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Abstract. LRPH (Limited Resistance Rigid Perfectly Plastic Hinge) device is a
special steel device mainly usable to join beam elements of plane or spatial steel
frames covered by patent n. 102017000088597 at the Italian Ministry of Eco-
nomic Development and identified in the International Patent System with the
number PCT/IB2018/055766. In the framework of moment (rigid) connection,
the main fundamental innovation of LRPH consists in the mutual independence
of its own resistance and stiffness features. The device is constituted by a
sequence of three steel elements of limited length bounded by two parallel steel
plates joined up with the connected structure elements. The cross-sections of the
three steel elements are classical I sections with appropriate wing and web
thicknesses obtained by the solution of suitable optimal design problem.
Therefore, the overall device shows piecewise discrete geometric and mechan-
ical features. In order to implement this device in a frame-oriented code for the
design of both 2D and 3D frame structures, it is necessary to adopt a suitable
model based on a non-uniform cross section beam element. The latter element
should be able to reproduce the elastic and plastic behavior of the device.
Recently, in the literature it has been proposed a new inelastic beam element,
belonging to the displacement based approach and formulated for uniform
beams, based on variable displacement shape functions, whose analytic
expressions are prone to updating (smart) in accordance to the plastic defor-
mation evolution in the beam element. Aim of the paper is to utilize the relevant
smart displacement beam element approach and extend it to the case of non-
uniform beams to evaluate the nonlinear behavior of the LRPH device. The
obtained results confirm the efficacy and the feasibility of the smart displace-
ment beam element opening the way of implementing LRPH device in a FEM
code.
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1 Introduction

The devastating effects of 1994 Northridge and 1995 Kobe earthquakes evidenced
many structural problems [1, 2] in several steel moment resisting frames. Following
these problems, the researchers started to develop new strategies for improving the
seismic performance of steel connections. Mainly, two different strategies for imple-
menting structures able to control the behavior of column-beam joints can be found in
technical and scientific literature. The first strategy (see, e.g., [3–10]) is characterized
by the implementation of a connection with welded or bolted steel plates of two end
tracts of beams made of steel in proximity of the beam-column joint. Aim of this
strategy is to create suitable zones able to dissipate as much energy as possible. The
second strategy is characterized by a reduction of the end sections of the frame beams,
implementing the so-called “dog-bone” profiles, by means of cutting portions of the
flanges of an I-beam profile. Such procedure substantially aims at guaranteeing to meet
the required capacity design achieving, near the joint, a beam with lower resistance
features than those of the column. The literature on this topic is very large (see, e.g.,
[11–18]), the frames equipped with this strategy are referred to as Reduced Beam
Section (RBS) frames and many efforts have been performed mainly in evaluating the
seismic response of RBS frames also fulfilling the so-called capacity design require-
ment, nowadays present in all the international standards [19, 20]. Recently a new
development called “double reduced beam section” has been proposed in [21] with the
aim of furtherly improving the ductility behavior.

In some recent papers [22–26], some of the authors proposed an innovative device
devoted to realize a new moment connection for steel elements that, from a general
point of view, can be placed into the research area of reducing the beam flanges but
possesses further special features as it will be described in the following. The proposed
connection is a steel device, it is identified as Limited Resistance Rigid Perfectly Plastic
Hinge (LRPH) and it is covered by patent n. 102017000088597 at the Italian Ministry
of Economic Development and identified in the International Patent System with the
number PCT/IB2018/055766. Two main ideas constitute the backbone of LRPH. The
first one is that of creating a preset zone of the beam in which plastic deformations
develop leaving the remaining part of the beam in the elastic range; the second one is to
design the geometrical and mechanical features of the hinge in such a way that its
stiffness and resistance result independent of each other and suitably selected by the
designer. Further, a very important task has been that of designing a device able to
minimize the cost of the post-earthquake repair. In the papers cited above LRPH is
composed by three different parts: one inner and two outer. The inner one is mainly
characterized by flange thickness lower than the corresponding one of the outer parts
symmetrically arranged with respect to it. The mechanical model so far adopted for
LRPH has been based on a rigid-perfectly plastic hinge. A more detailed model for the
behavior of the device able to describe the real distribution of plastic deformations in
the inner part of the LRPH device, is desirable and it will be faced in the developing of
the research. A fundamental step to be performed in order to point out the applicability
of LRPH in practical engineering and design regards a suitable modeling in a FEM
code. To this aim the element adopted in the FEM model has to be able to correctly
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reproduce the main characteristics of LRPH (i.e. the geometric discontinuities and the
elastic and plastic features).

The development of plastic deformations along beam elements is studied in the
current practice by means of two different strategies proposed in literature: a
concentrated/lumped plasticity approach and a distributed plasticity model. A com-
prehensive analysis and critical discussion of the two approaches is reported in [27]
together with an extensive literature therein contained.

Recently in the literature [27–29] some of the authors have been involved in the
formulation of elastic beam elements in presence of discontinuities by means of the use
of generalised functions. The latter beam elements are able to embed different types of
discontinuities along the beam span without the introduction of any additional degree
of freedom.

On the basis of the latter studies, two innovative inelastic beam elements have been
recently formulated in the literature [30, 31]. Both include the developments of plastic
deformations by embedding generalised functions along the element span. Precisely, in
[30] the onset of plastic deformations is modeled by means of Dirac’s delta distribu-
tions in accordance to a concentrated plasticity approach. While in [31], within the
distributed plasticity approach, the plastic deformation evolution is modeled by means
of the Heaviside distribution. The latter approach, based on variable displacement
shape functions, has been proposed for uniform beams. The displacement shape
functions, differently from standard approaches, are prone to updating (smart) in
accordance to the plastic deformation evolution. For the latter reason the beam element
formulated in [31] has been addressed to as Smart Displacement Based (SDB) beam
element.

In this paper, to model the presence of LRPH at the ends of beams belonging to
frame systems, the attention is focused on the use of the distributed plasticity model. In
particular, the Smart Displacement Based (SDB) beam element proposed in [31] is
adopted and extended in order to account for the non-uniform discontinuous layout of
frames when LRPH devices are employed. The extension of the SDB beam element
presented in this work is adopted to evaluate the behavior of the LRPH device. A full
nonlinear analysis of a frame in presence of various LRPH devices suitably placed
along the frame is presented. The obtained results confirm the efficacy and the feasi-
bility of the SDB beam element opening the way towards the implementation of LRPH
device in FEM codes.

2 Geometrical and Mechanical Characteristics of LRPH

Let us consider a typical beam element to be connected to the LRPH device, and let its
cross section be inscribed into a rectangle of dimension b� h (Fig. 1(a)). Starting from
this remark, the geometry of the relevant device is assumed to be inscribed in a
parallelepiped of dimensions ‘� b� h (Fig. 1(b)). The connection with the beam
elements can be generally thought as a bolted plate and back-plate system assumed as a
perfect rigid joint. In Fig. 1(b) bolts are not showed and the thickness of the connection
plate is indicated as ‘p. The core of LRPH, as sketched in Figs. 1(b)–(c), is constituted
by a steel element whose cross-section is characterized by a piecewise geometry, with

Smart Beam Element Approach for LRPH Device 199



three different portions all showing an I-shape with constant thickness. The following
geometrical requirements characterize the device: (a) the flanges thickness of the two
outer portions is equal each other and greater than the corresponding of the inner one;
(b) the flanges of all the portions possess an unique common medium plane; (c) the
webs of the three different portions have same thickness and an unique common
medium plane. By making reference to Figs. 1(a)–(c) the following geometrical
characteristics are defined:

‘ total length of the composed section; tw web thickness;
‘o common length of the outer portions; tf ;o flange thickness of the outer portions;
‘i length of the inner portion; tf ;i flange thickness of the inner portion;
ho common total height of the outer portions; r welding radius between web and flanges.
hi total height of the inner portion;

Among the geometrical characteristics of the device reported above the welding
radius r has been introduced since, from a technological point of view, the LRPH
device is thought as obtained by welding of steel plates with suitable thicknesses.

For the developments of the paper, it is necessary to define the cross-section area,
the moment of inertia, the elastic resistance modulus and the plastic resistance mod-
ulus, respectively, for each portion of the device. Referring to the outer portions of the
LRPH these geometrical characteristics are defined by:

Ao ¼ 2btf ;o þ tw ho � 2tf ;o
� � þ pr2 ð1Þ

Io ¼ b t3f ;o
6

þ b tf ;o
2

ho � tf ;o
� �2 þ tw ho � 2tf ;o

� �3
12

þ 4r4
p
16

� 4
9p

� �
þ pr2

4
ho � 2tf ;o � 8r

3p

� �2

ð2Þ

Wel;o ¼ 2Io=ho ð3Þ

Wpl;o ¼ b tf ;o ho � tf ;o
� � þ tw

ho
2
� tf ;o

� �2

þ pr2

2
ho � 2tf ;o � 8r

3p

� �
ð4Þ

a) b) c) d)
y

z

h hio

tf,o tf,i

b

Fig. 1. Sketch of LRPH device: (a) Typical I-shaped steel beam element; (b) 3D view;
(c) typical cross-section; (d) lateral view.
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The same quantities referred to the inner portion are obtained from Eqs. (1)–(4)
simply substituting the geometrical characteristics with subscript “o” with the corre-
sponding ones of the inner portion (subscript “i”). Since in this paper attention is paid
only to the bending behavior of LRPH and due to assumption (see Fig. 1) that
tf ;i \ tf ;o (which implies Wpl;i \ Wpl;o and Mpl;i \ Mpl;o), the resistance limit of the
device is given as follows

Mpl;i ¼ aMpl ¼ aWplr0 ð5Þ

being a a suitably chosen scalar, Wpl the plastic modulus of the cross section of the
connecting beam (characterized also by the flanges thickness tp and by the moment of
inertia Ip) and r0 the yield stress of the considered elastic-perfectly plastic material.

The main idea behind LRPH is to obtain a device substituting a portion of a beam
to determine a local reduction of the limit resistance without any variation in the
stiffness features. To this aim the device geometry must fulfill the following require-
ments: (a) it becomes a perfect plastic hinge when the acting bending moment reaches a
selected suitable value Mpl;i (i.e. selecting a suitable value for a \ 1); (b) for acting
bending moment lower than Mpl;i the overall elastic behavior of the device coincides to
a great extent with that of the part of the beam replaced by the device; (c) the overall
length of the device should be the smallest as possible. The geometric parameters
influencing the described requirements are mainly ‘o, ‘i, tf ;o, tf ;i. From one side, a high
value of ‘i is desirable in order to guarantee the onset of the plastic hinge in the inner
portion. From other side, in order to fulfill requirements (b) it is necessary that also ‘o
and tf ;o possess adequate values. Finally, both ‘o and ‘i determine the overall length of
the device (requirements (c)). Other important remarks are that the onset of the plastic
hinge is strongly influenced by tf ;i and that the lower this value the lower is that of the
bending moment activating the onset. Finally, the web thickness tw does not influence
significantly the bending behavior of the device and in the numerical applications it will
be assumed equal to that of the profile characterizing the connecting beam. An
important remark is that, as reported in [25, 26], LRPH resistance and stiffness remain
independent of each other. The above reported remarks clearly emphasize the role of ‘i
on the correct operation of the device which has been deeply discussed in [26]. In the
referenced paper it has been assumed ‘i ¼ b̂ �H (being b̂ � 1 a shape ratio and �H the
greatest transverse dimension of the beam to be connected) and the effects of different
values of b̂ on the overall behavior of the LRPH have been deeply investigated,
verifying that for b̂ � 0:5 the onset of the plastic hinge is ensured. As an example of
the stress distribution inside the LRPH, the von Mises stress map, obtained by a
suitable 3D FEM model in ABAQUS environment, in the case of an IPE 270 shape is
sketched in Fig. 2. This result is obtained for an S235 steel grade, for an a ¼ 0:8 and
b̂ ¼ 0:5. An examination of this figure confirms the presence of boundary effects due
to sudden change of cross section, but these effects do not influence the overall pre-
scribed behavior of the device. Many other 3D FEM model have been analyzed con-
sidering different shapes for the cross section (for complete details on the model as well
as on the results see [26]) but, for brevity’s sake, they are not reported in this paper.
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3 The Smart Displacement Based (SDB) Beam Element
for Discontinuous Beams

3.1 A Model for Discontinuous Euler-Bernoulli Beams

The LRPH device, discussed in the previous section is composed of three different
parts, one inner and two outers, and, for the mentioned purposes it is inserted along the
axis of beam elements. The inner core is specifically designed to undergo plastic
deformations. An appropriate nonlinear analysis of the latter assemblage should hence
deal with beam elements characterised by cross section discontinuities and also by
stiffness decay of the LRPH inner core due to the onset of plastic deformations. Along
axis discontinuity of beams are usually dealt with by formulating the governing dif-
ferential equations over portions of the beam and enforcing the relevant continuity
conditions between adjacent segments. Alternatively, within the context of the FEM, a
single FE is adopted to model each beam portion between two discontinuities. Fur-
thermore, when a nonlinear displacement based FE approach is adopted, the adopted
displacement shape functions do not account for the stiffness variations of the beam
elements and are invariant with the analysis. To overcome the latter problems a pre-
liminary mesh refinement is required or, alternatively, an a-posteriori sub-discretisation
during the nonlinear analysis must be introduced. In order to provide an improvement
against the mentioned beam discretisation, by avoiding any continuity condition and a
sub-discretisation of discontinuous elements, some of the authors devoted attention to
the study of beams with stepped variations of the bending stiffness [32]. On the basis of
the latter study the formulation of linear two node finite elements embedding different
types of singularities also by adopting the classical Timoshenko theory to account for
the shear deformations [31, 32] has been also provided. However, the attention in the
latter two papers was devoted to the explicit evaluation of the influence of possible
discontinuities on the solution of the linear elastic problem. A full treatment of the
nonlinear elastic problem of discontinuous beams is still subject under development.
The evolution of the latter discontinuous two node finite elements for the nonlinear
plastic analysis under the restricted hypothesis of Euler-Bernoulli beam model (by
neglecting the shear deformation) has been presented in [31] where the displacement

Fig. 2. Von Mises stress map for IPE 270 profile, an a ¼ 0:8 and b̂ ¼ 0:5.
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shape functions update during the analysis in accordance to the plastic deformation
evolution. The latter approach is further developed in this section to embed the dis-
continuities due to LRPH devise along beam elements. The development herein pre-
sented, although affected by the limitation of neglected shear deformation, can be
considered an intermediate step before the formulation of the model of discontinuous
beam including the shear-flexural coupling nonlinear behavior. The nonlinear behavior
of shear deformable beams has been modeled in literature in [33–36] where the
problem related to the interaction of shear and axial stress has been studied with regard
to reinforced concrete beams however in absence of discontinuities

The beam model, with along axis variable axial E xð ÞA xð Þ and flexural E xð ÞI xð Þ
stiffness, capable of capturing the effect of stepped cross sections by means of the use
of generalised functions (distributions), is adopted in this work. E xð Þ; A xð Þ; I xð Þ rep-
resent the Young modulus, the area and the moment of inertia of the cross section at
abscissa x spanning from 0 to the length L of the beam, respectively. The beam model
under consideration is characterised by n segments with abrupt stiffness changes and
can be formulated by making use of the well know Heaviside (unit step) generalised
function U x� xj

� �
, as follows:

E xð ÞA xð Þ ¼ E0A0 1�
Xn

j¼1
bx;j � bx;j�1

� �
U x� xj
� �h i

ð6aÞ

E xð ÞI xð Þ ¼ E0I0 1�
Xn

j¼1
bz;j � bz;j�1

� �
U x� xj
� �h i

ð6bÞ

In Eqs. (6a, 6b), xj indicates the abscissa along the beam axis where the j-th cross
section change occurs, bx;j � bx;j�1 and bz;j � bz;j�1 denote the relevant axial and
bending stiffness abrupt variations with respect to the reference values E0A0 and E0I0,
respectively, where E0; A0; I0 represent the reference values of the Young modulus, the
area and the moment of inertia of the cross section, respectively. The stepped beam
model introduced in Eqs. (6a, 6b) implies that the beam is composed of n segments
with axial stiffness EjAj, j ¼ 1; . . . ; n, assuming bx;j ¼ E0A0 � EjAj

� �
=E0A0 and flex-

ural stiffness EjIj, j ¼ 1; . . .; n, where bz;j ¼ E0I0 � EjIj
� �

=E0I0.
The static governing equations of the Euler-Bernoulli beam with stepped variations

of the cross section depicted in Fig. 3a subjected to axial px xð Þ and transversal pz xð Þ
load distributions, in view of Eqs. (6a, 6b), can be formulated as follows:

E0A0 1�
Xn

j¼1
bx;j � bx;j�1

� �
U x� xj
� �h i

u0x xð Þ
n o0

¼ �px xð Þ ð7aÞ

E0I0 1�
Xn

j¼1
bz;j � bz;j�1

� �
U x� xj
� �h i

u00z xð Þ
n o00

¼ pz xð Þ ð7bÞ

where the apex indicates the differentiation with respect to x and ux xð Þ, uz xð Þ are the
axial displacement and the transversal deflection functions.

Equations (7a), (7b) can be integrated by accounting for the properties of the
Heaviside generalised function and the following expressions for ux xð Þ and uz xð Þ are
obtained:
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ux xð Þ ¼ a1 þ a2g2 x; bx;j
� � þ g3 x; bx;j

� � ð8aÞ

uz xð Þ ¼ c1 þ c2x þ c3f3 x; bz;j
� � þ c4f4 x; bz;j

� � þ f5 x; bz;j
� � ð8bÞ

where the functions g2 x; bx;j
� �

; g3 x; bx;j
� �

; f3 x; bz;j
� �

; f4 x; bz;j
� �

; f5 x; bz;j
� �

are depen-
dent on the parameters bx;j and bz;j and are reported in the Appendix for convenience.

Equations (8a, 8b) represent the explicit solution of the axial and transversal dis-
placement in terms of cross section stiffness discontinuities that do not require any
along axis discretisation. The latter explicit solution can hence be easily adopted for the
definition of a linear finite beam element embedding the cross-section discontinuities.

However, when portions of the beam undergo plastic deformations a further
variation of the axial and flexural stiffness must be accounted for during a nonlinear
analysis. The same model introduced in Eqs. (6a, 6b), together with the solution in
Eqs. (8a, 8b), may serve the latter purpose to conduct a nonlinear step-by-step analysis.
In fact, the spatial evolution of the stiffness at pre-established Gauss integration points
can be studied with the stepped beam model by adding further discontinuities. Fur-
thermore, a variation of the parameters bx;j and bz;j, in accordance to the tangent
stiffness provided by the adopted plastic constitutive law, must be introduced. The
stepped beam model, for the case of presence of LRPH at both ends of the beam,
including discontinuities due to cross section variations and to stiffness decay origi-
nated by onset of plastic deformations at Gauss integration points, is depicted in
Fig. 3b.

In the next sub-section, the formulation of a nonlinear SDB beam element capable
of account for plastic deformations due to both axial and transversal displacements will
be presented.

3.2 The Nonlinear Smart Displacement Based (SDB) Beam Element

A beam element, connecting joints i and j, is defined in the x; z plane as shown in
Fig. 3. The nodal displacements qk, k ¼ 1; . . . ; 6 as in Fig. 4a, and the nodal forces Qk,
k ¼ 1; . . . ; 6, as in Fig. 4b, are collected in the vectors qe, Qe respectively.

Fig. 3. (a) Stepped axial-flexural beam; (b) Beam element with LRPH and Gauss-control
integration points.
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The definition of the proposed discontinuous beam element, in accordance to the
displacement based approach, is obtained by formulating the so called displacement
shape functions Nk xð Þ, k ¼ 1; . . . ; 6, providing the contributions of unit boundary
displacements to the axial ux xð Þ and transversal uz xð Þ displacements as follows:

uz xð Þ ¼
X4

j¼1
Nj x; bz;j
� �

qj ð9aÞ

ux xð Þ ¼
X6

i¼5
Nj x; bx;j
� �

qj ð9bÞ

where the shape functions Nk xð Þ, k ¼ 1; . . . ; 6 have been derived by the solution in
Eqs. (8a, 8b) by imposing unit boundary displacements to evaluate the integration
constants and are given by:

N1 x; bz;j
� � ¼ 1� f

0
4 L; bz;j
� �
j

f3 x; bz;j
� �þ f

0
3 L; bz;j
� �
j

f4 x; bz;j
� � ð10aÞ

N2 x; bz;j
� � ¼ xþ �Lf

0
4 L; bz;j
� �þ f4 L; bz;j

� �
j

f3 x; bz;j
� �þ �f3 L; bz;j

� �þ Lf
0
3 L; bz;j
� �

j
f4 x; bz;j
� �

ð10bÞ

N3 x; bz;j
� � ¼ f

0
4 L; bz;j
� �
j

f3 x; bz;j
� �� f

0
3 L; bz;j
� �
j

f4 x; bz;j
� � ð10cÞ

N4 x; bz;j
� � ¼ � f4 L; bz;j

� �
j

f3 x; bz;j
� �þ f3 L; bz;j

� �
j

f4 x; bz;j
� � ð10dÞ

N5 x; bx;j
� � ¼ 1� 1

g2 L; bx;j
� � g2 x; bx;j

� � ð10eÞ

N6 x; bx;j
� � ¼ 1

g2 L; bx;j
� � g2 x; bx;j

� � ð10fÞ

where the external load has been neglected and the following position has been made:

Fig. 4. Nodal degrees of freedom (a) and dual forces (b) of the element.

Smart Beam Element Approach for LRPH Device 205



j ¼ f3 L; bz;j
� �

f
0
4 L; bz;j
� �� f4 L; bz;j

� �
f
0
3 L; bz;j
� � ð11Þ

Equations (9a, 9b–11) show the dependency of the displacement shape functions
on the discontinuity parameters bx;j and bz;j in view of the definition of the functions
g2 x; bx;j
� �

; g3 x; bx;j
� �

; f3 x; bz;j
� �

; f4 x; bz;j
� �

; f5 x; bz;j
� �

as reported the Appendix.
Based on the formulation of the displacement shape function in Eqs. (10a–10f) the

vector of generalised deformation components d xð Þ ¼ e0 xð Þ vy xð Þ� �T
, collecting the

axial deformation e0 xð Þ of the beam geometrical axis and the curvature vy xð Þ of the
proposed plane beam element, can be expressed in terms of nodal displacements, by
accounting for the standard Euler-Bernoulli model relationships, as follows:

d xð Þ ¼ B x; bð Þqe ð12Þ

where the matrix B x; bð Þ, also dependent on the discontinuity parameters bx;j and bz;j
collected in the vector b for conciseness, is defined in terms of derivatives of the
displacement shape functions as follows:

B x; bð Þ ¼ 0 0 0 0 N
0
5 x; bð Þ N

0
6 x; bð Þ

�N 00
1 x; bð Þ �N 00

2 x; bð Þ �N 00
3 x; bð Þ �N 00

4 x; bð Þ 0 0

� 	
ð13Þ

During the inelastic analysis the beam element is subjected to a nonlinear state
determination at suitably chosen Gauss points located at xGj , j ¼ 1; . . . ; n, where the
plastic constitutive laws are integrated according to an incremental approach. The
weights wj, j ¼ 1; . . . ; n, associated by the integration procedure to each Gauss point,
are representative of the lengths of the beam segments with decayed stiffness due to the
plastic deformations.

A crucial step in the formulation of the proposed element consists in the evaluation
of the stiffness variation and the consequent updating of the parameters bx;j, bz;j,
j ¼ 1; . . . ; n, at each step. The displacement shape function defined in Eqs. (10a–10f)
are hence subject to updating together with the parameters bx;j, bz;j, j ¼ 1; . . . ; n, and,
for this reason, they are addressed to as Smart Displacement Shape Functions (SDSF).

3.3 The Element Stiffness Matrix by Means of a Fibre Approach

According to a fibre approach, each Gauss cross section is discretised into nf strips
(denoted as fibres), as in Fig. 5, characterised by an area Af , f ¼ 1; . . . ; nf and a non
linear uniaxial stress- strain constitutive behaviour.

By assuming the principle of planar section conservation, and in view of Eq. (12),
providing the generalised deformation component expressed in terms of nodal dis-
placements qe, the axial strain ex xð Þ of each fibre is written as:
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ex x; zf
� � ¼ a zf

� �
B x; bx; bz
� �

qe ð14Þ

where the row vector a zf
� � ¼ 1 zf½ �, dependent on the distance zf of the f-th fibre

from the beam axis, has been introduced.

By standard application of the principle of virtual displacements, and successive
adoption of the Gauss integration scheme, the element stiffness matrix Ke bð Þ is
obtained as follows:

Ke bð Þ � L
Xn

r¼1
BT xGr ; b

� �
k xGr
� �

B xGr ; b
� �

wr ð15Þ

As result of the adopted SDSF, the element stiffness matrix Ke bð Þ, differently from
the classical displacement-based approach commonly adopted in the literature, depends
on the variation of the shape functions which are updated according to the discontinuity
parameter vector b. The inner matrix k xð Þ appearing in Eq. (15), evaluated at the Gauss
cross sections, represents the cross-section stiffness matrix and is given, due to the
adopted fibre discretisation, as follows:

k xð Þ ¼
Xnf

f¼1
aT zf

� �
ET x; zf

� �
Af a zfð Þ

¼
Pnf

f¼1 ET x; zf
� �

Af
Pnf

f¼1 ET x; zf
� �

Af zfPnf
f¼1 ET x; zf

� �
Af zf

Pnf
f¼1 ET x; zf

� �
Af z2f

" #
ð16Þ

The cross section stiffness matrix k xð Þ at each Gauss cross section is evaluated by
performing a parallel integration of the uniaxial nonlinear constitutive laws at each fibre
in the step-by-step analysis that delivers the current tangent stiffness modulus ET x; zf

� �
appearing in Eq. (16). Finally, once integration of the nonlinear constitutive laws has
been performed at fibre level, the updating of the discontinuity parameters bx;j, bz;j,

Fig. 5. Fibre discretization of cross section according to a 2D formulation.

Smart Beam Element Approach for LRPH Device 207



j ¼ 1; . . . ; n, collected in the vector b, is obtained straightforwardly in terms of the
components of the cross section stiffness matrix k xð Þ as follows:

bx;j ¼ 1� 1
E0A0

Xnf

f¼1
ET xGj ; zf


 �
Af þ

Xnf

f¼1
ET xGj ; zf


 �
Af zf

dvy
de0

� 	
ð17aÞ

bz;i ¼ 1� 1
E0I0

Xnf

f¼1
ET xGj ; zf


 �
Af zf

de0
dvy

þ
Xnf

f¼1
ET xGi ; zf

� �
Af z

2
f

" #
ð17bÞ

The step-by-step evaluation of the discontinuity parameter vector b, in accordance
to Eqs. (17a, 17b), allows the updating of the SDSF in Eq. (10a–10f), the deformation
matrix B x; bð Þ in Eq. (13) and the element stiffness matrix Ke bð Þ in Eq. (15). The smart
character of these matrices allows the adoption of a single SDB element for each beam
endowed with LRPH able to capture the diffusion of plasticity along the inner portion
avoiding any cumbersome sub-discretisation.

4 Application

An important case, often faced in practical engineering, concerns the replacement of
masonry panels (or portions of them) steel frames endowed with suitable stiffness. This
case is focused on in this section by following the approach described in the foregoing
ones. The selected case is sketched in Fig. 6 where the corresponding geometric and
mechanical characteristics are also reported.

The first performed step has been the evaluation of the push-over curve of the
masonry panel reported in Fig. 6. An examination of this figure reveals that the panel
shows an elastic behavior until a base shear equal to 1132 kN, while the ultimate base
shear is equal to 1183 kN. From this curve it has been deduced the elastic stiffness of
the masonry panel (equal to 188.60 kN/m), necessary to suitably design the equivalent
steel frame. The results of this design led to IPE 750 � 196 and IPE 750 � 173
profiles for the columns and beam, respectively.

An important remark is that the limit elastic base shear and the ultimate one are
very close to each other with a very flat post-elastic behavior of the push-over curve. As

Fig. 6. Masonry panel considered in the application.
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a consequence, it has been decided to design four LRPH devices (located at the basis of
the columns and at the ends of the beam) in such a way that the four plastic hinges arise
simultaneously. To this aim, the bending moments acting at the selected sections where
the LRPHs are to be introduced, have been evaluated, resulting equal to 1260.00 kNm
and 782.66 kNm for the column basis and the end sections of the beam, respectively.
The design of LRPHs has been performed by following the optimal procedure
described in [26], taking into account three different values of b̂ ¼ 0:3; 0:4; 0:5,
assuming r ¼ 0:7tw and are reported in Table 1.

An examination of the results reported in Table 1 immediately reveals that in all the
cases the overall length ‘ of each LRPH ranges between the 15% and 25% of the length
of the element in which the device has to be positioned. This remark shows many
drawbacks of the actual results of the LRPH design, the main of which is that Mpl;i is
selected as the bending moment acting at the selected end of the structural element
while, due to the geometric dimensions of LRPH, the inner part of the device is not
close to this end. In order to avoid this drawback and taking into account that the
overall stiffness of LRPH does not change if the inner part is moved at one end of the
device (i.e. the LRPH shows a non-symmetric geometric outline), it has been decided
to perform the analysis with SDB model in the case of non-symmetric LRPH.

Once the frame equipped with LRPH has been fully characterized, it has been
modeled by means of the SDB beam elements proposed in Sect. 3 capable of
embedding the geometric cross section discontinuities as well as the stiffness changes
due to the nonlinear plastic behavior. The push-over curves of the frame without LRPH
devices and that of the frame equipped with non-symmetric LRPH devices have been
evaluated and compared with that of the masonry panel as sketched in Fig. 7. An
examination of this figure allows the following remarks: (a) the curves for different b̂
coincide; (b) the overall behavior of the frame equipped with non-symmetric LRPH is
satisfactorily close to that of the masonry panel.

Table 1. LRPH geometric characteristics (mm).

Characteristic b̂ ¼ 0:3 b̂ ¼ 0:4 b̂ ¼ 0:5
Column Beam Column Beam Column Beam

ho 770.00 762.00 770.00 762.00 770.00 762.00
hi 730.05 716.21 730.05 716.21 730.05 716.21
tf ;o 57.04 53.47 57.04 53.47 57.04 53.47
tf ;i 17.52 7.67 17.52 7.67 17.52 7.67
‘o 113.81 269.15 151.74 358.87 189.68 448.59
‘i 231.00 228.60 308.00 304.80 385.00 381.00
‘ 458.62 766.91 611.49 1022.54 764.36 1278.18
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5 Conclusions

The present paper has been devoted to check the applicability of the distributed
plasticity approach to model the presence of LRPH in frame structures. In particular,
the Smart Displacement Based (SDB) beam element has been adopted and extended in
order to account for the non-uniform discontinuous layout of frames when LRPH
devices are employed. The proposed approach has been applied to the case of the
design of a steel frame, equipped with LRPH, replacing a masonry panel with the same
elastic and limit resistance of the panel. The obtained results confirm the great capacity
of the LRPH device to design structures with prescribed mechanical characteristics as
well as the efficacy and the feasibility of the numerical modeling by means of SDB
beam elements.
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modelling of new materials and structures for the solution of 2020 Horizon challenges” (2017–
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Fig. 7. Comparison of the obtained results.
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Appendix

In this Appendix the expressions of the functions g2 x; bx;i
� �

; g3 x; bx;i
� �

; and
f3 x; bz;i
� �

; f4 x; bz;i
� �

; f5 x; bz;i
� �

, dependent on the parameters bx;i and bz;i and appearing
in Eqs. (7a, 7b) of the main text, are reported:

g2 xð Þ ¼ �x�Pn
i¼1

bx;i
1�bx;i

� bx;i�1

1�bx;i�1


 �
x� xið ÞU x� xið Þ

g3 xð Þ ¼ � p 2½ �
x xð Þ
E0A0

�Pn
i¼1

1
E0A0

bx;i
1�bx;i

� bx;i�1

1�bx;i�1


 �
p 2½ �
x xð Þ � p 2½ �

x xið Þ� �
U x� xið Þ

f3 xð Þ ¼ x2 þ Pn
i¼1

bz;i
1�bz;i

� bz;i�1

1�bz;i�1


 �
x� xið Þ2U x� xið Þ

f4 xð Þ ¼ x3 þ Pn
i¼1

bz;i
1�bz;i

� bz;i�1

1�bz;i�1


 �
x3 � 3x2i xþ 2x3i
� �

U x� xið Þ

f5 xð Þ ¼ p 4½ �
z xð Þ
E0J0

þ Pn
i¼1

1
E0J0

bz;i
1�bz;i

� bz;i�1

1�bz;i�1


 �
p 4½ �
z xð Þ � p 4½ �

z xið Þ� �
U x� xið Þ

�Pn
i¼1

bz;i
1�bz;i

� bz;i�1

1�bz;i�1


 �
p 3½ �
z xið Þ x� xið ÞU x� xið Þ

where p k½ �
x xð Þ, p k½ �

z xð Þ indicate the k-th primitive functions of the relevant external load
distributions px xð Þ, pz xð Þ, respectively.
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