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Abstract. In this paper, we describe an efficient implementation in Sage
of the Tate pairing over ordinary hyperelliptic curves of type y2 = x5 +
a x. First, we describe a method of construction of these curves according
to Kawazoe and Takahashi [8]. Then, we describe an efficient formula
for computing pairings on such curves over prime fields, and develop
algorithms to compute Tate pairing. We provide a faster optimisation of
the final exponentiation in particular for the embedding degree k = 28.
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1 Introduction

In 1989, three years after the introduction of elliptic curves cryptography, Koblitz
suggest to use hyper-elliptic curves as a generalization to higher genus curves [8].
He extended the idea of abelian points group on elliptic curves over finite field
to the Jacobian of a hyperelliptic curves, since the Jacobian is a finite abelian
group on which the arithmetic operations are applied.

The algebraic curves-based cryptography has divided the cryptographers
community [11] into two teams. The first one which argues that the problems of
factorization and discrete logarithm problem (DLP) over finite field have already
been intensively studied; and that it would require more time before the com-
munity can really apprehend the nature of elliptic curves. The other team was
ambitious, started working in it and proposed their first protocols.

The first protocols proposed are based on a mathematical tool called pair-
ing, the oldest of them being the Weil pairing. This mathematical protocol has
received a great attention by the researchers and is now among the majors topics
in cryptography. In order to realize protocols based on pairings, it is essential
to have Pairing-friendly-curves which have parameters such as p the large prime
fields Fp and the embedding degree k. The embedding degree plays an important
role in ensuring a certain desired level security. In this context, the security of
the pairing-based cryptosystems depends on finding curves whose Jacobian order
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over the finite fields Fpk , is divisible by a larger prime number � (a condition
necessary for resisting attacks such as Pohling-Hellman attacks).

In this paper, we consider Kawazoe-Takahashi [8] genus two ordinary pairing-
friendly curves of type y2 = x5 + a x which are generated over a finite field Fpk

using a method introduced by Kachisa [7]. These curves are characterized by
simple and fast complex multiplications. It is also possible to have curves with a
known odd prime factor � of the Jacobian order with different embedding degrees
and offer a small ρ−value = 2 log(p)/log(�) between 2 and 3.

The paper is organized as follows. First, we recall some backgrounds on pair-
ings over hyperelliptic curves, Jacobian group structure, and representation of
divisors classes. We describe a method to construct ordinary pairing-friendly of
Kawazoe and Takahashi curves with simple method proposed by Kachisa [7] to
obtain curves with small ρ−value. Then, we recall the Tate-Lichtenbaum pairing
definition and present implementation techniques for pairings on hyperelliptic
curves. We provide a new approach to the final exponentiation when the embed-
ding degree is k = 28. The critical computational task of evaluating a function
at a divisor is also provided.

Finally, we give some implementation results in Sage using Intel Core i5-
7300HQ CPU @ 2.50 GHz processor on several security levels. We conclude that
for most applications there exits an efficient algorithm for computing pairings
on hyperelliptic curves that is better that on ordinary elliptic curves from the
point of view of efficiency and security.

2 Preliminaries

In this section, we briefly recall the definition of the hyperelliptic curves, pairings
and the definition of the Tate-Lichtenbaum pairing.

2.1 Hyperelliptic Curves

A genus g hyperelliptic curves over a prime finite field Fp are non-singular curves
of a general form:

H : y2 + h(x) y = f(x) (1)

with h, f ∈ Fp[x], deg(f) = 2 g + 1, deg(h) ≤ g and f(x) is monic. For any
algebraic extension K of Fp, there is a special point at infinity, which is denoted
by P∞, and we can consider the set of K-rational points on H:

H(K) := {(x, y) ∈ K × K | y2 + h(x) y − f(x) = 0} ∪ {∞}. (2)

2.2 Pairings

The concept of a pairing was introduced in cryptography for the fitst time by
Menezes et al. [11] to attack instances of the Discrete Logarithm Problem on
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elliptic curves and hyperelliptic curves. In 2000, pairing was used as bilinear
application by Joux [6] to build cryptographic protocols.

Let G1 and G2 two additive abelian groups of prime order �, G3 a multi-
plicative abelian group of order also �. A bilinear pairing on (G1, G2, G3) is a
map:

e : (G1,+) × (G2,+) −→ (G3,×)

that satisfies the following requirements:

1. Bilinearity : ∀D1,D
′
1 ∈ G1,∀D2,D

′
2 ∈ G2,

i. e(D1 + D
′
1,D2) = e(D1,D2) e(D

′
1,D2),

ii. e(D1,D2 + D
′
2) = e(D1,D2) e(D1,D

′
2),

iii. e(a D1,D2) = e(D1, a D2) = e(D1,D2)a, a ∈ N
∗.

2. Non-degeneracy:
i. ∀D1 ∈ G1 − {0}, ∃D2 ∈ G2 : e(D1,D2) 	= 1,
ii. ∀D2 ∈ G2 − {0}, ∃D1 ∈ G1 : e(D1,D2) 	= 1.

3. Easily and efficiently calculable.

We recall here the definition of the Tate-Lichtenbaum pairing as it is stated
in the literature, which is an explicit version described by Lichtenbaum.

Let JacH(Fpk) be the Jacobian group of the hyperelliptic curve H over Fpk ,
� be a prime with � | �JacH(Fpk) and let k be the smallest integer such that
� | (pk − 1), then k is called the embedding degree (dependent on �).

Definition 1. The Tate-Lichtenbaum pairing is a bilinear and non-degeneracy
map defined by:

T� : JacH(Fpk)[�] × JacH(Fpk)/� JacH(Fpk) −→ F
×
pk/(F×

pk)�

(D1,D2) 
−→ T�(D1,D2) = f�,D1(D2)(p
k−1)/�.

f�,D1 : the function given by the divisor � D1 − � (∞) = div(f).

3 Pairing-Friendly Curves of Type y2 = x5 + ax

3.1 Curve Choice

We can give here explicit constructions of pairing-friendly hyperelliptic curves
with ordinary Jacobian proposed by Kawazoe and Takahishi [8], we show also
such that curves are suitable to construct genus 2 pairing at the high security
levels.

We consider p an odd prime number, Fp is a finite field of characteristic p 	= 2,
so we can define equation of the curve H as y2 = f(x) where f(x) is a polynomial
∈ Fp[x] of degree 5. Let JacH be the Jacobian variety of a hyperelliptic curve
H. We denote the group of rational points on JacH over Fp by JacH(Fp).
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To compute the Jacobian order, we need the characteristic polynomial of
p−th power Frobenius endomorphism of H. Then the order is given by

� JacH(Fp) = χp(1)

It is very difficult to evaluate the characteristic polynomial of p−th power
Frobenius endomorphism of H in 1 for hyperelliptic curves over height level bits
fields, there are very few results on it, Gaudry and Harley [3] compute the group
order over 80-bits fields but their algorithm needs very long running time. To
solve this problem, there are a very special curves with complex multiplication,
they are known by the existence of efficient algorithms called CM-methods to
construct such curves. The best example of such ordinary pairing-friendly curves
is curves of type y2 = x5 + a x given by Kawazoe and Takahashi [8]. They
proposed also a fast algorithm to compute the Jacobian group order over a
prime finite field.

3.2 Counting Points

In [3] Gaudry presented a method to compute the Jacobian order modulo the
characteristic p of the base field by using the Hasse-Witt matrix. Two main
theorems in [10] and [16] quoted below:

Theorem 1. Let y2 = f(x) with deg(f) = 2g + 1 be the equation of a
genus g hyperelliptic curve. Denote by ci the coefficient of xi in the polynomial
f(x)(p−1)/2. Then the Hasse-Witt matrix is given by

A = (cip−j)1≤i,j≤g.

The following theorem give the link between the characteristic polynomial of
the Frobenius endomorphism and the Hasse-Witt matrix.

Theorem 2. Let H be a curve of genus g defined over a finite field Fpk . Let A

be the Hasse-Witt matrix of H, and let Aφ = AA(p)...A(pk−1) . Let κ(t) be the
characteristic polynomial of the matrix Aφ and χ(t) the characteristic polynomial
of the Frobenius endomorphism. Then

χ(t) ≡ (−1)g tg κ(t)(mod p).

This method is difficult in general when p is very large, but if we consider
a special form of f(x) = x5 + a x ∈ Fp[x] of degree 5 we can easily compute

the Hasse-Witt matrix, A =
[

cp−1 cp−2

c2p−1 c2p−2

]
, the element (ci) is coefficient of

xi in polynomial f(x)(p−1)/2. The characteristic polynomial of the Frobenius
endomorphism of the genus 2 curve y2 = f(x) over Fp is

χ(t) = t4 − s1 t3 + s2 t2 − s1 p t + p2, |s1| ≤ 4
√

p, |s2| ≤ 6 p

The s1 and s2 are two integers (for more details see Theorem 3, [3]), they are
given by

s1 ≡ cp−1 + c2p−2(mod p) and s2 ≡ cp−1 c2p−2 + cp−2 c2p−1(mod p)
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3.3 Pairing-Friendly Curves of the Cocks-Pinch Method

By using results in [Theorem 3, [3]] and Cocks-Pinch method for hyperelliptic
curve H : y2 = x5 + a x. We can construct pairing-friendly curves of this type
over a prime field Fp, with parameters c and d integers such that: p = c2 + 2 d2,
� large prime factor of the Jacobian order over Fp and k embedding degree,
satisfying the following conditions:

1. p ≡ 1, 3 (mod 8),
2. χ ≡ 0 (mod �),
3. φk(p) ≡ 0 (mod �),
4. p = c2 + 2 d2, with c ≡ 1 (mod 4).

We did the implementation in Sage of the algorithm presented by Kawazoe
and Takahashi which is the analog of Cocks-Pinch method to obtain genus 2
ordinary hyperelliptic curves of the form y2 = x5 + a x. By using generalization
of Kachisa [7] which he parametrized the parameters c, d, r and p as polynomials
c(z), d(z), �(z) and p(z) in a variable z. By using this approach, we can obtain
curves with small ρ − value = 2 log(p)/log(�).

Algorithm 1. Kawazoe Takahashi pairing-friendly hyperelliptic curves with
Cocks-Pinch method construction.
1: Require: k ∈ Z

2: Ensure: A genus 2 hyperelliptic curve defined by y2 = x5 + a x with Jacobian
subgroup order �.

3: Choose a prime number � such that: lcm(k, 8) divides (� − 1)
4: Choose α, β and γ such that: α is a primitive kth root of unity in (Z/l Z)×,

β2 ≡ −1 (mod �) and γ2 ≡ 2 (mod �).
5: Compute c and d integers such that:
6: c ≡ (α + β)(γ(β + 1))−1 (mod �) and c ≡ 1 (mod 4),
7: d ≡ (α β + 1)(2 (β + 1))−1 (mod �)
8: Compute p = c2 + 2 d2

9: if ( p is a prime satisfying p ≡ 1 (mod 8)) then
10: Compute a such that:
11: a(p−1)/2 ≡ −1 (mod p),
12: 2 (−1)(p−1)/8 d ≡ (a(p−1)/8 + a3(p−1)/8) c (mod p).
13: else
14: Go to step 3:
15: end if
16: return k, p, �, a, d, c.

4 Group Structure of Hyperelliptic Curve

4.1 General Group Element

The group structure of a hyperelliptic curve H over a finite field Fq, (q = pk), p :
prime odd number (p ≥ 5) and k integer (k ≥ 1), recapitulates on the represen-
tation of his Jacobian. The following theorem show the unique representation of
the Jacobian element.
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Definition 2. A divisor D is a finite formal sum of points on the curve H such
that:

D :=
m∑

i=1

(Pi) (3)

We can also define the reduced divisor Dr associated with D as follows:

Theorem 1. Let D an element on the Jacobian of the curve H, the element D
has a unique representation Dr of the form:

Dr :=
m∑

i=1

(Pi) − m(∞), (4)

such that:

1. m 	= g,
2. Pi are affine points,
3. The involution ı, satisfy: ı(Pi) 	= ı(Pj), for all i, j such that i 	= j.

All elements on Jacobian form an abelian variety, Mumford [13] introduced a
way of representing such that elements, it’s extremely useful for implementation.

Theorem 2 (Mumford representation). Let H: y2 +h(x) y = f(x) a hyperellip-
tic curve of genus g define over a finite field Fq, q = pk p: primer (p ≥ 5) and k
integer (k ≥ 1). Let K an algebraic extension of Fq, then any element D of the
Jacobian of the curve H, can be represented in a unique way by two polynomials
(u(x), v(x)) ∈ K[x]2 such that:

1. u is monic, with deg(u(x)) ≤ g,
2. deg(v(x)) ≤ deg(u(x)), and
3. u(x) divides {v(x)2 + v(x) h(x) − f(x)}.

As we saw before, we have two representations for a divisor D on the Jaco-
bian, a natural representation D =

∑m
i=1(Pi)−m(∞) and a Mumford representa-

tion D = (u(x), v(x)). To do implementation, we must understand how to manip-
ulate the two representations. For example to pass from the Mumford representa-
tion to the natural one, we compute the coordinates of the points Pi = (xi, v(xi))
with xi the roots of the polynomial u(x). In the case of genus 2 hyperelliptic
curve H, the Mumford representation of divisor of degree 0 whose effective part
E is the sum of the points P1 = (x1, y1) and P2 = (x2, y2), (E = P1 ± P2) is
obtained by multiplying and dividing by:

u(x) = x2 − (x1 + x2)x + x1x2 and v(x) =
y1 − y2
x1 − x2

(x − x1) + y1. (5)

The set of torsion points are the points whose order is finite, which is the
case for all element on the Jacobian JacH over Fq. The set of �-torsion points is
defined as follows:
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1. [�]D = D + D + ... + D︸ ︷︷ ︸
� terms

if � > 0,

2. [�]D = −([−�]D) if � < 0,
3. [0]D = (∞).

By definition, we say that D is an �-torsion divisor if [�]D = (∞). The
subgroup of �-torsion divisors on the Jacobian of hyperelliptic curve H over a
finite field Fq is denoted by JacH(Fq)[�], with q = pk, p: prime number (p ≥ 5)
and k integer (k ≥ 1).

4.2 Jacobian Subgroup Operations

To do pairing implementation, we need to perform operations on the Jacobian
group JacH(Fpk)[�], Cantor [1] developed and showed efficient algorithms to
manipulate elements of the Jacobian JacH[�](Fpk), by using the Mumford rep-
resentation, assuming that h(x) = 0 and p 	= 2. These algorithms was later
generalised by Koblitz [9] to remove these conditions.

We will show here the two algorithms implemented in Sage, the first one
is to give a semi-reduced divisor D equivalent to Ds � D1 + D2 from two
semi-reduced divisors D1 and D2 (represented by Algorithm 2), and the other
algorithm is to reduce the divisor semi-reduced Ds (given by Algorithm 2) to
obtain a reduced divisor Dr equivalent (represented by Algorithm 3).

Algorithm 2. Divisor Composition.
1: Require: D1 = [u1(x), v1(x)] and D2 = [u2(x), v2(x)]
2: Ensure: Ds � D1 + D2, Ds = [us(x), vs(x)].
3: Compute: d1 = gcd(u1(x), u2(x)) = a1 u1(x) + a2 u2(x)
4: Compute: d = gcd(d1, v1(x) + v2(x) + h(x)) = b1 d1 + b2 (v1(x) + v2(x) + h(x))
5: c1 ← b1 a1, c2 ← b1 a2, c3 ← b2
6: us(x) ← (u1(x) u2(x)) / (d2)
7: vs(x) ← (c1 u1(x) v2(x)+ c2 u2(x) v1(x)+ c3 (v1(x) v2(x)+f(x))) / d mod (us(x))
8: return [us(x), vs(x)].

Algorithm 3. Divisor Reduction.
1: Require: D = [u(x), v(x)], semi-reduced divisor.
2: Ensure: Dr = [ur(x), vr(x)] reduced with Dr � D.
3: Compute: ur(x) ← (f(x) − v(x) h(x) − v(x)2) / u(x)
4: Compute: vr(x) ← (−h(x) − v(x)) mod ur(x)
5: if (deg(ur(x)) > g) then
6: u(x) ← ur(x),
7: v(x) ← vr(x)
8: Go to step 3:
9: end if

10: Make ur(x) monic.
11: return [ur(x), vr(x)].
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5 Our Work

To compute pairing we need Miller algorithm [12] which makes it possible to
calculate the function f�,D1(D2), this algorithm was applied for the elliptic case
and quickly it has been generalised on hyperelliptic curves. We define the group
law ⊕ on the Jacobian JacH(Fpk), let D1 and D2 ∈ JacH(Fpk), there is a function
h ∈ Fp(H) with its divisor:

div(hD1,D2) = D1 + D2 − (D1 ⊕ D2),

The main task involved in computing the evaluation f�,D1(D) in D1, Miller
has shown how to efficiently compute it, this function appearing in

Div(f�,D) = � D − D�.

For � = n + m, n and m integers, we find:

Div(f�,D) = Div(fn+m,D) = fn,D. fm,D. hDn,Dm
,

With h a function such that:

div(hDn,Dm
) = Dn + Dm − ρ(Dn + Dm),

ρ(Dn + Dm): the reduced divisor of (Dn + Dm).
This immediately leads to the following algorithm:

Algorithm 4. Miller’s Algorithm for hyperelliptic curves
1: Require: � ∈ N and D1, D2 ∈ JacH(Fpk), reduced-divisors with disjoint sup-

port.
2: Ensure: f�,D1(D2)
3: Write � in binary form: � = Σs

j=0 �j2
j , with �j ∈ {0, 1} and �s = 1

4: D ← D1

5: f ← 1
6: for (j from s − 1 to 0) do
7: Compute D ← [2] D and extract h(D,D)

8: f ← f2 · h(D,D)(D2)
9: if (�j == 1) then

10: Compute D ← D ⊕ D1 and extract h(D,D1)

11: f ← f · h(D,D1)(D2)
12: end if
13: end for
14: return f

We can clearly see that the execution of the Miller algorithm requires the
existence of an algorithm that allows the evaluation of the function h ∈ Fq(H),
q = pk p: primer (p ≥ 5) and k integer (k ≥ 1). We called this algorithm
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“evaluatefunction()”, it’s the crucial step of Miller’s algorithm, it allows to cal-
culate the value of the function in a point D ∈ JacH(Fq), such that D is a
reduced divisor represented in Mumford representation. For this work, we will
focus only on the evaluation of the function h in an effective divisor that we note
E = [uE(x), vE(x)]. There are two different methods to compute h(E) (we use
in general a norm computation and resultants).

The first method requires a polynomial factorisation of uE(x), it can be
summarized by the following algorithm:

Algorithm 5. Method 1, function evaluation of h in E.
1: E ← Σi=d

i=1 (Pi), Pi = (xi, yi) ∈ H, D = E − d(∞).
2: Compute the support of E.
3: Factoring uE(x), as uE(x) =

∏i=d
i=1(x − xi)

4: Setting yi = vE(xi).
5: Note that (xi, yi) ∈ Fqgi , with gi ≤ g.
6: Compute h(E) =

∏i=d
i=1 h(xi, yi) = h(x1, y1) × h(x2, y2) × ... × h(xd, yd).

The above method is not the best because it didn’t take in consideration the
fact that the result of the evaluation has to be in Fq Instead, one could partition
the support into distinct Galois orbits as follows:

{(xi, yi), (x
q
i , y

q
i ), ..., (xqgi−1

i , yqgi−1

i )}

And the last step (6.) of the algorithm is simply reduced by calculating the
norm NFqgi /Fq

(h(xi, yi)).
The second method is faster than the first one, since it does not require any

polynomial factorisation. It is based on the observation of h̃(x) = h(x, vE(x))
which verified for all xi root of uE(x), h̃(xi) = h(xi, vE(xi)) so instead of calcu-
lating the product h(E) =

∏i=d
i=1 h(xi, yi), the problem is reduced to the compu-

tation of h(E) =
∏i=d

i=1 h̃(xi), with xi the zeros of uE(x), but this corresponds
exactly to the definition of the resultant of the two polynomials uE(x) and h̃(x),
and we can write:

h(E) = Resultant(uE(x), h(x, vE(x)))

As we work on hyperelliptic curves of genus g, the polynomials degree
deg(uE(x)) of the Mumford representation of E = [uE(x), vE(x)] is smaller than
g, so we can write:

h(E) = Resultant(uE(x), h̃(x) mod uE(x))

We consider H a hyperelliptic curve of genus 2, defined over a finite field Fq

by y2 +hxy = fx, (q = pk), p : prime odd number (p ≥ 5) and k integer (k ≥ 1),
let D, D1 and D2 ∈ JacH(Fq), D = E − d(∞) , E effective divisor.
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As hD1,D2 = h(x, y) is a rational function h(x, y) ∈ F(H), we can write:

h(x, y) =
h1(x, y)
h2(x, y)

So,

h̃(x) = h(x, vE(x)) =
h1(x, vE(x))
h2(x, vE(x))

=
h̃1(x)
h̃2(x)

Algorithm evaluation of the rational function h = hD1,D2(D) in E is given
by:

Algorithm 6. Method 2, evaluation of the function hD1,D2 in E

1: Require: E = [uE(x), vE(x)],D1 = [u1(x), v1(x)] and D2 = [u2(x), v2(x)],
2: fx, hx, d = deg(uE(x)).
3: Ensure: hD1,D2(E).
4: h̃1 ← u2(x) mod uE(x), h̃2 ← 1, h̃3 ← 1
5: D = [u, v] = D1 + D2, divisors composition D1 and D2

6: while degree of u > g do
7: u ← (fx − v hx − v2)/u
8: v ← (−hx − v) mod u
9: Make u monic.

10: h̃1 ← (h̃1(vE − v) mod uE

11: h̃2 ← (h̃2.u) mod uE

12: if degree of v > g then
13: h̃3 ← −h̃3 × coef , coef : the leading coefficient of the polynomial v(x).
14: end if
15: end while
16: Compute R1 : resultant of the two polynomials u2(x) and h̃1

17: Compute R2 : resultant of the two polynomials u2(x) and h̃2

18: h̃3 = h̃3
d

19: return R1
h̃3.R2

.

6 Final Exponentiation

Tate pairing algorithm requires computation of final exponentiation after the
Miller loop. The optimisation of this computation is to factor the term (pk −1)/�
combined with the p-th power Frobenius operations. So the final exponentiation
can be written as

pk − 1
�

:=
φk(p)

�
·

∏
s|k, s<k

φs(p) (6)

We note that this exponent is determined by fixed system parameters. This final

exponent can be broken down into three components. Let e =
k

2
then

pk − 1
�

:= (pe − 1) · [
(pe + 1)
φk(p)

] · [
φk(p)

�
] (7)
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For example for k = 28 the final exponent becomes

p28 − 1
�

= (p14 − 1) · [
(p14 + 1)
φ28(p)

] · [
φ28(p)

�
]

With φ28(p) = p12 − p10 + p8 − p6 + p4 − p2 + 1, so

p28 − 1
�

= (p14 − 1) · (p2 + 1) · [
(p12 − p10 + p8 − p6 + p4 − p2 + 1)

�
]

There are two parts of the exponentiation, the first one is an easy exponentiation
to the power of exp1 = (p14 − 1) · (p2 + 1) (because of the Frobenius), it also
simplifies the rest of the final exponentiation because after raising to the power
(p14 − 1) the field element becomes “unitary”. The other part exp2 = (p12 −
p10 + p8 − p6 + p4 − p2 + 1)/� is the very hard part of the final exponentiation
can be calculated using a fast multi-exponentiation algorithm [5]. However, we
can use the polynomial description of p(z) and �(z) given by Kachisa in [7]. In
this case the hard part of the final exponentiation is to the power of (p12 −p10 +
p8 − p6 + p4 − p2 + 1)/�. After substituting the polynomials for p(z) and �(z),
after it can be expressed to the base p.

7 Implementation Results

We have implemented the Tate pairing for the different level security on ordinary
genus two curves in SageMath version 8.1. Our aim was not to provide an optimal
ad-hoc implementation for any one of the curves or pairings, but rather to keep
a sufficient level of security appropriate for a general purpose system, while still
implementing algorithmic optimisations that apply in a broader context. All
were performed on Intel Core i5-7300HQ CPU @ 2.50 GHz processor.

In the following, we will compute the execution time needed to calculate
Tate’s pairing for different embedding degree and several levels of security. The
following Table 1 shows the calculation time in milliseconds of all Tate’s large
pairing computation steps on ordinary Kawazoe curves of type y2 = x5 +a x. So
we compute the times: tg, tJ , tp, tr, tm and te such that: tg: time generation of
the curve equation, tJ : time computation of the Jacobian on Fq, tp: Construction
time of Jacobian two points, tr: reducing time of the two divisors, tm: execution
time of the Miller loop, te: time required for the final exponentiation.

For tg, tJ and tp, we will directly give the time needed by predefined algo-
rithms in Sage to generate the desirable curves, compute Jacobian and to con-
struct two points on the Jacobian JacH(Fp) over prime finite field. On the other
hand, the times tr and tm are the conclusion of the implementation of the dif-
ferent executable algorithms proposed by Galbraith [2], Granger et al. [4] and
others.

To vary the embedding degree, we will always work on genus two Kawazoe
and Takahashi curves of type y2 = x5 + a x generated by Kachisa [7], these
parameters are chosen in order to have the desirable ordinary pairing-friendly
curves.
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Table 1. Execution times in milliseconds (ms) to compute Tate’s pairing.

k = 7 k = 8 k = 10 k = 28

p (bits) 336 387 378 379

� (bits) 254 257 249 255

tg 1.163 1.228 1.187 1.779

tJ 0.084 0.076 0.033 0.083

tp 18112,942 14364,803 44049.245 221412.49

tr (1 D) 0.294 0.337 0.381 1.042

tm 808.031 10555.84 1221.53 5163.32

te 32.1519 57.774 97.863 1561.75

For cryptography applications, the discrete logarithm problems in JacH(Fpk)
and in the multiplicative group Fpk must both be computationally infeasible.
For Jacobian varieties of hyperelliptic curves of genus 2 the best known discrete
logarithm problem (DLP) algorithm is the parallelized rho-Pollard algorithm in
[14] and [15], which has running time O(

√
�) where � is the size of the largest

prime-order subgroup of JacH(Fpk). In the following Table 2, we will give the
security level for genus two curves according to the size of the curve parameters

(k, p, �) and the ρ − value =
g log(p)
log(�)

.

Table 2. Embedding degrees for hyperelliptic curves of genus g = 2 required to obtain
commonly desired levels of security.

Security
level
(bits)

Subgroup
size (�)

Extension
field size
(pk)

Embedding degree(k)

ρ � 1 ρ � 2 ρ � 3 ρ � 4

80 160 1024 12 6 4 3

128 256 3072 24 12 8 6

192 384 7680 40 20 13 10

256 512 15360 60 30 20 14

Now, we calculate the execution time in Sage needed to compute Tate pairing
for different security levels (128, 192 and 256 bits), the following Table 3 lists
the execution time of Miller loop and final exponentiation required to compute
pairing in milliseconds (ms).
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Table 3. Execution times in milliseconds (ms) required to compute Tate’s pairing for
different security levels.

Security level (bits) 128 192 256

Miller loop 1055.840 1221.53 5163.32

Final exponentiation 57.774 97.863 1561.75

Total 1113.614 1319.393 6725.07

8 Conclusions

In this work, we discuss an implementation of pairings over pairing-friendly
hyperelliptic curves. In particular, we focus on Kawazoe-Takahashi genus 2
curves of the form y2 = x5 + a x. We provide the necessary background to have
sufficient understanding of pairings on hyperelliptic curves, discuss the algorithm
to sample curves of the desired type, and describe the group structure of these
curves. We then continue and present details of the Miller algorithm that are
involved in the efficient evaluation of the pairing.

First, we present the analogue of the Cocks-Pinch method to obtain ordi-
nary Kawazoe-Takahashi pairing-friendly curves using approach of Kachisa to
have curves with a small ρ − value, we have implemented this method in Sage,
the ordinary Jacobian order over Fp, Fpk and the various curve parameters are
calculated.

Second, we gave several techniques for pairing computation more precisely
for Tate pairing case, operations on Jacobian subgroup, Miller loop and we
have provided explicit formulae for the evaluation of the function fD1,D2(E)
in effective divisor required by the Miller algorithm. We then continue and give
a performance method for final exponentiation in order to speed up the pairing,
generally applicable and which is calculated in two parts, an easy part given
a unitary field element and a hard part using polynomial description of curve
parameters.

Finally, we gave the implementation results in Sage for different levels of
security according to the embedding degree of the curve. Our studies indicates
that pairing on hyperelliptic curves is computable and we can have pairing appli-
cations efficient and competitive to the pairing on elliptic curves in performance
and security level.

As the main contribution here is the evaluation of the rational function h
in the point on the Jacobian of the curve over prime field, that appears in the
evaluation of f�,D1)(D) in algorithm of Miller. We present one method, that
is based on the factorization of polynomials, and a faster one, that instead of
factorization of polynomials is based on the resultant of polynomials The includes
some interesting ideas to improve the evaluation of pairings on hyperelliptic
curves. We also gave a fast method to calculate the final exponentiation by
using the parametrization of the curve parameters p and l.
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