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Abstract. This paper analyses the linear elastic coupling of a frame
structure and a rigid block aimed at improving the dynamic behaviour
of the frame. A multi-storey frame structure, modelled as a two-degree of
freedom linear system, is connected by an elastic device to a rigid block.
The nonlinear equations of motion of the coupled-system are obtained by
a Lagrangian approach and successively numerically integrated to anal-
yse the behaviour of the coupled system. Simulations are performed using
harmonic excitation as forcing term. The results are summarized in gain
maps. The maps show the ratio between the maximum displacements or
drifts of the coupled and uncoupled systems in the plane of the system’s
parameters. The results of the numerical simulations show that there
are wide regions of the parameters where the coupling may be effective.
Experimental simulations are then performed to verify the actual effec-
tiveness of such a coupling. A scaled shear-type 2 d.o.f frame coupled with
an aluminium rigid block is sinusoidally forced by an electro-dynamic
long-stroke shaker. The system’s response in terms of displacements is
measured by no-contact optical/laser sensors. The experimental tests
confirm the effectiveness of the coupling as expected by the analytical
model.

Keywords: Visco-elastic coupling · Rocking rigid block · Gain
coefficients and maps · Experimental investigation

1 Introduction

After the pioneering work [1] that examined the stability of a standalone slender
block subject to a base motion, several papers analysed the dynamics of rigid
blocks. Both the seismic excitation [2,3] and other kinds of ground excitation,
such as harmonic or impulsive one-sine excitation were considered in [4–6]. A
general formulation for the rocking and slide-rocking motions of freestanding
symmetric rigid blocks is proposed in [7,8]. Three-dimensional blocks were stud-
ied in [9,10], whereas other papers investigated the dynamics of rigid blocks in
a general way as in [11].
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In recent years many studies have regarded the coupling of rigid block with
other mechanical system in order to protect the block from overturning. An
example is the use of base anchorages [12,13]. Other examples are [14,15] where
the efficiency of the base isolated system was studied. A mass-damper dynamic
absorber in the shape of a pendulum was used by different authors [16–19],
who demonstrated the general effectiveness of this kind of protection device.
Instead, in [20–22] a mass-damper modelled as a single degree of freedom and
running on the top of the block was considered as safety device. Not only passive,
but also active or semi-active devices were used to improve the dynamic and
seismic performances of blocks. For example [23] studied the use of semi-active
anchorages using feedback-feedforward strategies to increase the acceleration
required to topple a reference block. Papers [24] and [25] used an active control
technique based on the Pole Placement method to increase the amplitude of the
base excitation able to topple a rigid block.

It is not frequent the use of rocking rigid block as protecting device of other
kinds of structures. Recently some authors have considered a rigid coupling
between a frame and a rocking wall, in order to improve the seismic behaviour
of the frame [26]. Instead, in [27], the visco-elastic coupling of a frame structure
and a rigid block aimed at improving the dynamic behaviour of the frame is
studied under harmonic excitation.

This paper analyses the behaviour of a 2 d.o.f. shear-type frame structure
coupled with rigid block both theoretically and experimentally. An elastic device
connects the block to the structure. The nonlinear equations of motion of the
coupled-system are obtained by a Lagrangian approach, then they are numeri-
cally integrated to investigate the response of the coupled system. A parametric
analysis is performed and the results summarized in a behaviour map. It shows
the ratio between the maximum displacements or the drifts of the coupled and
uncoupled systems in the plane of the system’s parameters. Such map allows an
immediate understanding of the effects of the block that has a beneficial effect
when the ratio of the displacements is less than unity. Experimental simulations
are performed to verify the effectiveness of such a coupling. A scaled shear-
type 2 d.o.f frame elastically coupled with an aluminium rigid block is harmon-
ically driven by an electro-dynamic long-stroke shaker. The system’s response,
in terms of displacements, measured by no-contact and optical/laser sensors, is
post-processed by means of the software MATLABR© and MathematicaR©. Then,
both experimental and theoretical results are compared.

2 Motivations of the Study

Frame structures can be coupled with other mechanical systems (i.e., mechan-
ical devices or other structures) to improve their behaviour under external
loads. Some examples of such mechanical systems are oscillating masses working
as tuned mass dampers, dynamic mass absorbers and elasto-plastic dampers.
Among others possibilities, a rocking rigid block can be used to improve the
dynamic and seismic behaviour of a frame structure. For example, the authors
in [26] consider a rigid coupling between a frame and a rocking wall that has the
same height of the frame.
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This paper considers a non-rigid connection between the frame and the block.
Figure 1 shows a scheme of the coupled mechanical system. The block can be
shorter than the frame. In the presented model the connection between the
block and the frame is at the first storey, the lowest one. The paper aims at
investigating the possibility to improve the dynamics of the structure standing
above the connection point by means of an external rocking block.

It is implicitly assumed that a two-degree of freedom linear system can be
used as model for a multi-storey frame structure as in [28,29].

0.00 0.00
CD

Fig. 1. Coupling between a frame structure and the rocking wall (CD: Coupling
Device).

3 Mechanical Model of the Experimented System

A scaled shear-type 2 d.o.f frame is coupled with a rocking rigid block by means
of a linear elastic device, which connects the first storey of the frame to a point
on the vertical side of the block. The block has a mass M = ρ×2b×2hb×s, where
ρ = 2450 kg/m3 (aluminium) and s is the dimension orthogonal to the plane of
the figure. Figure 2 shows the geometrical configuration and characteristics of
the coupled mechanical system.

3.1 Equations of Motion

It is assumed that the block cannot slide, therefore only rocking motions can
occur. Consequently, three Lagrangian parameters fully describe the motion.
Such parameters are the displacements (relative to the ground) of the two d.o.f.
system u1 and u2, and the rotation of the block ϑ. Figure 2b shows the positive
directions of the three Lagrangian parameters. Two sets of three equations of
motion, which describe the motion of the system when the block rocks around
either the left corner A or the right corner B, have to be obtained. For the sake
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Fig. 2. Mechanical system: (a) geometrical characterization of the system; (b)
Lagrangian parameters (positive directions).

of brevity, in this section, only the relationships needed to describe the motion
of the system, when the block is rocking around the left corner A are reported.

The positions of the mass centres of the bodies are evaluated with respect
to an inertial reference frame with origin in O, initially coincident with the left
base corner A of the block (Fig. 2a). The positions of the mass centres G1 and
G2 of the two d.o.f. structure are:

xG1(t) =

⎧
⎨

⎩

xg(t) − d − dG + u1(t)
h1

0

⎫
⎬

⎭
; xG2(t) =

⎧
⎨

⎩
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0

⎫
⎬

⎭

(1)

The position of the mass center C of the block during a rocking around the
left corner A reads:

xC(t) =

⎧
⎨
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0
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⎬

⎭
+

⎡
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b
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0

⎫
⎬

⎭
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where the matrix is the rotation tensor of the block. The kinetic energy of the
mechanical system during a rocking motion of the block around the left corner
A reads:

T =
1
2

[
2∑

i=1

mi

( .
xGi(t) · .

xGi(t)
)

+ JC

( .

θ(t) · .

θ(t)
)

+ M
( .
xC(t) · .

xC(t)
)
]

(3)

where m1 and m2 are the masses of the 2 d.o.f. system; θ̇(t) =
{

0, 0, ϑ̇(t)
}T

and JC is the polar inertia of the block with respect to its center of mass.
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In order to evaluate the potential energy for a rocking motion around the corner
A, the distance vector between the couple of points W, K has to be evaluated.
It is required to compute the potential energy associated to the elastic device
with stiffness kC . Such a distance vector reads:

xWK(t) = xK(t) − xW (t) =

⎧
⎨

⎩

d − Sinϑ(t)h1 − u1(t)
−h1 + Cosϑ(t)h1

0

⎫
⎬

⎭
(4)

The potential energy of the system then reads

V = [Mg (xC(t) − x̄C) · j] + 1
2

[
k1u1(t)

2 + k2(u2(t) − u1(t))
2
]
+

1
2

[

kC

(√
xWK(t) · xWK(t) − d

)2
] (5)

where k1 and k2 are the stiffness of the 2 d.o.f. system; g is the gravity acceler-
ation; j = {0, 1, 0}T is the unity vector of the y-axis; x̄C = {b, hb, 0}T is the
positions of the mass center corresponding to the minimum potential energy of
the system. Since x̄C in Eq. 5 is constant, it consequently plays no role in the
derivation of the equations of motion.

The damping of the 2 d.o.f. system is modelled through two linear viscous
dashpots with damping coefficients c1 and c2. The virtual work ∂W of the non-
conservative viscous forces has to be considered to obtain the Lagrangian equa-
tions of motion; it reads

∂W = − [c1u̇1(t) δu1(t) + c2 (u̇2(t) − u̇1(t)) (δu2(t) − δu1(t))] (6)

Finally, the equation of motion can be obtained by:
[

d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi

]

δqi = δW (δqi), ∀δqi �= 0; (i = 1, 2, 3) (7)

where L = T − V is the Lagrangian function, (q1, q2, q3) = (u1, u2, ϑ) and
(δq1, δq2, δq3) = (δu1, δu2, δϑ). The equations of motion then read:

−kC (d − h1 sin θ − u1)

(√
d2−2(d−u1)h1 sin θ−2du1−2h12 cos θ+2h2

1+u2
1−d

)
√

d2−2(d−u1)h1 sin θ−2du1−2h12 cos θ+2h2
1+u2

1

+ (c1 + c2) u̇1 − c2u̇2 + (k1 + k2) u1 − k2u2 + m1 (ẍg + ü1) = 0
− − − − − − −−

c2 (u̇2 − u̇1) + k2 (u2 − u1) + m2 (ẍg + ü2) = 0
− − − − − − −−

JAθ̈ + cos θ (bgM − hbMẍg) − M sin θ(bẍg + ghb)+

kCh1 ((u1 − d) cos θ + h1 sin θ)

(√
d2−2(d−u1)h1 sin θ−2du1−2h12 cos θ+2h2

1+u2
1−d

)
√

d2−2(d−u1)h1 sin θ−2du1−2h12 cos θ+2h2
1+u2

1
= 0

(8)
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where JA is the polar inertia of the block with respect to the right base corner A
and the dependence on time t is removed to make the equation more readable.
The equations of motion referring to a block that rocks around the right corner
B can be obtained similarly.

3.2 Uplift and Impact Conditions of the Block

The uplift of the block around point A takes place when the resisting moment
MR = Mgb, due to the weight of the block gets smaller than the overturning
moment MO = −Mẍg(t)hb + [kCu1(t)] h1 due to the inertial force and to the
elastic one of the internal coupling device. All these moments are evaluated with
respect to the base point A (Fig. 2a). By vanishing the sum of the two previous
moments, it is possible to obtain the external acceleration ẍg able to uplift the
block. Such an acceleration reads:

ẍg =
g

λ
+

kCu1(t)h1

Mhb
(9)

where λ = hb/b is the slenderness of the block. In absence of the coupling with
the device, the uplift condition is the same of a stand-alone block.

During the rocking motion, when the rotation ϑ(t) approaches zero, an
impact between the block and the ground occurs. Post-impact conditions of the
rocking motion can be found assuming that the impact happens instantly, the
body position remains unchanged and the angular momentum is maintained. The
post-impact angular velocity is equal to ϑ+ = ηrϑ̇−, where r = (JO − 2b Sy)/JO

is the restitution coefficient equal to that of stand-alone blocks (JO is the polar
inertia of the block with respect to one of the two base corners; Sy = Mb is
the static moment of the block with respect to a vertical axis passing through
one of the two base corners); η is a coefficient less than unity, introduced to
include a further loss of mechanical energy. Such a coefficient has been experi-
mentally determined by identifying several experimental and numerical free rock-
ing motions. The analysis has provided the value η = 0.978.

4 Parametric Analisys

A parametric analysis is performed to investigate the behaviour of the coupled
system by numerically integrating the equations of motion. The parameters con-
sidered in this analysis are the circular frequency of the harmonic excitation Ω
and the coupling stiffness kC = βk1.

The harmonic excitation used in the analyses is ẍg(t) = As sin (Ωt) , 0 ≤ t ≤
tmax, where As is the amplitude of the harmonic excitation and tmax is the max-
imum time used in the numerical integrations (tmax = 120 s). The comparison
among numerical and experimental results is performed in stationary conditions,
after that the transient dynamics is vanished due to the damping of the system.
Since the mechanical system is nonlinear, its behaviour depends on the ampli-
tude As of the excitation. A fixed value of the amplitude is taken As = 1.01g/λ,
which is slightly greater than the uplift value of the stand-alone block.
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4.1 Frame and Block Characteristics

Both the numerical and the experimental analyses are performed on a scaled
2 d.o.f. model. With reference to Fig. 2, the geometrical characteristics of the
mechanical system are shown in Table 1, whereas the mechanical characteristics
of the system are shown in Table 2.

Table 1. Characteristics of the block.

Storeis 2b (m) h1 (m) h2 (m) hb (m) s (m)

2 0.05 0.2 0.496 0.2 0.10

Table 2. Characteristics of the 2 d.o.f. frame.

k1 (N/m) k2 (N/m) m1 (kg) m2 (kg) ξ1 ξ2

213.44 56.45 1.062 1.062 0.010 0.035

In Table 2, ξ1 and ξ2 are the damping ratios of the 2 d.o.f. shear-type frame.
All the quantities in Table 2 are directly measured (m1 and m2) or identified
through preliminary free motion of the uncoupled frame (k1, k2, ξ1 and ξ2).

4.2 Gain Coefficients

The displacement u1 and the drift u2 − u1 are used as indicators to evaluate
the dynamic performance of the system. The smaller u1 and u2 − u1 are, the
greater the effectiveness of the coupling with the block is. As done in [28], two
gain parameters are then introduced:

α1 =
max |u1(t)|
max |ũ1(t)| , α2 =

max |u2(t) − u1(t)|
max |ũ2(t) − ũ1(t)| (10)

where the displacements ũ1 and ũ2 refer to the uncoupled frame structure. If
the parameters of Eq. 10 are less than unity, the coupling between the frame
structure and the rocking block is beneficial for the frame structure. This paper
aims to study the effects of the coupling on the part of the structure standing
above the connecting point with the block (super-structure), therefore only α2

is evaluated. The parametric analysis provides the gain map that represents the
values of α2 in a specific parameters plane.

4.3 Gain Map

The gain map is the contour plot of the gain coefficient α2. The parameters are
the circular frequency of the harmonic excitation Ω and the stiffness ratio β of
the coupling device.
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Fig. 3. Evaluation of the effectiveness of the coupling: (a) gain map of the coefficient
α2; (b) gain surface of the coefficient α2.

In Fig. 3a the gain map of the coefficient α2 is shown. Inside the light grey
region, α2 is less than unity. Hence, this region, which is named gain region,
represents combinations of the parameters for which the coupling with the rigid
block is beneficial for the structure. In particular a minimum value of the coef-
ficient α2 = 0.3 can be reached. This means that a 70% reduction of the drift
of the coupled system with respect to the drift of the uncoupled system can be
achieved. Inside the dark grey region the coefficient α2 is greater than unity and
no advantage from the coupling occurs. As can be observed in Fig. 3b, the gain
surface (whose projection on Ω − β plane is the gain map of Fig. 3a) presents
two relative maxima in points M1 and M2. They are located in the dark grey
region and correspond to resonance conditions between the harmonic frequency
and the frequency of the first coupled mode of the linearised system. Even if the
system is nonlinear, the smallness of the rocking angle during the motion makes
its behaviour very close to that of a linear system. In the first coupled mode of
the linearised system the frame lower storey and the block move in phase, thus
causing a worsening of the behaviour of the coupled system with respect to that
of the uncoupled one (see [27]).

In order to investigate how the coupling works, the time-histories of coupled
and uncoupled system are analysed. Figure 4 shows the time evolution of the
drift u2 − u1 of both coupled and uncoupled system (left graphs) and of the
displacement u1 and the angle ϑ (right graphs). Both graphs in Fig. 4a refer
to the point A in Fig. 3a, which is located in a relative minimum point of the
α2 gain surface. As can be observed, the time-history of the drift of the coupled
system has a maximum amplitude smaller than the drift of the uncoupled system.
Very interesting is the observation in the same graph of the time-histories of the
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displacement u1 of the coupling storey and of the rocking angle ϑ. By taking
into account the positive directions of the Lagrangian parameters (see Fig. 2b),
the first storey and the block move almost in counter-phase. In such a case the
block works as a Tuned Mass Damper for the structure. The time-histories of the
point B (Fig. 4b), located in a point of the map where α2 is greater than that in
the point A, show a smaller reduction of the coupled drift than the uncoupled
one. The observation of the evolution of u1 and of ϑ highlights the fact that the
first storey and the block does not move in counter-phase, but neither in phase.
As a consequence, there is a lower ability of the block to reduce the drift of the
structure than the previous case. The time-histories of the point C (Fig. 4c), that
is located very close to boundary of the gain region of the map in Fig. 3a (where
α2 = 1), show a further worsening of the effectiveness of the coupling. In fact, the
maximum amplitude of the drifts of the coupled and of the uncoupled systems
are almost the same. On the contrary, the evolution of u1 and ϑ show that in
this case the first storey and the block move almost in phase, thus vanishing the
effect of the coupling.

5 Experimental Tests

The experimental investigation has been performed in the laboratory Ana-
lytical, Numerical, Experimental Models for Civil Engineering (ANEMCE),
which is a section of the Dynamics Laboratory of the Department of Civil,
Architectural-Construction and Environmental Engineering (DICEAA) at Uni-
versity of L’Aquila, Italy,

5.1 Experimental Setup

A number of challenging tasks have to be tackled in designing the experimental
apparatus, aiming to a reliable investigation of the frame-rigid block nonlinear
behaviour. Concerning the system under test, the rigid block is supported by
an adjustable base (Fig. 5c), sliding over two guides anchored to the base of
the frame. The movable base is equipped with two sharp-edged profiles, which
allow the block to rock without sliding. The coupling spring is inserted in a thin
rod, equipped with a hook on one side, avoiding instability of the spring under
compression; The hooked end is locked with a catch on the first storey of the
frame, while, on the other side, the rod is free to slide inside a flared hole, made
in the block’s centre of mass (Fig. 5a). The spring is fixed on both the hook and
the rigid block (Fig. 5b).

Concerning the experimental setup (Fig. 5d), the frame’s base is anchored
to a wheeled support, pushed by an electrodynamic shaker, which is driven
via a power control unit (amplifier) and a function generator having a con-
trollable frequency and gain. Two high-resolution Laser sensors (Micro-Epsilon
optoNCDT 1420) are used as contact-free devices for tracking the displacements
of the two storeys. Measurements, observed via an oscilloscope and a spectrum
analyser, are acquired by a digital computer data acquisition system storing real
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Fig. 4. Time-histories of the coupled and uncoupled system: (a) characteristics labelled
with A in Fig. 3a (Ω = 15; β = 0.4); (b) characteristics labelled with B in Fig. 3a
(Ω = 14; β = 0.4); (c) characteristics labelled with C in Fig. 3a (Ω = 17.5; β = 0.4)

time outputs at the sampling interval of 1/400 s. A filter unit is implemented to
cut off high frequencies induced by some overall noise. The recorded response is
post-processed by means of the software MATLABR© and MathematicaR©.

5.2 Gain Spectra

Gain spectra provide the gain coefficients α1 or α2 versus the frequency of the
harmonic excitation. They formally are sections of the gain map (or of the gain
surface), shown in Fig. 3. In the following section the interest will be focused on
the sole α2 gain spectrum.

Three experimental tests were performed, considering three different values of
the coupling stiffness kC (i.e. three values of β), in order to obtain three different
gain spectra. The experimental results are compared with three corresponding
sections of the gain map, labelled with S1, S2 and S3 in Fig. 3. In order to obtain
the experimental gain spectra, four different frequencies are considered for each
value of the coupling stiffness; specifically Ω = 12.5, 15.0, 17.5 and 20.0 rad/s are
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(a)

(b)

(c)

(d)

Fig. 5. Details of the structure under test; (a) connection between the block and the
spring (the spring is held by the head of a screw inserted in the rigid block); (b)
connection between the first storey and the rigid block; (c) adjustable base, sliding over
two guides anchored to the base of the frame; (d) an overall view of the experimental
setup.
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considered. During the tests, the time-histories of the total displacements u1 and
u2 of both coupled and uncoupled system are acquired. The α2 gain coefficient
is the ratio of the drifts u2 − u1 of the coupled and uncoupled system.

Figure 6 shows three gain spectra, each one referring to different stiffness
ratios β. Two different curves are reported in each graph. Solid line represents the
gain spectrum obtained by the numerical integration of the mathematical model,
whereas dashed line represents the gain spectrum obtained by the experimental
investigation. It is useful remarking that the numerical curves (solid line) are
section of the gain map in Fig. 3. Specifically, section S1 refers to β = 0.25,
section S2 refers to β = 0.64, whereas section S3 is obtained for β = 0.97.

The gain regions in each spectrum (the regions below the reference dash-
dotted line passing through unity) are well described by the experimental results,
since they are sufficiently close to the numerical curves. However, outside the
gain regions, the numerical results show a faster growth than the experimental
ones. For example, the numerical spectrum obtained for β = 0.25 (upper left
graph) has a maximum at about Ω = 18.5. On the contrary, the experimental
spectrum does not have a maximum in the range of the investigated frequency.
This maximum value may correspond to the resonance condition between the
frequency of the excitation and the frequency of the first linearised coupled
mode, where the block and the first storey of the frame move in phase. Hence,
the advantage from coupling vanishes and the gain coefficient α2 is maximum.

Fig. 6. Gain coefficient spectra are obtained for three different values of β. Continuos
line represents the gain coefficient obtained from the analytical model and the dashed
line represents the gain coefficient obtained from the experimental data.
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In the other graphs, the numerical spectrum never reaches the resonance con-
dition, since it is located outside the range of the considered frequencies Ω. On
the contrary, the experimental spectra never show a maximum inside the inves-
tigated frequencies. The growth that they manifest outside the advantage region
is slower than the numerical curves. This fact is possibly related to differences
among the real and numerical frequencies of the first linearised mode, mainly
due to imperfections of the real system. The friction among helical springs and
rod, the small planarity defect of the impacting surface of the block, the not
perfect symmetry of the block, shift the frequency of the first linearised coupled
mode, outside the investigated window.

6 Conclusions

A 2 d.o.f. shear-type system is elastically coupled with an aluminum rocking
block to improve the dynamics of the frame. The nonlinear equations of motion
were obtained by a Lagrangian approach and successively numerically integrated
to analyze the behavior of the coupled system. The coupling with the block
was considered beneficial for the frame structure when there is a reduction in
the displacements of the structure. Simulations were performed considering a
harmonic excitation. The results were summarized in a gain map plotted in the
system’s parameters plane. The characterizing parameters are the frequency of
the harmonic excitation and the stiffness of the coupling device. The gain map
provides the ratio of the maximum drift of the coupled and of the uncoupled
systems. When this ratio is less than unity the coupling with the block improves
the dynamics of the frame structure. Results have shown the existence of a large
advantage region in the parameters plane, where the coupling is beneficial for
the system.

Experimental simulations were performed to verify the effectiveness of the
frame-block coupling. The same mechanical system, investigated in numeri-
cal simulations, was experimentally tested by means of a harmonically driven
electro-dynamic long-stroke shaker. The response of the experimental system,
arranged in gain spectra (i.e. sections of the previous gain map), were com-
pared with the numerical sections. The comparison confirms the rightness of
the analytical model in predicting the actual behaviour of the experimental sys-
tem. Moreover, it gives an attestation of the capability of rocking rigid blocks in
improving the response of a linear frame system.
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