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Abstract. We propose consistent, locally stabilized, conforming finite
element schemes on completely unstructured simplicial space-time
meshes for the numerical solution of parabolic initial-boundary value
problems under the assumption of maximal parabolic regularity. We
present new a priori discretization error estimates for low-regularity solu-
tions, and some numerical results including results for an adaptive ver-
sion of the scheme and strong scaling results.
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1 Introduction

Parabolic initial-boundary value problems of the form

∂tu − divx(ν ∇xu) = f in Q, u = 0 on Σ, u = u0 on Σ0 (1)

describe not only heat conduction and diffusion processes but also 2D eddy cur-
rent problems in electromagnetics and many other evolution processes, where
Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), and Σ0 = Ω × {0} denote the space-time
cylinder, its lateral boundary, and the bottom face, respectively. The spatial
computational domain Ω ⊂ Rd, d = 1, 2, 3, is supposed to be bounded and
Lipschitz. The final time is denoted by T . The right-hand side f is a given
source function from L2(Q). The given coefficient ν may depend on the spa-
tial variable x as well as the time variable t. In the latter case, the problem is
called non-autonomous. We suppose at least that ν is uniformly positive and
bounded almost everywhere. We here consider homogeneous Dirichlet boundary
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conditions for the sake of simplicity. In practice, we often meet mixed boundary
conditions. Discontinuous coefficients, non-smooth boundaries, changing bound-
ary conditions, non-smooth or incompatible initial conditions, and non-smooth
right-hand sides can lead to non-smooth solutions.

In contrast to the conventional time-stepping methods in combination with
some spatial discretization method, or the more advanced, but closely related
discontinuous Galerkin (dG) methods based on time slices, we here consider
space-time finite element discretizations treating time as just another variable,
and the term ∂tu in (1) as a convection term in time. Following [7], we derive
consistent, locally stabilized, conforming finite element schemes on completely
unstructured simplicial space-time meshes under the assumption of maximal
parabolic regularity; see, e.g., [5]. Unstructured space-time schemes have some
advantages with respect to adaptivity, parallelization, and the numerical treat-
ment of moving interfaces or special domains. However, the combination of
adaptivity and parallelization is still a challenge. We refer the reader to the
survey paper [9] that provides an excellent overview of completely unstructured
space-time methods and simultaneous space-time adaptivity. In particular, we
would like to mention the papers [8] that is based on an inf-sup-condition, [4]
that uses mesh-grading in time, and [1] that also uses stabilization techniques.
All three papers treat the autonomous case.

We here present new a priori estimates for low-regularity solutions. In order
to avoid reduced convergence rates appearing in the case of uniform mesh refine-
ment, we also consider adaptive refinement procedures in the numerical exper-
iments presented in Sect. 5. The adaptive refinement procedures are based on
residual a posteriori error indicators. The huge system of space-time finite ele-
ment equations is then solved by means of the Generalized Minimal Residual
Method (GMRES) preconditioned by an algebraic multigrid cycle. In particular,
in the 4D space-time case that is 3D in space, simultaneous space-time adaptivity
and parallelization can considerably reduce the computational time. The space-
time finite element solver was implemented in the framework of MFEM. The
numerical results nicely confirm our theoretical findings. The parallel version of
the code shows an excellent parallel performance.

2 Weak Formulation and Maximal Parabolic Regularity

The weak formulation of the model problem (1) reads as follows: find u ∈
H1,0

0 (Q) := {u ∈ L2(Q) : ∇xu ∈ [L2(Q)]d, u = 0 on Σ} such that (s.t.)∫
Q

(
−u ∂tv + ν ∇xu · ∇xv

)
d(x, t) =

∫
Q

f v d(x, t) +
∫

Ω

u0 v|t=0 dx (2)

for all v ∈ Ĥ1
0 (Q) = {v ∈ H1(Q) : v = 0 on Σ ∪ ΣT }, where ΣT := Ω × {T}.

The existence and uniqueness of weak solutions is well understood; see, e.g., [6].
It was already shown in [6] that ∂tu ∈ L2(Q) and Δxu ∈ L2(Q) provided that
ν = 1, f ∈ L2(Q), and u0 = 0. This case is called maximal parabolic regularity.
Similar results can be obtained under more general assumptions imposed on the
data; see, e.g., [5] for some very recent results on the non-autonomous case.
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3 Locally Stabilized Space-Time Finite Element Method

In order to derive the space-time finite element scheme, we need an admissible,
shape regular decomposition Th = {K} of the space-time cylinder Q =

⋃
K∈Th

K

into finite elements K. On Th, we define a H1 - conforming finite element space
Vh by means of polynomial simplicial finite elements of the degree p in the
usual way; see, e.g., [2]. Let us assume that the solution u of (2) belongs to
the space V0 = HL,1

0,0 (Th) := {u ∈ L2(Q) : ∂tu ∈ L2(K), Lu := divx(ν∇xu) ∈
L2(K) ∀K ∈ Th, and u|Σ∪Σ0 = 0}, i.e., we only need some local version of
maximal parabolic regularity, and, for simplicity, we assume homogeneous initial
conditions, i.e., u0 = 0. Multiplying the PDE (1) on K by a local time-upwind
test function vh + θKhK∂tvh, with vh ∈ V0h = {vh ∈ Vh : vh = 0on Σ ∪ Σ0},
hK = diam(K), and a parameter θK > 0 which we will specify later, integrating
over K, integrating by parts, and summing up over all elements K ∈ Th, we arrive
at the following consistent space-time finite element scheme: find uh ∈ V0h s.t.

ah(uh, vh) = lh(vh), ∀vh ∈ V0h, (3)

with lh(vh) =
∑

K∈Th

∫
K

fvh + θKhKf∂tvhd(x, t) and the bilinear form

ah(uh, vh) =
∑

K∈Th

∫
K

[
∂tuhvh + θKhK∂tuh∂tvh

+ ν∇xuh · ∇xvh − θKhKdivx(ν∇xuh)∂tvh

]
d(x, t).

The bilinear form ah( . , . ) is coercive on V0h × V0h w.r.t. to the norm

‖v‖2h =
1
2
‖v‖2L2(ΣT ) +

∑
K∈Th

[
θKhK‖∂tv‖2L2(K) + ‖∇xv‖2Lν

2 (K)

]
, (4)

i.e., ah(vh, vh) ≥ μc‖vh‖2h, ∀vh ∈ V0h, and bounded on V0h,∗ × V0h w.r.t. to the
norm

‖v‖2h,∗ = ‖v‖2h +
∑

K∈Th

[
(θKhK)−1‖v‖2L2(K) + θKhK‖divx(ν∇xv)‖2L2(K)

]
, (5)

i.e., ah(uh, vh) ≤ μb‖uh‖h,∗‖vh‖h, ∀uh ∈ V0h,∗,∀vh ∈ V0h, where V0h,∗ :=
HL,1

0,0 (Th) + V0h; see [7, Lemma 3.8] and [7, Remark 3.13], respectively. The
coercivity constant μc is robust in hK provided that we choose θK = O(hK); see
Sect. 5 or [7, Lemma 3.8] for the explicit choice. From the above derivation of
the scheme, we get consistency ah(u, vh) = lh(vh), ∀vh ∈ V0h, provided that the
solution u belongs to HL,1

0,0 (Th) that is ensured in the case of maximal parabolic
regularity. The space-time finite element scheme (3) and the consistency relation
immediately yield Galerkin orthogonality

ah(u − uh, vh) = 0, ∀vh ∈ V0h. (6)

We deduce that (3) is nothing but a huge linear system of algebraic equations.
Indeed, let V0h = span{p(j), j = 1, . . . , Nh}, where {p(j), j = 1, . . . , Nh} is the
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nodal finite element basis and Nh is the total number of space-time degrees
of freedom (dofs). Then we can express each function in V0h in terms of this
basis, i.e., we can identify each finite element function vh ∈ V0h with its coef-
ficient vector vh ∈ R

Nh . Moreover, each basis function p(j) is also a valid
test function. Hence, we obtain Nh equations from (3), which we rewrite as
a system of linear algebraic equations, i.e. Kh uh = fh, with the solution vec-
tor uh = (uj)j=1,...,Nh

, the vector fh =
(
lh(p(i))

)
i=1,...,Nh

, and system matrix

Kh =
(
ah(p(j), p(i))

)
i,j=1,...,Nh

that is non-symmetric, but positive definite.

4 A Priori Discretization Error Estimates

Galerkin orthogonality (6), together with coercivity and boundedness, enables
us to prove a Céa-like estimate, where we bound the discretization error in the
‖ . ‖h-norm by the best-approximation error in the ‖ . ‖h,∗-norm.

Lemma 1. Let the bilinear form ah(·, ·) be coercive [7, Lemma 3.8] with constant
μc and bounded [7, Lemma 3.11, Remark 3.13] with constant μb, and let u ∈
HL,1

0,0 (Th) be the solution of the space-time variational problem (2). Then

‖u − uh‖h ≤
(

1 +
μb

μc

)
inf

vh∈V0h

‖u − vh‖h,∗, (7)

where uh ∈ V0h is the solution to the space-time finite element scheme (3).

Proof. Estimate (7) easily follows from triangle inequality and Galerkin-ortho-
gonality; see [7, Lemma 3.15, Remark 3.16] for details.

Next, we estimate the best approximation error by the interpolation error,
where we have to choose a proper interpolation operator I∗. For smooth solu-
tions, i.e., u ∈ H l(Q) with l > (d + 1)/2, we obtained a localized a priori error
estimate, see [7, Theorem 3.17], where we used the standard Lagrange interpo-
lation operator Ih; see e.g. [2]. In this paper, we are interested in non-smooth
solutions, which means that we only require u ∈ H l(Q), with (d + 1)/2 ≥ l > 1.
Hence, we cannot use the Lagrange interpolator. We can, however, use so-called
quasi-interpolators, e.g. Clément [3] or Scott-Zhang [2]. For this kind of oper-
ators, we need a neighborhood SK of an element K ∈ Th which is defined as
SK := {K ′ ∈ Th : K ∩ K

′ �= ∅}. Let v ∈ H l(Q), with some real l > 1. Then, for
the Scott-Zhang quasi-interpolation operator ISZ : L2(Q) → V0h, we have the
local estimate (see e.g. [2, (4.8.10)])

‖v − ISZv‖Hk(K) ≤ CISZ
hl−k

K |v|Hl(SK), k = 0, 1. (8)

For details on how to construct such a quasi-interpolator, we refer to [2] and the
references therein. For simplicity, we now assume that ν is piecewise constant,
i.e., ν|K = νK , for all K ∈ Th. Then we can show the following lemma.
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Lemma 2. Let v ∈ V0 ∩ H l(Q) with some l > 1, and let p ≥ 1 denote the
polynomial degree of the finite element shape functions on the reference element.
Then the following interpolation error estimates are valid:

‖v − ISZv‖L2(ΣT ) ≤ c1

(∑
K∈Th

∂K∩ΣT �=∅

h2s−1
K |v|2Hs(SK)

)1/2

, (9)

‖v − ISZv‖h ≤ c2

( ∑
K∈Th

h
2(s−1)
K |v|2Hs(SK)

)1/2

, (10)

‖v − ISZv‖h,∗ ≤ c3

( ∑
K∈Th

h
2(s−1)
K

(
|v|2Hs(SK) + ‖divx(ν∇xv)‖2L2(K)

))1/2

,

(11)

with s = min{l, p + 1} and positive constants c1, c2 and c3, that do not depend
on v or hK provided that θK = O(hK) for all K ∈ Th.

Proof. Estimates (9) and (10) are easy to proof by using the scaled trace
inequality and quasi-interpolation estimates (8). Estimate (11) contains the term
θKhK‖divx(ν∇x(v−ISZv))‖2L2(K) that needs a special treatment. The case p = 1
is straightforward since divxISZ(ν∇xv) = 0. Otherwise, adding and subtracting
the linear quasi-interpolant I1

SZv of v, then using triangle and inverse inequali-
ties, and finally the quasi-interpolation estimate (8) for k = 1, we arrive at the
desired estimate for p > 1.

Now we are in the position to prove our main theorem.

Theorem 1. Let l > 1 and p ≥ 1. Let u ∈ V0 ∩ H l(Q) be the exact solution,
and uh ∈ V0h be the approximate solution of the finite element scheme (3).
Furthermore, let the assumptions of Lemma 1 (Céa-like estimate) and 2 (quasi-
interpolation estimates) hold. Then the a priori error estimate

‖u − uh‖h ≤ C
( ∑

K∈Th

h
2(s−1)
K

(
|u|Hs(SK) + ‖divx(ν∇xu)‖2L2(K)

))1/2

(12)

holds, with s = min{l, p + 1} and a positive generic constant C.

Proof. Choosing vh = ISZu as some approximation in (7), we can apply the
quasi-interpolation estimate (11) to obtain

‖u − uh‖h ≤
(
1 +

μb

μc

)
‖u − ISZu‖h,∗

≤ c3

(
1 +

μb

μc

)( ∑
K∈Th

h
2(s−1)
K

(
|u|2Hs(SK) + ‖divx(ν∇xu)‖2L2(K)

))1/2

.

We set C = c3(1 + μb/μc) to obtain (12), which closes the proof.

We again mention that, for l > (d+1)/2, we can use the Lagrange interpolation
that leads to a completely local estimate [7].
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5 Numerical Results

We implemented the space-time finite element scheme (3) in C++, where we
used the finite element library MFEM1 and the solver library hypre2. The linear
system was solved by means of the GMRES method, preconditioned by the alge-
braic multigrid BoomerAMG. We stopped the iterative procedure if the initial
residual was reduced by a factor of 10−8. Both libraries are already fully paral-
lelized with the Message Passing Interface (MPI). Therefore, we performed all
numerical tests on the distributed memory cluster RADON13 in Linz. For each
element K ∈ Th, we choose θK = hK/(c̃2νK), where c̃ is computed by solving a
local generalized eigenvalue problem which comes from an inverse inequality [7].

5.1 Example: Highly Oscillatory Solution

We first consider the unit hypercube Q = (0, 1)d+1, with d = 3, as the space-time
cylinder, and set ν ≡ 1. The manufactured function

u(x, t) = sin(1/(1/(10π) + (x2
1 + x2

2 + x2
3 + t2)0.5))

serves as the exact solution, where we compute the right-hand side f accordingly.
This solution is highly oscillatory. Hence, we do not expect optimal rates for
uniform refinement in the pre-asymptotic range. However, using adaptive refine-
ment, we may be able to recover the optimal rates. We use the residual based
error indicator proposed by Steinbach and Yang in [9]. For each element K ∈ Th,
we compute η2

K := h2
K‖Rh(uh)‖2L2(K) +hK‖Jh(uh)‖2L2(∂K), where uh is the solu-

tion of (3), Rh(uh) := f + divx(ν∇xuh) − ∂tuh in K and Jh(uh) := [ν∇xuh]e
on e ⊂ ∂K, with [ . ]e denoting the jump across one face e ⊂ ∂K. Then we
mark each element where the condition ηK ≥ σ maxK∈Th

ηK is fulfilled, with
an a priori chosen threshold σ, e.g., σ = 0.5. Note that σ = 0 results in uni-
form refinement. In Fig. 1, we observe indeed reduced convergence rates for all
polynomial degrees tested. However, using an adaptive procedure, we are able
to recover the optimal rates. Moreover, we significantly reduce the number of
dofs required to reach a certain error threshold. For instance, in the case d = 3
and p = 2, we need 276 922 881 dofs to get an error in the ‖ . ‖h-norm of ∼10−1,
whereas we only need 26 359 dofs with adaptive refinement. In terms of runtime,
the uniform refinement needed 478.57 s for assembling and solving, while the
complete adaptive procedure took 156.5 s only. The parallel performance of the
code is also shown in Fig. 1, where we obtain a nice strong scaling up to 64 cores.
Then the local problems are too small (only ∼10 000 dofs for 128 cores) and the
communication overhead becomes too large. Numerical results for d = 2 can be
found in [7].

1 http://mfem.org/.
2 https://www.llnl.gov/casc/hypre/.
3 https://www.ricam.oeaw.ac.at/hpc/.

http://mfem.org/
https://www.llnl.gov/casc/hypre/
https://www.ricam.oeaw.ac.at/hpc/
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Fig. 1. Example 5.1: Error rates in the ‖ . ‖h-norm (left), the dotted lines indicate the
optimal rate; Strong scaling on a mesh with 1 185 921 dofs for p = 1, 2 and 5 764 801
dofs for p = 3 (right).

Fig. 2. Example 5.2: Error rates in the ‖ . ‖h-norm for d = 2, the dotted lines indicate
the optimal rates (left); Diagonal cut through the space-time mesh Th along the line
from (0, 0, 0) to (1, 1, 1) after 8 adaptive refinements (right).

5.2 Example: Moving Peak

For the second example, we consider the unit-cube Q = (0, 1)3, i.e. d = 2. As
diffusion coefficient, the choice ν ≡ 1 is made. We choose the function

u(x, t) = (x2
1 − x1)(x2

2 − x2)e−100((x1−t)2+(x2−t)2),

as exact solution and compute all data accordingly. This function is smooth,
and almost zero everywhere, except in a small region around the line from the
origin (0, 0, 0) to (1, 1, 1). This motivates again the use of an adaptive method.
We use the residual based indicator ηK introduced in Example 5.1. In Fig. 2, we
can observe that we indeed obtain optimal rates for both uniform and adaptive
refinement. However, using the a posteriori error indicator, we reduce the number
of dofs needed to reach a certain threshold by one order of magnitude. For
instance, in the case p = 2, we need 16 974 593 dofs to obtain an error of ∼7×10−5

with uniform refinement. Using adaptive refinement, we need 1 066 777 dofs only.
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6 Conclusions

Following [7], we introduced a space-time finite element solver for non-au-
tonomous parabolic evolution problems on completely unstructured simplicial
meshes. We only assumed that we have so-called maximal parabolic regularity,
i.e., the PDE is well posed in L2. We note that this property is only required
locally in order to derive a consistent space-time finite element scheme. We
extended the a priori error estimate in the mesh-dependent energy norm to the
case of non-smooth solutions, i.e. u ∈ H1+ε(Q), with 0 < ε ≤ 1.

We performed two numerical examples with known solutions. The first exam-
ple had a highly oscillatory solution, and the second one was almost zero
everywhere except along a line through the space-time cylinder. Using a high-
performance cluster, we solved both problems on a sequence of uniformly refined
meshes, where we also obtained good strong scaling rates. In order to reduce the
computational cost, we also applied an adaptive procedure, using a residual
based error indicator. Moreover, we could observe that the AMG preconditioned
GMRES method solves the problem quite efficiently.
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