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Abstract. Widely known adhesion contact mechanics theories are the
Derjaguin, Muller & Toporov (DMT) and Johnson, Kendall & Roberts
(JKR) ones.

For the case of the smooth contact of elastic spheres, the Tabor param-
eter allows identifying when the DMT and JKR approaches are expected
to work.

In this paper, we demonstrate that the same scheme observed in the
contact of elastic spheres also applies in the contact of randomly rough
surfaces for which an equivalent Tabor parameter can be defined as a
function of the mean radius of the surface curvature.

Specifically, we discuss results obtained with a recent multi-asperity
contact model, the Interacting and Coalescing Hertzian Asperities
(ICHA) model, conveniently modified to take account of adhesion in
the DMT and JKR limits. From a comparison with data of the liter-
ature, we find that the model returns the correct dependence of the
adhesion-induced extra contact area on the surface energy γrrs, a quan-
tity introduced in Ref. [25] as a unique measure of the surface energy for
randomly rough surfaces.

Keywords: Adhesive contact mechanics · Fractal surfaces · DMT
theory · JKR theory

1 Introduction

“... we have to decide what is the most fundamental nature of matter. Does it
stick or not?”. This question was posed by professor Kevin Kendall in his fasci-
nating book “Molecular adhesion and its applications: the sticky universe” [1].
He introduced the so-called adhesion paradox: objects do not often stick together
but the matter they form is sticky at the molecular scale. The main cause of this
paradox is that objects surface is not smooth. Surface roughness widely reduces
the effective contact area and destroys adhesion [2]. In this respect, a tricky
challenge is to find a criterion for stickiness of rough surfaces [3,4].

In the last years, the leading role of adhesion has been recognized in several
fields. Interfacial forces dominates the contact mechanics of micro and nano
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electro-mechanical devices, because of their high surface to volume ratio [5]. In
biomedical applications it is often required to optimize adhesive properties and,
for example, the design of polymers surface is as important as their chemical
composition [6]. Sticky skills of animals, e.g. insects and gecko, are studied by
engineers with the aim of manufacturing adhesive robots [7] and dry reversible
adhesives [8–11]. Moreover, many tribological aspects, like friction, leak-rate of
seals, lubrication [12,13], are influenced by surface interactions.

One of the first work on the adhesion of elastic bodies is due to Johnson,
Kendall & Roberts (JKR) [14]. The JKR theory faithfully depicts adhesion
between soft bodies. The model assumes the presence of short-range attrac-
tive interactions acting inside the contact zone. The contact shape is modified
by these strong surface forces and adhesion leads to large elastic deformations.

Derjaguin, Muller & Toporov (DMT) proposed a different model [15]. Moving
from the Hertzian solution, the DMT theory predicts long-range interactions
outside the contact area. Contrary to what happens in the JKR model, adhesion
does not alter the contact shape, which remains equal to the Hertzian one.

The JKR and DMT theories describe the same phenomenon in two dif-
ferent limits. Tabor [16] introduced the so-called Tabor parameter μ =
[
RΔγ2/

(
E∗2ε3

)]1/3 (where E∗ is the composite elastic modulus of the spheres
and ε is the range of attractive forces) to describe the transition between the
JKR and DMT solutions. Specifically, the JKR theory applies for soft elastic
spheres with large radius of curvature (μ � 1), while the DMT theory for hard
elastic spheres with small radius of curvature (μ � 1).

Later, Muller et al. [17] describing the adhesive interactions by means of
the Lennard-Jones (LJ) law, showed that the pull-off force also depends on the
elastic properties of the contacting bodies and the values predicted by the JKR
and DMT theories occur for soft and hard media, respectively.

Even in the simple case of spherical contact, there exist complex phenomena,
such us instability at the contact jump-in and jump-off, that can be predicted
only by numerical simulations.

Both the JKR and DMT theories are formulated in the simple case of the
contact between elastic smooth spheres. However, real surfaces show roughness
that may extend on several length scales. Multiasperity models, multiscale theo-
ries and advanced numerical codes are the main instruments to extend adhesion
theory to the contact mechanics of rough solids.

In this work, we discuss an extension of the DMT and JKR theory to the
adhesion of rough surfaces. To this aim, we use a recent advanced multiasperity
model, the Interacting and Coalescing Hertzian Asperities (ICHA) model [18–
20]. Typically, a DMT based solution consists in solving the contact problem
neglecting the effect of adhesion on surface deformations, but simply scaling the
total load by a tensile attractive contribution. In a JKR based solution it is
instead necessary to model surface deformations due to adhesion.

The ICHA model differs from the pioneering Greenwood and Williamson
(GW) model [21] because it takes account of (i) the effective curvature of the
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asperities, (ii) the lateral interaction between asperities, (iii) the coalescence of
merging contact regions.

The results of the ICHA model are compared with data taken from the
literature, finding a very good agreement in both DMT and JKR limit.

2 Adhesion of Rough Elastic Media

The first attempt to study the effect of roughness on adhesion is due to Fuller
& Tabor (FT) [22]. They incorporated the JKR theory in the Greenwood &
Williamson (GW) model [21], comparing theoretical predictions of the pull-off
force to experimental measurements on rubbers.

In the GW-type models, roughness is described by spherical asperities with
the same radius of curvature. The height distribution of the asperities follows
a Gaussian law (or an exponential one). Moreover, asperities are assumed inde-
pendent of each other.

Recently, it has been proved that modelling the elastic coupling of contact
regions is fundamental to correctly simulate the contact problem [19,23]. Real
surfaces often show a more complex roughness than modeled in the GW model
and small deviations from the nominally Gaussian case can also occur (Ref. [24]).

In general, roughness of real surfaces can be described with a self-affine geom-
etry with power spectral density (PSD) of the form

C(q) = C0 for qL ≤ q < q0

C(q) = C0 (q/q0)
−2(H+1) for q0 ≤ q < q1 (1)

and zero otherwise.
In Eq. (1), C0 is the amplitude of the power spectrum, H is the Hurst expo-

nent, which is related to the fractal dimension Df = 3 − H, q =
√

q2
x + q2

y is
the modulus of the wave vector, qL and q1 are the short and long cut-off fre-
quencies, and q0 is the roll-off frequency. In the simple case of the sphere, the
Tabor parameter is very useful to identify the fields of application of the DMT
and JKR theories. For rough surfaces several authors [25–27] agree in defining
a modified Tabor parameter by replacing the radius R of the sphere with the
mean radius of curvature ρ of the surface

μT =
[
ρΔγ2/

(
E∗2ε3

)]1/3
(2)

For a fractal surface, ρ = 2/h
′′
rms, being h

′′
rms its rms curvature.

Other authors have suggested different ideas in the definition of the Tabor
parameter. For example, in Ref. [28], a generalization of the Tabor parameter to
non-spherical geometries is proposed, by exploiting an analogy with the ‘small-
scale yielding’ criterion. Specifically, if we define the width s0 of the zone where
the traction exceeds the theoretical strength σ0 = Δγ/ε by the equation

s0 =
E∗Δγ

πσ2
0

, (3)
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the JKR solution is expected to give a good approximation if s0 � amin, where
amin is the smallest linear dimension of the contact geometry. Therefore, the
Tabor parameter could be alternatively defined as

μT =
√

0.21amin

s0
(4)

where the numerical factor is introduced to ensure coincidence between the above
definition and the conventional one in the case of the sphere, with amin being
the radius of the circular contact area at pull-off.

Moreover, near full contact, Ciavarella et al. [29] suggested to use in the
definition of the Tabor parameter the size of separation areas as characteristic
dimension, rather than the contact areas.

2.1 Modeling Adhesion with the Advanced Asperity Model ICHA
in the DMT and JKR Limits

In the following, we discuss DMT- and JKR-type solutions for rough contacts,
comparing results of the Interacting and Coalescing Hertzian Asperities (ICHA)
model [18] with data taken from the literature. For details of the model the
reader is referred to the works [18,19,23].

Here, we recall that the problem is solved under controlled displacement
conditions. When an asperity gets into contact, the first estimate of the contact
radius is done by inverting the δ(a) relation, which is

δ =
a2

R
(5)

in the DMT limit, and

δ =
a2

R
−

√
2πaΔγ

E∗ (6)

in the JKR limit.
In the ICHA-DMT model [23,27,30], contact raises when the distance

between an asperity and the half-space vanishes; on the contrary, in the ICHA-
JKR model [31], jump into contact occurs when the approach reaches a critical
gap [32]

ΔON =
(
1 − 2.641μ

3/7
T

)
ε, (7)

where ε is the range of attraction of adhesive forces, close to atomic distance.
When the approach is further increased of a quantity ηi, the contact radius

is correspondingly increased of Δai = ηi/(dδ/da).
The total contact area and the total load are calculated by summing up the

contributions of all the asperities in contact. However, we observe that in the
JKR limit the total force is computed as the sum of the forces on each contacting
asperity

F =
4
3

nac∑

i=1

(
E∗a3

i

Ri
−

√
8πE∗Δγa3

i

)
. (8)
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Fig. 1. (a) The relative contact area Ā as a function of the normalized contact pressure

p∗ = p/(E∗h
′
rms). (b) The interfacial mean separation as a function of the normalized

contact pressure p∗ = p/(E∗h
′
rms). The ICHA-JKR model predictions are compared

with the GFMD solution, used as a reference. Calculations are performed on a self-
affine fractal surface with H = 0.8, qL = π/50 µm−1, q0 = π/10 µm−1, q1 = 20π
µm−1, rms roughness amplitude hrms = 0.762 µm, and Tabor coefficient μT = 3.

In the DMT limit, according to the classical DMT force approach [33], we
first calculate the total force due to the Hertzian loads on each asperity

FH =
4E∗

3

nac∑

i=1

a3
i

Ri
, (9)

then the effective total load F is obtained by subtracting to FH the total
adhesive load Fad, which is computed by the convolution of the gap prob-
ability distribution P (u) and a convenient traction-separation law σ(u) =
8Δγ
3ε

[(
ε

u+ε

)3

−
(

ε
u+ε

)9
]

(see Ref. [26])

Fad = A0

∫ ∞

0

σ(u)P (u)du. (10)

Finally, the interfacial mean separation ū is calculated by subtracting the
total approach δ to the initial separation ū0 as a self-balanced load distribution
is considered on the problem domain.

2.2 Results

Figure 1 shows predictions of the ICHA-JKR model compared with the Green
Function Molecular Dynamics (GFMD) solution by Müser [34,35], here used as
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Fig. 2. (a) The relative contact area Ā as a function of the normalized contact pressure
p/E∗. (b) The interfacial mean separation as a function of the normalized contact
pressure p/E∗. The ICHA-DMT and ICHA-JKR model predictions are compared with
the numerical solution by Ref. [26], used as a reference. Calculations are performed
on a self-affine fractal surface with H = 0.8, qL = 0.25 µm−1, q0 = 1 µm−1 and
for q1 = 16q0, 32q0, 64q0. The marker size increases with the ratio q1/q0. The rms
roughness amplitude is hrms = 0.52 nm. The Tabor coefficient for the three cases is
μT = 0.172, 0.132, 0.102.

a reference. Specifically, Fig. 1a shows a comparison in a double-logarithmic rep-
resentation about the area vs. load relation; in Fig. 1b the comparison concerns
the predictions of the interfacial mean separation.

We recall that calculations are performed on a self-affine fractal surface with
Hurst exponent H = 0.8, roll-off frequency q0 = π/10 µm−1, short frequency
cut-off qL = π/50 µm−1, and long frequency cut-off q1 = 20π µm−1. Moreover,
the root mean square (rms) height fluctuation is hrms = 0.762 µm.

Results are obtained for a surface energy Δγ = 50 mJ/m2 and a range of
attractive interactions ε = 2.071 nm. Consequently, according to the definition of
the Tabor coefficient given in (2), we obtain μT = 3. This value can be classified
as short-range adhesion [36] and hence close to the JKR limit of infinitely short-
range adhesion. We found the same behavior observed in the contact of smooth
elastic spheres, i.e., when the surface energy Δγ is sufficiently high (μT � 1)
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Fig. 3. Adhesion-induced (relative) excess contact area ΔĀ = Ā(Δγ) − Ā(0), at

a reduced pressure of p∗ = p/(E∗h
′
rms) = 0.02. The dotted line represents the

fit of the numerical predictions of the GFMD code by Muser [25]. Results are
obtained for systems with H = 0.8, and different values of the Tabor parameter.
For μT = 0.657, 0.885, 1.072 we used the ICHA-DMT model (red squares), while for
μT = 5.772, 14.541, 26.793 the ICHA-JKR one (green disks).

and elastic deformations due to the adhesion forces may not be neglected, the
JKR solution is accurate.

On the contrary, DMT-type solutions can return accurate solutions in the
opposite limit (μT � 1). In this respect, Violano and Afferrante [27] showed that
predictions with DMT-type models [23,26] of the effective interfacial binding
energy γeff , which takes account of the elastic repulsive energy, are very accurate
when compared with calculations of an “exact” theoretical solution [37].

The above arguments find confirmation in the comparison shown in Fig. 2.
Results are obtained for a self-affine fractal surface with qL = 0.25 µm−1, q0 = 1
µm−1 and rms roughness amplitude hrms = 0.52 nm. We show three cases corre-
sponding to q1 = 16q0, 32q0, 64q0 and Tabor coefficient μT = 0.172, 0.132, 0.102.
In Fig. 2 the marker size increases with the ratio q1/q0. We stress that, in the
DMT limit, the maximum tensile load, i.e. the pull-off force, is not influenced
by the truncation frequency of the power spectrum, as deeply discussed in a
very recent note [38]. In this case, we notice a very good agreement between
the ICHA-DMT predictions with the “exact” numerical ones taken from Ref.
[26] (Fig. 2a). On the contrary, results of the ICHA-JKR model are much less
accurate as we are far from the limit of infinitely short-range interaction forces.

Müser showed that “short-range adhesion or JKR-like adhesion compactifies
contact patches and smoothes contact lines” [25]. He found that the JKR regime
occurs at μT > 1, when adhesive forces are predominant within the contact zone.
He introduced a measure of the surface energy for randomly rough surfaces (rrs),
introducing the quantity

γrrs =
Δγ

E∗ρ
tanh(μT )
(h′

rms)
3 . (11)

Adhesion certainly leads to an increase of the relative contact area Ā = A/A0.
For testing if γrrs is a useful quantity to estimate adhesion-induced extra contact
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area ΔĀ, Müser conducted several numerical simulations on self-affine fractal
surfaces. He fixed the Hurst exponent and varied the Tabor parameter as well as
the surface energy. In his results, he found that ΔĀ collapses “quite nicely over
several decades in surface energies for systems including both short-range (JKR)
and long-range (DMT) adhesion”. In Fig. 3, where ΔĀ is plotted in terms of
γrrs, we show the fit of the results obtained by Müser with the GFMD code, for
the case H = 0.8 and μT ranging from 0.1 to 2.0. In particular, one can observe
the existence of a proportionality relation between ΔĀ and γrrs

ΔĀ ∝ γ0.7
rrs , (12)

that in a range in which Ā scales approximately linearly with the normalized
pressure p∗ = p/(E∗h

′
rms) becomes

ΔĀ ≈ 17γ0.7
rrs p∗. (13)

In order to assess the capability of the ICHA model for reproducing the
above trends, we conducted numerical simulations at different values of Δγ on
the surface of the contact mechanics challenge [20]. In particular, we used the
ICHA-DMT model for the lower values of μT (μT = 0.657, 0.885, 1.072), and the
ICHA-JKR one for the higher ones (μT = 5.772, 14.541, 26.793). Results are in
very good agreement with the trend obtained by Müser [25].

3 Conclusions

In this paper, we investigated the applicability of the DMT and JKR theories
to the contact mechanics of randomly rough surfaces. To this purpose, we used
a recently developed advanced multiasperity model (ICHA model) conveniently
modified to include the effect of adhesion in both the DMT and JKR limits.

We fundamentally found that, like in the contact of smooth spheres, the DMT
theory is appropriate to study the contact of hard solids with low surface energy,
while accurate results are obtained in the opposite limit (soft media with high
surface energy) with a JKR-type approach. In particular, in adhesive contact
problems involving roughness, an equivalent Tabor parameter μT can be defined
by considering the mean radius of curvature of the surface. We found that the
JKR theory is valid only for μT > 1.

Results are compared with data taken from the literature and confirm the
ICHA model is efficient and yields very accurate predictions of the main contact
quantities. In particular, it correctly reproduces the dependence of the adhesion-
induced extra contact area ΔĀ on the parameter γrrs introduced by Müser [25]
as a unique measure for surface energy of randomly rough surfaces.
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35. Prodanov, N., Dapp, W.B., Müser, M.H.: On the contact area and mean gap of
rough, elastic contacts: dimensional analysis, numerical corrections and reference
data. Tribol. Lett. 53, 433–448 (2014)
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