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Abstract. Wire Rope Isolators are made of two parallel retaining plates,
connected through metallic wire ropes. Due to their good performances
as vibration isolators, and shock absorbers, these devices have been
widely employed in industrial applications. The dynamic behaviour of
Wire Rope Isolators is strongly affected by both geometric and material
non-linearities, mainly due to the peculiar hysteretic bending behaviour
of metallic ropes. In this work a typical approach to characterize the
hysteretic behaviour of wire rope isolators, based on a semi-empirical
phenomenological model, is compared to a different approach based on
a beam-like description of the wire rope and on a nonlinear formula-
tion of the cross sections cyclic bending behaviour. The hysteretic cross-
sectional model is then implemented within a corotational beam finite
element, to fully account for the geometric non-linearities which char-
acterize the response of the device. The performance of the proposed
models are assessed through a comparison with the results of a well doc-
umented experimental test.

Keywords: Wire rope dampers · Base isolation · Wire rope modelling

1 Introduction

Wire rope isolators (WRI) are made of two parallel retaining plates or bars,
connected through a metallic cable (wire rope), see e.g. Fig. 1. The cable is often
arranged in a nearly-helical shape, although different geometric configurations
can also be adopted. Due to their good performances as vibration isolators and
shock absorbers, the wire rope isolators have been widely employed in industrial
applications to support equipment and secondary structures [20]. Applications
of this technology to the seismic isolation of lightweight civil structures have
also been envisaged and some research on this subject is recently surfacing in
the literature (see e.g. [19,21]).

The dynamic behaviour of wire rope isolators is strongly affected by both
geometric and material non-linearities. The latter are mainly due to the peculiar
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hysteretic bending behaviour of metallic cables. Relative displacements between
the wires of the cable, indeed, can occur during flexural vibrations, depending
on the value of the vibration amplitude. These internal sliding phenomena are
associated with frictional dissipation (see e.g. [7–10]), which makes the dynamic
response of the device inherently non-linear and non-holonomic.

The typical approach adopted in the literature to characterize the hysteretic
behaviour of wire rope isolators (see e.g. [17,20]) is based on semi-empirical
phenomenological models. These models allow to characterize the response of
the devices with respect to simple loading cases (typically along a set of three
coordinate direction, i.e. the vertical, shear and roll directions, see also Fig. 1).

A different modelling approach is pursued in this work. The proposed model
is based on a beam-like description of the wire rope and on a nonlinear formula-
tion of the cross sections cyclic bending behaviour. At the cross-sectional level,
the mechanical behaviour of the wire rope is described by extending the mechan-
ical formulation for the hysteretic bending of stranded cables developed in [11],
which has been recognized as adequate to represent the local behaviour mainly
controlled by interwire sliding processes. The hysteretic cross-sectional model is
then implemented within a corotational beam finite element to fully account for
the geometric non-linearities which characterize the response of the device. The
performance of the proposed models are assessed through comparisons with the
results of a well documented experimental test of the literature.

2 Black Box Approaches for WRIs

The typical approach adopted in the literature to characterize the hysteretic
behaviour of wire rope isolators (see e.g. [17,20]) is based on semi-empirical phe-
nomenological models. These models, however, allow to characterize the response
of the devices only with respect to simple loading cases (typically along a set
of three coordinate direction, i.e. the vertical, shear and roll directions). Indeed,
the study conducted by Demedriades et al. [3] shows that the hysteretic cycles
in both shear and roll directions are symmetric, while the vertical direction has
an asymmetric cycle, which marks a clear difference between compression and
tensile behavior.

A survey of the literature on WRI shows as the Bouc-Wen (BW) model
[2,4,15,22] is the favorite one for modeling (with some modifications made nec-
essary as it will be explained in the following) these devices, since it is able to
efficiently describe hysteretic systems and is mathematically easy to understand.
A disadvantage of this model is that the model parameters need to be identi-
fied for each loading direction (see Fig. 1), which increases their number and
the difficulty to associate them a physical meaning in terms of geometrical and
mechanical properties of the specimen.

Moreover, the asymmetry of the behavior in the vertical mode will make the
simple Bouc-Wen model not adequate. Hence, the common approach in literature
is to introduce a modulating function F2 that “weights” in different ways the
output from a BW model, depending it is for an input that has one sign or the
other.



On the Modelling of the Hysteretic Behaviour of Wire Rope Isolators 1537

Fig. 1. Schematic representation of a wire rope isolator.

As an example, in this work a black box approach based on a five parame-
ters BW model [16] and a power modulating function F2 proposed by Ni et al.
[17], has been adopted as a reference modeling option to be compared with a
potentially more advanced mechanical model.

By denoting with F the restoring force provided by the WRI, with x the
work-conjugated displacement of the WRI and with z the hidden variable of the
hysteretic BW model, the adopted model can be expressed as:

F (x(t), z(t)) = F2 (x(t)) F1 (x(t), z(t)) (1)

F1 (x(t), z(t)) = k1x(t) + (k2 − k1)x0z(t) (2)

F2 (x(t)) = bcx(t) (3)

ż(t) =
1
x0

(
ẋ(t) − σ |ẋ(t)| |z(t)|n−1

z(t) + (σ − 1)ẋ(t) |z(t)|n
)

(4)

where a dot denotes derivation with respect to a time-like variable t, and
{x0, σ, n, k1, k2, b, c} are the model parameters.

3 Mechanical Model of WRIs

Metallic wire ropes are structural elements whose construction process follows a
strict hierarchy. Their internal structure can be described following a top-down
approach. Restricting the attention to the wire rope in Fig. 2, and recalling that
the approach can be easily generalized to other configurations, starting from the
top of the hierarchy the following levels are identified: the rope itself, the strands
and the wires. The internal structure of the rope is completely defined by the
centerline and the orientation of the cross section of every element at each level.
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On each element a local reference system is defined introducing on its centerline
the Serret-Frenet moving frame. The strands are helically twisted and grouped
in concentric layers to form the rope and the same process forms the strand
from the wires. Accordingly, the centroidal line of each element is described as a
cylindrical helix in the frame of reference of the respective upper-level element
(see e.g. [5]).

Fig. 2. Schematic representation of the internal structure of a metallic wire rope.

The axial-torsional response or wire ropes subjected to typical service load
conditions can be idealized as being linear elastic and decoupled from the bending
response. Several models have been proposed in the literature to characterized
the stiffness of metallic strands and wire ropes starting from the knowledge of the
geometry and mechanical properties of the constituents (see e.g. [6,13,18]). The
bending behavior, on the other hand, is markedly non linear and non-holonomic
due to the possible activation of the sticking/sliding frictional interfaces between
the wires [7–11].

3.1 Moment-Curvature Law for the Rope Cross-Section

Whenever the rope is bent, an axial force gradient is generated along the length
of the wires. This gradient makes the wires prone to sliding with respect to the
neighbouring ones, and is counteracted by the tangential friction forces acting
on the internal contact surfaces between the wires.

A typical moment-curvature curve of a metallic wire rope is depicted in Fig. 3
for a curvature that increases monotonically. At large values of the bending
curvature χ = χ (t) the bending problem is non-linear and controlled by the
gross-sliding of the contact surfaces between the wires of the strand; the wires
are said to be in a “full-slip” state with respect to the neighboring ones and the
tangent bending stiffness of the strand reaches its minimum value EImin.
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Fig. 3. Typical cross-sectional bending moment-curvature (M−χ) diagram for a metal-
lic wire rope.

At small values of the curvature, friction forces are large enough to overcome
the axial force gradient along the wires, and all the wires are stuck together
(“full-stick” state). In this state the cross section can be modeled according to a
plane section hypothesis, leading to the maximum value of the bending stiffness,
which is denoted as EImax. A first estimate of the values of the stiffness EImin

and EImaxcan be obtained as in [5].
As already pointed out in [10], it is handy to introduce a curvature value χ0

that allows to define a bi-linear approximation to the moment-curvature curve;
χ0 will depend on the friction coefficient between the rope constituents and will
be linearly dependent on the axial force T (see e.g. [8,10]). As a simplifying
assumption, whose validity will be later assessed against experimental data, the
dependence of χ0 on T will be in the following disregarded.

Focusing on a rope section in tension the moment-curvature curve is sym-
metric and can be described, as proposed in [11], through the following five-
parameter BW model:

M (χ(t), z(t)) = EIminχ(t) + (EImax − EImin)χ0z(t) (5)

ż(t) =
1
χ0

(
χ̇(t) − σ |χ̇(t)| |z(t)|n−1

z(t) + (σ − 1)χ̇(t) |z(t)|n
)

(6)

The set of model parameters that describe the rope cross-section bending
behaviour is then {χ0, σ, n,EImax, EImin}.

3.2 The Corotational Beam Element

Equations (5) and (6), along with a linear model for the axial-torsional response,
fully define the relation between generalized stress and strain variables of the
strand cross section whenever embedded in a plane Euler-Bernoulli beam. The
proposed constitutive equations have been implemented within a corotational
beam element previously developed in [5,12,14] to study the static and dynamic
response of flexible structures, taking into account geometrical and material
nonlinearities.
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4 Numerical Applications

The modeling approaches described in the previous Sections have been applied
to the study of a WRI device, similar to the one Fig. 1, tested by Balaji et al.
[1]. The geometrical characteristic of the chosen WRI are (see Fig. 1): wire rope
diameter D = 12 mm, number of coils N = 12, width of plate W = 120 mm,
length of plate L = 215 mm, height of the device H = 127 mm. The parameters
of both the black-box and mechanical models have been identified to match the
experimental results reported in [1], and are listed in Tables 1 and 2.

Figures 4(a) and (b) show the numerical and experimental results for two
different values of the maximum imposed displacements (±5 mm and ±10 mm)
in the case of testing in direction “vertical” of Fig. 1. The parameters for both
models were identified on the experimental cycle of ±5 mm amplitude, and used
unaltered to predict the response for the lager amplitude cycle.

The outcomes from the black-box approach are in very good agreement with
the experimental data. The limit of this approach, however, is that a set of
parameters has to be identified for each basic deformation mode (i.e. roll, shear,
vertical), which leads to errors in the case of complex loading scenarios that
involve a combination of the basic deformation modes of the WRI.

The outcome form the mechanical model properly reproduces in tension the
experimental response for the ±5 mm test, used in the calibration of this model
(see Fig. 4(a)), but is not able to fully reproduce the response in compression.
The reason has been traced not to geometrical effects at the global level, which
are correctly captured by the corotational finite element formulation, but to the
cross-sectional bending behaviour. Indeed, experimental results show that this
depends on the axial force in a different way if the force is of tension or of
compression. The outcome depicted in Fig. 4(b), for a cycle of larger amplitude
(±10 mm), highlights the shortcomings of having considered χ0 independent
from the value of the axial force (both in tension and in compression). This
hypothesis that assigns to χ0 a role similar to that of the first yielding curvature
in a bi-linear elastic-plastic moment-curvature law, leads to neglect the role of the
axial force on the internal contact pressures. These, in turn, control the sticking-
sliding transition of the wire-to-wire contacts, and hence both the dissipated
energy and the value of the tangent stiffness.

Table 1. Identified values of the parameters for the black-box model.

k1 [kg/mm] k2 [kg/mm] x0 [mm] σ [-] n [-] b [-] b [-]

8.5 100 0.2 3 1 1.4 0.1

Table 2. Identified values of the parameters for the mechanical model.

EImin [Nm2] EImax [Nm2] χ0 [m−1] σ [-] n [-]

4.9 37.5 0.09 1 1
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Fig. 4. Comparison between experimental and numerical results: (a) imposed displace-
ment: ±5 mm; (b) imposed displacement ±10 mm. Experimental data are from [1].

5 Conclusions

In this work a typical semi-empirical phenomenological (black-box) model to
characterize the hysteretic behaviour of wire rope isolators is compared to a
different modeling approach, based on a beam-like description of the wire rope
and on a nonlinear formulation of the cross sections cyclic bending behaviour.

The performance of the proposed models, assessed through a comparison
with the results of a well documented experimental test, has highlighted a good
agreement of the outcome from the phenomenological model with the experimen-
tal data. The limit of this approach being that it requires a different calibration
for each loading direction (i.e. roll, vertical and shear direction).

The mechanical model, while being potentially more general, suffers in its
present formulation from: (a) not being able to fully reproduce the response in
compression and (b) not being able to fully account for the dependence of the
dissipated energy and the value of the tangent stiffness on the value of the axial
force. These last aspects are at present under development.
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