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Abstract. We give a description of fibroblast cell diffusion in a soft tis-
sue, paying special attention to the coupling of force, matter and micro-
force balance laws through a suitable dissipation principle. To this end
we cast our framework into a multi-level schematics, comprising both
kinematics and kinetics, which is based on a characterization of the free
energy. This way we lay down first a force balance law, where force
and stress fields are defined as power conjugate quantities to velocity
fields and their gradients, then we give a species molar balance law, with
chemical potential test fields, as power conjugate quantities to the rate
of change of species concentration, and finally a microforce balance law.
The main feature of this framework is the constitutive expression for the
chemical potential which turns out to be split in a natural way into a
term derived from the homogeneous convex part of the free energy and
an active external chemical potential giving rise to the spinodal decom-
position. The active part of the chemical potential is given an expression
depending on the cell density and resembling the one defined in [29],
where it is meant to characterize an upward cell diffusion induced by cell
motility.

Keywords: Pattern formation · Cell aggregation · Motility induced
phase separation

1 Introduction

Our ultimate goal is to construct the simplest possible biomechanical model
accounting for the fibrosis pattern formation in the liver.

Fibrosis consists in collagen fiber deposition of fibroblasts migrating in the
liver tissue. These fibers turn out to be arranged in regular patterns evolving
with the disease progression.
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As a first step we plan to extend a basic diffusion model [33] for describing
active cell diffusion, i.e. an uphill diffusion driven by cell motility, and cast such
a description into a Cahn-Hilliard equation framework.

Pattern formations in biological systems and materials science is a wide
research area, comprising both the general framework setting and the evolution
analysis, where both analytical methods and numerical simulations are used for
characterizing time evolutions and pattern instabilities.

Starting from the work of Cahn [1,5,7,8,24], nucleation, solidification, and
phase separation, from topics in materials science, have been extended over the
following years to the general framework of phase-field methods [3,19], com-
prising a wide range of microstructural evolutions. A reaction-diffusion theory
for pattern formation in biological systems was proposed in 1952 by Turing in
his work on morphogenesis [35], consisting in the description of the concurrent
diffusion of two competing species. In 1972 Meinhardt and Gierer introduced
the notions of activating and inhibiting chemicals to model pattern formation
during a developmental process [21,26]. A mechano-chemical theory of pattern
formation was developed by Murray and Oster [28] based on cell adhesion to a
substrate or to the extra cellular matrix as a mechanism for pattern formation
in biological systems [29].

Recently a growing interest in motility induced phase separation has been
motivated by studies on active matter, such as bacterial biofilm formation or
tumor cell migration, or more generally on the dynamics of self-propelled parti-
cles [11,12,31,34,36].

The main feature of the framework outlined here is the derivation of the
constitutive expression for the chemical potential. It turns out to be split in
a natural way into a term derived from the homogeneous convex part of the
free energy and an active external chemical potential giving rise to the spinodal
decomposition. The active part of the chemical potential is given an expression
depending on the cell density and resembling the one defined in [29], where it is
meant to characterize an upward cell diffusion induced by cell motility.

2 Species Diffusion in a Crystal Lattice

We outline here the basic setting for describing cell diffusion in a tissue referring
to the atomic diffusion in a crystal lattice [23], as a prototype.

2.1 Kinematics, Kinetics and Species Power Balance

Let us denote by
χ : Ro → R , (1)

a time dependent deformation of a crystal lattice from the reference shape to
the current shape. Describing the intercalation distortion of a crystal lattice [25]
as a spherical tensor field

G = β
1
3 I , (2)
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with detG = β , and ruling out any plastic distortion, the accompanying elastic
distortion F is defined by the deformation gradient decomposition

Fo ≡ ∇χ = FG. (3)

It is convenient to describe the amount of intercalated b-atoms by the
concentration

c =
ρb
ρo

=
<molar density of species b per unit reference volume>

<molar density of lattice sites per unit reference volume>
, (4)

and make the assumption that it is related to the lattice volume change through

β = 1 + α (c − co), (5)

where α is a stoichiometric positive constant coefficient and co is a reference
concentration.

If we denote by ρ the molar density of lattice sites per unit current volume,
then by (4) the product c ρ is the molar density of species b per unit current
volume. For any regular subset P ⊂ R which is convected from a reference
subset Po ⊂ Ro by the same deformation (1) the rate of change of the amount
of species b will be

d

dt

∫
P

c ρ dV =
d

dt

∫
Po

c ρ detFo dV =
d

dt

∫
Po

c ρo dV =
∫

Po

ċ ρo dV =
∫

P
ċ ρ dV.

(6)
Denoting by h the molar flux per unit current area, and by h a supply

density per unit current volume, the species b molar balance law reads∫
P

ċ ρ dV = −
∫

∂P
h · n dA +

∫
P

h dV, (7)

and localizes to
ċ ρ = −div h + h. (8)

Let us set now a scalar field μ, power conjugate to the kinetic descriptor ċ ρ,
transforming the molar balance law (8) into a power balance law∫

P
μ ċ ρ dV = −

∫
P

μ div h dV +
∫

P
μ h dV ∀μ. (9)

Since
div(μh) = μ div h + h · ∇μ, (10)

we get finally the molar balance law (7) replaced by the species power balance
law ∫

P
μ ċ ρ dV = −

∫
∂P

μh · n dA +
∫

P
h · ∇μdV +

∫
P

μh dV ∀μ. (11)

Notice that μ (energy per mole) is a chemical potential, acting here just as a test
field.1 It is worth noting that equation (11) can be interpreted as the balance of
an energy transport [23].
1 Throughout the paper we will consistently denote test fields by underlying the cor-

responding symbol.



674 F. Recrosi et al.

2.2 Power Balance Laws

We can move the species power balance (11) back to the reference shape, and
get ∀Po ⊂ Ro∫

Po

μ ċ ρo dV = −
∫

∂Po

μho ·no dA+
∫

Po

ho ·∇o μdV +
∫

Po

μ ho dV ∀μ, (12)

using first the identity relating the reference and the current gradient of the
scalar field μ , which we get from

∀e (∇o μ) · e = (∇μ) · Fo e ⇒ ∇o μ = FT
o ∇μ, (13)

then replacing the current flux with the reference flux, according to the relation

ho = (detFo)F−1
o h, (14)

ho = (detFo)h. (15)

The force power balance law, ∀Po ⊂ Ro reads
∫

Po

bo · v dV +
∫

∂Po

to · v dA =
∫

Po

So · ∇o v dV ∀v, (16)

where bo and to stand for the reference bulk force density and the reference
boundary traction. The reference Piola stress So, the Cauchy stress T and the
intermediate Piola stress S turn out to be related one another by

So = (detFo)TF−T
o = β (detF)TF−T

o = β
2
3 (detF)TF−T = β

2
3 S, (17)

while the current gradient of the vector field v is related to the reference one
by the identity

∇o v = (∇v)Fo. (18)

The standard frame-invariance argument, stating that T ·∇v = 0 for any rigid
test velocity field, leads to the symmetry property of tensor T.

2.3 Free Energy Imbalance

Let us consider now any evolution of the model we are defining, i.e. any consti-
tutive process, and the corresponding force power balance

∫
Po

bo · v dV +
∫

∂Po

to · v dA

︸ ︷︷ ︸
(exchanged) external power

=
∫

Po

So · Ḟo dV, (19)

together with the species power balance
∫

Po

μ ċ ρo dV = −
∫

∂Po

μho · no dA +
∫

Po

μ ho dV

︸ ︷︷ ︸
(exchanged) external power

+
∫

Po

ho · ∇o μ dV. (20)
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Comparing the power exchanged between the matter inside any Po and the
outside with the rate of change of a free energy density per unit reference volume
ψ, we state the energy imbalance or dissipation inequality [14,23]

So · Ḟo + μ ρo ċ − ho · ∇o μ − d

dt
ψ ≥ 0. (21)

By (17), (3) and (5), the stress power term in (21) can be given the expression

So · Ḟo = β S · Ḟ +
1
3

S · F α ċ , (22)

which, since

S · F = (detF)TF−T · F = (detF)T · I = (detF) trT, (23)

simplifies to
So · Ḟo = β S · Ḟ − J p α ċ, (24)

with
J := detF , p := −1

3
trT. (25)

Therefore the inequality (21) can be rewritten as

β S · Ḟ +
(
μ ρo − J p α

)
ċ − ho · ∇o μ − d

dt
ψ ≥ 0. (26)

2.4 Free Energy Expression and Constitutive Characterization

Looking at (26) let us choose a free energy expression like the one given in
[4,16,37]

ψ = ψ̂(F, c) = ϕch(c) + β ϕe(F), (27)

which is the sum of a chemical energy density per unit reference volume, and
a strain energy density per unit intermediate volume. Defining the response
functions μ̂ and Ŝ such that

ρo μ̂(c) ċ =
d

dt
ϕch(c), (28)

Ŝ(F) · Ḟ =
d

dt
ϕe(F), (29)

the rate of change of the free energy, because of the decomposition (3) and the
assumption (5), turns out to be

d

dt
ψ̂(F, c) = β Ŝ(F) · Ḟ +

(
ρo μ̂(c) + α ϕe(F)

)
ċ. (30)

If we finally substitute (30) into (26) we get

β
(
S − Ŝ(F)︸ ︷︷ ︸

S+

) · Ḟ +
(
ρo

(
μ − μ̂(c)

) − α
(
J p + ϕe(F)

)
︸ ︷︷ ︸

ρo μ+

)
ċ − ho · ∇o μ ≥ 0. (31)
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In order for the inequality (31) to hold for any constitutive process the following
conditions must be fulfilled

μ = μ̂(c) +
α

ρo

(
J p + ϕe(F)

)
+ μ+ , μ+ ċ ≥ 0 , (32)

S = Ŝ(F) + S+, S+ · Ḟ ≥ 0, (33)

− ho · ∇o μ ≥ 0, (34)

with S+ and μ+ possibly describing dissipative mechanisms.
Notice how the coupling between diffusion and stress is described by the

expression (32) characterizing the chemical potential through the spherical part
of the Eshelby tensor [18,37]

E = −FT S + ϕe(F) I. (35)

2.5 Fick’s Law

The last condition (34) holds true if

ho = −Mo ∇o μ, (36)

with Mo a positive semi-definite tensor. Expression (36) is the reference form
of Fick’s law. By (13) and (14) the reference flux and the reference chemical
potential gradient can be transformed into the corresponding current quantities,
leading to the new expression of Fick’s law

h = −M ∇μ, (37)

where the reference and the current mobility tensors are related by

Mo = (detFo)F−1
o MF−T

o (38)

3 Cahn-Hilliard Equation

The following derivation of the Cahn-Hilliard equation is based on [22]. Similar
derivations can be found in [2,13,17,30].

3.1 Free Energy

According to [7], let us consider the diffusion of a single species with the free
energy (27) modified by an additional term

ψ = ψ̂g(F, c,∇o c) = ϕch(c) + β ϕe(F) + ϕg(∇o c), (39)

with
ϕg(∇o c) =

1
2

kg ‖∇o c‖2 . (40)

This term is called the gradient energy or the interfacial free energy [7].
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3.2 Microforce Balance Law

The rate of change of the free energy turns out to be

d

dt
ψ̂g(F, c,∇o c) = β Ŝ(F) · Ḟ +

(
ρo μ̂(c) + α ϕe(F)

)
ċ + kg ∇o c · ∇o ċ , (41)

where again the decomposition (3) together with the assumption (5) have been
used.

Since the expression above differs from (30) by the last term, we wonder what
additional term could possibly complement the power expenditure in (21). Look-
ing at the last term of (41), we guess that additional term taking the expression

ρo š ċ + ǧo · ∇o ċ, (42)

Recalling that (21) is based on the balance laws (19) and (20), in the same spirit
we should consider balancing (42) by some external power and introduce the
microforce balance law

∀Po ⊂ Ro

∫
Po

ρo š ċ dV +

∫
Po

ǧo · ∇o ċ dV =

∫
∂Po

τo ċ dA +

∫
Po

ρo s ċ dV ∀ċ.

(43)
By using the identity

divo(ċ ǧo) = ċ divo ǧo + ǧo · ∇o ċ (44)

we get (43) transformed into
∫

Po

ρo š ċ dV +
∫

∂Po

ċ ǧo · no dA =
∫

∂Po

τo ċ dA +
∫

Po

(divo ǧo + ρo s) ċ dV, (45)

from which we derive the local form

divo ǧo + ρo (s − š) = 0 on ∀Po, (46)

ǧo · no = τo on ∂Po. (47)

3.3 Dissipation Inequality

The dissipation inequality (21) with the additional expression (42) will change to

So · Ḟo + μ ρo ċ − ho · ∇o μ + ρo š ċ + ǧo · ∇o ċ − d

dt
ψ ≥ 0. (48)

Correspondingly, the inequality (26) will be replaced by

β S · Ḟ +
(
ρo (μ + š) − J p α

)
ċ − ho · ∇o μ + ǧo · ∇o ċ − d

dt
ψ ≥ 0. (49)
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If we finally substitute (41) into (49) we get

β
(
S − Ŝ(F)︸ ︷︷ ︸

S+

) · Ḟ +
(
ρo

(
μ + š − μ̂(c)

) − α
(
J p + ϕe(F)

)
︸ ︷︷ ︸

ρo s+

)
ċ

+
(
ǧo − kg ∇o c

) · ∇o ċ − ho · ∇o μ ≥ 0.

(50)

In order to get this inequality fulfilled for any constitutive process, we update
(32) to

μ + š = μ̂(c) +
α

ρo

(
J p + ϕe(F)

)
+ s+ , s+ ċ ≥ 0, (51)

keep conditions (33) and (34) unchanged, and make the additional constitutive
assumption

ǧo = kg ∇o c. (52)

We can define also ǧ by
∫

P
ǧ · ∇ċ dV =

∫
Po

ǧo · ∇o ċ dV, (53)

and get, as in (14),
ǧo = (detFo)F−1

o ǧ. (54)

3.4 Balance Law Summary

Summarizing, the current framework is characterized by the force balance law (16)
∫

Po

bo · v dV +
∫

∂Po

to · v dA =
∫

Po

So · ∇o v dV ∀v,

the species power balance law (12)
∫

Po

μ ċ ρo dV = −
∫

∂Po

μho · no dA +
∫

Po

ho · ∇o μ dV +
∫

Po

μho dV ∀μ,

and the microforce balance law (43)
∫

Po

ρo š ċ dV +
∫

Po

ǧo · ∇o ċ dV =
∫

∂Po

τo ċ dA +
∫

Po

ρo s ċ dV ∀ċ,

supplemented by constitutive prescriptions about S , ho , μ , š , ǧo , consistent
with the assumptions (33) and (34), possibly through Fick’s law (36), as well as
(51) and (52).

It is interesting to look at the local form of the balance laws above. Let us
note first that the local form (46) of the microforce balance law, after substituting
the constitutive expression (52), can be written as

ρo š = kg Δo c + ρo s. (55)
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Then let us derive the local form of the species power balance law (12)

ċ ρo = −divo ho + ho, (56)

and get, by replacing Fick’s law (36),

ċ ρo = divo(Mo ∇o μ) + ho. (57)

It is worth noting that equations (55) and (57) turn out to be coupled through
š by the chemical potential constitutive expression (51).

To make this coupling explicit we substitute the expression for š from (51)
into (55) and get

μ = μ̂(c) − s +
α

ρo

(
J p + ϕe(F)

) − kg

ρo
Δo c + s+ , s+ ċ ≥ 0, (58)

to be eventually replaced in (57).
Here we make the assumptions, as in [22],

s = 0, (59)

s+ = 0, (60)

on the whole shape Ro.
We further assume τo = 0 on the outermost boundary ∂Ro , which is equiv-

alent, by (52) and (47), to the condition ∇o c · no = 0 on ∂Ro (as in [7], where
because of a small strain assumption there is no difference between ∇o c ·no and
∇c · n ).

4 Allen-Cahn Equation

The following derivation of the Allen-Cahn equation is based again on [22], where
it is referred to also as the Ginzburg-Landau equation.

Let us keep the energy expression in Sect. 3.1 and the microforce balance law
in Sect. 3.2 unchanged. Let us remove instead the species power balance law (12)
completely.

4.1 Dissipation Inequality

As a consequence of removing the species power balance law, we should remove
the corresponding power expenditure from the dissipation inequality (21). Hence
we get (48) changed to

So · Ḟo + ρo š ċ + ǧo · ∇o ċ − d

dt
ψ ≥ 0. (61)

Correspondingly, the inequality (49) will be replaced by

β S · Ḟ +
(
ρo š − J p α

)
ċ + ǧo · ∇o ċ − d

dt
ψ ≥ 0. (62)
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If we finally substitute (41) into (62) we get

β
(
S − Ŝ(F)︸ ︷︷ ︸

S+

) · Ḟ +
(
ρo

(
š − μ̂(c)

) − α
(
J p + ϕe(F)

)
︸ ︷︷ ︸

ρo s+

)
ċ

+
(
ǧo − kg ∇o c

) · ∇o ċ ≥ 0.

(63)

In order to get this inequality fulfilled for any constitutive process, we replace
(51) with

š = μ̂(c) +
α

ρo

(
J p + ϕe(F)

)
+ s+ , s+ ċ ≥ 0, (64)

and leave conditions (33) and (52) unchanged, while removing (34).

4.2 Balance Law Summary

Summarizing, the current framework is characterized by the force balance law (16)
∫

Po

bo · v dV +
∫

∂Po

to · v dA =
∫

Po

So · ∇o v dV ∀v,

and the microforce balance law (43)
∫

Po

ρo š ċ dV +
∫

Po

ǧo · ∇o ċ dV =
∫

∂Po

τo ċ dA +
∫

Po

ρo s ċ dV ∀ċ ,

supplemented by constitutive prescriptions about S , ǧo , š , consistent with the
assumption (33), as well as (52) and (64).

Let us consider again the local form (46) of the microforce balance law,
changed into (55) by substituting the constitutive expression (52), and further
replace š with the expression (64) leading to

ρo s+ = −ρo μ̂(c) − α
(
J p + ϕe(F)

)
+ kg Δo c + ρo s, s+ ċ ≥ 0. (65)

If we make again the assumption (59) on the whole shape Ro, while character-
izing instead the dissipative term by

s+ = η ċ, η ≥ 0 (66)

we finally get

η ċ =
kg

ρo
Δo c − μ̂(c) − α

ρo

(
J p + ϕe(F)

)
. (67)

5 Active Species Diffusion

5.1 Uphill Diffusion and Aggregation

Fick’s law (36) can be transformed into

ho = −Mo ∇o μ = −∂μ

∂c
Mo ∇o c = −Do ∇o c , (68)
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where the mobility Mo, by (34), is a positive semi-definite tensor, while the dif-
fusivity Do is a positive or negative semi-definite tensor, depending on whether
∂μ/∂c is positive or negative.

The expression uphill diffusion [6] refers to the latter case where

ho · ∇o c = −Do ∇o c · ∇o c ≥ 0 . (69)

In [29] an uphill diffusion model relies on a motility mechanism based on
haptotaxis, whereby cells tend to move up a gradient of “increasing substrate
adhesion” [9,10].

A different point of view relates an uphill diffusion to a motility mechanism
based on the differential adhesion hypothesis [20,32], whereby cell-cell adhesion
is stronger for same type cells and weaker for dissimilar cells.

We rely on the differential adhesion mechanism in making the assumption
that the uphill diffusion is driven by the gradient of an active chemical potential
depending on cell density. In doing so the expression we found convenient turns
out to be very similar to expression (7) in [27] describing a cell traction due to
the interaction with the extracellular matrix.

5.2 Active Chemical Potential Constitutive Characterization

Let us consider the derivation of the Cahn-Hilliard equation in Sect. 3 and look at
the constitutive expression for the chemical potential (58). Besides the assump-
tions (59) and (60), we should use, as in [7], the regular solution model for the
free energy term ϕch and get an expression for μ̂ from (28).

Quoting from [7], p. 258: “Several different meanings are associated with
the term regular solution. We will use it to denote a solution having an ideal
configurational entropy and an enthalpy of mixing which varies parabolically with
composition.”

We will assume instead that the free energy ϕch is given by

ϕch(c) =
1
2

ρo kch cmax

(
c̄ log(c̄) + (1 − c̄) log(1 − c̄)

)
, (70)

with c̄ = c/cmax, which is just the (convex) entropic energy in the regular
solution model, leading through (28) to the chemical potential term

μ̂(c) =
1
ρo

d

dc
ϕch(c) = −kch arctanh(1 − 2 c̄). (71)

Further, we replace the assumption (59) with

s = ŝ(c, γ) = ks
γ (c − cs)

exp
(
λ (c − cs)2

) , (72)

characterizing an active chemical potential, with γ an activity control parameter.
Figures 1 and 2 show how the composition of (71) and (72) generates a

spinodal interval for the cell density. Some properties of (72) are worth not-
ing. Namely: the derivative at cs is ks γ ; the spinodal interval is defined by
cs ± 1/

√
2λ .
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−ϕs(c, γ)

ϕch(c) μ̂(c)

−ŝ(c, γ)

ϕch(c)− ϕs(c, γ) μ̂(c)− ŝ(c, γ)

Fig. 1. Active chemical potential and double well free energy.

−ϕs(c, γ)

ϕch(c) μ̂(c)

−ŝ(c, γ)

ϕch(c)− ϕs(c, γ) μ̂(c)− ŝ(c, γ)

Fig. 2. Active chemical potential with shifted spinodal and double well free energy.
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6 Numerical Simulations

We performed some numerical simulations on a toy model in the shape of a hollow
cylinder in a rigid container, leaving the end faces and the interior cylindrical
boundary free to deform, with no applied forces other than the reaction from the
container. We used COMSOL MultiphysicsR© software [15] to get a finite element
solution by implementing directly in their original form the expressions for:

• the force power balance law (16),
• the species power balance law (12),
• the microforce power balance law (43).

The strain energy ϕe in (27) has been chosen to characterize the tissue as an
almost incompressible neo-Hookean material.

We didn’t bother to choose any value for the material parameters as appro-
priate to the bio-physical problem we would like to address. Nevertheless our
aim was to get some insights about the behavior of the mechanical model aris-
ing from the framework outlined above, and devised to describe cell diffusion
and aggregation in a biological tissue.

Fig. 3. Cell density on cross sections (A).
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Fig. 4. Cell density on longitudinal sections (A).

Fig. 5. Cell density on cross sections (B).
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Fig. 6. Cell density on longitudinal sections (B).

Fig. 7. Cell density on the top longitudinal line (A).
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Fig. 8. Cell density on the middle cross section boundary (B).

The simulation consists in starting from an initial uniform cell density, corre-
sponding to cm = 6 , and let the cells migrate inside the tissue according to the
Cahn-Hilliard equation. The concentration value cs = cm marks the onset of
the spinodal decomposition, characterized by the parameters γ and λ in (72),
besides the constants kch and ks, as well as by ρo in (4) and α in (5), while
the coarsening evolution will depend on kg in (40). During the phase separation
and aggregation process the concentration cannot exceed cmax = 12 .

The pictures and graphs in Figs. 3, 4, 5, 6, 7 and 8 show two kinds of evo-
lutions, corresponding to two quite similar data sets, denoted by (A) and (B),
which differ only by an axial or circumferential modulation for γ and for the
initial perturbation of c triggering the spinodal decomposition.

The time-frames in Figs. 3 and 4, and Figs. 5 and 6 are ordered from top-
left to bottom-right, and describe by colors the density on cross-sections and
on sections parallel to the cylinder axis, respectively. These two evolutions are
exemplary since they lead to quite different stationary solutions, as the pictures
show. The graphs in Figs. 7 and 8 describe, with the same time ordering, the
evolution of the interface along a line parallel to the axis or along the boundary
of the middle cross section, respectively.
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