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Abstract. Hypersingular integral equations are applied in various areas
of applied mathematics and engineering. The paper presents a method
for solving the problem of diffraction of an electromagnetic wave on a
perfectly conducting object of complex form. In order to solve the prob-
lem of diffraction with large wave numbers using the method of integral
equations, it is necessary to calculate a large dense matrix.

In order to solve the integral equation, the author used low-rank
approximations of large dense matrices. The low-rank approximation
method allows multiplying a matrix of size N × N by a vector of size
N in O(N log(N)) operations instead of O(N2). An iterative method
(GMRES) is used to solve a system with a large dense matrix repre-
sented in a low-rank format, using fast matrix-vector multiplication.

In the case of a large wave number, the matrix becomes ill-conditioned;
therefore, it is necessary to use a preconditioner to solve the system with
such a matrix. A preconditioner is constructed using the uncompressed
matrix blocks of a low-rank matrix representation in order to reduce the
number of iterations in the GMRES method. The preconditioner is a
sparse matrix. The MUMPS package is used in order to solve system
with this sparse matrix on high-performance computing systems.

Keywords: Parallel algorithm · Fast matrix method ·
Preconditioner · Electromagnetic scattering

1 Introduction

Solving large problems on a computer often involves the use of huge computa-
tional resources; therefore, for solving large problems, computing systems with
distributed memory are used, as well as special numerical approximation me-
thods for dense matrices. In this paper, using the example of solving the prob-
lem of diffraction of electromagnetic waves, the features of the application of
low-rank approximation methods for supercomputers are presented.

In our work we used “Zhores” supercomputer installed at Skolkovo Institute of Science
and Technology [1]. The work was supported by the Russian Science Foundation, grant
19-11-00338.
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Solving problem of diffraction of electromagnetic waves is equivalent to solv-
ing a hypersingular integral equation (as in [2–4]). A low-rank approximation
method has been developed for supercomputers in order to solve a system with
a large dense matrix. The system with the compressed matrix is solved by the
GMRES method. In order to reduce the number of iterations in an iterative
algorithm in this paper is proposed a preconditioner using a mosaic structure of
the original matrix.

2 Electrodynamics Problem

Let us consider the diffraction problem on a perfectly conducting surface Σ,
which can be either closed or open.

A monochrome wave with a frequency ω satisfies the Maxwell equations,

∇ × E = iμμ0ωH;∇ × H = −iεε0ωE.

On a perfectly conducting surface the following boundary condition holds,

n × (E0 + E) = 0,

where E0 is a given function, defined by the incident wave (we assume that the
incident wave is planar), and n is a normal vector to the surface.

To find a unique solution it is necessary to pose additional conditions

E ∈ Lloc
2 (Ω)

and
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, τ = |x|, τ → ∞.

In accordance with [2], the problem can be reduced to the electric field inte-
gral equation on the unknown j(y):

n ×
∫∫
Σ

j(y)
(
grad div F (x − y) + k2F (x − y)

)
dσy = −n × E0(x), x ∈ Σ, (1)

where k = ω
√

εε0μμ0 is the wave number, and

F (R) =
exp (ikR)

R
, R = |x − y|.

In Eq. (1) the integral can be understood in the sense of the Hadamard finite
part.

For the numerical solution of the Eq. (1) we use a numerical scheme presented
in [5]. In this scheme the surface is uniformly divided into cells σi, i = 1, n, and
for each cell an orthonormal basis ei1, ei2 is introduced. For each cell σi it is
assumed that ji = j(xi), where xi is the center of mass of the cell. Each cell
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is considered to be planar. Discretization of the integral operator produces a
matrix that consists of 2 × 2 blocks:

Aij =
(
E1j(xi) · e1i E2j(xi) · e1i

E1j(xi) · e2i E2j(xi) · e2i

)
,

E1j(xi) =
∫

∂σj

Q(xi)de2 + k2e1j

∫
σj

exp (ikR)
R

dσ; (2)

E2j(xi) = −
∫

∂σj

Q(xi)de1 + k2e2j

∫
σj

exp (ikR)
R

dσ,Q(x) = ∇y
exp (ik|x − y|)

|x − y| .

In (2) the contour and surface integrals are calculated numerically.

3 Mosaic Skeleton Approximations

The problem reduces to the solution of the linear system of algebraic equations

Az = b (3)

with a dense matrix A. To approximate the matrix we use the mosaic-skeleton
method [6–8]. It partitions the matrix hierarchically into blocks, and the low-
rank matrix blocks can be calculated independently using the incomplete cross
approximation algorithm.

Let us investigate the approximation algorithm. In all examples below the
surface Σ in Eq. (1) is a round cylinder with a diameter 15 cm and height 25 cm.

In Fig. 1 we present the inverse Radar Cross Section (RCS) for the frequency
16 GHz. The σ value for different directions τ of the wave vectors of the incident
wave is calculated as

σ(τ) =
4π

|E0|2
∣∣∣∣∣

n∑
i=1

(ji − τ · (τ · ji)) k2 exp (−ikτ · xi)σi

∣∣∣∣∣
2

. (4)

The black points show the results of the experiment, the grey line shows the
results of the numerical simulation.

In all calculations the number of cells is 192 156, the number of right-hand
sides is 2048, the accuracy of approximation of the matrix is 10−3, the accuracy
of solving system is 5 · 10−3.

The accuracy of the matrix approximation and the accuracy of the solution
of the system is determined by comparing the RSC obtained from experiments
and from approximate calculations for a large number of problems.

In Table 1 one can see the number of necessary iterations for solving the sys-
tem with 2048 right-hand sides up to the accuracy 5·10−3 for different frequencies
and numbers of cells n.

It can be seen from Table 1 that the number of iterations increases signifi-
cantly with respect to the frequency, and it requires a lot of memory and com-
putational time.
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Fig. 1. RCS, 16 GHz, vertical polarization, n = 192 156

Table 1. Number of iterations for various parameters of the electrodynamics problem.

n 2 GHz 4 GHz 8 GHz 16 GHz

7872 1862 2355 4390 9410

21760 2821 4261 6025 11237

30400 3651 4791 7285 12990

45784 4262 5689 8269 21103

4 Preconditioner

Let us reduce the number of iterations in the GMRES method using the precon-
ditioner for solving the system (3). The technology for building and using the
preconditioner is described in the monograph [9].

The matrix is divided into blocks according to the mosaic-skeleton approxi-
mations method. The blocks corresponding to the interaction of distant domains
are assumed to have low rank. All elements of the remaining blocks are calcu-
lated. Non-low-rank blocks will be called dense. For low-rank blocks, an approx-
imation is constructed with a given accuracy [6,10]. Suppose that for a block of
size m × n, an approximation of rank r is constructed. If the m · n < r(m + n)
condition is satisfied for a block with m, n, r parameters, then such block is also
assumed to be dense. Dense blocks are shown in red in Fig. 2.

A matrix from the mosaic-skeleton representation is selected as the M pre-
conditioner of the system (3), in which the only dense blocks are left and the
low-rank blocks are assumed to be zero (see Fig. 3). The M matrix is sparse;
therefore, the LU decomposition is quickly built for this matrix. The LU decom-
position factors are also sparse, so small amount of RAM is needed to store the
L and U matrices, and the system with a preconditioner is quickly solved:
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Fig. 2. Mosaic matrix structure (Color figure online)

Fig. 3. Nonzero blocks of the preconditioner (Color figure online)

M y = c. (5)

The construction of LU decomposition for sparse systems on multiprocessor
computing systems is implemented in many packages. In this paper, the author
used the MUMPS package [11].

Let us apply MUMPS to solve the system (3):

1. the original A matrix is represented in a low-rank format, and the structure
of the matrix and the location of dense blocks in it are determined;

2. information about the found dense blocks is collected on a single processor
by the MUMPS package, the distribution of the calculated elements of the
M matrix by processors is determined;

3. the M preconditioner is calculated;
4. the LU decomposition of a sparse matrix is calculated in parallel using the

MUMPS package;
5. in order to solve the (3) system by the GMRES method using the MUMPS

package and the LU decomposition of the M matrix, the system (5) is solved
at each iteration.
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Table 2. Number of iterations for solving of system without using a preconditioner
and with using a preconditioner.

N 34 122 94 872 167 676 376 800

p1 4 684 7 563 9 777 14 514

p2 949 1 051 1 116 1 488

The MUMPS package provides for the use of different methods for construct-
ing LU decomposition of sparse systems. In this paper, the authors used the
method that leads to the least full L and U matrices [11].

5 Numerical Results

Table 2 shows the effectiveness of the preconditioner for solving systems of differ-
ent sizes N . In the table p1 is the number of iterations without a preconditioner,
p2 is the number of iterations with a preconditioner. The frequency in the exam-
ple is 8 GHz.

It is possible to construct RCS for cylinder on supercomputers without using
a preconditioner only for frequency equal to the 16 GHz (see Fig. 1). Precon-
ditioner allows to obtain a solution of the integral equation and σ(τ) (4) for
32 GHz and 64 GHz.

Fig. 4. RCS, 32 GHz, horizontal polarization, N = 1 507 200 (Color figure online)
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Fig. 5. RCS, 64 GHz, horizontal polarization, N = 2 006 928 (Color figure online)

In Figs. 4, 5, the RCS obtained from the solution of the integral equation
(IE) is shown in black, the RCS obtained by the physical optics method (FO)
[12] is shown in red.

In this section we used “Zhores” supercomputer installed at Skolkovo Insti-
tute of Science and Technology [1]. The work was supported by the Russian
Science Foundation, grant 19-11-00338.
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