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Abstract. Operational Modal Analysis (OMA) is one of the most used tech-
nique to study structures under environmental excitations, for the purpose of
structural health monitoring, acceptance test and model updating. In OMA, the
modal parameters are obtained only from the measured data using environ-
mental vibrations as unknown input (e.g. wind load, micro-tremors, traffic) and
without any artificial excitations applied on the structure. One of the advantages
of OMA technique is the possibility to test large-scale structures, which are
impossible to test by using artificial excitations, and to provide a modal model
under operating conditions, meaning within true boundary conditions, actual
forces and vibration levels. Other advantages of OMA are the velocity and
cheapness to make the tests, and the possibility to detect close-spaced modal
shapes. One of the most used methods in OMA is the Stochastic Subspace
Identification (SSI). It relies on an elegant mathematical framework and robust
linear algebra tools to identify the state-space matrix from raw data. As a result,
non-linear optimization problems are avoided. Moreover, the use of well-known
tools from numerical linear algebra, such as Singular Value Decomposition and
LQ Decomposition, leads to a numerically very efficient implementation. In
order to obtain accurate modal parameters estimations, some user-defined
parameters need to be properly set. In this paper, Data-Driven Stochastic Sub-
space Identification (DD-SSI) method and its sensitivity to two user-defined
parameters are investigated. These parameters are, namely, the number of block
rows in Hankel matrix and the selection of the length of the data acquired and
used in the identification process. In order to establish a standardization on the
use of these parameters for reliable system parameters identification, a sensi-
tivity analysis has been conducted on real scale building vibration data.
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1 Introduction

In recent years, the dynamic identification of civil structures is becoming increasingly
important especially for existing buildings, because it allows to study the behaviour of
a system under real boundary conditions. The dynamic identification is applied in
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several applications, such as structural health monitoring [1–4], structural control [5–
9], system and damage identification [10–12], acceptance tests and model updating of
FE models [13].

Dynamic identification consists in evaluating modal parameters of the system
examined, such as natural frequencies, modal shapes and damping ratios, by using
experimental data obtained during tests.

Basically, the dynamic identification can be performed by means of two different
approaches. The first one is the so called Experimental Modal Analysis (EMA) in
which the identification of modal parameter is evaluated by applying a measured input
on the system and measuring its response. The input can be applied by using impulse
hammers, mechanical exciters and shaking tables [14–16]. One of the disadvantages of
this technique is that the excitation generated by using impulse hammers or shakers is
too small for the case of large-scale structures with low frequency range, so not all the
structure could be excited.

The second approach, developed in last years, is the Operational Modal Analysis
(OMA) in which the modal parameters are obtained only from the measured data using
environmental vibrations as unknown input (i.e. wind load, micro-tremors, traffic),
without any artificial excitations applied on the structure [17].

The OMA method provides a modal model under operating conditions, with true
boundary conditions, actual forces and vibration levels. Another advantage of OMA is
that it does not interfere with the use of the structure, so it can be used during tests. The
algorithms used in OMA assume that the input forces are stochastic in nature. This is
often the case for civil engineering structures like buildings, towers, bridges and off-
shore structures, which are mainly loaded by environmental random forces.

This paper is focused on one of the most used OMA method, namely Data-driven
Stochastic Subspace Identification (SSI). This method allows to evaluate all modal
parameters (frequencies, mode shapes and damping ratios) also in the case of closely
spaced modes, overcoming the limitations of other OMA methods (e.g. Peak-Peaking
method).

In recent years, a lot of researchers have analysed the main aspects of SSI methods
and the applicability to different case studies. In [18], the SSI method has been used for
model updating of a FE model of a cable-stayed footbridge. It has been applied on
identification of a turbine blade in [19] and on an eleven spans concrete bridge sub-
jected to weak environmental excitations in [20].

The identification results depend on some user-defined parameters, i.e. the number
of block row i of the Hankel matrix, the model order n, the length of the acquired signal
used in the identification process. In [21], the influence of the model order and the
number of block rows on the accuracy and precision of modal parameter estimates has
been investigated by using the SSI method, whereas in [22] a formula for determining
the minimum value of the number of block row i of the Hankel matrix is derived. This
formula is based on the lowest frequency of the system under test and on the sampling
frequency of the acquired signals.

In this paper, two of the most important aspects of the SSI method have been
investigated: the influence of the choice of the number of block rows i in Hankel matrix
and the selection of the length of the data acquired using Stochastic Subspace Iden-
tification method (SSI Data-driven). Particularly, both aspects have been studied
simultaneously in the identification process results.
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The aim is to find an optimal value of these parameters in order to increase accuracy
in the identification process and to reduce the computational burden. This last feature
becomes important when OMA techniques are used for early detection of structural
faults or into a continuous automated structural monitoring framework [23, 24].

In the first part of this paper, the SSI method and stabilization diagram for the
evaluation of the real mode of vibration of the structure are explained. Then, a case
study of a reinforced concrete building sited in Alcamo (Sicily, Italy) is introduced, on
which the SSI method is used for the dynamical identification and the results are
compared to those obtained by means of Enhanced Frequency Domain Decomposition
Method (EFDD) [25, 26]. After a description of the structure, of the acquisition system
and the data processing, the influence of the number of block rows i in Hankel matrix
and of the length of the signal used in dynamic identification using SSI method are
studied. Then, the results of the dynamical identification using SSI and EFDD methods
are compared. Finally, some conclusions are drawn.

2 Data-Driven Stochastic Subspace Identification Method

Stochastic Subspace Identification algorithms have become very common in system
identification in recent years. These techniques are very appealing because they are
based on robust linear algebra instruments and on an elegant mathematical framework
to identify the state-space matrix from the raw data. Moreover, the use of numerical
linear algebra operations, like Singular Value Decomposition (SVD) and LQ decom-
position, leads to a numerically efficient realization, so non-linear optimization prob-
lems are not necessary.

The dynamic behaviour of a structure can be expressed by the second order dif-
ferential equations of motion expressed by:

�M½ � €x tð Þf gþ �C½ � _x tð Þf gþ �K½ � x tð Þf g ¼ f tð Þf g ð1Þ

where €x tð Þf g, _x tð Þf g, x tð Þf g are the vectors of acceleration, velocity and displacement,
respectively; �M½ �, �C½ �, �K½ � denote the mass, damping and stiffness matrices, f tð Þf g is
the forcing vector.

State-space models allow to convert the second order problem, governed by
Eq. (1), into two first order problems, defined by the state equation and observation
equation, obtained from the equation of motion by some mathematical manipulations.

Defining the state vector as [17]:

s tð Þf g ¼ _x tð Þf g
x tð Þf g

� �
ð2Þ

the state equation and the observation equation in discrete-time space model, in the
case of OMA, can be written as:
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skþ 1f g ¼ A½ � skf gþ wkf g ð3Þ
ykf g ¼ C½ � skf gþ vkf g ð4Þ

where skf g is the discrete-time state vector yielding the sampled displacement and
velocities; ykf g is the sampled output, A½ � is the discrete state matrix, C½ � is the discrete
output influence matrix, wkf g and vkf g are two unknown stochastic processes.

The matrices A½ � and C½ � are defined as:

A½ � ¼ e Ac½ �Dt C½ � ¼ Cv½ � � Ca½ � �M½ ��1 �C½ � Cd½ � � Ca½ � �M½ ��1 �K½ �
h i

ð5Þ

where Ca½ �, Cv½ � and Cd½ � are the output location matrices for acceleration, velocity and
displacement, respectively, and Ac½ � is defined as:

Ac½ � ¼ � �M½ ��1 �C½ � � �M½ ��1 �K½ �
I½ � 0½ �

� �
ð6Þ

The algorithm starts from a block Hankel matrix constructed directly from the
measured data, having 2i block rows and j columns (j ! 1), where j are the samples.
The output data are scaled by a factor 1=

ffiffi
j

p
to be consistent with the definition of

correlation. Therefore, the Hankel matrix is:

H0=2i�1
� � ¼ 1ffiffi

j
p

y0f g
..
.

yi�1f g

y1f g
..
.

yif g

. . .
. .
.

. . .

yj�1
� �
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yiþ j�1
� �

yif g
..
.

y2i�1f g

yiþ 1f g
..
.

y2if g

. . .
. .
.

. . .

yiþ j�1
� �

..

.

y2iþ j�2
� �

2
6666666664

3
7777777775

ð7Þ

Starting from the Hankel matrix, the state matrix A½ � and the output matrix C½ � are
determined through some mathematical operations detailed in [27].

The Eigen-Value Decomposition of A½ � provides the modal parameters of the
system:

A½ � ¼ W½ � K½ � W½ ��1 ð8Þ

where the m-th column Wm½ � of W½ � is the m-th eigenvector of A½ � and K½ �collects the
eigenvalues µ of A½ �. Conversely, the correspondent m-th mode shape of the system can
be obtained from matrix C½ � as:

Um½ � ¼ C½ � Wm½ � ð9Þ
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Natural frequencies, damped frequencies and damping ratios of the continuous-time
system are obtained from the eigenvalues, after their conversion from discrete time to
continuous time, using the following formulas:

fm ¼ kmj j
2p

fd;m ¼ ImðkmÞ
2p

nm ¼ �ReðkmÞ
kmj j ð10Þ

with:

km ¼ ln lmð Þ
dt

ð11Þ

The SSI method results depend on the number of block row i of the Hankel matrix,
the length of the acquired signals, and consequently the number of samples j, used in
identification process and the maximum model order n.

The number of block rows i determines the size of the Hankel matrix and conse-
quently influences the evaluation of the state matrix A½ �. Very low values of i produce a
low redundancy of the measured response of the system on one hand; on the other
hand, a too large value generates the occurrence of bias on the evaluation of modal
parameters due to the presence of cluster of alignment of poles in the stabilization
diagram and a significant increase of the computational time.

The length of the acquired signal, and consequently the number of samples j used in
the identification process, is also very important, since it affects the number of columns
of the Hankel matrix and consequently the evaluation of matrix A½ �. From a statistical
point of view, the number of sample points j can be infinite, but in real case a suffi-
ciently high number of samples must be acquired, depending on the properties of the
system.

The model order n, which is theoretically two-time the number of degrees of
freedom of the system, is another user-defined parameter that can be set at the
beginning of the identification process.

In practical applications, since the number of degrees of freedom of the system is
unknown, a conservative approach is the over-specification of the model order n, which
is set large enough to ensure the identification of all physical modes. The over-
specification of the model order introduces spurious poles (noise modes or mathe-
matical modes) that must be separated from the physical ones using the stabilization
diagram, which shows the poles obtained for different model orders as a function of
their frequencies. A very high value of model order should be avoided, since it may
produce a difficult evaluation of the real poles of the system.

By tracking the evolution of the poles for increasing model orders, the physical
modes can be identified from alignments of stable poles, since the spurious mathe-
matical modes tend to be more scattered and typically do not stabilized [17]. The
alignments of stable poles can start at lower or higher values of the model order,
depending on the level of excitation of the modes, so a very low value of the model
order should be avoided, too.
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Only the poles which satisfy assigned user-defined stabilization criteria are labelled
as stable.

In all analysis done, the following stability criteria have been used:

fn � fnþ 1j j
fn

	 

\0:01;

fn � fnþ 1j j
fn

	 

\0:05; MAC Unf g; Unþ 1f gð Þ[ 0:95 ð12Þ

where fn, fnþ 1, fn, fnþ 1, Unf g, Unþ 1f g indicate natural frequencies, damping ratios
and mode shapes obtained at order n and n + 1, respectively, while MAC is the Modal
Assurance Criterion (bounded between 0 and 1) defined as [28]:

MAC Uif g; Ukf gð Þ ¼ Uif g; Ukf gj j2
Uif gH Uif g� �

Ukf gH Ukf g� � ð13Þ

3 Case Study: Reinforced Concrete Building in Alcamo

The case study concerns a reinforced concrete building located in Alcamo (Sicily,
Italy). It is composed by nine floors above ground and one basement floor, with an
inter-storey height equal to 3,05 m, so the total height of the building is about 28 m.

The plant of the typical floor, although irregular, is about rectangular (ratio of the
two side about 1:2) with a plant area of about 280 m2.

The bearing structure of the building is composed by reinforced concrete frames in
both main directions. The building has a staircase, made by reinforced concrete and
located in the central position of the deck, and an elevator shaft. Figure 1 shows two
views of the building.

3.1 Data Acquisition and Measurement Setup

The location of the measurement sensors has been selected to clearly evaluate the first
six mode shapes. The sensors have been positioned on 3th, 5th and 7th floors, in order
to acquire the displacements in x and y directions and the rotations of each monitored
floor. Figure 2 shows the location of the sensors for the 3th floor.

During the environmental vibrations test, 13 channels with 180 acquisitions of
duration 50 s have been acquired, so the total duration of the test has been 9000 s
(150 min). The acquired signals are sampled at 500 Hz using an application self-
developed in LabView® environment.

The analogical signals from the accelerometers have been acquired, converted and
saved on a hard disk to be processed. To avoid aliasing, Tukey window has been used
to filter data in time domain. All the signals acquired have been filtered with low pass
4th order Butterworth filter, with cut-off frequency equal to 60 Hz.
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3.2 Identification of the Modal Parameters

Starting from the acquired signals, modal information of the building under test have
been evaluated, for frequencies lower than 30 Hz.

The stabilization diagram is obtained for system order from 50 to 150, considering
only the poles with damping ratios between 0 and 20%. The minimum order has been
set to 50 since the building has eight floors, so in the hypothesis of infinite rigidity of
the diaphragms, each one has three degrees of freedom, so 48 is the minimum value of
the order to theoretically find all the 24 principal modes of the structure.

Fig. 1. Pictures of the building under test.

Fig. 2. Position of the accelerometers at floor 3.
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Figure 3 shows one of the stabilization diagrams obtained, in which stable poles are
marked with black dots and un-stable poles with red dots. From this stabilization
diagram, we can observe that for n � 130, all the alignments which correspond to the
modes of vibration of the structure are identified, so n = 130 can be considered as a
good choice of model order of the system.

3.3 Influence of the Number of Block Rows i in Hankel Matrix
and of the Length of the Signal on the SSI Method

In this section, two aspects of the SSI method have been investigated:

(a) the influence of the record length used in the SSI identification procedure for the
evaluation of the modal parameters (natural frequencies, damping ratios);

(b) the influence of the number of block rows i of the Hankel Matrix on the evaluation
of modal parameters (natural frequencies, damping ratios).

Since the aim of this paper is to study the influence of both user-defined parameters
in the identification process, different lengths of the acquired signals have been used in
the identification procedure (50 s, 100 s, 150 s, 200 s, 250 s, 300 s) and different
values of the number of block rows i of the Hankel matrix have been set, from 80 to
300, using increment of 20.

In Table 1, considering all the different data lengths, mean natural frequencies and
damping ratios, standard deviations and coefficients of variation, defined as the ratio
between standard deviation and mean value, of the first eleven modes are reported for
number of block rows i = 300. The results show that, in term of frequencies, the
standard deviation and the variation coefficient are very small for almost all modes

Fig. 3. Stabilization diagram obtained using SSI method.
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identified, confirming the good accuracy on the evaluation of the natural frequency of
the building. In term of damping, the findings confirm that the accuracy on the esti-
mation of damping ratio is different between the identified modes.

In Fig. 4, the variation of the natural frequencies of the first six modes of vibration,
evaluated as a function of the number of block row i and the length of the acquired
data, are depicted. From this figure, it can be observed that for well excited modes, such
as modes 2 and 3, the mean value of the frequencies (black line in Fig. 4) obtained for
different acquisition lengths remains almost constant by varying i, whereas the interval
of standard deviation (red lines) from mean decreases, ensuring a reduction of the
uncertainties. Therefore, for low values of i only well excited modes can be detected
using the SSI method, while to estimate the frequencies of not well excited modes (e.g.
modes 4 and 6) it is necessary to increase the number of block rows. Specifically, for
values of i < 140 is not possible to identify all naturals frequencies of the building
under consideration, thus for the identification of the model parameters i = 300 has
been set.

From the exposed results, to obtain a good estimate of natural frequencies of the
system, a record length at least of 50 s (140 times the first natural period of the
structure) can be selected.

Figure 5 shows the variation of the damping ratios of the first 6 modes with the
number of block rows i and the length of the acquisition data. The ranges of the latter
parameters are the same used in the previous analysis.

In this case, it can be observed that well excited modes have damping ratios almost
independent from the length of the acquisition used and constant for values of i greater
than 160. For not well excited modes, e.g. mode 4 and 6, the damping ratio is not easy
to identify due to its variability throughout the examined domain.

Table 1. Mean natural frequencies and damping ratios, standard deviations and coefficient of
variation for i = 300.

Mode Frequency Damping ratio
Mean
[Hz]

Standard
deviation
[Hz]

Coefficient
of variation

Mean Standard
deviation

Coefficient
of variation

1 2.802 0.0065 2.32 � 10−3 0.0279 0.00850 0.30466
2 3.395 0.0078 2.29 � 10−3 0.0043 0.00047 0.10930
3 4.137 0.0040 9.67 � 10−4 0.0070 0.00150 0.21428
4 8.618 0.0615 7.13 � 10−3 0.0424 0.00760 0.17924
5 10.368 0.0065 6.26 � 10−4 0.0119 0.00360 0.30252
6 12.268 0.0730 5.95 � 10−3 0.0426 0.01010 0.23709
7 15.179 0.0101 6.65 � 10−4 0.0036 0.00092 0.25556
8 15.662 0.0069 4.41 � 10−4 0.0061 0.00010 0.01639
9 18.499 0.0199 1.07 � 10−3 0.0123 0.00014 0.01138
10 25.229 0.0479 1.89 � 10−3 0.0145 0.00069 0.04759
11 25.842 0.0147 5.69 � 10−4 0.0014 0.00022 0.15714
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3.4 Comparison Between SSI Method and EFDD Method

In order to evaluate the accuracy of the SSI method in estimating the modal parameters,
a comparison with the EFDD method has been performed. The natural frequencies and
damping ratios obtained by using the two identification methods are listed in Table 2.
Parameters obtained using EFDD method have been evaluated from the first singular
value of the mean Power Spectral Density (PSD) matrix calculated for record length of
500 s and considering all 150 min of data acquisition. As concerns the frequencies,
very good agreement between the two methods has been obtained, since relative errors

Fig. 4. Natural frequency estimated for different value of i and different data length: (a) mode 1,
(b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, (f) mode 6.
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are less than 1% except for mode 4. Damping ratio values identified by using the two
methods are quite different, pointing out the challenge to determine these parameters
with different methods.

The mode shapes evaluated using SSI are the same of the ones obtained with
EFDD, since MAC values are about 0.99 for all the first six modes, as shown in Fig. 6.
These values confirm the good agreement between the two methods used.

Finally, the first six modes shapes are shown in Fig. 7. In all of them, black lines
represent the un-deformed configuration, blue lines represent the displacements of the
third floor, green lines represent the displacements of the fifth floor and red lines
represent the displacements of the seventh floor.

Fig. 5. Damping ratio trend for different length of the data and for i ranging from 80 to 300:
(a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, (f) mode 6.
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In particular, Fig. 7 illustrates the first and second modes, which are bending modes
in x and y direction, respectively, the third and fourth mode, which are torsion mode
and the second bending mode in y direction, the fifth and sixth mode of vibration,
which are the second bending mode in x direction and the second torsion mode.

Table 2. Natural frequencies and damping ratios obtained using SSI and EFDD methods.

Mode Frequency [Hz] Damping ratio [%]
SSI EFDD SSI EFDD

1 2.80 2.81 2.79 0.51
2 3.39 3.39 0.43 0.99
3 4.14 4.15 0.70 0.85
4 8.62 8.77 4.24 2.86
5 10.27 10.37 1.19 2.15
6 12.27 12.16 4.26 6.22
7 15.18 15.15 0.36 0.37
8 15.66 15.70 0.61 3.25
9 18.50 18.51 1.23 2.70
10 25.23 25.24 1.45 0.38
11 25.84 25.92 0.14 0.70

Fig. 6. MAC values for mode shapes between SSI and EFDD method.
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4 Conclusions

In this paper, the influence of the number of block rows i in Hankel matrix and the
length of the acquired data in the use of Stochastic Subspace Identification method
(SSI) are investigated considering a case study of a real scale reinforced concrete
building located in Alcamo (Sicily, Italy).

The reported results have shown the high importance of the choice of user-defined
parameters in the identification process especially for damping estimation.

The main results obtained can be listed below:

• not always one of the main hypothesis of OMA, regarding the assumption of white
noise excitation of environmental vibration, is valid. For this reason, not all modes
of the structure can be excited in the same manner and, consequently, not all the
modal parameters can be computed with the same accuracy;

Fig. 7. Mode shapes: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, (f) mode 6.
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• to obtain a good estimate of natural frequencies of the system, a record length
greater than 140 times the first natural period can be selected;

• increasing the number of block rows i, the damping ratios tend to an approximately
constant value, in the case of well excited modes (e.g. modes 2 and 3), indepen-
dently from the record length; for not well excited modes, the scatter between
values evaluated for different record length remains quite high, independently of the
value of i set;

• increasing the number of block rows i produces an improvement of the accuracy on
the evaluation of modal parameters (natural frequencies and damping ratios);

• for well excited modes (e.g. modes 2 and 3) a good value of i can be 200, while a
good choice of the system model order n could be 130.

Future developments will regard the study of the influence of the system properties
(e.g. mass, stiffness, material) on the selection of user-defined parameters using the SSI
method, for modal parameters evaluation, in order to establish a standard criterion valid
for all type of system.
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