
A Second Order Time Accurate Finite
Volume Scheme for the Time-Fractional

Diffusion Wave Equation on General
Nonconforming Meshes

Fayssal Benkhaldoun1,2 and Abdallah Bradji3(B)

1 LAGA, University of Paris 13, Paris, France
fayssal@math.univ-paris13.fr
2 UM6P, Benguerir, Morocco
Fayssal.BENKHALDOUN@um6p.ma
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Abstract. SUSHI (Scheme Using Stabilization and Hybrid Interfaces)
is a finite volume method has been developed at the first time to approx-
imate heterogeneous and anisotropic diffusion problems. It has been
applied later to approximate several types of partial differential equa-
tions. The main feature of SUSHI is that the control volumes can only
be assumed to be polyhedral. Further, a consistent and stable Discrete
Gradient is developed.

In this note, we establish a second order time accurate implicit scheme
for the TFDWE (Time Fractional Diffusion-Wave Equation). The space
discretization is based on the use of SUSHI whereas the time discretiza-
tion is performed using a uniform mesh. The scheme is based on the use
of an equivalent system of two low order equations. We sketch the proof
of the convergence of the stated scheme. The convergence is uncondi-
tional. This work is an improvement of [3] in which a first order scheme,
whose convergence is conditional, is established.

Keywords: Finite volume · Time Fractional Diffusion Wave
Equation · System · Unconditional convergence · Second order time
accurate

1 Problem to Be Solved and Aim of This Paper

Let us consider the following time-fractional equation:

∂α
t u(x , t) − Δu(x , t) = f(x , t), (x , t) ∈ Ω × (0, T ), (1)
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where Ω is an open bounded connected subset of IRd (d ∈ IN�), T > 0, and f
is a given function. The operator ∂α

t denotes the Caputo derivative of order α
whose general formula is given by, for m − 1 < ρ < m with m ∈ IN�

∂ρ
t u(t) =

1
Γ (m − ρ)

∫ t

0

(t − s)m−1−ρu(m)(s)ds. (2)

We are concerned with the case of TFDWE in which α, which appears in the
first term on the left hand side of (1), is satisfying

1 < α < 2.

In this case the operator ∂α
t is given by

∂α
t u(t) =

1
Γ (2 − α)

∫ t

0

(t − s)1−αu′′(s)ds. (3)

Initial conditions are given by, for all x ∈ Ω:

u(x , 0) = u0(x ) and ut(x , 0) = u1(x ), (4)

where u0 and u1 are given functions defined on Ω.
Homogeneous Dirichlet boundary conditions are given by

u(x , t) = 0, (x , t) ∈ ∂Ω × (0, T ). (5)

The TFDWE arises in several applications and several numerical methods have
been devoted to approximate such equation, see [7,8] and references therein.
In this note, we establish a second order time accurate implicit finite volume
scheme using SUSHI [5] for TFDWE in any space dimension along with a brief
study for its convergence analysis in several discrete norms. The scheme is based
on an equivalent system of low order equations for (1). This work improves [3]
which deal with a first order scheme with a conditional convergence.

2 Definition of a Consistent and Stable Discrete Gradient

We consider as discretization in space the mesh of [5]. In brief, such mesh is
defined as the triplet D = (M, E ,P) where M is the set of cells, E is the set
of edges, and P is a set of points xK in each cell K. We assume that, for all
K ∈ M, there exists a subset EK of E such that ∂K = ∪σ∈EK

σ. For any σ ∈ E ,
we denote by Mσ = {K,σ ∈ EK}. We then assume that, for any σ ∈ E , either
Mσ has exactly one element and then σ ⊂ ∂Ω (the set of these interfaces,
called boundary interfaces, denoted by Eext) or Mσ has exactly two elements
(the set of these interfaces, called interior interfaces, denoted by Eint). For all
σ ∈ E , we denote by xσ the barycentre of σ. For all K ∈ M and σ ∈ E , we
denote by nK,σ the unit vector normal to σ outward to K. Denoting by dK,σ the
Euclidean distance between xK and the hyperplane including σ, one assumes
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that dK,σ > 0. We then denote by DK,σ the cone with vertex xK and basis σ.
Also, hK is used to denote the diameter of K. For more details on the mesh, we
refer to [5, Definition 2.1, Page 1012].

We define the discrete space XD,0 as the set of all v =
(
(vK)K∈M , (vσ)σ∈E

)
,

where vK , vσ ∈ IR and vσ = 0 for all σ ∈ Eext. Let HM(Ω) ⊂ L2(Ω) be
the space of functions which are constant on each control volume K of the
mesh M. For all v ∈ XD, we denote by ΠMv ∈ HM(Ω) the function defined
by ΠMv(x ) = vK , for a.e. x ∈ K, for all K ∈ M. In order to analyze
the convergence, we need to consider the size of the discretization D defined
by hD = sup {diam(K), K ∈ M} and the regularity of the mesh given by

θD = max
(

max
σ∈Eint,K,L∈M

dK,σ

dL,σ
, max
K∈M,σ∈EK

hK

dK,σ

)
.

The formulation of the scheme we want to consider involves the discrete
gradient, denoted by ∇D, developed in [5]. The value of ∇Du, where u ∈ XD,0,
is defined by, for all K ∈ M, for a.e. x ∈ DK,σ

∇Du(x ) =
1

m(K)

∑
σ∈EK

m(σ) (uσ − uK)nK,σ

+

( √
d

dK,σ
(uσ − uK − ∇Ku · (xσ − xK))

)
nK,σ. (6)

We define now the inner product defined on XD,0 × XD,0 and given by

〈u, v〉F =
∫

Ω

∇Du(x ) · ∇Dv(x )dx . (7)

The time discretization is performed with a constant time step k =
T

N + 1
,

where N ∈ IN�, and we shall denote tn = nk, for n ∈ �0, N + 1�. We denote by

∂1 the discrete first time derivative given by ∂1vj+1 =
vj+1 − vj

k
.

Throughout this paper, the letter C stands for a positive constant indepen-
dent of the parameters of the space and time discretizations.

3 A High Order Approximation for the Caputo
Derivative and Its Properties

For the sake of completeness, we recall in this section some results concerning a
second order approximation for the time fractional derivative ∂β

t Φ with 0 < β < 1
and Φ is smooth, i.e. Φ ∈ C3[0, T ], and its properties. This approximation is given
by the so-called L2−1σ formula developed in [1,6]. Such approximation will help
to derive a second order time accurate scheme for the considered problem (1)–
(5). To construct this high order approximation for the Caputo derivative, we
consider the “fractional mesh points” tn+σ = (n + σ)k, for n ∈ �0, N�, where

σ = 1 − β

2
. (8)
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Using (2) when ρ = β ∈ (0, 1) and consequently m = 1, the value ∂β
t Φ(tn+σ) is

given by

1
Γ (1 − β)

⎛
⎝ n∑

j=1

∫ tj

tj−1

(tn+σ − s)−βΦs(s)ds +
∫ tn+σ

tn

(tn+σ − s)−βΦs(s)

⎞
⎠ ds. (9)

For each j ∈ �1, N�, let Π2,jΦ be the quadratic interpolation defined on (tj−1, tj)
on the points tj−1, tj , tj+1 of Φ. An explicit expansion for Π2,jΦ yields:

(Π2,jΦ(s))′ = ∂1Φ(tj+1) + ∂2Φ(tj+1)
(
s − tj+ 1

2

)

= ∂1Φ(tj) + ∂2Φ(tj+1)
(
s − tj− 1

2

)
.

When approximating the terms of the sum (resp. the last term) using quadratic
interpolations (resp. a linear interpolation) in (9) of ∂β

t Φ(tn+σ), we have to com-
pute the following integrals:

1. First set of integrals:
∫ tj

tj−1

(
s − tj− 1

2

)
(tn+σ − s)−βds =

k2−β

1 − α
bσ
n−j ,

where
bσ
l =

1
2 − β

(
(l + σ + 1)2−β − (l + σ)2−β

) − 1
2

(
(l + σ + 1)1−β + (l + σ)1−β

)
.

2. Second set of integrals:
∫ tj

tj−1

(tn+σ − s)−βds =
k1−β

1 − β
dn+σ−j,β , (10)

with, for all s > 0, ds,β is given by ds,β = (s + 1)1−β − s1−β .
3. Third set of integrals:

∫ tn+σ

tn

(tn+σ − s)−βds =
k1−β

1 − β
σ1−β . (11)

We then obtained approximation for the fractional derivative ∂β
t Φ(tn+σ)

using (9)–(11)

1
Γ (1 − β)

⎛
⎝ n∑

j=1

∫ tj

tj−1

(tn+σ − s)−β (Π2,jΦ(s))′
ds +

k1−β

1 − β
σ1−β∂1Φ(tn+1)

⎞
⎠

=
k1−β

Γ (2 − β)

⎛
⎝ n∑

j=1

∂1Φ(tj)dn+σ−j,β + ∂2Φ(tj+1)kbσ
n−j + σ1−β∂1Φ(tn+1)

⎞
⎠ .
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This gives, after re-ordering the sum (see [1, (27)-(28), Page 429])

∂β
t Φ(tn+σ) ≈ k1−β

Γ (2 − β)

n∑
j=0

cσ,n
n−j∂

1Φ(tj+1), (12)

where cσ,0
0 = σ1−β and for all n ≥ 1

cσ,n
0 = σ1−β + bσ

0 , cσ,n
j = dj+σ−1,β + bσ

j − bσ
j−1, ∀j ∈ �1, n − 1�, (13)

cσ,n
n = dn+σ−1,β − bσ

n−1.

Let us denote

λn+1
j =

cσ,n
n−j

kβΓ (2 − β)
. (14)

The following lemma summarizes some properties of the approximation given
by (12). Some of these results are proved in [1] whereas the other ones can be
justified using the explicit form (14).

Lemma 1 (Some results concerning the time discretization, cf. [1,6]).
Let β ∈ (0, 1) be given and λn+1

j be defined by (14). Then the following results
hold:
1. Properties of the coefficients λn+1

j , cf. [1, Lemma 4, Page 431].

λn+1
n > λn+1

n−1 > . . . > λn+1
0 > λ0 =

1
2TαΓ (1 − β)

, (15)

n∑
j=0

kλn+1
j ≤ T 1−β

Γ (2 − β)
, k

N∑
n=1

λn+1
1 ≤ (4 − β)T 1−β

Γ (3 − β)
, (16)

and for all j ∈ �0, n� and i ∈ �0,m� such that n − j = m − i, i = 0, and j = 0,
we have λn+1

j = λm+1
i .

2. Stability result, cf. [1, Corollary 1, Page 427]. For all
(
βj

)N+1

j=0
∈ IRN+2,

for any n ∈ �0, N + 1�:

(
σβn+1 + (1 − σ)βn

) n∑
j=0

λn+1
j (βj+1 − βj) ≥ 1

2

n∑
j=0

λn+1
j

(
(βj+1)2 − (βj)2

)
.

(17)
3. Consistency result, cf. [1, Lemma 2, Page 429]. For any Φ ∈ C3 ([0, T ]):

∣∣∣∣∣∣∂
βΦ(tn+σ) −

n∑
j=0

kλn+1
j ∂1Φ(tj+1)

∣∣∣∣∣∣ ≤ Ck3−β
∣∣∣Φ(3)

∣∣∣
C([0,T ])

. (18)
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4 Principles of the Scheme

The principles of the scheme we want to present are:
1. First step. Taking the “fractional mesh point” t = tn+σ, with σ is given by
(8) and β = α − 1, in (1) and using the general formula (2) implies that (which
gives ∂α

t u(t) = ∂α−1
t (ut))

∂α−1
t u(tn+σ) − Δu(tn+σ) = f(tn+σ) and u = ut. (19)

2. Second step. Approximation of ∂α−1
t u(tn+σ), which is the first term in (19),

can be deduced from (18) by choosing β = α − 1 and Φ(t) = u(t) = ut:

∂α−1
t u(tn+σ) =

n∑
j=0

kλn+1
j ∂1u(tj+1) + T

n+1
1 (u), (20)

where |Tn+1
1 (u)| ≤ Ck4−α

∣∣∣u(4)
∣∣∣
C([0,T ])

.

3. Third step. Approximation of the first equation of (19). We have, thanks to
a convenient Taylor expansion

un+σ = σu(tn+1) + (1 − σ)u(tn) = u(tn+σ) + T
n+1
2 , (21)

where |Tn+1
2 | ≤ k2

2
‖u‖C2([0,T ]). From (19)–(21), we deduce that

n∑
j=0

kλn+1
j ∂1u(tj+1) − Δun+σ = f(tn+σ) + T

n+1
3 , (22)

where |Tn+1
3 | ≤ Ck2‖u‖C4([0,T ]).

4. Fourth step. Approximation of the second equation of (19) when n ≥ 1.
The derivative ut(tn+σ) is approximated (to get the stability property) by
(2σ + 1)u(tn+1) − 4σu(tn) + (2σ − 1)u(tn−1)

2k
. Using a suitable Taylor expansion

yields

(2σ + 1)u(tn+1) − 4σu(tn) + (2σ − 1)u(tn−1)
2k

= u(tn+σ) + T
n+1
4 , (23)

where |Tn+1
4 | ≤ Ck2‖u‖C3([0,T ]).

The system (19) is used for instance in [8] to establish a finite difference
scheme in one space dimension. Such scheme is based on a Crank-Nicolson
method.

5 Formulation of a Second Order Time Accurate Finite
Volume Scheme and Statement of Its Convergence

After having explained the principles of the finite volume scheme for problem
(1)–(5), we are able now to set its definition. We will denote by (·, ·)L2(Ω) the
L2(Ω)-inner product and by vn+σ the barycentric element given by vn+σ =
σvn+1 + (1 − σ)vn.
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Definition 1 (Definition of a finite volume scheme for (1)–(5)). Let 〈·, ·〉
be the inner product given by (7):
1. Discretization of initial conditions (4): Find u0

D, u0
D ∈ XD,0 such that, for all

v ∈ XD,0

〈u0
D, v〉F = − (

Δu0,ΠMv
)
L2(Ω)

and 〈u0
D, v〉F = − (

Δu1,ΠMv
)
L2(Ω)

.

(24)
2. Discretization of Eq. (22): For any n ∈ �0, N�, find un+1

D , un+1
D ∈ XD,0 such

that
n∑

j=0

λn+1
j

(
ΠM(uj+1

D − uj
D),ΠMv

)
L2(Ω)

+ 〈un+σ
D , v〉F

= (f(tn+σ),ΠMv)L2(Ω) , ∀ ∈ XD,0. (25)

3. Discretization of the second equation of (19):

u
1
2
D = ∂1u1

D and (26)

un+σ
D =

1
2k

(
(2σ + 1)un+1

D − 4σun
D + (2σ − 1)un−1

D
)
, ∀n ∈ �1, N�.

We now state one of the main results of this note, that is the convergence of
scheme (24)–(26).

Theorem 1 (Error estimates for scheme (24)–(26)). Let Ω be a polyhedral
open bounded subset of IRd, where d ∈ IN \ {0}. Assume that the solution of
(1)–(5) satisfies u ∈ C4([0, T ]; C2(Ω)) and θD satisfies θ ≥ θD. Let ∇D be the
discrete gradient defined as in (6) and 〈·, ·〉 be the inner product given by (7).
Let k = T

N+1 , with N ∈ IN�, and denote by tn = nk, for n ∈ �0, N + 1�. Let σ be
defined by (8) with β = α − 1. For any n ∈ �0, N�, for any j ∈ �0, n�, we define
the coefficients λn+1

j as in (14).
Then there exists a unique solution (un

D)N+1
n=0 , (un

D)N+1
n=0 ∈ X N+2

D,0 for scheme (24)–
(26) and the following error estimates in L∞(H1) and H1(L2) discrete semi-
norms hold:

N+1
max
n=0

‖∇Dun
D − ∇u(tn)‖L2(Ω)d +

(
N+1∑
n=0

k‖ΠMun
D − ut(tn)‖2L2(Ω)

) 1
2

≤ C(hD + k2)‖u‖C4(0,T ; C2(Ω)). (27)

The proof of Theorem 1 is based on the following new a priori estimate result:

Theorem 2 (A priori estimate for the discrete problem) Under the
same hypotheses of Theorem 1, assume that there exists (ηn)N+1

n=0 , (ηn)N+1
n=0 ∈

(XD,0)
N+2 such that η0

D = η0 = 0 and for all n ∈ �0, N�

n∑
j=0

λn+1
j

(
ΠM(ηj+1

D − ηj
D),ΠMv

)
L2(Ω)

+ 〈ηn+σ
D , v〉F =

(Sn+1, ΠMv
)
L2(Ω)

,

(28)
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where Sn+1 ∈ L2(Ω), for all n ∈ �0, N�. Then, the following estimate holds:

N+1
max
n=0

‖∇Dηn
D‖L2(Ω)d +

(
N+1∑
n=0

k‖ΠMηn
D‖2L2(Ω)

) 1
2

≤ CS, (29)

where

S =
N

max
n=1

∥∥∥∥∇D

(
ηn+σ

D − (2σ + 1)ηn+1
D − 4σηn + (2σ − 1)ηn−1

D
2k

)∥∥∥∥
L2(Ω)d

+
N

max
n=0

‖Sn+1‖L2(Ω) + ‖∇D(∂1η1
D − η

1
2
D)‖L2(Ω)d (30)

An Overview on the Proof of Theorem 2: In addition to Lemma1, the
proof of Theorem 2 is based on the following inequality:

〈σηn+1
D + (1 − σ)ηn

D, (2σ + 1)ηn+1
D − 4σηn

D + (2σ − 1)ηn−1
D 〉F ≥ E

n+1 −E
n, (31)

where

E
n+1 =

2σ2 + σ − 1
2

‖∇D(ηn+1
D − ηn

D)‖2L2(Ω)d +
2σ + 1

2
‖∇Dηn+1

D ‖2L2(Ω)d

−2σ − 1
2

‖∇Dηn
D‖2L2(Ω)d .

In addition to this E
n+1 ≥ 1

2σ
‖∇Dηn+1

D ‖2L2(Ω)d . However, Theorem 2
demands a rather longer proof. We will detail this in a future paper. ��
Sketch of the proof of Theorem 1
The uniqueness for schemes (24) stems from the fact that ‖∇D · ‖L2(Ω)d is a
norm on XD,0. This uniqueness implies the existence since the matrix involved is
square. The uniqueness for scheme (25) with (26) can be justified using a priori
estimate (29). This uniqueness implies the existence since the matrix involved in
(25) is square. To prove estimate (27), we compare (24)–(26) with the following
auxiliary schemes: For any n ∈ �0, N + 1�, find Ξn

D, Υn
D ∈ XD,0 such that

〈Ξn
D, v〉F = − (Δu(tn),ΠDv)L2(Ω) and (32)

〈Υn
D, v〉F = − (Δut(tn),ΠDv)L2(Ω) , ∀v ∈ XD,0.

Taking n = 0 in (32), using the fact that u(0) = u0 and ut(0) = u1 (subject
of (4)), and comparing with scheme (24), we get η0

D = η0
D = 0, where, for all

n ∈ � 0, N + 1�, ηn
D, ηn

D ∈ XD,0 are given by ηn
D = un

D − Ξn
D and ηn

D = un
D − Υn

D.

First step: Comparison between (u, ut) and (Ξn
D, Υn

D). We have (see [4,5])

‖∂1u(tn) − ΠM∂1Ξn
D‖L2(Ω) + ‖∇u(tn) − ∇DΞn

D‖L2(Ω)d ≤ ChD‖u‖C1(0,T ; C2(Ω)).

(33)
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and

‖ut(tn) − ΠMΥn
D‖L2(Ω) + ‖∂1 (ut(tn) − ΠMΥn

D) ‖L2(Ω) ≤ ChD‖u‖C2(0,T ; C2(Ω)).

(34)
Second step: Comparison between (Ξn

D, Υn
D) and (un

D, un
D). From (25), (22),

and (32), we deduce that

n∑
j=0

λn+1
j

(
ΠM(ηj+1

D − ηj
D),ΠMv

)
L2(Ω)

+
(∇Dηn+σ

D ,∇Dv
)
L2(Ω)d

=
(Sn+1, ΠMv

)
L2(Ω)

, (35)

where Sn+1 =
n∑

j=0

kλn+1
j ∂1

(
ut(tj+1) − ΠMΥ j+1

D
)

−T
n+1
3 . Using the a priori

estimate (29) yields

N+1
max
n=0

‖∇Dηn
D‖L2(Ω)d +

(
N+1∑
n=0

k‖ΠMηn
D‖2L2(Ω)

) 1
2

≤ CS, (36)

where

S =
N

max
n=1

∥∥∥∥∇D

(
ηn+σ

D − (2σ + 1)ηn+1
D − 4σηn + (2σ − 1)ηn−1

D
2k

)∥∥∥∥
L2(Ω)d

+
N

max
n=0

‖Sn+1‖L2(Ω) + ‖∇D(∂1η1
D − η

1
2
D)‖L2(Ω)d . (37)

Using the triangle inequality, (16), and (34) yields (recall that T
n+1
3 is of order

two, see (22)) S ≤ C(hD + k2)‖u‖C4(0,T ; C2(Ω)). Using (26) implies that η
1
2
D −

∂1η1
D = −Υ

1
2

D + ∂1Ξ1
D. On the other hand, using (32) implies that(

∇D
(
∂1Ξ1

D − Υ
1
2

D
)

,∇Dv
)

L2(Ω)d
= −

(
Δ

(
∂1u(t1) − u

1
2
t

)
,ΠMv

)
L2(Ω)

. By

taking v = ∂1Ξ1
D − Υ

1
2

D in this equation and using the Cauchy
Schwarz inequality and the Poincaré inequality [5, Lemma 5.4] imply that∥∥∥∇D

(
η

1
2
D − ∂1η1

D
)∥∥∥

L2(Ω)d
≤ Ck2‖u‖C3(0,T ; C2(Ω)). In the same manner, we jus-

tify that the first term in (37) is bounded above by Ck2‖u‖C3(0,T ; C2(Ω)). These

estimates for the terms of (37) and estimate (36) imply that
N+1
max
n=0

‖∇Dηn
D‖L2(Ω)d

and

(
N+1∑
n=0

k‖ΠMηn
D‖2L2(Ω)

) 1
2

are bounded above by C(hD +k2)‖u‖C4(0,T ; C2(Ω)).

This with the triangle inequality and estimates (33)–(34) imply the required esti-
mate (27). This completes the proof of Theorem 1. ��
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6 Some Concluding Remarks and Perspectives

Using an equivalent system of low order equations for TFDWE, we established
a second order time accurate finite volume scheme using the discrete gradient
of [5]. The time discretization uses the approximation of Caputo derivative of
order 0 < β < 1 developed in [1,6]. We sketched a proof for the convergence
under the strong regularity assumption C4(C2). This regularity can be weakened
to C3(H2) in the particular cases when d = 2 or d = 3, see [5, Remark 4.9,
Pages 1033–1034]. Strong regularity assumptions are usually needed when we
would like to improve the convergence, see for instance the regularity C3(C4)
in [1, Lemma 5]. The convergence stated in this note includes a convergence
in L∞(H1) and H1(L2) discrete semi-norms. As mentioned in Abstract and
Introduction, the present notes improve [3]. We plan in the near future to detail
these notes and to address for instance the technique of graded meshes to get
high order approximations.
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