φi = Uvi (20)

being vi the i-th eigenvector of S̃ and Φi the associated i-th dynamic mode. It is
worth recalling that the complex eigenvalues of S̃, which provide an approxima-
tion of the eigenvalues of A, can be written as λi = σi + iωi, where ωi represents
the frequency of the i-th dynamic modes and σi its growth rates.

3 Numerical Setup and Validation

The jet problem has been tackled by using two different numerical approaches.
First a full 3D DNS has been performed using an in-house highly-parallel finite-
difference code [18] and a DMD analysis has been carried out on the generated
DNS data set. Additionally, a stability analysis has been carried out using a
finite-element method based on the software FreeFem++ (https://freefem.org).

https://freefem.org


106 G. Camerlengo et al.

Results from both approaches have been used together to analyze the physi-
cal characteristics of the problem and cross-validate the numerics: a very good
agreement in terms of characteristics frequencies have been obtained, providing
important information to unveil the nature of the self sustained instability.

3.1 Direct Numerical Simulation

Direct numerical simulation is achieved by using finite-difference methods for
the spacial discretization. In particular, the 6th order compact central scheme
by Lele [19] is applied to the diffusive term, whereas the 5th order upwind
scheme by Adams and Shariff [20] is applied to the convective term. To advance
in time, a classical low-storage 4th Runge-Kutta method is implemented. The
computational domain is discretised on a rectilinear grid with 1024 points in
each direction. The grid is refined near the lowermost wall in order to ensure
a y+ < 0.6 at every first node above the wall, being y+ the dimensionless wall
coordinate. A refinement around the jet axis is also applied, which causes the
grid spacing in x and z directions to vary between 0.0099D and 0.0296D, with
D the jet diameter. For a validation of the grid in terms of Kolmogorov length
scale, the reader may refer to Wilke and Sesterhenn [15] (case #6).

At the walls, isothermal non-slip boundary conditions are applied. Inflow
conditions are enforced as discussed in Sect. 2.1. The lateral boundaries, which
serve as outlets, implement acoustically non-reflecting boundary conditions [18].
To facilitate the outflow, a sponge region is also active for r/D > 5. The sponge
acts as a forcing term in the Navier-Stokes equations that is proportional to the
difference between the instantaneous field and some local reference values. These
latter are imposed equal to the mean values in this domain region of a previous
LES carried out on a wider domain extended in the x and y directions.

3.2 Stability and Sensitivity Analysis

A finite-element method has been used to perform the stability analysis
addressed in this paper. The base flow q(x) and the perturbation eigenmodes
q̂i(x) are described on an unstructured grid obtained through the Delaunay tri-
angulation method. More specifically, the FreeFem++ built-in mesh generator
(Bamg) has been used. The numerical problem has been discretized with the help
of the FreeFem++ libraries by means of P2 elements for the velocity components
and P1 elements for the pressure, temperature and density fields. The resulting
nonlinear system of algebraic equations for the base flow has been solved by
using a Newton-Raphson scheme. The linear operator arising from Eqs. (8a–d)
has been inverted by means of the multifrontal, sparse LU solver MUMPS [21],
whereas the library ARPACK has been used to solve the associated eigenvalue
problem. The parametric tracking and computation of the leading direct and
adjoint modes has been carried out with an inverse-iteration algorithm.

The computational domain is subdivided into two zones: a physical region
and a sponge region. The first is defined as the region with 0 < r/D < 6 and 0 <
y/D < 5, whereas the latter spans 6 < r/D < 50 and 5 < y/D < 25. Following
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the approach by Rowley et al. [22], a forcing term in the form −β(x) (q − qr)
has been added to the right-hand side of the governing equations in the sponge
region, where β(x) is an appropriate damping function and qr(x) the reference
field. Different meshes have been used: the largest one consists of approximately
700,000 triangles. The parametric studies have been performed on a grid with
approximately 400,000 triangles and refined regions close to the wall and in the
jet shear layer (Fig. 2).

0 2 4 6 8 10
0

1

2

3

4

5

Fig. 2. Triangle mesh used for the stability analysis calculations. It consists of approx-
imately 400,000 triangles.

4 DNS and DMD Results

In this section results from a DNS and DMD analysis of the impinging jet at
M = 0.8 and Re = 3300 are presented.

As reported in detail by Wilke and Sesterhenn [14], it is observed that the vor-
tex dynamics in an impinging jet system strongly affects the heat transfer at the
impingement plate. In particular, primary vortices are induced within the shear
layer of the free jet by Kelvin-Helmholtz instabilities and transported down-
stream until deflected because of the high pressure around the stagnation point,
in the proximity of which they impinge the wall (see Fig. 3). Due to wall fric-
tion, counter-rotating secondary vortices are created in the impingement region,
where their coupling with the primary ones results in a local enhancement of the
heat flux through the plate.

Figure 4a shows the mean profile of the Nusselt number at the impingement
plate, defined as

Nu =
D

λΔT
q̇ (21)
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Fig. 3. Instantaneous temperature contours (blue: low temperature, red: high temper-
ature) on a xy-plane passing through the jet axis, highlighting primary and secondary
vorticity. In the bottom, contours of the Nusselt number at the target plate (black:
high heat transfer, white: no heat transfer).

(a) Mean Nu at y = 0
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(b) SPL of Nu at r/D = 1.2
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Fig. 4. Mean Nusselt number at the impingement plate (a) and average of the sound
pressure levels of its instantaneous signal recorded at r/D = 1.2 (b).

with q̇ the local heat flux at the wall, D the jet diameter, λ the thermal con-
ductivity of the gas and ΔT = 80K the difference between the temperature of
the isothermal walls and the total temperature of the jet at the inlet. The mean
Nusselt number exhibits its global maximum in the proximity of the jet axis,
whereas a characteristic inflection point can be observed at r/D � 1.2, with
r/D the non-dimensional distance from the jet axis, in the region where primary
and secondary vortices couple with the mechanism mentioned above.

In order to get insights into the characteristic frequencies of the system, a
Fourier transform of the instantaneous Nu at r/D = 1.2 has been computed and
averaged in the azimuthal direction. By observing Fig. 4b, two clear peaks can
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be recognized at St = 0.46 and St = 0.92, with

St =
Df

U∞
(22)

the Strouhal number and f the frequency.
By computing the dynamic modes of the system, the DMD enables to decom-

pose a time-series of instantaneous flow field data into frequency components,
supposing the existence of a linear operator that maps one snapshot of data with
the next one. When the effects of non-linearity are not significant, the results
of a DMD have shown to be comparable with those of a linear stability anal-
ysis of the same system. Here, we carried out a three-dimensional DMD using
120 snapshots taken every 510 time steps. This results in a sampling frequency
corresponding to a St of about 9.2. Because of the significant amount of main
memory required by the DMD algorithm, the snapshot matrix was build by tak-
ing, in each direction, every fourth data point from the full computing grid. Two
dominant DMD modes have been found with associated Strouhal numbers cor-
responding to the frequency peaks of the Nusselt number signal at r/D = 1.2,
i.e. St = ±0.46 and St = ±0.92, the second one being an harmonic of the first
one (the dominant frequency).

(a) St = 0.46 (b) St = 0.92

Fig. 5. Q contours of the dominant dynamic mode shapes (Q = ±0.8 U2
∞D) colored

with the mode shapes of the non-dimensional pressure (normalized with p∞).

Figure 5 shows the Q-component of the dominant DMD modes, being Q the
second invariant of the velocity gradient tensor. Q is related to the flow vorticity
and often employed in vortex identification techniques [23]. The structure of such
modes is axisymmetric and appears related to toroidal vortexes. In particular,
the DMD mode oscillating at St = 0.46 displays large structures related with
the primary vorticity generated in the shear layer of the free jet region. On the
contrary, the second DMD mode with St = 0.92 represents the harmonic of
the dominant mode and, as expected, exhibits small spatial structures, which
primarily appear in the wall jet region and are hence related to the secondary
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vorticity. In conclusion, DMD results clearly show the existence of a dominant
frequency (possibly with its harmonics) related to an axisymmetric self-sustained
oscillation.

(a) Velocity magnitude
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Fig. 6. Contours and streamlines of the steady-state base flow at M = 0.8 and Re =
3000.

5 Stability Analysis

In the following, results of the stability analysis of the impinging jet system are
discussed. The analysis has been performed for Reynolds numbers ranging from
1800 to 3000 and Mach numbers ranging from 0 to 0.8.

Figure 6 shows the velocity and temperature components of the base flow.
In the free jet region, the velocity in the jet core is essentially constant and
orthogonal to the impingement plate. In proximity of the intersection between
the jet axis and the wall, the jet is deviated radially because of the high pressure
of the stagnation point. Further downstream, the flow develops a slowly growing
boundary layer, until leaving the domain. The jet temperature appears constant
in the core of the free jet region, undergoes a small increment in the stagna-
tion region and nears the ambient temperature as the stream moves radially
approaching the outlet.

As regards the stability analysis, we commence by considering the sprectrum
of the eigenvalues solution of the problem in Eqs. (8a–d) for Re = 2000 and
M = 0.8 (Fig. 7a). The said spectrum features a nearly unstable eigenvalue and
the flow is therefore in these conditions nearly supercritical. The unstable eigen-
value is fairly isolated from the others and exhibits a pulsatance ω � 2.8, which
corresponds to St � 0.455. With increasing Reynolds number (Re = 2500) a sec-
ond unstable mode with a slightly lower frequency appears. Notwithstanding,
the first mode emerged remains dominant and practically retains its frequency.
At Re = 3000, five unstable modes exists, with the previously dominant mode
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(a) Spectrum at M = 0.8, Re = 2000
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(b) Spectrum atM = 0.8, Re = 3000
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Fig. 7. Spectra of the eigenvalues solution of Eqs. (8a–d). The Strouhal number is given
by St = ω/(2π), where ω is the eigenfrequency (pulsatance).
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Fig. 8. Spatial structure of the dominant mode at M = 0.8 and Re = 3000 represented
with the contours of the real parts of its components normalized with the maximum
of the axial velocity absolute value.
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maintaining the highest positive growth rate (Fig. 7b). It can be noted that its
St number matches closely that of the first dominant mode found in the DMD
analysis. In particular, the difference between the frequencies in terms of relative
error is only of about 1%.

Figure 8 shows the spatial structure of the dominant mode at Re = 3000
and M = 0.8. All the components of mode feature strong fluctuations near
the lowermost wall and, with the exception of the pressure, exhibit a similar
structure. The pressure fluctuations reach indeed their highest strength in the
proximity of the stagnation point.
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Fig. 9. Nusselt number at the impingement plate computed with the base flow (a) and
the dominant mode (b) at M = 0.8 and Re = 3000.

Figure 9 shows the distribution of Nusselt number at the impingement plate
for both the stationary base flow and the dominant mode. By comparing this
figure with Fig. 4a it is possible to appreciate the role of the unsteadiness in the
heat transfer process. Unsteady fluctuations (both related to the unstable peri-
odic limit cycle related to the dominant unstable mode and to secondary insta-
bilities and turbulent fluctuations) increase the heat-transfer efficiency reshaping
the Nusselt distribution at the wall, especially in the impingement region, where
the nonlinear interactions of the mode produce an important mean flow correc-
tion.

Let’s now analyze the effect of the Reynolds and Mach numbers on the leading
eigenmode. A parametric study has been performed and the resulting curves are
reported in Fig. 10. On the left side we can see the growth rate, whereas on the
left side the Strouhal numbers are shown. We note that the growth rate tends to
increase with M for every Reynolds number, indicating that compressibility has
a destabilizing effect on the impinging jet system. On the contrary, the Strouhal
number generally decreases with increasing Mach number. Moreover, the curves
in Fig. 10b collapses into one curve for M � 0.5. This shows that the dominant
frequency becomes independent of the Reynolds number in the high subsonic
regime, although it does not considerably change even at lower Mach numbers.
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Fig. 10. Growth rate and Strouhal number of the mode 1 (i.e. the most unstable mode
at M = 0.8 and Re = 3000) as a function of the Mach number plotted at different
Reynolds numbers.

(a) Growth rate at Re = 3000
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Fig. 11. Growth rate and Strouhal number of the dominant modes as a function of the
Mach number at fixed Re = 3000 (a, b) and of the Reynolds number at fixed M = 0.8
(c, d).
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With the help of Fig. 11 we move on to analyzing the change of growth
rates and frequencies of the four leading modes with M at fixed Re = 3000
and with Re at fixed M = 0.8. It can be observed that the growth rate at
fixed Reynolds number shows maxima and minima at different Mach numbers
(Fig. 11a). Differently, the Strouhal number trend appears more regular with
variations in M. As shown in Fig. 11c, we found that the critical Reynolds Rec
at M = 0.8 is approximately 1930. By looking at the Strouhal number change
with Reynolds for M = 0.8 (Fig. 11d), we observe that, as already found for
the most unstable mode, the frequencies of the leading modes are practically
constant with varying Re. Furthermore, the frequencies appear to be quantized
with a ΔSt � 0.065, which can be conveniently seen with the help of Table 1 for
the case with M = 0.8 and Re = 3000.

Table 1. Strouhal numbers of the unstable modes at M = 0.8 and Re = 3000.

Mode 1 Mode 2 Mode 3 Mode 4

St 0.455 0.390 0.520 0.579

6 Conclusions

We performed a dynamic mode decomposition and a global stability analysis of
compressible impinging jets in order to characterize the modal structure of the
flow. Data for the DMD analysis were calculated by means of direct numerical
simulation of the Navier-Stokes equations, carried out with at a Mach number of
0.8 and at a Reynolds number of about 3000. With respect to the global stability
analysis, we considered a range of Mach and Reynolds numbers spanning from 0
to 0.8 and from 1800 to 3000, respectively. It has been found that at M = 0.8 the
flow becomes globally unstable when Re � 2000 and, in general, compressibility
has a destabilizing effect.

The DMD analysis showed two dominant modes, with Strouhal numbers of
0.46 and 0.92, exist and that they are respectively linked with the primary and
secondary vorticity in the flow. The interaction between primary and secondary
vortices has been in fact proven crucial for the understanding of the physics of the
heat transfer at the impingement plate [14]. This finding is also supported by the
fact that the Fourier transform of the instantaneous heat flux in the region where
primary and secondary vortices couple exhibits the same peak frequencies of the
dominant DMD modes. Moreover, the frequency of the dominant DMD mode
(St = 0.46) matches closely the eigenfrequency of the dominant mode obtained
in the stability analysis (St = 0.455). In particular, their relative difference is
only of about 1%.

Thanks to the stability analysis, a quantization of the frequencies associated
with the dominant modes has been interestingly observed. This feature suggests
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that the mechanism underlying the self-sustaining mode responsible for the gen-
eration of toroidal vortices (and often at the basis of strong tonal emissions) is
caused by an acoustic resonance mechanism, as proposed by Towne et al. [24]
and detected in other configurations (see for example, Yamouni et al. [10]). As
a successive step of this work, a local stability analysis aimed at determining
the existence of retrograde acoustic modes within the jet and their interaction
with the Kelvin-Helmholtz instabilities could provide an qualitative-quantitative
description of the mechanism underlying the self-sustaining instability described
above and return important information for the design of effective and efficient
control algorithms.
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