
Shear Effects in Elastic Nanobeams

Aurora A. Pisano1(B), Paolo Fuschi1, and Castrenze Polizzotto2

1 Dipartimento Patrimonio Architettura Urbanistica (PAU),
University Mediterranea of Reggio Calabria, Via Melissari,

89124 Reggio Calabria, Italy
aurora.pisano@unirc.it, paolo.fuschi@unirc.it

2 Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali,
University of Palermo, Viale delle Scienze, 90128 Palermo, Italy

castrenze.polizzotto@unipa.it

Abstract. Small-scale, shear deformable nanobeams, subjected to
quasi-static loads, are analyzed by a nonlocal (integral) elasticity model
with the main goal to evaluate the influence of shear deformation on size
effects. To this aim a warping parametric model is considered in order to
obtain a continuous family of shear deformable beam models which span
from the Euler-Bernoulli to the Thimoshenko beam model, passing from
the Reddy model. The strain difference based nonlocal elasticity theory is
applied under the hypotheses of small displacements and isotropic mate-
rial. The results, obtained by analysing a cantilever nonlocal nanobeam,
indicate that shear deformation has a considerable influence upon size
effects.

Keywords: Nonlocal elasticity · Warping function · Shear
deformation · Nanobeams

1 Introduction

The beam theories dealing with mechanical problems affected by size effects,
nowadays widely used in the context of nano-devices such as actuators or sen-
sors, have received a renewed attention in the last decades (see e.g. [1] and
reference therein). Nonlocal approaches in the elastic realm have been proposed
in the relevant literature to handle such size effects which render the classical
local theories unable to describe diffusive phenomena related to the behavior
at a nano-scale structural level. The key idea of those nonlocal models which,
among others, are classified as nonlocal integral ones is to introduce at consti-
tutive level some internal material parameters able to describe macroscopically
phenomena arising within the micro-structure of the constituent material. In
this context a model proposed by the authors in [2] and recently applied to
solve some benchmark beam problems [3], namely the strain-difference based
nonlocal integral model of Eringen-type, is here considered to investigate on
the shear effects on nanobeams in bending. The followed rationale resembles
the ones of Reddy [4] and Polizzotto [5] within a local elastic treatment and
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is here rephrased with reference to the quoted nonlocal elastic integral model.
The peculiarities of the solution in terms of deflection, stress distribution and
shear warping of the nanobeam cross-section are discussed. In particular, the
boundary-value problem will be shown to be governed by three uncoupled inte-
gral equations, of which two—related to the beam’s axial stretching e and to the
Euler-Bernoulli curvature χEB—are Fredholm integral equations of the second
kind, the other—related to the shear curvature η —possesses strong similarity
with the former type of integral equations and can be solved using the same
numerical method. Moreover, the input terms of these governing equations are
each expressed as a linear combination of some auxiliary loading conditions with
(in total) as many constant coefficients as there are boundary conditions. Taking
profit from the linearity of the problem and of the superposition principle, an
auxiliary integral equation technique is envisioned, by which the beam’s deforma-
tions (e, χEB , η), along with the axial and transverse displacements (u,w) and
the shear angle γ are determined to within the mentioned constant coefficients,
available to accommodate the inherent boundary conditions. A warping function
is suitably fixed in order to obtain a continuous family of beam models ranging
from a nonlocal Euler-Bernoulli-type nanobeam to a nonlocal Timoshenko-type
one, passing through the so-called Reddy-type beam. A cantilever nanobeam
under a point load P at the free end is considered and the numerical solutions
are reported with particular concern to size effects and to their sensitivity to
shear deformation. The results, confirming the well known “smaller is stiffer”
phenomena overcoming some recently debated paradoxes [6], introduce some
attractive novelties in the description of normal and shear stress distributions
at the nanobeam cross section when considering shear deformation, opening the
way to future fruitful investigations.

2 Problem Position

Let us consider a beam of length L, height h and cross rectangular section of area
S. The beam is referred to Cartesian orthogonal axes (x, y, z) with x coinciding
with the beam axis, z along the beam height, y in the width direction. The
kinematics of the beam is described by the (small) displacements

ux(x, z) = u(x) − zw′(x) + Θ(z)γ(x)
uy ≡ 0, uz(x, z) = w(x) (1)

where u(x), u(y) and u(z) ≡ w(x) indicate the displacements of the beam axes,
γ(x) is the shear angle, whereas Θ(z) denotes the shear warping function. The
latter, following [5] and [7], is chosen in the form

Θ(z) := z − |z|1+ω sign(z)
(1 + ω)

(
h
2

)ω (2)

with ω warping parameter, real nonnegative value, and |z| ≤ h/2. It is easily
verified that for ω = 0 it is Θ(z) ≡ 0 which means that no warping is present,
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(as in the Euler-Bernoulli beam), whereas for ω = ∞ it is Θ(z) ≡ z that is no
warping, but with a nonzero shear rotation (as in the Timoshenko beam). The
meaningful deformation components of the beam associated to (1) are

εxx(x, z) = e(x) + zχ(x) + Θ(z)η(x)
2 εxz(x, z) = Θ′(z)γ(x) (3)

where e(x) = u′(x) (axial stretching), χ(x) = −w′′(x) (bending curvature), and
η(x) = γ′(x) (shear curvature).

2.1 Beam’s Constitutive Equations

In the follow it is assumed that the material obeys the strain-difference based
nonlocal model as described in [2] and [3], so that the stresses generated by the
strain field (3), within the isotropic elastic beam, are

σxx(x, z) = E {J [e](x) + zJ [χ](x) + Θ(z)J [η](x)}
σxz(x, z) = μΘ′(z)J [γ](x) (4)

where E = Young modulus, μ = shear modulus, whereas J is an integral operator
defined as

J [φ](x, . . .) := s(x)φ(x, . . .) − α

∫ L

0

κ(x, x̄)φ(x̄, . . .)dx̄ (5)

The kernel function κ(x, x̄) entering the integral operator J is defined as

κ(x, x̄) :=
[
Γ(x) + Γ(x̄)

]
g(x, x̄) −

∫ L

0

g(x, p)g(x̄, p) dp (6)

and depends on the influence function g(x, x̄) := 1
2� exp

(− |x−x̄|
�

)
as well as on

the weight function Γ(x) :=
∫ L

0
g(x, x̄) dx̄. Moreover, s(x) := 1 + α Γ2(x), while

φ(x, . . .) is a function of x.
Starting from Eq. (4) the beam’s constitutive equations, written in terms of stress
resultants, are

N(x) = ESJ [e](x), M(x) = EIJ [χ + a η](x) Q(x) = μScJ [γ](x)

M̂(x) = EIJ [aχ + b η](x), Q̂(x) = μSdJ [γ](x). (7)

In (7) N,M and Q denote the standard stress resultants of the shear deformable
beam, while M̂ and Q̂, defined as

[
M̂, Q̂

]

x
=

∫
S

[Θ(z)σxx, Θ′(z)σxz]x da, are
the warping stress moment and the warping shear force, respectively. Here I
is the second area moment, while the (non-dimensional) quantities (a, b, c, d)
denote the warping coefficients which, in the present case of isotropic material
and rectangular cross section, turn out to be functions of the warping parameter
ω and defined as
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[a, b] (ω) =
1
I

∫

S

[
z Θ(z),Θ2(z)

]
ω

da

[c, d] (ω) =
1
S

∫

S

[
Θ′(z),Θ′ 2(z)

]
ω

da (8)

3 The Beam Problem

The beam’s equilibrium equations and boundary conditions can be derived
through the principle of virtual power (PVP). Denoting by upper tildes the
virtual kinematic variables, the PVP reads as

∫ L

0

∫

S

(σxx ε̃xx + 2σxz ε̃xz) dadx =
∫ L

0

∫

S

(bxũx + bzũz) dadx

+
[
N̄ ũ + Q̄ w̃ − M̄ w̃′ + C̄ γ̃

]L

0︸ ︷︷ ︸
free ends

. (9)

where N̄ , Q̄, M̄ and C̄ denote assigned resultant forces and couples applied at
the free ends, while bx(x, z) and bz(x, z) are distributed body forces acting quasi-
statically. Equation (9) has to be satisfied identically for any choice of the virtual
displacements and strains complying with Eqs. (1) and (3) along with the con-
ditions ũ = w̃ = w̃′ = γ̃ = 0 at the constrained ends where u,w,w′ and γ are
specified, that is,

u = ū, w = w̄, w′ = w̄′, γ = γ̄ (constrained ends) (10)

Substituting (1) and (3) into (9) and operating in a straightforward manner, we
can obtain the field equilibrium equations of the beam as

N ′(x) + px(x) = 0
M ′′(x) + pz(x) + m′(x) = 0
M̂ ′(x) − Q̂(x) + m̂(x) = 0

⎫
⎬

⎭
∀x ∈ (0, L) (11)

where it is

px(x) :=
∫

S

bx(x, z)da, pz(x) :=
∫

S

bz(x, z)da

m(x) :=
∫

S

z bx(x, z)da, m̂(x) :=
∫

S

Θ(z)bx(x, z)da (12)
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The boundary conditions imply that at every beam end it must be:

Either u = ū and N free, or N = N̄ and u free
Either w = w̄ and M ′ free, or M ′ = Q̄ and w free
Either w′ = w̄′ and M free, or M = M̄ and w′ free

Either γ = γ̄ and M̂ free, or M̂ = C̄ and γ free

(13)

The boundary conditions of (13)4 are explicitly affected by shear warping, the
other boundary conditions are as the classical ones. It may be convenient to fix
the value of the absolute rotation φ at one end, then, since γ = φ + w′, this
condition is equivalent to γ = φ̄ + w′ at that end while M̂ is free.

Next, by integration of the differential Eqs. (11) we can obtain a closed form
representation of the class of stress resultants satisfying the field equilibrium
equations as follows:

N(x) = N0(x) + ESA1

M(x) = M0(x) +
E I

L2
(B1x + B2L)

M̂(x) =
∫ x

0

Q̂(x̄)dx̄ + M̂0(x) +
E I

L
C (14)

where the equality Q(x) = c(ω)Q̂(x)/d(ω) has been used and A1, B1, B2, C are
non-dimensional constants depending on the boundary conditions. It has been
also set:

N0(x) := −
∫ x

0

px(x̄)dx̄

M0(x) := −
∫ x

0

[(x − x̄) pz(x̄) + m(x̄)] dx̄

M̂0(x) := −
∫ x

0

m̂(x̄)dx̄ (15)

In the case of statically determinate beams the expressions of N,M, M̂,Q
prove to be uniquely determinate.

Next, substituting Eq. (7) into the left-hand side of (14), the following integral
equations can be obtained

J [e] (x) =
1

ES
N0(x) + A1 (16)

J [χ + a η] (x) =
1

EI
M0(x) +

1
L2

[B1x + B2L] (17)

J [aχ + b η] (x) − μSd

EI

∫ x

0

J [γ] (x̄)dx̄ =
1

EI
M̂0(x) +

1
L

C (18)
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Equations (16–18) constitute a set of integral equations governing the beam prob-
lem useful for the evaluation of the beam deformations e(x), χ(x), η(x). Equa-
tion (16) governs the beam axial deformation and is independent of the other
two equations. Instead, the latter two equations are mutually coupled, but they
can be rendered uncoupled by suitably changing the basic unknown variables of
the problem.
For this purpose, let us introduce a new state variable, say χEB, defined as

χEB(x) := χ(x) + a η(x), ∀x ∈ (0, L) (19)

which is meant as the bending curvature pertinent to the bending moment M(x)
in a strain-difference nonlocal shear-undeformable Euler-Bernoulli beam. After
some algebra, Eqs. (17) and (18) can be replaced by

J [
χEB

]
(x) =

1
EI

M0(x) +
1
L2

[B1x + B2L] (20)

and

β J [η] (x) − λ2

L2

∫ x

0
J [γ] (x̄)dx̄ = 1

EI M̂0(x) + 1
LC1

−a
[

1
EI M0(x) + 1

L2 B1x
] (21)

where the substitutions β = (b − a2), λ2 = μSL2d
EI and C1 = C − aB2 have

been operated. It is important to note that, since η = γ′, Eqs. (20) and (21)
are mutually uncoupled integral equations for the unknown variables χEB and
η, respectively.

4 Strategy Solution of the Governing Beam’s Equations

Taking advantage from their linearity, Eqs. (16), (20) and (21) can be suitable
solved by expressing the unknown functions e(x), χEB(x) and η(x) each as a
linear combination of auxiliary unknown functions utilizing the same constants
appearing on the r.h.s. of the governing integral equations.
Following this rationale, by posing the unknown stretching e(x) as combination
of two auxiliary response functions e0(x) and e1(x)

e(x) = e0(x) + A1 e1(x) (22)

the axial stretching Eq. (16) can be rewritten as

J [e0] (x) − 1
ES

N0(x) + A1 {J [e1] (x) − 1} = 0 (23)

Since this equation must hold for arbitrary values of A1, then two mutually
independent auxiliary integral equations are generated, that is,

J [en] (x) = Rn(x) (n = 0, 1) (24)
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where

Rn(x) :=

⎧
⎨

⎩

N0(x)/(ES) (n = 0)

1 (n = 1)
(25)

It is important to note that the function e0(x) and e1(x), as solutions of Eq. (24),
are independent of the beam’s boundary conditions.
Following the same rationale, the curvature χEB can be split as

χEB(x) = χEB
0 (x) + B1 χEB

1 (x) + B2 χEB
2 (x) (26)

that substituted in the bending Eq. (20) returns

J [
χEB

n

]
(x) = Un(x), (n = 0, 1, 2) (27)

where

Un(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M0(x)/(EI) (n = 0)

x/L2 (n = 1)

1/L (n = 2)

(28)

Equations (27) are mutually independent equations, so that, also in this case,
the auxiliary response functions χEB

0 , χEB
1 and χEB

2 can be uniquely determined
independently of the beam boundary conditions.
Finally, applying again the procedure used before, the shear deformation equa-
tion given in (21) can be substituted with the auxiliary integral equations

βJ [ηn] (x) − λ2

L2

∫ x

0

J [gn] (x̄)dx̄ = Vn(x) (n = 0, 1, 2) (29)

where

Vn(x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− 1
EI

[
aM0(x) − M̂0(x)

]
(n = 0)

−a x/L2 (n = 1)

a/L (n = 2)

(30)

in which the following positions hold true

η(x) = η0(x) + B1η1(x) + C1η2(x)
g(x) = g0(x) + B1g1(x) + C1g2(x) (31)

Here, ηn(x) and gn(x), (n = 0, 1, 2), are mutually related by the integral
equations

gn(x) =
∫ x

0

ηn(p) dp, (n = 0, 1, 2), ∀x ∈ (0, L). (32)
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Equations (24) and (27) are Fredholm integral equations of the second kind
with a symmetric, positive definite kernel, which are known to admit each a
unique solution [9,10]. Equations (29) exhibit a form more complex, however
they are linear and possess several characteristics of a Fredholm integral equa-
tion of the second kind. Notably, the solutions of the above equations can be
obtained by means of a routine numerical method, independently of the beam’s
boundary conditions. In order to solve these equations, the same numerical pro-
cedure described in [3] and [8] has been used. In particular the utilized numerical
algorithm is the Nystrom method reported by Press et al., pp. 782–785, [11]. The
solution is obtained in the form of a linear equation system, whereby the main
point is the choice of the quadrature points xi, (i = 1, 2, . . . , N), along with the
weights Wi (Gauss-Legendre quadrature rule).

Once Eqs. (24), (27) and (29) are solved and having in mind that e(x) =
u′(x), χEB = − (

wEB
)′′ (x) and η(x) = γ′(x), the axial displacement u(x),

the transverse displacement wEB(x) and the shear angle γ(x) can be calculated
through the following equations

u(x) = u0(x) + A1 u1(x) + A2 L (33)

wEB(x) = wEB
0 (x) + B1 wEB

1 (x) + B2 wEB
2 (x) + B3 x + B4 L (34)

γ(x) = g0(x) + B1g1(x) + C1g2(x) + C2. (35)

Eventually, recalling that χ(x) = −w′′(x), χEB(x) = − (
wEB

)′′ (x), and η(x) =
γ′(x), after some algebra, the beam deflection w(x) can be given the shape

w(x) = w0(x) + B1w1(x) + B2w2(x)
+ (C1 − B2) aG2(x) + (B3 + aC2) x + B4L (36)

where
wn(x) := wEB

n (x) + aGn(x), (n = 0, 1, 2) (37)

Gn(x) :=
∫ x

0

(x − x̄) ηn(x̄) dx̄, (n = 0, 1, 2) (38)

The eight constants A1, A2, B1, B2, B3, B4, C1, C2 appearing in the solving
equations are evaluated by enforcing, for each particular beam case, specific
boundary conditions.

4.1 Evaluation of the Stresses

Combining Eqs. (14) with Eq. (4)1 and noting that χ(x) = χEB(x) − aη(x) and
M(x) = EIJ [χEB ](x), the normal stresses σxx can be written as:

σxx(x, z) =
N(x)

S
+

zM(x)
I

+ E [Θ(z) − az] J [η](x) (39)
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Equation (39) can be regarded as a generalization of the Navier formula, the last
addendum being the one related to the warping effects.
On the other hands, the shear stress σxz given by (4)2 can be rewritten as

σxz(x, z) = μΘ′(z)γ(x) = μγ(x)
[
1 −

(
2 |z|
h

)ω]
(40)

The model of Eq. (40) predicts only the contribution to the shear stress propor-
tional to the shear angle γ(x), indeed no shear strain is exhibited under pure
bending conditions. To avoid this drawback, in analogy with the classical Euler-
Bernoulli beam, (40) can be replaced with a shear stress, say σeql

xz (x, z), in local
equilibrium with the normal stress given by (39). After simple algebra we obtain

σeql
xz (x, z) =

M ′(x)
βBI

[bX(z) − aY (z)] +
Q̂(x)
βBI

[−aX(z) + Y (z)] (41)

with X(z) denoting the first area moment of the rectangular cross section (B×h)
and

Y (z) :=
∫ h/2

z

Θ(z)da (42)

It is easy to show that (41) reduces to the Jourawski formula for ω → 0; at a
cross section where γ(x) = 0 it also loses the contribution from warping saving
that related to the bending moment proportional to M ′(x).

5 Numerical Application and Conclusions

A cantilever beam under a point load P at the free end is considered. For such
problem, we can write the boundary conditions in the form

w(0) = w′(0) = M(L) = 0, M ′(L) = P

γ(0) = 0, M̂(L) = 0 (43)

Moreover, the equilibrium conditions write

N(x) ≡ 0, M(x) = −P (L − x) , M ′(x) = P (44)

By the boundary conditions (43)3 and (43)4, the constants B1 and B2 are deter-
mined as

B1 = −B2 =
PL2

EI
(45)

while the boundary conditions (43)1, (43)2 and (43)5 give

B3 = B4 = C2 = 0 (46)
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Finally, from (43)6 we get

C1 =
aPL2

EI − μSdL2

EI

[
1
L

∫ L

0
J [g0](x̄)dx̄ + PL2

EI
1
L

∫ L

0
J [g1](x̄)dx̄

]

1 + μSdL2

EI
1
L

∫ L

0
J [g2](x̄)dx̄

(47)

The numerical solution of Eqs. (31) and (33) allows to get the response func-
tions γ(x) and w(x) given by Eqs. (39) and (40) respectively, after substitution
of the above determined constants pertinent to the addressed beam case.

Fig. 1. Cantilever beam under point load at the free end. Deflection ratio, (3EIw(L)/
PL3)− 1, for fixed values of h/L = 1; E/μ = 10 and α = 50, plotted as function of the
warping parameter ω and different values of internal length, �/L.

The response of the cantilever beam are reported in Figs. 1, 2, and 3(a–b).
In particular, in Fig. (1) the maximum deflection ratio [w(L) − w0(L)] /w0(L),
where w0(L) = PL3/(3EI), is plotted as a function of the warping parameter
ω, 0 ≤ ω ≤ 40, for fixed values h/L = 1, E/μ = 10, α = 50, but for different
values of the internal length /L = 0; 0.05; 0.1; 0.15; 0.2. The figure shows that
the increasing of ω causes some softening effect, which seems to be a natural con-
sequence of the fact that ω > 0 means more deformation of the Euler-Bernoulli
beam, but there is a notable stiffening effect with the increasing of /L. In Fig. 2,
the quantity μSγ(x)/P , proportional to the shear angle γ(x), is plotted as a func-
tion of x/L for different values of the warping parameter ω = 0; 1; 2; 3; 5; 10, and
for fixed values /L = 0.1; h/L = 1; E/μ = 10 and α = 50. Finally, in Fig. 3(a–
b) are reported: the normal stress ratio σxx(x, z)/σ0 and the shear stress ratio
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Fig. 2. Cantilever beam under point load at the free end; Shear angle γ plotted as a
function of x/L, for different values of the warping parameter ω, at a fixed value of the
internal length �/L = 0.1, h/L = 1; E/μ = 10 and α = 50.

Fig. 3. Cantilever beam under point load at the free end. Stress diagrams at cross
section plotted as a function of 2z/h, for different values of the warping parameter ω,
at fixed values of the internal length �/L = 0.1, slenderness ratio, h/L = 1 and for
E/μ = 10, α = 50: (a) Normal stresses σxx at x = L; (b) Shear stresses σxz (only
contribution proportional to shear angle γ) at x = L.
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σxz(x, z)/μ, respectively as a function of 2z/h at x = L. σ0 = 6PL/(Bh2) is the
maximum normal stress at x = 0 in the Euler-Bernoulli beam. It is worth noting
that, remembering Eq. (39), the normal stress addend related to the warping
effects (visible in the curves obtained for non-zero ω) gives zero contribution
to the stress resultants N(x) and M(x) at the cross section, as it has to be.
Concerning the shear stresses it can be also observed that for ω that tends to
infinity the shear stresses are the ones predicted by Timoshenko beam model.

By the observation of the numerical results it may be concluded that within
the framework of nonlocal elastic nanobeams shear deformation has a notable
influence upon size effects and a correct description of their mechanical behavior
cannot be disregarded.
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