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Abstract. One of the key objectives during wireless sensor networks
deployment is full coverage of the monitoring region with a minimal
number of sensors and minimized energy consumption of the network. In
this paper we apply multi-objective Ant Colony Optimization (ACO) to
solve this hard, from the computational point of view telecommunication
problem. The number of ants is one of the key algorithm parameters in
the ACO and it is important to find the optimal number of ants needed
to achieve good solutions with minimal computational resources. The
InterCriteria Analisys is applied in order to study the influence of ants
number on the algorithm performance.

1 Introduction

Initial deployments of wireless sensor networks (WSN) were completed by the
military, for reconnaissance and surveillance [1]. Examples of other possible
applications of WSN’s are: forest fire prevention, volcano eruption study [8],
health data monitoring [9], civil engineering [7] and others.

The energy for collecting data and its transmission comes from the battery of
a node. One of the WSN nodes has special role. It is a High Energy Communica-
tion Node (HECN), which collects data from across the network and transmits
it to the “main computer” to be processed. The sensors transmit their data to
the HECN, either directly or via hops, using closest sensors as communication
relays. The WSN can have large numbers of nodes and the problem can be very
complex. Thus, one of the best choice is to apply some metaheuristic method.

The problem of designing a WSN is multi-objective, with two objective func-
tions. These are (1) minimize the energy consumption of the nodes in the net-
work, and (2) minimize the number of nodes. The full coverage of the network
and connectivity are considered as constraints. In our work we propose a multi-
objective ant colony optimization (ACO).

In the past, [15] solved an instance of the WSN layout using a multi-objective
genetic algorithm. In their formulation, a fixed number of sensors had to be
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placed in order to maximize the coverage. However, in some applications the most
important is the network energy. In this context, in [4] an ACO algorithm was
proposed, but it is applicable to a special case when the sensors are antennas and
the work concerns only energy minimization. In [20] an evolutionary algorithm
was applied to this variant of the problem. In [6] several evolutionary algorithms
to solve the problem were proposed. Finally, in [5] a genetic algorithm, which
achieves similar solutions as the algorithms in [6] was studied, but tested only
on small test problems.

In this paper we study the influence of the number of ants to the algo-
rithm performance and quality of the achieved solutions. The computational
resources, which the algorithm needs, are not negligible. The computational
resources depends on the size of the solved problem and on the number of ants.
Our aim in this work is to find a minimal number of ants which allow the algo-
rithm to find good solution. Moreover, the recently proposed approach InterCri-
teria Analisys (ICrA) is applied for further investigation of the influence of the
ants number on ACO algorithm.

ICrA, proposed by [13], is a recently developed approach for evaluation of
multiple objects against multiple criteria and thus discovering existing correla-
tions between the criteria themselves. It is based on the apparatus of the index
matrices (IMs) [10], and the intuitionistic fuzzy sets [11] and can be applied to
decision making in different areas of knowledge [16–19].

2 Theoretical Background

2.1 Multi-objective ACO for WSN Layout

We apply multi-objective ACO to solve the WSN problem. The ACO algorithm
uses a colony of artificial ants that behave as cooperating agents. With the help
of the pheromone and the heuristic information they try to construct better solu-
tions and to find the optimal ones. The pheromone corresponds to the global
memory of the ants and the heuristic information is a some preliminary knowl-
edge of the problem. The problem is represented by a graph and the solution
is represented by a path in the graph or by tree in the graph. Ants start from
random nodes and construct feasible solutions. When all ants construct their
solution the pheromone is updated. The new, added, pheromone depends to
the quality of the solution. The elements of the graph, which belong to better
solutions will receive more pheromone and will be more desirable in the next
iteration.

In our implementation, we use the MAX-MIN Ant System (MMAS) which
is one of the most successful ant approaches originally presented in [2].

In our case, the graph of the problem is represented by a square grid. The
nodes of the graph are enumerated. The ants will deposit their pheromone on the
nodes of the grid. We will deposit the sensors on the nodes of the grid too. The
solution is represented by tree. An ant starts to create a solution starting from
random node, which communicates with the HECN. Construction of the heuristic
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information is a crucial point in the ant algorithms. Our heuristic information
is a product of three values (Eq. 1).

ηij(t) = sij lij(1 − bij), (1)

where sij is the number of the new points (nodes of the graph) which the new
sensor will cover, and which are not covered by other sensors, and

lij =

{
1 if communication exists ;

0 if there is not communication .
(2)

Here, bij is the solution matrix and the matrix element bij = 1 when there is
sensor on this position otherwise bij = 0. With sij we try to increase the number
of points covered by one sensor and thus to decrease the number of sensors we
need. With lij we guarantee that all sensors will be connected. With bij we
guarantee that maximum one sensor will be mapped on the same point. The
search stops when transition probability pij = 0 for all values of i and j. It
means that there are no more free positions, or that all area is fully covered.

At the end of every iteration the quantity of the pheromone is updated. The
pheromone trail update rule is given by:

τij ← ρτij + Δτij , (3)

Δτij =
{

1/F (k) if (i, j) ∈ {non-dominated solution constructed by ant k},
0 otherwise .

We decrease the pheromone with a parameter ρ ∈ [0, 1]. This parameter mod-
els evaporation in the nature and decreases the influence of old information on
the search process. After that, we add the new pheromone, which is proportional
to the value of the fitness function. The fitness function is constructed as follows:

F (k) =
f1(k)

maxi f1(i)
+

f2(k)
maxi f2(i)

(4)

Where f1(k) is the number of sensors proposed by the k-th ant and f2(k) is
the energy of the solution of the k-th ant. These are also the objective functions
of the WSN layout problem. We normalize the values of two objective functions
with their maximal achieved values from the first iteration.

2.2 InterCriteria Analysis

InterCriteria analysis, based on the apparatuses of Index Matrices (IM) [10] and
Intuitionistic Fuzzy Sets (IFS) [12], is given in details in [13].

In order to find the agreement between two criteria, the vectors of all internal
comparisons for each criterion are constructed, which elements fulfill one of the
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three relations R, R and R̃. The nature of the relations is chosen such that for
a fixed criterion C and any ordered pair 〈x, y〉 ∈ C∗(O):

〈x, y〉 ∈ R ⇔ 〈y, x〉 ∈ R, 〈x, y〉 ∈ R̃ ⇔ 〈x, y〉 /∈ (R ∪ R), R ∪ R ∪ R̃ = C∗(O).

When comparing two criteria the degree of “agreement” (μC,C′) is usually deter-
mined as the number of matching components of the respective vectors. The
degree of “disagreement” (νC,C′) is usually the number of components of oppos-
ing signs in the two vectors. From the way of computation it is obvious that
μC,C′ = μC′,C and νC,C′ = νC′,C . Moreover, 〈μC,C′ , νC,C′〉 is an Intuitionistic
Fuzzy Pair.

There may be some pairs 〈μC,C′ , νC,C′〉, for which the sum μC,C′ + νC,C′ is
less than 1. The difference

πC,C′ = 1 − μC,C′ − νC,C′ (5)

is considered as a degree of “uncertainty”.

3 Experimental Results

3.1 ACO Application on Various Sizes of Problem

We have implemented software, which realizes our ant algorithm. Our software
can solve the problem at any rectangular area, the communication and the cover-
age radius can be different and can have any positive value. We can have regions
in the area. The program was written in C language, and the tests were run
on computer with an Intel Pentium 2.8 GHz processor. In our tests we use an
example where the area is square. The coverage and communication radii cover
30 points. The HECN is fixed in the centre of the area. For the tests we have
used areas with three sizes: 350 × 350 points, 500 × 500 points, and 700 × 700
points.

In our previous work [3], we showed that our ant algorithm outperforms the
existing algorithms for this problem. There, after several runs of the algorithm
we were able to specify the most appropriate values of its parameters: α = β = 1,
ρ = 0.5, τ0 = 0.5. We study the influence of the number of ants on the quality
of the solutions. We fixed the number of the iterations to be 60 (about 3 h per
ant) and the number of ants to have following values {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

We run our ACO algorithm 30 times for each number of ants. We extract
the Pareto front from the solutions of these 30 runs. In Tables 1, 2, and 3 we
show the achieved non dominated solutions (approximate Pareto fronts) for case
350 × 350, 500 × 500, and 700 × 700, respectively.

The left column represents the number of sensors and in other columns we
present the energy corresponding to this number of sensors and the number of
ants. Analyzing the Table 1 (case 350 × 350) we observe that the best algorithm
performance in the case 350 × 350 is achieved by 7 ants, more ants leads to
more computational time. From Table 2 (case 500 × 500) we observe that the
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Table 1. Approximate Pareto fronts, example 350× 350

Sensors Ants

1 2 3 4 5 6 7 8 9 10

111 30 36 30 30 30 30 30 30 30 30

112 30 36 30 30 30 30 30 30 30 30

113 28 35 28 30 30 30 28 28 28 28

114 26 26 26 26 26 26 26 26 26 26

115 26 26 26 26 26 26 26 26 26 26

116 26 26 26 26 26 26 25 25 26 25

Table 2. Approximate Pareto fronts, example 500× 500

Sensors Ants

1 2 3 4 5 6 7 8 9 10

223 90 96 90 90 89 81 90 90 90 90

224 61 96 89 89 88 65 61 59 57 71

225 61 96 74 58 60 58 57 58 57 57

226 59 95 73 57 59 57 56 58 57 57

227 60 57 57 57 57 56 56 57 57 57

228 60 57 57 57 57 56 56 57 54 57

229 58 57 57 55 57 56 56 56 54 56

230 57 57 57 55 57 52 56 54 54 56

231 57 55 57 55 55 52 56 54 54 56

232 57 55 55 51 54 50 52 51 54 48

233 57 55 55 51 54 50 51 51 54 48

234 57 55 55 51 53 50 51 48 53 48

235 57 55 54 51 53 50 51 48 50 48

236 57 55 54 51 53 50 51 48 50 48

237 57 55 54 51 53 50 51 48 50 48

238 57 55 53 51 53 50 51 48 50 48

239 56 55 53 50 53 50 51 48 50 48

240 53 53 53 50 53 50 51 48 50 48

241 53 53 53 50 53 50 51 48 50 48

242 53 53 53 50 53 50 51 48 50 48

243 53 53 53 50 53 50 51 48 50 48

244 53 53 53 50 52 50 51 48 50 48
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approximate Pareto front achieved by 6 ants dominates others. Analyzing the
Table 3 (case 700 × 700) we observe that the approximate Pareto front achieved
by 6 ants again dominates others. In all discussed cases the approximate Pareto
fronts achieved by 6 and 7 ants outperform others. Thus it is the best number
of ants for our sensor layout problem.

3.2 ICrA Results

In case of size 350 × 350, in order to apply the ICrA the IM based on the
results presented in Table 1 is constructed. The cross-platform software for ICrA
approach, ICrAData, is used [14]. After the application of ICrA the following IM
of values of degrees of “agreement” μC,C′ are obtained (Table 4). In the table,
as well as in the Tables 5 and 6, in bold are the estimations that show high
correlation between the considered ACO algorithms.

In case of size 500×500 again IM based on the results presented in Table 2 is
constructed. The obtained degrees of “agreement” are as presented in Table 5.

In case of size 700 × 700 the IM based on the results presented in Table 3 is
constructed. The obtained degrees of “agreement” are as presented in Table 6.

Table 3. Approximate Pareto fronts, example 700× 700

Sensors Ants

1 2 3 4 5 6 7 8 9 10

437 173 173 173 173 173 118 168 172 261 172

438 173 173 173 173 173 118 112 117 260 172

439 172 173 173 173 140 93 110 115 131 172

440 172 173 173 173 115 93 110 114 111 162

441 172 173 173 122 111 93 110 114 111 110

442 172 173 173 114 111 93 110 112 111 110

443 172 150 123 114 111 93 110 112 111 110

444 124 112 112 106 107 93 110 102 111 105

445 117 112 112 106 107 93 110 102 108 105

446 117 112 105 105 105 93 107 102 104 105

447 117 112 105 105 105 93 105 102 102 105

448 115 111 105 105 105 93 105 102 102 105

449 115 111 105 105 105 93 102 99 102 105

450 113 111 105 105 105 93 102 99 102 105

451 113 109 105 105 105 93 102 99 97 105

452 113 109 105 105 105 93 99 99 97 104

453 113 109 105 105 105 93 99 99 97 104

454 113 109 105 105 96 93 96 96 96 104

455 106 106 105 105 96 93 96 96 96 97
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Table 4. Obtained degrees of “agreement” µC,C′ - problem size 350× 350

µC,C′ ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

ACO1 1 1 0.87 0.87 0.87 0.87 0.87 1 0.87

ACO2 1 1 0.87 0.87 0.87 0.87 0.87 1 0.87

ACO3 1 1 0.87 0.87 0.87 0.87 0.87 1 0.87

ACO4 0.87 0.87 0.87 1 1 0.73 0.73 0.87 0.73

ACO5 0.87 0.87 0.87 1 1 0.73 0.73 0.87 0.73

ACO6 0.87 0.87 0.87 1 1 0.73 0.73 0.87 0.73

ACO7 0.87 0.87 0.87 0.73 0.73 0.73 1 0.87 1

ACO8 0.87 0.87 0.87 0.73 0.73 0.73 1 0.87 1

ACO9 1 1 1 0.87 0.87 0.87 0.87 0.87 0.87

ACO10 0.87 0.87 0.87 0.73 0.73 0.73 1 1 0.87

Table 5. Obtained degrees of “agreement” µC,C′ – problem size 500× 500

µC,C′ ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

ACO1 0.89 0.78 0.9 0.71 0.71 0.68 0.73 0.7 0.7

ACO2 0.89 0.8 0.87 0.78 0.76 0.73 0.74 0.71 0.73

ACO3 0.78 0.8 0.87 0.83 0.75 0.79 0.82 0.82 0.73

ACO4 0.9 0.87 0.87 0.79 0.79 0.78 0.81 0.76 0.81

ACO5 0.71 0.78 0.83 0.79 0.84 0.87 0.93 0.84 0.81

ACO6 0.71 0.76 0.75 0.79 0.84 0.9 0.89 0.77 0.96

ACO7 0.68 0.73 0.79 0.78 0.87 0.9 0.89 0.81 0.9

ACO8 0.73 0.74 0.82 0.81 0.93 0.89 0.89 0.87 0.88

ACO9 0.7 0.71 0.82 0.76 0.84 0.77 0.81 0.87 0.79

ACO10 0.7 0.73 0.73 0.81 0.81 0.96 0.9 0.88 0.79

Table 6. Obtained degrees of “agreement” µC,C′ – problem size 700× 700

µC,C′ ACO1 ACO2 ACO3 ACO4 ACO5 ACO6 ACO7 ACO8 ACO9 ACO10

ACO1 0.88 0.72 0.72 0.8 0.35 0.84 0.85 0.85 0.78

ACO2 0.88 0.77 0.71 0.74 0.28 0.77 0.82 0.81 0.8

ACO3 0.72 0.77 0.94 0.82 0.46 0.64 0.7 0.68 0.7

ACO4 0.72 0.71 0.94 0.87 0.46 0.64 0.74 0.7 0.74

ACO5 0.8 0.74 0.82 0.87 0.4 0.76 0.85 0.84 0.83

ACO6 0.35 0.28 0.46 0.46 0.4 0.36 0.33 0.32 0.39

ACO7 0.84 0.77 0.64 0.64 0.76 0.36 0.81 0.89 0.73

ACO8 0.85 0.82 0.7 0.74 0.85 0.33 0.81 0.84 0.82

ACO9 0.85 0.81 0.68 0.7 0.84 0.32 0.89 0.84 0.78

ACO10 0.78 0.8 0.7 0.74 0.83 0.39 0.73 0.82 0.78
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Based on the ICrA outcomes it is shown that the ACO algorithms with
very close number of ants (e.g. ACO1 and ACO2, ACO3 and ACO4 or ACO7

and ACO8) perform in similar way. The high correlation between such pairs is
preserved regardless the problem size. Such relation is obvious. According to the
results in Table 4 (case 350×350) very high correlation is observed for the ACO9

and ACO1, ACO2, ACO3. These relations are not observed in the other two
cases. In case of problem size 350× 350 the existing many very high correlations
are explained with the fact the most of the considered ACO algorithms can solve
the problem with good solution quality. Whereas, in the case of size 500 × 500
or 700 × 700 only few ACO algorithms perform very well. So, if we considered
results in case of larger problem sizes, the ICrA results show that the number of
ans has the significant influence on the obtained results.

4 Conclusion

In this paper we have studied the influence of the number of ants on the per-
formance of the ACO algorithm, applied to the wireless sensor network. Smaller
number of ants leads to the shorter running time and minimizes memory use,
which is important for complex/large cases. We varied the number of ants, while
fixing the number of iterations. Furthermore, we included the concept of an
Extended front, as an additional tool to compare approximate Pareto fronts
that do not dominate each other. The best approximate Pareto front and the
best performance were achieved when the number of ants was equal to 6 in the
cases 700 × 700 and 500 × 500, and 7 in the case 350 × 350. The results are
analysed based on ICrA, too. The analysis confirms considerable influence of
the ants number on the quality of the decision, especially in the case of bigger
problem sizes.
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