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Foreword

This volume is devoted to the proceedings of SecITC 2019, the 12th International
Conference on Innovative Security Solutions for Information Technology and
Communications, held in Bucharest, Romania, during November 14–15. This session
was organized under the auspices of the following academic and research institutions:
Academy of Economic Studies (Faculty of Economic Cybernetics, Statistics and
Informatics, Department of Economic Informatics and Cybernetics), Military Technical
Academy (Faculty of Information Systems and Cyber Security), Politehnica University
of Bucharest (Faculty of Applied Sciences-Department of Mathematical Methods and
Models), and Advanced Technologies Institute Bucharest.

The conference covered the following topics:

• Security Technologies for ICT
• Cryptographic Algorithms and Protocols
• Information Security Management

These topics include a broad range of recent and ongoing work in areas featuring:
cryptology, algorithmic tools for security and cryptography, authentication biometry
and watermarking, blockchain and security aspects of alternative currencies, attacks
and countermeasures, cloud and web security, distributed and embedded systems
security, hardware security, Internet of Things (IoT) security, mobile security, network
security, privacy and anonymity, reverse-engineering and code obfuscation, surveil-
lance and anti-surveillance, trust management, etc.

These topics involve considerable interaction between various theoretical disciplines
and real application requirements in the era of communicating data systems and future
critical inter-networking applications.

SecITC 2019 had 4 invited keynotes and 14 accepted papers, out of 34 submissions
evaluated by a highly exigent Program Committee of almost 40 experts from
15 countries, which were presented to more than 100 attendees at the conference.

For 12 years SecITC has been bringing together computer security researchers,
cryptographers, industry representatives, and PhD students serving as an exchange
forum between established and young researchers as well as industry players. For the
last five years, the conference proceedings have been published in Springer’s Lecture
Notes in Computer Science series, and articles published in SecITC are indexed in most
science databases.

We thank all authors for having submitted high-quality papers.
The sponsors of SecITC 2019 are also gratefully acknowledged for their support,

allowing for an excellent organization of the conference. I would like to particularly
thank the Program Committee and its chairs as well as the conference’s local



Organizing Committee for their efforts in setting up and managing this successful
edition of SecITC together with two associated workshops.

November 2019 Traian Muntean
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Preface

This volume contains the papers presented at the 12th International Conference on
Information Technology and Communications Security (SecITC 2019) held during
November 14–15, 2019, in Bucharest.

There were 35 submissions. Each submission was reviewed by at least two, and on
the average 3.9, Program Committee (PC) members. The committee decided to accept
14 papers, and the program also included 6 invited talks.

The SecITC conference started 11 years ago, in a small room from the Bucharest
University of Economics Studies, which hosted the first edition of the conference. At
that time the auditorium was made up of 15 students and professors. Since then the
conference has grown, accomplished by the excellent quality of PC members, a yearly
improvement of conference paper quality, and valuable keynote speakers at each
edition. Our conference is now indexed in several data bases and probably the most
notable one is in the cryptologic events calendar from IACR and Springer accepted for
publication as a post-proceedings (since 2015). The conference covers topics from
cryptographic algorithms, to digital forensic, and cybersecurity. If this conference was
created today, probably a better name for the conference would have been
CyberSecurity Conference, but for now SecITC is already a brand and it is not yet the
time for rebranding.

The conference was organized by the master programs for information security
within the Military Technical Academy and the Bucharest University of Economic
Studies, as well as by the Institute for Advanced Technologies. At the same time,
partners of the conference included the master’s program Coding Theory and Infor-
mation Storage within the Faculty of Applied Sciences, Polytechnic University of
Bucharest and the Center for Research and Training in Innovative Techniques of
Applied Mathematics in Engineering from the same university.

Thank you to all PC members for reviewing the papers, Organizing and Technical
Committees for their efforts, and sponsors for their support.

A special word of gratitude to invited keynote speakers Traian Muntean, Marc Joye,
Peter Roenne, Valentina Banciu, and Natacha Laniado who came to support and
improve the quality of SecITC 2019.

November 2019 Emil Simion
Rémi Géraud-Stewart
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Trends and Future Challenges for Security
and Privacy of Autonomous and Mobile

Critical Communicating Systems

Traian Muntean

Honorary professor of Computer Science, Aix-Marseille University, France
muntean.traian@gmail.com

Abstract. Autonomy and mobility are keystones technologies for the design of
future highly adaptive communicating systems. Deploying existing data security
solutions to the autonomous mobile communicating systems is not straightfor-
ward because of systems heterogeneity, highly evolving and possibly unpro-
tected or hostile environments, and required large scale deployment.
Communication protocols used, data security, availability, and quality are other
critical areas fore such applications. Developing comprehensive security and
privacy solutions for autonomous mobile objects requires revisiting almost all
security techniques we may think of. Encryption protocols need to be engi-
neered so to be efficient and scalable for deployment on large-scale systems and
devices with limited computational resources. In addition, scalability of such
protocols is critical, in that in many safety-sensitive applications encryption
operations must be kept very efficient. Addressing such problems may require
new techniques based, for instance, on embedded security mechanisms and
integrated and proved co-design in the deployment of secure applications.

In this talk, after outlining key challenges in data security and privacy for
mobility, we summarize research directions for securing data in various
fine-grained devices (IoT, mobile terrestrial and space vehicles, etc.), including
efficient and scalable encryption protocols, software protection techniques for
small devices, efficient generic embedded security protocols, provable security
protocols, etc.

As a case study of critical communicating systems, IoT has become in the
last few years a very widely emerging spread concept for secure applications.
The reason for this is mainly the need to control most of the surrounding objects
and have access to data required for environment understanding in real time.

As stated for instance in [12–14], IoT systems are often highly dynamic, and
continuously change because of their mobility or networking reconfigurability.
They are also highly heterogeneous with respect to communication medium and
protocols, platforms, and devices involved. IoT systems, or parts of them, may
be physically unprotected and attacks, against which there are established
defense techniques in the context of conventional information systems and
mobile environments, are thus much more difficult to protect against in the IoT.

The OWASP Internet of Things Project [10, 11] has identified the most
common IoT vulnerabilities and has shown that many such vulnerabilities arise
because of the lack of adoption of well-known security techniques, such as
encryption, authentication, access control,… Therefore, developing compre-
hensive security and privacy solutions for IoT requires revisiting almost all



security techniques we may think of.
The EU’s CyPhERS (Cyber-physical European Roadmap and Strategy;

www.cyphers.eu/project) project has been investigating the relationship between
cyber-physical and IoT systems. Some techniques developed for cyber-physical
systems can be the source of good practices for software engineering for the IoT.
However, some factors, such as mobility, reconfigurability and safety/reliability,
still require attention. In this sense, IoT systems tend to be extremely dynamic,
where different devices can be added or removed in a specific IoT ecosystem
during runtime while maintaining reliable communications. Finally privacy
introduces new challenges, including how to prevent personal devices from
acquiring and/or transmitting information depending on the user location and
other personal context information, and how to allow users to understand risks
and advantages in sharing their personal data!

Software running on such devices must be secured by design. Major chal-
lenges here arise from the fact that many devices are based on dedicated
heterogeneous processors which have differences in the instruction sets with
respect to support for security. Such diversity has an implication for example on
the techniques for protecting software from attacks (e.g. run-time software to be
secured from memory vulnerabilities). Cybersecurity techniques using provable
effects are therefore required.

Availability requires among other things to make sure that relevant data is
not lost. Addressing such requirement entails designing protocols for data
acquisition and transmission that have data loss minimization as a key security
goal.

Finally privacy and anonymity introduce new challenges, including how to
prevent personal devices from acquiring and/or transmitting information
depending on the user location and other context information, and how to allow
users to understand risks and advantages in sharing unprotected personal data.
This remain also an ethical, deontological, critical requirement for the existing
mass-products (f-booking!, googling!, binging!…) and their possible disastrous
effects on society and fundamental human rights.
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Post-quantum Cryptography in Bitdefender

Miruna Rosca1,2

1 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France
2 Bitdefender, Romania

Abstract. Existing public-key cryptography is mainly based on the hardness of
two problems: factoring and solving discrete logarithms. In the eventuality of
building large scale quantum computers, these two problems become easy to
solve [Sho97]. Post-quantum cryptography refers to cryptographic algorithms
that are thought to be secure against attacks which can be implemented on a
quantum computer. Lattices, multivariate systems of equations, codes, isogenies
and hash functions provide problems which are conjectured to remain hard to
solve even using a quantum computer and which can be used as security
foundations for post-quantum cryptographic schemes.

At Bitdefender, we are interested in post-quantum cryptography with a focus
on lattice-based solutions. One of the most well known lattice problems is the
Approximate Shortest Vector Problem (ApproxSVP). Still, there are few
cryptographic schemes built directly on the conjectured hardness of
ApproxSVP. Instead, most of the schemes in the literature are built either on
the hardness of an intermediate problem, the Learning With Errors Problem
(LWE), which has been proved to be as hard as ApproxSVP ([Reg05]), or on
one of its algebraic variants ([SSTX09], [LPR10], [LS15]).

In this invited talk, I will give a general overview of our recent results. In the
past few years, at Bitdefender, we built advanced primitives from LWE
([LST18], [LT19]) and studied the hardness of (new) algebraic variants of LWE
([RSSS17], [RSW18], [Bol18], [BBPS19]).

References

[BBPS19] Bolboceanu, M., Brakerski, Z., Perlman, R., Sharma, D.: Order-LWE and the hard-
ness of ring-LWE with entropic secrets. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019. LNCS, vol. 11922, pp. 91–120. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34621-8_4

[Bol18] Bolboceanu, M.: Relating different polynomial-LWE problems. In: Lanet, J.-L.,
Toma, C. (eds.) SecITC 2018. LNCS, vol. 11359, pp. 492–503. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-12942-2_36

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Crypt. 75(3), 565–599 (2015)

https://doi.org/10.1007/978-3-030-34621-8_4
https://doi.org/10.1007/978-3-030-34621-8_4
https://doi.org/10.1007/978-3-030-12942-2_36
https://doi.org/10.1007/978-3-642-13190-5_1


[LST18] Libert, B., Stehlé, D., Titiu, R.: Adaptively secure distributed PRFs from LWE. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 391–421.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_15

[LT19] Libert, B., Titiu, R.: Multi-client functional encryption for linear functions in the
standard model from LWE. In: Galbraith, S., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11923, pp. 520–551. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34618-8_18

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Proceedings of STOC, pp. 84–93 (2005)

[RSSS17] Rosca, M., Sakzad, A., Stehlé, D., Steinfeld, R.: Middle-product learning with errors.
In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 283–297.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_10

[RSW18] Rosca,M., Stehlé, D.,Wallet, A.: On the ring-LWE and polynomial-LWE problems. In:
Nielsen, J., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 10820, pp. 146–173,
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_6

[Sho97] Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7_36

Post-quantum Cryptography in Bitdefender xvii

https://doi.org/10.1007/978-3-030-03810-6_15
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-319-63697-9_10
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36


Privacy… Please! (Extended Abstract)

Fari Assaderaghi1 and Marc Joye2

1 NXP Semiconductors, San Jose, USA
fari.assaderaghi@nxp.com
2 OneSpan, Brussels, Belgium
marc.joye@onespan.com

Abstract. The Internet-of-Things does not only refer to a wide variety of
inter-connected devices but also to the data generated by these devices. This
large amount of data is an opportunity but is also a threat: for example, infor-
mation collected about the physical health or behavior of the consumer can be
very detailed and poses a real privacy risk. This paper discusses
privacy-preserving approaches which might play a differentiating role in the
success and deployment of IoT solutions.

With the growing Internet-of-Things and its billions of connected devices, one of the
main challenges the industry is facing is how to make sense of the enormous amount of
data generated by the IoT devices. This is where machine learning techniques come
into play. The basic premise of learning from data is to uncover a process from a set of
observations. In that sense, machine learning is different from traditional statistics.
Although applying traditional statistical methods is very efficient at extracting infor-
mation from a huge amount of information it needs a built-in model. Machine learning,
on the other hand, can dynamically adapt to a certain task given the data and the desired
goal. Hence, it learns the important impact factors of the model from the data itself.
Machine learning enables the development of a multitude of new applications:
regression, classification, recommender systems, clustering, personal assistants, mon-
itoring systems, and more [1, 6].

The EU General Data Protection Regulation (GDPR) [9] that took effect in all EU
countries in May 2018, aims at giving users control over their data. Companies need to
comply to a set of rules, including the requirements of (i) obtaining the clear consent of
users for processing their personal data; (ii) offering means to users for accessing,
rectifying and erasing their personal data. Likewise, in the US, California has passed
the California Consumer Privacy Act (CCPA) [8] that will take effect in January 2020.
It grants users the right to know what personal information a business has collected and
with whom it is shared. It also provides more control by granting users the right to
opt-out to have their personal data sold or made available to third parties.

The combination of increasing public awareness of privacy threats and the ongoing
implementation of compliance rules are creating momentum in the development of
privacy technologies. This is the right time for IoT companies to properly address
privacy issues in the design of their products and solutions. Two different approaches
are available: differential privacy and data encryption.



Differential privacy As famously exemplified by the Netflix competition [10], it is well
known that anonymizing a dataset is insufficient to conceal the users’ identity.
Differential privacy [3] is a technique that guarantees that the distribution of the sys-
tem’s output is insensitive to any individual’s record, preventing the inference of any
single user’s data from the output. But this comes at a price. Differential privacy works
by incorporating noise to the data. More noise injected in the data implies better
privacy guarantees but also less precision in the system’s output. Differential privacy is
therefore essentially a trade-off between privacy and accuracy.

Working over encrypted data Data encryption is an alternative way to enable privacy.
However, one limitation and fundamental property of traditional encryption schemes is
that data first needs to be decrypted prior to being processed. The privacy control
therefore lies in the hands of the recipient of the encrypted data. A fundamentally
different approach is to rely on (fully) homomorphic encryption [5]. This allows the
recipient to directly operate over encrypted data.

Other useful cryptographic tools to work on encrypted data include functional
encryption [2], garbled circuits [7] and secure multi-party computation techniques [4].

We note that most known practical implementations for machine learning over
encrypted data require two non-colluding entities (this is known as the two-server
model). It is also important to stress to that, although significant progresses have been
made, working over encrypted data remains a topic of intense development in the
research community. Known techniques in general involve heavy computing resources
and do not offer a one-solution-fits-all breakthrough solution. Only certain use-cases
can be shown to be practical. The current situation can be compared to the 1980’s,
when at the start of the era of public-key cryptography the algorithms were also too
slow for general purposes. New advances made public-key cryptography one of the
foundational building blocks in modern computer security and the same is expected for
these privacy-preserving techniques.
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Abstract. We introduce new authenticated key exchange protocols
which on one hand do not resort to standard public key setups with cor-
responding assumptions of computationally hard problems, but on the
other hand are more efficient than distributing symmetric keys among
the participants. To this end, we rely on a trusted central authority dis-
tributing key material which size is independent of the total number of
users, and which allows the users to obtain shared secret keys. We ana-
lyze the security of our construction taking into account various attack
models. Importantly, only symmetric primitives are needed in the pro-
tocol making it an alternative to quantum-safe key exchange protocols
which rely on hardness assumptions.

Keywords: Symmetric cryptography · Key exchange protocol ·
Authentication · Provable security · Post-quantum cryptography

1 Introduction

Symmetric key primitives are the preferred choice for fast encryption applica-
tions. On the other hand, public-key cryptography is widely adopted for ensuring
(authenticated) key exchange functionalities. Many currently deployed applica-
tions take the best of both worlds and use key encapsulation mechanisms where
keys are exchanged using public key protocols and are subsequently used as input
to efficient symmetric primitives.

This paper proposes an intermediate construction. We introduce a crypto-
graphic protocol approaching some of the functionalities of public-key encryption
while relying entirely on symmetric primitives. Before we proceed, we stress that
our models are very different from those of classical public key cryptography, and
so are their security and efficiency metrics. However, it appears that in many
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practical settings, the proposed constructions can successfully replace classical
public-key encryption.

Given that our techniques do not resort to number-theoretic cryptography,
the construction is naturally resistant against attacks from quantum computers.

Prior Work. Key exchange protocols play an important role in protecting end-to-
end communications. Initially introduced in [5], the previously mentioned notion
revolutionized cryptology. These protocols allow two parties to generate securely
a common secret key, which will be used later for different cryptographic pur-
poses such as sending authenticated and encrypted messages. Another closely
related flavour of such protocols may be defined as authenticated key exchange
protocols. The first basic understandings of this category of schemes were pre-
sented in [2,4]. Considering that such constructions could lead to practical and
efficient protocols, the authors focused on formalizing the security notions related
to entity authentication and key distribution.

Note that contrary to the Needham-Schroeder symmetric key protocol [8],
the central authority is only active in the enrolment phase in our protocol, not
during the actual key establishment.

ID-based secret key cryptography was first presented in [7]. While the
paradigm similarity between this paper and [7] is obvious (i.e. mimicking public
key cryptography with symmetric primitives), the technical details are of differ-
ent nature and granularity. We stress that even though [7] introduces applica-
tions like a challenge-response authentication protocol and an ID-based MAC
algorithm, it does not provide an in-depth security analysis. Moreover, our key
exchange protocol can use more than one key per user which, as we will see,
allows us to non-trivially optimise security.

Structure of the Paper. We present our authenticated key distribution protocol
in Sect. 2, describing particular and general cases. In Sect. 3 we discuss the adver-
sarial advantage in various attack scenarios, computing probabilities and expec-
tation values. We provide a security analysis of our scheme in Sect. 4. Finally,
we conclude in Sect. 5 and discuss future work ideas. We introduce notations,
definitions and security assumptions used throughout the paper in AppendixA.
AppendixB presents the proofs of the lemmas from Sect. 3. AppendixC tackles
parameter choices and discusses the efficiency of our protocol.

2 The Protocol

Participants. Let n be the number of the users in the system (n can be very large,
for instance a billion), each having a unique identity IDi, where i ∈ [1, n]. In the
following, IDi will designate both the (alphanumeric) name of user i and the user
itself as a physical entity. The proposed protocol relies on a central authority
(CA) which creates r key tables (called “racks”) each containing � random κ-bit
keys. CA distributes to each user u distinct keys chosen randomly from each
rack, i.e. u × r keys per user. CA also provides each user with supplementary
key material that will be described later.
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Building-Blocks. Let f(k,m) be a MAC function, where k is the key and m is
the message. The protocol also uses a hash function h.

For the sake of clarity, we describe the protocol in steps. We first consider
and analyze a basic one-rack case (r = 1) and one key per user (u = 1).

2.1 Basic Scheme (r = 1 and u = 1)

Key Generation. CA generates one rack of � secret keys: {k1, . . . , k�}.

User Enrolment. CA then gives to IDi:

– A secret key kI(i), where I(i) ∈R [1, �];
– A table Ti containing the � derived keys: Ti = {ti,1, . . . , ti,�} where ti,j =

f(kI(j), IDi).

Remark 1. Two users, IDi and IDj may get (and in reality are actually expected
to get) from CA the same kI(i) = kI(j). Note however that Ti �= Tj as key tables
are derived from identities (Fig. 1).

Key Exchange. Assume now that users i and j want to establish a secure
communication channel (Fig. 2). They proceed as follows:

1. Exchange I(i) and I(j);
2. User j generates ti,I(j) = f(kI(j), IDi);
3. User i generates tj,I(i) = f(kI(i), IDj);
4. Both users generate the common key sk = h(ti,I(j), tj,I(i)) and use sk to

protect their communications.

Remark 2. To avoid ambiguities in the order of parameters of h, we assume that
IDi > IDj .

Informally, here is the intuition behind this protocol: We first note that to
gain the capacity to listen into all communications, an opponent would need to
set his hands on all the kis. This assumes compromising at least � chosen devices.

Fig. 1. User enrolment
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Fig. 2. Key exchange

Indeed, if at least ti,I(j) or tj,I(i) is unknown, sk is still safe. Evidently, this is not
as satisfactory as classical public-key cryptography. Nonetheless, the achieved
protection is still useful in many practical scenarios where choosing the target
IDi is impossible1. The number of compromised devices required for learning all
the � keys with a given probability p is known as the coupon collector’s problem
(cf. infra).

The coupon collector’s problem is a famous question introduced at graduate
probability lectures. If each box of cookies contains a coupon, and there are �
different coupons, what is the probability that more than t boxes need to be
bought to collect all � coupons? An alternative statement is: Given � coupons,
how many coupons do you expect you need to draw with replacement before
having drawn each coupon at least once? The mathematical analysis of the
problem reveals that the expected number of trials needed grows as

� log(�) + γ� +
1
2

+ O(
1
�
) where γ = 0.57721 . . .

For example, when � = 50 it takes about 225 trials on average to collect all
50 coupons. We hence see that the defender enjoys a little advantage over the
attacker. Can this advantage be amplified by engaging in several draws? This is
the goal of the next sections.

2.2 General Case: r ≥ 1 and u ≥ 1

In this scenario each user gets u distinct keys per rack. The function I is hence
generalized by taking three indices: 1 i denoting the concerned user, 2 ρ
denoting the rack and 3 μ an index running from 1 to u.

In other words, kρ
I(i,μ,ρ) denotes that the μ-th key from rack ρ is given to user

i. Note that kI(i) defined in the previous section just corresponds to k1
I(i,1,1).

Key Generation: CA generates r racks of � distinct keys: Rρ = {kρ
1 , . . . , k

ρ
� },

where ρ ∈ [1, r].

1 For instance, if the IDis are identity cards, the attacker needs to collect and com-
promise enough cards hoping to complete his collection of kis.
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User Enrolment. CA gives to user IDi:

– u × r secret keys:

k1
I(i,1,1) k2

I(i,1,2) · · · kr
I(i,1,r)

k1
I(i,2,1) k2

I(i,2,2) · · · kr
I(i,2,r)

...
...

...
k1

I(i,u,1) k2
I(i,u,2) kr

I(i,u,r)

where ∀ρ ∈ [1, r],∀μ ∈ [1, u], I(i, μ, ρ) ∈R [1, �]
– A table Ti of � × r derived keys:

Ti =

⎡
⎢⎢⎢⎣

t1i,1 t2i,1 · · · tri,1
t1i,2 t2i,2 · · · tri,2
...

...
...

t1i,� t2i,� · · · tri,�

⎤
⎥⎥⎥⎦

where ∀ρ ∈ [1, r],∀j ∈ [1, �], tρi,j = f(kρ
j , IDi)

Remark 3. Note that the user can derive the table values for his own keys and
in principle does not need to store these. In this way memory can be saved at
the cost of computational efficiency during key derivation.

Key Exchange: Assume now that users IDi and IDj want to establish a secure
communication channel. To generate their common secret key they do the fol-
lowing:

1. Exchange their indices I(i, μ, ρ) and I(j, μ, ρ) for μ ∈ [1, u], ρ ∈ [1, r];
2. User IDi:

– generates u × r derived keys:

tρj,I(i,μ,ρ) = f(kρ
I(i,μ,ρ), IDj), ∀μ ∈ [1, u], ∀ρ ∈ [1, r]

– reads u × r derived keys from his table Ti:

tρi,I(j,μ,ρ) = f(kρ
I(j,μ,ρ), IDi), ∀μ ∈ [1, u], ∀ρ ∈ [1, r]

3. User IDj :
– generates u × r derived keys:

tρi,I(j,μ,ρ) = f(kρ
I(j,μ,ρ), IDi) ∀μ ∈ [1, u], ∀ρ ∈ [1, r]

– reads u × r derived keys from his table Tj :

tρj,I(i,μ,ρ) = f(kρ
I(i,μ,ρ), IDj) ∀μ ∈ [1, u], ∀ρ ∈ [1, r]
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4. Both users IDi and IDj generate a common session keys by using h to combine
the 2u × r derived keys (Fig. 3):

sk = h
(
tρi,I(j,1,1), . . . , t

ρ
i,I(j,u,r), t

ρ
j,I(i,1,1), . . . , t

ρ
j,I(i,u,r)

)
.

Fig. 3. User enrolment for the General Case: u > 1 and r > 1

Remark 4. For clarity, in Fig. 4, we reduce the writing of sk and we write
sk = h

(
tρi,I(j,1,1), . . . , t

ρ
j,I(i,u,r)

)
instead of writing: sk = h

(
tρi,I(j,1,1), . . . ,

tρi,I(j,u,r), t
ρ
j,I(i,1,1), . . . , t

ρ
j,I(i,u,r)

)
.

Fig. 4. Key exchange for the general case: u > 1 and r > 1
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3 Adversarial Advantage

In this section we consider an adversary who has corrupted nc out of the n users
and obtained their key material, e.g. by physically attacking the IoT devices
containing those keys. The corruption can happen before the user gets the key
material or afterwards, however, the main assumption of this section is that
the indices of the stolen keys are random. We will consider targeted attacks in
Sect. 4.3.

We compute probabilities and expectation values for the adversarial advan-
tage as well as the optimal selection of security parameters in Sect. C for fixed
memory.

3.1 Expected Number of Collected Keys

Let Nkey be the number of distinct keys that the adversary gets on average after
corrupting nc users. Since two users may share keys, we get less than u×nc keys
per rack. The precise calculation is given below:

Lemma 1 (The expected number of keys obtained by the adversary).
Assuming that the adversary corrupts nc users, the expected total number of
distinct keys that the adversary holds is

Nkey = � ×
(
1 −

(
1 − u

�

)nc
)

.

The proof of Lemma 1 can be found in AppendixB.

3.2 Probabilities

We now consider the probability for the adversary to get a non-corrupted user’s
keys, i.e. that the targeted user’s key indices are all among the key indices
obtained from the corrupted users.

In the following, we denote by K a random variable taking values from 1
to �. We let Ki

a, i ∈ [1, n] and a ∈ [1, u] be the random variables defining the
key indices for user i (considering only one rack, i.e. r = 1). Note that these
variables are not independent since we assume each user gets u distinct indices.
Let C be the set of corrupted users and H the set of non-corrupted ones. We
define nc := card(C) and nh := card(H), i.e. n = nc + nh.

Lemma 2 (The probability to get a targeted user’s key). With the above
notations, for some given i0 ∈ H, the attacker’s probability to get a specified
user’s keys is denoted by P1 = P (∀μ ∈ [1, u] : Ki0

μ ∈ {Kj
b }j∈C,b∈[1,u]), and the

value is:

P1 = 1 −
u∑

i=1

(−1)i+1

(
u

i

) i∏
j=1

anc
j , with aj =

� − j + 1 − u

� − j + 1
.
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For r > 1 we have

P1 =

⎛
⎝1 −

u∑
i=1

(−1)i+1

(
u

i

) i∏
j=1

anc
j

⎞
⎠

r

.

The proof of Lemma 2 is given in AppendixB. Based on the probability P1 we
can also find the probability of getting an arbitrary user’s keys:

Lemma 3 (The probability to get an arbitrary user’s key). The prob-
ability of an attacker to get an arbitrary user’s key, P2 = P (∃i ∈ H ∀a =
1, . . . , u : Ki

a ∈ {Kj
b }j∈C,b∈[1,u]), is given by (also valid for r > 1):

P2 = 1 − (1 − P1)n−nc .

The proof can be found in AppendixB.
Finally, we can consider the probability of getting the keys for two users

which will allow the attacker to break a session keys.

Lemma 4 (The probability of getting two targeted users’ keys). The
probability of the attacker to get two targeted users’ keys and hence to break a
shared key between them is P3 = (P1)2.

Lemma 5 (The probability to break an arbitrary session key). The
probability of an attacker to get two arbitrary users’ keys and thus to break a
session key is P4 = (P2)2.

Both Lemmas 4 and 5 follow directly from the independence of the allocated
keys between users.

3.3 Optimising u

Given the probability P1 defined in the last subsection, we can pose the question
whether there exists a non-trivial optimal value for u. To be specific, we fix a risk-
level p and determine the maximal number of users that can be corrupted, nc,
while satisfying P1 ≤ p. The optimal value of u is the one allowing the largest
amount of corrupted users, nc. The problem is non-trivial since increasing u
makes it harder for the adversary to get all keys from the targeted user, but on
the other hand the attacker gets more keys per corrupted user. Figure 5 shows
that we indeed have non-trivial optimal values.

To make a precise analysis, we consider a large � limit. A power expansion
of P1 gives

P1 =
(
1 −

(
1 − u

�

)nc
)u

+ O
(

1
�2

)
.

We then observe that nc ∼ log(1 − P
1
u
1 )/ log(1 − u

� ), i.e.

nc/� ∼ −u−1 · log(1 − P
1
u
1 ) ,
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see Fig. 5. We can use this expression to find the optimal value for u, forcing
the adversary to corrupt as many possible users. By differentiation, we find the
optimal u-value as

u = − log P1

log 2
.

To be able to have a risk level P1 = 2−m, the optimal u-value is u = m and
the adversary needs to corrupt approximately

nc ∼ −�
log2 2
log P1

= �
log 2
m

users. If we naively used u = 1, the attacker needs to corrupt

nc ∼ −� log(1 − P1) ∼ �P1 = �2−m

users to breach the risk level, where in the last approximation we assumed P1

small. That is choosing the optimal u gives a significant advantage, actually
logarithmic in the desired risk level. However, the flip side of increasing u is that
the adversary has to corrupt fewer users to fully break the system.

2 4 6 8 10 12 14 16 18 20 22 24

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

u

nc/� � = 100
� = 1000
� → ∞

Fig. 5. The relationship between u and nc/� for different values of � (� = 100, 1000, ∞)
and P1 = 1%; � = 100, 1000 have been found directly via the formula for P1 in Lemma 2,
whereas the curve for infinite � plotted using the approximation above.

3.4 Expected Number of Corrupted Users to Full Breach – the
Coupon Collector Problem

We now consider the expected number of users that the adversary needs to
corrupt to reveal all keys, i.e. fully break the system. As discussed above, for
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u = r = 1 we have the classical coupon collector problem, where nc = �H(�)
with H being the harmonic series.

For u > 1, r = 1 we clearly have nc ≤ �H(�)/u. The problem was anal-
ysed in the context of data package scheduling in [9] and the solution is

nc =
∑�−1

i=0

(
1 − (

i
u

)
/
(

l
u

))−1

. For large � the speed-up is actually close to u:

lim�→∞ nc

� log � = 1
u .

In the case u = 1, r > 1 we have only obtained an upper bound on nc. Let nρ
i

be the number of users needed to corrupt to get the ith new key in rack ρ. Each
nr

i is geometrically distributed with probability parameter pi = (� − i + 1)/�.
Denoting the expectation value by E, for r = 1 we have that nc = E(

∑�
i=1 ni) =∑�

i=1 E(ni) =
∑�

i=1 1/pi = �H(�) as mentioned above. For general r we have

nc = E
(
maxρ∈[1,r](

∑�
i=1 nρ

i )
)
. However, even for the average of the maximum

of geometric random variables, we do not have an explicit large r limit [6], only a
closed sum formula. Nevertheless, using the bound for the maximum of geometric
variables given in [6], we can get the following rough upper bound

nc ≤
�∑

i=1

E
(

max
ρ∈[1,r]

(nρ
i )

)
≤

�∑
i=1

(
1− H(r)

log(1 − pi)

)
≤ �+

�∑
i=1

H(r)
pi

≤ �+H(r)�H(�)

Thus in limit r → ∞ we see that nc/� log � is bounded by log r.

4 Security Analysis

The protocol can be seen as a special form of authenticated key exchange where
the outcome is a fixed key. The authentication is implicit, i.e. Alice and Bob will
hold the same key at the end of an undisturbed run of the protocol, whereas for an
adversary who actively interrupts the communication and alters the transmitted
indices, can make the keys might end up non-matching. However, the security
guarantee we can give is an adversary who holds neither Alice’s nor Bob’s secret
keys cannot distinguish the obtained secret key(s) from a random key.

Standard key-exchange protocols require complicated analyses of concurrent
sessions. Nevertheless, in our case we have a simple fixed protocol and we can
split our analysis into three cases: 1 a passive attacker only monitoring the
communication, 2 a man-in-the-middle attacker changing the information of
the indices exchanged and, finally, 3 an active attacker trying to impersonate
Alice or Bob.

Remark 5 (Explicit Authentication). To achieve a protocol with explicit authen-
tication, an extra key-confirmation round can be added. One way to do this is
by Alice sending h2(sid, sk) and Bob sending h3(sid, sk), where h2 and h3 are
independent hash functions and the session identity sid contains Alice and Bob’s
ID and the indices exchanged. This is for one time use only, otherwise we need
to include nonces in the protocol to ensure freshness.
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General Assumptions. Security in general relies on an honest setup ensured
by a CA without information leakage (see, however, Sect. 4.4 on how to distribute
the trust in CA). We also assume that the identities IDi are publicly known and
that they uniquely identify the users.

4.1 Passive Attacker

We start our analysis with the weakest attacker model, where the attacker can
only observe the communication (i.e. see the indices I(i) and I(j) exchanged
between participants IDi and IDj). Clearly, if the adversary holds the secret
keys of both participants (i.e. kρ

I(i,μ,ρ) and kρ
I(j,μ,ρ) for all ρ, μ,), then he will be

able to reconstruct their secret key. We will now show that the obtained key is
indeed indistinguishable from a random key for the adversary if he doesn’t have
all keys.

We consider two cases. First where the combiner function h is modelled in
the ROM and f is euf-cma-secure.

Theorem 1. Let the combining function h be modelled in the ROM and assume
that f is an euf-cma-secure MAC. Then, a passive attacker can not distinguish
the secret key sk obtained by IDi and IDj from a random key with a non-negligible
probability unless he has obtained all of their keys kρ

I(i,μ,ρ), k
ρ
I(j,μ,ρ) for all μ ∈

[1, u], ρ ∈ [1, r].

Proof. The secret key is sk = h
(
tρi,I(j,1,1), . . . , t

ρ
i,I(j,u,r), t

ρ
j,I(i,1,1), . . . , t

ρ
j,I(i,u,r)

)
.

In the ROM this key can only be distinguished from random if the input value
has been computed. This is only possible if all the MACs are either computed
or already known by the adversary. Regarding the latter, the known tabulated
MACs from the corrupted users are not useful since they contain the wrong
ID. Thus the adversary has to compute the MACs which, by the euf-cma
assumption, is only possible using the corresponding keys. If even a single key is
unknown by the adversary, the probability of distinguishing sk from random is,
thus, bounded by the advantage in the euf-cma game. Note that the space of
possible keys is reduced by the adversary’s known keys since the keys in each rack
are distinct, but for � maximally polynomial in the key size, this is a negligible
advantage.

Remark 6. The probability of breaking some session key for a static passive
adversary or an adversary corrupting random users is given by P4 and the prob-
ability to break an sk between two specific users is P3.

Remark 7. Note that if the two users have the same index, the theorem still
holds, but it is simply easier for the adversary to obtain all the keys.

Remark 8. The euf-cma assumption is too strong in the sense that we only
need the adversary to be unable to compute the MAC of the identities. Even
choosing f as a hash function of the ID and the key is safe in the ROM following
the same proof structure.
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Remark 9. It is also possible to relax the ROM and only consider h and f to be
randomness extractors. This ensures that the adversary does not learn anything
useful from the Ti tables of the corrupted users. Further, if just a single key is
unknown, the obtained sk will still be indistiguishable from random.

4.2 Man-in-the-Middle and Authentication Attacks

We now consider an attacker who alters the sent messages, or even tries to pose
as someone else to break authenticity. Note that in this case we do not have any
sk-security in the Canetti-Krawczyk model since the attacked users will not end
up with the same key, but a key confirmation would help.

We also note that if the adversary gets all of Alice’s keys, he can pretend to
be any IDj to Alice. The adversary simply sends an index, I(j′), from one of the
corrupted users. Note that Alice is not supposed to keep a record of indices, so
Alice will probably not detect that the wrong index is being sent. The adversary
can now calculate sk using that all keys are known and hence the MACs can be
constructed.

Nevertheless, if the adversary is missing one of Alice’s keys he cannot distin-
guish the key computed by Alice from random.

Theorem 2. Let the combining function h be modelled in the ROM and assume
that f is euf-cma-secure MAC. Consider a user IDi wanting to establish a key
with IDj. Even if the adversary alters the sent indices, he cannot distinguish
the secret key sk obtained by IDi from random with a non-negligible probability
unless he has obtained all of the keys kρ

I(i,μ,ρ) for all μ ∈ [1, u], ρ ∈ [1, r].

The proof follows as before, and all remarks about relaxing the assumption
given in Sect. 4.1 also hold here.

Remark 10. An active adversary can thus successfully attack a specified user
with probability P1 and some arbitrary user with probability P2.

4.3 Adaptive Corruption

In the protocol the key indices are sent in clear. However, this is problematic in
the case of adaptive attackers. If the adversary wants to target a specific user,
he can then observe any key establishment to learn the index of that particular
user. The adversary can then look for other users with the same index who might
be easier to corrupt.

One possible countermeasure would be to use hybrid security techniques
to make the indices private. Nonetheless, a more interesting approach would
be to use the fact that both users entering into a key establishment already
know that the resulting key will be one of � different possible keys (here we
take r = u = 1). As an example, IDi wanting to talk to IDj knows that the
key is going to be sk = h(ti,I(j), tj,I(i)) and she can then simply compute all
possibilities for I(j) = 1, . . . , �. The two users could hash their corresponding
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possibilities – the correct key will yield the same hash on both sides. They could
now exchange these hashes in random order, and thus determine the shared
key without revealing the indices. This could be done even with logarithmic
efficiency.

4.4 The Central Authority

As our proposed protocol relies on a trusted third party (TTP), for analyzing
security we assume that the CA is not malicious. However, in real life applications
this is not always the case. For example, due to the distributed nature of IoT
devices, various dedicated authenticated key exchange protocols appeared in
the literature. We are particularly interested in the results of [1] in terms of
cryptographic layer separation and, more precisely, role distribution. Building
on the model proposed in [1, Section 2.1] involving different roles for achieving
different goals, we believe that distributing the power that a single CA normally
has in a classical architecture can be useful especially in the context of our
coupon-collector security-based protocol. As we introduced the idea of having r
racks of keys, we may naturally distribute a rack per CA to minimize the security
impact of a malicious third party. Nonetheless, other more exotic secret sharing
schemes may be used to distribute the power between several CAs.

On another note, the idea presented in [7] bases its security on a TTP which
“also serves as an arbitrator when disputes arise due to a user denying certain
actions”. Besides relying on various CAs as previously mentioned, we stress that
there are various methods of circumventing issues like trusting TTPs.

4.5 Post-quantum Security

The primitives used in our proposed protocol (such as MACs and hash func-
tions) seem to be good quantum-safe candidates. The main (optimal) quantum
algorithm to break these is Grover’s algorithm, which only gives a quadratic
speed-up.

5 Conclusion and Further Development

We presented a new authenticated key exchange protocol entirely based on sym-
metric primitives and analyzed its security. We also discussed parameter choices
and efficiency, especially we found interesting ways of improving the security by
handing out more keys per user while keeping memory usage constant.

Future Work. A natural research direction would be to formally analyze both the
similarities of our proposed construction with standard public key cryptography
schemes and the post-quantum nature of our key distribution protocol. For a
more precise security assessment it is important to achieve better bounds for
the expected number of corrupted users required to get a full breach in the case
of general r, u – a problem which is an interesting coupon collector problem in
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its own right. It would also be interesting to understand in detail the u and r
duality phenomenon seen in AppendixC when dealing with constrained memory
and a large �.

Another possible venue of future research is to consider hybrids of the current
protocol, e.g. by achieving forward secrecy relying on a computational assump-
tion.
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A Preliminaries

Notations. Throughout the paper, κ denotes a security parameter. We use the
notation x ∈R X when selecting a random element x from a sample space X.
We denote by PPT a Probabilistic Polynomial-Time algorithm.

Random Oracles. Let RO represent the notion of a random oracle. Also, we
denote by ROM the random oracle model. The widely adopted ROM was intro-
duced in [3]. The model is characterized by either considering perfectly random
functions or ROs (i.e. 1 each new query is returned a random answer and 2 if
a given query is repeated it receives the same answer). Practical instantiations
are usually done by means of hash functions.

Security of Message Authentication Codes. The experiment existential unforge-
ability under chosen message attack will further be denoted by euf-cma when
referring to the security of message authentication codes (MACs). A MAC con-
sists of three PPT algorithms Setup(1κ), MACk(m) and Verifyk(m, tag).

We define the experiment Exp(n)euf-cmaA,MAC by:

1. k ← Setup(1κ);
2. (m, tag) ← A(1κ). Let {mi}q

1 denote A’s queries to MACk;
3. If Verify(m, tag) = 1 and m /∈ {mi}q

1 return Valid;
4. Otherwise return Invalid.

Definition 1 (EUF-CMA). A MAC consisting of the three algorithms Setup,
MAC and Verify is euf-cma (or simply secure) if for all PPT adversaries A there
exists a negligible function negl such that:

Pr[Exp(n)euf-cmaA,MAC = 1] ≤ negl(n).

Definition 2. A MAC is considered (t, ε)-secure (euf-cma) if for all t-time
adversaries A

Pr[Exp(n)euf-cmaA,MAC = 1] ≤ ε.
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B Proofs from Sect. 3

B.1 Proof of Lemma1

Proof. From the first user the adversary gets u keys. The second gives on average
u × (

1 − u
�

)
new keys since u keys are already taken. In general let Ni be the

number of new keys gotten from the ith user. We then have the average number
of keys with nc corrupted users

Nkey(nc) = E(
∑

i

Ni) =
∑

i

E(Ni).

We note that we have a recursion

E(Ni) = u ×
(

1 −
∑i−1

j=1 E(Nj)
�

)
.

To see this let p(k) be the probability of having k different keys just before the ith

corrupted users, that is
∑i−1

j=1 E(Nj) =
∑

k k ·p(k). Given k keys the probability

of getting m new keys is
(

u
m

) (
l−k

l

)m (
k
l

)u−m
. Thus

E(Ni) =
u∑

m=0

∑
k

m

(
u

m

) (
l − k

l

)m (
k

l

)u−m

p(k).

Using standard differentiation methods, rewriting and solving we find that∑u
m=0 m

(
u
m

) (
l−k

l

)m (
k
l

)u−m
= u(1 − k

l ), from which the relation follows.
We can rewrite the recursion as:

Nkey(nc) = Nkey(nc − 1) + u ×
(

1 − Nkey(nc − 1)
�

)
,

with the solution
Nkey(nc) = � ×

(
1 −

(
1 − u

�

)nc
)

.

��

B.2 Proof of Lemma2

Proof. For a given i0 ∈ H, we have:

P1 = P (∀μ ∈ [1, u] : Ki0
μ ∈ {Kj

μ}j∈C,μ∈[1,u])

= 1 − P (∃μ ∈ [1, u] : Ki0
μ /∈ {Kj

μ}j∈C,μ∈[1,u])

= 1 − P (Ki0
1 /∈ {Kj

μ}j∈C,μ∈[1,u] or . . . or Ki0
u /∈ {Kj

μ}j∈C,μ∈[1,u])

= 1 − P ′
1

Let Ai = {Ki0
i /∈ {Kj

μ}j∈C,μ∈[1,u]} for all i ∈ [1, u].
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Since P ′
1 = P (A1 ∪A2 ∪ . . .∪Au) =

∑u
i=1(−1)i+1

(
u
i

)
P (A1 ∩ . . .∩Ai), it only

remains to compute P (A1 ∩ . . .∩Ai) for all i ∈ [1, u] to complete the calculation
of P1:

P (A1 ∩ . . . ∩ Ai) = P (Ki0
1 /∈ {Kj

µ}j∈C,µ∈[1,u] and . . . and Ki0
i /∈ {Kj

µ}j∈C,µ∈[1,u])

=

nc∏

j=1

P (Ki0
1 /∈ {Kj

µ}µ∈[1,u] and . . . and Ki0
i /∈ {Kj

µ}µ∈[1,u])

= P (Ki0
1 /∈ {K1

µ}µ∈[1,u] and . . . and Ki0
i /∈ {K1

µ}µ∈[1,u])
nc

=

(
� − u

�
· � − u + 1

� − 1
· · · � − i + 1 − u

� − i + 1

)nc

=
i∏

j=1

(
� − j + 1 − u

� − j + 1

)nc

The value for r > 1 follows from independence between the racks. ��

B.3 Proof of Lemma 3

Proof. We have:

P2 = P (∃i ∈ H,∀μ ∈ [1, u] : Ki
μ ∈ {Kj

b }j∈C,b∈[1,u])

= 1 − P (∀i ∈ H,∃μ ∈ [1, u] : Ki
μ /∈ {Kj

b }j∈C,b∈[1,u])

= 1 − P (
⋂
i∈H

{{Ki
1, . . . ,K

i
μ} /∈ {Kj

b }j∈C,b∈[1,u]})

= 1 − P ({Ki
1, . . . ,K

i
μ} /∈ {Kj

b }j∈C,b∈[1,u])n−nc

= 1 − (1 − P1)n−nc

��

C Parameter Choice and Efficiency Analysis

In this section, we analyze the efficiency of our protocols based on the consid-
eration of two types of attacks: small scale attacks and full breach attacks that
we define in the next sections.

The user’s global memory usage is determined by r and � (as r×�). Hence it is
natural to fix r×� to some reasonable constant (e.g., 1Mb) and assume that keys
are 128 bits long (as in NIST’s PQ-cryptography standardization). This implies
that r×� = 213. Thus the question boils down to finding the optimal u, r (and by
implication the corresponding � = 213/r) maximizing nc (the expected number
of corrupted users) for a given n.
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C.1 Low-Threat Scenario

Definition 3. A low-threat scenario happens when the adversary succeeds to
break the u × r keys of a (targeted or random) user with probability greater than
or equal to ε, which we call later the risk-level.

This section provides numerical values for lowering the adversary’s success
probability below ε. In the following, we consider the two different values of
ε = 1‰, 0.01‰ and we evaluate the attack probabilities found in Sect. 3.

Attack 1: Breaking the Keys of a Targeted User. This attack happens
with probability P1 which does not depend on n. Therefore, we are interested in
finding the optimal u and r allowing maximizing nc under the constraint:

P1(
213

r
, u, nc, r) ≤ 1‰, 0.01‰
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nc/10
� = 100 (r = 82)
� = 1170 (r = 7)
� = 2000 (r = 4)

Fig. 6. u and nc for (�, r) values s.t.
�r = 213 and P1 = 1‰.
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nc/10
� = 128 (r = 64)
� = 1024 (r = 8)
� = 2048 (r = 4)

Fig. 7. u and nc for (�, r) values s.t.
�r = 213 and P1 = 0.01‰.

Repeating the analysis from Sect. 3.3 for general u, r with a fixed memory
size �r = 213, we find for large � that the optimal parameter choice is reached
for ur = − log P1

log 2 . We see clearly in Figs. 6 and 7 the presence of an optimum in
some curves (r = 4, 7 in Fig. 6 and r = 4, 8 in Fig. 7). This optimum corresponds
to a non-trivial optimal ur and it is increasing when P1 is decreasing (ur ∼ 10
for P1 = 1‰ and ur ∼ 16 for P1 = 0.01‰). No optimum is noticed when
r > − log P1

log 2 . Moreover, nc reaches the highest values when the probability risk-
level is large (nmax

c ∼ 569 for P1 = 1‰ and nmax
c ∼ 341 for P1 = 0.01‰).

To see whether we can differentiate the the parameters satisfying ur =
− log P1/ log 2, we further compute the expected number of corrupted users
nc needed for a full breach for the corresponding parameters (r, u, �). We take
(r, u, �) = (r,− 1

r
log P1
log 2 , 213

r ). Tables 1 and 2 show the numerical values.
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Table 1. nmax
c to fully breach the system with P1 = 1‰ and � × r = 213

(r, u, �) (1, 10, 213) (2, 5, 212) (5, 2, 1638) (10, 1, 819)

nmax
c 7343 7885 7859 7853

Table 2. nmax
c to fully breach the system with P1 = 0.01‰ and � × r = 213

(r, u, �) (1, 16, 213) (2, 8, 212) (4, 4, 211) (8, 2, 210) (16, 1, 29)

nmax
c 4929 4919 5065 4732 4928

We notice from Tables 1 and 2 that for all the possible optimal (r, u, �) com-
binations, nmax

c always takes approximately the same value (well within the
standard deviation of the Monte Carlo simulations used to obtain the tables)
and only depending on the chosen P1 level. Hence, the optimal combination
(r, u, �) is not unique. We conjecture that there is a duality between u and
r with constrained memory. Note that we could try to explain this e.g. for
(r, u, �) = (1, 2, 2�) �→ (2, 1, �) by splitting a rack of size 2 × � into two of size �.
However, two random keys from the original rack only have probability around
1/2 of being split into separate racks. Thus, further analysis is needed, which we
postpone for future research.

Attack 2: Breaking the Keys of a Random User. This attack happens
with probability P2 which depends on n. Therefore, we are interested in finding
the optimal u and r allowing maximizing nc for a given n under the constraint:

P2(
213

r
, u, n, nc, r) ≤ 0.1‰, 0.01‰

Tables 3 and 4 investigate this for n′ = log10(n) = 1, . . . , 6. Values were obtained
using a Python code.

Table 3. (ropt, nmax
c ) for P2 = 1‰

u = 1 u = 2 u = 3 u = 4 u = 5

n′ = 2 (9, 7) (2, 57) (1, 60) (1, 67) (1, 69)

n′ = 3 (1, 1) (3, 15) (2, 46) (2, 83) (2, 114)

n′ = 4 (1, 1) (3, 5) (2, 21) (2, 45) (2, 69)

n′ = 5 (1, 1) (2, 2) (2, 10) (2, 26) (1, 43)

n′ = 6 (1, 1) (1, 1) (2, 5) (2, 15) (1, 27)

Table 4. (ropt, nmax
c ) for P2 = 0.01‰

u = 1 u = 2 u = 3 u = 4 u = 5

n′ = 2 (9, 4) (6, 35) (3, 66) (2, 65) (1, 72)

n′ = 3 (1, 1) (4, 9) (4, 28) (3, 50) (2, 70)

n′ = 4 (1, 1) (3, 3) (3, 13) (3, 28) (2, 43)

n′ = 5 (1, 1) (4, 2) (4, 7) (3, 16) (2, 27)

n′ = 6 (1, 1) (1, 1) (2, 3) (2, 9) (2, 17)

From Tables 3 and 4 we see that the highest value of nc is reached when
(u, r, n) = (5, 2, 1000) (nmax

c = 114) for P2 = 1‰ and when (u, r, n) = (5, 1, 100)
(nmax

c = 72) for P2 = 0.01‰.
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Remark 11. We notice that the value of nmax
c for Attack 1 is about 5 times bigger

than the one for Attack 2 (nmax
c (P1 = 1‰) = 569 > nmax

c (P2 = 1‰) = 114 and
nmax

c (P1 = 0.01‰) = 341 > nmax
c (P2 = 0.01‰) = 72).

C.2 Full Breach

Definition 4. A full system breach happens when the adversary succeeds to
recover all the � × r secret keys given by the CA.

In the following, we are interested in finding the maximal value of nc needed to
fully breach the system and the corresponding r and u for a fixed memory size
M = � × r = 213. Table 5 shows the numerical values obtained after running
Monte Carlo simulation in Python and taking N = 1000.

Table 5. Values of nmax
c to fully breach the system (� × r = 213 and N = 1000). In all

cases ropt = 1.

u 1 2 3 4 5 6 7

nmax
c 40159 39270 25430 18323 15544 13283 10606

u 8 9 10 11 12 13 14

nmax
c 10219 8413 7361 6884 6645 6326 5636

nmax
c is strictly decreasing when u is increasing and reaches the highest value

when u = r = 1.
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Fig. 8. r and nc for � = 400 and u =
1, 50 to recover all secret keys.
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Fig. 9. u and nc for � = 400 and r =
1, 20 to recover all secret keys.
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C.3 Expected Number of Corrupted Users to Fully Breach
the System

This section gives numerical values of nc to fully breach the system. The following
values are obtained using Monte Carlo simulation in Python and taking N =
10000.

Table 6. nc values from Monte Carlo simulation and theoretical formulas

Cases u = r = 1 u > 1, r = 1 u = 1, r > 1

(nsimu
c , ntheo

c ) (2627, 2630) (47, 47) (3850 < 9854)

From Figs. 8 and Fig. 9 we see clearly that nc is increasing when r is increasing
and decreasing when u is increasing. The values obtained through this simulation
are very close to the theoretical results of Sect. 3.4. We consider the main cases
(u = r = 1, u > 1, r = 1 and u = 1, r > 1) and refer the reader to Table 6 for
precise values.
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1 Introduction

New technologies in culture have generated a revolution in the way people observe,
understand and relate to the world. However, Georjes J. Bruel, Head of Content at TD -
TransformacaoDigital.com believes that “cultural transformations and technological
progress are disassociated issues. Both the influence of new technologies on culture
and the interference of the cultural context in technological advances show how these
two strands are fully immersed in each other.” But is it?

Since the beginning of times to where we are today, men/women have been coming
up with inventions, and these have been developing as time goes by. In this new
technological era that we find ourselves now, the pace has quadrupled, and every day
something new arises, putting our minds to work at a 24/7 pace to be able to create
something better, something that will bring us glory, something that will revolutionise
the world. But has anyone ever stopped to think about the impact that technology has
on society?

Many creators, innovators, scientists, etc., come up with new ideas every day,
believing that their idea is the answer to all the problems we may be confronting due to
the development of technology. It is believed that both the influence of new tech-
nologies on culture and the interference of the cultural context in technological
advances show how these two strands are fully immersed in each other. But how many
people consider this, when coming up with an innovative idea that they believe will
revolutionise the world, how this new technology will impact on cultures, societies and
people. This paper’s aim is to show how the technological context has interfered in the
development of human relations, mental health and also show how our culture has an
influence on the formulation of these technologies.

2 How Did Technologies Change Society

In recent decades, the way people relate to each other has changed. Also, the expec-
tations concerning the labour market, the mode of consumption and the performance of
companies have undergone a revolution. Today, we realize that technologies have had
(and still have) the potential to transform the cultural context and, as a consequence, to
change ourselves. Technologies have had a positive impact on cultures and societies,
but how many people are conscientious of the negative impact it had on our society in
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the last few years? How many creators, innovators, Engineers, scientists stop to think
of the effects it will cause on society. How many of them stop to think of the mental
impact that technology has on children and young people.

Below, we can see a list of these impacts.

3 ART

Musicians, writers, music and book shops, most cultural businesses were threatened by
technological innovations. Like the big names in the music industry who felt the strong
impact of the Internet and the availability of free or paid content, but without the
intermediation of a record company.

Other cultural businesses were also affected. Newspapers and bookstores, for
example, also felt the changes generated by the development of cheaper tools and
technologies, which altered the relationship between the content producer and the
reader.

With the internet, subscription-based media platforms, such as YouTube, Spotify
and others, have eliminated intermediaries, enabling the artist’s direct contact with
his/her audience and even modifying future works, where the fan gains a voice.

The free content available on the Internet has formulated, in an entire generation,
the idea that it was possible to access cultural content without having to pay for it. It
was the ads that banked these productions, such as Putlocker, 123 movies, etc., and
people always like a freebie, why pay to see a movie when it can be seen online in the
comfort of our own home. The negative side to this would be the adverts, the bad
quality and sometimes not in the expected language, and due to these negatives, the
relationship with culture is currently changing once again. People are again paying for
online content. Subscription-based platforms are growing, and audiences are paying to
access more specific productions and also for personalized services such as Netflix,
Prime, Spotify, which offer good quality and advert free programs and music that cater
for each individual’s taste.

The financing of cultural products is beginning to drive a digital economy that tends
to change this relationship between the public and the artist once again.

4 Dating Apps

Relationship sites appeared in the 1990s, which changed the way people met. However,
in 2012, with the creation of Tinder, the way to start a relationship was revolutionized
once again. According to the Technology Review article, in the U.S., more than one-
third of the weddings only took place through a first virtual meeting.

These dating sites and platforms have changed the way people meet. In the past,
people knew their possible partners through friends, at work, in bars, in the educational
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process, in church or even through their families. Today, that’s changed. A person can
find affinities with strangers who have no ties to the people or places they frequent; this
breaks a cultural barrier, as online dating is currently the second most common place
for heterosexual - couples to meet. You can meet people from any background, reli-
gion, status, culture. These online dating apps have become popular to the point that we
have so many it has made it very easy to meet people but, as well, suffer quite a bit of
heartache, as trust has become something a bit difficult to have once these apps are so
easy to access, and many are free, as Juliet Marateck, in Online dating lowers self-
esteem and increases depression, studies say CNN May 29, 2018, states. We can
mention as examples of free dating apps, OkCupid, Tinder, Badoo, etc., for same-sex
couples, online sites and platforms such as Grinder are the first choices for dating.

However, the question here is how did this transition, from meeting through people,
face to face to online impacted on society?

It had a tremendous impact, the number of people who meet their other half online
to the number of people that end up in dangerous liaisons or who lose money, are
duped has been higher than people who have found love. According to a recent article
in the Los Angeles Times, David Lazarus, a Business columnist on the 25th of
September 2019 “Match.com conned people into paying for subscriptions via messages
the company knew were from scammers”, which means that women and men who
were looking for love were duped by scammers and lost their money.

According to an article in the Mail Online on the 4th of August 2017 by Shivali
Best, Researchers from the University of Bath and mathematicians “have found that the
chance of finding love on a given day is 1 in 562 if you leave down to fate”. The
researches from Bath have calculated the odds of finding love online. The studies based
their calculation on 18 key factors, including location, desired age, physical attrac-
tiveness and relationship status.

The researchers of the University of Bath alongside Professor Andrea Kyprianou,
a researcher in Probability Theory at the University of Bath said: “This is a fascinating
piece of research which takes into account the many different variables that can con-
tribute to the odds of finding love.”

But their results showed that just 84,440 people in the UK fit the average person’s
romantic requirements from an adult population of over 47 million.

The odds of finding love decrease based on your criteria
Factor Percentage of population

matching preference
Number of compatible people in
the UK remaining

Suitable age range 17% 8,131,275
Mutual attraction 18% 1,467,195
Gender and
sexuality

39% 576,994

Compatibility rate 40% 230,798
Relationship status 48% 110,200
Spiritual and
religious views

77% 84,440

(continued)

The Ups and Downs of Technology in Society 23



(continued)

The odds of finding love decrease based on your criteria
Factor Percentage of population

matching preference
Number of compatible people in
the UK remaining

Total percentage
odds

0.18% 84,440

The mail online
source

But is love down to an equation? How do these applications impact on your life,
how much money do you have to spend to find love? What is the impact for those who
try and are taken advantage of? Do the creators of these apps and their company believe
in what they are selling or is it another way to make easy money? Do they check the
veracity of each profile? Unfortunately, these websites are not all they seem to be, and
it is hard for you to trust that who the person saying he/she is are genuine. Many people
as well base their choices on elements of attraction, and hence the non-attractive people
do not have a chance. In the end, meeting online is a gamble, you may meet your other
half, or come out of it heartbroken, scarred and traumatised.

5 Consumption

Consumption and consumer demands have been significantly modified by the inter-
vention of new technologies in culture. Previously, purchases were made in physical
stores and, most of the time, the seller’s opinion was the only basis of information to
make the product choice. Moreover, the variety of brands of an article was limited, and
price comparison was only possible through inserts or going from establishment to
establishment. Today, online sales have entirely changed the way we shop. Price
research in online stores has become much easier, as well as discovering the product’s
specifications and functionality. Virtual sales have changed consumer demands. Cur-
rently, issues of information security, ease of payment, fast delivery, good service, if
the customer contacts the company to clarify any doubts, are factors that make all the
difference to the success of an establishment.

Once again, however, the relationship between consumers and businesses is
changing. A few years ago, shopping meant going to the shop, facing the crowds,
walking around window shopping until you found what you liked, it was a day out, and
by the end of the day, you were shattered. Today, shopping has become more complex,
due to online shopping the buyer checks the qualifications of the article and the store on
the complaint’s sites, reads the opinions of people who have already bought the product
or used the service of an establishment and also seeks the advice of social media
influencers to make the purchase.

Moreover, the consumer consults comparison sites and price history to ensure the
purchase of the product for the lowest amount.
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We can also say that our society has become lazier due to all the applications that
facilitate our lives. As people become busier and busier, more applications are created
to cater for our busy lives, making us in a way lose contact with reality as they can
access anything and everything by a simple click on an app.

Apps such as Amazon that began as a simple application to buy books online, and
now offers 24/7 service from alcohol to technology with same-day delivery, because
we have become a society that cannot wait, we want it all now.

Buying things online has made the human being to become a big spender, buying
items that are not always necessary, nonetheless, the amount of product advertisements
that we receive on a daily basis instigates us to look and promotions makes us want to
desire the product, and we end up buying things that we do not always need.

Online shopping has become almost an addiction; if you are on any social platform,
you will notice how advertisements are continuously appearing on your page, emails.
Once you have searched anything on Google, Amazon, eBay, Ali Baba, supermarkets,
etc., immediately your information is saved, and you are bombarded with unwanted
emails. This information is like brainwashing people to consume more and more,
creating a great portal for easy spending and an easy way to get into debt.

However, it is not only the technological aspects that have changed our way of
acting in society. Culture also has an influence on technological forms and develop-
ments, it has helped societies become a materialistic society always wanting the next
best thing, as Technical revolutions have also turned out to be cultural revolutions, as
witnessed by the changes wrought by inventions such as the wheel, the steam engine
etc., and also by the passage from an oral culture to a written one (Combi 2006).

6 The Interference of Culture Intechnological Development

Technology expresses all the issues and problems of culture. Artificial intelligence
(AI), for example, was developed from human aspects. AI, as well as robotics and other
technologies, seek to solve critical issues of our time. With development, environ-
mental and social issues are increasingly in the focus of these digital tools. Of course,
AI is being seen more and more like the future of technology and people have been
praising it for years, the next big thing. Many young students are immersing themselves
in the study and research of AI, but once more are they questioning the pros and cons
of what AI has to offer and how will this affect society, cultures and the future
generations. Many articles published come to the same conclusion of the pros and cons
of AI.

The Pros and Cons of AI, according to an article in vittana.org by Natalie Regoli,
shows us to these pros and cons, which were also highlighted in many other articles,
this list is as follows:

Pros:

1. AI gives a business more opportunities to be productive – Humans need to rest, AI
does not
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2. Repetitive tasks – AI can do repetitive tasks allowing people to focus on other tasks,
that need human comprehension.

3. It improves life – People can control their heating, music, doorbell, etc., from their
phone.

4. New opportunities to explore – AI can put together pictures and show researchers
what a city would have looked like; it helps us to find jobs.

5. Fewer errors with AI – the chances of a mistake happening with AI is unlikely.
6. AI can work in risky situations - you can send it to the ocean floor, to unknown

planets, not putting human life at risk, or when doing repetitive jobs where
employees have been known to get hurt.

7. AI in medicine – enables better x-ray and MRI machines, CT scanners, 4D ultra-
sound scanners, improving diagnosis, creates artificial limbs, enable deaf people to
hear and those who are blind to see.

8. 3d learning – It helps schools’ access smart boards, project the human body where
students do not need to imagine what it would look like but actually can see it.

Cons:

1. It can be a dangerous technology – Concerning weapons, spying, elections, wars,
terrorism, more and more weapons are being developed, and if they fall into the
wrong hands the result can be fatal.

2. Risk of overtaking humanity – it is still early days and AI for now has straight-
forward tasks, but as it develops in the near future it is expected to take care of more
intuitive and crucial processes

3. AI struggles to learn on its own - It does not have the capability of being proactive –
It cannot analyse situations to create proactive responses.

4. AI applications are not creative – modern AI cannot recognise creativity on its own,
it is programmed, and it sticks to that.

5. AI doesn’t understand complexity, emotions, humans – It a machine, as some
human beings sometimes have difficulties reading people because their brains are
wired differently, AI is a machine, hence no emotions or social skills. You can see
that in Google translate vs Deepl.com

6. Job loss causing economic difficulties and generating more poverty – The more
machines take over human jobs, more people will be unemployed and relying on
the State, causing controversy and affecting their mental health, increasing alcohol
and drug intake, suicide rates and theft.

7. Expensive to be implemented – although in the long term it will become cheaper for
companies to use it in the short term it can be very expensive for some businesses as
it requires a significant amount of investments.

8. AI can impact on society – As time goes by society and cultures are changing
radically. Many people have begun to have robots in their homes, and some people
are even using them as physical partners and marrying them. In 2017 the engineer
Zheng Jiajia had a wedding ceremony with a robot he created in the form of a young
woman.
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Concerning communication with digital devices, the machine imitates human
relationships. To this end, social robots use both technical and linguistic issues to
communicate.

Jason Borenstein and Ronald C Arkin, Robots, Ethics and Intimacy, in their paper:
The need for scientific research says that “ Many types of robots are in the process of
being developed, but the discussion here is largely focused on “human-like” robots
designed to serve as companions for people, and at least some of these robots may
eventually have intimate relationship with a human being”.

It is worth mentioning that forming a vision about the social impact of digital
transformation is fundamental; this is because no business or person exists in isolation
from society.

Companies have become experts in getting us hooked on the next great discovery,
the next great phone, the next Alexa, the future driverless car. Humans have become
conditioned to wanting the next best thing, queuing for days in front of a flag shop to be
the first to acquire the new device.

Scientists, Engineers, Mathematicians, etc., are being hired at full speed to come up
with the next greatest invention and how to make the human being desire it. Teenagers
cannot wait for the next best thing; they have their names on waiting lists. Having a
child nowadays has become very expensive, due to all the gadgets that are continually
being launched. But, how does this impact on people, people who cannot afford it?

According to an article in the Independent newspaper by Lizzie Dearden - Home
Affairs Correspondent - Friday the 27th of April 2018 - on the Children as young as 13
are being stabbed in a tide of violence sweeping Britain, but the reason for the spike is
the subject of fierce argument.

Children as young as 4 years old are walking into school with knives, The Inde-
pendent newspaper 23rd of August 2019, technology, unfortunately, have an impact on
this increase.

A report by the government cited drug dealing and social media as key drivers, but
police have called for more funding to turn around the loss of thousands of officers and
voluntary groups are attacking cuts to youth services.

7 The Individual’s Transformation

We do and build on our relationship with others and the way we consume. We are
social individuals and not isolated hermits in the world.

Moreover, we affirm our social position based on what we have, the places we go,
the relationships we establish, the lifestyle we choose and the reliability of our opinions
- our reputation. Thus, the evident change in the way we interact with each other and
with brands is transforming the human being, who is much more exposed to the
opinion of others.

We also have more means to influence people. In a few clicks, we can all share
experiences, speak ill of an advertising campaign, engage large groups against cor-
porate policy, denounce actions, evaluate products and provide opinions on a wide
range of topics.
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Thus, the choices we make are influenced by groups of people with whom we
interact; this is because we are more confident when we see that, in addition to our own,
there is approval from a greater number of people for our choice, which can be a travel
destination, for example.

But that influence goes far beyond that.
Nowadays, the number of young people wanting to be influencers is vast. People as

young as 5 have become known on YouTube and now have followers as young as
them. Parents show these videos to their kids and tell them, “if he or she can, so can
you”. Adolescents are hooked on reality celebrities. According to an article on the
Newport Academy website on the 28th of August 2018, they found that many teenagers
have eating disorders because they want to be just like the celebrities they have put on a
pedestal.

8 Examples of Social Impact

Nowadays, many people spend their life posting on Facebook, Snapchat, Instagram,
Twitter, etc.; our young generation is so influenced by these social media platforms that
their lives depend on it. Ever since the creation of these social platforms, there has been
a considerable increase in anxiety and depression in teenagers, leading as well to the
rise in teenage suicide and bullying. It seems that the young generation has lost the
meaning of what being a human being is and relying on how many likes they can get
seems to have become primordial to them.

According to a study from Duke University: “More use of technology is linked to
later increases in attention, behaviour and self-regulation problems for adolescents
already at risk for mental health issues, a new study from Duke University finds.”, this
doesn’t mean that only children or adolescents with prior issues or at risk are the only
ones who will develop mental health issues. There is great competition amongst
youngsters nowadays to be an influencer, to compete with their peers, to be sure that
they are one step ahead, from posting their food to posting photographs that are not
always appropriate and can put them into risky situations.

Social Impact has caused many issues for young ones, but parents are also at fault
here. Due to their busy lifestyles, children are left to their own devices, and they are not
getting the necessary attention. Parents many times are not aware of what their child is
up to and many times acknowledging that their child may have a mental issue is taboo
within their culture, which does not help the child who is suffering from anxiety,
depression, panic attacks, suicidal thoughts.

According to research, Social Media and suicide is a new phenomenon, which
influences suicide- related behaviour. Suicide is a leading cause of death worldwide.
According to the World Health Organization, in the year 2019, approximately 1.53
million people will die from suicide - Gvion and Apter (2012). There is increasing
evidence that this behaviour of using social media affects and changes people’s lives,
especially in teenagers. Suicide has been identified not only as an individual phe-
nomenon, but it is influenced by social and environmental factors - Gvion and Apter
(2012). As the internet becomes more ingrained in people’s everyday life, they are
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desensitized to the mental and emotional issues it can cause to an individual Tingle
(2015).

According to an article from the Journal of Neuroscience Research - Mining social
networks to improve suicide preventions: A Scoping Review by Jorge Lopez – Cas-
toman, Bilele Moulahi, Jerome Aza, Sandra Bringay, Julie Deninotti, Sebatian Guil-
ame, Enrique Baca-Garcia, “Attention about the risks of online social networks has
been called upon reports describing their use to express emotional distress and suicidal
ideation or plans. On the Internet, cyberbullying, suicide pacts, Internet addiction, and
“extreme” communities seem to increase suicidal behaviour”.

According to the article “The role of online social networking on deliberate self-
harm and suicidality in adolescents: A systematized review of the literature” Aksha M.
Memon, Shiva G. Sharma, Satyajit S. Mohite, and Shailesh Jain in the Journal of
psychiatry, social media is responsible for the following:

– “Cyberbullying: “Is an aggressive, intentional act, or behaviour that is carried out
by an individual or group using electronic forms of contact, repeatedly and overtime
against a victim who cannot easily defend himself/herself.”

– “Social media advertisements expose adolescents to the substances of abuse
including alcohol, tobacco, and marijuana which could lead to potential self-harm
and suicide.”

– “Adolescents on social media are at risk of being victims of sex crimes as sex
offenders can use social media to lure adolescents for sexual exploitation, and these
sexual experiences are associated with enhanced risk of adverse social, academic,
and behavioural consequence”.

“Another concern is the role of social media in the internalization of the “thin ideal”
body image by adolescent females and according to the findings of a study conducted
on high school girls using Facebook, users scored higher on all body image concerns
than nonusers thus concluding a strong influence of this social media platform on body
image.”

The list is growing every day, and all the above may end up by triggering feelings
and emotions that children and adolescents find it hard to understand, causing them to
fall into depression, causing anxiety, etc.

Aja Romano author of the article “The frustrating, enduring debate over video
games, violence, and guns” of the 26th of August 2019 states that “We cannot forget as
well of the video games, such as Xbox and Power Stations, these games, most of the
time, are violent games that can instigate violence in young people and adults. As was
the case of the EL Passo – Texas where The El Paso shooter briefly referenced Call of
Duty, a wildly popular game in which players assume the roles of soldiers during
historical and fictional wartime, in his “manifesto.”

It has been scientifically proven that gaming can change a person’s brain.
According to the article in Interesting Engineering by Christopher Mcfadden on the
22nd of April 2019 with the title ‘‘Playing Video Games Can Actually Change the
Brain” - “It is official, gaming can, and does, change the brain of games, but it’s not all
for good”. According to the article, gaming can have positives as children can interact
with one and other, socialise. Christopher Mcfadden also mentions that “gaming does
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affect the brain in gamers. They have improved visuospatial skills, memory, attention
and, it turns out, show signs of other brain change associated with some addictive
disorders”.

Finally, Digital Transformation has not only empowered consumers: it has
empowered society, and now it is up to the exposed companies to manage their crises
in an ethical way, gaming companies by thinking twice what games to launch, if it is
continually focusing on violent games, social media platforms to see how they can
restrict bullying, self-harming pages or forums, suicide pages, etc.

9 Ideological Segregation in the Digital Environment

A phenomenon already very present in the digital environment is what we call ideo-
logical segregation; this basically occurs because of our tendency to approach people
with visions similar to ours. At the same time that networks give voice to everyone and
that each ideological group can manifest itself freely, people prefer to interact within
their own universe.

After all, isn’t that what companies do when they determine their audience and
develop actions focused on it? Don’t they seek to customize the shopping experience
and use to increase customer satisfaction and loyalty?

The most basic way to achieve this is by observing the contents that are being
viewed the most. Based on them, it is possible to determine standard details to dis-
tribute similar messages. This type of tooling works well.

At the same time that this personalization pleases, society is bothered with the
result: the low diversity of contents - which is what we call ideological segregation. As
it becomes more evident, more people tend to bother with it; this is natural. To some
extent, every trend generates some countertendency, that is, a defensive and contrary
response. As this reaction grows, it is expected that there will be pressure on companies
to reduce the level of customization.

Consequently, diversity within companies will be increasingly required, allowing
employees of different races, ideologies and behaviours to understand an equally
diverse audience better.

In fact, consumer pressure on company decisions is a determining aspect of the new
society. The challenge for companies is to be able to incorporate this interference in the
decision-making process - a definitive trend to respond to the enormous power of the
customer.

A positive example is Smart Cities that with the use of technology, they allow
involving the citizen in city planning. Thus, systems are developed that ensure the free
flow of information seeking to find problems and develop solutions to promote eco-
nomic development and quality of life.
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10 The Positives of Technology

Of course, every negative has a positive, and technology has helped society in many
ways, such as medical advancements, how technology can predict the climate crisis,
easier communication, decreased emissions and greener environment keeping the earth,
saving trees due to the use of less papers, safety, such as better police response, GPS,
surveillance, digital security, 3D teaching in classrooms, etc. Nonetheless, if we stop to
analyse the pros and cons of technology, we can see that the negative list is bigger.

11 Conclusion

It is still common for digital transformation to be considered exclusively as a tech-
nological issue, disregarding the significant impact that changes have on society.

The tremendous social change that has occurred is that people have already gotten
involved and engaged with the transformation. That is why it is viable, possible and
irreversible. Society is voluntarily willing to promote innovation - even if there are
more resilient groups.

Moreover, to the context, we describe the influences of the government environ-
ment on the process.

It is foreseeable that interventions will take place. For better or worse, the concern
with the social impact of digital transformation must guide regulations and incentive
policies.

The economic and social impact of such a representative value is equally signifi-
cant. Therefore, personal and business decisions will need to consider the impact of
digital transformation on society increasingly. Our ability to manage life and business
depends directly on our understanding of how we are moving towards interacting with
each other.

The way society has been developing since the first computer, mobile phone,
application, social media platform, online shopping, Artificial intelligence and so on, is
quite worrying as people are becoming more and more dependent on them. Before
when we would leave home without our watch, we would feel lost, now if we have
forgotten our telephones, we go insane.

Decades ago, many predicted that technology would now be in charge of all the
heavy work. We would have more free time and engage only in intellectual activities.

However, what we saw happen was a great change in the dynamics of our daily
lives. At the same time that it creates facilities, technology accelerates the interactions
and expands the channels. All the time, from anywhere and by various means, we are
“connected”.

Some have difficulty in adapting and others assume a compulsive behaviour,
generating a psychological load that can create stress. However, the problem is not
limited to these people. This affects everyone, and another great challenge is to think
about the experience of use considering this effect on people.
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This concern is justified by its social aspect and by the effects of anxiety. We
already need to worry about writing short, objective messages, but there is a whole
design experience that needs to be designed to lessen this stress.

It is necessary for those investing in technology to have a 360° vision rather than
tunnel vision. Tunnel vision does not allow people to see the whole story, do the
creators, innovators, scientists, companies, etc., stop to think of the pros and cons of
technology and how their invention, innovation will impact on society. It is time to stop
and think as the future belongs to the young ones, the question here is how we can do
so? From an ethical point of view, when thinking of the utilitarianism approach,
Stephen Nathanson, from the Northeastern University – USA - Act and Rule Utili-
tarianism, defines this approach as “best known and most influential moral theories.
Like other forms of consequentialism, its core idea is that whether actions are morally
right or wrong depends on their effects. More specifically, the only effects of actions
that are relevant are the good and bad results that they produce”, companies, creators,
scientists, etc., should think not just about what is beneficial for their pockets, but as
well how to deal with the bigger picture, on how this impacts on people on a day to
day basis. Liz Soltan, from http://www.digitalresponsibility.org/technology-and-
psychological-issues - states that “Whether or not changes in our behaviour due to
technology use classify as a disorder, there is no denying that technology is affecting
the way our minds operate. It remains to be seen exactly how technology will affect our
psyches, but some changes are already starting to become apparent. Nowadays,
Dr Larry Rosen argues that “this constant flow of information is more than the human
mind was meant to handle.” He shows, for example, that there is little difference
between BlackBerry addicts and those suffering from obsessive-compulsive disorder.
“Our technology use has sprouted a whole new array of symptoms of common dis-
orders, from teenagers uploading their every move to Facebook to the 40-year-old who
scours the Internet for information on the differences between freckles and melanoma,
despite reassurances from his dermatologist.’’ More importantly, Dr Rosen shows that
there is a way to achieve harmony with technology without being controlled by the
constant influx of information. IDisorder is the new mental health disease changes to
your brain´s ability to process information and your ability to relate to the world due to
your daily use of media and technology resulting in signs and symptoms of psycho-
logical disorders – such as stress, sleeplessness, and a compulsive need to check in with
all of your technology. Nomophobia - the phobia of being out of cellular phone contact.
It has been considered as a symptom or syndrome of problematic digital media use in
mental health.

The question here is where do we go from here, how can we create awareness and
help people healthily deal with Technology? Will mental health departments be able to
cope with the influx of new patients?

Perhaps we need to relearn the teachings from the past. “Everything in moderation”
as the saying goes.

32 N. S. Laniado
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Abstract. In the digital world, public-key cryptography is ubiquitous.
Current public-key crypto schemes like RSA or Diffie-Hellmann are in
widespread use and they represent an indispensable asset of our tech-
nological toolbox. However, the discovery of Shor’s algorithm and the
rapid progression in the field of quantum computers became a painful
reminder of our alerting dependency on such technologies. At the same
time, this realization started a demand for new cryptographic algorithms
withstanding the power of quantum computers. The National Institute
of Standards and Technology (NIST) aimed to satisfy this urge by ini-
tiating a standardization process in 2017 with a call for proposals of
post-quantum key exchange mechanisms and signature algorithms. One
of the submissions that made it to the second round is the key encapsu-
lation mechanism BIKE.

This work investigates various techniques to achieve an efficient and
secure implementation of BIKE on embedded devices. We show that it is
possible for BIKE to run on a Cortex-M4 microcontroller using reduced
data representation and adequate decoding algorithms. Our implemen-
tation achieves a performance of 6 million cycles for key generation, 7
million cycles for encapsulation, and 89 million cycles for decapsulation
for BIKE-1.

Keywords: Post-quantum cryptography · Code-based cryptography ·
BIKE · KEM · Microcontroller · Timing attacks · Cortex-M4

1 Introduction

The advancements in the development of quantum computers impose an increas-
ing threat [14,16] to most of the currently existing public-key crypto schemes.
Already decades ago, Peter Shor [23] developed a quantum algorithm that is
able to break them. Since current public-key cryptosystems like RSA are in
such widespread use, it is crucial that extensive research for new cryptographic
schemes is done before the arrival of large enough quantum computers. For
c© Springer Nature Switzerland AG 2020
E. Simion and R. Géraud-Stewart (Eds.): SecITC 2019, LNCS 12001, pp. 34–49, 2020.
https://doi.org/10.1007/978-3-030-41025-4_3
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this reason, the United States National Institute of Standards and Technology
(NIST) announced a call for proposals in 2017 [12,17] to submit new crypto-
graphic schemes able to withstand such attacks. One of these proposals is the
BIt Flipping Key Encapsulation- or BIKE-suite [2]. The NIST standardiza-
tion is a multi-round process aiming to select new algorithms and publish first
drafted standards by the years 2022/2024 [18]. NIST announced a list of candi-
dates that have been selected for the second round in early 2019 [19], with BIKE
being among the selected schemes. The main NIST selection-criteria are security,
cost and performance, as well as algorithm and implementation characteristics
on a large variety of platforms [20]. We contribute to the NIST standardization
process by presenting the first microcontroller implementation of BIKE.

1.1 Related Work

Most code-based cryptographic schemes nowadays are improved and/or opti-
mized adaptations of the initial works of Robert McEliece [8] and Hermann
Niederreiter [15], who published cryptographic schemes of the same names in
the late seventies and eighties. Both of them are widely considered to be very
well studied and remained essentially unbroken up until this day and provide
sufficient security properties for the upcoming quantum computing age. To elim-
inate the major downside of these older schemes, being its very large key sizes,
newer proposals often use codes that have some cyclic structure like quasi-cyclic
(QC) low-density-parity-check (LDPC) or modest-density-parity-check (MDPC)
codes [6,21]. This becomes especially essential when targeting embedded devices
like we do in this work, due to their limited memory. The list of NIST sub-
missions [19] shows that the majority of standardization candidates are either
code- or lattice-based schemes. Examples of other code-based candidates closely
related to BIKE are classic McEliece [3] or Hamming Quasi-Cyclic (HQC) [1].

The pqm4 post-quantum crypto library for the ARM Cortex-M4 [9] consoli-
dates most microcontroller implementation efforts of post-quantum key exchange
mechanisms and signature schemes. Great efforts towards efficient and side-
channel attack resistant implementations of the McEliece crypto scheme using
quasi-cyclic MDPC codes for embedded platforms has been made by von Mau-
rich, Oder, Güneysu and Heyse [25,27–29] and is also a central topic of von
Maurich’s dissertation [26].

1.2 Contribution

In this work, we present the first microcontroller implementation of the NIST
round 2 candidate BIKE. We replace any external dependencies that have been
a major issue preventing microcontroller adoption of BIKE [9] with stand-alone
components. Furthermore, we replace the decoding algorithm of the reference
implementation with a more memory-efficient one to make the implementation
fit the memory of our target device. Finally, we apply countermeasures to protect
the implementation against timing side-channels. We implemented all three vari-
ants of BIKE, each at three different security levels, leading to a total number
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of 9 implementations. Up to our knowledge, no microcontroller implementations
of code-based NIST round 2 candidates have been published so far. This work
is therefore an important contribution to the evaluation of the practicability of
code-based cryptography in the ongoing NIST standardization process. To allow
independent verification of our results, we will make our source code publicly
available with the publication of this work1.

2 Preliminaries

In this section, we discuss the mathematical background that is necessary for
the understanding of this paper. We use the following notation. n describes the
size of the whole parity check matrix and r of one circulant block. w is the
parity check matrix’ row weight and t the weight of error, the code is able to
correct. By H we denote the parity check matrix of a linear code and HT denotes
the transpose of the parity check matrix. The syndrome of an input vector e is
defined as s = eHT .

2.1 BIKE - Bit Flipping Key Encapsulation

BIKE is a key encapsulation mechanism (KEM) based on QC-MDPC codes. It
is composed out of three different variants: BIKE-1, BIKE-2 and BIKE-3 that
can be instantiated at three different security levels: Level 1, 3, and 5. These
correspond to the security recommendations given by NIST. The suggested BIKE
parameters are shown in Table 1. The three variants of BIKE are described in
Figs. 1, 2 and 3. For a more detailed description of the scheme, we refer to the
specification of the NIST submission [2].

Table 1. Parameters for every BIKE variant

Variant Security r n w t

BIKE 1/2 Level 1 10,163 20,326 142 134

BIKE 1/2 Level 3 19,853 39,706 206 199

BIKE 1/2 Level 5 32,749 65,498 274 264

BIKE 3 Level 1 11,027 22,054 134 154

BIKE 3 Level 3 21,683 43,366 198 226

BIKE 3 Level 5 36,131 72,262 266 300

2.2 Decoding Using Bit Flipping Algorithms

To decode QC-MDPC codes we can use bit flipping algorithms. Many different
bit flipping decoders do exist. Algorithm 1.1 [2] shows a classical variant. After

1 https://www.seceng.ruhr-uni-bochum.de/research/publications/efficient-microcont
roller-implementation-bike/.

https://www.seceng.ruhr-uni-bochum.de/research/publications/efficient-microcontroller-implementation-bike/
https://www.seceng.ruhr-uni-bochum.de/research/publications/efficient-microcontroller-implementation-bike/
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Fig. 1. BIKE-1 specification

Fig. 2. BIKE-2 specification

termination, the algorithm should output an error pattern e which corresponds
to the inputted syndrome s, e.g. s = eHT .
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Fig. 3. BIKE-3 specification

Unsatisfied Parity Check Equations and Threshold. Algorithm 1.1 cal-
culates the number of unsatisfied parity check equations per parity check matrix
column hj for all n columns of H and compares it to a given threshold τ |hj |
depending on the currently processed column hj . hj is the j-th column of the
parity check matrix H interpreted as a row vector. hj � s′ is the component-wise
product of two vectors and |hj � s′| is the number of unchecked parity equa-
tions involving hj . If the number of unsatisfied equations is higher than τ |hj |,
the corresponding bit in the resulting error ej is flipped. After all columns have
been processed, the temporary syndrome s′ gets updated s′ = s− eHT with the
current error pattern and the next round starts.

The stopping condition |s′| > u specifies whether the correct error has been
found. If u = 0 is used then s′ = s − eHT = s − s = 0. This also means that s is
the exact syndrome of e. This is called noiseless syndrome decoding. If u > 0,
the decoding is called noisy. In this case, the syndrome includes an additional
error e′ (or noise) and is not the exact syndrome of e.

3 Portable Implementation

The BIKE reference implementation relies on the NTL library [24] to perform
arithmetic operations in finite fields, as well as OpenSSL for the AES-based pseu-
dorandom number generators and the key derivation hash function SHA384.
These external dependencies are the main reason, why there has not been a
microcontroller implementation of BIKE yet [9]. The first step towards a micro-
controller implementation is therefore to make the code portable. The source
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Algorithm 1.1. Bit flipping algorithm

Input: H ∈ F
(n−k)×n
2 , s ∈ F

(n−k)
2 , u ≥ 0

Output: e.
1 begin
2 e ← 0;
3 s′ ← s;
4 while |s′| > u do
5 τ ← Threshold ∈ [1, 0];
6 for j ← 0 to n − 1 do
7 if |hj � s′| ≥ τ |hj | then ej ← ej + 1 mod 2;
8 end

9 s′ ← s − eHT ;

10 end
11 return e

12 end

code of our portable implementation will also be made available online with the
publication of this work.

3.1 Replacing NTL Modules

Multiplication in GF2 has the most crucial impact on the performance of BIKE
and is done with the help of the NTL library in the reference implementation of
BIKE. The gf2x-library [5] is the result of extensive research [4] for efficient mul-
tiplication in finite fields. The gf2x-library has been integrated into NTL, after
NTL was significantly outperformed by gf2x in the area of finite field operations.
Another big advantage of gf2x is that almost everything is written in plain C
(except very few C++ parts) and does not rely on any external dependencies,
therefore we integrated the relevant software modules from the gf2x-library into
our portable code.

3.2 Replacing OpenSSL Modules

To remove the platform dependent OpenSSL AES and SHA384 modules, we
chose to adapt two alternatives [7,10] that are publicly available. According
to the authors, both of these replacements for AES and SHA2 are validated
against NIST test vectors and were designed in respect to portability, compact-
ness and efficiency. This offered ideal conditions to be used for our portable BIKE
implementation.

4 Cortex-M4 Implementation

After the development of a portable BIKE implementation, the next step is to
develop an efficient Cortex-M4 implementation. Our evaluation platform is the
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STM32F4-DISCOVERY board. It runs with a clock frequency of up to 168 MHz.
The board offers 192 kB of RAM as well as 1 MB of flash memory. Furthermore,
it features a true random number generator (TRNG) based on analog circuitry
and a floating-point unit (FPU). NIST recommends to use the Cortex-M4F as
target platform for microcontroller evaluations of post-quantum standardization
candidates [13].

4.1 Bit Flipping in the BIKE Reference Implementation

BIKE-1 and BIKE-2 use noiseless syndrome decoding and BIKE-3 uses noisy
syndrome decoding. BIKE operates with (2,1)-quasi-cyclic MDPC codes. Its
decode-function, has the signature decode(e, s, h0, h1, u). The inputs are
the syndrome s and the first two rows h0 and h1 of the two quasi-cyclic code
blocks of the parity check matrix H. The integer u distinguishes between noiseless
(u = 0) and noisy (u > 0) decoding. Decode outputs e = e0|e1 for which holds
|e0h0 + e1h1 + s| ≤ u, i.e. the noise of the syndrome must not be larger than
u for decode to work. The secret key is of the form sk = (h0, h1) for all BIKE
variants, so the same decode function can be applied. The authors of BIKE
suggest a one-round bit flipping algorithm [2] similar to the one illustrated in
Algorithm 1.1.

4.2 Memory Requirements for Decoding

When the one round bit flipping algorithm is applied, the decoding becomes a
major memory bottleneck. Table 2 shows the memory consumption of the largest
data structures in the reference implementation of the decode operation for all
BIKE variants. Clearly, this simple decoding mechanism can not be used on the
microcontroller, since it requires way more memory than the 192 kB that are
available, and needs to be substituted with a more adequate solution.

Table 2. Dynamic memory requirements of arrays in decode call for all BIKE variants
in number of kB using the reference implementation.

Data structure BIKE-1/2 BIKE-3

Level 1 Level 3 Level 5 Level 1 Level 3 Level 5

unsat counter2[] 41 79 131 44 87 145

errorPos[] 41 79 131 44 87 145

unsat counter[] 20 40 65 22 43 72

J[][] 813 1,271 2,620 882 1,735 2,890

e[] 20 40 65 22 43 72

syndrome 10 20 33 11 22 36

Overall 945 1,529 3,046 1,026 2,017 3,360
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4.3 Decoding on Embedded Platforms

Extensive research on how to efficiently implement QC-MDPC McEliece on
embedded devices has been done by von Maurich [26, Ch. 4]. Von Maurich eval-
uated and compared various different bit flipping decoders targeting constrained
devices. In the following, we will shortly review the decoders that we adapted
for our microcontroller implementation.

The primary idea [26, Ch. 4.4.1] is based on a decoding mechanism for LDPC
codes first introduced by Gallager [6]. Similar to Algorithm 1.1, this strategy
calculates the number of unsatisfied parity check equations for each bit of the
received message and flips the corresponding bit, if a specific threshold b is
reached. Thresholds of a given parameter set are pre-calculated for each iter-
ation bi of decoding, by calculating the probability Pi for a bit to be in error
after iteration i. Decoding approaches using such types of thresholds are also
called hard decision bit flipping based and mainly operate following these basic
steps [26, p. 40]:

1. Calculate the syndrome of the inputted message and pass it to the decoder
2. Calculate the number of unsatisfied parity check equations for each bit of the

input message
3. Flip those bits that violate at least bi equations in iteration i
4. Recalculate the syndrome based on the updated message (since the message

changed, the syndrome also changes)

A corresponding decoder D1 working the mentioned way is shown in Algo-
rithm 1.2 in Appendix A. For BIKE-3, Line 2 in Algorithm 1.2 needs to check
for the syndrome’s hamming weight to be larger than some noise u, rather than
0. In case of BIKE-1/2, u will just be 0. Decoder D1 implements the following
optimizations:

1. As proposed by Gallger [6], D1 uses precomputed thresholds bi (Algorithm 1.2,
Line 14), eliminating the need to calculate the maximum number of unsatis-
fied parity check equations for every invocation (like other decoders do).

2. The syndrome changes as follows if the threshold is reached: snew = sold ⊕
hj [26, p. 41]. This crucial observation shows that it is not necessary to
completely recalculate the syndrome every time it is updated. It can rather be
computed by just adding the current hj (Algorithm 1.2, Line 16), significantly
speeding up syndrome recomputation.

3. Von Maurich points out [26, p. 46] that if about 4–6 iterations of the decoding
algorithm have passed, it is extremely rare for it to still succeed without any
adjustments to the threshold. So he suggests an ITERATIONS MAX of 5
iterations for his QC-MDPC McEliece instance.

The decoding failure rate can be further reduced [26, p. 42–43] if in case of
failure the thresholds bi are increased by one, until a threshold delta max of
5 is reached. This concept is called decoder D2 shown in Algorithm 1.3 in
Appendix A. D2 essentially just acts as a wrapper around D1, which upon failure
increases the threshold delta and starts decoding over again.
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4.4 Microcontroller Optimizations

Instead of the simple decoding algorithm from the reference implementation, we
use the proposed decoders D1/D2 [26, p. 62] for the microcontroller implemen-
tation which perform most of its computations in-place, omitting the necessity
to store a lot of data at the cost of losing performance. This combination of
decoders provides further failure rate reduction.

We can apply a time-memory tradeoff strategy [26, p. 61] to the sequential
algorithm, turning it into a somewhat parallel method. Parallel in this sense
means processing h0 and h1 in the same turn, using separate variables and
counters. The parallel decoding method for decoder D1 is shown in Algorithm 1.4
in Appendix A. The same adjustments for the noise u as explained for the
sequential algorithm are required for this method to work with BIKE. Using two
variables current0 and current1, the parallel way counts the unsatisfied parity
check equations for both h0 and h1 in violated0 and violated1 in the same
loop iteration (Algorithm 1.4, Lines 10–15). Since this processes two vectors in
the same turn, it has to finish the whole loop before doing the syndrome update
outside the inner loop. If not stated otherwise, we will always refer to the parallel
decoder for the remainder of this paper as it provides a superior performance.

The gf2x library proposes optimization-suggestions for ARMv7 (and other)
platforms to speed up its implementation. Besides suggesting slightly different
Karatsuba/Toom thresholds, the changes basically consist of a few optimized
multiplication base cases gf2x_mul3, gf2x_mul5 and gf2x_mul6. In gf2x_mul3,
we get an optimized version with 6 multiplications instead of 7. gf2x_mul5 now
uses the formula of Peter Montgomery [11] allowing to multiply two 5-term
polynomials with only 13 multiplications instead of 17. gf2x_mul6 implements
the K3 formula by Weimerskirch and Paar [30] which needs only 6 calls to
gf2x_mul2, resulting in a total of 18 multiplications instead of 21. We further-
more replaced the AES implementation from [10] that we use as PRNG with
the Cortex-M-optimized constant-time implementation from [22]. To seed the
PRNG, we generate a random sample from the on-board TRNG.

The private key can be compressed by only storing the indices of the w
2 ones

per vector, ending up with a w∗�log2(r)�-bit long representation [2]. We can then
rotate the vector by just increasing all positions by one instead of shifting the
whole vector by one bit. We take care of overflows by just setting a corresponding
position to zero, if it was equal to r. The positions are reordered in case of an
overflow, to keep them in an ordered fashion. This way, only the last position
needs to be checked for overflow. We adapted the sparse representation [26, p.
108] to our code.

4.5 Hardening the Implementation Against Timing Attacks

We also investigated measures to secure the bit flipping decoding algorithm
against timing attacks. Thorough research on how to secure QC-MDPC decod-
ing has been done by von Maurich, Güneysu and Oder [26,29]. We adapted and
extended the techniques from [26] for constant-time implementation of several
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components, like private key rotation, threshold comparison, syndrome and error
update, and counting of unsatisfied parity check equations. Our tests showed
that the overwhelming majority of decodings succeed after 2–4 iterations inde-
pendent from the chosen BIKE variant. We hence fixed the number of iterations
of the decoder to be always 5. That means that the decoder will always run 5
times, even if the decoding was successful in earlier runs already. However, the
multiplication routine of the gf2x library is not constant-time. Our implemen-
tation therefore provides some resistance against timing-attacks but is not fully
protected.

5 Results and Comparison

As environment, we used the Eclipse IDE for C/C++ developers, Version Photon
Release 4.8.0 and Build id 20180619-1200 combined with the OpenSTM32 Sys-
tem Workbench for STM32 - C/C++ Embedded Development Tools for MCU
2.5.0.201807130628. For debugging purposes, we configured the internal eclipse
debugger to use gdb via OpenOCD connecting to the STLink embedded debug-
ger of the board. We counted clock cycles using the data watchpoint and trace
unit (DWT) of the Cortex-M4 for performance measurements at 168 MHz.

5.1 Performance and Memory Evaluation

In Table 3, we show the cycle counts for all 9 implementations of BIKE. We also
include the cycle counts for the case that the countermeasures against timing
side-channels as described in Sect. 4.5 are applied to the decoding. The unusual
high cost of the key generation in BIKE-2 is due to the expensive finite field
inversion required in BIKE-2 only. Except for BIKE-2, the Decaps operation is
the clear bottleneck regarding performance. In Table 4, we also show the dynamic
memory consumption (heap and stack) of our implementations. The memory
requirements range from 21 to 74 kB and therefore comfortably fit the memory of
our evaluation platform. Encaps and Decaps have similar memory requirements
and the increase in memory consumption is linear in the security level.

We compare our implementation with the evaluation results of several other
NIST post-quantum candidates from the pqm4 library [9] in Table 5. In direct
comparison with lattice-based schemes, the performance of BIKE is inferior.
The only lattice-based scheme that performs worse is the Frodo KEM. Frodo is
however a very conservative scheme. For a comparison with schemes with simi-
lar trust in the underlying security assumption, QC-MDPC-based schemes (like
BIKE) should rather be compared to ideal lattice-based schemes (like NewHope).
However, compared to isogeny-based cryptography, BIKE clearly has the supe-
rior performance and can therefore be seen as a backup alternative to lattice-
based schemes.
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Table 3. Final performance of KEM phases for all BIKE variants using parallel decod-
ing, including timing attack countermeasures [TP]. Cycle counts are given in million
cycles.

KeyGen Encaps Decaps

BIKE-1 Level 1 6 7 89

[TP] 305

Level 3 15 17 228

[TP] 773

Level 5 28 30 569

[TP] 1,685

BIKE-2 Level 1 918 4 87

[TP] 303

Level 3 3,345 9 222

[TP] 766

Level 5 8,763 15 557

[TP] 1,673

BIKE-3 Level 1 4 7 86

[TP] 309

Level 3 10 18 234

[TP] 795

Level 5 20 37 774

[TP] 1,819

Table 4. Final dynamic memory requirements of KEM phases for all BIKE variants
in kB consisting of stack and heap memory. The maximum memory consumption of
an implementation is highlighted in bold font.

KeyGen Encaps Decaps

BIKE-1 Level 1 13.95 21.59 20.84

Level 3 26.17 41.07 39.37

Level 5 42.24 66.83 63.79

BIKE-2 Level 1 15.62 19.05 20.84

Level 3 30.18 36.10 39.37

Level 5 49.51 58.63 63.79

BIKE-3 Level 1 15.01 23.30 22.41

Level 3 28.42 44.71 42.74

Level 5 46.61 73.75 70.24
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Table 5. Comparison of cycle counts of our implementations with results from pqm4

[9].

Scheme Security PQ family KeyGen/103 Encaps/103 Decaps/103

BIKE-1 (our) Level 1 Codes 6,437 6,867 89,131

NewHope-512 Level 1 Lattices 628 915 163

Kyber-512 Level 1 Lattices 514 653 621

Frodo-640 Level 1 Lattices 47,051 45,883 45,366

SIKEp434 Level 1 Isogenies 650,735 1,065,631 1,136,703

BIKE-1 (our) Level 3 Codes 15,309 16,641 228,244

Kyber-768 Level 3 Lattices 977 1,147 1,095

SIKEp610 Level 3 Isogenies 1,819,652 3,348,669 3,368,114

BIKE-1 (our) Level 5 Codes 27,605 29,797 568,517

NewHope-1024 Level 5 Lattices 1,035 1,495 206

Kyber-1024 Level 5 Lattices 1,575 1,779 1,709

SIKEp751 Level 5 Isogenies 3,296,225 5,347,056 5,742,522

6 Conclusion

In this work, we developed an efficient and secure implementation of the post-
quantum standardization candidate BIKE. Our baseline was the reference imple-
mentation that depended on platform-specific third-party software libraries. A
portable implementation was achieved by incorporating substitutions for the
OpenSSL and NTL dependencies. Our analysis further revealed that the BIKE
bit flipping decoding, as done in the reference implementation, is not feasible on
the microcontroller and we provided adaptations of more adequate decoders that
were able to satisfy the limiting memory constraints of the development board.
We furthermore added countermeasures against timing attacks to our implemen-
tation. Our final implementation offers reasonable results in comparison with
other Cortex-M4 post-quantum cryptography KEMs in terms of efficiency, secu-
rity and memory requirements. Our work has successfully demonstrated that the
BIKE standardization candidate can be implemented and run on an embedded
microcontroller like the Cortex-M4. This result lives up to the expectation of
NIST that the proposed algorithms are required to be implementable in a wide
range of hardware and software platforms.
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The finite field inversion resembles a heavy bottleneck for BIKE-2 key gen-
eration performance. As documented in the BIKE specification [2], batch key
generation can reduce some performance loss generated by the inversion, in
exchange for occupying more memory. We expect the benefit from batch key
generation will be limited on embedded platforms due to memory restrictions
but nonetheless, the exact limitations of these assumptions remained unknown
and should still be verified in future work.

Acknowledgement. This work was supported in part through DFG Excellence Strat-
egy grant 39078197 (EXC 2092, CASA), and by the Federal Ministry of Education and
Research of Germany through the QuantumRISC project (16KIS1038).

A Decoding Algorithms

Algorithm 1.2. Decoder D1 (sequential)

Input: syndrome s, private key h0,h1 and noise u
Output: error e

1 begin

2 while (|s| > u) & (iterations++ < ITERATIONS MAX) do
3 for i ← 0 to 1 do
4 if !i then

5 current ← h0;

6 else
7 current ← h1;

8 end
9 for j ← 0 to R BITS-1 do

10 violated ← 0;

11 for k ← 0 to R BITS-1 do
12 if getBit(current,k) & getBit(syndrome,k) then
13 violated ← violated + 1;

14 if violated ≥ bi then
15 setBit(e,(i*R BITS+j));
16 syndrome ← syndrome ⊕ current;

17 break;

18 end

19 end

20 end

21 rotate(current);

22 end

23 end

24 end

25 end
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Algorithm 1.3. Decoder D2

Input: syndrome s, private key h0,h1 and noise u
Output: error e

1 begin
2 for threshold delta ← 0 to threshold delta max do

3 // from here starts D1

4 ...;

5 // threshold needs to be considered in following line
6 if violated ≥ bi + threshold delta then

7 ...;
8 // check if decoding is successful and if so, leave function

9 end

10 end

Algorithm 1.4. Decoder D1 (parallel)

Input: syndrome s, private key h0,h1 and noise u
Output: error e

1 begin
2 while (|s| >u) & (iterations++ < ITERATIONS MAX) do
3 for i ← 0 to 1 do

4 current0 ← h0;
5 current1 ← h1;

6 for j ← 0 to R BITS-1 do
7 violated0 ← 0;
8 violated1 ← 0;

9 for k ← 0 to R BITS-1 do

10 if getBit(current0,k) & getBit(syndrome,k) then

11 violated0 ← violated0 + 1;
12 end
13 if getBit(current1,k) & getBit(syndrome,k) then
14 violated1 ← violated1 + 1;

15 end

16 end
17 if violated0 ≥ bi then

18 setBit(e,(i*R BITS+j));

19 syndrome ← syndrome ⊕ current0;

20 end

21 if violated1 ≥ bi then

22 setBit(e,(i*R BITS+j));
23 syndrome ← syndrome ⊕ current1;

24 end

25 end
26 rotate(current0);

27 rotate(current1);

28 end

29 end

30 end
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Abstract. Secure computation (i.e., performing computation while
keeping privacy of the inputs) is a fundamental research area in cryptog-
raphy and a fundamental capability in the theory of computing. Deter-
ministic automata evaluation is a fundamental computation problem,
with numerous application areas, including regular expressions, string
matching, constant-space computations.

In this paper, we investigate the complexity of achieving secure 2-
party deterministic automata evaluation protocols. We show black-box
reductions between this problem and the problem of constructing secure
2-party information retrieval protocols, and viceversa. Using previous
results, this implies various interesting consequences: completeness of
secure deterministic automata evaluation in the class of problems hav-
ing 2-party and multi-party secure function evaluation protocols (previ-
ously, only 2 less natural problems were showed to be complete, or non-
constructive characterizations of complete problems were given), and,
under standard cryptographic assumptions, a communication-efficient
secure protocol for automata evaluation (no such problem was given in
the literature) and a time-efficient secure protocol faster than applying
Yao’s benchmark general solution.

1 Introduction

Deterministic automata evaluation is a fundamental computation problem, with
numerous application areas, including regular expressions, string matching,
constant-space computations. In the classical problem formulation, the automata
is evaluated by a sequence of transactions, each going through a next state, cho-
sen depending on the current state and the next symbol on its input string. At
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the end of the input string, the automata may be in a final state (thus, accept-
ing the input string) or non-final state (thus, rejecting it). In one formulation
of interest in this paper, the automata is called a Moore automata, and is also
allowed to return an output symbol at each transaction, depending on the cur-
rent state. In another formulation of interest for this paper, the computation is
distributed between two parties, one holding the automata and one holding the
input string.

Secure computation (i.e., performing computation while keeping privacy of
the inputs) is a fundamental research area in cryptography and a fundamental
capability in the theory of computing. In the formulation of interest for this
paper, there are two parties, Alice and Bob, who would like to interactively
compute a function f , expressible as a polynomial-size circuit, on their inputs
x and y, such that at the end of the protocol: Bob obtains f(x, y), an adver-
sary corrupting Alice learns nothing new about Bob’s input y, and an adversary
corrupting Bob learns nothing new about Alice’s input x, in addition to what
is efficiently computable from f(x, y). The first general solution to this prob-
lem for any function f having a polynomial-size circuit, was presented by Yao
[21], assuming that the adversary is semi-honest (i.e., he follows the protocol
as the corrupted party but may at the end try any polynomial-time algorithm
to learn about the other party’s input). Another important general solution for
any function f having a polynomial-size circuit was given in [7], who studied the
important multi-party scenario (i.e., where more than 2 parties run the protocol),
and presented a compiler from any solution in the semi-honest adversary model
to a solution where the adversary can be malicious (i.e., he may run an arbitrary
polynomial-time strategy while deviating from the protocol). As of today, the
area is still very active, and can be partitioned into two main sub-areas.

A first sub-area is concerned about general-purpose protocols, applicable to
any function f expressible as a polynomial-size circuit. Questions studied for
this type of protocols include, among others: (1) improving their time, com-
munication, and round complexity; and (2) studying reduction and complete-
ness questions for the class of functions having these protocols. With respect to
(1), recent advances (see, e.g., [11,18] and follow-up papers) have moved these
protocols significantly towards being usable in practice, at least in some spe-
cific scenarios (i.e., with the help of additional servers [2]). With respect to (2),
[14] originally showed that Rabin’s Oblivious Transfer protocol [20] is complete,
meaning that it is possible to securely compute any efficient function if given
a protocol securely computing oblivious transfer as a black box. Later, Private
Information Retrieval was proved to be complete as well [4] and non-constructive
characterizations have been given, some indicating that in some settings all prob-
lems are either complete or trivial [10,13,16].

A second sub-area is concerned about special-purpose protocols, applicable
to specific functions f whose description is used by protocol designers to achieve
improved results that are otherwise not achievable via general-purpose solutions.
Even for this type of protocols improving their time, communication, and round
complexity are among the most studied questions.
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In this paper, we study secure 2 party computation protocols for the specific
function of Deterministic Automata Evaluation, and show black-box reductions
with (a stronger version of) the problem of Private Information Retrieval. This
provides new insights on all above mentioned questions, including showing that
this problem is complete for secure 2-party and multi-party protocols, and that
has secure protocols with improved time-efficiency and communication-efficiency.

Our Contribution. In this paper, we investigate the complexity of achiev-
ing secure 2-party deterministic automata evaluation, and obtain the following
results:

1. we show how to construct a secure 2-party deterministic automata evalua-
tion protocol from any secure 2-party protocol for information retrieval and
viceversa, and note 3 interesting consequences, as follows; no such reductions
were presented in the literature;

2. combined with previous results, these results imply black-box constructions
of any 2-party or multi-party problem solvable by a polynomial-size circuit
from secure 2-party deterministic automata evaluation; previously, only 2
important but less natural problems (i.e., Oblivious Transfer and Information
Retrieval from a database modeled as a string) were showed to be complete,
or non-constructive characterizations of complete problems were given;

3. using secure information retrieval protocols from the literature with commu-
nication complexity sublinear in the number of data items, we obtain a secure
deterministic automata evaluation protocol with communication complexity
sublinear in the automata transition matrix; this is of special interest for
problems with large automata matrices; we are not aware of any such result
from the literature;

4. using secure information retrieval protocols from the literature with efficient
time complexity, we obtain a secure deterministic automata evaluation pro-
tocol with time complexity faster than using Yao’s protocol; this is of special
interest even for problems with small automata matrices; previous efficient
protocols with similar but somewhat different efficient properties were already
given in [12,19].

Our main underlying techniques consist of expressing the secure deterministic
automata evaluation problem as a problem of securely retrieving information
from the automata transition matrix, and solving the latter problem using solu-
tions that are either efficient in communication complexity (directly from the
private information retrieval literature) or in time complexity, in the latter case
using a circuit that is smaller than what would be generated by a conventional
application of Yao’s protocol.

Organization of the Paper. In Sect. 2 we detail definitions and models of inter-
est. First, we give formal definitions for the automata evaluation problem and
background cryptographic primitives like pseudo-random functions and symmet-
ric encryption schemes. Then, we formally define secure computation protocols
for arbitrary functions as well as specific functions like automata evaluation
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and functions related to background cryptographic primitives like information
retrieval.

In Sect. 3 we present our first result: a reduction of secure 2-party information
retrieval to secure 2-party deterministic Moore automata evaluation.

In Sect. 4 we present our second result: a reduction of secure 2-party deter-
ministic automata evaluation protocol to secure 2-party information retrieval.

In Sect. 5 we present consequences of our results in the previous two sec-
tions: completeness of secure automata evaluation among 2-party and multi-
party secure protocols, a communication-efficient secure protocol for 2-party
automata evaluation, and a time-efficient secure protocol for 2-party automata
evaluation.

2 Definitions and Background

In this section we recall definitions for automata evaluation, information retrieval
problems, and secure 2-party protocols for arbitrary (and specific) functions.

2.1 Automata Evaluation and Information Retrieval

Automata Evaluation. A deterministic automata is formally defined as a tuple
DA = (S, s0, F,A, τ), where S is the set of automata states, s0 ∈ S is the
initial state, F is a subset of S representing the set of final states, A is an
alphabet, and τ : S × A → S is a transition function that maps any state
and any alphabet element to the next state (when defined). We also denote as
|S| = s the number of states, as |F | = f the number of final states, and as
|A| = a the number of alphabet symbols. An input string x = (x1, . . . , xn) is a
sequence of alphabet symbols xi ∈ A, for i = 1, . . . , n, and n denotes the input
length. The automata evaluation (briefly, AE) problem consists of computing
si = τ(si−1, xi), for i = 1, . . . , n, and then returning as output outae = 1 if
sn+1 ∈ F (denoting that a final state is reached) or outae = 0 otherwise.

A deterministic Moore automata is defined as mDA = (S, s0, F,Ain,
τ, Aout, λ), where the tuple (S, s0, F,Ain, τ) is a deterministic automata, Ain

is the input alphabet, Aout is the output alphabet and λ : S → Aout is an output
function that maps any state to an element of the output alphabet. The Moore
automata evaluation (briefly, mAE) problem consists of computing s1, . . . , sn as
in AE, and additionally returning as output outmae = (λ(s0), λ(s1), . . . , λ(sn)),
where λ(si) ∈ Aout, for i = 0, . . . , n.

In a 2-party formulation of the mAE problem, the two parties, called Alice
and Bob, are given as input the automata objects S, s0, Ain, Aout and the param-
eters s, a, n; Alice is given as input F, τ, λ; Bob holds the input string x; and at
the end of the 2-party protocol, Bob obtains the output of the mAE problem. A
2-party formulation of the AE problem is similarly derived.

Information Retrieval. A database is formally defined as a list of data blocks
x = (x[1], . . . , x[m]), where |x[i]| = �, for i = 1, . . . ,m. A query index is formally
defined as a value i ∈ {1, . . . , m}. The Information Retrieval (briefly, IR) problem
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is defined by returning as output, on input an m-block database x and a query
index i, the data block x[i]. In a 2-party formulation of the problem, the two
parties, called Alice and Bob, are given as input the parameters �,m; Alice is
given as input x; Bob is given as input index i; and at the end of the 2-party
protocol, Bob obtains the output of the IR problem.

2.2 Secure Computation of Arbitrary and Specific Functions

Basic Definitions. Let σ denote a security parameter. A function over the set of
natural numbers is negligible if for all sufficiently large natural numbers σ ∈ N ,
it is smaller than 1/p(σ), for all polynomials p. Two distribution ensembles
{D0

σ : σ ∈ N} and {D1
σ : σ ∈ N} are computationally indistinguishable if for

any efficient algorithm A, the quantity |Prob[x ← D0
σ : A(x) = 1 ] − Prob[x ←

D1
σ : A(x) = 1 ]| is negligible in σ (i.e., no efficient algorithm can distinguish if a

random sample came from one distribution or the other).

Secure 2-party Function Evaluation Protocols. Let f be a deterministic,
2-input, 1-output, function; that is, for any input pair (x, y), function f always
returns one output z. In the 2-party formulation that we consider in the rest
of the paper, string x is input to Alice, string y is input to Bob, and output z
is returned to Bob. We use the simulation-based definition from [8] for security
of 2-party function evaluation protocols in the presence of semi-honest adver-
saries (i.e., adversaries that corrupt one party, follow the protocol as that party
and then attempt to obtain some information about the other party’s input).
In a 2-party protocol execution, a party’s view is the sequence containing the
party’s input, the party’s random string, and all messages received by or sent
to the other party during the execution. According to this definition, a protocol
π to evaluate a deterministic function f satisfies simulation-based security in
the presence of a semi-honest adversary, if there exists two efficient algorithms
SimA, SimB (called simulators), such that: (1) SimA’s output on input Alice’s
input is computationally indistinguishable from Alice’s view; and (2) SimB ’s
output on input Bob’s input and Bob’s output is computationally indistinguish-
able from Bob’s view. Here, the first (resp., second) condition says that a semi-
honest adversary’s view when corrupting Alice (resp., Bob), can be generated
by an efficient algorithm not knowing Bob’s (resp., Alice’s) input, and thus the
adversary does not learn anything about the uncorrupted party’s input, other
than the computation’s output (when corrupting Bob).

Efficiency Requirements. We will target the following efficiency metrics (for a
given secure 2-party protocol), expressed as a function of the security parameter
σ: time complexity (briefly, tc), the time elapsed between the beginning and
the end of a single protocol execution; communication complexity (briefly, cc),
the length of all messages exchanged during a single protocol execution; and
round complexity (briefly, rc), the number of messages exchanged during a single
protocol execution.
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Secure Evaluation Protocols for Specific Functions. In our solutions, we
use or build constructions of 2-party secure evaluation protocols for the following
functions: AE and IR.

A secure automata evaluation protocol (briefly, sAeval protocol) is a protocol
between two parties: Alice, having as input a deterministic automata DA, and
Bob, having as input a string x. The protocol is defined as a secure function
evaluation of the output of the AE problem, returned to Bob (thus, without
revealing any information about x to Alice, or any information about DA to
Bob in addition to the DA evaluation on input x). Similarly, a secure Moore
automata evaluation protocol (briefly, sMAeval protocol) is a protocol between
two parties: Alice, having as input a Moore deterministic automata mDA, and
Bob, having as input a string x. The protocol is defined as a secure function
evaluation of the output of the AE problem, returned to Bob (thus, without
revealing any information about x to Alice, or any information about mDA to
Bob in addition to the mDA evaluation on input x).

A secure information retrieval protocol (briefly, sIReval protocol) is a protocol
between two parties: Alice, having as input a database bl, and Bob, having as
input a query index ind. The protocol is defined as a secure function evaluation
of the output of the IR problem, returned to Bob (thus, without revealing any
information about ind to Alice, or any information about bl to Bob in addition
to the desired output bl[ind]).

3 From AE to IR

In this section we present our results on IR starting from analogue results on
AE. Specifically, we first describe, in Sect. 3.1, a simple many-to-one reduction
of the 2-party IR problem to the 2-party mAE problem, and then, in Sect. 3.2,
describe a secure 2-party computation protocol by distributing the steps in this
reduction.

3.1 A Privacy-Preserving Reduction

The basic steps underlying our reduction are as follows. Given a database bl
and a query index ind, the reduction constructs a set of states S containing
an initial state and one final state for each data block in bl. Then, a transition
function τ and an output function λ are defined so that on input character i,
the Moore automata moves from the initial state to the i-th final state and the
latter outputs data block bl[i], for i = 1, . . . , m.

Since the computation of this reduction can be distributed between the two
parties without any privacy violation, the reduction between problems can be
extended to a reduction between protocols, where any protocol solving the 2-
party mAE problem can be used to solve the 2-party IR problem.

We now proceed more formally. Given database bl = (bl[1], . . . , bl[m]), and
query index ind, we define a deterministic Moore automata
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mDA = (S, s0, F,Ain, τ, Aout, λ),

as follows:

1. s = m + 1, a = m, n = 1 and s0 = 0
2. S = {s0, s1, . . . , sm}
3. Ain = {1, . . . , m}
4. Aout = {0, 1}�

5. F = {1, . . . ,m}
6. τ(i, s0) = si, for i = 1, . . . , m
7. λ(0) = ∅ and λ(i) = bl[i], for i = 1, . . . ,m
8. x1 = ind and x = (x1).

3.2 A Secure 2-party Protocol

We show a communication-efficient secure information retrieval protocol based
on any communication-efficient secure Moore automata evaluation protocol. For-
mally, we obtain the following

Theorem 1. Assume the existence of a 2-party sAeval protocol πae. There
exists a (black-box) construction of a 2-party sIReval protocol πir, where
cc(πir) = cc(πae), rc(πir) = rc(πae), and tc(πir) = tc(πae).

We prove Theorem 1 by showing protocol πir and its security and efficiency
properties.

Formal Description. We observe that since the computation of the reduction
presented in Sect. 3.1 can be distributed between the two parties without any
privacy violation, the reduction between problems can be extended to a reduction
between protocols, where any protocol solving the 2-party mAE problem can be
used to solve the 2-party IR problem.

Based on the reduction steps defined in Sect. 3.1, given 2-party protocol πmae,
we define the following 2-party protocol πir:

Input to Alice: database bl = (bl[1], . . . , bl[m])
Input to Bob: query index ind ∈ {1, . . . , m}
Instructions for Alice and Bob in πir:

1. Alice and Bob generate s, a, n, s0, S,Ain, Aout as in above reduction steps 1–4
2. Alice generates F, τ, λ as in above reduction steps 5–7
3. Bob generates x as in the above reduction step 8
4. Alice and Bob run protocol πae, using the inputs generated in the previous 3

steps
let (λ(0), λ(ind)) be the values obtained by Bob at the end of this protocol

5. Bob sets bl[ind] = λ(ind) and outputs: bl[ind].
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Properties of πir. The showed reduction preserves both efficiency and security
properties. Most notably: (1) if πae is a secure protocol then so is πir; and
(2) the communication complexity of πae is the same as the communication
complexity in πir. To prove (1), we show a simulator against any efficient semi-
honest adversary Adv corrupting Alice and one against any efficient semi-honest
adversary Adv corrupting Bob.

Adv Corrupts Alice. If πae is a secure protocol, there is an efficient simulator
Simae

A that, given Alice’s input mDA in an execution of protocol πae, generates
an output outae

S computationally indistinguishable from Alice’s view during the
protocol (note that Alice has no output in this protocol). Thus, in protocol πir

we define Simir
A as follows. Given Alice’s input bl in an execution of protocol

πir, Simir
A does the following:

– generate mDA as in above reduction steps 1–7
– obtain outae

S by running Simae
A on input mDA

– set outirS = outae
S

– output: outirS

By the analogue property of Simae
A , we obtain that Simir

A generates an output
outirS computationally indistinguishable from Alice’s view during protocol πir

(note that Alice has no output in this protocol).

Adv Corrupts Bob. If πae is a secure protocol, there is an efficient simulator
Simae

B that, given Bob’s input x and Bob’s output outae
Bob in a protocol for

mAE, generates an output outae
S computationally indistinguishable from Bob’s

view during the protocol. Thus, in protocol πir we define Simir
B as follows. Given

Bob’s input ind and Bob’s output outirBob in an execution of protocol πir, runs
the following steps:

– generate x as in above reduction step 8
– set outae

Bob = 1
– obtain outae

S by running Simae
B on input x and outae

Bob

– set outirS = outae
S

– output: outirS

By the analogue property of Simae
B , we obtain that Simir

B generates an output
outirS computationally indistinguishable from Bob’s view during protocol πir.

Efficiency Properties. By protocol inspection, we observe that protocol πir, when
run on input length parameters m, �, consists of running πae on input length
parameters s, a, n, �, where s = m + 1, a = m, and n = 1. These parameter
relationships allow to directly compute the time complexity, round complexity
and communication complexity of πir from those of πae. One interesting conse-
quence is that if cc(πae) = o(max {s, a}) then cc(πir) = o(m); that is, sAeval
protocols with communication sublinear in the number of automata states result
in sIReval protocols with communication sublinear in the number of database
blocks.
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4 From Secure IR to Secure AE

In this section we present our second result: based on any secure information
retrieval protocol, we construct a secure Moore automata evaluation protocol.
Formally, we obtain the following

Theorem 2. Assume the existence of a 2-party sIReval protocol πir for IR.
There exists a (black-box) construction of a 2-party sAeval protocol πae for AE,
where

– cc(πae) = O(n · cc(πir,s·a) + cc(πir,n) + san log s)
– rc(πae) = n · rc(πir,s·a) + rc(πir,n)
– tc(πae) = O(n · tc(πir,s·a) + tc(πir,n) + san log s),

and where πir,q denotes the protocol πir when run on a database with q data
blocks.

We prove Theorem 2 by showing protocol πae and its security and efficiency
properties.

Informal Description. We assume the existence of a 2-party sIReval protocol
πir for IR. Although πir is defined to be usable by Alice to retrieve a value
at index ind from an m-location array bl held by Bob, we will use for Alice
to retrieve a value at row index indr and column index indc from an s-row,
a-column matrix M held by Bob. This is simply done by representing M as
a suitable vector bl and indices indr, indc as a suitable index ind. Specifically,
define protocol πmir as the protocol where Alice sets ind = indr(m − 1) + indc,
Bob sets bl[i] = M [1 + quotient(i/m), 1+imod m], for i = 1, . . . , s·a, and finally
the 2 parties run πir, with the computed inputs bl, for Bob, and ind, for Alice.

By directly applying the definition of finite automata, Alice and Bob can
evaluate Alice’s automata on input Bob’s string x by a sequence of n retrievals
from the automata’s transition matrix, followed by one retrieval from the array
denoting which state is final or not. Note that this defines a Turing reduction
of the 2-party AE problem to the 2-party IR problem, and it is also possible to
distribute this reduction between the two parties, similarly as done in the proof
of Theorem 2 to create a candidate sAeval protocol.

However, this resulting protocol is not secure since at the end of a retrieval
from the transition matrix, Bob obtains the next state, which leaks significant
information about Alice’s automata input. We avoid this problem by masking the
state values in all entries of the transition matrix using a random permutation
over the set of states. Since only one value output by this random permutation
is ever shown to Bob, he only receives a random state.

This modification introduces a potential inconsistency on the automata com-
putation, in that the permuted state received by Bob at the end of the retrieval
protocol is not useful to retrieve the next state on the transition matrix. We
avoid this inconsistency by using a copy of the transition matrix for each symbol
of Bob’s input string, by using a random and independent permutation over the
set of states on each of these copies, and by permuting the rows of the next copy
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of the transition matrix by the same permutation used to mask the entries in
the previous copy of the transition matrix.

We note that since an independent random permutation is used at each
automata transition, Bob only receives a sequence of random and independent
states as all outputs of the retrieval sub-protocols, and therefore these latter
modifications maintain the protocol’s privacy properties.

Formal Description. Let πir be a 2-party sIReval protocol and let πmir be the
corresponding 2-party secure protocol for information retrieval from a matrix,
constructed as defined in the above informal description. We now proceed with
a formal description of protocol πae.

Input to Alice: deterministic Moore automata mDA = (S, s0, F,Ain, τ, Aout, λ)
Input to Bob: string x ∈ An

in

Instructions for Alice and Bob in protocol πae:

1. For h = 1, . . . , n + 1,
Alice generates a random and independent permutation ph of set S =

{1, . . . , s}
Alice computes its inverse permutation p−1

h

2. For h = 1, . . . , n,
Alice generates a permuted transition matrix ptMh, as follows:

for i = 1, . . . , s
for j = 1, . . . , a

set next state nsi,j = τ(p−1
h (i), j)

set matrix entry ptMh[i, j] = ph+1(nsi,j)
3. Alice generates a final state array fa, as follows:

for i = 1, . . . , s
set fa[i] = 1 if p−1

n+1(i) ∈ F

set fa[i] = 0 if p−1
n+1(i) �∈ F

4. Bob sets the current permuted state cps1 as the permuted initial state p1(s0)
5. For h = 1, . . . , n

Alice and Bob run protocol πmir, where
Alice uses as input matrix ptMh

Bob uses as input current permuted state cpsh

Bob obtains a matrix entry as output
Bob relabels the obtained output as cpsh+1

6. Alice and Bob run protocol πir, where
Alice uses as input array fa
Bob uses as input cpsn+1

Bob obtains an array entry b as output
7. Bob returns: b

Properties of πir. The described protocol satisfies desirable efficiency and secu-
rity properties. Most notably: (1) if πir is a secure protocol then so is πae; and
(2) the communication complexity of πae is the same as the communication com-
plexity in πir. To prove (1), we show a simulator for any efficient semi-honest
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adversary Adv corrupting Alice and one for any efficient semi-honest adversary
Adv corrupting Bob.

Adv Corrupts Alice. If πir is a secure protocol, there is an efficient simulator
Simir

A that, given database array bl as Alice’s input in an execution of protocol
πir, generates an output outirS which is computationally indistinguishable from
Alice’s view during the protocol (note that Alice has no output in this pro-
tocol). Under the same assumption, πmir is a secure protocol, and thus there
is an efficient simulator Simmir

A that, given matrix M as Alice’s input in an
execution of protocol πir, generates an output outirS which is computationally
indistinguishable from Alice’s view during the protocol. Then, for protocol πae

we define simulator Simae
A as follows. Given Alice’s input mDA in an execution

of protocol πae, Simae
A runs the following instructions:

– generate permutation ph, p−1
h as in step 1 of protocol πae, for h = 1, . . . , n

– generate permuted transition matrix ptMh as in step 2 of protocol πae, for
h = 1, . . . , n

– generate final state array fa as in step 3 of protocol πae, for h = 1, . . . , n
– for h = 1, . . . , n,

obtain outmir
S,h by running Simmir

A on input ptMh

– obtain outirS by running Simir
A on input fa

– output: (outmir
S,1 , . . . , outmir

S,n , outirS )

First of all we observe that values ph, p−1
h , ptMh, and fa are generated by Simae

A

exactly as generated by Alice during protocol πae. Then, by the analogue prop-
erty of Simmir

A , we obtain that Simmir
A generates an output outmir

S,h computa-
tionally indistinguishable from Alice’s view during the h-th execution of proto-
col πmir within protocol πae, for h = 1, . . . ,m. Similarly, we obtain that Simir

A

generates an output outirS computationally indistinguishable from Alice’s view
during the execution of protocol πir within protocol πae. The claim that the
entire output of Simae

A is computationally indistinguishable from Alice’s view
during an execution of πae follows by a standard hybrid argument [9].

Adv Corrupts Bob. If πir is a secure protocol, there is an efficient simulator Simir
B

that, given index ind as Bob’s input in an execution of protocol πir and Bob’s
output outirBob, generates an output outirS which is computationally indistinguish-
able from Bob’s view during the protocol. Under the same assumption, πmir is
a secure protocol, and thus there is an efficient simulator Simmir

B that, given
indices indr, indc as Bob’s input in an execution of protocol πmir and Bob’s
output outmir

Bob, generates an output outmir
S which is computationally indistin-

guishable from Bob’s view during the protocol. Then, for protocol πae we define
simulator Simae

B as follows. Given Bob’s input x in an execution of protocol πae,
and Bob’s output b ∈ {0, 1}, Simae

B runs the following instructions:

– generate permutation p1 as in step 1 of protocol πae

– generate current permuted state cps1 as in step 4 of protocol πae

– for h = 1, . . . , n,
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randomly and independently choose cpsh+1 ∈ {1, . . . , s}
set outmir

Bob,h = cpsh+1

obtain outmir
S,h by running Simmir

B on input cpsh and outmir
Bob,h

– set outirBob = b
– obtain outirS by running Simir

B on input cpsn+1 and outirBob

– output: (outmir
S,1 , . . . , outmir

S,n , outirS )

First of all we observe that values p1 and cps1 are generated by Simae
B exactly

as generated by Bob during protocol πae.
Then, by induction over h, we can prove that the values cpsh generated by

Simae
B are computationally indistinguishable from the values cpsh computed by

Bob during πae. The base case, when h = 1, follows by the fact that cps1 is gen-
erated by Simae

B exactly as done by Bob during protocol πae. For the inductive
case, first assume the claim is true for cpsh; and then observe that cpsh+1 is
randomly chosen from {1, . . . , s} in Simmir

B and computed as the output of pro-
tocol πmir on input cpsh from Bob during an execution of πae. Note that by the
induction hypothesis and the security property of πmir, the value cpsh+1 com-
puted by Bob is computationally indistinguishable from the output of a random
permutation on input cpsh, which is uniformly distributed in {1, . . . , s}.

Then, by the analogue property of Simmir
B , we obtain that Simmir

B generates
an output outmir

S,h computationally indistinguishable from Bob’s view during the
h-th execution of protocol πmir within protocol πae, for h = 1, . . . ,m. Similarly,
we obtain that Simir

B generates an output outirS computationally indistinguish-
able from Bob’s view during the execution of protocol πir within protocol πae.
Finally, the claim that the entire output of Simae

B is computationally indistin-
guishable from Bob’s view during an execution of πae follows by a standard
hybrid argument [9].

Efficiency Properties. By protocol inspection, we observe that protocol πae, when
run on input length parameters s, a, n, �, consists of running n times πmir on
input length parameters m, �, where m = s · a, and of running once πir on input
length parameters m = n. These parameter relationships allow to easily com-
pute the time complexity, round complexity and communication complexity of
πae from those of πir. One interesting consequence is that if cc(πir) = o(m) then
cc(πae)/n = o(s · a); that is, sIReval protocols with communication complex-
ity sublinear in the number of database blocks result in sAeval protocols with
communication complexity (per Bob’s input symbol) sublinear in the transition
matrix.

5 Extensions and Applications

We discuss some extensions and/or applications of our results in Sects. 3 and 4.
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5.1 Completeness of sMAeval Protocols

We show that any sMAeval protocol can be used to construct a secure (against
semi-honest adversaries) 2-party or multi-party protocol for any polynomial-size
boolean circuit.

The 2-Party Case. The notion of 1-out-of-2 oblivious transfer protocols was
introduced in the seminal paper [20] and has been since then used in a very
large number of cryptographic protocols. Notably, the foundational result from
[21] shows that 1-out-of-2 oblivious transfer protocols and symmetric encryption
schemes can be used to construct a 2-party secure protocol for any polynomial-
size circuit. We note that sIReval protocols are, by definition, secure 1-out-of-n
oblivious transfer protocols, for any desired n ≥ 2. By implementing a 1-out-of-2
oblivious transfer protocol with the sIReval protocol which we presented in the
proof of Theorem 1, we obtain the following result.

Corollary 1. Assuming the existence of an sMAeval protocol and of symmetric
encryption schemes, there exists, constructively, a secure (against efficient and
semi-honest adversaries) 2-party protocol for any polynomial-size circuit.

The Multi-party Case. Oblivious transfer has been used to construct secure multi-
party computation protocols for any polynomial-size circuit [7]. In fact, it has
been shown to be complete for secure multi-party computation, in the sense
that any polynomial-size circuit can be securely computed given a black-box
securely computing oblivious transfer [15]. By implementing a 1-out-of-2 oblivi-
ous transfer protocol with the sIReval protocol which we presented in the proof
of Theorem 1, we obtain the following result.

Corollary 2. Assuming the existence of an sMAeval protocol, there exists, con-
structively, a secure (against efficient and semi-honest adversaries) multi-party
protocol for any polynomial-size circuit.

5.2 Communication-Efficient sAeval Protocols for Large Automata

There is a large literature on 2-party private information retrieval protocols,
focusing on designing protocols that achieve communication complexity sublin-
ear in the number of database blocks. We remark that information retrieval
protocols satisfying security when only one of the 2 parties are corrupted (often
going under the acronym PIR protocols) or only satisfying a privacy require-
ment, even for both parties (often called symmetrically private PIR protocols),
may not satisfy the simulation-based security against any adversary that can
corrupt any one of the two parties, which we consider here. Protocols satisfy-
ing simulation-based security are, by definition, 1-out-of-n OT protocols with
simulation-based security, and have been proposed, in the semi-honest adver-
sary model, under standard cryptographic assumptions, in [5] and in [1,17]. By
implementing the sIReval protocol used in the proof of Theorem 2 using any one
of these results, we obtain the following result, which is of special interest in
instances of the AE problem having large transaction matrices.
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Corollary 3. Under standard cryptographic assumptions, there exists, con-
structively, an sAeval protocol with communication complexity (per symbol in
Bob’s input string) sublinear in the size of the transaction matrix in Alice’s input
automata.

5.3 Time-Efficient sAeval Protocols for Small Automata

There is a large literature on 2-party keyword search protocols, focusing on
designing protocols that achieve time efficient protocols (and communication
complexity linear in the number of database blocks). We remark that such key-
word search protocols can be used to obtain time-efficient linear-communication
information retrieval protocols. For instances, protocols in [3,6] achieve this goal
by only assuming the existence of oblivious pseudo-random functions protocols
and of symmetric encryption schemes. By implementing the sIReval protocol
used in the proof of Theorem2 using this result, we obtain the following result,
which is of special interest in instances of the AE problem having small trans-
action matrices.

Corollary 4. Under the existence of oblivious pseudo-random functions proto-
cols and of symmetric encryption schemes, there exists, constructively, an sAeval
protocol with time complexity equal to O(n log a) modular exponentiations and
O(nas) block cipher evaluations.

We remark that the time complexity of the obtained sAeval protocol com-
pares favorably with that obtained by a direct application of Yao’s general-
purpose protocol [21], which would require O(n log a) modular exponentiation
and O(nas log s) block cipher evaluations. On the other hand, previous efficient
protocols with similar but somewhat different efficiency properties were already
given in [12,19].
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Abstract. With the development of the Internet, web content is expo-
nentially increasing. Along with this, web-based attacks such as drive-by
download attacks and phishing have grown year on year. To prevent such
attacks, URL blacklists are widely used. However, URL blacklists are not
enough because they lack the ability to detect newly generated malicious
URLs. In this paper, we propose an automatic query template genera-
tion method to detect malicious websites. Our method focus on URL
query strings that contained similarities on malicious website groups.
Additionally, we evaluate our proposed method with large-scale dataset
and verify effectiveness. Consequently, our proposed method can grasp
the characteristics of malicious campaigns; it can detect 11,292 malicious
unique domains not detected by Google Safe Browsing. Moreover, our
method achieved high precision in the seven months of experiments.

Keywords: Web security · Web-based attacks · Phishing · Malicious
websites detection

1 Introduction

Currently, web contents become increasingly important in daily life. According
to a research by VeriSign, Inc. [14], the fourth quarter of 2018 closed with approx-
imately 348.7 million domain name registrations across all top-level domains, an
increase of approximately 6.3 million domain name registrations compared to the
third quarter of 2018. This also gives rise to a considerable number of malicious
domains. Web-based attacks such as drive-by download attacks and phishing
also increase along with the number of malicious domains [12]. Therefore, web
security has become a hot topic both in research and in the industry. Currently,
URL blacklists are widely used as a means to prevent web-based attacks. URL
blacklists collect already-known malicious URLs and manage the reputation of
various URLs. When a client accesses the domain in URL blacklists, the request
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Fig. 1. Components of a URL

is blocked. One of the most famous URL blacklists is Google Safe Browsing [5]
provided by Google. Google Safe Browsing examines billions of URLs and con-
tents on web pages and discovers thousands of new malicious software sites and
phishing sites daily. However, malicious websites are known to be very short-lived
in order to avoid detection by URL blacklists. Therefore, simple URL blacklist
methods using URLs and IP addresses cannot efficiently discover malicious web-
sites. On the other hand, a case has been reported that a URL query string
parameter containing a specific string appears on a compromised website used
in drive-by download attacks [7]. This report indicates that the possibility of
detecting a group of malicious URLs by focusing on query string parameters of
short-lived domains.

In this paper, we propose a new method to generate query templates that
generalize query string parameters, focusing on query string parameters of mali-
cious websites. Our method detects short-lived malicious URLs by using spe-
cific strings included in the query template. We evaluate our proposed detection
method using a real-world dataset, which is a large-scale web access log dataset.
Query templates generated by our proposed method detect malicious URLs that
are not detected by Google Safe Browsing. Furthermore, our proposed method
can grasp the characteristics of malicious campaigns; it can detect 11,292 mali-
cious unique domains not detected by Google Safe Browsing with only four query
templates. Therefore, we consider that our proposed method is more efficient
than a URL blacklist method.

2 Background

2.1 URL Components

Figure 1 shows an example of URL components. URL, which stands for Uniform
Resource Locator, is a global address for documents and other resources on the
World Wide Web. A URL has four main components: (I) A scheme: it identifies
the protocol to be used to access the resource on the Internet, (II) A hostname:
it identifies the host that holds the resource, (III) A path: it identifies the specific
resource in the host that the web client wants to access, (IV) A query string:
it follows the path component and provides a string of information that the
resource can use for some purpose (e.g., parameters for a search, data to be
processed). In this paper, we focus on a query string. A query string comprises
two elements: parameter name and parameter value. In the case of Fig. 1, the
parameter names and parameter values are “q” and “value”, respectively.
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2.2 Google Safe Browsing

Google Safe Browsing is a blacklist service provided by Google that was launched
in 2007 to protect users across the web from web-based attacks. Currently,
Google Chrome, Safari, and Firefox use the blacklists from the Google Safe
Browsing service for page checking against potential threats. In addition, a client
application can check URLs against Google’s constantly updated lists of unsafe
web resources by using the API.

Thao et al. [13] analyzed 14 popular blacklists such as malwaredomains,
phishtank, urlblacklist and Google Safe Browsing (version 3/version 4). They
found that Google is developing GSBv3 and GSBv4 independently and GSBv4
can detect younger domains compared to the other blacklists. Owing to this
research result, we used GSBv4 in this study to collect malicious websites.

3 Related Work

The research approach on malicious URL detection can be divided into three cat-
egories [2]: detection method based on blacklists, heuristic rules, and machine
learning. The detection method based on blacklist is a common and classical
technique [10]. When a user visits a website, blacklists refer to confirmed mali-
cious website domain names and IP addresses. If the domain name or IP address
is present in the blacklist, it is considered to be malicious and access is blocked.
However, attackers have registered domain names using low-cost methods such
as Domain Generation Algorithm (DGA) [11]. Consequently, it is difficult for
blacklists to detect new threats. The detection method based on heuristic rules
is an extension type of blacklist-based method. Such a method uses data min-
ing and machine learning algorithms to build a heuristic rule base to detect
malicious attempts [1]. Heuristic rules have the ability to detect threats in new
URLs. However, this method would fail to detect novel attack when the signa-
ture detection is often evaded by attackers by changing patterns and obfuscation
techniques. The detection method based on machine learning is currently the
most popular one. This method is used to classify malicious websites through
the features from URLs, host, web contents, and network activity. However,
the detection of malicious URLs using machine learning requires computational
resources for feature extraction and model training. Therefore, it is unsuitable
for real-time detection of large-scale data. To perform real-time detection on
large-scale data, generating a URL signature without host information or web
contents is effective. However, detection through URL signatures tends to have
high false positive rates as well as heuristic rule-based detection. Therefore, our
approach aims to extract only features effective for detection from URLs. The
closest research to the direction of our approach is ARROW developed by Zhang
et al. [15]. ARROW found the central server of malware distribution network by
inputting the HTTP trace log and generated a set of regular expression-based
signatures based on the URLs of each central server of malware distribution net-
work. However, this method has the disadvantage that it needs to input HTTP
trace log and can only generate signatures of the URL of the central server.
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Table 1. Sample of the dataset

Element Attribute Content

(i) Timestamp 2019-07-10 08:24:06

(ii) USER ID e9fb7ffa-12b7-1e4b-8224-3f2075002e67

(iii) URL http://www.example.com/dir/index.html?q=value

Fig. 2. Process of the proposed method

Mizuno et al. [8] generated signatures automatically, an approach different than
that of Zhang et al. [15] Mizuno et al. proposed a system called BotDetector
for detecting malicious traffic, which searches for malware-infected devices. The
method automatically generates a template by generalizing the information in
each HTTP header field. In addition, the method not only reduces the amount of
information to be kept but also extracts useful features. Therefore, we generate
URL signatures based on the Mziuno et al.’s generalization method.

4 Dataset

The dataset is provided by security software installed in several client PCs. A
security vendor that provided the software collected large-scale web access logs
on each client PC. The security software is a browser extension that can be
downloaded and used by users. As the browser extension is used by hundreds of
thousands of people, collecting large-scale web access logs is possible. The log is
created when a user accesses a website and comprises the following elements: (i)
A timestamp, (ii) a anonymized unique user ID, and (iii) an access destination
URL. Table 1 shows a sample of the dataset.

http://www.example.com/dir/index.html?q=value
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Fig. 3. Process of query template generation (δ = 0.1, β = 0.6)

5 Proposed Method

Figure 2 shows the outline process of our proposed method. Our technique,
named query template, provides efficient detection of short-lived malicious web-
sites, which is difficult to detect with a blacklist method. Our method is divided
into four phases: (I) Malicious log extraction phase, (II) template generation
phase, (III) filtering phase, and (IV) detection phase.

5.1 Malicious URL Extraction Phase

In our proposed method, a query template is generated based on a known mali-
cious URL. The Google Safe Browsing API is used to extract malicious URLs
from dataset access logs in this phase.

5.2 Template Generation Phase

In this phase, a generalization is performed on the query string of the URL
extracted in the previous phase to generate a query template. Figure 3 shows
the outline process of the query template generation.

Tokenization of Query String. Query strings collected in the malicious log
extraction phase are divided into tokens for each domain using delimiters. We
defined delimiters such as “+”, “.”, “,”, “:”, “;”, “=”, “?”, “#”, “&”, “/”, “ ”,
“-”, “|”. When the URL is percent-encoded, it is converted from an encoded
string to a decoded string. Specifically, the tokenization is performed as follows.
When “?q=value &a=type x&b=type y” is given as a query string, “q, value,
a, type, x, b, type, y” is generated via tokenization.
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Fig. 4. Example of grouping by token elements

Scoring. Using all the domains in malicious logs, we assign scores to the tokens
within the domain. If there is a token group having a different number of elements
in the same domain, the score is calculated after grouping by the number of
elements of the token group. This is done as shown in Fig. 4. We calculate the
conditional probability of the tokens for each domain. For a token t in a given
domain D, the score of the token S(t;D) is given by the following conditional
probability:

S(t;D) = P (t | pos(t, D), len(D)) =
n(t, pos(t, D), len(D))
n(pos(t, D), len(D))

, (1)

where pos(t, D) is the position of the token in a given domain, D, and len(D)
is the number of tokens in the domain, D, respectively. If D= {“q”, “value”,
“a”, “type”, “x”, “b”, “type”, “y”} and t= “value”, pos(t,D) = 2 and len(D)
= 8. n(X) denotes the number of occurrences of the variate X over the entire
domains.

DBSCAN. DBSCAN [3] is one of the clustering algorithms that does not
require a predefined number of clusters and its algorithm extracts clusters with
any shape. The threshold for the maximum distance and the minimum number
of elements in a cluster are denoted by ε and m, respectively. Given the two
elements p and q, the set Nε(p) is defined as

Nε(p) = {q ∈ D | d(p, q) ≤ ε}, (2)

where d(x, y) denotes the Euclidean distance between x and y. If p and q satisfy
the following condition, they are grouped into the same cluster.

p ∈ Nε(q) (3)

|Nε(q)| ≥ m (4)

In our proposed method, d(x, y) is defined as the absolute value of the dif-
ference of the score of the token group.
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Table 2. Aggregate by regular expression

Generated template Output template

q value * * * q.*value.*

q value * * q.*value.*

Output Query Templates. We introduce two thresholds δ (δ ≥ 0) and β
(0 < β < 1). The thresholds are empirically determined. δ is the maximum
distance between clusters and it affects the number of template outputs, and β
is a threshold for determining the degree of template generalization when the
template provides an output. The query template output process comprises the
following steps.

Step 1: Sort tokens
Each token is sorted in descending order of its score.

Step 2: Cluster generation
Using DBSCAN based algorithm, the tokens are clustered. More precisely,
when the score of the token differs from the mean score of a cluster by less
than δ, the token is clustered into the current cluster. Otherwise, the token is
assigned to a new cluster. This clustering process is repeated until all tokens
are included in either cluster.

Step 3: Output templates
We generate a template using tokens whose score rank is higher than β ×
len(D) in a cluster. The remaining tokens whose score rank is lower than the
threshold, are replaced with the wild character “∗”.

Step 4: Aggregate by regular expression
We aggregate the tokens that were replaced with “∗” in Step 3 using a regular
expression. Table 2 shows an example of aggregates using a regular expression.

5.3 Template Filtering Phase

In our proposed method, two-step filtering is performed on query templates in
order to perform efficient extraction of short-lived malicious websites.

Step 1: Query template string length
Malicious URLs tend to be longer than benign URLs [6]. Filtering by the
string length of the query template is performed to reduce the false-positives
of filtering in the Step 2. Note that the string length does not include “*”.

Step 2: Correspondence of domain and query template
We presume the group of short-lived malicious websites has the same charac-
teristics in query parameters even if the domains are different. Thus, the same
query template is generated from multiple domains. Therefore, we match the
malicious URLs with the query template and filter by the correspondence
between the domain and the query template. If the domain and query tem-
plate correspond one to one, the filtering process is performed because a query
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template can be replaced by the domain. Therefore, only the query template
in which the domain and query template correspond to many-to-one is used
in the next phase.

Fig. 5. Distribution of string length of query templates

5.4 Detection Phase

The detection phase only detects URLs that match the query template that has
passed the filtering phase from the dataset. Specifically, the detection as fol-
lows. When “id.*ad.*src.*” is given as a query template, for example URLs such
as “a.com/?id=xxx 1234&ad=src 1”, “z.com/ index.html?id=yyy&ad=src”,
among others, can be detected from the access log.

6 Experimental Evaluation

We conduct experiments to evaluate the effectiveness of our proposed method.
Concretely, we evaluate the total number of malicious URLs detected by the
query template. We also use the number of malicious URLs detected by Google
Safe Browsing as a baseline for comparison.

6.1 Experimental Procedure

We describe the experimental procedure for evaluating our proposed method.

Collection of Malicious URLs. We extracted malicious URLs from the
dataset using the Google Safe Browsing API. The period for extracting mali-
cious URLs is seven months from 2018/12/01 to 2019/06/30.
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Table 3. List of query template samples

Pattern Query template String length
1 visitid.*11e9.*type.*js.*browserWidth.*browserHeight.*iframeDetected.*false.* 61
2 sourceid.*match.*ron.*carrier.*wifi.*mob.*pf.*windows.* 39
3 type.*sc.*ts.*1434261996.*z.*c65586175e50fb9495c3b87g9zfc5zdo1q7g4tft8g.* 61
4 x.*context.*pxl.*MSM3550.*MSM3478.*RUNT.*utm.*pubid.*RSTRST.*x.*at.* 46
5 utm.*medium.*oxxGrJ1EO8rl.*lkgHhDHtdaJe.*6y3ml38Z.* 41
6 *true.*ad.*673873.*f.*a.*cri.*s.*u.*si.*di.*ci.*16.*h.*cc.*JP.*https.*1.*useAf.*loaded.*string.*ar.* 58
7 hfghf.*vLMG24eIARq.*EzBlGmfzGd.*QJXocHt8RZwDsgaUYGDY.*cid.* 49
8 version.*1.*t.*imp.*trs.*filter.*1.*nf.*14.*nf2.*16.*fwidth.*fheight.*fiframe.*fiframesandbox.*ftype.*js.*end.* 75
9 hash.*type.*iframe.*cookie.*true.*sandblaster.*true.*html5.*sreenWidth.* 54
10 initialCallTimestamp.*adRefreshCount.*refreshTimeStamp.* 50
11 partnersCode.*701ac9ce.*bu.*http.*donstick.*com.* 37
12 ip.*device.*brand.*Desktop.*device.*model.*Desktop.*browser.*name.*Internet.*Explorer.* 65
13 shu.*pst.*rmtc.*t.*uuid.*1.*pii.*in.*false.*key.*9ca601a9f47c735df76d5ca46fa26a66.*psid.* 65

Table 4. List of query templates used in the detection phase

Pattern Period Query template
I 2018/12 - 2019/06 ip.*device.*brand.*Desktop.*device.*model.*Desktop.*browser.*name.*Internet.*Explorer.*
II 2018/12 utm.*medium.*oxxGrJ1EO8rl.*lkgHhDHtdaJe.*6y3ml38Z.*
III 2019/01 - 2019/02 utm.*campaign.*oxxGrJ1EO8rl.*lkgHhDHtdaJe.*6y3ml38Z.*
IV 2019/02 - 2019/06 utm.*campaign.*bKMuT7EMVXU5Z6UvvSHONGlfu.*yV43iC8T8uYixAFxs1.*

Query Template Generation. We generate query templates for each month’s
malicious URLs. We empirically set query template generation parameters δ and
β to 0.1 and 0.6, respectively. In addition, the threshold value of the character
string length in the filtering phase is the median character string length of the
query template generated each month. Figure 5 shows the distribution of string
lengths of the query templates for each month.

Detection. We detect URLs that match our query template from the dataset
for the month following the period in which the malicious URLs were extracted
to generate the query template. For example, when a query template is gen-
erated using the malicious log extracted from 2018/12/01 to 2018/12/31, we
detect URLs matching our query template from the dataset from 2019/01/01 to
2019/01/31.

Evaluation. First, we manually label URLs that match query templates as
benign or malicious based on website availability and domain name composi-
tion. If the website is available, we additionally obtain website content and take
screenshots using Selenium [9]. This information is also used for labeling. Sec-
ond, we use Google Safe Browsing to detect malicious URLs from URLs that
match query templates and set a baseline for evaluation. Finally, we compare
and evaluate the number of malicious URLs detected by our query templates
and the number of malicious URLs detected by Google Safe Browsing.

6.2 Experimental Results

We describe the experimental results of our proposed method.
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Table 5. Detection results

Period Our method
detection (unique)

Malicious URLs Our method
precision (unique)

GSB (unique) Our method (unique)

2019/01 48452 (2169) 3977 (867) 25485 (1924) 0.5260 (0.8870)

2019/02 21594 (2049) 2383 (597) 18522 (1972) 0.8577 (0.9624)

2019/03 22561 (2469) 3766 (487) 22166 (2458) 0.9825 (0.9955)

2019/04 8154 (1950) 1613 (441) 7823 (1939) 0.9594 (0.9943)

2019/05 15972 (2279) 2059 (368) 15631 (2232) 0.9787 (0.9794)

2019/06 16082 (2072) 1476 (142) 15516 (2005) 0.9648 (0.9677)

2019/07 12872 (1945) 405 (98) 12483 (1894) 0.9698 (0.9738)

All Period 145687 (14657) 15679 (2988) 117626 (14280) 0.8074 (0.9743)

Table 6. Sample of detected domains

Detected by Pattern I Detected by Pattern II, III, IV

dm16i8sauoo45[.]cloudfront[.] game5419[.]cccgates41[.]

esugolb8[.]sightcomputer[.] best4948[.]tthsrv53[.]

3zyssao0[.]craftedcomputerservice[.] app9266[.]mmcgateway89[.]

7kpafrpz[.]productionpcservice[.] prize0106[.]wtflife74[.]

6v1bwjc8[.]nutritioncomputer[.] reward8277[.]hardway21[.]

x01fcj93[.]intactcomputer[.] competition1343[.]easysearch16[.]

Query Template Generation. Table 3 shows the query templates sam-
ples generated based on the malicious URLs extracted from 2018/12/01 to
2018/12/31 and filtered it with the rule in Step 1 of the template filtering phase.
We filter the query template in Table 3 with the rule in Step 2 of the template
filtering phase. As a result, only the patterns 5 and pattern 12 have a many-to-
one correspondence between the domain and the query template. Therefore, the
detection phase uses the query template of pattern 5 and pattern 12. Similarly,
query templates are generated for all periods and filtered. Table 4 shows query
templates used in the detection phase.

Detection. Table 5 shows the detection results of the detection phase. Table 6
shows the domain information detected by our query templates. Moreover, Fig. 6
shows an actual sample of a phishing website detected using the pattern IV query
template. This particular webpage tries to steal client credit card information.

Evaluation. Our method detected 14,280 unique malicious domains, and
Google Safe Browsing detected 2,988 unique malicious domains. Therefore, our
method has detected 11,292 unique malicious domains that are not detected by
Google Safe Browsing. Moreover, we confirmed that our proposed method has
reached high detection results in periods other than 2019/01 from the Table 5.
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Fig. 6. Example of phishing website (play5191[.]checkingyourbrowser51[.] )

The reason that the precision is low only in 2019/01 is that there are more
communication logs for a specific domain compared to other periods. Hence, the
precision calculated using unique domains is as high as that of other periods.

7 Discussion

In this section, we discuss the validity of query templates, causes of errors, query
template efficiency, query template trends and limitation on query template
generation.

7.1 Validity of Query Templates

Many websites detected by the pattern I query template are warned by
fake antivirus software. Therefore, we consider that the client information
contains the query string for a realistic warning. The “utm.*medium” and
“utm.*campaign” in the query templates of the pattern II, III and IV are the
“utm medium” and the “utm campaign” parameter of Google Analytics [4].
The “utm medium” parameter is used to identify the marketing media, and
the parameter values such as “cpc”, “banner”, “social” and “email” are usually
set. However, an unusual parameter value is used in the pattern II query tem-
plate. The “utm.*campaign” parameter is also used to identify the campaign,
and parameter values such as individual campaign name, slogan and promo code
are used. The query templates for patterns III and IV contained the parameter
value considering the campaign name. As a result, even if the parameter name is
common, we consider that it is possible to use it for detecting malicious websites
by focusing on the parameter value.

7.2 Causes of Errors

Errors in this experiment are divided into two categories: (I) The query template
happens to match the query string of a benign URL; (II) A benign URL query
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string contains a malicious URL to be detected. The error of (I) is confirmed
with the query template of pattern I, and the error of (II) is confirmed with the
query template of all patterns. The error of (II) included many communication
logs to the localhost through security software and communications from a secu-
rity vendor’s security diagnostic service. Therefore, reducing the error of (I) is
difficult, but we consider that the error of (II) can be reduced by registering a
specific domain as a white list and ignoring that domain.

7.3 Query Template Efficiency

In our proposed method, we detected 14,280 unique domains by four query
templates. From these result, we consider that detection using query templates
is superior in efficiency when compared with the URL blacklist method that
requires registration of 14,280 rules for similar detection.

7.4 Query Template Trends

Our proposed method can flexibly grasp changes in the trend of malicious cam-
paign, so we confirmed the change in a query string trend from the query tem-
plates II, III and IV in Table 4.

7.5 Limitation on Query Template Generation

During query template generation in our proposed method, the query parameters
are divided using delimiters to generate tokens. Therefore, if the token itself is
a feature, we can generate a valid query template. However, if part of the token
contains the feature, namely, if the delimiter cannot successfully tokenize the
feature, the token itself is generalized. Consequently, we consider that generating
a valid query template is difficult.

8 Conclusion

In this paper, we proposed a method of generating query templates to detect
short-lived URLs that are generally difficult to detect with a blacklist. We eval-
uated our approach with an experiment using large-scale web access logs. As
a result, our proposed method detected 11,292 malicious unique domains not
detected by Google Safe Browsing. In addition, our method achieved high preci-
sion in the seven months of experiments. However, we could evaluate true posi-
tives and false positives, but not false negatives and true negatives. The following
points can be given as the reasons: (I) We need to know all malicious URLs in
the dataset to evaluate false negatives. (II) The malicious URLs detected using
our proposed method in this experiment are only a part of all malicious URLs in
the dataset. Therefore, the evaluation of the false positive rate and false negative
rate of our proposed method is left for future work.
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Abstract. We propose a scheme to prevent the machine learning (ML)
attacks against physically unclonable functions (PUFs). A silicon PUF
is a security primitive in a semiconductor chip that generates a unique
identifier by exploiting device variations. However, some PUF implemen-
tations are vulnerable to ML attacks, in which an attacker tries to obtain
the mathematical clone of the target PUF to predict its responses. Our
scheme adds intentional noise to the responses to disturb ML by an
attacker so that the clone fails to be authenticated, while the original
PUF can still be correctly authenticated using an error correction code
(ECC). The effectiveness of this scheme is not very obvious because the
attacker can also use the ECC. We apply the countermeasure to n-XOR
arbiter PUFs to investigate the feasibility of the proposed scheme. We
explain the relationship between the prediction accuracy of the clone
and the number of intentional noise bits. Our scheme can successfully
distinguish a clone from the legitimate PUF in the case of 5-XOR PUF.

Keywords: Physical unclonable function · Machine learning attack ·
Authentication · Noise · Fuzzy extractor

1 Introduction

1.1 Background

Nowadays, a vast number of electronic devices including sensors, consumer elec-
tronics, and automobiles are connected to the network to form the so-called
the Internet of Things (IoT). In the IoT, the pervasively deployed devices col-
lect, transfer, and share various data, some of which are confidential or private.
Therefore, the security of the devices and data is very important in the IoT.
Furthermore, a large number of counterfeit integrated circuit (IC) chips are cir-
culated in the market [3]. Since IC chips are widely used in critical infrastructure
and in daily life, counterfeit IC chips can cause serious damage to the society.

A silicon physically unclonable function (PUF) [16,17] is one of the promising
approaches for IoT security to protect the devices and the data. A silicon PUF
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(hereinafter, PUF) is a circuit or a memory element that exploits the device
variations to generate a chip-specific random output. Usually, a PUF receives an
input (challenge) and generates a unique output (response) under the influence
of device variations. Since a PUF is unclonable and its responses are unique and
unpredictable, it can be used for entity authentication [21] and cryptographic
key generation [14,15]. As the PUF responses are noise-prone, usually an error
correction scheme called the fuzzy extractor [5] is used for key generation in
which even a single-bit error is not allowed.

However, unclonability of some PUF implementations can be compromised
by machine learning (ML) attacks [12,18]. By learning the model of a PUF from
a large number of challenge-response pairs (CRPs), an attacker can obtain the
mathematical clone of the PUF. Recently, deep learning (DL) attacks that use
deep neural network (DNN) models have been also proposed to attack arbiter
PUFs (APUFs) and its derivations [1,10,20,23].

1.2 Contribution

The purpose of this study is to develop a countermeasure to DL attacks against a
PUF. We propose a PUF-based authentication scheme that prevents DL attacks
by adding intentional noise to the responses.

Our contributions can be summarized as follows:

– Develop the PUF-based authentication scheme with a countermeasure to DL
attacks against arbiter-type PUFs by adding intentional noise.

– Evaluate the effectiveness of the proposed authentication scheme for n-XOR
arbiter PUFs using the open-source dataset [19].

– Explain the relationship between the prediction accuracy of the clone and the
number of intentional noise bits.

2 Related Work

There have been several studies on modeling attacks against APUFs [6] and
their variants, e.g., the n-XOR PUF [21], FF-PUF [11], and DAPUF [13]. For
details of these PUFs, see Appendix A.1.

Lim [12] showed that the internal delay of an APUF can be estimated with
a linear delay model and successfully attacked the APUF for the first time.
Rühmair and Sehnke [18] successfully attacked the APUFs, n-XOR PUFs, and
FF-PUFs. For details of the modeling attack [18], see Appendix A.2.

Delvaux and Verbauwhede [4] suggest that reliability of a response is more
useful in some cases than the response itself. An unstable response of an APUF
indicates that the delay difference of the two selector lines is quite small; in other
words, the reliability leaks some amount of information about the internal delay.
They reported that the reliability-based attack against an APUF was successful.
In the reliability-based attack, the key technique used is the linear equation;
thus, it is not an ML attack.
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Becker [2] extended the reliability-based attack and applied an evolutional
algorithm called the covariance matrix adaption evolution strategy (CMAES).
The CMAES decreases the complexity of the attack against n-XOR PUFs from
exponential to linear in n. The noise in [2] is the environmental noise, unlike our
random noise. Thus, we do not focus on reliability-based attacks in this study.

Yashiro and Machida [23] pioneered the deep learning (DL) attack against
a PUF in 2016. They attacked APUFs and their variants with the DL attack
and reported that all except the DAPUFs were broken. However, Khalafalla
and Gebotys successfully attacked DAPUFs using the DL attack with a larger
neural network [10]. In the same year, Awano and Iizuka [1] also succeeded in
attacking DAPUFs with DL using only raw CRPs for DL without transforming
the challenge based on the knowledge of the internal structure of the DAPUF.
Santikellur and Bhattacharyay [20] mounted a DL attack against n-XOR PUF
using a neural network as small as possible.

The learning parity with noise (LPN)-based PUF authentication has also
been previously proposed [7,9]. The responses in this scheme are generated by
adding intentional noise to the ordinal PUFs. Previous studies adopted the fuzzy
extractor; thus, the systems are relatively large. In this study, we adopt the
reverse fuzzy extractor [22] to realize a lightweight PUF token. Yuejiang [24] has
also reported that adding noise can be a countermeasure to the attacks.

3 Proposed PUF-Based Authentication Scheme

3.1 Supposed PUF-Based Authentication System

The purpose of our scheme is to prevent ML attacks in PUF-based authentication
systems. In ML attacks against a PUF, an attacker is supposed to be able to
collect a large number of CRPs during the authentication procedure. The key
idea of the countermeasure is that, during the verification phase, we intentionally
add noise to the PUF responses to disturb the machine learning by an attacker.
The goal is to sufficiently decrease the prediction accuracy of the clone, while
the tempered responses are still authentic for legitimate players. Note that the
attacker can also use the fuzzy extractor and thus the guessed responses by
the attacker should be erroneous beyond the error correction capability of the
applied error correcting code (ECC).

In our countermeasure, an ECC decoder with a high error correcting capa-
bility is essential. Therefore, we adopt a reverse fuzzy extractor [22] for error
correction in which the resource-consuming ECC decoder is implemented in the
verifier side; the encoder for generating helper data is implemented in the PUF
token. For details of the fuzzy extractor and the reverse fuzzy extractor, see
AppendixA.3.

3.2 Details of the Authentication Procedure with Intentional Noise

In this section, we introduce the PUF-based cryptographic authentication with
the countermeasure against ML attacks. The block diagram of the PUF-based
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Fig. 1. Verification phase of the supposed PUF-based authentication scheme.

authentication scheme is illustrated in Fig. 1. Here, the raw response from a PUF
and the intentional noise are represented by r and e, respectively. KeyGen is
the key generation module which can be a universal hash function. Hash is a
keyed-hashing function. The enrollment phase is omitted in Fig. 1.

In the enrollment phase, the verifier gives x-bit challenge (c) to the prover
(e.g., a PUF token) and collects the corresponding response r from the PUF.
The verifier registers c and r to the database.

In the verification phase, the verifier pulls the set of the c and r from the
database and sends c to the prover. The prover gives c to the PUF and obtains
the new raw response (r′), and then intentionally adds the noise bit e to r′ at
random. The prover generates the helper data h from the noisy response r′ + e,
and sends h to the verifier. Then, the verifier tries to generate r′ + e from r with
the help of h. Note that, when the Hamming distance between r and r′ + e is
less than or equal to the error correction capability, the verifier can reproduce
r′ + e. In this case, the prover and verifier can generate the same key K from
the shared secret r′ + e. After the key K is shared, the verifier sends a random
number x to the prover. The prover generates the hash tag ŷ from x with the
key K, and returns ŷ to the verifier. The verifier generates hash tag y from x
with his/her own K to generate y, and check if y == ŷ.

3.3 Attack Scenario

In this study, we assume that an attacker is able to collect as many CRPs (c
and r′ + e) as possible. For example, an attacker can collect CRPs from a PUF
product in the supply chain. The attacker picks up a PUF product in the supply
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chain, and collects CRPs to build a model of the PUF. Then, the product is
distributed to a user and deployed in the field.

The collected data are divided into the training and testing datasets. The
attacker trains the neural network model (=clone) using the training dataset
and evaluates the prediction accuracy using the testing datasets. According to
the evaluation results, the attacker picks up the model that gives the highest
prediction accuracy and uses it as the clone.

The attacker replaces the legitimate PUF token with the clone, predicts the
response r̃, and generates the key K̃. The attacker also returns the helper data
h̃ to the verifier. If the Hamming distance between r̃ and the raw response r is
less than the error correction capability, the attacker can obtain the key K̃ = K
and be successfully authenticated.

The optimal clone for the attacker is the one that gives r̃ = r. In that sense,
the prediction accuracy of r̃ should be ideally calculated based on r. However,
since the attacker cannot know r in practice, the best strategy possible for the
attacker is to find the clone that gives the highest prediction accuracy calculated
based on r′ + e.

4 Evaluation and Results

4.1 Evaluation Setup

We evaluate the feasibility of the proposed authentication scheme with the coun-
termeasure using the open-source dataset [19]. To make a fair comparison, the
sizes of training data in our experiments are the same as ones in [20], namely,
32,000, 37,600, 255,000, and 655,000 for 2-XOR, 3-XOR, 4-XOR, and 5-XOR
PUFs, respectively. The training data are tampered with intentional noise e and
then used to train PUF clones.

The ECC used in the reverse fuzzy extractor is the 255-bit Bose-Chaudhuri-
Hocquenghem (BCH) code, which can correct up to 63 bits error. As a conse-
quence, the added intentional noise e ranges from 0 through 63 bits per codeword.
The positions of the inserted noise e are randomly chosen.

While the training data contain intentional noise, the testing data are raw
responses newly collected from the dataset because the prediction accuracy
should be evaluated based on r, as mentioned above. For this purpose, another
10,000 CRPs are collected from the original dataset for each evaluation.

The DL engine is built using the Keras library. The DL attack is run on the
Intel Core-i9 9900K with 32 GB memory and Nvidia GeForce RTX 2080.

4.2 Evaluation of the Effectiveness of the Intentional Noise

First, we examine the effectiveness of intentional noise in disturbing a DL attack.
The hyperparameters are taken from the previous work [20]; the activation func-
tion used for the hidden layer is the Rectified Linear Unit (ReLU); for the last
layer, the sigmoid function; the optimizer is Adam. The number of hidden layers
and nodes per layer are provided in Table 1.
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Table 1. Hyperparameters of the deep learning in Santikellur et al. [20] and our work.

h1 h2 h3 h4 Dropout

2-XOR [20] 5 5 – – –

(32,000 CRP) Our work 500 200 100 – 0.1

3-XOR [20] 10 10 – – –

(37,600 CRP) Our work 1000 500 200 100 0.1

4-XOR [20] 53 53 53 – –

(255,000 CRP) Our work 1000 500 200 100 0.1

5-XOR [20] 100 100 100 100 –

(655,000 CRP) Our work 5000 500 200 100 0.1

Note that the PUF responses r and r′ usually include environmental noise
in practice. However, as the environmental noise is not considered in the
datasets [19], all error bits in the training data here are caused by intentional
noise. The influence of environmental noise is discussed later in Sect. 4.4.

Figure 2 shows the prediction accuracy in training and testing of the clone of
the 3-XOR PUF, with the hyperparameters defined in [20]. As space is limited,
only the results of one clone out of five are displayed in the figure, but the
other clones also show similar results. The blue lines represent the accuracy in
training (hereinafter, training accuracy); the orange lines represent the prediction
accuracy. The number of noise bits inserted to the 255-bit codeword is 15, 31,
47, and 63 bits, respectively. The horizontal and vertical axes are the number of
epochs and the training/prediction accuracies of the clone, respectively.

The best strategy for an attacker is to use the clone that gives the high-
est prediction accuracy in a testing phase (orange line). As Fig. 2 depicts, the
prediction accuracy reduces as the number of noise bits increases. Therefore,
adding intentional noise is quite effective in preventing a DL attack with the
hyperparameters given in [20].

Figure 3 illustrates the relationship between the number of intentional noise
bits (horizontal axis) and the mean prediction accuracy of clones (the line graphs
that refer to the right axis). The bar graphs are the number of error bits in the
predicted responses by the clone and refer to the left axis. The shaded area shows
the number of correctable error bits of 255-bit BCH code with error correction
capability t = 7, 15, 31, 42, 47, 55, and 63, respectively. The case of 0-bit noise
is also provided for reference. If the bar is in the shaded area, the response of
the clone cannot be distinguished from one of a legitimate PUF, resulting in a
successful attack by the clone. Conversely, if the bar exceeds the shaded area,
the clone’s responses cannot pass authentication, while ones from a legitimate
PUF are correctly authenticated.

As Fig. 3 shows, the prediction accuracies of the 2-XOR PUF clone are more
than 95%, and consequently the numbers of error bits in the predicted responses
are quite small, irrespective of intentional noise bits. This means that, even
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Fig. 2. Prediction accuracy of the cloned 3-XOR PUF with the hyperparameters in
[20]. The intentional noise added is 15, 31, 47, and 63 bits, respectively. (Color figure
online)

Fig. 3. Relationship between the prediction accuracy, the prediction error bits, and
the intentional noise bits, with the hyperparameters in [20].
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trained with 63-bit (=25% of a codeword) intentional noise, the 2-XOR PUF
clone can predict a 255-bit codeword with an error rate of less than 5%. The
total error bits in this case is 13 on average, which is within the error correction
capability. Therefore, a 2-XOR PUF cannot be protected with intentional noise
against a DL attack.

In the cases of 3-XOR and 4-XOR PUF clones, the prediction accuracies are
more than 95% for 7-bit intentional noise, indicating a successful attack by the
clones. However, the prediction accuracies significantly reduce with intentional
noise of 15 bits and more.

For example, the prediction accuracy of the 3-XOR PUF clone for 15-bit
intentional noise is 84.3%, resulting in 40 bits error in a predicted codeword on
average. Let pe be the bit error rate (BER) of a PUF response and Xe be the
number of error bits in a predicted codeword. Here, pe = 1− 0.843 = 0.157. The
probability that the number of error bits in a predicted codeword is less than 15
is

Pr[Xe ≤ 15; pe = 0.157] =
15∑

i=0

(
255
i

)
· pie · (1 − pe)255−i = 1.28e−6. (1)

Therefore, the probability that an attacker obtains a codeword with less than
a 15-bit error is negligible. Consequently, adding 15-bit intentional noise and
using (255, 139, t = 15) BCH code, a 3-XOR PUF can be protected against a
DL attack. Likewise, a 4-XOR PUF can be protected by adding 15-bit noise and
using (255, 139) BCH code, though a detailed explanation is omitted.

In the case of 5-XOR PUF clone, the prediction accuracies are approximately
80 and 60% for 0-bit and 7-bit intentional noise, respectively. Examined in detail,
for 0-bit intentional noise, the prediction accuracies of three 5-XOR PUFs out
of five are 97%, and the remaining two are around 50%. For 7-bit intentional
noise, the prediction accuracy of one 5-XOR PUF out of five is 97%, and the
remaining four are around 50%. When the intentional noise is 15 bits and more,
all five 5-XOR-PUF clones show prediction accuracies around 50%. These results
indicate that adding a 15-bit or more intentional noise is effective in protecting
a 5-XOR-PUF against a DL attack.

4.3 Evaluation with the Improved Hyperparameters

In the previous subsection, it is found from the results that adding intentional
noise is quite effective in preventing a DL attack against 3-XOR, 4-XOR, and
5-XOR PUFs. The hyperparameters of the DL are taken from [20]; however,
the prediction accuracy of the clone can be possibly improved by adjusting the
hyperparameters. In this section, we evaluate the prediction accuracies of XOR-
PUF clones with optimized hyperparameters. Here, the activation function used
for the first hidden layers is Hyperbolic Tangent (tanh) and for the other hidden
layers, the sigmoid function. The optimizer used is Adam. The dropout rate is
set to 0.1. The hyperparameters in our DL attack are also provided in Table 1.
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Fig. 4. Prediction accuracy of the cloned 3-XOR PUF with our improved hyperparam-
eters. (Color figure online)

Fig. 5. Relationship between the prediction accuracy and the number of intentional
noise bits with our improved hyperparameters.

Figure 4 shows the prediction accuracy in training and testing of the clone
of the 3-XOR PUF, with our improved hyperparameters. Similarly to Fig. 2, the
best strategy for an attacker is to use the clone that gives the highest prediction
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accuracy in a testing phase (orange line). As Fig. 4 depicts, the prediction accu-
racy reduces as the number of noise bit increases. Therefore, adding intentional
noise is quite effective in preventing a DL attack with our improved hyperpa-
rameters.

As the blue lines in Figs. 2 and 4 show, the training accuracies are significantly
different between [20] and our work. Since the dataset is the same, the difference
is caused by the hyperparameters. The number of hidden layers in [20] is only
2 and the number of the nodes per layer is only 10, while our model has 3
hidden layers and more than 100 nodes per layer. This result indicates that the
small neural network model is insufficient to learn the features of XOR PUFs,
especially under noisy inputs.

As the orange lines in Figs. 2 and 4 illustrate, the prediction accuracies are
also considerably different between [20] and our work. Looking at the peak of
the orange lines, the prediction accuracy in our work is almost the same as [20]
for the intentional noise of 15 bits. In contrast, the prediction accuracies in our
work with 31-, 47- and 63-bits noise achieve higher prediction accuracy than [20].
These results indicate that a neural network model should be large enough to
build an accurate clone from noisy inputs.

Figure 5 illustrates the relationship between the number of intentional noise
bits and the mean prediction accuracy of clones with the optimized hyperparam-
eters. The bar graphs are the number of error bits in the predicted responses by
the clone. The shaded area shows the number of correctable error bits.

In Fig. 5, the prediction accuracies of 2-XOR, 3-XOR, and 4-XOR PUF clones
are maintained quite high for error bits 0 through 63, indicating a successful
attack. Since the dataset used in [20] and our work are the same, the difference
is caused by the hyperparameters. These results show that, by using a sufficiently
large neural network, a DL can model 2-, 3-, and 4-XOR PUFs quite effectively
even with noisy training data.

Note that the prediction accuracy of the 3-XOR PUF clone is lower than
other PUFs, which would be because the size of the training data (37,600) is
insufficient. In the experiment, the data size is set to the same one as [20] to
make a fair comparison. When the training is performed with 100,000 data, the
prediction accuracy of the 3-XOR PUF clone is improved (cf. AppendixB).

In the case of 5-XOR PUF clone, the prediction accuracies are maintained
high for error bits 0 through 42. However, the prediction accuracies significantly
decrease to 78.0%, 63.1%, and 50.4% for the error bits 47, 55, and 63, respectively.
When the intentional noise is 47 bits, the BER of the clone’s response is pe =
1 − 0.780 = 0.220, and the probability Pr[Xe ≤ 47] is

Pr[Xe ≤ 47; pe = 0.220] =
47∑

i=0

(
255
i

)
· pie · (1 − pe)255−i = 0.0949. (2)

The result shows that the 5-XOR PUF clone trained with 47-bit noise can be
authenticated with a 9.49% probability. In this case, by using multi-query ver-
ification, the probability of the clone being authenticated can be drastically
reduced.
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When the 5-XOR PUF clone is trained with 55- and 63-bit noise, BERs are
0.369 and 0.496, respectively, and

Pr[Xe ≤ 55; pe = 0.396] = 9.63e−8, (3)
Pr[Xe ≤ 63; pe = 0.496] = 3.41e−16. (4)

Consequently, the probabilities that an attacker obtains a codeword with less
than 55- and 63-bit error are negligible.

From the above consideration, adding intentional noise is highly effective in
preventing a DL attack against 5-XOR PUF even if an attacker optimizes the
hyperparameters of the neural network.

4.4 Discussion

In Sects. 4.2 and 4.3, it is demonstrated that the countermeasure with intentional
noise is effective in preventing a DL attack against some kinds of XOR PUFs.
However, the environmental noise is not considered in the previous subsections.
Here, we discuss the effectiveness of the countermeasure under environmental
noise.

We consider the 5-XOR PUF clone trained with the optimized hyperparam-
eters (Fig. 5). Let penv be the BER of a response caused by environmental noise.
Considering the performance of the APUF in [8] (intra-Hamming distance 0.832
bit for 128-bit APUF, etc.), the environmental noise-derived BER is set to 1%.
In this case, the number of error bits in a predicted codeword is 2.55 bits on
average and less than 8 bits in most cases, which is explained as follows:

Pr[Xe ≤ 8; penv = 0.01] =
8∑

i=0

(
255
i

)
· pienv · (1 − penv)255−i = 0.999. (5)

Suppose we use (255, 21, t = 55) BCH code. For a legitimate PUF to be authen-
ticated with a 99.9% probability, the added intentional noise should not exceed
47 (= 55 − 8) bits. Because the mean environmental noise is 2.55 bits, the total
error bits in a codeword is around 49 bits on average. In this case, the counter-
measure could be used for multi-query verification, similarly to the case of 47-bit
noise discussed in Sect. 4.3.

When we use (255, 9, t = 63) BCH code, we can add up to 55 (= 63− 8)
bits intentional noise. As already discussed in Sect. 4.3, 55-bit noise is sufficient
for disturbing a DL attack against 5-XOR PUF. Therefore, using (255, 9) BCH
code, the countermeasure with 55-bit intentional noise is quite effective even
under environmental noise.

5 Conclusion and Future Work

We developed a PUF-based authentication scheme with the countermeasure for a
DL attack. The countermeasure intentionally adds noise to the PUF responses to
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disturb a DL attack. The feasibility of the authentication scheme was evaluated
in the practical attack scenario. The countermeasure was applied to the n-XOR
PUFs (1 ≤ n ≤ 5) from the open-source dataset to investigate its effectiveness
in the developed scheme. The experimental results show that the authentication
scheme with the countermeasure is quite feasible. The scheme prevents the PUFs
from being cloned by DL attacks while enabling the verifier to authenticate the
legitimate PUF.

Although the graphs for all n-XOR PUFs could not be provided in this
paper, the results that show the effectiveness of the noise insertion varies from
PUF to PUF. In our experiments, the noise is randomly added to the responses.
However, the effectiveness of the countermeasure may be improved by adding
noise to specific bits based on some rationale. Investigating the rationale is the
focus of the future work. In this study, several XOR PUFs were also investigated
as a case study. Evaluating a larger number of XOR PUFs and other types of
PUFs, to find optimal hyperparameter for each PUFs are also future work topics.

Acknowledgment. This paper is based on the results obtained from the project com-
missioned by the New Energy and Industrial Technology Development Organization
(NEDO).

Appendix A: Preliminaries

A.1 Arbiter PUF and Its Derivations

An arbiter PUF (APUF) is a typical PUF that exploits the delay variation of
the signal paths. Figure 6 shows the structure of the APUF and its derivation,
a 4-XOR arbiter PUF.

An APUF consists of a pair of selector lines, and each line has x selectors and
an arbiter. The arbiter determines the response according to which the signal
reaches the arbiter first; e.g., the response is 1 if the upper signal is faster and
0 otherwise. An APUF receives x-bit challenge that determines the path of the
selector lines. In Fig. 6, the signals in the i-th selectors go straight if the i-th
challenge bit is 0 and go across if the challenge bit is 1. The delay of the two
selectors is greatly affected by device variations and thus the CRPs of APUFs
are different from each other.

An n-XOR arbiter PUF [21] (hereinafter, n-XOR PUF) consists of n APUFs,
and the outputs from each APUF are XORed to obtain a 1-bit response. The
resistance of n-XOR PUFs against ML attacks is improved exponentially in n.

A feed-forward arbiter PUF [11] (FF-PUF) has an APUF circuit and several
feed-forward arbiters. The feed-forward arbiter is inserted to certain positions in
the selector lines of the APUF circuit and generates the intermediate response
that becomes the challenge to the selector at a later stage. The challenge gener-
ated by the feed-forward arbiter cannot be obtained by an attacker, which makes
it difficult to attack the FF-PUF with ML.
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A double arbiter PUF (DAPUF) is composed of several APUF circuits and
XOR gates. In 2-XOR PUF, the responses of the two APUFs, say APUF1 and
APUF2, are XORed to generate a 1-bit response. In DAPUF, the upper and
lower selector lines in APUF1 and APUF2 are XORed. This structure is useful
for improving the uniqueness of the DAPUF implemented on an FPGA [13].

Fig. 6. Structure of arbiter PUF and 4-XOR arbiter PUF.

A.2 Machine Learning Attack Against Arbiter PUF

The response of an APUF is determined by the delay difference of the two selector
chains, which is mathematically modeled by the cumulative delay differences of
each stage. An ML attack aims to reveal the delay parameters of each stage from
CRPs.

The model of an APUF is explained as follows [18]. Let cl be the l-th bit of
the x-bit challenge. The delay difference of the l-th stage is represented by δ0l
for cl = 0 and δ1l for cl = 1.

The challenge vector is transformed into the parity vector
−→
Φ, which is

expressed as −→
Φ(

−→
C ) = (Φ1(C), . . . ,Φx(

−→
C ), 1)T , (6)

where Φl(
−→
C ) =

∏x
i=l(1 − 2ci) for l = 1, . . . , x.

The delay difference of each stage, −→w , is defined as

−→w = (w1, w2, . . . , wx, wx+1)T , (7)

where w1 = (δ01 − δ11)/2 and wi = (δ0i−1 + δ1i−1 + δ0i − δ1i )/2 for i = 2, . . . , x,
and wx+1 = (δ0x − δ1x)/2. The total delay difference Δ between the two selector
chains is expressed as

Δ = −→w T−→
Φ . (8)
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Consequently, response r of an APUF is given by

r = sgn(Δ) = sgn(−→w T−→
Φ), (9)

where sgn is the sign function.
To summarize, an ML attack aims to reproduce the delay parameter −→w from

the collected challenges
−→
Φ and responses. Once the delay parameter is obtained,

an attacker can easily predict the response to a new challenge by calculating
sgn(Δ). In that sense, the obtained −→w is the very mathematical clone of the
PUF.

A.3 Fuzzy Extractor and Reverse Fuzzy Extractor

Since a PUF exploits subtle variation of devices, the responses are error-prone
due to the environmental noise. Therefore, in a PUF-based authentication with
key sharing, an error correction scheme called the fuzzy extractor is often
implemented.

Fig. 7. Key generation flow of a conventional fuzzy extractor.

A PUF-based key sharing flow is usually separated into two phases: enroll-
ment and verification phase. The enrollment phase is supposed to be performed
in a trusted area by a verifier, e.g., a PUF manufacturer, vendor, and a ser-
vice provider. The verifier collects CRPs of the PUF and register the CRPs
to a database. The verification phase is performed after the shipment of the
PUF product. The verifier checks if the target PUF is authentic by collating the
returned PUF response with the database.

The key sharing flow in the conventional fuzzy extractor is shown in Fig. 7.
In the enrollment phase, the verifier gives challenge c to a legitimate PUF and
collects the corresponding response r. The verifier calculates the helper data h
for error correction. The verifier registers the c and h to the database. Then, in
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Fig. 8. Key generation flow of a reverse fuzzy extractor.

the verification phase, the verifier pulls the set of c, r, and h from the database,
and sends c and h to a prover (e.g., a PUF token). The prover gives c to the PUF
and obtains response r′, which may include an error. The prover reproduces r
from r′ with the help of h. Finally, the verifier and prover can generate the same
key K from r.

The key sharing flow in the reverse fuzzy extractor is shown in Fig. 8. In the
enrollment phase, the verifier gives challenge c to the legitimate PUF and collects
the corresponding response r. The verifier registers c and r to the database.
Then, in the verification phase, the verifier pulls the set of c and r and sends c
to a prover. The prover gives c to the PUF and obtains response r′, which may
include an error. The prover computes the helper data h from r′ and sends h to
the verifier. Finally, the verifier reproduces r′ from r with the help of h, and the
verifier and prover can generate the same key K from r′.

Appendix B: DL Attack Results of 3-XOR PUFs

In Fig. 5, the prediction accuracies of the 3-XOR PUF clone are lower than
those of other PUF clones. This is not intuitive because 4-XOR PUF has more
complicated structure than 3-XOR PUF does. This could be because the size of
the training data for the 3-XOR PUF (37,600) was too small. Therefore, we train
the 3-XOR PUF clone with 100,000 CRPs and evaluate its prediction accuracy.

Figure 9 shows the results of DL of the 3-XOR PUF using 100,000 training
data. The prediction accuracies are increased to 97%, which is almost the same as
the 2-XOR and 4-XOR PUF clones. The results indicate that the size of training
data was not sufficient in Fig. 5, while the hyperparameters were suitable.
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Fig. 9. DL attack results of 3-XOR PUFs with different size of training dataset.
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Abstract. In this paper, we describe an efficient implementation in Sage
of the Tate pairing over ordinary hyperelliptic curves of type y2 = x5 +
a x. First, we describe a method of construction of these curves according
to Kawazoe and Takahashi [8]. Then, we describe an efficient formula
for computing pairings on such curves over prime fields, and develop
algorithms to compute Tate pairing. We provide a faster optimisation of
the final exponentiation in particular for the embedding degree k = 28.

Keywords: Hyperelliptic curve · Tate pairing · Finite field ·
Embedding degree · Final exponentiation

1 Introduction

In 1989, three years after the introduction of elliptic curves cryptography, Koblitz
suggest to use hyper-elliptic curves as a generalization to higher genus curves [8].
He extended the idea of abelian points group on elliptic curves over finite field
to the Jacobian of a hyperelliptic curves, since the Jacobian is a finite abelian
group on which the arithmetic operations are applied.

The algebraic curves-based cryptography has divided the cryptographers
community [11] into two teams. The first one which argues that the problems of
factorization and discrete logarithm problem (DLP) over finite field have already
been intensively studied; and that it would require more time before the com-
munity can really apprehend the nature of elliptic curves. The other team was
ambitious, started working in it and proposed their first protocols.

The first protocols proposed are based on a mathematical tool called pair-
ing, the oldest of them being the Weil pairing. This mathematical protocol has
received a great attention by the researchers and is now among the majors topics
in cryptography. In order to realize protocols based on pairings, it is essential
to have Pairing-friendly-curves which have parameters such as p the large prime
fields Fp and the embedding degree k. The embedding degree plays an important
role in ensuring a certain desired level security. In this context, the security of
the pairing-based cryptosystems depends on finding curves whose Jacobian order
c© Springer Nature Switzerland AG 2020
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over the finite fields Fpk , is divisible by a larger prime number � (a condition
necessary for resisting attacks such as Pohling-Hellman attacks).

In this paper, we consider Kawazoe-Takahashi [8] genus two ordinary pairing-
friendly curves of type y2 = x5 + a x which are generated over a finite field Fpk

using a method introduced by Kachisa [7]. These curves are characterized by
simple and fast complex multiplications. It is also possible to have curves with a
known odd prime factor � of the Jacobian order with different embedding degrees
and offer a small ρ−value = 2 log(p)/log(�) between 2 and 3.

The paper is organized as follows. First, we recall some backgrounds on pair-
ings over hyperelliptic curves, Jacobian group structure, and representation of
divisors classes. We describe a method to construct ordinary pairing-friendly of
Kawazoe and Takahashi curves with simple method proposed by Kachisa [7] to
obtain curves with small ρ−value. Then, we recall the Tate-Lichtenbaum pairing
definition and present implementation techniques for pairings on hyperelliptic
curves. We provide a new approach to the final exponentiation when the embed-
ding degree is k = 28. The critical computational task of evaluating a function
at a divisor is also provided.

Finally, we give some implementation results in Sage using Intel Core i5-
7300HQ CPU @ 2.50 GHz processor on several security levels. We conclude that
for most applications there exits an efficient algorithm for computing pairings
on hyperelliptic curves that is better that on ordinary elliptic curves from the
point of view of efficiency and security.

2 Preliminaries

In this section, we briefly recall the definition of the hyperelliptic curves, pairings
and the definition of the Tate-Lichtenbaum pairing.

2.1 Hyperelliptic Curves

A genus g hyperelliptic curves over a prime finite field Fp are non-singular curves
of a general form:

H : y2 + h(x) y = f(x) (1)

with h, f ∈ Fp[x], deg(f) = 2 g + 1, deg(h) ≤ g and f(x) is monic. For any
algebraic extension K of Fp, there is a special point at infinity, which is denoted
by P∞, and we can consider the set of K-rational points on H:

H(K) := {(x, y) ∈ K × K | y2 + h(x) y − f(x) = 0} ∪ {∞}. (2)

2.2 Pairings

The concept of a pairing was introduced in cryptography for the fitst time by
Menezes et al. [11] to attack instances of the Discrete Logarithm Problem on
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elliptic curves and hyperelliptic curves. In 2000, pairing was used as bilinear
application by Joux [6] to build cryptographic protocols.

Let G1 and G2 two additive abelian groups of prime order �, G3 a multi-
plicative abelian group of order also �. A bilinear pairing on (G1, G2, G3) is a
map:

e : (G1,+) × (G2,+) −→ (G3,×)

that satisfies the following requirements:

1. Bilinearity : ∀D1,D
′
1 ∈ G1,∀D2,D

′
2 ∈ G2,

i. e(D1 + D
′
1,D2) = e(D1,D2) e(D

′
1,D2),

ii. e(D1,D2 + D
′
2) = e(D1,D2) e(D1,D

′
2),

iii. e(a D1,D2) = e(D1, a D2) = e(D1,D2)a, a ∈ N
∗.

2. Non-degeneracy:
i. ∀D1 ∈ G1 − {0}, ∃D2 ∈ G2 : e(D1,D2) 	= 1,
ii. ∀D2 ∈ G2 − {0}, ∃D1 ∈ G1 : e(D1,D2) 	= 1.

3. Easily and efficiently calculable.

We recall here the definition of the Tate-Lichtenbaum pairing as it is stated
in the literature, which is an explicit version described by Lichtenbaum.

Let JacH(Fpk) be the Jacobian group of the hyperelliptic curve H over Fpk ,
� be a prime with � | �JacH(Fpk) and let k be the smallest integer such that
� | (pk − 1), then k is called the embedding degree (dependent on �).

Definition 1. The Tate-Lichtenbaum pairing is a bilinear and non-degeneracy
map defined by:

T� : JacH(Fpk)[�] × JacH(Fpk)/� JacH(Fpk) −→ F
×
pk/(F×

pk)�

(D1,D2) 
−→ T�(D1,D2) = f�,D1(D2)(p
k−1)/�.

f�,D1 : the function given by the divisor � D1 − � (∞) = div(f).

3 Pairing-Friendly Curves of Type y2 = x5 + ax

3.1 Curve Choice

We can give here explicit constructions of pairing-friendly hyperelliptic curves
with ordinary Jacobian proposed by Kawazoe and Takahishi [8], we show also
such that curves are suitable to construct genus 2 pairing at the high security
levels.

We consider p an odd prime number, Fp is a finite field of characteristic p 	= 2,
so we can define equation of the curve H as y2 = f(x) where f(x) is a polynomial
∈ Fp[x] of degree 5. Let JacH be the Jacobian variety of a hyperelliptic curve
H. We denote the group of rational points on JacH over Fp by JacH(Fp).
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To compute the Jacobian order, we need the characteristic polynomial of
p−th power Frobenius endomorphism of H. Then the order is given by

� JacH(Fp) = χp(1)

It is very difficult to evaluate the characteristic polynomial of p−th power
Frobenius endomorphism of H in 1 for hyperelliptic curves over height level bits
fields, there are very few results on it, Gaudry and Harley [3] compute the group
order over 80-bits fields but their algorithm needs very long running time. To
solve this problem, there are a very special curves with complex multiplication,
they are known by the existence of efficient algorithms called CM-methods to
construct such curves. The best example of such ordinary pairing-friendly curves
is curves of type y2 = x5 + a x given by Kawazoe and Takahashi [8]. They
proposed also a fast algorithm to compute the Jacobian group order over a
prime finite field.

3.2 Counting Points

In [3] Gaudry presented a method to compute the Jacobian order modulo the
characteristic p of the base field by using the Hasse-Witt matrix. Two main
theorems in [10] and [16] quoted below:

Theorem 1. Let y2 = f(x) with deg(f) = 2g + 1 be the equation of a
genus g hyperelliptic curve. Denote by ci the coefficient of xi in the polynomial
f(x)(p−1)/2. Then the Hasse-Witt matrix is given by

A = (cip−j)1≤i,j≤g.

The following theorem give the link between the characteristic polynomial of
the Frobenius endomorphism and the Hasse-Witt matrix.

Theorem 2. Let H be a curve of genus g defined over a finite field Fpk . Let A

be the Hasse-Witt matrix of H, and let Aφ = AA(p)...A(pk−1) . Let κ(t) be the
characteristic polynomial of the matrix Aφ and χ(t) the characteristic polynomial
of the Frobenius endomorphism. Then

χ(t) ≡ (−1)g tg κ(t)(mod p).

This method is difficult in general when p is very large, but if we consider
a special form of f(x) = x5 + a x ∈ Fp[x] of degree 5 we can easily compute

the Hasse-Witt matrix, A =
[

cp−1 cp−2

c2p−1 c2p−2

]
, the element (ci) is coefficient of

xi in polynomial f(x)(p−1)/2. The characteristic polynomial of the Frobenius
endomorphism of the genus 2 curve y2 = f(x) over Fp is

χ(t) = t4 − s1 t3 + s2 t2 − s1 p t + p2, |s1| ≤ 4
√

p, |s2| ≤ 6 p

The s1 and s2 are two integers (for more details see Theorem 3, [3]), they are
given by

s1 ≡ cp−1 + c2p−2(mod p) and s2 ≡ cp−1 c2p−2 + cp−2 c2p−1(mod p)
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3.3 Pairing-Friendly Curves of the Cocks-Pinch Method

By using results in [Theorem 3, [3]] and Cocks-Pinch method for hyperelliptic
curve H : y2 = x5 + a x. We can construct pairing-friendly curves of this type
over a prime field Fp, with parameters c and d integers such that: p = c2 + 2 d2,
� large prime factor of the Jacobian order over Fp and k embedding degree,
satisfying the following conditions:

1. p ≡ 1, 3 (mod 8),
2. χ ≡ 0 (mod �),
3. φk(p) ≡ 0 (mod �),
4. p = c2 + 2 d2, with c ≡ 1 (mod 4).

We did the implementation in Sage of the algorithm presented by Kawazoe
and Takahashi which is the analog of Cocks-Pinch method to obtain genus 2
ordinary hyperelliptic curves of the form y2 = x5 + a x. By using generalization
of Kachisa [7] which he parametrized the parameters c, d, r and p as polynomials
c(z), d(z), �(z) and p(z) in a variable z. By using this approach, we can obtain
curves with small ρ − value = 2 log(p)/log(�).

Algorithm 1. Kawazoe Takahashi pairing-friendly hyperelliptic curves with
Cocks-Pinch method construction.
1: Require: k ∈ Z

2: Ensure: A genus 2 hyperelliptic curve defined by y2 = x5 + a x with Jacobian
subgroup order �.

3: Choose a prime number � such that: lcm(k, 8) divides (� − 1)
4: Choose α, β and γ such that: α is a primitive kth root of unity in (Z/l Z)×,

β2 ≡ −1 (mod �) and γ2 ≡ 2 (mod �).
5: Compute c and d integers such that:
6: c ≡ (α + β)(γ(β + 1))−1 (mod �) and c ≡ 1 (mod 4),
7: d ≡ (α β + 1)(2 (β + 1))−1 (mod �)
8: Compute p = c2 + 2 d2

9: if ( p is a prime satisfying p ≡ 1 (mod 8)) then
10: Compute a such that:
11: a(p−1)/2 ≡ −1 (mod p),
12: 2 (−1)(p−1)/8 d ≡ (a(p−1)/8 + a3(p−1)/8) c (mod p).
13: else
14: Go to step 3:
15: end if
16: return k, p, �, a, d, c.

4 Group Structure of Hyperelliptic Curve

4.1 General Group Element

The group structure of a hyperelliptic curve H over a finite field Fq, (q = pk), p :
prime odd number (p ≥ 5) and k integer (k ≥ 1), recapitulates on the represen-
tation of his Jacobian. The following theorem show the unique representation of
the Jacobian element.
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Definition 2. A divisor D is a finite formal sum of points on the curve H such
that:

D :=
m∑

i=1

(Pi) (3)

We can also define the reduced divisor Dr associated with D as follows:

Theorem 1. Let D an element on the Jacobian of the curve H, the element D
has a unique representation Dr of the form:

Dr :=
m∑

i=1

(Pi) − m(∞), (4)

such that:

1. m 	= g,
2. Pi are affine points,
3. The involution ı, satisfy: ı(Pi) 	= ı(Pj), for all i, j such that i 	= j.

All elements on Jacobian form an abelian variety, Mumford [13] introduced a
way of representing such that elements, it’s extremely useful for implementation.

Theorem 2 (Mumford representation). Let H: y2 +h(x) y = f(x) a hyperellip-
tic curve of genus g define over a finite field Fq, q = pk p: primer (p ≥ 5) and k
integer (k ≥ 1). Let K an algebraic extension of Fq, then any element D of the
Jacobian of the curve H, can be represented in a unique way by two polynomials
(u(x), v(x)) ∈ K[x]2 such that:

1. u is monic, with deg(u(x)) ≤ g,
2. deg(v(x)) ≤ deg(u(x)), and
3. u(x) divides {v(x)2 + v(x) h(x) − f(x)}.

As we saw before, we have two representations for a divisor D on the Jaco-
bian, a natural representation D =

∑m
i=1(Pi)−m(∞) and a Mumford representa-

tion D = (u(x), v(x)). To do implementation, we must understand how to manip-
ulate the two representations. For example to pass from the Mumford representa-
tion to the natural one, we compute the coordinates of the points Pi = (xi, v(xi))
with xi the roots of the polynomial u(x). In the case of genus 2 hyperelliptic
curve H, the Mumford representation of divisor of degree 0 whose effective part
E is the sum of the points P1 = (x1, y1) and P2 = (x2, y2), (E = P1 ± P2) is
obtained by multiplying and dividing by:

u(x) = x2 − (x1 + x2)x + x1x2 and v(x) =
y1 − y2
x1 − x2

(x − x1) + y1. (5)

The set of torsion points are the points whose order is finite, which is the
case for all element on the Jacobian JacH over Fq. The set of �-torsion points is
defined as follows:
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1. [�]D = D + D + ... + D︸ ︷︷ ︸
� terms

if � > 0,

2. [�]D = −([−�]D) if � < 0,
3. [0]D = (∞).

By definition, we say that D is an �-torsion divisor if [�]D = (∞). The
subgroup of �-torsion divisors on the Jacobian of hyperelliptic curve H over a
finite field Fq is denoted by JacH(Fq)[�], with q = pk, p: prime number (p ≥ 5)
and k integer (k ≥ 1).

4.2 Jacobian Subgroup Operations

To do pairing implementation, we need to perform operations on the Jacobian
group JacH(Fpk)[�], Cantor [1] developed and showed efficient algorithms to
manipulate elements of the Jacobian JacH[�](Fpk), by using the Mumford rep-
resentation, assuming that h(x) = 0 and p 	= 2. These algorithms was later
generalised by Koblitz [9] to remove these conditions.

We will show here the two algorithms implemented in Sage, the first one
is to give a semi-reduced divisor D equivalent to Ds � D1 + D2 from two
semi-reduced divisors D1 and D2 (represented by Algorithm 2), and the other
algorithm is to reduce the divisor semi-reduced Ds (given by Algorithm 2) to
obtain a reduced divisor Dr equivalent (represented by Algorithm 3).

Algorithm 2. Divisor Composition.
1: Require: D1 = [u1(x), v1(x)] and D2 = [u2(x), v2(x)]
2: Ensure: Ds � D1 + D2, Ds = [us(x), vs(x)].
3: Compute: d1 = gcd(u1(x), u2(x)) = a1 u1(x) + a2 u2(x)
4: Compute: d = gcd(d1, v1(x) + v2(x) + h(x)) = b1 d1 + b2 (v1(x) + v2(x) + h(x))
5: c1 ← b1 a1, c2 ← b1 a2, c3 ← b2
6: us(x) ← (u1(x) u2(x)) / (d2)
7: vs(x) ← (c1 u1(x) v2(x)+ c2 u2(x) v1(x)+ c3 (v1(x) v2(x)+f(x))) / d mod (us(x))
8: return [us(x), vs(x)].

Algorithm 3. Divisor Reduction.
1: Require: D = [u(x), v(x)], semi-reduced divisor.
2: Ensure: Dr = [ur(x), vr(x)] reduced with Dr � D.
3: Compute: ur(x) ← (f(x) − v(x) h(x) − v(x)2) / u(x)
4: Compute: vr(x) ← (−h(x) − v(x)) mod ur(x)
5: if (deg(ur(x)) > g) then
6: u(x) ← ur(x),
7: v(x) ← vr(x)
8: Go to step 3:
9: end if

10: Make ur(x) monic.
11: return [ur(x), vr(x)].



102 M. Zitouni and F. Mokrane

5 Our Work

To compute pairing we need Miller algorithm [12] which makes it possible to
calculate the function f�,D1(D2), this algorithm was applied for the elliptic case
and quickly it has been generalised on hyperelliptic curves. We define the group
law ⊕ on the Jacobian JacH(Fpk), let D1 and D2 ∈ JacH(Fpk), there is a function
h ∈ Fp(H) with its divisor:

div(hD1,D2) = D1 + D2 − (D1 ⊕ D2),

The main task involved in computing the evaluation f�,D1(D) in D1, Miller
has shown how to efficiently compute it, this function appearing in

Div(f�,D) = � D − D�.

For � = n + m, n and m integers, we find:

Div(f�,D) = Div(fn+m,D) = fn,D. fm,D. hDn,Dm
,

With h a function such that:

div(hDn,Dm
) = Dn + Dm − ρ(Dn + Dm),

ρ(Dn + Dm): the reduced divisor of (Dn + Dm).
This immediately leads to the following algorithm:

Algorithm 4. Miller’s Algorithm for hyperelliptic curves
1: Require: � ∈ N and D1, D2 ∈ JacH(Fpk), reduced-divisors with disjoint sup-

port.
2: Ensure: f�,D1(D2)
3: Write � in binary form: � = Σs

j=0 �j2
j , with �j ∈ {0, 1} and �s = 1

4: D ← D1

5: f ← 1
6: for (j from s − 1 to 0) do
7: Compute D ← [2] D and extract h(D,D)

8: f ← f2 · h(D,D)(D2)
9: if (�j == 1) then

10: Compute D ← D ⊕ D1 and extract h(D,D1)

11: f ← f · h(D,D1)(D2)
12: end if
13: end for
14: return f

We can clearly see that the execution of the Miller algorithm requires the
existence of an algorithm that allows the evaluation of the function h ∈ Fq(H),
q = pk p: primer (p ≥ 5) and k integer (k ≥ 1). We called this algorithm
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“evaluatefunction()”, it’s the crucial step of Miller’s algorithm, it allows to cal-
culate the value of the function in a point D ∈ JacH(Fq), such that D is a
reduced divisor represented in Mumford representation. For this work, we will
focus only on the evaluation of the function h in an effective divisor that we note
E = [uE(x), vE(x)]. There are two different methods to compute h(E) (we use
in general a norm computation and resultants).

The first method requires a polynomial factorisation of uE(x), it can be
summarized by the following algorithm:

Algorithm 5. Method 1, function evaluation of h in E.
1: E ← Σi=d

i=1 (Pi), Pi = (xi, yi) ∈ H, D = E − d(∞).
2: Compute the support of E.
3: Factoring uE(x), as uE(x) =

∏i=d
i=1(x − xi)

4: Setting yi = vE(xi).
5: Note that (xi, yi) ∈ Fqgi , with gi ≤ g.
6: Compute h(E) =

∏i=d
i=1 h(xi, yi) = h(x1, y1) × h(x2, y2) × ... × h(xd, yd).

The above method is not the best because it didn’t take in consideration the
fact that the result of the evaluation has to be in Fq Instead, one could partition
the support into distinct Galois orbits as follows:

{(xi, yi), (x
q
i , y

q
i ), ..., (xqgi−1

i , yqgi−1

i )}

And the last step (6.) of the algorithm is simply reduced by calculating the
norm NFqgi /Fq

(h(xi, yi)).
The second method is faster than the first one, since it does not require any

polynomial factorisation. It is based on the observation of h̃(x) = h(x, vE(x))
which verified for all xi root of uE(x), h̃(xi) = h(xi, vE(xi)) so instead of calcu-
lating the product h(E) =

∏i=d
i=1 h(xi, yi), the problem is reduced to the compu-

tation of h(E) =
∏i=d

i=1 h̃(xi), with xi the zeros of uE(x), but this corresponds
exactly to the definition of the resultant of the two polynomials uE(x) and h̃(x),
and we can write:

h(E) = Resultant(uE(x), h(x, vE(x)))

As we work on hyperelliptic curves of genus g, the polynomials degree
deg(uE(x)) of the Mumford representation of E = [uE(x), vE(x)] is smaller than
g, so we can write:

h(E) = Resultant(uE(x), h̃(x) mod uE(x))

We consider H a hyperelliptic curve of genus 2, defined over a finite field Fq

by y2 +hxy = fx, (q = pk), p : prime odd number (p ≥ 5) and k integer (k ≥ 1),
let D, D1 and D2 ∈ JacH(Fq), D = E − d(∞) , E effective divisor.
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As hD1,D2 = h(x, y) is a rational function h(x, y) ∈ F(H), we can write:

h(x, y) =
h1(x, y)
h2(x, y)

So,

h̃(x) = h(x, vE(x)) =
h1(x, vE(x))
h2(x, vE(x))

=
h̃1(x)
h̃2(x)

Algorithm evaluation of the rational function h = hD1,D2(D) in E is given
by:

Algorithm 6. Method 2, evaluation of the function hD1,D2 in E

1: Require: E = [uE(x), vE(x)],D1 = [u1(x), v1(x)] and D2 = [u2(x), v2(x)],
2: fx, hx, d = deg(uE(x)).
3: Ensure: hD1,D2(E).
4: h̃1 ← u2(x) mod uE(x), h̃2 ← 1, h̃3 ← 1
5: D = [u, v] = D1 + D2, divisors composition D1 and D2

6: while degree of u > g do
7: u ← (fx − v hx − v2)/u
8: v ← (−hx − v) mod u
9: Make u monic.

10: h̃1 ← (h̃1(vE − v) mod uE

11: h̃2 ← (h̃2.u) mod uE

12: if degree of v > g then
13: h̃3 ← −h̃3 × coef , coef : the leading coefficient of the polynomial v(x).
14: end if
15: end while
16: Compute R1 : resultant of the two polynomials u2(x) and h̃1

17: Compute R2 : resultant of the two polynomials u2(x) and h̃2

18: h̃3 = h̃3
d

19: return R1
h̃3.R2

.

6 Final Exponentiation

Tate pairing algorithm requires computation of final exponentiation after the
Miller loop. The optimisation of this computation is to factor the term (pk −1)/�
combined with the p-th power Frobenius operations. So the final exponentiation
can be written as

pk − 1
�

:=
φk(p)

�
·

∏
s|k, s<k

φs(p) (6)

We note that this exponent is determined by fixed system parameters. This final

exponent can be broken down into three components. Let e =
k

2
then

pk − 1
�

:= (pe − 1) · [
(pe + 1)
φk(p)

] · [
φk(p)

�
] (7)
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For example for k = 28 the final exponent becomes

p28 − 1
�

= (p14 − 1) · [
(p14 + 1)
φ28(p)

] · [
φ28(p)

�
]

With φ28(p) = p12 − p10 + p8 − p6 + p4 − p2 + 1, so

p28 − 1
�

= (p14 − 1) · (p2 + 1) · [
(p12 − p10 + p8 − p6 + p4 − p2 + 1)

�
]

There are two parts of the exponentiation, the first one is an easy exponentiation
to the power of exp1 = (p14 − 1) · (p2 + 1) (because of the Frobenius), it also
simplifies the rest of the final exponentiation because after raising to the power
(p14 − 1) the field element becomes “unitary”. The other part exp2 = (p12 −
p10 + p8 − p6 + p4 − p2 + 1)/� is the very hard part of the final exponentiation
can be calculated using a fast multi-exponentiation algorithm [5]. However, we
can use the polynomial description of p(z) and �(z) given by Kachisa in [7]. In
this case the hard part of the final exponentiation is to the power of (p12 −p10 +
p8 − p6 + p4 − p2 + 1)/�. After substituting the polynomials for p(z) and �(z),
after it can be expressed to the base p.

7 Implementation Results

We have implemented the Tate pairing for the different level security on ordinary
genus two curves in SageMath version 8.1. Our aim was not to provide an optimal
ad-hoc implementation for any one of the curves or pairings, but rather to keep
a sufficient level of security appropriate for a general purpose system, while still
implementing algorithmic optimisations that apply in a broader context. All
were performed on Intel Core i5-7300HQ CPU @ 2.50 GHz processor.

In the following, we will compute the execution time needed to calculate
Tate’s pairing for different embedding degree and several levels of security. The
following Table 1 shows the calculation time in milliseconds of all Tate’s large
pairing computation steps on ordinary Kawazoe curves of type y2 = x5 +a x. So
we compute the times: tg, tJ , tp, tr, tm and te such that: tg: time generation of
the curve equation, tJ : time computation of the Jacobian on Fq, tp: Construction
time of Jacobian two points, tr: reducing time of the two divisors, tm: execution
time of the Miller loop, te: time required for the final exponentiation.

For tg, tJ and tp, we will directly give the time needed by predefined algo-
rithms in Sage to generate the desirable curves, compute Jacobian and to con-
struct two points on the Jacobian JacH(Fp) over prime finite field. On the other
hand, the times tr and tm are the conclusion of the implementation of the dif-
ferent executable algorithms proposed by Galbraith [2], Granger et al. [4] and
others.

To vary the embedding degree, we will always work on genus two Kawazoe
and Takahashi curves of type y2 = x5 + a x generated by Kachisa [7], these
parameters are chosen in order to have the desirable ordinary pairing-friendly
curves.
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Table 1. Execution times in milliseconds (ms) to compute Tate’s pairing.

k = 7 k = 8 k = 10 k = 28

p (bits) 336 387 378 379

� (bits) 254 257 249 255

tg 1.163 1.228 1.187 1.779

tJ 0.084 0.076 0.033 0.083

tp 18112,942 14364,803 44049.245 221412.49

tr (1 D) 0.294 0.337 0.381 1.042

tm 808.031 10555.84 1221.53 5163.32

te 32.1519 57.774 97.863 1561.75

For cryptography applications, the discrete logarithm problems in JacH(Fpk)
and in the multiplicative group Fpk must both be computationally infeasible.
For Jacobian varieties of hyperelliptic curves of genus 2 the best known discrete
logarithm problem (DLP) algorithm is the parallelized rho-Pollard algorithm in
[14] and [15], which has running time O(

√
�) where � is the size of the largest

prime-order subgroup of JacH(Fpk). In the following Table 2, we will give the
security level for genus two curves according to the size of the curve parameters

(k, p, �) and the ρ − value =
g log(p)
log(�)

.

Table 2. Embedding degrees for hyperelliptic curves of genus g = 2 required to obtain
commonly desired levels of security.

Security
level
(bits)

Subgroup
size (�)

Extension
field size
(pk)

Embedding degree(k)

ρ � 1 ρ � 2 ρ � 3 ρ � 4

80 160 1024 12 6 4 3

128 256 3072 24 12 8 6

192 384 7680 40 20 13 10

256 512 15360 60 30 20 14

Now, we calculate the execution time in Sage needed to compute Tate pairing
for different security levels (128, 192 and 256 bits), the following Table 3 lists
the execution time of Miller loop and final exponentiation required to compute
pairing in milliseconds (ms).
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Table 3. Execution times in milliseconds (ms) required to compute Tate’s pairing for
different security levels.

Security level (bits) 128 192 256

Miller loop 1055.840 1221.53 5163.32

Final exponentiation 57.774 97.863 1561.75

Total 1113.614 1319.393 6725.07

8 Conclusions

In this work, we discuss an implementation of pairings over pairing-friendly
hyperelliptic curves. In particular, we focus on Kawazoe-Takahashi genus 2
curves of the form y2 = x5 + a x. We provide the necessary background to have
sufficient understanding of pairings on hyperelliptic curves, discuss the algorithm
to sample curves of the desired type, and describe the group structure of these
curves. We then continue and present details of the Miller algorithm that are
involved in the efficient evaluation of the pairing.

First, we present the analogue of the Cocks-Pinch method to obtain ordi-
nary Kawazoe-Takahashi pairing-friendly curves using approach of Kachisa to
have curves with a small ρ − value, we have implemented this method in Sage,
the ordinary Jacobian order over Fp, Fpk and the various curve parameters are
calculated.

Second, we gave several techniques for pairing computation more precisely
for Tate pairing case, operations on Jacobian subgroup, Miller loop and we
have provided explicit formulae for the evaluation of the function fD1,D2(E)
in effective divisor required by the Miller algorithm. We then continue and give
a performance method for final exponentiation in order to speed up the pairing,
generally applicable and which is calculated in two parts, an easy part given
a unitary field element and a hard part using polynomial description of curve
parameters.

Finally, we gave the implementation results in Sage for different levels of
security according to the embedding degree of the curve. Our studies indicates
that pairing on hyperelliptic curves is computable and we can have pairing appli-
cations efficient and competitive to the pairing on elliptic curves in performance
and security level.

As the main contribution here is the evaluation of the rational function h
in the point on the Jacobian of the curve over prime field, that appears in the
evaluation of f�,D1)(D) in algorithm of Miller. We present one method, that
is based on the factorization of polynomials, and a faster one, that instead of
factorization of polynomials is based on the resultant of polynomials The includes
some interesting ideas to improve the evaluation of pairings on hyperelliptic
curves. We also gave a fast method to calculate the final exponentiation by
using the parametrization of the curve parameters p and l.
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Abstract. Most of the cryptographic constructions deployed in practi-
cal systems today, in particular digital signatures and key-establishment
schemes, are vulnerable to attacks using quantum computers. Post-
quantum cryptography (PQC) deals with the design and implementa-
tion of cryptographic algorithms that are resistant to these attacks. In
this paper, we evaluate the NIST’s PQC competition candidates with
respect to their suitability for the implementation on special hardware
platforms. In particular, we focus on the implementability on constrained
platforms (e.g., smart cards, small single-board computers) on one side
and on the performance on very fast hardware-accelerated platforms (i.e.,
field-programmable gate arrays - FPGAs) on the other side. Besides the
analysis of the candidates’ design features affecting the performance on
these devices and security aspects, we present also the practical results
from the existing implementation on contemporary hardware.

Keywords: Applied cryptography · Constrained device · FPGA ·
Performance · Post-Quantum Cryptography · Smartcard · Security

1 Introduction

Post-Quantum Cryptography (PQC) brings together cryptographic primitives,
schemes, and systems that are designed to withstand potential attacks using
quantum computers. On one hand, the Shor’s algorithm running on a quantum
computer with a sufficient number of qubits could allow attackers to solve the
current security assumptions of asymmetric cryptosystems that are based on
discrete logarithm and factorization problems. On the other hand, the Shor’s
algorithm requires 4000 logical qubits to break 2048-bit RSA keys [28], and
current quantum computers (QCs) capable to run Shor’s algorithm only have
about 20 logical qubits [25] (current QCs have 72 physical qubits). It is important
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E. Simion and R. Géraud-Stewart (Eds.): SECITC 2019, LNCS 12001, pp. 109–124, 2020.
https://doi.org/10.1007/978-3-030-41025-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41025-4_8&domain=pdf
http://orcid.org/0000-0002-7208-2514
http://orcid.org/0000-0003-0842-4951
http://orcid.org/0000-0002-4366-3950
http://orcid.org/0000-0002-1996-5334
http://orcid.org/0000-0003-2831-1073
http://orcid.org/0000-0001-8282-7180
https://doi.org/10.1007/978-3-030-41025-4_8


110 L. Malina et al.

also to mention that the biggest QC is D-WAVE2000Q with 2048 qubits that are
based on a different technology, i.e. quantum annealing. The Shor’s algorithm
cannot be executed on the D-WAVE2000Q. In addition to the Shor’s algorithm
which could compromise conventional asymmetric cryptosystems, there is the
Grover algorithm that streamlines the collision or symmetric key brute force
search on O(

√
N), where N is the domain size of the function. Many security

experts and practitioners are addressing these potential threats by proposing
schemes based on different assumptions (quantum resistant). Their focus and
activities are united under a knowledge area called Post-Quantum Cryptography.

This paper aims to help security experts with the practical deployment of
PQC into heterogeneous networks that can contain many computational and
memory constrained end nodes (e.g. sensors with SAM modules - smart cards,
embedded devices etc.) and powerful central back-end servers or application
servers. These servers usually terminate hundreds to thousands connections from
end nodes by using many-to-one communication model. Therefore, these central
servers can be supported by FPGA platforms that are used for a hardware accel-
eration of expensive operations in order to increase the computational capacities
and the number of user connections.

This paper is organized as follows: the rest of this section contains related
work and our contribution. Section 2 introduces PQC and discusses the imple-
mentation aspects of PQC. Section 3 presents recent implementations of PQC
schemes on smart cards and presents our performance assessment of NIST PQC
candidates on a small single-board computer. Section 4 deals with the deploy-
ment of PQC schemes on FPGA and presents our assessment on the updated
hardware platform. In the last section, we conclude this work.

1.1 Related Work

There are several research and survey papers dealing with the implementation
of PQC schemes on smart cards and FPGA platforms. Due to the memory
and computational limits of smart cards, there are only few papers that study
and present the implementation of PQC schemes on the cards. For instance,
the paper [38] deals with the implementation of the McEliece cryptosystem on a
chip card (Infineon SLE76) where the encryption operation takes 0.97 s. Section 3
presents more papers dealing with the implementations of PQC on smart cards.
The hardware implementation of post-quantum cryptography schemes on FPGA
platforms have been studied in several papers, e.g., [22,23,30,34]. A recent
survey paper [30] studies lattice-based cryptographic schemes (LBC schemes)
and their software and hardware implementations. The paper describes several
works dealing with hardware implementations on a FPGA platform. Neverthe-
less, the paper does not compare practical results (e.g. occupied HW resources,
etc.). The authors of the paper [4] employ the High-Level Synthesis method
to make the hardware implementation of the 11 PQC schemes of the second
round of the NIST PQC on Xilinx Virtex-7 FPGA. The article compares 7
key exchange schemes: Newhope, Frodokem, Crystals-KYBER, NTRU-HRSS,
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Classic McEliece, Saber, LEDACrypt, and 4 signature schemes: CRYSTALS-
Dilithium, qTESLA, SPHINCS+, MQDSS. Benchmark results include data on
captured HW resources, e.g., Look-up Tables (LUT), Flip-flop registers (FF),
latency, and Latency-Area Product (LAP) values on side A (encapsulation) and
side B (decapsulation) with and without optimization methods (Loop unrolling,
Loop pipelining). More papers dealing with the hardware implementations of
PQC on FPGA are presented in Sect. 4. In our work we explore recent state of
the art and we add our experimental results of PQC schemes on the contempo-
rary Xilinx UltraScale+ FPGA platform and on ARM platform.

1.2 Contribution

The contribution of this paper is twofold:

– We present the overview of existing PQC implementations on constrained
devices and smart cards. We also present our experimental results of NIST
PQC semifinals on a constrained device (i.e. ARM device).

– We present the overview of existing hardware implementations PQC on
FPGA platforms and we present our experiment results of 6 chosen PQC
schemes on the current FPGA platform UltraScale+. We do not use a HLS
method as some related works but we directly run the existing scheme imple-
mentations in VHDL (VHSIC-HDL) (Very High Speed Integrated Circuit
Hardware Description Language).

2 Application Pros and Cons of Post Quantum
Cryptography Schemes

This section discusses the maturity, advantages, disadvantages and basic parame-
ters of PQC, such as key sizes, signature/ciphertext sizes, memory requirements,
and expensive operations that can cause obstacles in hardware implementations
or within implementations on constrained platforms such as smart cards.

PQC schemes can be divided into 6 areas:

– Lattice-based cryptography (LBC) is based on lattice-based computational
problems, e.g., the Shortest Vector Problem (SVP) and the Ring Learning
With Errors (RLWE) problem. A lattice L ⊂ Rn is defined as the set of all
integer linear combinations of basis vectors. LBC schemes are usually used
for public key encryption, key exchange and digital signatures. Well known
LBC cryptosystems are the Frodo scheme [9], and Ring-Learning with Errors
(Ring-LWE) schemes such as NTRU [18], New Hope [3], Kyber [10].

– Multivariate cryptography (MVC) is based on systems of multivariate poly-
nomial equations over a finite field F. There are several variants of MVC
schemes based on Hidden Field Equations (HFE) trapdoor functions [33]
such as the Unbalanced Oil and Vinegar Cryptosystems (UOV) [21]. UOV
schemes are used for signatures. Other examples of multivariate public-key
cryptosystems (MPKC) are the Rainbow scheme [13] and Tame Transforma-
tion Signatures [11].
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Fig. 1. Post-quantum cryptography family.

– Hash-based cryptography (HBC) is based on the security of hash func-
tions (as a one-way function). Ralph Merkle introduced the Merkle Signature
Scheme (MSS) [27] based on a one-time signatures (e.g., the Lamport sig-
nature scheme [24]) and a binary hash tree (a Merkle tree) in 1979. MSS is
resistant against quantum computer algorithms.

– Code-based cryptography (CBC) is based on using error correcting codes
to construct a one-way function. The security is based on the hardness of
decoding a message which contains random errors and recovering the code
structure. The McEliece public key encryption scheme [26] is based on binary
Goppa codes with high error correction capability and works with matrices.
A receiver secretly chooses a private key that is a binary Goppa code. The
public key is generator matrix G that describes a scrambled and randomly
permuted variant of the Goppa code. A sender first encodes the plain text
using G and adds t random errors during the encryption. Then, the receiver
who knows the private key (the hidden algebraic structure of the Goppa code)
is able to correct the errors and recover the message. The McEliece scheme
[26] is considered as secure for 40 years. The Niederreiter cryptosystem [31]
as a McEliece variant provides both encryption and signature schemes. Many
McEliece variants require large public keys.

– Supersingular elliptic curves - Isogeny-based cryptography (IBC) is based
on supersingular elliptic curve isogenies which are secure against quantum
adversaries. These schemes are secured under the problem of constructing an
isogeny between two supersingular curves with the same number of points.
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Isogeny-based schemes may serve as digital signatures or key exchange such
as Supersingular Isogeny Diffie-Hellman (SIDH) scheme [20].

– Symmetric quantum resistant cryptography (SQRC) is based on the princi-
ples of diffusion and confusion. The leading example is the Advanced Encryp-
tion Standard (AES) which applies several rounds of substitutions and permu-
tations on the key and plaintext to produce the ciphertext [12]. Doubling the
key size provides an adequate security level against QC attacks. Remarkable
is that this family offers the smallest key sizes for PQC.

PQC offers a secure alternative to traditional cryptography by relying on hard
problems which cannot be speed up by a quantum computer. Moreover, PQC
can be implemented in current infrastructure unlike the quantum cryptography
which requires QCs. In fact, only quantum-key distribution based on photons
are nowadays possible. However, some PQC schemes are not ready and time
is required to improve their efficiency (e.g., long key size and slow algorithms),
improve their usability (e.g., software and hardware implementations), and build
confidence in it (standards are under development). The maturity of these 6 PQC
areas with basic information is depicted in Fig. 1. As shown in the figure, HBC
and SQRC are the families with higher maturity. These families come from well
study and currently used cryptographic schemes, and therefore standards are
already developed and their efficiency is known. The only sort of disadvantage
of these families is that their security is not based on hard problems which means
that they are not provably secure. In case of CBC and LBC families, even if they
are mostly based on hard problems which bring confidence on their security, they
are a bit below in the ranking. The main reason is that their efficiency is still
under development, in particular their keysizes need to be reduced as well as
their computational cost in order to be competitive with the current schemes
and can be applied on constrained devices. MVC family presents the same issues
of CBC and LBC and, moreover, in terms of provable security, there exist hardly
any rigorous proofs which reduce their security to hard mathematical problems.
At last, IBC is the newest one among PQC families and is very computationally
expensive even compared to LBC.

Table 1. NIST PQC competition.

NIST 2019

Signature KEM/encryption Overall

Lattice-based 5(3) 21(9) 26(12)

Code-based 2(0) 17(7) 19(7)

Multi-variate 7(4) 2(0) 9(4)

Symmetric/hash-based 3(2) None 3(2)

Other 2(0) 5(1) 7(1)

Total 19(9) 45(17) 64(26)
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There are many proposals of PQC schemes and PQC studies, e.g. [5]. In 2016,
NIST initiated a process to solicit, evaluate, and standardize one or more PQC
schemes [1]. In 2019, NIST announced 17 second-round candidates (semifinals)
for key establishment and 9 schemes for quantum resistant digital signatures.
Table 1 summarizes the NIST PQC competition. Each column shows how many
proposals received NIST in 2016 and how many survived until now (between
parenthesis). In order to compare the strength of the different NIST competitors,
their efficiency in term of key sizes and computational costs has to be considered.
In AppendixA, Table 6 shows key pair, signature and ciphertext sizes of 2nd
round NIST schemes. The performance assessment on various platforms could
be found in the next sections.

3 Post Quantum Cryptography on Constrained Devices

This section discusses the current state of PQC deployment on smart cards and
similar constrained devices, and presents some recommendations for the future
deployment. The section also contains our experiments on constrained devices.

Different issues arise when PQC meets constrained devices such as smart
cards (SCs). In fact, PQC schemes are generally memory and power consuming,
and therefore pose a challenge for devices with bounded resources. Moreover,
these schemes require the implementation of primitives which are not supported
by the current SCs. Therefore, off-the-shelf smart card platforms (Java Card,
Basic Card, MultOS) with constrained memory and API limits are not very
appropriate for the implementation of PQC schemes. For instance, Strenzke [38]
could not fully implement McEliece scheme (the key generation algorithm is
missing) on a microprocessor due to the involvement of operations on matrices
that by far exceed the RAM size. Also the realization of LBC schemes on con-
temporary computing platforms requires careful design choices and trade-offs.
The majority of the LBC schemes require the implementation of at least one
of the following algorithms: discrete Gaussian sampling, matrix multiplication,
polynomial multiplication and number theoretic transform. For standard LWE
schemes, matrix multiplication algorithms are adopted, whereas number theo-
retic transform is a better choice for polynomial multiplication in RLWE [29].

3.1 Current Implementations of PQC on Constrained Platforms

The current software and hardware implementations on SCs (or microprocessors)
are summarized in Table 2. More specifications are given below.

Lattice-Based PQC on Smartcards: In 2014, Boorghany et al. [7] adapted
3 identification schemes based on LP-LWE scheme to work on SCs. Their imple-
mentation provides 128-bit security on three environment settings: Java Card
(contact), Java Card (contactless) and AVR ATxmega64A3 microcontroller. The
main encountered issues are fast Fourier transformation and discrete Gaussian
sampling implementations which are high time consuming. In 2015, Boorghany
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Table 2. Recent PQC implementations on constrained devices (microcontroller, smart
cards), the sizes of EEPROM and RAM are given in kilobytes.

Scheme Type Device Chip EEPROM RAM

McEliece [38] Code SC chip 16-bit Infineon SLE76CF5120P 310 4.4

LPR [40] Lattice Java Card JCOP v2.4.1 NXP �80 �10

J3A081 Dual Interface Card

GLP12 [7] Lattice Java Card Feitian FT-Java/H10CR Java Card 11.4 4.2

Micro AVR ATxmega64A3 microcontroller 13.8

DDLL13 [7] Lattice Java Card Feitian FT-Java/H10CR Java Card 55.5 5.2

Micro AVR ATxmega64A3 microcontroller 13.8

DJ13 [7] Lattice Java Card Feitian FT-Java/H10CR Java Card 12.1 1.9

Micro AVR ATxmega64A3 microcontroller 13.9

NTRU [8] Lattice Property Card 32-bit ARM7TDMI processor 55.8 3.5

Micro AVR ATxmega64A3 microcontroller 13.4

LP-LWE [35] Lattice Micro AVR ATmega328P microcontroller 0.3 1.1

Kyber [2] Lattice SC chip 16-bit Infineon SLE78CLUFX5000 <500 <16

et al. [8] published the SC implementation of three authentication schemes on
LBC. These schemes are based on the same primitives, e.g. GLP and BLISS sig-
nature schemes, considered in the identification schemes in [7]. Furthermore, the
authors also executed the NTRU encryption scheme on SCs. Their implementa-
tion provides 128-bit security. In a more recent work, Yuan et al. [40] present a
RLWE based encryption scheme on Java Card providing 128 bit security. Poly-
nomial multiplication is solved by applying Montgomery modular multiplication
and number theoretic transform instead of fast Fourier transform. To be noted
that long integers are not supported on SCs. Saarinen [35] shows how a compres-
sion technique of Ring-LWE ciphertexts can help with PQC implementations on
constrained devices. They reduce ciphertext size by more than 40% at equivalent
security level (128-bit security). Furthermore, they avoid NTT in the decryption
operation. Albrecht et al. [2] present how to use RSA co-processors on standard
smart cards to speed-up lattice-based cryptography. In particular, they convert
polynomials to big integers which are processed on a RSA co-processor and then
the results are converted back to the polynomials.

Code-Based PQC on Smartcards: Strenzke and Falko [38] present the imple-
mentation of the McEliece scheme for the 100 bit security level using a microcon-
troller. They could not reach higher security due to memory problems. Moreover,
the key generation algorithm could not be implemented on the microprocessor
for exceeding card’s RAM size.

3.2 Experimental Results on Constrained Platforms

In order to get a complete overview of PQC schemes complexity on constrained
devices, we evaluate PQC schemes efficiency on ARM Cortex-A53 processor
which is utilized in some versions of single-board computers. In particular, we
employ a Raspberry Pi 3 Model B (1.2 GHz CPU, 1 GB RAM) with Raspbian
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9 operating system (32-bit version) to execute PQC NIST competitors [1]. Each
competing scheme includes a zip file with C/C++ implementations, a mandatory
“reference implementation” and optional optimized versions. In our comparison,
we consider only “reference implementation” of each scheme with 128-bit secu-
rity level. Therefore, each scheme was downloaded, built, and executed on our
Raspberry Pi device. We compute executing time as an arithmetic mean from
ten measurements. Our experimental results are shown in Table 3. In order to run
the PQC algorithms, the following libraries need to be pre-installed: OpenSSL
[16] (used mostly for calling AES algorithm functions), NTL [36] (computations
with vectors, matrices and polynomials), GMP (big number operations) [17] and
XKCP [6] (Keccak sponge function family). Moreover, Linux packages make, gcc
and g++ are used to make and build C/C++ applications.

Table 3. Performance of selected signature and KEM/Encryption schemes from 2nd
NIST round [1]. The elapsed time is given in ms and is computed from an average of
100 measurements of algorithm run on ARM Cortex-A53 processor.

NIST KEM/encryption

Scheme Type Sec Key pair
generation

Encryption Decryption

BIKE Code 128 2.1 2.2 10.8

Kyber Lattice 128 2.2 3.1 8.7

FrodoKEM Lattice 128 40.4 78.3 78.8

HQC Code 128 4.1 8.2 12.7

NewHope Lattice 128 2.0 2.9 0.5

NTRU Lattice 128 11.7 2.3 3.5

ROLLO-I Code 128 19.4 2.6 10.1

FrodoKEM Lattice 128 40.4 78.2 78.8

NIST signatures

Scheme Type Sec Key pair
generation

Signing Verification

Dilithium Lattice 125 0.1 0.5 0.1

Falcon Lattice �128 34.8 3.2 0.3

MQDSS Multivariate 128 1.2 98.4 72.9

Picnic Symmetric
/hash

128 0.1 61.7 41.9

qTESLA Lattice �128 1.1 0.8 0.2

SPHINCS+ Hash 128 3.5 110.0 4.7

The results indicate that lattice-based KEM schemes (e.g., NewHope, NTRU)
and lattice-based digital signatures (e.g., Dilithium, qTESLA,) are more efficient
than PQC schemes based on other types (e.g., code-based, multivariate-based).



Towards Practical Deployment of Post-quantum Cryptography 117

4 Post Quantum Cryptography on Hardware-Accelerated
Platforms

The hardware implementation on FPGA can overcome the computational expen-
siveness of some PQC schemes. In this section, we present the overview of recent
PQC implementations on FPGA and add our results from updated FPGA plat-
form, Xilinx UltraScale+. We use the following notation: LUT indicates the
number of Look-Up Tables and FF denotes the number of Flip-Flop registers
on chip. I/O presents the number of input and output ports. DSP is module
Digital Signal Processor and BRAM (Block Random Access Memory) is used
for storing the large amounts of data inside of FPGA. Frequency denotes the
maximum frequency at which the unit is able to run.

4.1 Current Implementations of PQC on FPGA

The following text overviews recent PQC hardware implementations on FPGA
cards. The performance results and hardware requirements of chosen PQC imple-
mentations are summarized in Table 4.

Lattice-Based PQC on FPGA: Kuo et al. [23] present the first hard-
ware implementation of the NewHope scheme for key establishment. The paper
describes implemented blocks and operations of NewHope including the dis-
crete version of fast fourier transformation (NTT operation) and pseudo-random
PRNG generator using SHA-3 hash function. Their NewHope implementation
(128-bit security) utilizes 6098 FFs, 12340 LUTs, 29 DSPs (Digital Signal Proces-
sors), 14 BRAMs (block memories) at 114 MHz on the Xilinx 7 FPGA platform
(dual core ARM Cortex A9 with 667 MHz and 28 nm Artix-7 Z-7020 FPGA pro-
viding 46,000 LUTs). The key establishment scheme runs within three phases
(2 on side A and 1 on side B). The total time is given by the sum of all phases,
i.e., 75.4 + 99.1 + 24.6 µs. Subsequently, Oder and Guneysu [32] design the HW
implementation of the NewHope scheme that emphasize the efficiency of the
size of used FPGA HW resources. Their implementation utilizes 5142 LUTs,
4452 FFs, 4 18Kb-BRAMs and 2 server-side DSPs at 125 MHz on the Xilinx
7 platform. Overall, their NewHope implementation takes 1.4 ms on the server
side and 1.5 ms on the client side. In 2017, Howe et al. [19] published the first
HW implementation of the Ring-TESLA signature scheme on the FPGA Xilinx
Spartan-6 platform. The authors designed 4 versions occupying different HW
resources. Their implementation oriented on a small number of HW resources
(4447 LUTs, 3345 FFs, 1257 slice registers, BRAM 3x, DSP 6x at 190 MHz) per-
forms 104 signing operations/s. Their speed-oriented implementation performs
785 signing operations/s (1.273 ms) and takes 6848 LUTs, 5457 FFs, 2254 regis-
ter slices, BRAM 4x, DSP 16x at 180 MHz. To be noted, that a signing process
has similar performance and takes similar HW resources as a verification pro-
cess. Ebrahimi et al. [14] introduce a hardware-optimized implementation of the
Ring-BinLWE variant based on lattice problems. Their implementation on the
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FPGA platform is compared with other HW implementations (McBits scheme,
NTRU scheme, Isogeny SIKE scheme, and the classic ECC implementation).
Their implementation of InvRBLWE in 140-bits post-quantum security occu-
pies 5k LUT, 5K FF, 1292 slice registers and 0 DSP/BRAM on Virtex-7. At 524
MHz, the encryption time is only 1.97µs. The survey [37] deals with a compari-
son of HW implementations of post-quantum digital signature schemes, namely,
qTESLA and CRYSTALS-Dilithium schemes. Authors use Xilinx Vivado High-
Level Synthesis (HLS) method and present the results of both schemes on FPGA
(Xilinx Artix-7). They show that CRYSTALS-Dilithium at lower security levels
has slightly lower hardware requirements than qTESLA.

Code-Based PQC on FPGA: In 2018 Wang et al. [39] published the FPGA
implementation of a code-based scheme, namely, the Niederreiter cryptosystem
using binary Goppa codes. Their implemented scheme provides 128-bit post-
quantum security on the Stratix V (5SGXEA7N). Their implementation takes
up 52% of the available logic, i.e., 121806 ALMs and 961 RAM blocks (38% of
resources) at a clock rate of 250 MHz. The number of cycles for key generation
is 966400, and 14291 cycles are required for decryption. Their implementation
is synthesized on the Virtex-6 XC6VLX240T where the implementation needs
6571 slice registers at 267 MHz. The decryption takes 0.04 ms.

Multivariate PQC on FPGA: In 2018 Ferozpuri and Gaj [15] introduced
the design and hardware implementation of the Rainbow signature scheme on
the FPGA Xilinx Virtex 7 (XC7VX1140) and Kintex-7 (XC7K480) platforms.
The Rainbow scheme is based on multivariant equations and the Unbalanced Oil
and Vinegar (UOV) problem and is a candidate in the NIST PQC competition
(the second round). Their version of the Rainbow-80 implementation on Virtex-
7 occupies 17048 LUTs, 5878 register slices, 9033 FFs, 0 DSPs, 18 BRAMs. At
200 MHz, the signing operation takes 0.61 µs (148 clock cycles per operation).

Other PQC Schemes on FPGA: The first hardware implementation of SIDH
(Supersingular Isogeny Diffie-Hellman) based on supersingular eliptic curves is
introduced in the article [22]. The paper describes a design and implementation
of fast and scalable architecture. The paper further describes the concrete algo-
rithms for operations and the options of parallel computation processing. The
implementation of the scheme (85 bit post-quantum security) on FPGA Xilinx
Virtex-7 at 177.1 MHz utilizes 3 dual multipliers, 30031 FFs, 24499 LUTs, and
10298 slices. The total time of the scheme is 33.7 ms (i.e., 30 SIDH operations/s).

Table 4 shows that recent Ebrahimi et al.’s [14] implementation of the InvR-
BLWE scheme is the most efficient (1.97 µs) in compare with other observed
schemes.
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Table 4. Current hardware FPGA implementations of 2nd round NIST PQC schemes.

PQC scheme FPGA HW resources Perform on

A side

Perform on

B side

LUTs FFs Slices DSPs BRAMs Freq.[MHz]

KEM/encryption PQC schemes on FPGA

New Hope Xilinx 7 12340 6098 - 29 14 114 100µs 99.1µs

Kuo et al. [23]

New Hope Xilinx 7 5142 4452 - 2 4× 18Kb 2× 125 1.5ms 1.4ms

Oder et al. [32]

InvRBLWE-n- Xilinx 7 5k 5K 1292 0 0 524 1.97µs 0.95µs

512 Ebrahimi et al. [14] for enc for enc.

SIDH Xilinx 24499 30031 10298 192 27 3× 177.1 17.88ms 15.82ms

Koziel [22] Virtex 7

PQC digital signatures schemes on FPGA

Ring-TESLA Xilinx 4447 3345 1257 6 3 190 104 -

Signing reduced Spartan- signing

HW Howe et al. [19] 6 ops/s

Ring-TESLA Xilinx 3714 3023 1172 6 3 188 - 102

Verify reduced Spartan- verify

HW Howe et al. [19] 6 ops/s

Ring-TESLA signing Xilinx 6848 5457 2254 16 4 180 785 -

Signing speed Spartan- signing

Oriented Howe et al. [19] 6 ops/s

Ring-TESLA Xilinx 6473 5582 2103 16 3 178 - 776

Verify speed Spartan- verify

Oriented Howe et al. [19] 6 ops/s

qTESLA-2SL Xilinx 137559 39086 - - - - 3696400 -

Soni et al. [37] Artix-7 clock

cycles

CRYSTALS-Dilithium- Xilinx 89933 21023 - - - - 1259801 -

2SecLev Soni et al. [37] Artix-7 clock

cycles

Rainbow-80 signature Xilinx 17048 9033 5878 0 18 200 0.61µs -

Ferozpuri and Gaj [15] Virtex-7

4.2 Deployment Issues and Setup of PQC Implementations on
FPGA UltraScale+

Many related works employ HLS (High Level Synthesis) which is using a high
level abstraction for a general algorithm description. Because the C/C++ pro-
gramming languages are widely used, it is easier to specify desired functions in
these languages, less errors are made, and the circuit verification is more effective.
Moreover, the simulation of HLS is faster than a conventional VHDL simulation.
Nonetheless, there are few constructions which are not compatible with HLS
synthesis: system calling, dynamic allocation of resources, few operations with
pointers (reallocation, array of pointers), and standard template library. The C
implementations of NIST PQC semifinalists often depend on external libraries
that are not a part of the code and they could not be converted directly by
HLS. Furthermore, a simple conversion of C codes of PQC schemes by HLS
produces non-optimized hardware implementations. To be noted that many
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implementations of PCQ digital signature schemes (their C sources are also avail-
able at their websites) also contain non-compatible parts and constructions for
VHDL. For instance, most of these digital schemes employ the OpenSSL library
which could not be easily converted and synthesized on FPGA platforms. We
test PQC schemes directly in VHDL. The direct hardware implementations in
VHDL could produce more efficient implementations. We use Vivado 2019.1.3 to
synthesize the implementations of 6 chosen schemes. The HDL implementations
are mostly taken from the author’s websites or from the official website of the
NIST’s PQC competition. We implement algorithms on the Xilinx UltraScale+
chip and test the correct functionality of the output. Further, we optimize each
algorithm separately to get it working properly.

4.3 Experimental Results on Virtex FPGA Platform

We present the comparison of 6 NIST semifinalists: SIKE, BIKE, NewHope,
SABER, classic McEliece and FrodoKEM schemes. We compare hardware
resources and maximum working frequency. The results of the synthesis uti-
lized on the Virtex UltraScale+ are summarized in Table 5. The classic McEliece
scheme with 76k LUTs and 129 FFs requires the most HW resources from imple-
mented schemes. KEM schemes, BIKE and NewHope, require less than 10k LUTs
and FF registers. Nevertheless, both schemes require units of BRAM modules. In
our experiment, the BIKE scheme requires the lowest numbers of HW resources
on the FPGA UltraScale+ platform.

Table 5. Our experimental synthesis results of PQC schemes on FPGA.

PQC schemes on FPGA UltraScale+

PQC Scheme LUT FF I/O DSP BRAM Frequency [MHz]

SIKEa 36481 51092 175 - - 421

BIKEb 5195 3259 145 6 368

NewHopec 9069 9369 53 4 4 258

SABERd 20218 36123 160 - - 66

Classic McEliecee 76382 129000 - - 530 128

FrodoKEMf 21360 10606 - - 40 160
a The VHDL implementation from https://sike.org/#implementation.
b The HDL files for the designs taken from https://bikesuite.org/#implemen
tation.
c Implementations for the FPGAs taken from https://github.com/mupq/pqhw.
d Source code are available on the website https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/round-2/submissions/SAB
ER-Round2.zip.
e HW implementation in VHDL from https://classic.mceliece.org/hardware.
html.
f HLS and VHDL core taken from https://github.com/Microsoft/PQCrypto-
LWEKE.

https://sike.org/#implementation
https://bikesuite.org/#implementation
https://bikesuite.org/#implementation
https://github.com/mupq/pqhw
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/SABER-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/SABER-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/SABER-Round2.zip
https://classic.mceliece.org/hardware.html
https://classic.mceliece.org/hardware.html
https://github.com/Microsoft/PQCrypto-LWEKE
https://github.com/Microsoft/PQCrypto-LWEKE
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5 Conclusion

This work maps the current state of PQC implementations on constrained plat-
forms and on FPGA platforms. FPGA, which enables communication nodes to
accelerate some computationally expensive operations, can be very useful tech-
nology for the dissemination of PQC schemes in heterogeneous networks. Our
analysis shows that several works have successfully implemented and tested PQC
schemes on FPGA platforms. This work presents our synthesis results of 6 PQC
schemes on the updated FPGA UltraScale+ platform. We do not employ the
HLS procedure and we use directly the VHDL synthesis. Our results indicate
that New Hope and BIKE schemes require less HW resources than the code
based Classic McEliece scheme and other schemes such as SIKE, SABER and
FrodoKEM. Further, this paper focuses on PQC on smart cards and constrained
devices. Our analysis shows that there are only few works dealing with the
PQC implementation on smart cards that are specifically customized. Neverthe-
less, there are no known implementations that could be run on current off-the-
shelf programmable smart cards. The limited memory resources of smart cards
and non-trivial functions such as polynomial multiplication prevent the imple-
mentation of PQC schemes on smart card platforms. Our experimental results
measured on the ARM platform indicate that lattice-based schemes such as
NewHope, NTRU, Dilithium and qTesla are more efficient than other compared
PQC schemes. In our future work, we plan to implement and optimize suitable
PQC schemes, e.g. NewHope, Dilithium, on an off-the-shelf smart cards.

A Post Quantum Cryptography Size Requirements

This section discusses the current size requirements of the 2nd round NIST
competitors. Our overview on current PQC schemes deals with implementations
on devises which have limited memory capacity. Therefore, the suitability of a
PQC scheme depends at first on its memory requirements. If the scheme is too
demanding, it can not be directly implemented. Table 6 shows key pair, signature
and ciphertext sizes of 2nd round NIST schemes. Regarding signature schemes,
Dilithium and Falcon are the proposals which require less storage. Note that
both the schemes belong to LBC group.

In case of KEM schemes, ROLLO-I and Round5 are the most promising
ones. Therefore, the less demanding schemes between LBC and CBC groups
have comparable memory requirements for KEM. Observe that NewHope also
demands small memory capacity.

It is important to notice that memory capacity is only one of the component
which have to be taken in consideration when schemes are compared.
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Table 6. Size requirements of 2nd round NIST signature schemes and
KEM/Encryption schemes.

Scheme Type Sec. Level [b] Secret key [B] Public key [B] Signature [B]

NIST signatures

Dilithium Lattice 125 - 1 472 2 701

Falcon Lattice �128 - 1 441 993.91

GeMSS Multivariate 128 14 208 417 408 48

LUOV Multivariate 128 32 7 300 1 700

MQDSS Multivariate 128 32 62 32 882

Picnic Symmetric/hash 128 32 64 195 458

qTESLA Lattice �128 12 320 39 712 6 176

Rainbow Multivariate �128 511 400 206 700 156

SPHINCS+ Hash 128 64 32 16 976

NIST KEM/encryption

BIKE Code 128 249 2 541 2 541

McEliece Code 128 6 452 261 120 128

Kyber Lattice 128 1 632 (or 32) 800 736

FrodoKEM Lattice 128 19 888 9 616 9 720

HQC Code 128 252 6 170 6 234

LAC Lattice 128 512 544 712

LEDAcrypt Code 128 452 1 872 1 872

NewHope Lattice 128 869 928 1 088

NTRU Lattice 128 1 452 1 138 1 138

NTRU Prime Lattice 128 1 125 897 1 025

NTS-KEM Code 128 9 248 319 488 1 024

ROLLO-I Code 128 40 465 465

Round5 Lattice 128 16 634 682

RQC Code 128 40 853 1690

SABER Lattice �128 1 568 672 736

SIKE Isogeny 128 374 330 346

Three Bears Lattice 128 40 804 917

FrodoKEM Lattice 128 19872 9616 9736
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Abstract. In this paper, we address the problem of tracing traitors in
the white-box model. A traitor tracing system generally comes with a
broadcast encryption scheme where each user is equipped with a secret
that allows him to decrypt broadcast data. When a broadcast encryp-
tion scheme is provided with a tracing procedure, the user’s key is used
to uniquely identify him. A white-box model refers to a context where
an attacker shares the host with a software implementation of a cryp-
tographic algorithm and controls the execution environment. Thus, a
traditional broadcast encryption scheme will fail in this context since
an adversary may steal the user’s decryption key and illegally decrypts
broadcast contents. In this work, we describe a traitor tracing system
where each user is provided with a distinct key generation function
instead of a secret key. The key generator is made user-specific and
enables to generate a content key which is used to decrypt the encrypted
content. We use techniques of White-Box Cryptography to build the key
generation function and use a collusion-secure code to derive the user-
specific key generators. Finally, we prove that the system is collusion-
resilient.

Keywords: Traitor tracing · White-Box Cryptography · Tardos code

1 Introduction

A broadcast encryption scheme is a cryptographic method used to distribute
encrypted data over an insecure channel1. Such a scheme is used, e.g., for digital
content distribution and users of the system generally own a decryption box to
decrypt the data. To allow the users to decrypt the data, a broadcast information
is sent and each user is provided with a secret key that enables him to decrypt
the encrypted data. The decryption box can be a tamper-resistant device such
as a smart-card or a software on a personal computer or a smart-phone. Because
tamper-resistant devices are hard and expensive to produce, software decryption
boxes are more and more spread. For both cases, the main issue encountered is
1 In particular used by the Advanced Access Content System (AACS) standard.
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the illegal redistribution of the decryption key. In the case of a software decryp-
tion box, key extraction is within the reach of a white-box attacker. Illegal redis-
tribution of decryption keys may then lead to a substantial financial loss and
one solution to this threat is traitor tracing. A traitor tracing scheme is a broad-
cast encryption provided with a tracing procedure. In a traitor tracing system,
each user’s decryption box is provided with a distinct secret key which uniquely
identifies him. Sometimes, some misbehaved users called the traitors collude to
forge and redistribute a decryption key. The system is collusion-resilient if the
tracing procedure retrieves at least one those traitors.

The problem of traitor tracing was first introduced in [5] by Chor, Fiat
and Naor who proposed a combinatorial scheme. Since the problem statement
numerous works proposed collusion-resilient schemes which can be classified into
three classes: combinatorial scheme, public key scheme (first introduced in [13])
and, collusion-secure code-based scheme. Kiayias and Yung [12] first introduced
collusion-secure code-based scheme to solve the problem of traitor tracing and
many papers followed the trend [3,10]. One advantage of such schemes is that
the ratio of the ciphertexts and the plaintexts is constant. In particular, Billet
and Phan introduced in 2008 a collusion-resilient traitor tracing scheme based
on a Tardos code [2]. A Tardos code is a binary code that was introduced by
Tardos in 2008 for watermarking digital documents [15]. Each document is iden-
tified with a mark which is a codeword embedded within the document and if
some malicious users collude to produce a pirate version of the document, an
accusation algorithm retrieves at least one of the misbehaved users. Billet and
Phan harnessed the fact that traitor tracing and collusion-secure codes may share
some properties. Actually, both have a collusion strategy that is constrained by
an assumption called a “marking assumption”. In brief the marking assumption
states that a coalition of users are only able to identify the positions where their
codewords differ. Our traitor tracing scheme belongs to the class of collusion-
secure code-based scheme and uses a Tardos code. The main difference with
Billet and Phan’s work is that the bits of the codeword are hidden. Conse-
quently the collusion strategy that we describe is completely different and is not
constrained by the standard marking assumption. In particular, the proof of the
collusion resistance does not directly depend on the collusion resistance of the
code. Besides, the code length is shorter than the “optimal” length suggested by
G. Tardos.

Solving the problem of traitor tracing in the white-box model was suggested
by Delerablée et al. in [8]. They presented the desired “white-box security
notions”, i.e. the security notions that should be proved to state the security
of an encryption scheme in the white-box model. Specifically, the problem of
traitor tracing is rephrased by the traceability property of a white-box pro-
gram. Authors stated that “a program can be made traceable by unnoticeably
modifying its functionality”, i.e. if the set of inputs for which the modified pro-
gram unusually behaves is negligible compared to the whole set of inputs then
the program can be traced using these inputs. In the same paper, Delerablée
et al. defined an encryption scheme that is collusion-resilient using a primitive
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first introduced in [4] called a Private Linear Broadcast Encryption (PLBE)
scheme. Yet they did not instantiate the encryption scheme in the white-box
model and we are not aware if it can be practically instantiated with known
white-box implementations. The work of Delerablée et al. aimed to bring a the-
oretical foundation of White-Box Cryptography. WBC refers to a research area
that focuses on proving the security of a cryptographic implementation in the
white-box model. It was first introduced in 2002 by Chow et al. [6,7] to enable
a secure distribution of a digital content in a broadcasting system or through
an application with Digital Rights Management enforcement. In their seminal
paper, Chow et al. proposed a “white-box” implementation of two standard algo-
rithms: the Advanced Encryption Standard and the Data Encryption Standard.
A white-box implementation is an implementation of a cryptographic algorithm
that hides a key, i.e. the secret key is obfuscated in the source code such that
it cannot be extracted. The technique described by Chow et al. is to represent
the algorithm with a network of randomized lookup tables which each embeds a
part of the secret key.

Related Work. Billet and Gilbert proposed in [1] a “traceable block cipher” that
can be used in a broadcasting system. Their scheme is non combinatorial and
relies on the hardness of the Isomorphism of Polynomials (IP) problem. Actually,
each user of the broadcasting system receives a distinct description of the block
cipher as systems of multivariate polynomials. Even if the description of the block
cipher differs from a user to another, the evaluation of the block cipher gives the
same result for all users which ensures correctness. Unfortunately, the scheme is
unlikely a weak instance of the IP problem and can be solved efficiently [9].

Our Contribution. In this work we describe a traitor tracing system with a key
generation function, i.e. instead of using a decryption algorithm to decrypt a
content key, we use the key generator. We use a probabilistic Tardos code to
encode the identity of each user of the system. The codewords are then used to
compute a user-specific key generator. In order to derive distinct user-specific key
generators that correctly “hide” the codewords, we use techniques of WBC to
construct the key generator. We describe a collusion strategy that is completely
different from the strategy associated to a Tardos code. Indeed we show that
either the collusion retrieves the (untraceable) broadcaster key generator or it
exposes the identity of one traitor.

Organization of the Paper. Our paper starts with some preliminaries about the
Tardos code. Then, in Sect. 3, we describe our construction of a key generator
that will be used in the system. Finally, we prove the collusion resistance of the
construction in Sect. 4.

2 Tardos Code

A Tardos code [15] is a binary code used for watermarking digital document. The
code is composed of l codewords, where l is the number of users who receive a
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copy of the document with a unique embedded codeword. If some dishonest users
collude to create a pirate version of the document then the distributing entity
executes an accusation algorithm which outputs a non-empty set of users or ∅.
The code is collusion-resilient if the accusation algorithm outputs a subset of the
set of colluding users. Tardos proved that for at most c colluding users a code of
length L = 100c2�log(1/ε)� provides c-collusion resilience with a probability of
failure strictly lower than ε. Besides, Tardos proved that the length is optimal
regardless of the collusion strategy. The code is probabilistic i.e. each codeword
is constructed from a sequence of probabilities. A c-collusion ε-resilient binary
code C [L, c, ε] of length L is defined as follows:

– For τ = 1/(300c), let 0 < τ ′ < π/4 s.t. sin2 τ ′ = τ . Let ri ∈ [τ ′, π/2 − τ ′]
some random values. Define the probability pi as pi = sin2 ri. The pi are
independent, identically distributed (i.i.d.) random variables from [τ, 1 − τ ].

– A codeword ω = ω0 . . . ωL−1 is constructed s.t. Pr[ωi = 1] = pi.

This way l codewords ω1, . . . , ωl are constructed and represented as a l × L
matrix M where for u ∈ [1, l], each entry ωu,i is independent:

M =

⎡
⎢⎢⎢⎣

ω1,0 . . . ω1,L−1

ω2,0 . . . ω2,L−1

...
. . .

...
ωl,0 . . . ωl,L−1

⎤
⎥⎥⎥⎦

Each of these codewords is embedded in the user’s document and allows to
identify the owner of the document. The collusion-resistance of the code depends
on an accusation algorithm and a “marking condition”. In a nutshell, the marking
condition ensures that a collusion of users T which compare their codewords are
only able to modify the bits where their codewords differ, i.e. if y ∈ {0, 1}L is the
binary word forged by the collusion then y is such that ωu,i = b implies yi = b
for u ∈ T and i ∈ [0, L − 1]. The accusation algorithm relies on a l × l matrix U

defined as follows: ∀u ∈ [1, l], i ∈ [0, L − 1], Uu,i =

⎧
⎨
⎩

√
1−pi

pi
if ωu,i = 1

−
√

pi

1−pi
if ωu,i = 0

Given a forged codeword y, the distributing entity is able to retrieve a subset
of the set of colluding users T by computing an accusation sum

∑L−1
i=0 yiUu,i for

each user u. For any bit number i, if yiUu,i is positive then yi = ωu,i and the
accusation algorithm tends to accuse the user u. Otherwise, if yiUu,i is negative
that means that yi �= ωu,i and the user u is considered as an innocent. This
way, the accusation algorithm determines how much a user can be considered
guilty. If

∑L−1
i=0 yiUu,i > Z where Z = 20c�log(1/ε)� is a fixed threshold then

u is accused. Thus, the accusation algorithm does not need to compute the
accusation sums for all users of the system but outputs the index of a user as
soon as the corresponding sum is sufficiently high.

The work of Tardos aimed to provide the optimal code length that enables
collusion resistance regardless of the collusion strategy. Besides, the code length
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does not depend on the number of users of the system but only on the number
of colluding users tolerated which makes it practical for a large system. In his
work, Tardos proved that:

(i) For an arbitrary user u ∈ [1, l] and a coalition T ⊆ [1, l]\{u} the probability
that u is wrongly accused is lower than ε.

(ii) For a coalition T ⊆ [1, l] of size c, the probability that no users of the
coalition is accused is lower than εc/4.

In other words, the probability of false-positive when all other users collude
is at most ε and the probability of non-detection for a coalition of size at most
c is at most εc/4.

We give some details about the Tardos code to understand the intuition
behind the construction of the code. Actually, we do not use the same accusation
algorithm since the marking condition does not hold in our case. We only take
advantage of the probabilistic generation of the code.

3 Broadcast Encryption Scheme with a Tracing
Procedure

3.1 Broadcasting Encrypted Information

One method to secure digital content distribution is broadcast encryption. Such
a method is used, e.g., for pay TV systems or distribution of encrypted musics,
videos and documents over the Internet. Each user owns a decryption box (smart-
card or software) and needs a decryption key to enjoy digital contents. Generally,
the system is subject to subscription or digital management licenses before the
key is delivered or updated. To avoid key distribution (a legitimate user shares his
key to allow someone to decrypt content without subscribing), a unique personal
decryption key is given to each user and unambiguously identifies him. Given
any user key or a key forged by a subset of users, a tracing procedure retrieves
the identity of the user (or at least one traitor when the key has been forged by a
collusion). This way, the broadcast encryption scheme becomes a traitor tracing
scheme. We first introduce our definition of a broadcast encryption scheme.

Definition 1 (Broadcast encryption (BE)). A BE scheme is composed of
three algorithms:

– Setup(l, K) takes as input the number of users l and a randomly drawn
secret key K and outputs a key generator KG and l derived key generators
KG1, . . . ,KGl: (KG,KG1, . . . KGl) ← Setup(l, K).

– Encrypt(EB, C) takes as input an enabling block EB and a content C and
outputs a pair (EB,CB) s.t. CB is the result of the encryption of a content
C under a secret CW called a control word and generated by KG from the
input EB. CB is called the cipher block: (EB,CB) ← Encrypt(EB,C).

– Decrypt(u, EB, CB) takes as input an index u and the broadcast information
(EB,CB) and outputs Cu which is the result of the decryption of CB under
a control word CWu = KGu(EB): Cu ← Decrypt(u,EB,CB).
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The broadcast encryption scheme should be correct, i.e. for any user u ∈ [1, l]:
if (KG,KG1, . . . ,KGl) ← Setup(l,K) and (EB,CB) ← Encrypt(EB,C) then,

Cu = C for Cu ← Decrypt(u,EB,CB).

The correctness property guarantees that all users of the system can recover
the content C even if the key generators are all distinct. Here, the correctness of
the BE is tied to the specificity of the key generators and the way the enabling
block EB is chosen. Actually, EB is randomly drawn from a subset of the input
domain. We will give the details of the constructions of the key generator and
of the enabling block respectively in Sects. 3.2 and 3.3. For now, we describe our
system as follows. Let l be the number of users. The setup algorithm outputs a
key generator KG and l user-specific key generators KG1, . . . ,KGl. The broad-
caster chooses an enabling block EB computes CW using KG and computes
CB using a block cipher E instantiated with the key CW . Any user u is given
a decryption box provided with a key generator KGu and the decryption algo-
rithm E−1. Given an enabling block EB, u computes the control word CW and
then decrypts the cipher block CB into C. Thus, the broadcaster and the users
of the system each generate the control word separately but agree on the same
control word. Figure 1 illustrates the difference between the decryption boxes of
two users.

EB CB

EB CB

KG1

CW E−1

C

Decryption box

User 1

EB CB

KG2

CW E−1

C

Decryption box

User 2

Fig. 1. The system with user-specific key generators.

3.2 Description of the Key Generator

As we said before, the correctness of the scheme depends on the key genera-
tor. Thus, we introduce in this section our construction which is at the heart of
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the system. Before going into details, let us give the ideas behind the construc-
tion. We construct a function which outputs a N -bit key2. As the key should
be random i.e. indistinguishable from a N -bit random sequence, the function
should output any key with probability 1

2N
. Let m, t be such that N = mt and

f1, . . . , ft be t permutation functions over F2m . Then, each output of the func-
tion f = (f1, . . . , ft) given an input (x1, . . . , xt) ∈ F

t
2m appears with probability

( 1
2m )t = 1

2N
. Thus, the key generator makes call to t permutation functions.

Besides, we want to derive user-specific description of the key generator. We
chose to implement the permutation functions with m-bit lookup tables and so
used white-box techniques3. This way, the key generator makes use of t m-bit
lookup tables which describe t distinct permutations over F2m . As we will see in
Sect. 3.3, the lookup tables will “embed” a Tardos codeword and become user-
specific. For each lookup table, we use the AES-128 in counter mode to generate
2m · m pseudo-random bits and then use the Fisher-Yates shuffle algorithm [11]
to generate a m-to-m bits pseudo-random permutation4.

Let f : F
128
2 × (Fm

2 )t → (Fm
2 )t be a function defined for any input

(K,X) with X = (x1, . . . , xt) as: f(K,X) = (TK⊕1(x1), . . . , TK⊕t(xt)), where
TK⊕1, . . . , TK⊕t are lookup tables that each describes a random permutation.
Each lookup table TK⊕i for 1 � i � t maps m bits to m bits and can be seen
as a random permutation over the range {0, 1, . . . , 2m − 1}. The tables are com-
puted using the AES-128 in counter mode with the key K ⊕ i and with some
plaintexts Pi = i. The generated pseudo-random sequence of 2m · m bits is used
to compute an array of 2m m-bit values using the Fisher-Yates shuffle algorithm.
We illustrate the tables generation in Fig. 2.

AESK ⊕ i

ctr = 0

⊕
C0

P0

AESK ⊕ i

ctr = 1

⊕
C1

P1

. . . AESK ⊕ i

ctr = n − 1

⊕
Cn−1

Pn−1

Fig. 2. Generation of n = 2m·m
128

ciphertexts before the Fisher-Yates shuffle algorithm.

2 “Key” here refers to the control word CW .
3 A popular technique used in White-Box Cryptography to hide a part of a secret key

is to compute some lookup tables that are key-dependent and then make table calls
to execute the algorithm. Actually, our construction is a white-box implementation
of a key generation algorithm.

4 We chose this method as it is an elegant way to generate a permutation from a
random binary sequence. Other methods exists and can be used for this construction.
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Since the key K is fixed and the tables are precomputed, we write T1, . . . , Tt

for TK⊕1, . . . , TK⊕t and fK in place of f(K, ·). For d � 2, the key genera-
tor (Fig. 3) KG : (Fmt

2 )2
d → F

mt
2 is defined for any (X1, . . . , X2d) s.t Xk =

(xk,1, . . . , xk,t) as

KG(X1, . . . , X2d) =

⎛
⎝

2d∑
k=1

T1(xk,1), . . . ,
2d∑
k=1

Tt(xk,t)

⎞
⎠ =

2d∑
k=1

fK(Xk) (1)

Remark 1. As we see in (1), the output of the key generator is a vector of t
“sums”. Each “sum” is the result of the XOR of 2d permutations. Thus, the
value of the sum can be distinguished from random with O(2m) input/output
values. As concluded in [14] the XOR of some permutations allows to generate
a random function from random permutations. Hence, the output of the key
generator is random.

Remark 2. The key generator is a white-box dedicated algorithm and provides
the unbreakability security [8], i.e. the master key K cannot be recovered by an
adversary having access to the lookup tables. Indeed, the key extraction security
reduces to the security of AES-128 in counter mode (Fig. 2).

T1

T1

. . .

T1

⊕

⊕

⊕
...

...

2d∑

k=1

T1(xk,1)

x1,1 x2,1 . . . x2d,1

X1 = (x1,1, x1,2, . . . , x1,t) X2 = (x2,1, x2,2, . . . , x2,t) . . . X2d = (x2d,1, x2d,2, . . . , x2d,t)

KG(X1, . . . , X2d) =

. . .

. . .

Tt

Tt

. . .

Tt

⊕

⊕

⊕
...

...

2d∑

k=1

Tt(xk,t)

x1,t x2,t . . . x2d,t

Fig. 3. The key generator.
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3.3 User-Specific Key Generator

The key generator KG described in Sect. 3.2 is the broadcaster’s generator. We
describe in this section how the users’ key generators are derived from KG. This
is where the Tardos code comes in. We “encode” the identity of each user using
the Tardos code of Sect. 2. The user-specific key generator is then computed
according to the codeword associated to the user. For a user u, the key gener-
ator KGu makes use of lookup tables T

(u)
1 , . . . , T

(u)
t derived from the original

lookup tables T1, . . . , Tt by modifying all the tables values. However, this mod-
ification is done such that the user’s key generator outputs the same output as
the broadcaster’s one on a specified set of inputs.

User’s Identification. Let a system with l users. Each user u is represented as
a binary codeword of a c-collusion ε-resilient Tardos code C [L, c, ε], i.e. u =
(u0, . . . , uL−1) s.t Pr[ui = 1] = pi for a sequence of probabilities pi outputted
by a distribution P. The users of the system are represented by a matrix with
l rows and L columns. The main idea of the personalization is to use all bits
of each user codeword to compute all the tables values. First, the codeword is
divided into t sub-words of length L/t and each sub-word is used for each table.
The parameters (L, d,m, t) of the scheme verify L = td2�m/d� where d is called
the “dimension” of the system. d is a parameter chosen to ensure the collusion
resistance of the system. We will see in Sect. 4 how it should be chosen.

User’s Perturbation Function. Now that each user of the system is identified
with a codeword, we define a user’s perturbation function that depends on that
codeword and allows to compute the user’s tables accordingly.

Definition 2 (User’s perturbation function). Let L, t, d,m be defined as
above. Let e0, . . . , eL−1 be L distinct non-zero m-bit values randomly drawn from
F
m
2 \ {0}. For d � 2, let A be a d-dimensional array with v = L

td cells which
randomly contains the elements of F

m
2 . Let index be a function that takes x ∈ F

m
2

as input and returns a d-uple (i(x)1 , . . . , i(x)d ) of indices. index gives the coordinates
of x in the d-dimensional array A, i.e. 0 � i(x)j � v − 1 for any 1 � j � d.

For any user u associated to a codeword (u0, . . . , uL−1) and any 1 � i � t, a
perturbation function is defined as

∀x ∈ F
m
2 mu(i, x) =

∑d
j=1(ui

(x)
j +jv+

(i−1)L
t

)(e
i
(x)
j +jv+

(i−1)L
t

).

The values e0, . . . , eL−1 are random secret values that will be used to trans-
form the permutation implemented by Ti into a pseudo-random function. For
any x ∈ F

m
2 , a mask value mu(i, x) is computed as a sum of at most d secret

values among e0, . . . , eL−1, i.e. if the bit u∗ is equal to 1 then e∗ contributes to
the mask value, otherwise e∗ does not contribute.

User’s Lookup Table. For 1 � i � t, the i-th table T
(u)
i is computed from

the original table Ti as follows: ∀x ∈ F
m
2 T

(u)
i (x) = Ti(x) + mu(i, x). mu is a
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“perturbation function” used to mask the value of Ti(x) for any x. Since mu(i, x)
is random then T

(u)
i implements a pseudo-random function.

The user-specific key generator is then defined for any (X1, . . . , X2d) as

KGu(X1, . . . , X2d) =

⎛
⎝

2d∑
k=1

T
(u)
1 (xk,1), . . . ,

2d∑
k=1

T
(u)
t (xk,t)

⎞
⎠ .

The idea behind the construction can be summarized as follows. For any
user, each table value is a masked (perturbed) version of the broadcaster table
value. The perturbation added to each table value is random and depends on
the user codeword. However, the perturbation function is defined such that the
sum

∑2d

k=1 mu(i, xk) is equal to 0 for some inputs (x1, . . . , x2d) and this way
guarantees the correctness of the user’s key generator. This is stated by the
following lemma.

Lemma 1. For any user u, KGu is correct iff for any (X1, . . . , X2d) ∈ (Fmt
2 )2

d

,∑2d

k=1 mu(i, xk,i) = 0 for all 1 � i � t.

Definition 3 (Partial correctness). For any u, KGu is partially correct
if there exists a set I ⊂ (Fmt

2 )2
d

such that for any (X1, . . . , X2d) ∈ I,
KGu(X1, . . . , X2d) = KG(X1, . . . , X2d). We say that KGu is I-correct and that
I is a perturbation canceler.

The following proposition gives a sufficient condition on the set I to allow
the partial correctness.

Proposition 1. Let d � 2. For any 1 � i � t, let a set Ii ⊂ (Fmt
2 )2

d

such
that for any (x1,i, . . . , x2d,i) ∈ Ii, for any 1 � j � d there exists a partition
Pj
1,i, . . . ,P

j
2d−1,i

of the set {x1,i, . . . , x2d,i} defined as follows⎧
⎨
⎩

∣∣∣Pj
k,i

∣∣∣ = 2

i(x)j = i(x
′)

j for x, x′ ∈ Pj
k,i

and if x ∈ Pj
k,i and y ∈ Pj

k,i′ then i(x)j �= i(y)j .

Then, for any u, Pu is I-correct for I = I1 × . . . × It.

Example 1. Let d = 2 and m = 4. Then A is a 4 × 4 matrix containing all the
elements of F

4
2 (which we represent with *). Without loss of generality, let i = 1.

For simplicity, we write (x1, x2, x3, x4) instead of (x1,1, x2,1, x3,1, x4,1). Assume
that the matrix A is defined as follows

A =

⎡
⎢⎢⎣

∗ ∗ ∗ ∗
∗ x1 ∗ x2

∗ ∗ ∗ ∗
∗ x3 ∗ x4

⎤
⎥⎥⎦

Since

{
i(x1)
1 = i(x2)

1 = 1
i(x3)
1 = i(x4)

1 = 3
and

{
i(x1)
2 = i(x3)

2 = 3
i(x2)
2 = i(x4)

2 = 1
, we get the following

partitions of {x1, x2, x3, x4}: P1
1 = {x1, x2}, P1

2 = {x3, x4} and P2
1 = {x1, x3},

P2
2 = {x2, x4}. Then, (x1, x2, x3, x4) belongs to the set I1.
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Proposition 2. Let d � 2. Let I be the set as defined in Proposition 1. Then
for any 1 � i � t, |Ii| �

∏2d−1

k=1 (2m − (k − 1)d2(d−1)m/d).

The proofs of Lemma 1, Propositions 1 and 2 can be found in Appendix.

3.4 Broadcast Information Generation and Decryption Procedure

The broadcaster needs to generate a broadcast information (EB,CB) that allows
all users of the system to recover a content B. Since each user has a distinct
description of the key generator, we define the enabling block EB with a special
structure. Actually, we take EB in the perturbation-canceler set I, thus the key
generator removes all perturbations added to the user-specific description and
enables each user to recover CW and the content C.

Let E : F
n
2 ×F

n
2 → F

n
2 be a block cipher, i.e. E is the encryption function and

E−1 is the decryption function. The system consists of the following steps:

1. The broadcaster randomly picks an enabling block EB in the perturbation-
canceler set I, then generate a control word CW using KG: CW = KG(EB).

2. The broadcaster encrypts a content block C using a block cipher E instanti-
ated with the secret key CW . He computes the cipher block CB = ECW (C).

3. The broadcaster sends (EB,CB) to all users of the system.
4. Any user u generates the control word CW using his key generator KGu:

CW = KGu(EB) and decrypts the cipher block to obtain the content C:
C = E−1

CW (CB).

3.5 The Tracing Procedure

A tracing procedure is executed by the tracing entity to identify the owner of a
decryption box. We assume that the tracing procedure is executed in a white-box
way, i.e. the tracing entity has access to the pirate decryption box and executes
the tracing procedure on the key generator, namely on the set of lookup tables.
The pirate decryption box embeds a key generator with forged tables T û

i so the
tracing procedure takes as input a set of pirate tables T û

i and outputs a user
index û. For all 1 � i � t, the tracing entity executes the following steps:

1. For any x ∈ F
m
2 look at the value T û

i (x) and compare with the 2d possible
values Ti(x) +

∑d
j=1(ûi

(x)
j +jv+

(i−1)L
t

)(e
i
(x)
j +jv+

(i−1)L
t

).
2. Deduce the values of the bits û

i
(x)
j +jv+

(i−1)L
t

for all 1 � j � d.

3. When (û0, . . . , ûL−1) is fully determined, search the user in the matrix M .

The key generator is traceable in the sense that the identity of its owner can
be retrieved by the tracing entity. We assume that even if some traitors collude
either they expose the identity of one of them or they cannot create a functional
pirate decryption box. Thus, the tracing procedure only needs to reconstitute
the codeword associated to a key generator and then search in the matrix of all
codewords. The details of the collusion strategy are described in AppendixA.4.



136 S. Rasoamiaramanana et al.

4 Collusion Resistance

The advantage of the broadcast encryption scheme described is Sect. 3.4 is the
traceability of the key generators. This property enables to find the owner of
an illegally redistributed decryption box. Besides, we prove that even if several
dishonest users collude, they cannot produce an untraceable and functional key
generator. We first define the notion of traceability against an arbitrary collusion.

Definition 4 (Traceability game against an arbitrary collusion). Let
an adversary A and a challenger B playing the following game:

1. B randomly picks a key K ∈ K and a set of secret parameters param5.
2. B computes the key generator KG as in Sect. 3.2.
3. A chooses a set T = {u1, . . . , uc} ⊆ {1, . . . , l} of traitors and queries the

corresponding key generators with q chosen inputs (X1, . . . , X2d).
4. If (X1, . . . , X2d) is valid, i.e. (X1, . . . , X2d) ∈ I, then B outputs the corre-

sponding tables outputs. Otherwise, B outputs ⊥.
5. A outputs a key generator K̂G.
6. If K̂G is I-correct, B runs the tracing procedure Trace on K̂G and outputs a

set S ⊆ {1, . . . , l}.
7. A wins if K̂G is I-correct and S = ∅ or S � T .

We say that a (L, d,m, t)-key generator satisfies (q, ε)-traceability against a
c-collusion if the probability that A wins is lower than ε.

Theorem 1. Consider our construction of a (L,m, d, t)-key generator where L
is the length of a Tardos code, m is the table input length, d is the dimension and
t is the number of tables. We claim that if the adversary makes at most q � |Ii|
queries with qv valid queries then no coalition of users less than d

2 + 1 can produce

a functional pirate key generator with probability higher than
(

1
2m

)t(|Ii|−qv).

The proof of Theorem 1 where the collusion strategy is described is sketched
in AppendixA.4.

Table 1. Examples of parameters: m is the table input length, t is the number of
tables, d is the dimension, L is the code length and is defined as L = td2�m/d� and c is
the collusion size. WB size is the total size of the key generator.

t d m L c WB size Upper bound on q Size of EB (bits)

8 2 16 212 1 2 MB 263 512

8 3 16 210 2 2 MB 263 1024

4 2 32 219 1 64 GB 2127 512

4 3 32 215 2 64 GB 2127 1024

4 4 32 212 2 64 GB 2127 2048

5 param are the parameters of the Tardos code and the random m-bit values
e1, . . . , eL−1.
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Examples of Parameters. Some parameters for implementation are given in
Table 1. The block cipher E is the AES-128 and the control word length is
128 bits.

Conclusion

In this work, we proposed a traitor tracing system that resists a collusion of c
traitors for small values of c. We described a broadcast encryption scheme that
uses a key generator to generate the control words. Even if each user receives
a personalized key generator, the special structure of the enabling information
allows all users to generate the correct control word as the broadcaster. One
advantage of our construction is that the code length is lower than the optimal
length computed by G. Tardos and so storing system’s users is less costly. The
main drawback of our construction is that it does not allow the revocation of
traitors and we let this as a future work.

Proofs

A.1 Lemma1

Proof. Let (X1, . . . , X2d) ∈ (Fmt
2 )2

d

.
⎛
⎝

2d∑
k=1

T
(u)
1 (xk,1), . . . ,

2d∑
k=1

T
(u)
t (xk,t)

⎞
⎠ =

⎛
⎝

2d∑
k=1

T1(xk,1), . . . ,
2d∑
k=1

Tt(xk,t)

⎞
⎠

⇔ ∀i
2d∑
k=1

T
(u)
i (xk,i) =

2d∑
k=1

Ti(xk,i) ⇔

∀i

2d∑
k=1

(Ti(xk,i) + mu(i, xk,i)) =
2d∑
k=1

Ti(xk,i) ⇔

∀i

2d∑
k=1

(Ti(xk,i) + mu(i, xk,i)) −
2d∑
k=1

Ti(xk,i) = 0 ⇔ ∀i

2d∑
k=1

mu(i, xk,i) = 0

A.2 Proposition 1

Proof. We prove that for any (x1,i, . . . , x2d,i) ∈ Ii,
∑2d

k=1 mu(i, xk,i) = 0.
For any i, let (x1,i, . . . , x2d,i) ∈ Ii. Then,

2d∑
k=1

mu(i, xk,i) =
2d∑
k=1

⎛
⎝

d∑
j=1

(u
i
(xk,i)
j +jv+

(i−1)L
t

)(e
i
(xk,i)
j +jv+

(i−1)L
t

)

⎞
⎠

=
d∑

j=1

⎛
⎜⎝

2d−1∑
k=1

∑

x∈Pj
k,i

(u
i
(x)
j +jv+

(i−1)L
t

)(e
i
(x)
j +jv+

(i−1)L
t

)

⎞
⎟⎠
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Since for any x, x′ ∈ Pj
k,i, i

(x)
j = i(x

′)
j then u

i
(x)
j +jv+

(i−1)L
t

= u
i
(x′)
j +jv+

(i−1)L
t

and e
i
(x)
j +jv+

(i−1)L
t

= e
i
(x′)
j +jv+

(i−1)L
t

.

Thus, for any i, j, k,
∑

x∈Pj
k,i

(u
i
(x)
j +jv+

(i−1)L
t

)(e
i
(x)
j +jv+

(i−1)L
t

) = 0.

Hence,
∑2d

k=1 mu(i, xk,i) = 0 for all i.

A.3 Proposition 2

Proof. – d = 2. Let us count all 4-uple (x1,i, x2,i, x3,i, x4,i) ∈ (Fm
2 )4 s.t. there

exits two partitions as defined in Proposition 1: x1,i can be any element of
F
m
2 so we have 2m possible choices; x2,i can be chosen s.t. i(x2,i)

1 �= i(x1,i)
1 and

i(x2,i)
2 �= i(x1,i)

2 , thus we have 2m − 2 · 2m/2 possible choices. Since we get x1,i

and x2,i, without loss of generality we can set x1,i ∈ P1
1 ,P2

1 and x2,i ∈ P1
2 ,P2

2

then x3,i and x4,i are fixed as the second elements of each set.
– d = 3. We count all 8-uple (x1,i, . . . , x8,i) ∈ (Fm

2 )8. Following the same reason-
ing as above: there are 2m possible choices for x1,i, 2m − 3 · (2m/3)2 possible
choices for x2,i, at most 2m − 6 · (2m/3)2 possible choices for x3,i and at
most 2m − 9 · (2m/3)2 possible choices for x4,i. Each of these elements is set
as the first element of each set Pj

k, for 1 � j � 3 and 1 � k � 4, then
x5,i, x6,i, x7,i, x8,i are fixed as the second elements.
The same reasoning is used for any value of d, i.e. choose one element for each

set Pj
k, for 1 � j � d and 1 � k � 2d−1, then the 2d−1 remaining coordinates

are fixed to be the second elements of each set.

A.4 Theorem1

Proof. We consider two cases: c = 1 and c > 1 and for both cases we describe
two possible strategies that make the pirate key generator untraceable. First, the

adversary records the outputs (
2d∑
i=1

T1(xk,1), . . . ,
2d∑
i=1

Tt(xk,t)) for all valid inputs

for later use and, second, the adversary recovers the original table values Ti(x).

– c = 1. We assume that the adversary is a single user. He adopts the first

strategy, i.e. records the outputs (
2d∑
i=1

T1(xk,1), . . . ,
2d∑
i=1

Tt(xk,t)) for all valid

inputs.
Let q, qv be respectively the number of input queries made by the adversary
such that q � |Ii| and the number of valid queries. One query can be seen as
t simultaneous queries to the tables. For a query q, we write q1, . . . ,qt for
the corresponding table queries. We say that a query q is valid iff all of the
queries q1, . . . ,qt are valid. If the query is valid, then the adversary gets the

output (
2d∑
i=1

T1(xk,1), . . . ,
2d∑
i=1

Tt(xk,t)) corresponding to an input (q1, . . . ,qt).

Otherwise, he does not gain any information. Thus, if the adversary makes
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qv valid queries then he gets qv values
2d∑
i=1

Ti(xk,i) for each table. If qv < |Ii|

then the adversary needs to guess the sum values for the |Ii| − qv remaining

table inputs for each table. Since for any i, (x1,i, . . . , x2d,i) �→
2d∑
i=1

Ti(xk,i) is a

pseudo-random function, the probability that the adversary produces a func-
tional pirate key generator, i.e. that the adversary guesses the unknown sum
values is equal to

(
1
2m

)t(|Ii|−qv). To ensure that the probability is negligible,
it is sufficient to show that |Ii| − qv � 1.
Let X be the random variable that gives the number of valid queries among q.
X follow the hypergeometric distribution with parameter (q, p = |Ii|

2m2d
, 2m2d).

Indeed, we calculate the probability of successes in q draws (q queries) without
replacement from a population of size 2m2d . p2m2d corresponds to the number
of valid inputs (for one table), i.e. |Ii|. Thus, the probability of the event

{X = qv} is given by: P(qv) =
(|Ii|

qv
)(2

m2d−|Ii|
q−qv

)
(2m2d

q )
. If q = |Ii| then P(|Ii|) = 1

(2m2d

q )
.

Hence, qv < |Ii| and |Ii| − qv � 1.
Now assume that the adversary adopts the second strategy, i.e. recovers all
the table values Ti(x). For simplicity, let us consider one table T (x) (i.e. we
omit the index i since the same technique can be applied independently to
all tables).
For a valid tuple (x1, . . . , x2d), the adversary knows the table outputs. Let s
be the index of the adversary, for 1 � k � 2d, 1 � j � d, we denote by αs,k,j

the unknown u
s,i

(xk)
j +jv+

(i−1)L
t

and by βk,j the unknown e
s,i

(xk)
j +jv+

(i−1)L
t

for

a fixed i. The adversary constructs the following system of equations:
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T (us)(x1) = T (x1) +
∑d

j=1 αs,1,j · β1,j

T (us)(x2) = T (x2) +
∑d

j=1 αs,2,j · β2,j

...
T (us)(x2d) = T (x2d) +

∑d
j=1 αs,2d,j · β2d,j

Since αs,k,j ∈ {0, 1}, the adversary can construct 2d2
d

systems of 2d equations
where there are at most 2m + d2m unknowns in the case where all the αs,k,j

are equal to 1. With qv < |Ii| valid inputs, each system is composed of at
most 2m equations with 2m(d2 + 1) unknowns6.
The adversary can solve the correct system iff 2m � 2m(d2 + 1) ⇔ d

2 + 1 � 1
which is impossible for d � 2.

– c > 1. We assume that the adversary is a collusion of c users. Let qv < |Ii|
be the number of valid queries. As above the adversary can store the sum

6 Only one of these systems is correct and since there are approximatively as many as
“1” values as “0” values in a codeword, the correct system has in average 2m + d

2
2m

unknowns.



140 S. Rasoamiaramanana et al.

values and guesses the other sum values. Hence, the probability to produce a
functional pirate key generator is equal to

(
1
2m

)t(|Ii|−qv).
Besides, the adversary may leverage the coalition to retrieve the original val-
ues Ti(x) for all i, x and thus reduce the storage size, this is the second
strategy.
For a tuple (x1, . . . , x2d), the adversary knows the table outputs of all mem-
bers of T . For 1 � s � c, 1 � k � 2d, 1 � j � d, we denote by αs,k,j the
unknown u

s,i
(xk)
j +jv+

(i−1)L
t

and by βk,j the unknown e
s,i

(xk)
j +jv+

(i−1)L
t

for a

fixed i. The adversary constructs the following system of equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (u1)(x1) = T (x1) +
∑d

j=1 α1,1,j · β1,j

T (u1)(x2) = T (x2) +
∑d

j=1 α1,2,j · β2,j

...
T (u1)(x2d) = T (x2d) +

∑d
j=1 α1,2d,j · β2d,j

...
T (uc)(x1) = T (x1) +

∑d
j=0 αc,1,j · β1,j

...
T (uc)(x2d) = T (x2d) +

∑d
j=0 αc,2d,j · β2d,j

As above, the adversary can construct 2cd2
d

systems of 2dc equations where
there are at most 2m+d2m unknowns and in average 2m+ d

22m unknowns. With
qv < |Ii| valid inputs, each system is composed of at most 2mc equations with
2m(d2 + 1) unknowns.

The adversary can solve the correct system iff 2mc � 2m(d2 +1) ⇔ c � d
2 +1.

References

1. Billet, O., Gilbert, H.: A traceable block cipher. In: Laih, C.-S. (ed.) ASIACRYPT
2003. LNCS, vol. 2894, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-40061-5 21

2. Billet, O., Phan, D.H.: Efficient traitor tracing from collusion secure codes. In:
Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85093-9 17

3. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Proceedings
of the 15th ACM Conference on Computer and Communications Security, pp. 501–
510. ACM (2008)

4. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 34

5. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

https://doi.org/10.1007/978-3-540-40061-5_21
https://doi.org/10.1007/978-3-540-40061-5_21
https://doi.org/10.1007/978-3-540-85093-9_17
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25


White-Box Traitor-Tracing from Tardos Probabilistic Codes 141

6. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

7. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

8. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
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Abstract. We propose a syntax and security definitions of an
anonymous deniable predicate authentication scheme with revocabil-
ity (rADPA). This new cryptographic primitive is to attain revocation
function as well as strong privacy guarantee concerning authentication.
Anonymity is for privacy in the authentication protocol, while deniabil-
ity is for anti-forensics after completion of the protocol. Then, we give a
generic construction of our rADPA scheme. Our approach is to build-in
the revocable attribute-based encryption scheme proposed by K. Yamada
et al. (ESORICS2017) into the anonymous deniable predicate authenti-
cation scheme proposed by S. Yamada et al. (PKC2012). Finally, we
discuss how our rADPA scheme can be instantiated by employing con-
crete building blocks in our generic construction.

Keywords: Anonymous authentication · Attribute · Deniability ·
Revocation

1 Introduction

Authentication is one of the three fundamental processes (i.e. identification,
authentication and authorization) for security of both private devices and net-
works; we have already been receiving benefits of information devices and com-
munication infrastructures such as smartphones and the internet in daily life,
and those benefits are mostly after logging-in to the devices and networks. There
the authentication mechanisms is running with hash functions, symmetric-key
systems, public-key infrastructures and various protocols with them.

Recently, more need of privacy protection is arising among participants of
networks. One big motivating trend is expansion of social networking services.
The participants, using pseudonyms, are communicating with each other on the
networks, but they are under the fear of being traced and punished due to some
wrong behavior. This actually a serious problem because there was news of a
c© Springer Nature Switzerland AG 2020
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famous SNS company giving participants’ personal data including pseudonyms
in response to the demand issued by a government.

In this paper, we propose a cryptographic tool for solving the above prob-
lem on privacy protection: Anonymous deniable predicate authentication scheme
with revocability. An anonymous authentication is already well-known technique
based on tokens issued by authorities. Especially, a cryptographic notion of
attribute-based encryption (ABE) [17] can be used as the technique to execute a
challenge-and-response authentication protocol. In key-policy ABE (KP-ABE)
introduced by the subsequent work of Goyal, Pandey, Sahai and Waters [12,16],
a secret key is associated with an access policy which is a boolean formula over
attributes, while a ciphertext is associated with a set of attributes. In a dual
manner, in ciphertext-policy ABE (CP-ABE) [12,18], a ciphertext is associated
with access policy over attributes, while a secret key is associated with a set of
attributes. In a KP-ABE or CP-ABE scheme, a secret key works to decrypt a
ciphertext if and only if the associated set of attributes satisfies the associated
access policy, and hence the challenge-and-response protocol works for a prover
to be authenticated based on attributes and policies. This protocol resembles
the traditional role-based access control (RBAC). However, the feature of the
ABE-based protocol is that it attains attribute privacy ; the verifier in the authen-
tication cannot decide which satisfying assignment of attributes is used for the
boolean formula (the access policy) in CP-ABE, and vice versa in KP-ABE.
Attribute privacy is a strong privacy notion and anonymity is realized as a part
of the property of it [12]. We note that currently the notion of an ABE scheme is
sophisticated into a predicate encryption scheme (PE) [21], where a more general
notions of key-attributes and ciphertext attributes are used.

Deniability is a different aspect of privacy protection. As is defined in Dodis
et al. [8], a deniable authentication scheme guarantees a seemingly paradoxical
property: upon completion of the protocol the verifier in an authentication server
is convinced that the prover is certainly a one who has satisfying key-attributes
in our scenario. However, neither party can convince anyone else (a third entity)
that the other party took part in the protocol. Thus, deniability is a property of
anti-forensics, and it is useful for participants who want to feel free of putting
any message in SNS without any fear. We stress that deniability is not implied
by anonymity and vice versa. This is because anonymity of a prover might be
broken by the server log-data and timing analysis, but deniability guarantees
that the log-data cannot be witness for the server to claim to a third entity that
the prover actually logged in. Conversely, if the timing analysis is prevented
by a network design like TOR, then anonymity actually blinds the server from
identifying the prover, and this is beyond the deniability property.

Anonymous deniable predicate authentication schemes (ADPAs) with the
above two properties were studied by S. Yamada et al. [21]. Actually they gave
a generic construction of an ADPA scheme, and discussed instantiations. The
idea in [21] is to enhancing the challenge-and-response authentication protocol
which uses a predicate encryption scheme by adding another four rounds of
message-transactions employing a perfectly binding commitment scheme.
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1.1 Our Contribution

In this paper, following this previous work [21], we further pursue a must function
in an authentication scheme; revocation. Needless to say, in an authentication
scheme an authority has to activate a participant, and has to revoke a par-
ticipant when it become to be needed. because of reasons such as expiration of
attributes. To attain the revocability we look at another important previous work
by K. Yamada et al. [19,20], in which they proposed a revocable attribute-based
encryption scheme (rABE).

We propose an anonymous deniable predicate authentication scheme with
revocability (rADPA) by employing (as the predicate encryption scheme) a revo-
cable attribute-based encryption scheme rABE. That is, we substitute the pair
of a ciphertext attribute and a revocation list (Y,RL) of rABE with the original
ciphertext attribute Y of the predicate encryption scheme.

We finally note that, in our rADPA scheme, a revocation list RL should be
maintained as a certificate revocation list (CRL) by a certificate authority (CA).
This is unavoidable for now, but the maintenance by, for example, a blockchain
[13,15] would be our future work.

1.2 Organization of This Paper

In Sect. 2 we summarize the needed notions and notations. In Sect. 3 we define
the syntax and security of our rADPA. In Sect. 4 we give a generic construction
of our rADPA. In Sect. 5 we discuss how our rADPA can be instantiated. In
Sect. 6 we conclude our work, and mention our future work.

2 Preliminaries

In this section, we prepare for the needed notions and notations to describe and
discuss our scheme in the remaining sections.

The set of natural numbers is denoted by N. The security parameter is
denoted by λ, where λ ∈ N. We put N0 := N ∪ {0}. The residue class ring
of integers modulo a prime number p is denoted by Zp. The number of elements
of a set S is denoted by |S|. The bit length of a string s is denoted by |s|. The
inverted value of a bit b is denoted by b̄ (i.e. b̄ := 1 − b). A uniform random
sampling of an element a from a set S is denoted as a ∈R S. The expression
a =? b returns a value 1 when a = b and 0 otherwise. When an algorithm A on
input a outputs z, we denote it as z ← A(a), or, A(a) → z. When a probabilis-
tic algorithm A on input a and with randomness r returns z, we denote it as
z ← A(a; r) When two probabilistic interactive algorithms A and B, on common
input x and private input a to A, interact with each other and B outputs z, we
denote it as z ← 〈A(a), B〉(x). When an algorithm A accesses an oracle O, we
denote it as AO. A probability P is said to be negligible in λ if for any given
positive polynomial poly(λ) P < 1/poly(λ) for sufficiently large λ. Two proba-
bilities P and Q are said to be computationally indistinguishable if |P − Q| is
negligible in λ, which is denoted as P ≈c Q.
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2.1 Terminologies

• ID = {0, 1}k: The space of identity strings of bit-length k.
• m := |ID|: The total number of possible identity strings; m = 2k.
• RL: The revocation list, which is a subset of ID.
• B : The upper bound of the number of revoked identity strings. That is, |RL|

should be less than B (|RL| < B).
• κ: The index which describes an attribute set and also a predicate function.

κ ∈ N
c for a constant c.

• X
κ: The set of all key-attributes under the index κ.

• Y
κ: The set of all ciphertext-attributes under the index κ.

• Rκ: Xκ × Y
κ → {0, 1}: A predicate function on X

κ × Y
κ, which determines

a relation under the index κ (i.e. a subset Rκ := {(X,Y ) ∈ X
κ × Y

κ |
Rκ(X,Y ) = 1}).

• R := {Rκ}κ∈N
c

: The family of predicate functions.

2.2 Revocable Attribute-Based Encryption Scheme [19,20]

A revocable attribute-based encryption scheme rABE is defined with a given
family of predicate functions R. rABE consists of four probabilistic polynomial-
time algorithms (ppts for short): rABE = (Setup,KeyGen,Enc,Dec).

• Setup(1λ, κ) → (PK,MSK). This ppt algorithm takes as input the security
parameter 1λ and the index κ which describes a predicate function. It returns
a public key PK and a master secret key MSK.

• KeyGen((X, id),PK,MSK) → SKX
id . This ppt algorithm takes as input a key-

attribute X, an identity string id, the public key PK and the master secret
key MSK. It returns a private secret key SKX

id .
• Enc((Y,RL),PK,M) → CT . This ppt algorithm takes as input a ciphertext

attribute Y , the revocation list RL, the public key PK and a plaintext M . It
returns a ciphertext CT .

• Dec(SKX
id , (Y,RL),PK, CT ) → M̃ . This deterministic polynomial-time algo-

rithm takes as input a private secret key SKX
id , the public key PK and a

ciphertext CT . It returns a decryption result M̃ .

Correctness of Revocable Attribute-Based Encryption Scheme. Cor-
rectness of rABE is defined as the correctness as an attribute-based encryption
scheme in the following way. First we extend the predicate function Rκ on a
key-attribute X and a ciphertext attribute Y into R̄

κ by doing substitution
X ← (X, id) and Y ← (Y,RL) so that R̄

κ captures whether the id ∈ RL holds
or not:

R̄
κ((X, id), (Y,RL)) def=

{
1 if Rκ(X,Y ) = 1 ∧ id /∈ RL,

0 otherwise.

rABE is said to be correct when, for any λ ∈ N, any κ ∈ N
c, any (X, id) ∈ X

κ×ID
and any (Y,RL) ∈ Y

κ × 2ID, s.t. R̄κ((X, id), (Y,RL)) = 1, and any message M ,
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it holds that Pr[M = M̃ | Setup(1λ, κ) → (PK,MSK), Enc((Y,RL),PK,M) →
CT , KeyGen((X, id),PK,MSK) → SKX

id , Dec(SKX
id , (Y,RL),PK, CT ) → M̃ ] =

1.

IND-CCA Security of Revocable Attribute-Based Encryption Scheme.
Security of indistinguishability against chosen-ciphertext attacks (IND-CCA
security) of rABE is defined by the following experimental algorithm on rABE
and a given algorithm A.

Exprind-ccarABE,A(1λ, κ)

(PK,MSK) ← Setup(1λ, κ)

((M0,M1), (Y ∗,RL∗), St) ← ADEC,KG(PK, κ)
b ∈R {0, 1}, CT ∗ ← Enc((Y ∗,RL∗),PK,Mb)

b∗ ← ADEC,KG(CT ∗, St)
If b = b∗ then return Win else return Lose

The two chosen plaintexts should be equal length: |M0| = |M1|. A accesses two
oracles. One is the decryption oracle DEC. Sending ((Xi, idi), (Yi,RLi, CTi)), A
queries DEC for the decryption of CTi. The other is the key-generation oracle KG.
Sending (Xj , idj), A queries KG for a private secret key SKXj

idj
. The numbers qdec

and qkey of the both queries (i = 1, . . . , qdec, j = 1, . . . , qkey) are bounded by a
polynomial in λ. (M0,M1) is a pair of chosen-plaintexts, which is the target plain-
texts. (Y ∗,RL∗) are called the target ciphertext-attribute and the target revo-
cation list, respectively. Two restrictions are imposed: First, A is not allowed to
issue a decryption query ((Xi, idi), (Yi,RLi, CTi)) s.t. R̄κ((Xi, idi), (Yi,RLi)) =
1 and (Yi,RLi, CTi) = (Y ∗,RL∗, CT ∗). Second, A is not allowed to issue a
key-extraction query (Xj , idj) s.t. R̄

κ((Xj , idj), (Y ∗,RL∗)) = 1. The advan-
tage Advind-cca

rABE,A(λ, κ) of A over rABE is defined as the winning probability:

Advind-cca
rABE,A(λ, κ) def= Pr[Exprind-ccarABE,A(1λ, κ) returns Win]. rABE is said to be IND-

CCA secure if, for any given ppt algorithm A, Advind-cca
rABE,A(λ, κ) is negligible in

λ.
The notion of semi-adaptive IND-CCA security [7,11] is defined by imposing

A to declare the target after seeing PK and public parameters but before issuing
any queries.

Exprind-semiad-cca
rABE,A (1λ, κ)

(PK,MSK) ← Setup(1λ, κ)
((M0,M1), (Y ∗,RL∗), St) ← A(PK, κ)
b ∈R {0, 1}, CT ∗ ← Enc((Y ∗,RL∗),PK,Mb)

b∗ ← ADEC,KG(CT ∗, St)
If b = b∗ then return Win else return Lose

The advantage Advind-semiad-cca
rABE,A (λ, κ) is defined in the same way.
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Verifiability of Revocable Attribute-Based Encryption Scheme [21].
Verifiability of rABE is defined as the following property. For any λ ∈ N, any
κ ∈ N

c, any (PK,MSK) ← Setup(1λ, κ), any (X, id), (X ′, id′) ∈ X
κ × ID, any

(Y,RL) ∈ Y
κ × 2ID, any SKX

id ← KeyGen((X, id),PK,MSK) and any SKX′
id′ ←

KeyGen((X ′, id′),PK,MSK), if R̄
κ((X, id), (Y,RL)) = R̄

κ((X ′, id′), (Y,RL)),
then for any CT ∈ {0, 1}∗ it holds that Dec(SKX

id , (Y,RL),PK, CT ) =
Dec(SKX′

id′ , (Y,RL),PK, CT ).

2.3 Commitment Scheme [6,10]

A commitment scheme CmtSch consists of three ppt algorithms: CmtSch =
(Cmt.Setup,Cmt.Com,Cmt.Open).

• Cmt.Setup(1λ) → CK. This ppt algorithm takes as input the security param-
eter 1λ. It returns a commitment key CK.

• Com(CK,M ; γ) → C. This ppt algorithm takes as input the commitment
key CK and a message M . It returns a commitment C and an opening key γ
which is the randomness used to generate C.

• Open(C, γ) → M̂ . This deterministic polynomial-time algorithm takes as
input a commitment C and the opening key γ It returns an opened mes-
sage M̂ .

Definition 1 (Perfectly Binding [10]). A commitment scheme CmtSch is
said to be perfectly binding if it satisfies the following condition for some
unbounded algorithm Cmt.Open: For any security parameter 1λ, any commit-
ment key CK ← Cmt.Setup(1λ) and any message M ,

Pr[M = M ′ | (C, γ) ← Cmt.Com(M ; γ),M ′ ← Cmt.Open(C)] = 1.

Definition 2 (Computationally Hiding [10]). A commitment scheme
CmtSch is said to be computationally hiding if it satisfies the following condition:
For any security parameter 1λ, any commitment key CK ← Cmt.Setup(1λ) and
any ppt algorithm A,

Pr[A(St, C) = 1 | (M,M ′, St) ← A(CK), (C, γ) ← Cmt.Com(M)]
≈c Pr[A(St, C ′) = 1 | (M,M ′, St) ← A(CK), (C ′, γ′) ← Cmt.Com(M ′)]. (1)

3 Syntax and Security Definitions of Anonymous
Deniable Predicate Authentication Scheme with
Revocability

In this section, we give a syntax of an anonymous deniable predicate authenti-
cation scheme that has the function of revocability. We denote the scheme by
rADPA. Then we define three security notions: concurrent soundness, anonymity
and deniability. The syntax and security definitions are in accordance with the
previous work [21].
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3.1 Syntax

Our rADPA consists of four ppts: rADPA = (Setup,KeyGen,P,V).

• Setup(1λ, κ) → (PK,MSK). This ppt algorithm takes as input the security
parameter 1λ and the index κ which describes a predicate function. It returns
a public key PK and a master secret key MSK.

• KeyGen((X, id),PK,MSK) → SKX
id . This ppt algorithm takes as input a key-

attribute X, an identity string id, the public key PK and the master secret
key MSK. It returns a private secret key SKX

id .
• 〈P(SKX

id ),V〉((Y,RL),PK) → 1/0. These interactive ppt algorithms take as
common input a ciphertext attribute and a revocation list (Y,RL) and the
public key PK, and as private input to P a private secret key SKX

id . P and
V interact with each other for at most a polynomial number of rounds in λ.
Then V finally returns a decision 1 or 0.

3.2 Security Definitions

Concurrent Soundness. Intuitively, concurrent soundness means security
against misauthentication caused by an adversary which does not have a sat-
isfying private secret key. Formally a definition is given via the following exper-
imental algorithm Exprc-soundrADPA,A.

Exprc-soundrADPA,A(1λ, κ)

(PK,MSK) ← Setup(1λ, κ)

((Y ∗,RL∗), St) ← APi(SK
Xi
idi

)|qpi=1,KG(PK, κ)

b ← 〈APi(SK
Xi
idi

)|qpi=1,KG(St),V〉((Y ∗,RL∗),PK)
If b = 1 then return Win else return Lose

Two restrictions are imposed: First, A is not allowed to relay the messages even
in partial. Second, A is not allowed to issue a key-extraction query (Xj , idj) s.t.
R̄

κ((Xj , idj), (Y ∗,RL∗)) = 1.
The advantage Advc-sound

rADPA,A(λ, κ) of A over rADPA is defined as the winning

probability: Advc-sound
rADPA,A(λ, κ) def= Pr[Exprc-soundrADPA,A(1λ, κ) returns Win]. rADPA is

said to be (adaptively) concurrently sound if, for any given ppt algorithm A,
Advc-sound

rADPA,A(λ, κ) is negligible in λ.
The notion of semi-adaptive concurrent soundness is defined by imposing A

to declare the target after seeing PK and public parameters but before issuing
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any queries.

Exprsemiad-c-sound
rADPA,A (1λ, κ)

(PK,MSK) ← Setup(1λ, κ)
((Y ∗,RL∗), St) ← A(PK, κ)

b ← 〈APi(SK
Xi
idi

)|qpi=1,KG(St),V〉((Y ∗,RL∗),PK)
If b = 1 then return Win else return Lose

The advantage Advsemiad-c-sound
rADPA,A (λ, κ) is defined in the same way.

Advsemiad-c-sound
rADPA,A (λ, κ) def= Pr[Exprsemiad-c-sound

rADPA,A (1λ, κ) returns Win].

Anonymity. Intuitively, anonymity means privacy which is indistinguishability
between satisfying two patterns of key-attributes. Formally a definition is given
via the following experimental algorithm ExpranonymrADPA,A.

ExpranonymrADPA,A(1λ, κ)

(PK,MSK) ← Setup(1λ, κ)
((X∗

0 , id∗
0), (X

∗
1 , id∗

1), St) ← A(PK,MSK)

SKX∗
0

id∗
0

← KeyGen((X∗
0 , id∗

0),PK,MSK),SKX∗
1

id∗
1

← KeyGen((X∗
1 , id∗

1),PK,MSK)

((Y ∗,RL∗), St) ← A(St,SKX∗
0

id∗
0
,SKX∗

1
id∗

1
) s.t.

R̄
κ((X∗

0 , id∗
0), (Y

∗,RL∗)) = R̄
κ((X∗

1 , id∗
1), (Y

∗,RL∗))

b ∈R {0, 1}, b∗ ← A
P(SK

X∗
b

id∗
b
)
(St)

If b = b∗ then return Win else return Lose

The advantage Advanonym
rADPA,A(λ, κ) of A over rADPA is defined as the win-

ning probability: Advanonym
rADPA,A(λ, κ) def=

∣∣ Pr[ExpranonymrADPA,A(1λ, κ) returns Win] −
1
2

∣∣. rADPA is said to have anonymity if, for any given ppt algorithm A,
Advanonym

rADPA,A(λ, κ) is negligible in λ.

Deniability. Intuitively, deniability means privacy which states anti-forensic
property that a third party is not able to confirm whether a prover actually
participate in the authentication protocol. Formally a definition is given via the
indistinguishability of the following two probability distributions Real and Sim,
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where A is any given algorithm and S is an adaptively given algorithm to A.

Real(λ, κ, (X, id), (Y,RL)) def= View
(〈P(SKX

id ),A〉((Y,RL),PK)∣∣ Setup(1λ, κ) → (PK,MSK);KeyGen((X, id),MSK) → SKX
id

)
,

Sim(λ, κ, (X, id), (Y,RL)) def= View
(〈S,A〉((Y,RL),PK)∣∣ Setup(1λ, κ) → (PK,MSK);KeyGen((X, id),MSK) → SKX

id

)
.

rADPA is said to have deniability if, for any given ppt algorithm A, there exists
a ppt algorithm S s.t. for any given ppt algorithm D it holds that

Pr[D(Real(λ, κ, (X, id), (Y,RL))) = 1]
≈c Pr[D(Sim(λ, κ, (X, id), (Y,RL))) = 1].

4 Generic Construction of Anonymous Deniable
Predicate Authentication Scheme with Revocability

In this section, we give a generic construction of an rADPA scheme in Sect. 3
following the idea of previous work [21].

4.1 Construction

The idea in [21], which originates from the work of Naor [14], is to combine an
IND-CCA secure verifiable predicate encryption scheme with a perfectly binding
commitment scheme. In our case, we follow the above idea, but we employ a
revocable attribute-based encryption scheme rABE as the predicate encryption
scheme. That is, we substitute the original ciphertext attribute Y of the predicate
encryption scheme with the pair of a ciphertext attribute and a revocation list
(Y,RL) of rABE.

Figure 1 shows our construction of rADPA. Intuitively, the prototype of
rADPA is a challenge-and-response protocol in which rABE is employed. Next
we modify it by, for each i = 1 to λ, dividing the “response” r̃ into two ran-
dom strings ri0 and ri1 with a linear constraint r̃ = ri0 ⊕ ri1. Then we execute
“commit and open” protocol with randomly selected bits bi for i = 1 to λ.

4.2 Security

Theorem 1 (Concurrent Soundness). If rABE is IND-CCA secure and ver-
ifiable, and if Com is perfectly binding, then our rADPA is concurrently sound.
More precisely, for any given ppt algorithm A which is in accordance with
Exprc-soundrADPA,A(λ, κ), there exists a ppt algorithm B such that

Advc-sound
rADPA,A(λ, κ) < Advind-cca

rABE,B(λ, κ). (2)

Proof. See the full version of this extended abstract. ��
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Fig. 1. Our generic construction of anonymous deniable predicate authentication
scheme with revocability, rADPA.

Corollary 1 (Semi-adaptive Concurrent Soundness). If rABE is semi-
adaptively IND-CCA secure and verifiable, and if Com is perfectly binding, then
our rADPA is semi-adaptively and concurrently sound. More precisely, for any
given ppt algorithm A which is in accordance with Exprsemiad-c-sound

rADPA,A (λ, κ), there
exists a ppt algorithm B such that

Advsemiad-c-sound
rADPA,A (λ, κ) < Advind-semiad-cca

rABE,B (λ, κ). (3)
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Proof (Sketch). This is straightforward because the discussion of semi-
adaptiveness is independently applied to the proof of Theorem 1. See the full
version of this extended abstract for detail. ��
Theorem 2 (Anonymity). If rABE is IND-CCA secure and verifiable, then
our rADPA has anonymity. More precisely, for any given unbounded algorithm
A,

Advanonym
rADPA,A(λ, κ) = 0. (4)

Proof. See the full version of this extended abstract. ��
Theorem 3 (Deniability). If rABE is correct, and if Com is computationally
hiding, then our rADPA has deniability. More precisely, for any given ppt algo-
rithm D,

Pr[D(Real(λ, κ, (X, id), (Y,RL))) = 1] (5)
≈c Pr[D(Sim(λ, κ, (X, id), (Y,RL))) = 1]. (6)

Proof. See the full version of this extended abstract. ��

5 Discussion on Instantiations

In this section, we discuss how our generic construction of rADPA in Sect. 4 is
instantiated.

Our rADPA consists of the two building blocks: rABE and CmtSch. According
to Theorems 1, 2 and 3 in Sect. 4, we need the correctness, IND-CCA security
and verifiability for rABE and the perfectly binding and computationally hiding
properties for CmtSch. Further, according to the (first) construction of rABE pro-
posed in [19,20], we are able to construct rABE from an attribute-based encryp-
tion scheme (ABE) and an identity-based revocation scheme (IBR) in the pair
encoding framework [2], which combines ABE and IBR via the generic conjunc-
tive conversion [5]. Note here that we have to apply the CPA-to-CCA conversion
[21] to the component ABE scheme, if needed. Thanks to the functionality-
preserving property [19,20], if ABE is correct and IND-CCA secure, then so is
the converted rABE.

As for verifiability, most of selectively secure ABE schemes such as [16] (KP-
ABE) and [18] (CP-ABE) are publicly verifiable, and hence verifiable [21]. Apply-
ing the generic transformation [11] to a selectively secure ABE scheme, we obtain
a semi-adaptively IND-CCA secure rABE which is also verifiable. In contrast, the
adaptively secure ABE schemes such as [2,3], which depend on the dual-system
encryption technique, are not verifiable in their proposed forms, but they can
be modified into verifiable ones [21]. Hence we obtain an adaptively IND-CCA
secure rABE which is also verifiable.

Among the instantiations discussed in the previous work [19,20], we are inter-
ested in rABE with the selective security which yields the semi-adaptive secu-
rity [11], or with constant size ciphertexts. The former is because, in the semi-
adaptive security model, adversaries choose the target (in our case (M0,M1) and
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Table 1. Instantiations

IND-CCA Secure rABE
ABE (Flavor), IBR

CmtSch Verifiability Message
Len.

Security Assumptions

[11,16,21] (KP-ABE), [2] EG [9] Public Non-const. Semi-adap. DBDH, EDHE

[11,16,21] (KP-ABE), [4] EG [9] Public Non-const. Semi-adap. DBDH, EDHE

[11,18,21] (CP-ABE), [2] EG [9] Public Non-const. Semi-adap. DPBDHE, EDHE

[11,18,21] (CP-ABE), [4] EG [9] Public Non-const. Semi-adap. DPBDHE, EDHE

[2,21] (KP-ABE), [2] EG [9] via [21] Const. Adap. EDHE

[2,21] (KP-ABE), [4] EG [9] via [21] Const. Adap. EDHE

[3,21](CP-ABE), [2] EG [9] via [21] Const. Adap. MDH, EDHE

[3,21](CP-ABE), [4] EG [9] via [21] Const. Adap. MDH, EDHE

(Y ∗,RL∗)) after seeing PK and public parameters but before issuing any queries.
This model is considered to be natural and often sufficient in the case of authen-
tication (see Sect. 2.2), which makes a contrast to the case of encryption. The
ABE schemes with the selective security are known; for example, KP-ABE [16]
and CP-ABE [18]. The IND-CCA security of the ABE schemes (after applying
the CPA-to-CCA conversion [21]) is under the decisional bilinear Diffie-Hellman
assumption (DBDH) and the decisional parallel bilinear Diffie-Hellman Expo-
nent assumption (DPBDHE), respectively.

The latter is because, when an authentication scheme is applied in a real net-
work protocol, the message length should preferably be constant. It is notable
that ABE schemes with constant size ciphertexts are known (KP-ABE [2] and
CP-ABE [3]). The IND-CCA security of the ABE schemes (after applying
[21]) is under the matrix Diffie-Hellman assumption (MDH) and the expanded
Diffie-Hellman exponent assumption (EDHE), respectively. Also, there are IBR
schemes with constant size ciphertexts [2,4]. The IND-CCA security of the IBR
schemes (after applying [21]) is under the EDHE assumption. Hence we can
actually instantiate our rADPA with constant message length.

As for a commitment scheme CmtSch with the perfectly binding and com-
putationally hiding properties, we can employ the ElGamal encryption scheme
(EG) [9]. The computationally hiding property is obtained from the indistin-
guishability against chosen-plaintext attacks, which is under the decisional Diffie-
Hellman assumption (DDH).

Table 1 summarizes the above discussion.

6 Conclusion

We proposed an anonymous deniable predicate authentication scheme with revo-
cability, rADPA, which has strong privacy protection properties. We gave the syn-
tax and formal security definitions of rADPA; concurrent soundness, anonymity
and deniability. Then we showed a generic construction of rADPA, whose building
blocks are a revocable attribute-based encryption scheme, rABE, and a commit-
ment scheme, CmtSch. We stated that, when rABE and CmtSch have suitable
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properties, then our rADPA attains the security properties. Finally, we discussed
how our generic construction of rADPA is instantiated.

Our future work would be a feasibility study of our rADPA by implementa-
tion. Also, we have to examine how the six-round authentication protocol of our
rADPA is feasible in real scenarios in the internet.
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JP18K11297. We would like to express our sincere thanks to Keita Emura for his
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Abstract. We recall a series of physical cryptography solutions and pro-
vide the reader with relevant security analyses. We mostly turn our atten-
tion to describing attack scenarios against schemes solving Yao’s million-
aires’ problem, protocols for comparing information without revealing it
and public key cryptosystems based on physical properties of systems.
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1 Introduction

In our paper we present a security analysis to a series of problems that can
be seen as abstract games. Our main motivation for studying such protocols is
their teaching utility. Note that we are not aware of any real-world application of
any sort, as these problems fall in the category of “recreational cryptography”.
Although recreational, these protocols can provide interesting insight and tech-
niques that can be useful for understanding the concepts on which the underlying
problems are based.

Physical cryptography [4,11,17,20] makes use of physical properties of sys-
tems for encrypting and/or exchanging information (i.e. without using one-way
functions). Although a very interesting teaching tool, it can be shown that some
of the proposed methods are not safe in practice. Thus, our aim is to attack such
physical protocols using methods similar to classical side channel techniques.

Besides the obvious cryptographic teaching utility of physical cryptography
schemes, we believe that some of the schemes tackled in the current paper may
be successfully used for introducing concepts corresponding to other domains.
We provide the reader with such examples in the following sections.

Although some authors acknowledge that their proposed protocols are only
useful for playing with children or introducing new concepts to non-technical audi-
ences, the authors of [9–11,21] claim that their schemes can be securely imple-
mented in real-life scenarios. In [6], Courtois attacks one of the protocols proposed
in [10], but the authors contest his results in [11]. We independently conducted a
simulation of the attack and our results acknowledge Courtois’ claim.
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Structure of the Paper. In Sect. 2 we describe various schemes proposed in [9–
11,21] which aim at solving Yao’s millionaires’ problem and provide the reader
with their corresponding security analyses. In Sect. 3 we present a set of protocols
which act as solutions for comparing information without revealing it and discuss
their security. In Sect. 4 we describe a public key cryptosystem constructed by
means of an electrical scheme and tackle its security. We conclude and discuss
future work ideas in Sect. 5. Due to the page number restriction, we recall various
physical cryptographic solutions which appeared in the literature in Appendix A.
Also, in Appendix B we present a generic physical public key encryption scheme
useful for introducing students to different properties of physical systems.

Notations. We denote by U and V the private spaces of Alice and, respectively,
Bob. By “impenetrable” we further refer to an object that can not be broken or
looked into no matter the means employed by an adversary. Note that, in prac-
tice, “impenetrable” objects do not exist, but we use this concept for presenting
the philosophical aspects of different cryptographic problems.

2 Yao’s Millionaires’ Problem

In [24] Yao introduced “Two Millionaires’ Problem”. The problem can be defined
as follows. Alice has a private number a and Bob has a private number b. The
goal of the two parties is solving the inequality a ď b without revealing the
actual values. We further assume that a, b P [0, n] are integers.

In [9–11,21] the authors present a number of solutions for the previously
mentioned problem based on physical principles. In this section we focus on
describing their proposed protocols together with our security analyses.

According to the original security model, during the following we consider
Alice and Bob as being honest but curious users, i.e. they can observe, measure
and compute whatever they like and try to get a hold on the other party’s private
numbers while following the protocol’s steps.

2.1 “Elevator” Solution

Description. To recall the scheme we follow the descriptions given in [9,11]. We
start by assuming that we have at our disposal a building with at least n floors.
Moreover, we consider that the chosen building is equipped with an elevator.
Alice positions herself on floor number a while Bob goes to floor number b. Then,
Bob takes an elevator (from Bob’s private space V ) going down and stopping at
every floor. Alice watches the elevator doors on her floor, making sure that Bob
does not see her if the elevator doors open (here is Alice’s private space U). If
she sees the elevator doors open, she knows that Bob’s number is larger. If not,
then his number is smaller. Using such a protocol, Bob will not know the result
of the comparison until Alice shares it with him.
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Security Analysis. The only security considerations of [9,11] are that Bob can
lock the stairs and disable all elevators except one. This may prevent Alice from
cheating by running between different floors to get a better estimate of Bob’s
number.

During our analysis we found other various attack scenarios. We consider the
steps of the protocol as being sequential (i.e. first Alice gets to floor a and then
Bob gets to floor b).

1. If Alice uses the same elevator as Bob she can simply conceal a small camera1

while ascending to floor a. Thus, she can recover b as soon as Bob ascends to
his designated floor. In order to mitigate such an attack, Bob must be ensured
that Alice uses a different elevator or the stairs (i.e. making sure that Bob’s
elevator remains somewhat protected).

2. If the floor doors of Bob’s elevator are not secured then Alice can open one
of the doors and attach a motion sensor to the elevator. By analyzing the
elevator’s movement Alice can deduce b. Hence, Bob must be ensured that
all the floor doors are secured against unauthorized access.

3. If Alice has access only to the stairs then she can install cameras on each of
the n floors2. If Bob limits Alice’s access to only one floor (a) for security
reasons, then he can always check the access readers installed on each floor
and find a. These attacks can also be mounted by Alice if Bob takes the
stairs. As a result, the only viable solution would be for Alice and Bob to use
separate elevators.

4. Once Alice reaches a then she can use a microphone to detect the sound made
by the elevator’s movement. By counting the number of times the elevator’s
engine starts or the doors open Alice can deduce b. Hence, to prevent such an
attack, Bob can use a device for generating noise in order to mask the other
relevant sounds. This attack can also be mounted by Bob for deducing a.

When Alice and Bob simultaneously ascend to their designated floors, the
attack scenarios Items 3 and 4 are still feasible.

We do not claim that the protocol is feasible in practice (the doors must
be “impenetrable” and the noise source must perfectly mask the sound of the
elevator’s movement). We only claim that the example can be practically used
to introduce Yao’s problem to non-specialized audiences and also to make people
think of different methods of attacking the system.

2.2 “Race Track” Solution

Description. For recalling the scheme we follow the description from [11]. Let us
consider that Alice and Bob have at their disposal a race track of length n. Then,
the two parties run toward each other from the opposite ends of the race track,

1 We can also consider all types of small devices which incorporate cameras.
2 If the building already has security cameras, a simpler solution is bribing the security

guard and watching the security footage to obtain b.
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maintaining the speeds of a m/s (Alice), respectively b m/s (Bob). The party
which reaches first the midpoint of the track leaves a mark there and runs back,
knowing that he/she was faster3. When the other party gets to the midpoint,
he/she will know that he/she was slower4. In order to create their private spaces
in this scenario, Alice and Bob have to construct an “impenetrable” fence across
the track at the midpoint.

The authors of [11] state that the “race track” idea can be implemented on a
computer if two different programs are allowed to work with the same file at the
same time. Thus, consider that the shared file is a bit string of length n, with all
bits initially equal to 1. Alice provides a program that goes over this bit string
left to right, replacing the current 1 symbol by 0 at the speed of one symbol
per a time units. Bob provides a similar program going over the same bit string
right to left, at the speed of one symbol per b time units. When either of the two
programs replaces n/2 symbols, it replaces the current symbol by X and stops.
In such a way, the two parties will know that whose program stops first has the
bigger number. Both programs will have to use the computer’s internal clock.

Security Analysis. In [11] the authors mention that the “race track” solution
only works if both parties are honest and provide the reader with an attack
scenario otherwise. More precisely, the party who reaches the fence first does
not run back but just waits to see when the other party arrives, thus figuring
out the other party’s speed.

During our analysis we found that another restriction must hold. If Alice and
Bob run on a circular track when they are “close enough”5 to the midpoint they
will be able to see each other. Thus, even if the parties are honest, the previous
attack is still valid. To avoid such a scenario, a possible solution would be to put
an “impenetrable”6 fence such that both private spaces are isolated one from
the other and also from the outside world7.

The digital variant of the “race track” idea on a computer is, unfortunately,
flawed. In order for the protocol to be valid both users need read/write access
to the file. This implies that any of the parties can choose two positions of
the other parties’ half of the file, continuously read the symbols corresponding
to these positions and record the time needed for the symbols to change. This
can be easily extended to monitoring multiple positions. Thus, each user can
compute the other party’s value.

Teaching Utility. Although the digital variant is not secure, it can be used by
teachers as an implementation task. Thus, students can implement two programs
that race each other and also a third program that monitors the speed of either
Alice and/or Bob.

3 Without knowing the actual speed of the other party.
4 Again, without knowing the actual speed of the other party.
5 The precise difference between a and b depends on the race track’s radius.
6 From both a visual and acoustic point of view.
7 If, for example, we isolate the two areas using only a wall, one of the parties can use

a drone for spying the other.
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2.3 “Communicating Vessels” Solution

Description. To recall the scheme we follow the description from [11]. We start
by assuming that Alice has a communicating vessel CA in her private space U ,
while Bob has a communicating vessel CB in his private space V . CA and CB are
connected by a horizontal pipe attached to their bottoms and, thus, a working
system is constructed. The shapes of the vessels are part of the parties’ private
keys. In the beginning the system is “almost” filled with water. Then, Alice
starts pumping the water out of her vessel at the speed of a gallons8 per second,
while Bob starts pumping the water in his vessel at the speed of b gallons per
second. The parties are simply watching whether the level of water is decreasing
or increasing. If it is decreasing, then a ą b; if it is increasing, then a ă b.

Security Analysis. According to the authors of [21] the final level of water
in the system depends not only on a and b, but also on the shapes of both
vessels. Also, the relation between a and quantities that can be measured outside
of Alice’s vessel depends on the shape of Alice’s vessel, which is unknown to
anybody except Alice herself.

During our analysis we observed two main issues of the proposed protocol.
First of all, if the participants pump water in and out of the system the shapes of
their communicating vessels become irrelevant. In such a case, the authors might
have thought about pouring water instead of pumping it while constructing their
scheme. Secondly, the shapes of the vessels must be considered in such a way that
the two parties can precisely measure fluctuations in their corresponding vessels.
To explain this type of phenomena we can consider the following exaggerated
example: the shapes of Alice and Bob’s vessels correspond to those of two small
artificial lakes and they pump water in and out with negligible speeds (e.g. a
milliliter per hour). Then, they can not accurately detect which speed is greater
than the other.

The scheme enhanced with our previous comments becomes equivalent with:
Alice and Bob have two cylinder shaped vessels such that they can accurately
measure fluctuations of the system. To detect Alice’s value, Bob can use a grad-
uated cylinder and measure the volume’s fluctuation. Then, using his own speed
value b he can compute a. Hence, the scheme is insecure for solving Yao’s problem
but it can be used as a public key encryption scheme (see Appendix B).

Teaching Utility. Communicating vessels are a common example in physics
teaching (see for example [12]). More precisely, the scheme provides a good
opportunity for a teacher to introduce students to the dynamics of (ideal) fluids.

2.4 “Rope” Solution

Description. For recalling the scheme we follow the description given in [10].
Alice and Bob privately select c ă 0 and, respectively, d ą 0. We position Alice

8 Or whatever units.
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and Bob in a plane, Alice at point A “ (a, c) and Bob at point B “ (b, d). Also,
we give them both long pieces of rope. We assume that the scaling is such that
Alice and Bob cannot see each other’s point.

First, Alice fixes one end of her rope at point A and selects as her private
space U a neighborhood of point A that cannot be seen by Bob. Bob, too, selects
V as a neighborhood of his point B. Then, Alice fixes the other end of her rope to
a random point C in the plane, far enough so that her neighborhood U can not
be seen from C. After fixing the rope, she positions the part of the rope inside U
so that this part is not a straight line. She then communicates the coordinates
of point C to Bob.

Bob walks to point C, ties one end of his rope to Alice’s rope, then walks
back to his point B, while unwinding (not pulling) his rope along the way. When
Bob reaches his B, he starts pulling the rope until Alice tells him to stop, which
is as soon as Alice sees that the part of the rope inside her neighborhood U
is a straight line. To make sure that it is not by accident that the part of the
rope inside her neighborhood U is a straight line, Alice asks Bob whether or not
the part of the rope inside his neighborhood V is a straight line. If it is not,
then Alice starts pulling her end of the rope toward her point A until Bob tells
her to stop, which is as soon as Bob sees that the part of the rope inside his
neighborhood V is a straight line.

When the parts of the rope inside both neighborhoods U and V are straight,
Alice and Bob assume that their points A and B are connected by a straight
rope, and they find the slope s of the corresponding straight line by selecting
any two points on the parts of the line inside their private neighborhoods. Then,
a ă b if and only if s ą 0.

Security Analysis. Some parts of the scheme described in [10] may seem redun-
dant according to the authors. As pointed out by them, if both parties are honest
the protocol can be simplified. To mitigate dishonest parties attacks, e.g. Alice
must tell Bob to stop as soon as she sees that the part of the rope inside her
neighborhood U is a straight line. Otherwise, Bob could triangulate Alice’s point
A by straightening the rope between A and two different points of his choice.

Since we do not consider the honest but curious attack model for this precise
protocol, another simple attack can be mounted. Bob can walk along Alice’s rope
until he is able to determine the coordinates of point A. To prevent Alice from
seeing Bob while he tries to find A, he can use, for example, either a small drone
or a powerful telescopic sight. To avoid such a vulnerability of the protocol, the
neighborhood U must be covered by an “impenetrable” material and, also, to
contain a large number of points such that it is impossible for Bob to determine
the exact position of A. When selecting the number of points in U we also need to
take into account the following scenario. After determining the precise position
of U in the plane Bob gets back to point C and follows the initial protocol for
determining s. Then, Bob can narrow down the number of possibilities for A.

Teaching Utility. A variation of this protocol for key exchange may be the
following. Ted, a trusted third party, takes an infinite rope and fixes one end of
it at Alice’s point A. Similarly, Ted fixes another rope at Bob’s point B. After
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fixing the ropes, Ted walks to a random point T such that the distance to A and
B is equal and then cuts the ropes at point T . In the last step of the protocol
Ted returns the ropes to Alice and, respectively, Bob. The common key is the
length of the two ropes.

Besides a good reason for a discussion about analytic geometry, this variations
of the protocol can be the starting point for describing the secure key exchange
protocol for the Internet of Things networks introduced in [18].

2.5 “Laboratory Scale” Solution

Description. To recall the scheme we follow the description from [9]. We assume
that Alice and Bob have access to a laboratory scale9. Each of the two parties
manufacture a weight corresponding to their private number (e.g. in grams). We
also assume that they have identical boxes10 where each of them can put their
corresponding weight. Alice enters the room where the scale is positioned and
puts her box on one of the plates. Then, Bob enters and puts his box on the
other plate. If his plate goes down, then his number is larger; otherwise, it is
Alice’s number that is larger.

Security Analysis. The authors argue in [9] that Alice and Bob do not have
to be in the same place at the same time to perform the comparison, but they
still have to be in the same place at some point, which may be inconvenient. In
fact, if, say, Alice is worried about Bob cheating (by putting different weights
on his plate to zoom in on Alice’s weight), then she would have to stay in the
room and watch what Bob is doing.

Note that when we analyzed the solution we assume that the box is “impen-
etrable”. Compared to the “rope” solution where Bob needs to cheat in order to
detect the dimensions of U , here Bob knows the precise size of the covering box.
This gives him an upper limit of the weight’s volume. If he knows the material
of the weight, then he has an upper limit of the value a. This could be easily
mitigated by keeping the weight’s material secret.

3 Comparing Information Without Revealing It

The initial problem from which the study in [8] started is the following. Charlie
complains to one of his managers, Alice, about a sensitive matter and asks her
to keep it secret. A few months later, another manager, Bob, tells Alice that
someone complained to him, also with a confidentiality request, about the same
matter. Alice and Bob need a way to determine if the same person complained
to them without revealing the identity of the complainer. The authors of [8]
describe a series of complex protocols that try to accomplish this task. But, the
simplest solution was actually provided by the 13 year old son of the first author:
9 A simple mechanism with two plates that are in balance when no weight is placed

on either of them.
10 Which, in this case, are considered their private spaces.
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“Why not just ask Charlie whether he complained to Bob?”. This proves that
sometimes experts try to find too complicated solutions for simple things.

We further present a few solutions that can still work when implemented
using our current technology. A legacy example may be considered the “airline
reservation” solution. While Bob is not in the same room Alice calls a specific
airline and makes a particular reservation in the name of her complainer. Then,
Bob tries to cancel the reservation in his complainer’s name. Finally, Alice cancels
or tries to cancel the reservation she made. It is obvious that nowadays such a
version of the protocol can not be functional anymore, due to the fact that in
order to cancel a reservation one needs to have extra pieces of information (e.g.
the reservation code).

For uniformity, we consider, as in Sect. 2, that Alice and Bob are honest but
curious.

3.1 Message for Bob

Description. We assume that Alice and Bob associate each candidate with a
random telephone number. Alice dials the number11 assigned to the person who
complained to her (Charlie) and asks to leave a message for Bob. It is clear that
the one answering the phone does not know who Bob is. A while after, Bob dials
the number of the person who complained to him and asks if anyone has left
him a message.

Security Analysis. The authors of [8] provide a short security analysis. More
precisely: 1 if Alice does not supervise Bob, then Bob might try several candi-
dates and 2 Dave might deny that a message was left for Bob.

The protocol was designed in a period of time in which telephones were only
analog. But, nowadays, we also have digital and mobile phones. Thus, we further
consider all the three cases when analyzing the security of the scheme. If Alice
and Bob use the same phone to run the protocol, then, in the digital and mobile
cases, Bob can check the call history of the phone to find out the identity of the
complainer. Thus, to prevent such an attack, Alice must delete the call history.
Even if she does this, there is a small probability that Dave will call back and,
if Bob, is near the phone at that particular time, he can see the phone number
and deduce the identity of the complainer. This problem can be easily rectified
if Alice hides her number. Note that the previously mentioned problems do not
happen in the analog case.

If Alice and Bob use different analog phones and Bob is nearby, he can redial
the last number and ask Dave which is his phone number. Thus, in the analog
case Alice needs to call another number afterwards12. In the digital case, Alice
simply has to delete the call history to avoid the redialing attack. If the protocol
is run using mobile phones, such an attack is even harder because Bob has to

11 We denote the owner by Dave.
12 To overwrite the call history.
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physically take Alice’s phone. Even if he manages to snatch Alice’s phone, the
device might be locked.

We conclude that in the analog case either version is secure (i.e. with one
or two phones) as long as Alice overwrites the call logs, while in the digital case
it is better to use two phones. We believe that the protocol is secure as long as
the initial scenario is valid13 and our proposed countermeasures are taken into
account.

3.2 Password

Description. We assume that Alice chooses to change her password in accor-
dance with Charlie’s name. Next, Bob tries to log in as Alice. In order to do so,
Bob uses the name of the person who complained to him as a password.

Security Analysis. As in Sect. 3.1, Bob might try several candidates [8]. Addi-
tional to the initial security analysis, there is always the possibility that Alice
installs either a key logger on the computer or a video camera inside the room
and directly finds out Bob’s password. Thus, the protocol is insecure.

Teaching Utility. In one version of the protocol, the authors of [8] suggest
using the “passwd” Linux command to run the scheme. This provides a good
opportunity for a teacher to introduce students to the Linux terminal basics and
also how passwords are stored in Linux.

3.3 Cups

Description. We start by assuming that we have a small number s of can-
didates. Alice and Bob get s identical containers (e.g. by acquiring disposable
cups), line them up and label them14. Then, Alice puts a folded slip of paper
saying “yes” in the cup of Charlie and a slip saying “no” in the other s−1 cups.
Bob does the same. Next, Alice and Bob remove the labels and shuffle the cups.
To complete the protocol, both the parties look inside the cups to see whether
one of them contains two slips saying “yes”.

Security Analysis. If Alice and Bob use the suggested containers, Bob can
always check which cup contains the slip saying “yes”. Thus, it is better to use
secure containers, for example ballot boxes which are tamper-evident. Hence,
even if Bob manages to break into all the secure containers, Alice can detect
that Bob cheated.

Teaching Utility. The secure version of the protocol may be seen as a toy
version of the voting process. Thus, it can be used as an introduction to elections
and electoral fraud.

13 A powerful enough Bob can always eavesdrop the landline or ask the operator for
Alice’s call history.

14 One for each candidate.
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4 Public Key Encryption

Several public key cryptosystems based on different laws of physics15 can be
found in [11]16. Although these solutions are hard to implement in the real
world17, they provide a very good teaching tool. More precisely, a teacher can
interactively transition from these toy protocols to precise explanations of the
underlying physical laws.

Given the attack possibilities we observed while analyzing the schemes in
[11], we chose to only discuss the “capacitors” solution during the following.

4.1 “Capacitors” Solution

Description. Assume that Alice wishes to send a secret positive number qa
to Bob. Let us consider that Alice has a capacitor C1 of the capacitance cA
(denoting her public key) and charge qA (denoting her secret message) in U .
Similarly, Bob has a capacitor C2 of the capacitance cB (denoting his long-term
private key) and a randomly chosen charge qB (denoting his session private
key) in V . Note that the private key is selected by Bob randomly before each
transmission from Alice. The capacitors are connected in such a way that the
plates holding the positive charges are connected by one wire, and the plates
holding the negative charges are connected by another wire (see Fig. 1). Alice has
a switch that keeps the circuit disconnected until the actual transmission begins.
Also, Alice has an ammeter to monitor the electric current in the circuit. Bob
has a rheostat included in the circuit in V . This allows him to randomly change
the resistance of the whole circuit, and therefore also to change parameters of
the electric current during transmission.

According to the authors, Alice uses her switch to connect the circuit, starting
the redistribution of the electric charges between the two capacitors. When this
process is complete, she disconnects the circuit. After redistribution of charges,
both Alice and Bob, have new charges: QA and QB . Now, all that Bob has to do
in order to compute the secret of Alice is to apply the following mathematical
expression: qA “ QB · (1 + cA

cB
) − qB .

Security Analysis. To promote an idea which might be relevant in practice,
some experimental results should be presented. In this case, the authors gave
an example of a system used for information transmission based on physical
properties of passive components. Although the authors are theoretically right,
Courtois contested the strength of their model in [6]. In our analysis, we propose
a complete, yet simple way to demonstrate both theories. The proposed scheme
is represented in Fig. 2. In order to do so, we extended the electrical circuit
proposed in [10] so that we could prove its functionality by simulating it. Based
on the fact that the authors gave no technical specifications regarding the circuit,

15 We refer the reader to Appendix B.
16 A similar solution for Yao’s problem is described in [9].
17 The authors assume that only Alice and Bob interferes with the system.
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we analyzed several scenarios. The first one concerns the type of capacitors used
in the circuit. We tested the scheme using polarized and non-polarized capacitors
with specific given input values and concluded that, in simulation, the differences
are not significant. Nevertheless, in practice, the type of capacitor used is very
important in order to avoid damaging the circuit.

Fig. 1. “Capacitors” solution Fig. 2. Proposed “capacitors” solution

To ease description, in order to validate the functionality of the “capacitors”
solution we randomly choose a set of parameters for the scheme. Our example
can directly be used in class to experimentally show that the solution is a viable
one.

For obtaining a functional “capacitors” solution, we propose adding a power
supply and 3 more switches (see Fig. 2). The voltage generated by the power
supply is 1 V. We use a 10µF capacitance for Alice’s capacitor and a 1µF
capacitance for Bob’s capacitor. The rheostat is set at R1 = 431 Ω and R1 = 569
Ω. The simulation is done using the electronic circuit simulator hosted by [1].
The first step of the simulation consists of charging the capacitors, in order to
obtain the initial values for the electric charges. For charging the capacitors,
switches S1, S2 and S4 must be connected. After this step, the power supply is
disconnected and the circuit is closed, meaning that switches S1 and S2 must be
disconnected and switch S3 must be connected. Switch S4 is Alice’s switch. Based
on the values that were set as input, we measured the voltage drop Vd on each
capacitor and obtained the initial electric charges qA “ 899.09 nC (VdA

“ 89.909
mV) and qB “ 910.091 nC (VdB

“ 910.091 mV). After re-distributing charges
(i.e. when Alice connects the circuit) the charges become QA “ 10 nC (VdA

“ 1
mV) and QB “ 1 nC (VdB

“ 1 mV). In the final step of the protocol, Bob
computes Alice’s electric charge:

qA “ QB · (1 +
cA
cB

) − qB

“ 10 · 10−9 · (1 +
10 · 10−6

10−6
) − 910.091 · 10−9

“ −899.091 · 10−9 C
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Fig. 3. Attack scenario “capacitors” solution

In [6], Courtois presents a rather intrusive attack in which Eve inserts a
switch between Alice and Bob and measures the voltage (see Fig. 3). In this case,
switches S1 and S2 are disconnected. Switch S3 is connected, Alice’s switch is
S4 and Eve’s switch is S5. S4 and S5 are disconnected. Eve measures the voltage
between Alice and Bob, right after Alice connects her switch. After the measure-
ment, Eve connects her switch too. This is a very simple way to determine VdA

.
Since Alice’s capacitance is a public parameter, Eve just computes:

qA “ cA · VdA

“ 10 · 10−6 · 89.909 · 10−3

“ 899.09 · 10−9 C

After running the simulation, we observed that the attack scenario is a plausi-
ble one. Note that the detection of Eve’s attack depends on the quality of the
equipment that she possesses.

Initially, for protecting the circuit we thought of adding a plus of security
by connecting each capacitor to a different power supply. It turned out this is
not enough, since Eve can measure the circuit in any point which surrounds
each Alice’s and Bob’s private space. Thus, we dropped the idea and choose the
simpler version of the two.

5 Conclusions

We recalled various physical cryptographic solutions and discussed their security
in the “honest but curious” model. Thus, we provided the reader with different
attacks scenarios against a set of schemes solving Yao’s millionaires’ problem, a
number of protocols for comparing information without revealing it as well as a
a public key cryptosystem based on physical properties of systems.

Acknowledgments. The authors would like to thank Valentin Petre for his helpful
comments on the “Communicating Vessels” solution.
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A Recreational Cryptographic Problems

The interest of the cryptographic community regarding various recreational cryp-
tography problems has grown in time. We further recall a series of physical
cryptographic solutions which appeared in the literature. Note that our list of
recreational cryptographic problems is, by no means, extensive.

“Finding Waldo” Solution. The authors of [17] provide an insight on how
to convince people about knowing Waldo’s location without revealing it. We
initially assume that Alice and Bob have a large piece of cardboard18. As a first
step, Alice cuts a Waldo shaped hole in the middle of the cardboard. To prove
that she knows where Waldo is, Alice puts the shape precisely on top of Waldo
while Bob is not looking and then calls Bob to check. Given the previous steps
of the protocol, Bob learns nothing about the location of Waldo. Next, Alice
must prove that she has the correct Waldo picture. Therefore, she must pull the
book beneath the cardboard in front of Bob’s eyes without revealing information
about the place from which she is pulling the book19.

“Ali Baba Cave” Solution. A well known story for explaining the intuition
behind zero knowledge protocols is presented in [19]. The story is about a magical
cave shaped like a ring with an entrance on one side as well as a magical door
blocking the opposite side. We assume that Alice discovers the secret magical
word that opens the door and wants to prove to Bob that she knows the secret
without revealing it. Thus, they agree to label the left and right paths from the
entrance head and tail. The protocol proceeds as follows. Bob waits outside
the cave as Alice goes in. Then, Alice flips a coin to determine the path she
follows. Note that Bob is not allowed to see which path she takes. Bob enters
the cave, flips a coin and shouts the outcome. If Alice knows the magical word
she opens the door, if necessary, and returns along the path chosen by Bob.
If she lied about knowing it, then she has a 50% chance of returning through
the correct path (i.e. by guessing Bob’s outcome). If they repeat this protocol
multiple times, the chance of Alice tricking Bob decreases. Thus, if Alice always
exits through the right path, Bob can conclude that Alice really knows the secret
word.

“Locked Boxes” Solution. A classical method for explaining symmetric
encryption is through the use of “impenetrable” locked boxes (see [4,5]). More
precisely, Alice and Bob both have a copy of the key that opens a chest. To
exchange messages, Alice simply puts her letter in the box, locks it and sends it
to Bob. Since Bob has an identical copy of the key, he opens the chest and reads
the letter. Another protocol that can be explained using locked boxes is Shamir’s
three-pass protocol [14]. First, Alice puts her message in a box, locks it with her
private padlock and sends it to Bob. Then, Bob places his private padlock on
the box and sends it back to Alice. Once she receives the box, she removes
her padlock and sends the box to Bob. Finally, Bob removes his padlock and
18 at least twice as large as the picture in each dimension.
19 At least the hole should be covered while the book is pulled out.
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reads Alice’s message. In order to popularize cryptography to non-specialized
audiences, the authors of [4] used a toolbox or a loose chain to implement the
previous physical example of Shamir’s protocol. The authors point out it is easy
to prove20 to audiences that a persistent code-breaker could always dismantle a
padlock, or X-ray it, and hence crack the code (i.e. knowing the inside of the lock
is isomorphic to knowing the key). Thus, we have to employ other techniques
than the secrecy of the encryption method.

By relaxing the security requirements from an “impenetrable” box to a
tamper-evident box (i.e. the receiver can detect if someone managed to open
the box) the authors of [15,16] devise a series of secure protocols.

Ciphers Based on a Deck of Cards. Schneier designed the “Solitaire” cipher
[20] for the book “Cryptonomicon” [23]21. Solitaire was intended to be the first
truly secure “pen and paper” cipher. It requires only a pack of cards both for
encryption and decryption. A similar example is the “Mirdek” cipher [7].

“PEZ Dispenser” Solution. In [3] the authors present a solution for voting
using a PEZ dispenser. Consider a group of kids wishing to vote between two
candidates without revealing anything except the final outcome. Assume that
they have a PEZ dispenser, which may be previously loaded with some publicly
known sequence of red and yellow candies. The kids take turns. Each one decides
how many candies to pop out of the dispenser according to his vote. Note that no
other kid can see the number or the colors of these candies. Also, it is forbidden
for the participants to weight the dispenser and, thus, deduce the number of
remaining candies. When this process ends, the color of the candy on top has to
correspond to the correct majority vote. The voting process is completed when
one of the kids pops an additional candy and announces its color.

“Phonebook” Solution. Khovanova recalls on her blog [13] that, for explaining
one-way functions, Micali used the following example of encryption. We start by
assuming that Alice and Bob obtain the same edition of the white pages book for
a particular town. For each letter Alice wants to encrypt, she finds a person in
the book whose last name starts with this letter and uses his/her phone number
as the encrypted version of that letter. To decrypt the message Bob has to read
through the whole book to find all the numbers. The decryption will take a lot
more time than the encryption. Unfortunately, the technology changes and the
example is not up to date anymore: reverse look-up is always possible in a digital
world. Furthermore, regarding the security of the scheme, an 8th grader said: “If
I were Bob, I would just call all the phone numbers and ask their last names.” A
similar example may be found in [4]. Such examples are very good for teaching
one-way functions to non-mathematicians.

“Colors” Solution. The Diffie-Hellman protocol can be depicted using colors
as further presented. An illustration using common paint may be found in [2].
The idea, first proposed by Simon Singh [22], relies on two properties of colors:

20 e.g. by showing a sawn up padlock.
21 entitled “Pontifex” in the book.
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1 it is easy to mix two colors and 2 given a color that was obtained by mixing
two other colors, it is difficult to reverse the process22. As a specific example, we
may assume that yellow ‚ is a public color. Let us further consider that Alice’s
secret color is blue ‚ and that Bob’s secret color is red ‚. The parties wish to
agree on a new shared secret color. In the first step, Alice sends green ‚ to Bob
(i.e. the result of yellow ‚ mixed with blue ‚). Then, Bob sends orange ‚ to Alice
(i.e. the result of yellow ‚ mixed with red ‚). By mixing the received color with
the secret color, each party obtains the common secret brown ‚ (i.e. Alice mixes
orange ‚ with her blue ‚ and Bob mixes green ‚ with red ‚).

Although insecure23, the digital version of the above protocol is a good teach-
ing tool e.g. when trying to explain beginners how to use colors in the case of
programming languages used in web development.

B Physical Public Key Encryption

We further present a generic protocol based on the protocols described in [11].
Alice and Bob have access to a physical medium characterized by a parameter
p(t), such that p(t) has two components p “ pa(t) ◦ pb(t), where ◦ is a group
law and pa(t), pb(t) can randomly be changed by varying t. In her private spaces
U and V , Alice and Bob secretly vary pa(t) and, respectively, pb(t). Note that
Eve only has access to p(t). First Alice and Bob randomly vary pa(t) and pb(t).
When they agree to synchronize24, Alice and Bob stabilize their parameters
pa(t′) “ a and pb(t′) “ b. Bob can measure p(t′) “ a◦ b and deduce Alice’s value
a. Similarly, Alice can compute b.

Example. We consider the setup from Sect. 2.3. Thus, the components that
Alice and Bob vary are their corresponding speeds values a and b. Once the
system is stabilized Bob can deduce a using the attack we described in Sect. 2.3,
but Eve can only deduce b − a.
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Abstract. Today’s integrated circuits are subject to a variety of attacks.
Logic Locking is an area of hardware security that attempts to prevent
reverse-engineering of integrated circuits based on a tamper-resistant
memory. Despite significant attention from the research literature, no
rigorous cryptographic modeling of logic locking and associated provable
secure solutions have been proposed.

Based on the observation that logic locking can be seen as a special
case of hardware-based cryptographic program obfuscation, we propose
rigorous definitions, borrowing approaches from modern cryptography
(and, specifically, cryptographic program obfuscation), for both tamper-
proof memories and logic locking of boolean circuits. We then prove two
positive results: (1) the existence of a circuit computationally indistin-
guishable from a random oracle, assuming the existence of a pseudo-
random function and of a tamper-proof memory, and (2) logic locking
of general polynomial-size boolean circuits, assuming the existence of a
pseudo-random generator and a tamper-proof memory.

Our paper shows the possibility of provably boosting the capability of
constructing a physical memory with a suitable tamper-resistant prop-
erty into hardware-based obfuscation of any boolean circuit, as well as a
practical hardware-based realization of a random oracle.
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1 Introduction

In the past few decades, the semiconductor industry has seen a gradual shift from
the vertical to the horizontal model, where many companies nowadays operate
completely fabless. Though economically beneficial, it has lead to several security
threats in the integrated circuit (IC) supply chain. The design companies are
forced to share their valuable intellectual property (IP) with off-shore untrusted
foundries, who can easily reverse-engineer the design with malicious intent. Given
the inadequate state-of-the-art hardware protection techniques, these threats are
becoming an increasing concern for commercial/government organizations. It
has been estimated that out of all the “spare and replacement” semiconductors
bought by the Pentagon, 15% are counterfeit [3].

To counter such threats at the silicon layer, logic locking was presented [23].
The idea is to insert additional circuitry in the design that expects a secret key
for proper functioning of the IC. Without this secret key, the output of a locked
IC is corrupted, thereby rendering a it completely useless. Usually, the secret key
is assumed to be stored on chip in a tamper-proof memory [29]. The threat model
involves an attacker having following capabilities: (1) access to complete reverse-
engineered locked netlist, without the secret key; and (2) running a working chip
with the correct key embedded into its memory, choosing input patterns and
observing corresponding outputs to recover the key.

Motivated by recently increasing piracy concerns as well as recent interest-
ing research in the logic locking area, we start a comprehensive and rigorous
approach to the study of (provably secure) logic locking. To specifically target
provable security, we leverage modeling and research approaches in the modern
cryptography, where cryptosystems are proved secure under a widely accepted
intractability assumption. In particular, our security modeling is inspired by
research in cryptographic program obfuscation [5], where the most typical secu-
rity requirement says that white-box attacks to a program are not significantly
better than black-box attacks to an oracle that computes the program’s function.

Prior Work. Roy et al. first presented the concept of logic locking in their
pioneering work in [23]. Later, to improve output corruption a fault analysis-
based technique was presented in [22]. However, both [22,23] were shown to
be vulnerable against sensitization of individual key bits at the output ports
of the IC [38]. Thus, to preclude such scenario, a clique-based approach was
presented [38]. Nevertheless, a Boolean satisfiability (SAT)-based attack com-
pletely undermined the security of locking by breaking all the then-existing
techniques [27]. This forced the community to develop SAT-resilient locking tech-
niques such as SARLock [37], Anti-SAT [34], SFLL [34], CycLock [24], and Delay-
Lock [35]. However, none of these techniques has been formally proved secure,
and most of them suffer from structural flaws, which were eventually exploited
to break these schemes [25,36,40]. Furthermore, other advanced variants of the
SAT attack was presented that broke the remaining techniques [4,9,41]. For a
comprehensive summary on logic locking, we refer the reader to [39].
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In program obfuscation, the goal is to modify source or machine code into
functionally equivalent code that is hard to understand to a human or another
program. Early obfuscation techniques included heuristic code transformations;
however, many of these techniques were found to be ineffective against suffi-
ciently motivated adversaries. In the more recent area of cryptographic program
obfuscation, researchers target the design of program obfuscators that are prov-
ably hiding the original program under a widely accepted intractability assump-
tion, following the standard of modern cryptography solutions. An early negative
result from [5] showed that most likely no software-only cryptographic program
obfuscator can be given for any arbitrary polynomial-size program. Later, pos-
itive results showed software-only cryptographic program obfuscations of spe-
cific classes of polynomial-size programs (e.g., point functions of fixed [31] and
arbitrary length [11], short-distance matching functions [13], monotone formu-
lae over point functions [10], and compute-and-compare programs [32]). There
are also results on hardware-based cryptographic program obfuscation (start-
ing with encryptions and signatures [14]), which however do require a trusted
physical module to perform actual computations.

Our Contribution. Based on our characterization of logic locking as a special
case of hardware-based cryptographic program obfuscation, we use ideas from
this latter area to propose a rigorous cryptographic model both for a tamper-
proof memory and for logic locking (based on a tamper-proof memory). Briefly
speaking, a logic locking scheme will be defined as a method to transform the
original circuit c into a locked circuit c′ made of two parts: a tamper-proof mem-
ory tpM containing a string k, and an unlocked circuit c′(k, ·). This transforma-
tion will have to at least satisfy the following two properties: (a) the output of
a locked circuit is (almost) always the same as that of the original circuit; and
(b) even given oracle access to the locked circuit and read access to the unlocked
circuit, an adversary cannot guess the original circuit better than an efficient
algorithm which is given oracle access to the original circuit. Using modeling
ideas from program obfuscation already proved useful in formulating the first
rigorous model of circuit camouflaging [12].

Our first result is the first provably secure logic locking result. Assuming
tamper-proof memories and the existence of families of pseudo-random func-
tions (a standard assumption in modern cryptography), we prove security of
logic locking of any pseudo-random function (key included). The provability of
this result validates our formal definitions of tamper-proof memory and secure
logic locking. Moreover, it results in a provable hardware-based implementa-
tion of a pseudo-random oracle only based on a tamper-proof memory (and a
pseudo-random function). Finding conditions for provable realizations of random
oracles has been an open problem for many years. On one hand, random oracles
have been used to enable several cryptographic constructions; on the other hand
a software-only provable implementation of random oracles was proved to be
(almost certainly) impossible (see [8], as well as [19] for a survey of the area).
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A previous hardware-based provable design of random oracles was presented in
[12], assuming different physical techniques of gate camouflaging.

Our second provably secure logic locking result is a general-purpose result,
saying that using pseudo-random generators and universal circuits, we can
achieve logic locking of any arbitrary polynomial-size circuit. In this con-
struction, the output of the pseudo-random generator is used as a pad that
encrypts/decrypts the original circuit into/from a locked circuit, and only the
generator’s seed is stored onto the tamper-proof memory. To the best of our
knowledge, this is the first logic locking result for the class of all polynomial-
size circuits provably secure in a cryptographic model, and the first provably
secure hardware-based obfuscation of any arbitrary polynomial-size circuit from
a tamper-proof memory (previous hardware-based obfuscation results required
the tamper-proof device to perform actual computation). This should be con-
trasted with positive results in cryptographic program obfuscation, where, using
software-only techniques, obfuscators have been designed only for a handful of
simple functions or specific classes of functions (see, e.g., [6,13,20,31,32]).

2 Models and Definitions

Basic Definitions. By |x| we denote the length of x if x is a string, the size
of x if x is a set, the number of gates of x if x is a circuit. By σ we denote
the security parameter, available in unary notation (i.e., 1σ) to all algorithms
(and thus often omitted among algorithm inputs in the rest of the paper). A
function ε over the set of natural numbers is negligible in parameter n if for any
constant c, there exists an integer n0 such that for all n ≥ n0, it holds that
ε(n) ≤ 1/nc. Unless otherwise specified, we will use functions that are negligible
in the security parameter σ.

Given a (discrete) probability distribution D, the notation x ← D is used
to denote the random process of independently drawing a sample x according
to D. Similarly, the notation y ← A(x), where A is an algorithm, denotes the
random process of obtaining y when running algorithm A on input x, where
the probability space is given by the random coins (if any) of algorithm A. By
Prob[R1; . . . ;Rn : E] we denote the probability of event E, after the sequential
execution of random processes R1, . . . , Rn.

We assume the reader is familiar with the conventional notion of a boolean
circuit. On input an n-bit string x, a circuit c returns an output c(x). A cir-
cuit with two input strings, of which the first one has been set to a value s, is
also denoted as c(s, ·). We also fix a conventional encoding of a boolean circuit
c into a binary string, denoted as b(c). Such encodings are often used in the
literature in constructions where a circuit takes as input (the binary encoding
of) another circuit. For modeling purposes, we consider function computation as
implemented on hardware via a generic, but also conventional, notion of physical
boolean circuit. As algorithmic computation is defined over digital strings, and
we would like to produce algorithm computation reasonings, we now define a
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suitable abstraction of physical boolean circuits into digital strings. More for-
mally, we define the logical abstraction of a physical boolean circuit c as the above
conventional encoding b(c) of c as a binary string.

A Cryptographic Model for Tamper-Proof Memories. We consider a
tamper-proof memory as a hardware-implemented physical memory containing
a (typically, randomly chosen) binary string, also called the key. As algorithmic
computation is defined over digital strings, we need to define logical abstractions
of a physical memory into a digital string.

We formally define a logical abstraction of a physical memory as a map asso-
ciating a physical memory to the binary string stored on it (i.e., the key). A
conventional logical abstraction entails mapping a physical memory to its digital
content, which can be set at startup time and then updated according to some
distribution. In this paper, for simplicity, and without loss of generality, we focus
on a single epoch, by considering physical memories whose content is set once
according to a given distribution (typically, the uniform distribution over strings
of a known length) and then left unchanged for the rest of the computation.
Then, the logical abstraction of such physical memories is, to an honest user,
a binary string of known length (but whose value is only known to the entity
that had set it at startup time). We stress, however, that an adversary does not
need to generate this same logical abstraction. Thus, in our formal definitions
below, we target security even against adversaries maliciously generating logical
abstractions of physical memories.

To formalize the adversary’s resources, we consider adversaries as algorithms
that run in time polynomial (in security parameter σ), where the size (i.e.,
number of gates) of circuit c, denoted as |c|, is also polynomial in σ. In terms
of resource access, we consider adversaries with both read and oracle access to
resources related to physical circuits. An efficient algorithm Adv has read access
to a physical resource if it can generate a logical abstraction of the physical
resource. We consider adversaries that have read access to two physical resources:
the tamper-proof memory tpM and a circuit c. We note that although there is
a conventional logical abstraction of the tamper-proof memory tpM (i.e., an
unknown binary string of a known length), and of circuit c (i.e., the digital
encoding of the same boolean circuit), the adversary is not restricted to use
those logical abstractions. Moreover, we consider adversaries with oracle access
to functions, meaning that they can return an output after multiple adaptive
queries to the oracle. More formally, we say that an efficient algorithm Adv has
oracle access to function O if it can run the following attack experiment, briefly
denoted as ‘out ← AdvO(1σ)’, for some m polynomial in σ:

1. for i = 1, . . . ,m,
on input x1, y1, . . . , xi−1, yi−1, compute xi;
call oracle O on input xi; and
set yi be the response obtained from O on input xi.

2. on input x1, y1, . . . , xm, ym, return: out



Provable Logic Locking 177

We say that Adv is an oracle adversary if it is given oracle access to function
O. In our model, the adversary has oracle access to the locked circuit (whose
computation depends on the content of the tamper-proof memory).

We now define a tamper-proof memory as a physical object on which two
operations are possible, which satisfy requirements on memory correctness, effi-
ciency of runtime and memory size, and tamper-proof security, which are infor-
mally described as follows. The two possible operations consist of (a) storing
a binary string of a given length (not larger than a parameter value), and (b)
retrieving a binary string. The memory correctness requirement says that the
retrieve operation always returns the binary string stored at the latest store
operation. The efficient runtime and memory size naturally say that it is desir-
able to have computationally fast store and retrieve operation and a small-size
memory. The tamper-proof security requirement is defined relatively to com-
putation of the locked circuit and says that, for any circuit and any efficient
adversary, the adversary’s physical access to the tamper-proof memory is not
significantly more useful in computing the original circuit than the length of
the binary string stored on the memory. The formal definition of tamper-proof
memories is split into two parts for better clarity. First, we define a (not nec-
essarily secure) memory as a physical object with associated store and retrieve
operations.

Definition 1. Let tpM denote a (physical) computer memory. We say that tpM
is a (t, λ)-memory if there exists a pair of algorithms (tpMStore, tpMRetrieve)
with the following syntax:

1. On input a length parameter 1λ and a string r, and given store access to
tpM , algorithm tpMStore returns either a failure output 0 (indicating that
the storage operation somehow failed, possibly because r is too long) or a
success output 1 (indicating that r is the next string to be stored on the
tamper-proof memory tpM)

2. On input length parameter 1λ, and given retrieve access from tpM , algorithm
tpMRetrieve returns a string s (indicating that s is the string that is currently
stored on the tamper-proof memory tpM).

which satisfies the following properties:

1. (Memory correctness): For any sequence of executions of algorithms tpMStore
and tpMRetrieve, for any execution of tpMRetrieve in this sequence, the
string s output by this execution is equal to the string r used as input in the
most recent execution of tpMStore that returned 1.

2. (t-efficient runtime): Algorithms tpMStore, tpMRetrieve run in time ≤ t
3. (λ-efficient memory size): Algorithms tpMStore, tpMRetrieve operate on

memory tpM using a length parameter ≤ λ.

Although for modeling purposes, we abstract both tpMStore and tpMRetrieve
operations as algorithms, we note that in practice they might just be realized
using minimal or no circuit logic. For instance, the tpMRetrieve operation could
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be realized by circuit wires exiting the memory, and the tpMStore operation is
typically only used during the deployment phase, and is thus not part of the
locked circuit.

We now formally define our notion of a tamper-proof property for a memory
tpM from Definition 1, relatively to computation of circuits in a class C. This
property is defined to hold in the presence of an adversary who has oracle access
to the locked circuit c′(s, ·) corresponding to any circuit c ∈ C, and tries to guess
c after generating its own logical abstraction of memory tpM .

Definition 2. Let tpM denote a (t, λ)-memory, and let (tpMStore, tpMRe-
trieve) be the pair of algorithms associated with it. Also, let C be a family
of boolean circuits. We say that tpM is ε-tamper-proof with respect to computa-
tion of circuits in C (briefly, ε-tamper-proof) if for any (original) circuit c ∈ C,
any string s returned by tpMRetrieve and any (unlocked) circuit c′ such that
c′(s, x) = c(x) for all x, and for any efficient algorithm Adv, and any logical
abstraction L, it holds that |p0 − p1| ≤ ε, where

p0 = Prob
[
c′′ ← Advc′(s,·)(c′, L(tpM)) : c′′ = c

]
and

p1 = Prob
[
c′′ ← Advc′(s,·)(c′, 1λ) : c′′ = c

]
,

for some ε > 0 (intended to be a known very small quantity or negligible as
a function of security parameter σ). Finally, we define an (ε, t, λ)-tamper-proof
memory as a (t, λ)-memory that is also ε-tamper-proof.

Remark: Average-Case Tamper-Proof Security. The above security property can
be considered a worst-case variant, in that it holds for any arbitrary circuit from
the circuit family C. Also of interest is the average-case variant of this tamper-
proof security property, which is formulated almost in the same way, but with
respect to a randomly chosen circuit from its class. This variant’s formalization
is simply obtained by replacing the quantification ‘For any circuit c ∈ C’ with
the random process ‘For any circuit c randomly chosen from C’, and c’s random
choice is also part of the probability space in which p0, p1 are computed.

Remark: Proofs vs Conjectures. Note that for any given physical realization of
a tamper-proof memory, the memory correctness, efficient runtime and efficient
memory size can be verified, while the security property can at best be conjec-
tured to hold (as typically done for any security property assumed for these and
similar physical devices in the literature).

Remark: Tamper-Resistance Approaches. A practical implementation of read-
proof hardware was presented in [29], combining protective coating that contains
much randomness, and fuzzy extractors. In the literature, tamper resistance
is often categorized into these 4 categories: (1) tamper prevention, (2) tam-
per detection, (3) tamper response, and (4) tamper evidence. Tamper preven-
tion against invasive and non-invasive attacks includes several approaches such
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as encapsulation/coating [17], security fuses [28], and/or layout and data bus
scrambling [33]. Means to target tamper detection include anti-tamper switches,
anti-tamper sensors, and anti-tamper circuits [2]. Tamper response is a type of
technique that employs certain action upon detection of tampering with a device.
Possible set of responses include disabling the device, erasing critical part of the
memory [26], and complete destruction of the device [1]. Finally, tamper evi-
dence techniques include ensuring visible footprint on the device if tampering
occurs.

A Cryptographic Model for Logic Locking. We define a secure logic locking
scheme as a pair of algorithms, satisfying requirements on lock correctness, secu-
rity and efficiency of circuit expansion and memory size, informally described as
follows. The algorithms consist of (a) generating a binary string of a given length
(not larger than a parameter value), intended to be stored on the tamper-proof
memory, and (b) generating a locked circuit to be used in conjunction with the
tamper-proof memory content, and intended to produce an equivalent compu-
tation. The lock correctness requirement says that the computation performed
by the combined locked circuit and tamper-proof memory content, is equivalent
to the original circuit’s computation, in the sense that no efficient algorithm can
find an input on which the two differ with more than negligible probability.

The security requirement (relative to locked-circuit computation) says that,
for any circuit and any efficient adversary, the adversary’s read access to the
locked circuit, physical access to the tamper-proof memory, and oracle access to
the combined circuit are not significantly more useful in computing an expression
for the original circuit than trying to compute such an expression only based
on oracle access to the original circuit itself. The efficient circuit expansion and
memory size naturally say that it is desirable to have computationally fast locked
circuits and a small-size tamper-proof memory. A formal definition follows.

Definition 3. Let C be a class of boolean circuits, let tpM denote the physical
object representing a tamper-proof memory, and let (tpMStore, tpMRetrieve)
denote the pair of algorithms associated to it. We define an (ε, t, λ)-secure logic
locking scheme for C as a pair of algorithms (KeyGen, LockGen) with the fol-
lowing syntax:

1. On input a length parameter 1λ and a security parameter 1σ, the key gener-
ation algorithm KeyGen returns a λ-bit key k.

2. On input a length parameter 1λ, and a security parameter 1σ, key k and
circuit c ∈ C, the lock generation algorithm LockGen returns the unlocked
circuit c′. This implicitly defines the locked circuit c′(k, ·), which is intended
to be (almost) equivalent to the original circuit c.

and the following properties:

1. (Computation correctness): For any n-input circuit c ∈ C, and all n-bit strings
x, for any efficient algorithm Adv, the probability that c′(k, x) �= c(x) is
negligible in σ, where k, c′, x are generated as follows:
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– k ← KeyGen(1λ);
– c′ ← LockGen(c, k);
– x ← Advc′(k,·)(1λ, 1σ, c′, LogAbs(tpM))

2. (lock ε-security, with respect to circuit computation, worst-case variant): For
any circuit c ∈ C, any efficient algorithm Adv, and any logical abstraction
LogAbs, there exists an efficient algorithm Sim such that |Prob [ cadv = c ] −
Prob [ csim = c ] | ≤ ε, where ε is negligible as a function of σ, csim is generated
as csim ← Simc(·)(1λ, 1σ) and cadv is generated as follows:

– k ← KeyGen(1λ, 1σ);
– b ← tpMStore(1λ, k; tpM)
– c′ ← LockGen(1λ, 1σ, c, k);
– cadv ← Advc′(k,·)(1λ, 1σ, c′, LogAbs(tpM)).

3. (t-efficient circuit expansion): The size of circuit c′ is ≤ t.
4. (λ-efficient memory size): The size of memory tpM is ≤ λ.

Remark: Two Variants and One More Security Property. One can strengthen the
above security property to a no-oracle version where Sim does not have oracle
access to the original circuit. Our first construction satisfies this stronger version.
Similarly as for tamper-proof memories, even the above security property can
be considered a worst-case variant, in that it holds for any arbitrary circuit from
the circuit family C, and it is of interest to consider the average-case variant,
formulated with respect to a randomly chosen circuit from its class. As before, in
this variant the quantification ‘For any circuit c ∈ C’ is replaced with the random
process ‘For any circuit c randomly chosen from C’, and c’s random choice is also
part of the probability space in which Prob [ cadv = c ] and Prob [ csim = c ] are
computed. Our main constructions will also directly achieve security against
an attacker capable of reading the content of the tamper-proof memory before
the latter is deployed in connection with a circuit. Informally, this intrusion-
resilience property says that the content of the tamper-proof memory does not
leak any information about the circuit or the circuit’s sensitive information.
Details of a formal treatment for this definition and proof are omitted in this
version.

3 A Pseudo-random Oracle Construction

In this section we consider a rather natural logic locking scheme based on tamper-
proof memories, and show a proof that it satisfies lock security (in the sense of
the average-case variant of Definition 3) assuming the memory is tamper-proof
(in the sense of the average-case variant of Definitions 1 and 2). This gives evi-
dence that definitions from Sect. 2 meet intuitive notions of secure tamper-proof
memories and secure logic locking schemes. Our construction is very natural:
the unlocked circuit computes a pseudo-random function taking as input a ran-
dom key locked in the tamper-proof memory. This gives a construction of a
pseudo-random oracle under the existence of pseudo-random functions and rig-
orously specified hardware assumptions (i.e., the tamper-proof properties from
Definitions 1 and 2). Formally, we obtain the following
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Theorem 1. Let C be the family of all n-bit input and m-bit output circuits.
If there exists

1. an (εtpm, ttpm, λ)-tamper-proof, in the average-case sense, memory tpM ,
2. a family prF of εprf -pseudo-random functions with κ-bit keys, n-bit inputs

and m-bit outputs, computable by circuits of size tprf ,

where λ ≥ κ, then there exists (constructively) a logic locking scheme for C
that is (ε′, t′, λ′)-secure in the average-case sense, where t′ = O(tprf + ttpm + λ),
ε′ ≤ εprf + εtpm is negligible in σ, and λ′ = λ.

Note that a random oracle with n-bit inputs and m-bit outputs can be equiv-
alently defined as a function randomly chosen in the family C used in Theorem 1.
In the rest of this section we describe the logic locking scheme satisfying the theo-
rem. The formal definition of pseudo-random functions is recalled in Appendix A.

The Logic Locking Scheme. On input an (original) circuit randomly chosen
from the class of all polynomial-size circuits, this construction of a logic lock-
ing scheme first randomly chooses a key k and stores it into the tamper-proof
memory tpM . Then, it returns an unlocked circuit computing a pseudo-random
function prFn,m taking as input the key retrieved from the tamper-proof memory
and the n-bit input string and returning an m-bit output. Finally, the locked cir-
cuit is implicitly defined as the direct combination of the tamper-proof memory
and the unlocked circuit; i.e., the locked circuit performs the unlocked circuit’s
computation based on the key stored on the tamper-proof memory. Now, we
proceed more formally.

Let 1σ be a security parameter, let tpM be a tamper-proof memory with
memory size λ ≥ κ, and let (tpMStore, tpMRetrieve) be the pair of algo-
rithms associated with it. We define logic locking scheme for the family C of
all polynomial-size circuits with n-bit inputs and m-bit outputs as the following
pair of algorithms (KeyGen1, LockGen1).

Input to KeyGen1: length parameter 1λ

Instructions for KeyGen1:

1. k ← {0, 1}κ

2. b ← tpMStore(1λ, k; tpM)
3. if b = 1 then return: k else return: ⊥.

Input to LockGen1: length parameter 1λ, key k ∈ {0, 1}κ, original circuit c ∈ C
Instructions for LockGen1:

1. let k = tpMRetrieve(1λ; tpM)
2. let n and m denote the input and output length, respectively, for c
3. let c′ be the unlocked circuit computing prFn,m(k, ·) this implicitly defines

locked circuit c′(k, ·)
4. return: c′.
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The proof that scheme (KeyGen1, LockGen1) satisfies Theorem 1 is in
Appendix C. Here, we give some intuitions behind the proof for the lock secu-
rity requirement. We prove the (stronger) no-oracle variant of the lock security
property by a hybrid argument [16], where, informally speaking, we evaluate and
compare the success probability of adversary Adv in guessing the original circuit
c in 4 different worlds. First, we use the tamper-proof security property of tpM
to show that Adv’s success probability p0 in guessing c when given oracle access
to the locked circuit and read access to the unlocked circuit and tamper-proof
memory is only negligibly different than Adv’s success probability p′

0 in guessing
c when given oracle access to the locked circuit and read access to the unlocked
circuit and the length parameter for tpM . Next, we use the pseudo-randomness
of prFn,m to show that p′

0 is only negligibly different than Adv’s success prob-
ability p′

1 in guessing c when given oracle access to a random circuit and read
access to the unlocked circuit and the length parameter for tpM . Finally, we use a
simulation argument to show that p′

1 is only negligibly different than an efficient
algorithm’s success probability p1 in guessing c when given read access to the
unlocked circuit and the length parameter for tpM . This proves the (no-oracle,
average-case) version of the lock security definition.

4 A Provable General-Purpose Construction

In this section we show a logic locking construction that is general-purpose (i.e.,
it applies to any polynomial-size original circuit, thus being secure in the sense of
the worst-case variant of Definition 3), and it satisfies some non-trivial efficiency
properties (e.g., it uses a tamper-proof memory of size independent on the orig-
inal circuit’s size). Our scheme combines a tamper-proof memory with universal
circuits and pseudo-random generators. Formally, we obtain the following

Theorem 2. Let C be the family of all �x-bit input and 1-bit output circuits.
If there exist

1. a (εtpm, ttpm, λ)-secure, in the worst-case sense, tamper-proof memory tpM
2. a family prG of εprg-pseudo-random generators with σ-bit seeds, computable

by circuits of size tprg,

where λ ≥ σ, then there exists (constructively) a logic locking scheme for C
that is (ε′, t′, λ′)-secure in the worst-case sense, where t′ = O(tprg + ttpm + λ),
ε′ ≤ εprg + εtpm is negligible in σ, and λ′ = λ.

We note that an arbitrary polynomial-size circuit with n-bit inputs can be
defined as circuits arbitrarily chosen in the family C used in Theorem 2, and thus
the theorem shows logic locking of any arbitrary polynomial-size circuit. In the
rest of this section we describe the logic locking scheme satisfying the theorem.
Definition and properties of universal circuits are recalled in Appendix B.
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The Logic Locking Scheme. On input an arbitrary original circuit c with
n-bit inputs and m-bit outputs, and size polynomial in n, our construction of
a logic locking scheme goes as follows. As before a key k is randomly chosen
and stored into the tamper-proof memory tpM . The lock generation algorithm
returns an unlocked circuit composing a hardwired string, a circuit for a pseudo-
random generator prG and a universal circuit, as follows: first, the hardwired
string is defined as the xor between prG(k) and a conventional binary encoding
b(c) of the original circuit c; then, the circuit for the pseudo-random generator
prG computes prG(k), where k is the string retrieved from the tamper-proof
memory tpM ; finally, the output of the circuit for prG and the hardwired string
are xored, and the resulting string is the binary encoding of the circuit that is
evaluated by the universal circuit. As before, the locked circuit is then implicitly
defined as the natural combination of the unlocked circuit and the tamper-proof
memory. Note that the hardwired string is distributed as a pseudo-random string
(with its seed being hidden by the tamper-proof memory) and the remaining part
of the unlocked circuit only uses xor, and the universal circuit. Thus, the entire
unlocked circuit does not leak anything about the original circuit c, other than
its size parameters. Now, we proceed more formally.

Let tpM be a tamper-proof memory, and let (tpMStore, tpMRetrieve) be
the pair of algorithms associated with it. We define logic locking scheme for the
family C of all circuits of size bounded by a polynomial in the number of inputs,
as the following pair of algorithms (KeyGen2, LockGen2).

Input to KeyGen2: length parameter 1λ

Instructions for KeyGen2:

1. k ← {0, 1}σ

2. b ← tpMStore(1λ, k; tpM)
3. if b = 1 then return: k.

Input to LockGen2: length parameter 1λ, polynomial bound parameter q, key
k ∈ {0, 1}σ, circuit c ∈ C over �x-bit inputs with binary encoding length ≤ �c

Instructions for LockGen2:

1. let k = tpMRetrieve(1λ; tpM)
2. let cu be the universal circuit for circuits with binary encoding length ≤ �c

and taking �x-bit inputs
3. let b(c) denote the binary string encoding circuit c
4. set y = prGσ,m(k) xor b(c), where m = �c

5. define circuit c′
y as follows:

c′
y has string y hardwired

c′
y takes 2 inputs:
an �x-bit string x
the string k previously retrieved from tpM

c′
y computes w = y xor prGσ,m(k), where m = �c

c′
y computes cu(w, x) and returns its output

this implicitly defines locked circuit c′
y(k, ·)

6. return: c′
y.
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The proof that scheme (KeyGen2, LockGen2) satisfies Theorem 2 is in
Appendix D. Here, we give some intuitions behind the proof for the lock secu-
rity requirement, which is proved by a hybrid argument [16], where, informally
speaking, we evaluate and compare the success probability of adversary Adv in
guessing the original circuit c in 4 different worlds. First, we use the tamper-
proof security property of tpM to show that Adv’s success probability padv,1

in guessing c when given oracle access to the locked circuit and read access to
the unlocked circuit (with pseudo-random string y hardwired) and tamper-proof
memory tpM , is only negligibly different than Adv’s success probability padv,2

in guessing c when given oracle access to the locked circuit and read access
to the unlocked circuit and the length parameter for tpM . Next, we use the
pseudo-randomness of prG to show that padv,2 is only negligibly different than
Adv’s success probability padv,3 in guessing c when given oracle access to the
locked circuit and read access to the unlocked circuit (with a random string z
hardwired instead of y) and the length parameter for tpM . Finally, we use the
simulatability property of the universal circuit to show that padv,3 is equal to
an efficient algorithm’s success probability padv,4 in guessing c when given ora-
cle access to the locked circuit. This proves the (worst-case) version of the lock
security definition.

5 Conclusions

Recent positive results in logic locking and hardware-based program obfusca-
tion seem to suggest the possibility for protection of integrated circuits against
various attacks (e.g., reverse-engineering). However, logic locking results were
not accompanied by proofs in a rigorous cryptographic model, and hardware-
based program obfuscation results were still based on strong assumptions, such
as devices that perform trusted computations.

In this paper we started our investigation by observing similarities between
the two areas of logic locking and hardware-based cryptographic program obfus-
cation. Most notably, a provable logic locking scheme for a given circuit implies
provable hardware-based cryptographic program obfuscation of the same cir-
cuit, where the trusted device only needs to store and retrieve a random string
(and perform no additional computation). We then proposed a formal model for
the design and analysis of provable logic locking schemes, inspired by the for-
mal model in [5] for cryptographic program obfuscation. In the proposed formal
model, we show two constructions that validate our formal models and give us
one practical hardware-based realization of a random oracle (which was proved
to be very unlikely to exist without hardware [8]), and a hardware-based obfus-
cation of any arbitrary polynomial-time circuit, under widely believed hardness
assumptions and much reduced trust assumptions (previously, trust assumptions
included the existence of devices that already perform trusted computation).
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A Pseudo-random Generators and Functions

We recall the formal notions of pseudo-random generators and functions used in
the cryptography literature.

Pseudo-random generators are stretching functions whose output is compu-
tationally indistinguishable from a random string of the same length. A function
prGσ,m : {0, 1}σ → {0, 1}m, is a stretching function if m > σ. Let εprg be a
function negligible in the security parameter σ. We say that a family of func-
tions prG = {prGσ,m : σ ∈ N} is a family of εprg-pseudo-random generators if
each prGσ,m is a stretching function and if for any efficient adversary Adv, the
difference |pr − pprG| is smaller than εprg(σ), where

1. pr = {r ← {0, 1}m : Adv(r) = 1}; and
2. pprg = {s ← {0, 1}σ; z ← prGσ,m(s) : Adv(z) = 1}.

Families of εprg-pseudo-random generators, for negligible functions εprg, have
been constructed from any family of one-way functions [18], from any of a number
of number-theoretic hard problems (e.g., [7]), as well as through more practical
heuristic constructions (e.g., [21]).

We say that a function Rn,m : {0, 1}n → {0, 1}m is a random function (over
n-bit inputs and with m-bit outputs) if it is randomly chosen among all functions
with n-bit inputs and m-bit outputs. In a random function Rn,m, for any input
string x ∈ {0, 1}n, the output string Rn,m(x) ∈ {0, 1}m is uniformly and inde-
pendently distributed. We say that a family of functions {Rn,m : n,m ∈ N} is
a family of random functions if each function Rn,m is a random function over
n-bit inputs and with m-bit outputs. As a consequence, an adversary querying
Rn on several input strings and obtaining the corresponding output strings still
cannot predict the output string Rn,m(x) corresponding to a new input string
x, better than by randomly choosing a string of the same length. As any logical
description of a random function over {0, 1}n inputs requires Ω(2n) space, fami-
lies of random functions cannot be efficiently represented as a circuit (unless n is
small). Pseudo-random functions [15] are widely used to approximate the prop-
erties of random functions. Their evaluation only requires a short random key,
and their pseudo-randomness property holds as long as the key is kept secret.

A function prFn,m : {0, 1}κ×{0, 1}n → {0, 1}m is a keyed function (over n-bit
inputs and with m-bit outputs) if for each k ∈ {0, 1}κ, the function prFn,m(k, ·),
also denoted prFk(·), is a function with n-bit inputs and m-bit outputs.

For any n,m ∈ N , let Randn,m be the set of all functions Rn,m : {0, 1}n →
{0, 1}m and let prFk : {0, 1}n → {0, 1}m be a keyed function. Consider the
following probabilistic experiment Init:

1. Uniformly choose Rn from Randn,m; and
2. uniformly choose k from {0, 1}κ.

Let εprf be a function negligible in the security parameter. We say that a
family of functions prF = {prFn,m : n ∈ N} is a family of εprf -pseudo-random
functions if for any efficient oracle adversary Adv, the difference |pR − pprF | is
smaller than εprf , where
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1. pR = {Init;O(·) ← Rn,m(·);AO(1n) = 1}; and
2. pprF = {Init;O(·) ← prFn,m(k, ·);AO(1n) = 1}.

In other words, pseudo-random functions are computationally indistinguishable
from random functions with the same input and output lengths.

B Universal Circuits

In [30] it was proved that there exists a universal circuit cu that can compute the
output of any input circuit c on its input string x. Since circuit c is encoded as a
binary string before being given as input to cu, we re-state below this property
of universal circuits with a natural constraint on the size of the input circuit c,
which, in turn, implies a constraint on the length of the (conventional) binary
encoding of c.

First, let C�x,g be the class of circuits that take as input an �x-bit input
string x, have size at most g(�x) gates, for some polynomial g, and return a 1-bit
output. Also, fix a conventional encoding of a circuit c from C�x,g as a binary
string, and assume that any such circuit c is encoded into a string, denoted as
b(c), of length at most �c. Then, the universal circuit cu for circuits in C�x,g is
formally defined as a circuit with the following properties:

1. it takes as input an �x-bit string x and a �c string b(c)
2. b(c) is the binary encoding of a boolean circuit c with at most g(�x) gates

and �x-bit inputs
3. cu(b(c), x) = c(x) for all possible inputs c, x.

The result in [30] can be restated as follows:

Theorem 3. [30] Let g be a polynomial. There exists (constructively) an uni-
versal circuit cu for circuits in C�x,g with size O((�c + �x) log(�c + �x)).

We note that in principle the description of a universal circuit cu might leak some
information about the original circuit c, such as, for instance, the polynomial g
used to describe the number of gates in c. For instance, a universal circuit for
circuits in C�x,g with g1(�x) gates might be easily distinguishable from a universal
circuit for circuits in C�x,g with g2(�x) gates, if polynomials g1, g2 are different,
while satisfying gi(�x) ≤ g(�x), for i = 1, 2. Since our goal is to design a logic
locking scheme for all circuits in the class C�x,g, we will need the following size
indistinguishability property of universal circuits for circuits in C�x,g: for any two
pairs (�1, g1) and (�2, g2) such that �i ≤ �x and gi ≤ g, for i = 1, 2, it holds
that the universal circuit generated for circuits in the subclass C�1,g1 and the
universal circuit generated for circuits in the subclass C�2,g2 are equal.

We note that simple padding techniques can be used to transform any univer-
sal circuit into one that satisfies size indistinguishability. For instance, a circuit
with �1 ≤ � inputs and g1 ≤ g gates might be padded with inputs and gates (that
do not change the computation) so to have exactly � inputs and g gates before
generating the universal circuit. In the rest of the paper, we will assume such a
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procedure and therefore that all universal circuits satisfy size indistinguishabil-
ity. Moreover, we will also assume that given a universal circuit for circuits in
class C�x,g, it is possible to derive the length �c of the binary representation b(c)
of the original circuit c from the class.

C Proof that (KeyGen1, LockGen1) Satisfies Theorem 1

We prove that our logic locking scheme (KeyGen1, LockGen1) from Sect. 3 sat-
isfies Theorem 1 by proving that it satisfies the 4 properties of Definition 3:
computation correctness, lock security, efficient circuit and memory size.

Computation Correctness and Efficiency Properties. The correctness of the com-
putation is a direct consequence of the definition of pseudo-random functions.
That is, an adversary finding, with non-negligible probability, an x such that
prFn,m(x) �= c(x) can be used to distinguish pseudo-random functions from
random functions. With respect to circuit size, we observe that the locked cir-
cuit contains the circuit for the pseudo-random function prF and the circuit for
retrieval from tpM , and therefore the logic locking scheme satisfies t′-efficient
circuit size, for t′ ≤ O(tprf + ttpm +λ). With respect to memory size, we observe
that the locked circuit only stores the key length for pseudo-random function
prFn,m on the tamper-proof memory and therefore the logic locking scheme
satisfies λ′-efficient memory size, for λ′ ≥ κ.

Lock Security. Let c be a Boolean circuit. If rP is a random process, we let
Prlock[rP ] denote the probability that cadv = c after a sequential execution of
the following 3 processes:

– k ← KeyGen(1λ),
– b ← tpMStore(1λ, k; tpM),
– rP .

We prove the lock security property by a hybrid argument [16], where, informally
speaking, we evaluate and compare the success probability of adversary Adv or
a related algorithm Adv′ in guessing circuit c in the following 4 “worlds”, where
L denotes a logical abstraction function:

1. Adv has read access to c′, L(tpM) and oracle access to c′(k, ·);
2. Adv has read access to c′, 1λ and oracle access to c′(k, ·);
3. Adv has read access to c′, 1λ and oracle access to a random oracle Rn,m; and
4. Adv′, an efficient algorithm depending on Adv, has read access to c′, 1λ.

More formally, we first define the following random processes:

rP1 = “cadv ← Advc′(k,·)(c′, L(tpM))”,
rP2 = “cadv ← Advc′(k,·)(c′, 1λ)”,
rP3 = “cadv ← AdvRn,m(c′, 1λ)”,
rP4 = “cadv ← Adv′(c′, 1λ)”.
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Then we obtain the following lemmas.

Lemma 1. p0 = Prlock[rP1] and p1 = Prlock[rP4]

Proof. The first equality directly follows from definitions of p0 and rP1. The
second equality directly follows from definitions of p1 and rP4, and by setting
the simulator algorithm Sim as equal to Adv′. �

Lemma 2. |Prlock[rP1] − Prlock[rP2]| ≤ εtpm, for some εtpm negligible in σ.

Proof. Let p0, p1 be the probability quantities defined in Definition 2. By the
definitions of rP1, rP2, we observe that Prlock[rP1] = p0 and Prlock[rP1] = p1.
Then the lemma follows as a direct application of Definition 2 for the tamper-
proof security of tpM . �

Lemma 3. |Prlock[rP2] − Prlock[rP3]| ≤ εprf , for some εprf negligible in σ.

Proof. We first observe that the difference between rP2 and rP3 only consists of
the oracle to which Adv has oracle access. Specifically, in rP2, Adv has access to
locked circuit c′(k, ·), an oracle that evaluates the circuit c′ for pseudo-random
function prF with key k, while in rP3, Adv has access to a random oracle Rn,m.
Moreover, in both rP2 and rP3, Adv has read access to unlocked circuit c′ and
1λ. Then we can directly apply the pseudo-randomness property of prF , and
obtain that Adv can only distinguish the two worlds with at most negligible
probability εprf . �

Lemma 4. For any efficient algorithm Adv, there exists an efficient algorithm
Adv′ such that Prlock[rP4] = Prlock[rP3].

Proof. Consider algorithm Adv in random process rP3. Then, define algorithm
Adv′ as the algorithm that runs Adv and, in this execution, simulates the answers
to Adv’s queries to the random oracle as random strings (for new queries) or
previously generated random strings (for repeated queries); finally, Adv′ returns
the same output as Adv. Since the simulation performed by Adv′ of the random
oracle answers is perfect, we have that Adv′ guesses the original circuit c in rP4

with the same probability that Adv guesses the original circuit c in rP3, and
thus Prlock[rP4] = Prlock[rP3], from which the lemma follows. �

Finally, we use these lemmas to conclude the proof that the logic locking
scheme satisfies Definition 3. Specifically, we have that

|p0 − p1| = |Prlock[rP1] − Prlock[rP4] |

≤
3∑

i=1

|Prlock[rPi] − Prlock[rPi+1]|

≤ εtpm + |Prlock[rP2] − Prlock[rP3]| + |Prlock[rP3] − Prlock[rP4]|
≤ εtpm + εprf + |Prlock[rP3] − Prlock[rP4]|
≤ εtpm + εprf ≤ a function negligible in σ,
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where the first equality follows from Lemma 1, the first inequality follows by
applying the triangle inequality, the second inequality follows from Lemma 2,
the third inequality follows from Lemma 3, the fourth inequality follows from
Lemma 4, and the fifth inequality follows from assumptions on εtpm, εprf .

D Proof that (KeyGen2, LockGen2) Satisfies Theorem 2

The proof that our logic locking scheme (KeyGen2, LockGen2) satisfies The-
orem 2 follows the same structure as the proof of Theorem 1. Specifically, we
prove that it satisfies the 4 properties of Definition 3: computation correctness,
lock security, efficient circuit size and efficient memory size.

Computation Correctness. The correctness of the computation of the locked
circuit follows directly from the definition and properties of universal circuits.

Efficiency Properties. With respect to circuit size, we observe that the locked
circuit contains the circuit for the pseudo-random generator prG, the circuit for
retrieval from tpM , and circuit gates for computing the xor between two strings
of length �c, and therefore the logic locking scheme satisfies t′-efficient circuit
size, for t′ = O(tprg + tu + ttpm + λ). With respect to memory size, we observe
that the locked circuit only stores the key length for pseudo-random generator
prGσ,m on the tamper-proof memory and therefore the logic locking scheme
satisfies λ′-efficient memory size, for λ′ ≥ σ.

Lock Security. The proof for this property is structured very similarly as in
the proof for Theorem 1. Thus, it suffices to discuss the differences, which are
mainly in the definitions for the worlds and relative random processes used in
the proof’s hybrid argument. The main technical difference in the proof is in
the simulation argument, as described in the proof of Lemma 7. As before, we
evaluate and compare the success probability of adversary Adv or a related
efficient algorithm Adv′ in guessing circuit c in the following 4 “worlds”:

1. Adv has read access to c′
y, L(tpM) and oracle access to c′

y(k, ·);
2. Adv has read access to c′

y, 1λ and oracle access to c′
y(k, ·);

3. Adv has read access to c′
z, 1

λ, for some random �c-bit string z, and oracle
access to c′

y(k, ·); and
4. Adv′, an efficient algorithm depending on Adv, has oracle access to c′

y(k, ·).
Denote as padv,i the probability that Adv correctly guesses c in world i, for
i = 1, 2, 3, 4, after the same random processes used in Definition 3. We note that
padv,1 = p0, by definition. Then, the proof is obtained by combining, similarly
as in the proof for Theorem 1, the following lemmas.

Lemma 5. |padv,1 − padv,2| ≤ εtpm, for some function εtpm negligible in σ.

Proof. This follows by Definition 2 since tpM is εtpm-secure. �
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Lemma 6. |padv,2 − padv,3| ≤ εprg, for some function εprg negligible in σ.

Proof. This follows by observing that c′
z is computationally indistinguishable

from c′
y since z is random and y is pseudorandom, by the pseudo-randomness of

prG. �

Lemma 7. |padv,3 − padv,4| = 0.

Proof. This follows from the simulatability property of the universal circuit.
Specifically, we observe that for any efficient adversary Adv, who is given the
length of the (unknown) original circuit c, we can construct an efficient adversary
Adv′ that simulates c′

z as follows:

– derive length �c of the binary representation b(c) of circuit c
– randomly choose z ∈ {0, 1}�c

– define c′
z as the circuit that has string z hardwired and, on input x, k:

computes w = z xor prGσ,m(k)
computes and outputs cu(w, x).

– return: c′
z

By code inspection, we note that the simulation is perfect, in the sense that
the distribution of circuit c′

z returned by Adv′ in world 4 is identical to the
distribution of c′

z returned by Adv in world 3. The lemma follows. �

Lemma 8. padv,4 = Prob [ csim = c ].

Proof. This follows directly from the above definition of padv,4 and of
Prob [ csim = c ] in Definition 3, and by setting the simulator algorithm Sim
as equal to algorithm Adv′ in the proof of Lemma 7. �

Finally, we use these lemmas to conclude the proof that the logic locking scheme
satisfies Definition 3, similarly as done for the scheme underlying Theorem 1.
Specifically, we have that

| p0 − p1 | = | padv,1 − padv,4 |
≤ |padv,1 − padv,2| + |padv,2 − padv,3| + |padv,3 − padv,4|
≤ εtpm + |padv,2 − padv,3| + |padv,3 − padv,4|
≤ εtpm + εprg + |padv,3 − padv,4|
≤ εtpm + εprg ≤ a function negligible in σ,

where the first equality follows from Lemma 8, the first inequality follows by
applying the triangle inequality, the second inequality follows from Lemma 5,
the third inequality follows from Lemma 6, the fourth inequality follows from
Lemma 7, and the fifth inequality follows from assumptions on εtpm, εprg.
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Abstract. Particular instantiations of the Offset Merkle Damg̊ard
authenticated encryption scheme (OMD) represent highly secure alter-
natives for AES-GCM. It is already a fact that OMD can be efficiently
implemented in software. Given this, in our paper we focus on speeding-
up OMD in hardware, more precisely on FPGA platforms. Thus, we
propose a new OMD instantiation based on the compression function of
BLAKE2b. Moreover, to the best of our knowledge, we present the first
FPGA implementation results for the SHA-512 instantiation of OMD
as well as the first architecture of an online authenticated encryption
system based on OMD.

Keywords: Authenticated encryption · Pseudorandom function ·
Compression function · Provable security · FPGA · Hardware
optimization · Nonce respecting adversaries

1 Introduction

Authenticated encryption (AE) primitives ensure both message confidentiality
and authenticity. Initially, AE algorithms achieved confidentiality and integrity
by combining two distinct cryptographic primitives (one for each of the two
goals). Around two decades ago the perspective of having a unique primitive
for confidentiality and integrity started to appear. Rogaway [16] extended AE
schemes by adding a new type of input for associated data (AD) and, thus,
AEAD (authenticated encryption with associated data) was the next step. Such
a model is helpful in real world scenario in which part of the message (e.g. a
header) needs only to be authenticated. We do not recall the technical aspects
of AEAD schemes as it is outside the scope of our paper. We refer the reader to
[12,16,17] for a detailed description regarding the previously mentioned topic.

The Competition for Authenticated Encryption: Security, Applicability, and
Robustness (CAESAR) started in early 2014 and finished in 2018 [1]. The Offset
Merkle-Damg̊ard (OMD) authenticated encryption scheme [2,11] was one of the
CAESAR submissions. OMD is, in fact, an authenticated encryption mode of
operation for keyed compression functions. The OMD instantiations presented in
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the original paper are based on the compression functions of two hash functions
which are part of the SHA-2 family: SHA-256 and SHA-512.

OMD was accepted as a valid CAESAR submission for CAESAR and, thus,
a process of public analysis from the community naturally followed. Given its
characteristics which proved to be in accordance to the CAESAR requirements
especially from the security point of view, OMD was further accepted as a second
round candidate1.

As stated in [2,7], in the case of the original scheme’s software implemen-
tations the speed can be considerably increased due to, e.g., the performance
acceleration instructions of INTEL’s architecture processors. Thus, the imple-
mentation efficiency of the two OMD original instantiations becomes comparable
with the AES-GCM one in software.

Given that from the security point of view OMD has more secure versions
than AES-GCM and its software implementations are highly efficient [10], we
believe that due to the lack of a competitive hardware implementation OMD did
not make it until the third CAESAR round [9].

Therefore, especially in view of the diversity of secure authenticated encryp-
tion schemes we have to focus on providing practical implementations for them.

We pay particular attention to using the compression functions of SHA-512
and BLAKE2b both for a higher security level and a more hardware friendly
word dimension.

Prior Work. A rather unoptimized hardware implementation of the original
OMD scheme was submitted to CAESAR. Thus, considering the initial metrics,
OMD seemed quite unattractive as compared to AES-GCM. Later on, in 2017,
the authors of [8] presented their results regarding selected hardware imple-
mentations of CAESAR round 2 candidates. We aim at improving the previous
results, providing the reader with better hardware implementation metrics of
various OMD instantiations. The OMD implementation discussed in [8] is the
primary recommendation submitted to CAESAR, i.e. using the compression
function of SHA-256. Thus, to the best of our knowledge, we present the first
FPGA implementation results for the SHA-512 instantiation of OMD.

Motivation. Our motivation for choosing OMD among all the CAESAR sub-
missions is at least threefold. 1 OMD’s design is an exotic one. The scheme
represents the only CAESAR proposal based on a compression function. 2

When it comes to real world cryptographic applications and systems there may
perfectly be some use cases in which security requirements are way higher than
usual and the physical resources of an implementation platform are abundant.
Nevertheless, our results become meaningful either in the case of an enhanced
security context (e.g. secure government applications). 3 In [8] it is reported
that “OMD ends up near the bottom of Tp/A2 ratios for all CAESAR Round
1 All the withdrawn schemes are listed on the competition’s website. Almost all the

withdrawn submissions are due to attacks reported by the community. It can easily
be observed that for OMD no attack was presented.

2 Throughput to Area ratio.
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Two candidates”. The explanation pointed out by the authors focuses on the
big number of rounds of SHA-256 and, thus, the limited throughput. Our results
show that we can obtain superior implementation metrics, especially considering
our new OMD instantiation with the compression function of BLAKE2b.

Structure of the Paper. In Sect. 2 we introduce notations, recall the OMD
authenticated encryption scheme and shortly describe basic facts regarding the
hash functions SHA-512 and BLAKE2b. We propose a new instantiation of OMD
and provide the reader with a short discussion regarding the security of the new
instantiation in Sect. 3. In Sect. 4 we present the architecture of an online authen-
ticated encryption system based on OMD as well as the results of our optimized
implementations in hardware. Finally, we conclude in Sect. 5 and discuss future
work ideas. We recall the pseudocode of OMD in AppendixA. The description of
the compression functions of SHA-512 and BLAKE2b are given in AppendixB.
We plot specific metrics of our implementations in AppendixC.

2 Preliminaries

Notations. During the following, ‖ denotes string concatenation, ⊕ expresses
the XOR operation and the notation 0x refers to a string of x bits of zero. We
denote by x ← y the assignment of the value y to the variable x.

2.1 Offset Merkle Damg̊aRd

For recalling the main technical details of OMD we follow the descriptions of
[2,7].

From a Compression Function to a Keyed Compression Function. Let function
F ′ : {0, 1}n ×{0, 1}b → {0, 1}n be a compression function. F ′ can be turned into
a keyed compression function F by using k bits of its b-bit input. More precisely,
we may define FK(H,M) = F ′(H,K‖M).

Specific Notations. Let function F : K×({0, 1}n ×{0, 1}m) → {0, 1}n be a keyed
compression function with K = {0, 1}k and m ≤ n. The encryption tag will be
denoted by Tage while the authentication tag is referred to as Taga. The final
tag is denoted by Tag. We consider the length of Tag as being τ ∈ {0, 1, · · · , n}.
Algorithms E (encryption) and D (decryption) can be called with arguments
K ∈ K, N ∈ {0, 1}≤n−1 and A,M,C ∈ {0, 1}∗, where A represents an associated
data, M a message and C a ciphertext.

In the following, all OMD multiplications are performed in GF(2n) and ntz(i)
denotes the number of trailing zeros (i.e. the number of rightmost bits that are
zero) in the binary representation of a positive integer i. Let N be the corre-
sponding notation of a nonce3. We further denote by ΔN,i,j and Δ̄i,j the masking

3 Number used only once.
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values used in the OMD scheme (for processing the message and, respectively,
the associated data). Let Li be a sequence of additional values and �max be the
bound on the maximum number of m-bit blocks in any message that can be
encrypted or decrypted.

Remark 1. The authors of [2,7] used the technique proposed in [10] to compute
the masking values for assessing the security and efficiency requirements.

Initialization of OMD.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔN,0,0 ← FK(N ||10n−1−|N |, 0m)
Δ̄0,0 ← 0n

L∗ ← FK(0n, 0m)
L[0] ← 4L∗
L[i] ← 2L[i − 1] for i ≥ 1

Remark 2. For a more efficient implementation, the values L[i] can be pre-
processed and stored in a table for 0 ≤ i ≤ 	log2(�max)
. The values L[i] can
also be computed on-the-fly for i ≥ 1 in case of memory restrictions.

Masking Sequences for Processing the Message Equation (1) and the Associated
Data Equation (2). For i ≥ 1 we have that:

⎧
⎨

⎩

ΔN,i,0 ← ΔN,i−1,0 ⊕ L[ntz(i)]
ΔN,i,1 ← ΔN,i,0 ⊕ 2L∗
ΔN,i,2 ← ΔN,i,0 ⊕ 3L∗

(1)

{
Δ̄i,0 ← Δ̄i−1,0 ⊕ L[ntz(i)] for i ≥ 1
Δ̄i,1 ← Δ̄i,0 ⊕ L∗ for i ≥ 0 (2)

The OMD encryption algorithm generically instantiated with the compres-
sion function F keyed with K is presented in Fig. 1. Note that for simplicity
we depicted only the case of a message whose length is a multiple of the block
length and an associated data whose length is a multiple of the input length.
The cases in which padding is needed (both for messages and AD) are tackled
in the pseudocode presented in AppendixA.

We recall the pseudocode of the four OMD sub-algorithms (i.e. Initialize
(K), HashK(A), EK(N,A,M) and DK(N,A,C)) in AppendixA.

Nonces. The security proofs of OMD hold as long as the principle of non-
repeating nonces is respected (uniqueness criterion). In standard encryption
applications the nonce is usually a counter sent over the communication chan-
nel along with the authenticated and encrypted message. In practice, the nonce
has to be unique during an encryption session (i.e during the lifetime of a ses-
sion key). The nonce is needed both for encryption and decryption and can be
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communicated in clear between the two corresponding parties. The uniqueness
criterion is encryption related in the sense that the user wishing to transmit a
message to another user is responsible of generating suitable4 nonces.

Fig. 1. OMD in the case of a message whose length is a multiple of the block length
and an associated data whose length is a multiple of the input length.

2.2 The Hash Functions SHA-512 and BLAKE2b

The SHA-2 family of hash functions [13] is still one of the de facto standards
when it comes to hash functions. Even though SHA-3 is the latest member of
the SHA (Secure Hash Family) family of functions, SHA-2 still stands from the
security point of view.

The hash function BLAKE2 [6] is a modified version of BLAKE [6] which
is a finalist of the SHA-3 cryptographic competition. BLAKE2 was constructed
to supersede BLAKE’s efficiency (i.e. optimize it for modern applications). As
BLAKE2 is really appealing developers it has already been used in several
projects, including the widely adopted WinRAR archiving utility and the mem-
ory hard key derivation function Argon2 (the winner of the Password Hashing
Competition [3]).

We provide the reader with technical details of sha-512 and blake2b which
are relevant for our paper in AppendixB.

4 From a security perspective.
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3 A New OMD Instantiation. Security Aspects

As already mentioned, OMD is an authenticated encryption scheme based on
compression functions. For the purpose of our paper we selected the secondary
CAESAR recommendation of the OMD scheme to be implemented in hardware.

Moreover, we propose and analyze a new instantiation of OMD instead of the
two original ones. As stated in the previous sections, we chose the compression
function of BLAKE2b.

We further denote by sha-512 the compression function of SHA-512 and
by blake2b the compression function of BLAKE2b. Furthermore, we denote by
OMD-sha-512 and by OMD-blake2b the OMD instantiations based on the com-
pression functions of SHA-512, respectively BLAKE2b.

3.1 Security Analysis

As OMD is a nonce-based AEAD scheme, its authors aimed at achieving the
security notions for AEAD schemes as detailed in [16]. The security of the OMD
scheme as well as the security of its primary and secondary instantiations (i.e.
OMD-sha-256 and OMD-sha-512) are discussed in an extensive manner in [2,7].
It is straightforward that the security proofs still hold in the case of our proposed
instantiation, i.e. OMD-blake2b.

4 Speeding-Up OMD in Hardware. Implementation
Trade-Offs

In this section we present the architecture of an online authenticated encryp-
tion system based on specific OMD instantiations, while our main focus is on
speeding-up OMD in hardware. We start by giving the general architecture and
continue with implementation details of OMD and particular instantiations of it
in Sect. 4.1 (OMD-sha-512 and OMD-blake2b). In order to underline our speed-
ups, we provide the reader with comparison results between our implementations
and other related works in Sect. 4.2.

Target FPGA Platform. The hardware implementation of the OMD scheme
was realized using register transfer-level (RTL) design methodology. We adopted
the VHDL as our preferred hardware description language (HDL) in order to
implement the necessary hardware components for the FPGA circuit design. We
opted for Virtex UltraScale+ VCU1185 which is an effective platform from the
point of view of its resources (I/O pins, QSFP28 Interfaces, high on-chip memory
density, etc.). Thus, the platform we chose is a very good option for the future
development of an online system.

All the development was done using the Xilinx Vivado Design Suite 2019.1
and it involved the following steps:

5 xcvu9p-flga2104-2L-e.
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1. Designing the top view architecture of the whole system and defining the
input/output ports of the main modules;

2. Writing the VHDL code for the previous specified modules;
3. Writing simulation testbenches in order to validate the functionality of the

modules;
4. Synthesizing the design and checking for any possible errors;
5. Implementing the design;
6. Analyzing the timing requirements and the resources.

4.1 The Architecture of a Real World Authenticated Encryption
System

The design of our proposed system is composed of a Top Module (shown in
Fig. 2) that contains all the components of the circuit which is described as:

– PTXT IF: this block represents the plaintext interface and it is used to
receive and send data packets in the trusted area of a network;

– Receive: transfers the data from the receive PTXT IF to the FIFO PTXT
block;

– FIFO PTXT: implements a FIFO module for plaintext packets storage; it
is also used for Clock Domain Crossing (CDC);

– PUT to ENC: reads the data from FIFO PTXT and prepare the packets
for the encryption block;

– ENCRYPT: encrypts the data using the OMD scheme depicted in Fig. 3;
– GET from ENC: takes the encrypted blocks and creates the encrypted

packet which is then written in the FIFO ENC;
– FIFO ENC: implements a FIFO module for ciphertext packets storage; it

is also used for Clock Domain Crossing (CDC);
– Send: transfers the data from the FIFO ENC block to the transmit CTXT

IF;
– CTXT IF: this block represents the ciphertext interface and it is used to

receive and send data packets in the untrusted area of a network;
– KS GEN: this block is used to generate a common session key between two

communicating parties; it also computes the L and Taga values which are
used by the ENCRYPT/DECRYPT blocks;

– NONCE GEN: this block is used to generate nonces which are unique per
session;

– DECRYPT: this block is identical to ENCRYPT, except an additional tag
verification that is done at the decryption of the message;

– the rest of the blocks complete the scheme in a symmetric manner, offering
similar functionalities as the already described ones;

We continue to focus on the main blocks of the system (ENCRYPT and
DECRYPT) which includes the OMD algorithm. The block diagram illustrated
in Fig. 3 consists of modules which are further categorized as Datapath or Con-
troller modules. Datapath describes how the data moves through the system at
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register level, leveraging the parallel nature of the FPGA circuits. The Controller
consists of a Finite State Machine (FSM) which runs sequentially providing the
decision logic of the system. In order to simplify the illustrated design, we pre-
sented in Fig. 3 only the Datapath logic.

Fig. 2. A general architecture of an online system using OMD

In the case of the OMD algorithm the encryption of the current block is
dependent on the previous one (i.e. the scheme is sequential), thus we can only
use an iterative implementation. In this case, the pipelined implementation is
not feasible. The original OMD scheme is reduced to a single Fk block where
the inputs and outputs are managed by the controller in the following way: the
inputs are multiplexed with different data paths and the outputs are used to
compute the ciphertext and Tage or to be fed back into the Fk block. In Fig. 3,
the Datapath is described in a simplified diagram which has the following main
parts: 1 data multiplexing modules (for changing the datapath to the inputs of
the Fk block), 2 registers (for storing temporary data) and 3 RAM memory
(for storing the computed values).

The input of the ENCRYPT block consists of:

– Message M (divided into blocks of length 512 bits);
– Secret key K (of length 512 bits);
– Nonce N (of length 256 bits which are provided by the nonce generator and

are unique per session);
– Two precomputed values L and Taga (calculated using the KS GEN block).

We chose to calculate Taga and L only once per session as they do not depend
on the message or on the nonce. This fact is reflected in the number of LUTs
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and the TP/A values presented in Table 1. Thus, the values written inside the
parentheses denote the number of LUTs and the TP/A values without the need
of calculating Taga and L.

The output of the DECRYPT block consists of ciphertext C (divided into
blocks of 512 bits) and Tag (of length 512 bits).

Fig. 3. OMD Encrypt Block Diagram.

The results of the OMD RTL implementations are described next. Implemen-
tation statistics in the Virtex UltraScale+ are shown in Table 1. We provide met-
rics regarding Throughput, Area and Throughput-to-Area (TP/A) ratio, LUTs,
LUT RAM and Frequency. Throughput is defined in terms of 109 bits/second
(Gbps) and area is defined in terms of LUTs (LookUp Tables). We also show
the number of clock cycles used to calculate the throughput for long messages.
The encryption process of OMD is splitted in three phases in the case of our
hardware implementation: 1 Setup (the initialization phase), 2 Message (the
processing time of all the n blocks of the message) and 3 Tag (the final phase
in which the tag is computed).

Open Source Implementation. The VHDL source code of our OMD optimized
implementations may be found at [4].
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Table 1. Implementation Metrics for OMD-sha-512 and OMD-blake2b.

Metric OMD-sha-512 OMD-blake2b

Setup (CLK) 116 48

Message (CLK) 93 · n 25 · n

Tag (CLK) 91 23

Frequency (MHz) 250 125

Throughput (Gbps) 1.3 2.56

LUTs 7187 (3451) 18907 (14875)

LUT RAM 3736 (0) 3736 (296)

Throughput/Area 0.18 (0.3736) 0.125 (0.159)

4.2 Results Comparison

Comparison Between OMD-sha-256 and OMD-sha-512. In [8] an implemen-
tation of the primary OMD instantiation (OMD-sha-256) is discussed. Given
that we focused on efficiently implementing the secondary OMD instantiation
(OMD-sha-512) we need to abstractly scale the results of [8] for a fair compari-
son taking into account the natural differences that appear because we replaced
sha-256 with sha-512. Also, we note that there is a difference in terms of FPGA
target platform in the sense that the authors of [8] use a Virtex 7 FPGA plat-
form. We stress that our superior implementation results are not only due to the
newer FPGA platform we used, but also due to the implementation techniques
we employed. Moreover, we underline that in [8] only “long messages” (accord-
ing to the authors) are considered for computing the implementation metrics.
We believe that the notion “long message” should be clearly defined in order
to obtain accurate results. All in all, we report the next differences between the
two previously mentioned implementations:

– In terms of Throughput we obtained 1.3 Gbps as opposed to 1.071 Gbps;
– In terms of Throughput-to-Area we obtained 0.18 (0.3736) as opposed to

0.228;
– In terms of Frequency we obtained 250 MHz as opposed to 276 MHz;
– In terms of LUTs we obtained 7187 (3451) as opposed to 4701.

As a conclusion, even though OMD-sha-512’s security is higher than OMD-
sha-256’s and we used a key length of 512 bits as opposed to a key length of
128 bits, our throughput supersedes the throughput reported in [8]. This is an
important feature in real world applications which need to transfer data at a
high rate. Although the parameters we used for implementing OMD-sha-512 are
at least double as compared to the ones used in [8], the TP/A, the Frequency
and the number of LUTs are way smaller than the double of the values reported
in [8]. We also have to mention the fact that even though we used more LUTs,
we utilized at most 3% of the platform’s available resources. Furthermore, the
authors of [8] do not implement a mechanism similar to ours for computing Taga

and L only once per session.
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Comparison Between OMD-sha-512 and OMD-blake2b. We report the next dif-
ferences between our implementations of OMD-sha-512 and OMD-blake2b:

– In terms of Setup we obtained 116 clock cycles as opposed to 48;
– In terms of Message we obtained 93 · n clock cycles as opposed to 25 · n;
– In terms of Tag we obtained 91 clock cycles as opposed 23;
– In terms of Throughput we obtained 1.3 Gbps as opposed to 2.56 Gbps;
– In terms of Throughput-to-Area we obtained 0.18 (0.3736) as opposed to

0.125 (0.159);
– In terms of Frequency we obtained 250 MHz as opposed to 125 MHz;
– In terms of LUTs we obtained 7187 (3451) as opposed to 18907 (14875).

As a conclusion, the Throughput of OMD-blake2b is higher than OMD-sha-
512 due to the following facts: 1 the blake2b compression function has only
12 rounds as opposed to sha-512 which has 80 rounds and 2 each round of
both blake2b and sha-512 compression functions takes only one clock cycle.
Concerning the number of LUTs we have to mention that OMD-sha-512 is a
better option for Area constrained platforms, while OMD-blake2b is a better
option for real world applications which need to transfer data at a high rate.
We also have to point out the differences between the frequency values in OMD-
sha-512 (250 MHz) and OMD-blake2b (125 MHz), which are due to the more
complex structure of the blake2b compression function.

5 Conclusions and Future Work

We proposed a new OMD instantiation (OMD-blake2b) and showed how to use
it as the main cryptographic primitive of a real world authenticated encryption
system. We presented the results of our optimized implementations in hardware
and provided the reader with a security analysis of our proposed instantiation.

Future Work. After the original OMD scheme was submitted to CAESAR, dif-
ferent flavours of it were proposed in the literature: two nonce misuse-resistant
variants [14] and pure OMD (p-OMD) [15], a more efficient OMD version (i.e.
the associated data is processed almost for free). Besides inheriting all the secu-
rity features of OMD, the authors claim authenticity against nonce-misusing
adversaries. Note that an important update regarding the security of p-OMD is
presented in [5]: it is shown that p-OMD does not actually achieve authenticity
against misuse-resistant adversaries. The attack is strictly specific to p-OMD
and does not invalidate its main result on nonce-respecting adversaries6. Thus,
from both the diversity and efficiency points of view, we believe that a straight-
forward future approach is to provide hardware implementation metrics for all
previously mentioned OMD variants.

6 Moreover, the attack does not apply to the OMD CAESAR submission and to the
misuse-resistant variants of [14].
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Another interesting research direction would be to analyze the security of
our proposed OMD optimized implementations against physical attacks. Addi-
tionally, suitable countermeasures against such attacks are to be considered as
future work (e.g. masking techniques).

Acknowledgments. The authors would like to thank Traian Neacşa and George
Teşeleanu for their helpful comments.

A OMD Pseudocode

Algorithm 1. Initialize (K)
1 L∗ ← FK(0n, 0m)

2 L[0] ← 4.L∗ � 2.(2.L∗), doubling in GF(2n)

3 for i ← 1 to �log2(�max)� do
4 L[i] = 2.L[i − 1] � doubling in GF(2n)
5 end
6 return

Algorithm 2. HashK(A)
1 b ← n + m

2 A1||A2|| · · · ||A�−1||A�
b← A, where |Ai| = b for 1 ≤ i ≤ � − 1 and |A�| ≤ b

3 Taga ← 0n

4 Δ ← 0n

5 for i ← 1 to � − 1 do
6 Δ ← Δ ⊕ L[ntz(i)]

7 Left ← Ai[b − 1, · · · , m]

8 Right ← Ai[m − 1, · · · , 0]

9 Taga ← Taga ⊕ FK(Left ⊕ Δ,Right)

10 end

11 if |A�| = b then
12 Δ ← Δ ⊕ L[ntz(�)]

13 Left ← A�[b − 1, · · · , m]

14 Right ← A�[m − 1, · · · , 0]

15 Taga ← Taga ⊕ FK(Left ⊕ Δ,Right)

16 end

17 else
18 Δ ← Δ ⊕ L∗

19 Left ← A�||10b−|A�|−1[b − 1, · · · , m]

20 Right ← A�||10b−|A�|−1[m − 1, · · · , 0]

21 Taga ← Taga ⊕ FK(Left ⊕ Δ,Right)

22 end
23 return Taga
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Algorithm 3. EK(N,A,M)
1 if |N | > n − 1 then
2 return
3 end

4 ⊥ M1||M2|| · · · ||M�−1||M�
m← M , where |Mi| = m for 1 ≤ i ≤ �−1 and |M�| ≤ m

5 Δ ← FK(N ||10n−1−|N|, 0m) � initialize ΔN,0,0

6 H ← 0n

7 Δ ← Δ ⊕ L[0] � compute ΔN,1,0

8 H ← FK(H ⊕ Δ, 〈τ〉m)

9 for i ← 1 to � − 1 do
10 Ci ← H ⊕ Mi

11 Δ ← Δ ⊕ L[ntz(i + 1)]

12 H ← FK(H ⊕ Δ, Mi)

13 end

14 C� ← H ⊕ M� if |M�| = m then
15 Δ ← Δ ⊕ 2.L∗

16 Tage ← FK(H ⊕ Δ, M�)

17 end
18 else
19 if |M�| �= 0 then
20 Δ ← Δ ⊕ 3.L∗

21 Tage ← FK(H ⊕ Δ, M�||10m−|M�|−1)

22 end

23 end
24 else
25 Tage ← H
26 end
27 Taga ← HashK(A)

28 Tag ← (Tage ⊕ Taga)[n − 1, · · · , n − τ ]

29 C ← C1||C2|| · · · ||C�||Tag return C
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Algorithm 4. DK(N,A,C)
1 if |N | > n − 1 or |C| < τ then
2 return ⊥
3 end

4 C1||C2|| · · · ||C�−1||C�||Tag m← C, where |Ci| = m for 1 ≤ i ≤ � − 1, |C�| ≤ m and
|Tag| = τ

5 Δ ← FK(N ||10n−1−|N|, 0m) � initialize ΔN,0,0

6 H ← 0n

7 Δ ← Δ ⊕ L[0] � compute ΔN,1,0

8 H ← FK(H ⊕ Δ, 〈τ〉m)

9 for i ← 1 to � − 1 do
10 Mi ← H ⊕ Ci

11 Δ ← Δ ⊕ L[ntz(i + 1)]

12 H ← FK(H ⊕ Δ, Mi)

13 end

14 M� ← H ⊕ C�

15 if |C�| = m then
16 Δ ← Δ ⊕ 2.L∗

17 Tage ← FK(H ⊕ Δ, M�)

18 end

19 else
20 if |C�| �= 0 then
21 Δ ← Δ ⊕ 3.L∗

22 Tage ← FK(H ⊕ Δ, M�||10m−|M�|−1)

23 end

24 end

25 else
26 Tage ← H
27 end

28 Taga ← HashK(A)

29 Tag′ ← (Tage ⊕ Taga)[n − 1, · · · , n − τ ]

30 if Tag′ = Tag then
31 return M ← M1||M2|| · · · ||M�

32 end

33 else
34 return ⊥
35 end
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B The sha-512 and blake2b Compression Functions

B.1 Preliminaries

In the following, by “word” we mean a group of w = 64 bits. Namely, in sha-512
each word is a 64-bit string.
ROTRn(x) and SHRn(x): Let x be a w-bit word and n an integer with
0 ≤ n < w. The rotate right (circular right shift) operation is defined by
ROTRn(x) = (x � n) ∨ (x  w − n). The right shift operation is defined
by SHRn(x) = (x � n).

Choice and Majority Functions. The choice function and majority function (also
called the median operator) functions can be defined as follows:

Ch :
∣
∣
∣
∣
{0, 1}m × {0, 1}m × {0, 1}m −→ {0, 1}m

x, y, z �−→ (x ∧ y) ⊕ (¬x ∧ z)

Maj :
∣
∣
∣
∣
{0, 1}m × {0, 1}m × {0, 1}m −→ {0, 1}m

x, y, z �−→ (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)

B.2 The sha-512 Compression Function

Sigma Functions. The functions Σ
{512}
0 and Σ

{512}
1 are defined as follows:

Σ
{512}
0

∣
∣
∣
∣
{0, 1}64 −→ {0, 1}64

x �−→ ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x)

Σ
{512}
1

∣
∣
∣
∣
{0, 1}64 −→ {0, 1}64

x �−→ ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x)

The σ
{512}
0 and σ

{512}
1 functions are defined as follows:

σ
{512}
0

∣
∣
∣
∣
{0, 1}64 −→ {0, 1}64

x �−→ ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

σ
{512}
0

∣
∣
∣
∣
{0, 1}64 −→ {0, 1}64

x �−→ SHR19(x) ⊕ SHR61(x) ⊕ SHR6(x)

The Process. The sha-512 compression function is defined as:

sha − 512
∣
∣
∣
∣
{0, 1}512 × {0, 1}1024 −→ {0, 1}512

H,M �−→ D

Let M be the 1024-bit message input and H the 512-bit hash input (chaining
input). These two inputs are represented respectively by an array of 16 64-bit
words M0‖ · · · ‖M15, and an array of 8 64-bit words H0‖ · · · ‖H7. The 512-bit
output value C is also represented as an array of 8 64-bit words D0‖ · · · ‖D7.
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Table 2. sha-512 initial values

H0 = 6a09e667f3bcc908

H1 = bb67ae8584caa73b

H2 = 3c6ef372fe94f82b

H3 = a54ff53a5f1d36f1

H4 = 510e527fade682d1

H5 = 9b05688c2b3e6c1f

H6 = 1f83d9abfb41bd6b

H7 = 5be0cd19137e2179

Let H be the 512-bit hash input (chaining input) and M be the 1024-bit
message input. These two inputs are represented respectively by an array of 8 64-
bit words H0‖ · · · ‖H7 (see Table 2) and an array of 16 64-bit words M0‖ · · · ‖M15.
The 512-bit output value D is also represented as an array of 8 64-bit words
D0‖ · · · ‖D7.

During the process of compression, a sequence of 80 constant 64-bit words
K

{512}
0 , ...,K

{512}
79 is used. These 64-bit words represent the first 64 bits of the

fractional parts of the cube roots of the first 80 prime numbers. In hex, these
constant words are given in Table 3 (from left to right).

We further provide the reader with the description of the sha-512 compression
function. The addition (+) is performed modulo 264.

1. Preparing the message schedule, {Wt}:

Wt =
{

Mt, 0 ≤ t ≤ 15
σ

{512}
1 (Wt−2) + Wt−7 + σ

{512}
0 (Wt−15) + Wt−16, 16 ≤ t ≤ 79

2. Initialize the eight working variables, a, b, c, d, e, f, g and h with the hash
input value H:
a = H0 b = H1 c = H2 d = H3

e = H4 f = H5 g = H6 h = H7

2. For t = 0 to 79, do:
{
T1 = h + Σ

{512}
1 (e) + Ch(e, f, g) + K

{512}
t + Wt

T2 = Σ
{512}
0 (a) + Maj(a, b, c)

h = g g = f f = e e = d + T1

d = c c = b b = a a = T1 + T2

}
3. Computing the 512-bit output (hash) value C = C0 · · · C7 as:

C0 = a + H0 C1 = b + H1 C2 = c + H2 C3 = d + H3

C4 = e + H4 C5 = f + H5 C6 = g + H6 C7 = h + H7
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Table 3. sha-512 constants

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4

c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

B.3 The blake2b Compression Function

The initial values H of blake2b was chosen precisely as the ones for SHA-512
(given in Table 2). These values “were obtained by taking the first sixty-four
bits of the fractional parts of the square roots of the first eight prime numbers”,
according to [13].

Thus, the compression function blake2b takes as input:

H = H0‖H1‖ . . . ‖H7 (of length 512 bits)
M = M0‖M1‖ . . . ‖M7 (of length 1024 bits)
T = T0‖T1 (of length 128 bits)
F = F0‖F1 (of length 128 bits)

⎛

⎜
⎜
⎝

ν0 ν1 ν2 ν3
ν4 ν5 ν6 ν7
ν8 ν9 ν10 ν11
ν12 ν13 ν14 ν15

⎞

⎟
⎟
⎠ :=

⎛

⎜
⎜
⎝

h0 h1 h2 h3

h4 h5 h6 h7

H0 H1 H2 H3

T0 ⊕ H4 T1 ⊕ H5 F0 ⊕ H6 F1 ⊕ H7

⎞

⎟
⎟
⎠

Let the round permutations σr be in accordance with Table 4, where r = 0, 9.
Note that for rounds r ≥ 10 the permutation used is σr mod 10. The core function
G of blake2b is defined as follows:
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Table 4. Permutations of blake2b

σ0 : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

σ1 : [ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3]

σ2 : [ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4]

σ3 : [ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8]

σ4 : [ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13]

σ5 : [ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9]

σ6 : [ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11]

σ7 : [ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10]

σ8 : [ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5]

σ9 : [ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0]

a := a+b+mσr(2i) d := ROTR32(d⊕a) c := c+d b := ROTR24(b⊕c)
a := a + b + mσr(2i+1) d := ROTR16(d ⊕ a) c := c + d b :=

ROTR63(b ⊕ c)

C Explicit Performance Metrics

The main performance metrics which are used in our work are throughput, area
and throughput to area ratio (Tp/A). They are presented in Figs. 4, 5 and 6 in
comparison with the block size of a message (which is represented on the x axis
in all plots). The block size n goes from 64 bytes to 9600 bytes (we chose these
values in order to meet the requirements of an online system). Both OMD-sha-
512 and OMD-blake2b instantiations are taken into consideration.

Fig. 4. Latency vs. block size
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Fig. 5. Throughput vs. block size

Fig. 6. Throughput to area ratio (Tp/A) vs. block size

All formulas used to generate the plots are based on the metrics described
in Table 1. We recall that, during the following, 1 Setup represents the number
of clock cycles necessary in the initialization phase, 2 Message refers to the
number of clock cycles necessary to process a message composed of n blocks,
3 Tag represents the number of clock cycles necessary to calculate Tag and 4

Frequency refers to the frequency of the FPGA circuit.
In Fig. 4 we use latency as the parameter represented by the y axis. We

computed latency by the following formula:

Latency = CLK · (Setup + n · Message + Tag) · 1/Frequency.
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We computed the throughput by applying the following formula:

Throughput =
n · 64 · 8 · Frequency

CLK · (Setup + n · Message + Tag)
.

The computation of Tp/A is straightforward.
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Abstract. Mobile crowdsensing has emerged as a new paradigm in the IoT
world, exploiting users’ mobility in conjunction with advanced capabilities and
proliferation of mobile devices. Smartphones, tablets and smartwatches are now
typically equipped with sensing and wireless capabilities, enabling them to
produce and upload data for different IoT applications. The mobile crowd-
sensing approach has the advantage of being cost-effective, while also providing
real-time data. However, a number of challenges should be addressed in order
for mobile crowdsensing to reach its full potential. Security, privacy and reli-
ability of the data provided by mobile devices are the most important ones. In
this paper, we propose a security framework with a multi-layer architecture that
addresses the trust evaluation of sensing devices based on reputation scores
calculated using a naive Bayes algorithm.

Keywords: Mobile crowdsensing � Security framework � Trust management

1 Introduction

The Internet of Things (IoT) refers to a network of interconnected “smart objects” that
have incorporated the technology needed to detect and communicate data about their
internal state, as well as interacting with the external environment. One direction of
development in IoT is currently represented by mobile crowdsensing. The devices that
we carry with us every day (such as smartphones, tablets, smartwatches) are equipped
with several physical and virtual sensors that may collect and share information about
the surrounding environment for different purposes.

Mobile crowdsourcing has attracted the attention of researchers with applications
designed for air quality monitoring [1], traffic monitoring [2] or intelligent parking [3,
4]. The idea behind mobile crowdsensing applications is to reduce costs by replacing or
complementing traditional wireless sensor networks. A conventional sensors network
in IoT is usually intended for a specific application, but mobile crowdsensing is trying
to reuse data for multiple purposes [5]. There are a series of researches regarding the
definition of frameworks for mobile crowdsourcing [6, 7], as well as specific imple-
mentations [8, 9] that allow the development of applications by reusing the data from
multiple sensors.
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The main drawback of mobile crowdsensing is finding out a method of establishing
the degree of trust of the sensing nodes within the network, because they may affect the
quality of services provided. In crowdsensing applications, devices involved in the
sensing process are vulnerable and they can insert erroneous data into the system either
intentionally (attacks of malicious people) or unintentional (environmental distur-
bances). Consequently, it is challenging to ascertain the correctness of the collected
data and is difficult to establish the reliability of it without knowing whether the data is
valid or not.

This paper proposes a security framework with a multi-layer architecture that
addresses the trust evaluation of sensing devices based on reputation scores calculated
using a naive Bayes algorithm. The proposed framework consists of interconnected
modules that are integrated at each of the main layers of an IoT system: Cloud,
gateway, and device. The framework is built on a customized decentralized architec-
ture, empowering middle-layer devices, such as gateways, while having a central point
of management through a Cloud platform. Following the gateway-centric model, our
framework moves the main part of the security logic at the gateway layer, where we
integrate the core of the reputation-based trust management system.

The framework’s key components are presented in the remaining sections of the
paper, which has the following structure. Section 2 presents the related work being
done in this domain. Section 3 describes the architecture of the proposed framework,
followed by Sect. 4, in which the tests and analyses are presented. Section 5 ends the
paper with conclusions and future research directions.

2 Related Work

In distributed and collaborative systems, trust management plays a significant role.
Ensuring a high degree of trust and security is a critical issue that must be considered
when designing a mobile crowdsensing application. Reputation is a concept closely
related to establishing a trust relationship between participants. Based on previous
experiences and the reference information already collected, a degree of trust or mis-
trust can be assigned to each participant. Recent studies present an overview of trust
management in IoT, explaining its usefulness in a security framework and how it
should be exploited. In [10], the security objectives of a trust management system are
presented and a review of the current research that deals with the subject of trust in IoT
systems is made. It also presents a conceptual model for a holistic framework that
contains elements of trust management at each layer and cross-layers. Another detailed
study of trust management techniques is described in [11], where a series of frame-
works that are based on node reputation are presented: AETS (Adaptive Trust Esti-
mation Scheme), ATBP (Adaption Trust-Based Protocol), TDFDS (Trust-based
Development Framework for distributed systems), CTMS-SIOT (Context-based trust
management system for the social Internet of Things), etc. The last one is presented in
the context of dynamic systems that want to maintain a realistic approach. Regardless
of the nature of the architecture (centralized or decentralized), CTMS-SIOT depends on
both the past interaction and future prediction and is based on two modules: one for
storing contextual trust and one for calculating reputation.
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A trust management system based on reputation can defend a network against
attacks at nodes level because it facilitates the detection of untrustworthy entities, thus
contributing to the decision-making process. Today, there are several proposals and
algorithms for computing reputation based on K-Nearest Neighbors, naive Bayes Case-
Based Reasoning (CBR) [12] or Fuzzy logic [13]. In [14], the author uses Bayesian
inference and self-observation to evaluate trust based on feedback received from
neighboring nodes. The proposed model updates the confidence level of the nodes in
real-time in order to prevent opportunistic attacks. A different approach to trust cal-
culation is provided in [13] using Fuzzy logic. The system allows the nodes to interact
with each other, recording all transactions, then evaluates the performance of each node
based on the package delivery ratio (PDR).

A security framework that relies on the trust management module can bring
improvements to an IoT architecture in terms of detecting abnormal node behaviors and
isolating them. An approach to such a security framework for IoT is presented in [15,
16]. They address the possibility of building services only on the basis of information
received from trusted nodes. The information is actually the feedback sent by the
neighboring nodes or from the gateway. A slightly different approach is presented in
[17, 18] which implements an identity-based key agreement framework to prevent
attacks outside the network and to recognize malicious nodes.

To address the problems that appear at all layers in an IoT architecture, we have
defined a modularized security framework that allows a decision to be made in
accordance with the reliable information collected from the devices that can be used in
crowdsensing architectures. Compared to the above-mentioned frameworks, the rep-
utation module is deployed at the gateway layer so that the gateway can select the
devices that contribute to data in the mobile crowdsensing architecture.

3 Proposed Architecture Design

The security framework, detailed in the following subsections, makes use of the
advantages that reputation-based trust management has, for enforcing the distribution
of valid data throughout the system and mitigating different types of attacks. Following
the gateway-centric approach that many IoT systems are based upon, we propose a
security framework that empowers the gateway as its central element. In this scenario,
the Cloud component plays a secondary role, ensuring the communication between the
gateway and crowdsensing devices, data consumers or static nodes.

The system architecture contains the following modules: the IoT end-points, the
gateway, and the Cloud. The IoT layer comprises devices that produce aggregated data
using the on-board sensors and the most trusted crowdsensing information. The
gateway layer is the most critical part of our system, being the element that computes
the IoT device’s reputation and acts as a communication bridge for the local IoT data
flow and for uploading the local computed IoT data to an upstream application. The
Cloud layer is used to manage local gateways, along with establishing the trust rela-
tions between them, and acts as a passive repository for storing the IoT generated data.
This architecture is based on a mobile crowdsensing model that enables a collaboratory
IoT data delivery application. Thus, the core element of this system is a local network
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of static IoT devices that generates and aggregates data. These local IoT modules are
either low-cost devices or devices which need data generated by other mobile devices
located in the environment. The mobile crowdsensing model reduces the cost of the
static IoT group deployment by allowing an IoT device with a small number of on-
board sensors (simple hardware design) to virtually extend it’s sensor capabilities. This
mechanism also improves the IoT static group flexibility, by handling other types of
sensor data without having to re-deploy the entire sensor fleet. The system architecture
is depicted in Fig. 1.

As it can be observed, the static group of IoT devices is extending it’s sensor
capabilities with the aid of the mobile crowdsensing IoT devices. Thus, when a static
IoT device needs additional data, it chooses the information published by the most
trusted mobile crowdsensing module (the device with the highest reputation within a
certain data category). For instance, if a static device is not equipped with a temperature
sensor, it may choose to query the gateway, which in turn delivers the most trusted
information provided by a mobile crowdsensing device. By using this approach, the
static device can aggregate data from various sources (on-board and participatory
sensors), and deliver the information to an upstream application. The upstream
application consumes the static IoT delivered data and provides feedback based on the
information quality/relevance. If it receives positive feedback, the static device rewards
the mobile crowdsourcing module which contributed to the delivered information.

3.1 IoT Device Layer

As mentioned before, the IoT device layer comprises two groups: mobile crowdsensing
and the static IoT group which communicate through the Cloud services and the local
gateway. The mobile crowdsensing IoT device group is composed of sensors that

Fig. 1. The architecture of the system
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sample data from the environment and voluntarily submit it to a local gateway. The
information submit process is orchestrated through a smartphone application that
acquires data from two sources: on-board (local) smartphone sensors and wearables.
The smartphone application acts as a data aggregator and submits the information to a
local gateway, through the Cloud module, following the mobile crowdsensing para-
digm. The controller application acquires sensor data using the following mechanisms:

• it uses the smartphone operating system API’s to sample data using the on-board
sensors (e.g. use the Android API to query the barometer sensor in order to detect
changes in air pressure).

• it uses a low energy connection (e.g. BLE) with wearables in order to extract the
sensor data. The controller smartphone application uses the management API
exposed by the wearables (e.g. smart-watch, smart-bracelet).

The wearables along with the smartphone onboard sensors share the same trust
domain or use an already existing security link (e.g. authentication between the
smartphone and the wearable), thus an additional security mechanism is not required.
The user device-generated data is relevant only for a certain geographical area, thus the
data sampling process is triggered by the smartphone controller, only when the user is
located within the local gateway’s area of interest. Taking into consideration that the
mobile crowdsensing data is consumed based on the reputation value, the controller
application generates an identity and uses that identity every time a sensor data is
submitted to the gateway. The controller’s identity consists of a pair of asymmetric
cryptographic keys, each mobile crowdsensing report being signed with the controller’s
private key. The application controller communicates with the gateway through a data
submission protocol, which consists of the following steps:

1. at start-up, the controller application generates an asymmetric key pair and submits
to the Cloud service, the public key along with a pseudonym. This tuple represents
the application controller’s identity.

2. the gateway initiates a report submission session, by sending a request to the Cloud
service, which in turn relays the request to all the devices within a geographical
area. The session metadata consists of a unique session identifier (randomly gen-
erated) and a data category (e.g. temperature, noise).

3. if applicable, the controller application acquires data from the local smartphone and
from the connected wearables, aggregates the data in a report, appends the session
metadata and signs the report with his private key.

After a member of the mobile crowdsensing IoT group submits a sensing report to
the local gateway, the information is stored on the gateway side for a period of time.
The mobile device does not have a direct communication link with the gateway, the
communication being established by means of the Cloud platform. The mobile device
to gateway communication consists of the following steps:

1. the gateway triggers a data sensing query by sending a request to the Cloud plat-
form. The request contains the gateway GPS location, taking into consideration that
the mobile crowdsensing data is relevant only for the gateway’s proximity.
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2. the Cloud platform relays the sensing request to all mobile crowdsensing applica-
tions which are located in the gateway’s proximity.

3. the targeted mobile application controllers trigger a data sampling process.
4. after the controller mobile application acquires the data, it sends the response to the

Cloud platform, which in turn relays it to the gateway.

The Cloud-based communication between the mobile application and the gateway
requires only a data connection on the user’s smartphone. Although the gateway has
communication capabilities (acting as a hotspot or as a base station for the static IoT
devices), scanning and subscribing to different networks is a battery intensive task for a
smartphone. This is an import factor, taking into consideration that the mobile
crowdsensing is not the primary task of a smartphone, and such a solution must be non-
intrusive from the performance and user-experience perspectives.

During this time interval, the data is eligible for being consumed by a member of
the static IoT group, if the data producer’s reputation is the highest within a category.
The reputation of the mobile IoT device is computed locally, but it can be transferred
from a gateway domain to another, thus the device must use the same identity in order
to preserve the reputation value. If a member of the static group needs additional sensor
data, it executes a sensor query and the gateway returns the most trusted data within the
requested category. After computing the aggregated data with the aid of a mobile
device, the static device publishes the information (through the gateway) to a higher
layer application that consumes the information. This can be either a smartphone
application or a web application that delivers data to end-users or to another IoT device.
The gateway exposes an API that allows the data consumer (e.g. end-user smartphone
application or web service) to provide feedback for the delivered data. In accordance
with the feedback, the gateway increases or decreases the reputation of the participatory
sensing device. The transaction is asynchronous because the mobile sensing data can be
queried by a static device anytime during the data time-to-live interval, with the
gateway acting as a buffer for storing the most recent published information. The
gateway publishes the information received from the static IoT devices to the Cloud
platform, which in turn relays it to the consumer applications. The data is delivered to
the consumer application through a TLS channel, each consumer application having an
identity registered on the Cloud platform. The feedback is also delivered to the gateway
via the trusted Cloud communication channel, thus the feedback cannot be altered or
submitted multiple times.

3.2 Gateway Layer

The gateway module is responsible for computing the reputation of the mobile
crowdsensing devices that contribute with sensor data to the static IoT modules. The
crowdsensing devices do not share a trust relationship with the gateway, these con-
tributing with information in an ad-hoc manner. By using a reputation algorithm, the
gateway delivers to the static IoT device the most trusted information within a category.
If a device contributes with relevant information constantly, its’ reputation value will
be increased, otherwise, the reputation level will decrease if a transaction is considered
failed. For computing the reputation level, a naive Bayes algorithm is used. This
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algorithm was chosen because it does not require high computational resources, being
adequate for resource-constrained gateways. In an IoT network, the number of
deployed gateways is high, given that these are part of the leaf network segment.
Taking this into consideration, low cost gateways are critical in the cost-effectiveness
of an IoT application. Thus, a lightweight algorithm like naive Bayes can be executed
on general purpose gateways that do not have security as a primary task.

The gateway maintains a repository with the reputation level for each mobile
crowdsensing device that submits a sensing report. This repository can be modified
only by the naive Bayes algorithm and the reputation value can be transferred to
another gateway domain. Taking into consideration that the crowdsensing devices are
mobile, there is a low probability for the same device to submit data to the same
gateway multiple times, thus the reputation must be transferred from one gateway to
another. Given the trust relationship between the gateways, when a new device submits
data into a zone, the gateway sends a broadcast request to all gateways in order to find a
baseline reputation score. The communication between the gateways is achieved by
means of the Cloud platform, which relays the messages. The gateway that executes the
query chooses the minimum reputation score received from other gateways and uses
this value as the baseline reputation level for the newly registered crowdsensing device.

As stressed before, the naive Bayes method was chosen due to its simplicity, which
assumes that an agent can deliver information with the characteristic that one delivered
feature is independent of the others. For instance, in our crowdsensing IoT scenario, the
naive Bayes paradigm is translated into the characteristic that a mobile user can deliver
a trustworthy temperature value without influencing the trustworthiness of the delivered
air pressure value. In Fig. 2 is depicted the structure of the proposed naive Bayes
network. The purpose of our naive Bayes algorithm is to predict the probability of a
mobile device to deliver trustworthy information, based on the previously delivered
data.

As presented in Fig. 2, the root node of the naive Bayes network indicates if the
mobile agent is trustworthy and the leaves contain the sensor data features. The features
are represented by the agent delivered data type (e.g. temperature, CO2) and by meta-
information generated by the gateway (e.g. how fast and how often a mobile agent
uploads a sensing report).

Fig. 2. The naive Bayes network
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The local gateway maintains a naive Bayes network for every mobile crowdsensing
agent. In order to increase the reputation value, each transaction must be evaluated and
classified as satisfying or unsatisfying (Formula 1).

p T ¼ 1ð Þ ¼ # of successful transactions
# of total transactions

ð1Þ

In order to compute the Bayes probability, given any set of features as input, the
gateway maintains a conditional probability table (CPT) as presented in Table 1.

Each entry from Table 1 indicates the conditional probability of a mobile agent to
deliver a sensing report which contains data with a given feature (e.g. temperature
data), given a trustworthy transaction. According to Bayes formula, the entry from CPT
can be computed following Formula 2:

p FT ¼ F1 T ¼ 1jð Þ ¼ p FT ¼ F1; T ¼ 1ð Þ
P T ¼ 1ð Þ ; where ð2Þ

p FT ¼ F1; T ¼ 1ð Þ ¼ # of successful transactions with F1

# of total transactions
ð3Þ

A transaction is classified as successful if its’ degree of satisfaction passes a given
threshold. This process is executed on the consumer application side by an evaluator
agent that can contain a customized method of evaluation chosen by the user, thus it is
considered out of the scope of this paper. For a static IoT device, a certain feature may
be more important than others (e.g. receiving a high-quality temperature value may be
more important than receiving an accurate air pressure value), thus the satisfaction
degree formula allows assigning different weights to the evaluated features (as pre-
sented in Formula 4):

s ¼ WF1 � SF1 þWF2 � SF2 þ . . .þWFn � SFn ð4Þ

WF1 þWF2 þ . . .þWFn ¼ 1 ð5Þ

where W indicates the feature weight (importance) and S indicates a satisfaction value
for a feature. If S[ St then the transaction is successful, otherwise it is unsuccessful.

Table 1. Example of a conditional probability table

T = 1 T = 0

F1 p(FT = F1|T = 1) p(FT = F1|T = 0)
F2 p(FT = F2|T = 1) p(FT = F2|T = 0)
F3 p(FT = F3|T = 1) p(FT = F3|T = 0)

220 I. Bica et al.



Using Bayes theorem, the probability of a given mobile crowding IoT device to
deliver a satisfying transaction that involves a feature set F is predicted.

pðT ¼ 1 Fj Þ ¼ p F T ¼ 1jð Þ � p T ¼ 1ð Þ
p Fð Þ ð6Þ

When feature set F is expanded to features F1, F2, …, Fn, the Formula 6 becomes:

p T ¼ 1;F1;F2; . . .;Fnð Þ ¼ p T ¼ 1ð Þ � PROD
p Fi;T ¼ 1ð Þ
p T ¼ 1ð Þ

� �
ð7Þ

The naive Bayes algorithm implemented in the proposed framework provides a
compact method of determining the reputation of data collected from crowdsensing
devices, eliminating the risk of allowing nodes to inject malicious data into the IoT
system.

3.3 Cloud Layer

In the proposed framework, the central position of the Cloud module empowers it to act
as a management module and data relay for the entire IoT system. Considering the data
relay role, the main task of the Cloud module is to relay sensing data requests coming
from gateways. In order to do this, the request is first parsed and specific fields are
extracted so that the request can be forwarded to a certain group of mobile crowd-
sensing IoT devices located in the proximity of the gateway that made the request. This
is achieved by using the GPS location field found in the data sensing request. Fur-
thermore, from this request the Cloud module will also filter the type of data the
gateway requires, thus limiting the resources consumption from both implied parties
(the crowdsensing IoT devices and the gateway).

Given that the mobile crowdsensing devices notify the Cloud module only when
they connect to the network, it is difficult for it to have a real-time updated map of the
entire network, but rather one that has the last status of each device. Therefore, several
requests can be rejected, if the devices are not located in the targeted area, or discarded
if the devices are not active anymore. In the first case, the crowdsensing devices send a
message to notify the Cloud that their location has changed, while in the second case
the Cloud module retries, for a customizable number of times, to send the request and,
if no reply is received, it will mark the crowdsensing devices as inactive and remove
them from further queries, until a reconnect message is received. Also, taking into
consideration that these crowdsensing devices are mobile, some of them can move
between areas of interest. In this case, the Cloud module will extend the area where the
requests will be forwarded, so that any possible device that is currently active in the
area of interest will be notified. Each communication link is secured using a symmetric
key, randomly chosen by the Cloud module and specific for each crowdsensing device.
For secretly sharing these symmetric keys with the corresponding crowdsensing
devices, the Cloud module encrypts them with the public key of the crowdsensing
devices.
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Data gathered from the crowdsensing IoT devices groups, as producers, and used
by the static IoT devices groups, as consumers, is trusted by the consumers in accor-
dance with the reputation that the producers have. This level of reputation can fluctuate
during the entire lifecycle of a producer and it can be used to detect malicious devices.
Gateways can send reputation queries between them to see if a producer that crossed
between areas covered by different gateways has been already assessed by the previous
gateway and what is its level of reputation, or if it needs to be considered as a freshly
registered producer and begin the reputation assessment process. Since gateways are
manually registered by the administrator on the Cloud module, the setting of a trust
relationship between different gateways is done automatically.

4 Implementation and Analysis

For the system implementation, we used Qemu for emulating the gateway and the static
IoT devices, along with an Android application for the mobile crowdsensing. The static
IoT devices logic was implemented as a Linux process that acts as an MQTT-SN client
and communicates with the gateway for requesting data with the highest reputation.
The aggregated data is published by the static IoT device to the gateway using MQTT-
SN, the latter transporting the information to the consumer application through HTTPs
(web service). For the mobile crowdsensing, we implemented a proof-of-concept
Android application that communicates with the Cloud platform through Firebase
messages (real-time push notifications). For the initial implementation we used only the
smartphone onboard sensors along with software simulated sensors. We implemented a
sensor abstraction layer to integrate the Android application with the simulated sensors,
this abstraction layer allowing a rapid integration with a third-party wearable API.

For testing the naive Bayes reputation algorithm, we designed a custom Python
simulator. The simulator allows declaring IoT nodes and associates different sensor
types with the IoT node (e.g. an IoT node can deliver temperature and noise values).
For each sensor type, a target value and a deviation interval were declared, this tuple
being used to model the IoT node’s behavior in a stochastic manner. For each sensor
type we defined an evaluator model which gives a score (between 0 and 1) to each
delivered data: if the data is accurate (close to the target value) the score is high. The
evaluator model transmits the score to the naive Bayes engine that updates the repu-
tation value on each simulation step. The goal of this experiment is to observe that an
IoT node’s reputation history is updated correctly by the naive Bayes engine based on
the delivered data quality. In this experiment we used 3 sensors that deliver one or more
data types. In the first test scenario, the sensors deliver temperature and humidity
values: sensor 1 delivers the best values, followed by sensor 2 and sensor 3, as reflected
in Fig. 3.
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In the second test case, the sensors deliver also temperature and humidity values:
sensor 1 delivers the best temperature value and the second best humidity value, sensor
2 delivers the best humidity value and the second best temperature value, sensor 3
delivers the worst values. In this scenario, the humidity has a bigger weight (it is more
important than the temperature value), as presented in Fig. 4.

In the third test case, the sensors deliver temperature, humidity, and CO2 values:
sensor 1 delivers the best values, followed by sensor 2 and sensor 3 for the first part of
the simulation. For the second part of the simulation, sensor 3 delivers the best values,
followed by sensor 2 and sensor 1, as presented in Fig. 5. This last test case simulates a
data manipulation attack, where an IoT node achieves a high reputation score and then
tries to manipulate the system by injecting false data.

Fig. 3. First test scenario

Fig. 4. Second test scenario
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As the results for these three scenarios show, the reputation-based trust manage-
ment system is able to adapt to changes and responds adequately to malicious inten-
tions of pushing erroneous data into the IoT system. Also, as presented in the second
scenario, if a weighted method of calculating reputation is chosen, the framework can
cope with these changes and correctly assess the reputation of each node.

5 Conclusions

Mobile crowdsensing is trying to bring new data collection techniques into IoT by
exploiting the sensing capabilities of users mobile devices to collect and share data.
A major problem that arises in such applications is the impossibility of guaranteeing a
suitable behavior for each mobile device. Hence the need for a security framework
based on reputation, so that mobile device intervention with suspicious behavior can be
minimized.

In this paper, we presented an approach to this problem by proposing a modular
security framework able to compute the level of trust of a mobile device based on the
feedback received from the consumer. A drawback of the model used in the decision-
making process in the reputation system is that we use a threshold value that has to be
set according to each type of application.

Regarding our future work, to prevent the aforementioned drawback, we plan to
implement and test several reputation calculation algorithms in order to offer a trade-off
between the algorithm accuracy and the required computing resources. By imple-
menting a suite of algorithms either using Fuzzy logic, Case-Based Reasoning, or even
naive Bayes, we can approach distinct IoT interaction models so that we can choose the
right method of calculating reputation depending on the type of application. Another
direction that we will focus on consists of improving the mechanism that ensures the
anonymity of the crowdsensing devices while maintaining the system’s responsiveness
in the event of the occurrence of untrustworthy actions.

Fig. 5. Third test scenario
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Abstract. Advanced electronic signatures are the main security mech-
anism used for assuring authentication, integrity and non-repudiation of
electronic documents. Digitization on a large scale requires secure and
flexible electronic signature systems. In E.U., the use of remote qualified
electronic signatures has considerably increased after the adoption of the
Regulation (EU) No 910/2014 (“eIDAS”). Thanks to the new legislative
measures, owning a physical device to create a qualified electronic signa-
ture in no longer mandatory, so the user experience has been consider-
ably improved. However, the full potential of remote qualified electronic
signatures has not been reached yet. Our work supports the adoption of
the remote digital signature in various fields by implementing an Android
application that can apply qualified electronic signatures. To assure inter-
operability, the client-server communication follows a standard protocol:
the Cloud Signature Consortium API. The main advantage of our app-
roach is that the Android application is able to sign using certificates
issued by different Trust Service Providers. This paper will analyze the
current situation and will present the main challenges encountered when
designing and developing a digital signature application that uses remote
qualified digital certificates as well as the learned lessons that could be
of tremendous help for others activating in this field.

Keywords: Remote qualified electronic signature · Cloud Signature
Consortium API · Android

1 Introduction

The main goal of digitization and use of digital signatures is the simplification
of the administrative procedures and the stimulation of a competitive market in
the field of service provision. Advanced electronic signature is supported by a
strong set of standards and laws in order to be globally recognized. At European
level, laws and regulations ensure that the qualified electronic signatures can be
legally equated to the handwritten signatures. Standards are referred to in the
legislation in order to achieve interoperability between the technical systems of
the Member States and efficiency in creating such systems.
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The main law regarding electronic signatures in the E.U. is Regulation (EU)
No 910/2014 [1], also known as the eIDAS Regulation. eIDAS recognises for the
first time the possibility of creating qualified electronic signatures (QES) using
private keys stored on remote servers, managed by the Qualified Trust Service
Providers (QTSP).

This paper presents the design and implementation of an Android application
for remote electronic signature of PDF documents using the remote qualified dig-
ital certificates issued by Trans Sped. The Android application is designed and
implemented considering that it have to assure, with a high level of confidence,
the sole control of the user over the private keys. Besides its main function-
ality (computing signatures), the application is able to display the certificates
available for the authenticated user and signatures applied on PDF documents.
The remote electronic signature is computed through the signature web API
exposed by Trans Sped, compliant with the remote signature protocol specifi-
cation proposed by the Cloud Signature Consortium (CSC) version 0.1.7.9 and
standardized by ETSI [2]. Besides the ETSI standard regarding the communica-
tion between the client application(SCA) and the remote Trust Service Provider
(TSP), CEN standards [3,4] enforce a set of security requirements on every
component of the system, including the implemented client application.

Given that the working legislation and standards in this area are relatively
new, the industry has not yet matured in providing products that exploit the
possibilities of remote qualified electronic signature. The main goal of the paper
is to support remote QES adoption, by helping the community to develop sig-
nature applications compliant with working standards. The main advantage of
our implemented application is the interoperability with the TSPs that expose
standard interfaces for computing electronic signatures.

The presented application presented uses Trans Sped’s solution for remote
electronic signature. Trans Sped is a QTSP certified against the eIDAS Regu-
lation, located in Romania. The main particularity of the Trans Sped’s remote
signature solution is the fact that the OTP is sent to the user via SMS.

With the support of current electronic signature legislation, many remote
signature solutions were proposed and developed, like [5–7] and [8]. As presented
in [9], back in 2014 there were already a significant number of private companies
to provide remote signature solutions: Adobe EchoSign, Amazon CloudHSM,
Austrian MObile Phone Signature, DocuSign and Intesi Time4Mind.

The remainder of the paper is organized as follows. The second section
presents the main aspects of legislation and standards related to remote elec-
tronic signatures and a comparison between local and remote signatures. The
third section presents the Cloud Signature Consortium API, the remote signa-
ture protocol used for implementing the digital signature application. The fourth
section describes the architecture of the implemented application. Section num-
ber five depicts the main points to consider when implementing a digital signa-
ture application that uses remote qualified digital certificates. The last section
concludes the paper and enumerates future work directions.
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2 Remote Electronic Signatures

Remote electronic signatures, also called server-side, mobile or cloud signatures,
are created by generating, storing and using the private key of an user on a
remote electronic signature creation device. The key point of such electronic
signature creation environments is to assure the sole control of the owners over
the private keys.

2.1 Legislation on Qualified Electronic Signatures

The E.U. legislation regarding electronic signature was adopted for the first
time in 1999 and it evolved to these days. The first major step for legalization of
electronic signatures was the adoption of 1999/93/CE Directive [10], since the
electronic signature was legally equated with a handwritten signature for the
first time. Until 2014 it was changed and completed by different Decisions of the
European Commission. The second main step in the evolution of the use of elec-
tronic signatures was the 910/2014 Regulation (which revoked the 1999/93/CE
Directive). The eIDAS regulation is the core of the whole European electronic
signature ecosystem. For example, eIDAS defines three different types of signa-
tures: electronic, advanced and qualified. The latter is an advanced signature
based on a qualified certificate for electronic signatures and is created using a
qualified electronic signature creation device1. An advanced electronic signature
is implemented based on asymmetric cryptography, is created on a electronic
signature creation device under the sole control of the signer2. The electronic
signature as defined by eIDAS is a more general type of signature, that is not
necessarily based on public key cryptography3. Still, eIDAS Regulation does not
define only signature types, but it covers all the components involved in the
electronic signature ecosystem, like: electronic identification, trust lists, signa-
ture creation devices, electronic seals, qualified electronic services, supervisory
bodies, electronic time-stamps, etc.

2.2 Standards Regarding Remote Electronic Signatures

The core of the remote signature standards are the CEN EN 419 241 series -
Trustworthy Systems Supporting Server Signing (T4WS). The main aspect that
needs to be solved when designing and developing a remote signature solution
is the user’s exclusive control over the signature creation material - namely, his
private key. Two levels of user’s exclusive control over its own private key are

1 REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL, Art.3, Definition of “qualified electronic signature”.

2 REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL, Art.26.

3 REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL, Art.3, Definition of “electronic signature”.
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defined4: low (SCAL1) and high (SCAL2), where SCAL stands for Sole Control
Assurance Level. SCAL2 have to be used for QES.

The CEN standard defines three different environment types in which system
components are placed, as follows:

1. Tamper protected environment - operates in the protected environment
of the trust service provider (TSP), has no direct access to the Internet,
assures integrity of the executed code and protects the signing keys. The
environment varies depending on sole control assurance level:
◦ SCAL1 - It is recommended that private/secret keys generation and usage

to be performed in this environment.
◦ SCAL2 - Private/secret keys MUST be generated and used in the tamper

protected environment. Also, the Signature Activation Module (SAM)
component MUST be placed here.

2. TSP protected environment - Assures protection against Internet attacks
and may keep a protected form of the signing keys or links between keys and
signers. It contains the SSA, which is the main component outside the tamper
protected environment [4].

3. Signer environment - Mainly contains the SCA. For SCAL2, the Signer
Interaction Component (SIC) is used in order to achieve two factor authen-
tication. The protection of this environment is a responsibility of the user.

According to [3,4] and [11] the components of a remote signature solution
are the following:

1. SCA (Signature Application) - is located in the user environment. It has
three main roles:
◦ Document processing - obtaining the Data To Be Signed Representation

(DTBSR).
◦ Obtaining the signature from the SSA - in our case, by using CSC API.
◦ Signature processing - for example, integration in a PDF file.

2. SSA (Server Signing Application) - Internet exposed component of the TSP.
Interacts with the SCA and with the tamper protected components.

3. SCDev (Signature Creation Device) - Located in the tamper protected envi-
ronment, it is responsible with key generation, key protection and actual sig-
nature computation. This component is materialized by an Hardware Secu-
rity Module (HSM), that must be FIPS 140-2 level 3 or EAL4 compliant
[12]. Signature creation material might be stored outside this component if
it is properly protected.

4. SIC (Signer Interaction Module) - Specific for SCAL2 solutions, it is situ-
ated in the user’s environment [4]. It participates in user authentication and
Signature Activation Data (SAD) creation. SIC assures two factor authen-
tication and might be materialized by a software application, a SIM card, a
cryptographic device own by the signer or other similar means.

4 CEN EN 419 241-1. “Trustworthy Systems Supporting Server Signing Part 1: Gen-
eral System Security Requirements”, Section 5.4.
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5. SAM (Signature Activation Module) - Specific for SCAL2 solutions, it is
protected by the tamper protected environment. The SAM is responsible
for SAD validation and authorization of the access to the private key of the
authenticated user.

ETSI also published three standards for remote signature systems, as follows:

1. ETSI TS 119 432 - Defines available protocols between SCA and SSA used
for obtaining an electronic signature [2].

2. ETSI TS 119 431-1 - Completes eIDAS Regulation by defining the policy
and security requirements for TSPs which offer remote QES [11].

3. ETSI TS 119 431-2 - Guides the creation remote Advanced Electronic
Signatures (AdES) [13].

Communication between the SCA and the SSA is standardized by ETSI in
the technical standard regarding remote signature creation protocols [2]. This
protocol is the main component for assuring interoperability between SAs and
different TSPs. This protocol permits authentication using username and pass-
word, but also supports authorization using an OAuth 2.0 server. In the process
of writing the technical specifications of this protocol, ETSI took into consid-
eration both CSC [14] and OASIS - DSS [15] protocols. This way, the actual
implementation of the protocol might use JSON or XML syntax.

2.3 The Advantages of Remote Electronic Signatures

eIDAS aimed to improve the user experience and the usability of digital signa-
tures by adopting remote electronic signatures. The Regulation came with the
change of criteria to decide the qualified status of a signature. The main change
consists in the fact that obtaining a qualified electronic signature (QES) is pos-
sible without the user physically owning a Signature Creation Device (SCDev).
QES is an advanced electronic signature (AdES) based on a qualified certificate
(see footnote 1). For advanced electronic signature creation, owning a physical
device is not needed, but the signature creation data (e.g. private key) must be
used by the signatory, with a high level of confidence, use under his sole control5.

Obtaining a qualified electronic signature without having to own a hardware
device came with a numerous set of advantages, as follows:

◦ Mobility - Qualified electronic signatures can now be created on smart-
phones. When the 93/1999 Directive was in force, achieving this goal did not
worth the price. Mainly, the restrictions are technical in nature, as mobile
devices cannot connect to a cryptographic token in a simple manner, and from
the best of our knowledge, there is no cryptographic token provider to offer
middleware suitable for mobile device operation systems(namely Android and
iOS).

5 REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL, Art.26 (c).
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◦ No Additional Hardware - Owning a hardware device for creating an
electronic signature considerably lowered the user experience, because the
physical device might get lost or broke. Also, users might encounter problems
with device versions not matching installed driver versions. On short, it is
another devices that the user must take care of.

◦ No Additional Software - One of the main problems encountered by the
users when creating electronic signatures, was the need of installing different
drivers and middleware for assuring the right communication between the
signature application and the hardware signature creation device.

◦ Reduced costs - Using a centralized approach, the overall costs for admin-
istration and operating get lower for the TSP. The user can optimize costs
depending on the business model (taxing only the issuance of the certificate
or taxing by computed signature). In some cases, where one signs lots of doc-
uments, the cost efficient decision would be to use a personal cryptographic
token for signing.

◦ Interoperability - Thanks to the standardized protocols between the SCA
and SSA, interoperability between the two components became an achievable
goal. For example, a SCA might change the TSP by simply changing the base
URL of the exposed CSC API. SCA can be implemented as a web application,
which means that creation of qualified signatures is now possible using any
device that is able to run a web browser.

It is worth mentioning that the main disadvantage of remote electronic sig-
natures is the fact that, by their nature, they cannot be created without an
Internet connection.

2.4 SCA Security Requirements

The main standards regarding remote signature services offered by TSPs, do not
target the user environment and the SCA. From the best of our knowledge, all
the security requirements for the SCA are the following:

◦ ETSI TS 119 432 - specifies the protocol to be respected for communication
between SCA/SIC and SSA/SAM. Since the ETSI standard also includes the
CSC proposed API, it is enough to be compliant with the CSC protocol.

◦ CEN EN 419 241-2 - requires secure manipulation of the SAD and SAP.
At the implementation level, sensitive information, like the SAD, shall be
stored as char array, not as a string. After finishing the usage of the data, the
memory where it was stored should be wiped.

◦ ETSI TS 119 431-2
◦ SCA shall process the Signature creation policy (OID)
◦ SCA signature shall protect the signing certificate. This requirement is

inherited from CAdES specification (ETSI TS 101 733, clause 5.6)
◦ ETSI TS 119 101, clause 5.2

◦ General Requirements: SCA is well tested; user uses up-to-date secu-
rity fixes and anti-virus if possible.
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◦ Application environment: SCA uses established cryptographic
libraries, code is digitally signed, maintains integrity and confidential-
ity of all info supplied, securely deletes authentication data after the
end of the session, and securely manages multiple users using the same
application.

3 Cloud Signature Consortium API

Cloud Signature Consortium (CSC) is a private consortium, Adobe being the
founding member. The consortium proposed one of the two standards for creation
of remote electronic signatures. The CSC maintains a close connection with the
ETSI ESI (Electronic Signatures and Infrastructures) working group. Until the
writing of this paper, three versions of the standard have been published: 0.1.7.9,
1.0.3.0 and 1.0.4.0.

CSC defines an API for the protocol used between the Signature Application
(SCA) and Server Signing Application (SSA). The protocol uses POST HTTP
requests. The information transmitted to the server and the responses are trans-
mitted in JSON format. All sent and received parameters are Base64 encoded.
To access the API, the client has to use a base URI of the remote signature
service, and add the specific string for each available method.

The way to use the CSC protocol to create a signature depends on the cho-
sen mode of authentication and authorization. User experience may also vary
depending on this factor. OAuth2.0 authorization is suitable for web applica-
tions, since using an OAuth2.0 authorization server inherently involves a number
of redirects between the signing application and the authorization server.

An user may access its private key by authentication directly in the SCA
or by authentication to the OAuth2.0 authorization server. The main difference
between the two models of access to resources is that in the first scenario the
user enters information such as username, password, PIN and OTP in the SCA.
Even without malicious intentions, but for improving user experience, the sign-
ing application could store this sensitive information, which can lead to critical
security issues. In case of compromise of the device that stores these pieces of
information, the only element that can still ensure the exclusive control of the
user at the credentials is the OTP. Therefore, CSC recommends using signature
flows with OAuth2.0 authorization.

Presenting the full specification of CSC remote signature API is out of the
scope of this paper. The interested readers may find it in the corresponding CSC
documents6.

The CSC proposed protocol has two different levels of authorization: to access
the API and to access the private cryptographic material. Access to the API
gives the SCA the right to call methods like credentials/list, credentials/info or
credentials/sendOTP.

6 https://cloudsignatureconsortium.org/resources/download-api-specifications/.

https://cloudsignatureconsortium.org/resources/download-api-specifications/
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4 Proposed Digital Signature Application

The digital signature application designed and developed in the work presented
in this paper (named Cloud Signer) is intended for devices running Android
operating system and aims at offering a solution for signing PDF documents with
remote qualified digital certificates issued by any qualified trust service provider
exposing a remote signature web API compliant to the CSC specification.

4.1 Architecture

The architecture of the solution (including the parts operated by the TSP) con-
sists of the following components: SCA - Android Client Application, namely
Cloud Signer (which also includes a component for signature integration in PDF
files based on SecureBlackBox library), the SSA (Remote Signing Service), the
SCDev (namely, an HSM), the Certificate Authority and the authorization com-
ponent (OAuth2 server). Communication between the SCA and the SSA in real-
ized over the Internet. Figure 1 offers an overview of how this solution works.

Fig. 1. Architecture of the remote signing solution

The SCA, written in Java and intended for the Android operating system, is
an application for creating QES upon PDF documents through a remote signing
service compliant with the CSC API exposed by the TSP (in our case Trans
Sped). Communication between SCA and SSA is achieved by using asynchronous
methods which transmit requests and receive responses from the server as JSON
class objects. For integrating the raw digital signatures into the PDF documents,
SecureBlackBox library was used.
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4.2 Android Activities

The client application has a multi-window architecture. Within the Android
operating system, these windows are called activities. Figure 2 highlights the
main components of the application and the connections between them. Within
the developed application the following activities are used:

◦ Open Activity - Includes a login page to the SSA.
◦ Sign Activity - Used by the user to actually perform a signature.
◦ Config Activity - Allows users to set different parameters.
◦ View Signatures - Allows authenticated users to view signatures applied

on a document.
◦ View Document - Displays the selected PDF document and navigates

through its content.

Fig. 2. Android activities
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Open Activity. The first used component of the application is Open Activity.
When the user selects a PDF document, a list of available applications associated
with this type of documents is displayed, Cloud Signer included. In order to sign
the given PDF document, the user chooses Cloud Signer. When opening the
application, it will request for storage, Internet and SMS permissions, which are
mandatory for the proper functioning of the application.

Open Activity also includes a component for client authorization to the SSA.
The authorization is based on the OAuth2.0 protocol. After successful authen-
tication to the OAuth2.0 server, the SCA obtains an authorization token that
is further used for authorizing the access to the CSC API. After obtaining the
authorization code, the user is redirected to the client application (through a
redirect URI registered at the service provider). Any request to the SSA with-
out using the access token will receive an access denied response.

Sign Activity. The second component of the application is represented by the
Sign Activity which is the main activity of the application and it allows the user
to configure a certificate for signing documents, to view signatures made upon
the selected document and to view the selected document. In order to sign a
document, the user has to set up a certificate in the Config Activity. Processing
of the PDF document and integration of the raw RSA signature into the PDF
have been implemented with the support of the SecureBlackbox library. The flow
of the process of computing a remote signature and integrating it into the PDF
is highlighted in Fig. 3.

Fig. 3. Signature computation flow

Config Activity. The third component of the application is represented by
the Config Activity, which allows the user to view a list with their own remote
certificates. It also allows the user to select a certificate from that list in order to
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use it for signing the document with its corresponding private key. When opening
the Config Activity, several operations are performed in the background, in order
to populate the list of available user certificates (Fig. 4) from AnnexA:

1. The authorization token is sent from the Sign Activity to the Config Activity
via an object of the Intent class.

2. SCA calls credentials/list CSC method via getCredentialIds, which gets as
input parameter the access token and returns the list of credential ids cor-
responding to the certificates of the user certificates.

3. For each credential id previously received, the SCA calls credentials/info
CSC method which is the method used to obtain additional information
about the credentials, such as the actual X.509 v3 certificate, data about
supported algorithms, authentication mode and used SCAL level.

View Signatures. Another component is the View Signatures activity. This
component is accessible only to authenticated users and only if the selected doc-
ument has been previously signed or only after the user has signed the document.
For each signature the user can see several details like: signature type, signer’s
full name, issuer of the signing certificate, serial number of the signing certificate,
signing time, timestamp and validity.

View Document. The last component of the application is represented by
the View Document activity, which uses PDFView to display the selected PDF
document and navigates through its content.

4.3 Key Elements of the Implementation

This section presents the key elements of the implementation and the key aspects
that one has to take into consideration when developing a client application
for computing remote QES. The elements noticed are related to development,
security and user experience:

1. SecureBlackBox - SCA has the responsibility to process the document
to be signed in order obtain DTBSR and then to incorporate the received
raw signature from the remote service. To accomplish this, SecureBlackBox
library was used.

2. OAuth 2.0 parameters - SCA has to be registered in advance to the
QTSP. Each application will have a different pair of client id and client secret
parameters and a set of redirect uris, as mentioned by the CSC API
specification.

3. Certificate validation - SCA receives from SSA the list of certificates
by using credentials/list and credentials/info CSC API methods. It is a
good practice to check validity of the certificates and filter them accordingly.
Remote signatures cannot be performed with expired or revoked certificates.
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4. Assuring SCAL2 - The main requirement for assuring SCAL2 is that the
sole control over the signing key must be enforced by the SAM (see foot-
note 4). The SAD is obtained using the SIC and sent to the SAM via SAP
(Signature Activation Protocol). Specifically, our application is performing 2
factor authentication using the SIM card, which is the actual materialization
of the SIC.

5. User experience - Usability is very important when developing the user
interface of an application. The following aspects were considered:
◦ Default certificate - typically, users own only one credential or tend to

use the same credential most of the times, therefore the ability to set a
default certificate might prove to be very handy.

◦ OTP processing - OTP is sent by SMS, therefore using a broadcast
receiver could further improve user experience by automatically read-
ing the OTP and then send it to the SSA. The annoying operation of
switching between two Android applications is no longer needed.

5 Conclusions and Future Work

This paper presents the key points of the legislation and standards related to
remote qualified electronic signatures and the learned lessons from the process
of designing and implementing an Android digital signature application for cre-
ating remote qualified electronic signatures using CSC API service exposed by
a qualified trust service provider. The implemented Android application uses
the CSC API in order to obtain a QES from the SSA. Compared to the app-
roach introduced by Theuermann et al. in [16], we decided to stick with the
standard CSC protocol in order to achieve interoperability from one QTSP to
another. One important advantage of the proposed solution consists in the fact
that the remote QES is obtained by using a single mobile device. The paper
also presents the main aspects to be taken into consideration when developing
an eIDAS compliant application for computing remote qualified electronic signa-
tures. For further research and development, we take into account the following:
(1) implement the designed application for iOS devices too and (2) improving
user experience by exploiting secure hardware mechanisms available on nowa-
days mobile devices and new authentication methods like fingerprints or face
recognition would also contribute to a higher adoption rate of the remote QES.
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Annex A

Fig. 4. Remote signing certificate retrieval
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Abstract. In-vehicle buses and the Controller Area Network (CAN) in
particular have been shown to be vulnerable to adversarial actions. We
embed adversary models and intrusion detection systems (IDS) inside
a CANoe based application. Based on real-world CAN traces collected
from several vehicles we build attack traces that are subject to intrusion
detection algorithms. We also take benefit from existing machine-learning
support in MATLAB that is ported via C++ code in CANoe in order
to integrate intrusion detection functionality. A unified framework for
attacks and intrusion detection has the benefit of providing a testbed
for various intrusion detection algorithms. CANoe integration makes the
use of these functionalities ready for realistic testing as CANoe is an
industry-standard tool in the automotive domain.

Keywords: CAN bus · Vehicle security · Intrusion detection

1 Introduction and Related Work

Contemporary vehicles incorporate dozens of Electronic Control Units (ECUs),
sensor networks and actuators interconnected through in-vehicle networks
such as: Local Interconnect Network (LIN), Controller Area Network (CAN),
FlexRay, etc. Access to these in-vehicle networks is mediated by several inter-
faces, more commonly the On-Board Diagnostic (OBD) port which is used by
our work as well (more details in a later section). However, the high complexity
and connectivity of modern vehicles leads to cyber security risks which might
undermine the privacy of the vehicle and endanger the life of passengers. This
was well proved by a strong body of research in [3,13]. Recent advances regard-
ing autonomous driving, enhanced technologies for infotainment systems and
vehicle-to vehicle communications (V2V) will transform vehicles into devices
that interact with each other over the Internet and can be remotely controlled.
This trend opens even more attack surfaces that were well exploited by recent
works [10,18].
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Most of the reported attacks on in-vehicle communication employ the CAN
protocol. This is natural as CAN is the most widely used bus in the automotive
domain and is often exposed through the diagnostic port. Details on the CAN
bus topology, bit rates and the frame format are deferred to Appendix 1.

As vulnerabilities on the CAN bus are easy exploitable by adversaries, the
development of intrusion detection systems (IDS) is an immediate necessity in
order to quickly detect such attacks. A comprehensive survey on IDSs for in-
vehicle buses can be found in [1]. The authors in [1] provide a hierarchical and
structured picture of IDS proposed in the literature for passenger cars. There
are many relevant proposals, we outline some of them next. Binary distance, i.e.,
Hamming distance, is proposed in [19]. Their approach includes two stages: a
preliminary stage and a detection phase. In the first stage, for each CAN ID the
authors calculate the Hamming distances between consecutive CAN frames on
20% of the trace and build message validity ranges bounded by the minimum
and maximum distance computed for each ID. The rest of the frames (80% of the
recorded trace) are used in the detection phase. An anomaly is detected when
the Hamming distance is outside the validity range. In a similar vein, entropy
has also been used to detect intrusions in [12] and [15]. Groza et al. proposed
an IDSs based on Bloom filtering in [7]. Their detection mechanism filters the
transmission frequency and the data field of the frames for each identifier in
order to detect replay and modification attacks and takes advantage regarding
low consumption of resources which are compulsory in deployment of a real-world
IDS.

On the other hand, there are several machine learning and statistic based
approaches for in-vehicle networks intrusion detection. Narayanan et al. cre-
ate a Hidden Markov Model based on CAN data collected through the OBD
port in order to detect intrusion on CAN bus in [16]. Their model describes
vehicle states and possible transitions between them. The intrusion is detected
when an unexpected transition occurs. Support vector machine and k-Nearest
Neighbor (k-NN) classifier were proposed in [2]. The authors from [2] build a
classifier model that is not able to detect replay attacks since they do not use
the frequency of the messages in the training phase. In our work, we also use the
periodicity of messages to enable identifying replay attacks since, in such attacks,
the timestamp of the CAN messages is the single attack indicator. Another pro-
posed approach [9] is the use of deep neural networks. The result of this work
is not based on a real-world CAN traffic, instead the authors use CAN traffic
generated by a software tool OCTANE [6]. The authors of [9] do not account
for message transmission frequency in the training phase which leads to the
inability to detect replay attacks. Decisions tree having as inputs entropy-based
characteristics extracted from CAN IDs and timestamps were used in [21].

The idea of using CANoe (i.e. an industry-standard tool in the automotive
domain), for evaluating security is not new and has been explored by previous
works. Some of the first simulation-based attacks on the CAN [8] and FlexRay
[17] examine vulnerabilities of simulated in-vehicle networks based on the
CAN and FlexRay protocol respectively to spoofing and replay attacks.
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We complement these ideas by integrating intrusion detection along with the
adversarial model in CANoe. Thus, our work aims to provide a more complex
framework based on the support from two widely-used tools in the automotive-
industry, CANoe and Matlab, in order to simulate adversarial actions and detect
them in real-world scenarios.

2 Data Collection and Experimental Setup

In this section we first discuss how data collection was performed and then how
we use it in CANoe simulation.

2.1 Data Extraction from OBD

In order to develop an intrusion detection mechanism based on real-world CAN
traces, we first collect data from the CAN bus via the OBD port of several cars.
The OBD port aims to collect diagnostic data from all ECUs. Consequently, in
most cases, it is connected directly to the main CAN bus of the vehicle. For
enhancing the in-vehicle security, the OBD port should be directly connected
only to an ECU gateway which then collects the diagnostic information from
all other ECUs in order. In such case, only diagnostic messages corresponding
to request-response protocol would be visible through the OBD port. However,
in order to reduce costs, many vehicles do not have such a gateway ECU and
the OBD port is connected to the main CAN bus. For the cars employed in
our experiments we determined that in-vehicle traffic is indeed exposed over the
OBD port.

As a first step, to enable data collection, we determined if there is any traffic
exposed to the CAN pins of the OBD port and what is the employed bit rate.
We achieved this with the help of an oscilloscope revealing that CAN traffic is
indeed available and that one of the vehicles uses a baud rate of 250 Kbit/s while
the other uses 500 Kbit/s. Then, we proceeded to logging the traffic from CAN
bus for about 20 min with the car stationary and 20 min with the car in motion.
During this interval, several driver-specific actions were performed, e.g., toggling
low beam and long beam, sudden accelerations and brakes, etc. This was done
for both the cars that we used, a sedan and an SUV.

Figure 1 depicts our experimental setup based on the Vector VN1630 USB-
to-CAN interface, the OBD plug, the CAN cable and an application based on
the Vector XL Driver Library running on the laptop. The VN1630 device is a
part of the VN1600 family developed by Vector, a provider of solutions for auto-
motive networking development. Support for the VN1630 exists in a number
of software tools such as CANoe and CANape along with support for building
dedicated applications through the XL Driver Library. The XL Driver Library is
an Application Programming Interface (API) compatible with Vector’s devices.
The library provides access to device functionalities (e.g., message reception
and transmission, various configuration settings) and handles interfacing with
protocols such as CAN, CAN-FD, LIN, FlexRay, etc. An example of messages
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intercepted from the vehicle CAN bus (via the OBD port) with a small applica-
tion using this library is shown in Fig. 2. Each message consists of the VN1630
channel number on which the message is received, the timestamp (in nanosec-
onds), the message identifier, the length (in bytes) of the data field and the
actual data field. In our work, we run an application that only receives messages
from the vehicles and did not try to inject frames in the car to avoid potential
damage to the vehicle. Consequently, the injections will be performed in the
CANoe simulation.

Fig. 1. Setup for data collection inside car Fig. 2. Recorded CAN messages

Fig. 3. CAN network architecture

2.2 CANoe Environment

We integrate the attacker model and intrusion detection capabilities in a CANoe
simulation. CANoe is an unified integrated software used for designing, simu-
lating, testing and analyzing real-time communication between ECUs. In the
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automotive domain, CANoe is the most wide-spread tool used by automotive
manufacturers in the development process of in-vehicle networks.

CANoe provides us with all the building blocks for simulating and detecting
real-world attacks on the CAN bus. The designed CAN analysis network from
CANoe is depicted in Fig. 3. This structure includes three blocks: a replay node,
an adversary model node and the IDS node. The real traffic recorded from the
vehicles is replayed in the simulation through a specialized type of node called
a Replay block. For on-line attacks and analysis of vehicle traffic, the replay
block can be simply disabled while connecting the CANoe simulated bus to the
in-vehicle bus through a VN interfacing device. The adversary model node is
implemented as a CAPL (CAN Application Programming Language) network
node that mimics the behaviour of a real-world adversary. CAPL is a C-based
language and provides additional CANoe specific functionalities, e.g., events,
system variables, message structures and message databases. Finally, the overall
traffic will be evaluated by an IDS node that is also programmed through CAPL.

3 Adversary Models

In this section we discuss the adversarial model that we account for and give a
brief overview of its integration in CANoe.

3.1 Types of Attacks

In general, adversary models are based on the Dolev-Yao adversary which has
full control over the network [5]. That is, the adversary can record, block, replay,
modify or inject messages in the network. If any security mechanisms are in place,
they are considered to be secure and the adversary can manipulate them only if
he has the corresponding keys. In our work, we do not address security mecha-
nisms since these are generally absent on the CAN traffic that we recorded and
even if they are present we would not have access to manufacturer specifications
(e.g., in case of authentication protocols over the CAN bus) since these are in
general considered confidential information.

Our adversary has access to the entire traffic that was logged inside the
vehicle. Based on existing literature on adversarial models for the CAN bus,
our work considers the following types of attacks which we also integrate in the
CANoe application:

1. Replay of regular CAN frames is the attack in which the adversary
intercepts genuine frames and then replays them on the CAN bus. In this
case the malicious frames are identical to genuine frames having the same
identifier and data field. The only indicator for this type of attack is the
frequency of the CAN messages (i.e., more frames with the same ID will
be visible on the bus). The identifier of the attacked frame and the delay
at which the attack frame is sent can be configured from the interface. The
replay attacks can increase the busload which delays other frames or even
aborts their transmission.
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2. Injection attacks which consist in the insertion of adversarial frames on
the bus and which we refine across the following lines:
– Injection of random data, also referred in other works as fuzzy attacks

[11], is an attack in which the adversary intercepts genuine frames and
then injects the malicious frames on the CAN bus at a chosen delay after
interception. The malicious frames have the same identifier as a genuine
frame, but the data field is randomly generated. The delay is the time
measured from the interception of the genuine frame event to triggering
injection event of the attack frame. As in the previously described attack,
our graphical user interface (GUI) allows for selecting the identifier of the
targeted message. The transmission delay can be configured within 1 µs
increments.

– Injection with scalar addition/multiplication of the datafield -
the data retrieved from in-vehicle sensors, e.g., speed sensor, engine tem-
perature, steering angle, fuel pressure, brake pressure, are transmitted by
network nodes via the CAN bus. Since sensors may have a linear transfer
function, the slope of the function is a constant. This leads to attacks in
which bytes of the CAN frames are incremented or multiplied by some
constant values. Delays to the injected frames can be added as well.

– Arbitrary injections is the case in which the adversary can inject frames
at will with the specified data or randomly generated data field and ID. In
contrast to the previously defined attacks, the transmission of the injected
frame will be done cyclically according to the configured cycle time.

Other attacks have been also considered in the literature but are not included
in our interface. In what follows, we explain why, at least for the moment, we
did not considered them.

DoS attacks are trivial to mount on the CAN bus. Since the CAN ID is
used in the arbitration mechanism to provide collision avoidance, continuously
injecting messages with the highest priority ID, i.e., 0x000, leads to unavailability
of the bus and the genuine frames are unable to transmit due to the loaded bus.
However, detecting such an attack in which the ID 0x000 is sent in order to
lock the bus would be trivial. For this, one can simply look for the consecutive
occurrence of messages with this ID which does not show up in regular traces. A
more sophisticated variant would be to send a low priority ID which is not null,
but still has higher priority than regular IDs. This again can be detected trivially
since the values of the genuine IDs are known by the manufacturer. Such attacks
are accessible from the interface that we designed as arbitrary injections which
allows to edit both the ID and data field but we do not view them separately as
DoS attacks (which may be a consequence). The attack can be detected by the
IDS, but the problem still remains since such attacks cannot be circumvented as
high-priority IDs will win the bus anyway.

Bus off attacks are the adversarial action after which genuine nodes are
placed in bus-off state. This can be done due to the error management system
of CAN and such attacks are proved to be feasible by the works in [4] and [14].
Modeling such attacks may be of interest but our network is simulated based on
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Fig. 4. Graphical interface for the designed application

existing traces and we don’t have the specific behavior of the ECU implemented
in the model. Moreover, such attacks can be circumvented only by modifying the
error-handling mechanisms of CAN which is out of scope for the current work.

3.2 Application Interface

The application interface implemented in CANoe for allowing the configuration
of the adversary node and IDS node is shown in Fig. 4. We employ common
controls, e.g., radio buttons, combo box, to provide an user friendly interface.
The relationship between the graphical interface and CAPL is made through
system variables since they can be retrieved by specific CAPL functions and
events. Consequently, our adversary model has the benefit of providing various
types of attacks and can perform the following actions: read, modify and replay
messages. In the first step, the user must select the type of attack that will
be used. Another option allows the user to select if the attack should target a
single specified ID or all messages in the trace. For each type of attack, specific
parameters can be configured. On the other hand, during the simulation run, the
detection algorithm is running on the IDS node to classify frames. The indicator
led will switch to either green or red depending on genuine or malicious received
frame. Moreover, at the end of the simulation the results of the detection rates
and the number of the targeted messages are presented.
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Fig. 5. The flowcart of the data exchanged between Matlab and CANoe through dll

4 Intrusion Detection Algorithms

In this section we discuss about the tools used in our evaluation and the Matlab-
CANoe integration. We also discuss some background on the k-NN algorithm
which we use for intrusion detection.

4.1 Statistics and Machine Learning Toolbox

For implementing the intrusion detection mechanism we employ Matlab, namely,
the statistics and machine learning toolbox made available by the framework.
This toolbox provides a range of machine learning algorithms for solving regres-
sion or classification problems. These algorithms are based on either supervised
or unsupervised learning and we choose k-NN since it is a commonly employed
solution when little is known about the input data. Indeed, in our case the
data comes from traces that were logged inside vehicles and we don’t have any
access to the manufacturer’s requirements. Consequently, there is no prior knowl-
edge on the data, but we can label the malicious CAN frames that we inject
for the training trace. In the training phase, the supervised learning (employed
also by the k-NN algorithm) has as observation samples, a collection of n pairs{
(i0, o0), (i1, o1), ... (in−1, on−1)

}
, which consists of the inputs and the desired

outputs. The output of the training phase is a model (a trained function) respon-
sible for predictions over new data that will be given in the test phase.

We also took advantage of Matlab’s capability to generate C/C++ code with
the trained model and prediction function. We build a dynamic library (dll)
based on this code and integrate the functionality in CANoe through CAPL
code. The integration of a custom library into CANoe provides the advantage
of accessing system resources, e.g, CPU, memory [22], which are otherwise not
directly available in CANoe. Figure 5 illustrates the interaction between CANoe
and the Matlab-based library for analyzing CAN messages.
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4.2 k-NN Algorithm

We use the k-NN algorithm as a basis for our evaluation. This algorithm is
commonly employed in classification problems and even in network IDS [20]. The
k-NN uses a distance metric, e.g., the Euclidean, Hamming, Minkowski, Jaccard
distances, etc. For most of our analysis we choose the Euclidean distance but it
is easy to switch to any of the previously mentioned.

In general, a machine-learning algorithm has two stages: the training stage
and the testing stage. Consequently, we split the CAN trace into a training and
a testing part. In our experiments, the first stage is performed offline with the
purpose of training the classifier based on inputs-output pairs. In this stage,
each input is mapped to the true class c (genuine or malicious frame). The end
of this stage outputs the k-NN model. The second stage is the real-time detection
based on the trained model. In this stage, each input is mapped to the predicted
class ĉ based on the decision rule. The decision rule depends on the number of
neighbors k as follows:

1. Decision rule when k= 1 : let mt be a test frame and mi a training frame,
then mn is nearest neighbor to mt if and only if the Euclidean distance:
de(mt,mn) = mini

{
de(mt,mi)

}
, where i covers the range of training frames.

The predicted response of ĉ from the trained model will be equal with the
true class c of the mi which has the minimum Euclidean distance to mt.

2. Decision rule when k > 1 : The predicted response ĉ of the mt from the
trained model will be equal with the most encountered c, through the k
nearest training messages.

The k-NN input observation is a vector that accounts for the data field and
the delay between consecutive timestamps of the same ID. In such case, the input
sample I ∈ {0, 1}9 is described mathematically as follows: I =

{
i0, i1, i2, ..., i8

}
,

where i0 represents the delay and i1...i8 represent each byte from the data field.
We choose an odd number of neighbors (e.g. 1, 3, 15) in order to avoid an equal
number of votes and select a majority.

5 Experimental Results

We first discuss the metrics employed for evaluating the intrusion detection
algorithms, then we proceed to presenting the experimental results.

5.1 Metrics for Evaluating the Performance of the IDS

Since our evaluation performs a binary classification of the CAN frames, we
measure the performance of the IDS based on the most commonly four metrics:

1. the sensitivity or the true positive rate - measures the percentage of the CAN
frames that are correctly classified as malicious, i.e., TPR = TP/(TP+FN ).
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2. the false negative rate- measures the percentage of the CAN frames that are
reported as genuine frames but are actually malicious frames, i.e., FNR =
FN /(FN + TP).

3. the specificity or the true negative rate - measures the percentage of the CAN
frames that are correctly classified as genuine, i.e., TNR = TN /(TN +FP).

4. fall-out or the false positive rate - measures the percentage of the CAN
frames that are reported as malicious, but the true class of the frames is
genuine, i.e., FPR = FP/(FP + TN ).

Table 1. Detection rates for various types of attacks

Attack params. No. messages k-NN Parameters Detection rates

No. Att.
type

Operand Delay ms training testing No.
neigh.

Distance TNR TPR FPR FNR

1. r n/a 9.750 500 19500 1 Euclidean 99.00% 99.65% 1.00% 0.35%
2. r n/a 0.001 500 19500 1 Euclidean 100% 100% 0% 0%
3. r n/a 0.001 500 19500 1 Euclidean 88.86% 100% 11.14% 0%
4. r n/a 5 500 19500 1 Euclidean 88.88% 100% 11.12% 0%
5. r n/a 9 500 19500 1 Euclidean 90.33% 83.47% 9.67% 16.53%
6. r n/a 9.750 500 19500 1 Euclidean 87.98% 51.88% 12.02% 48.12%
7. r n/a 50 500 19500 1 Euclidean 88.31% 84.66% 11.69% 15.34%
8. ir n/a 0.001 500 19500 1 Euclidean 99.87% 100% 0.13% 0%
9. ir n/a 9.750 500 19500 1 Euclidean 99.87% 100% 0.13% 0%
10. isa α = 2 0.001 500 19500 1 Euclidean 89.63% 100% 10.37% 0%
11. isa α = 2 9.750 500 19500 1 Euclidean 91.34% 53.98% 8.66% 46.02%
12. ism α = 2 0.001 500 19500 1 Euclidean 89.65% 100% 10.35% 0%
13. ism α = 2 9.750 500 19500 1 Euclidean 91.38% 67.74% 8.62% 32.26%
14. isa α = 2 9.750 500 19500 1 E(Δt), H(data) 90.72% 100% 9.28% 0%
15. ism α = 2 9.750 500 19500 1 E(Δt), H(data) 90.75% 85.87% 9.25% 14.13%
16. r n/a 0.001 5000 45000 1 Euclidean 95.21% 100% 4.79% 0%
17. r n/a 5 5000 45000 1 Euclidean 95.45% 100% 4.55% 0%
18. r n/a 9.750 5000 45000 1 Euclidean 95.23% 66.58% 4.77% 33.42%
19. r n/a

{
9.75, 19.75, 39.75, 99.75

}
5000 45000 1 Euclidean 94.76% 50.06% 5.24% 49.94%

20. ir n/a 0.001 5000 45000 1 Euclidean 99.53% 100% 0.47% 0%
21. ir n/a 5 5000 45000 1 Euclidean 99.40% 100% 0.6% 0%
22. ir n/a 9.750 5000 45000 1 Euclidean 99.57% 91.52% 0.43% 8.48%

5.2 Results on Detection Accuracy

We devise our experiments to cover the previously defined adversarial models.
For each type of attack, we have different scenarios depending on the delay of
the attack frame. Multiplication or addition coefficients may be also applied
to the data field. Since the traces we obtained from vehicles that did not con-
tain extended frames, we experiment only with standard frames. We build our
datasets using the CANoe simulation by injecting malicious frames on a single
targeted CAN ID or over the full trace, i.e., all CAN IDs. The results obtained for
detecting attacks on a single CAN ID are based on portions of traces containing
500 frames used for training and 19500 frames for the actual tests. We choose
only a small percent for training to cover the more realistic scenario where the
IDS is trained for a limited time, e.g., during production, and then runs for a
longer period. In the current experiments (on a single CAN ID) we have only
attacked frames that have a cycle time of 10 ms since this is a very common
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periodicity, but similar results will be likely obtained for other delays. For the
full trace attacks we employ 5000 training frames and 45000 test frames.

We now discuss the results on replay attacks which are presented in Table 1.
Extended results for this scenario are deferred to Table 2 from Appendix 2. In
this case the training phase was performed on traces that contain regular frames
and replay attack frames sent at a 9.750 ms (row 1 from Table 1, rows 1–2 from
Table 2) and 0.001 ms (row 2 from Table 1, rows 3–4 from Table 2) delay after
the genuine frame. The first delay is chosen specifically for the attack frame to
arrive just before the genuine frame on the bus (the genuine frame will arrive
periodically at 10 ms and ≈250µs is the physical time of the frame on the bus)
while the second is to assure that the attack frame arrives immediately after the
genuine frame. We use both the content of the datafield and the delay between
consecutive timestamps of the targeted CAN ID (Δt) as inputs for the training
phase. The detection rates were 100% in case of 0.001 ms delay and around 99%
in case of 9.750 ms while the false positive rate is 0% in the first scenario and
around 1% in the second. There is a slight increase of false positive rate in the
first scenario since in case of the 9.750 ms delay, the injected frames are sent very
close to the transmission time of genuine frames. Consequently, in some cases
the legit frame is mismatched for the attack frame. The good detection result is
also due to the less realistic assumption that an attacker will send all its frames
with the fixed delay that was used in the training phase.

Thus the next step in our evaluation, was to train the classifier based on
one delay, i.e., 9.750 ms while the evaluation frames were built with other delay,
i.e., 9 ms. As expected, the detection rate drops under 20%. Consequently, to
overcome this problem, we chose to train the classifier based on traces built with
replay injections at a random delay covering the whole range between 0 and the
cycle time of the frame, since the IDS must be able to detect attacks frames
sent with any delay. All the results that follow are based on such randomized
delays. We present the results for this scenario in Table 1 (rows 3–7) and their
extension is deferred to Table 2 (rows 5–14) from Appendix 2. In case of 0.001 ms
and 5 ms delays, the true positive rate is close to 100% while the false positive
rate is around 10%. The false positive rates are caused by the identical data field
of regular and injected frames.

In the next two attack scenarios (rows 5–6 from Table 1, rows 9–12 from
Table 2) the adversarial actions are more refined and well thought out. These
actions are designed so that the injected message is sent on the bus shortly
before, i.e., 9 ms delay, or even close enough to overlap with the genuine message
in some cases, i.e., 9.750 ms delay. The detection rate degrades to the point that
the TPR drops to below 80% for the first case and around 50% for the second.
What can also be observed, from the majority of the results, is that with the
growth in the number of neighbors comes a slight increase in specificity and a
decrease in sensitivity, which is sometimes more pronounced, i.e., from 83% (row
5 from Table 1) to 52% (row 9 from Table 2).

The results obtained on injections with random data are shown in Table 1
(rows 8–9) while the extension of the results is presented in Table 2 (rows 15–18)
from Appendix 2. In this case we obtained detection rates close to 100% percents
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for both of the tested delay scenarios. We also observe a negligible amount of
false positives. The high detection rate is justified by the high entropy of the
injected frames data field that differs from the authentic messages. In general,
this type of attacks is much easier to detect than replay attacks.

As expected, results for injection attacks using scalar addition or multipli-
cation, presented in Table 1 (rows 10–15) and the extension in Table 2 from
Appendix 2 (rows 19–30), exhibit a lower detection rate especially as we used
a very low value for the scalar (thus modifications of the datafield are small).
At a first view, the results are very similar to those obtained for replay attacks
for the same delays: 0.001 ms (row 3 from Table 1 and rows 5–6 from Table 2)
and 9.750 ms (row 6 from Table 1 and rows 11–12 from Table 2). This can be
explained by the message periodicity having a greater influence on the result of
the prediction function than the data field. This happens since the operation of
adding α = 2 to each byte of the data field does not have a considerable effect
on the Euclidean distance. We chose α = 2 to assure only a small change in the
message (obviously, a larger α will lead to more modifications and will be easier
to detect). In case of scalar multiplication the detection rate increases to around
67% (row 13 from the Table 1) since the operation of scalar multiplication with
α = 2 has a greater impact on the resulting Euclidean distance.

A better approach to improve the detection results, is the use of two trained
models: the first trained with Δt based on the Euclidean distance and the second
trained based on the data field using the Hamming distance. In this case, each
model classifier predicts a class for each message. Denoting the predicted class
for the first model as ĉ1 and the second one as ĉ2, the final predicted class
ĉ is : ĉ ∈ ĉ1 ∨ ĉ2. This approach improves the sensitivity to 100% in case of
scalar addition and at 85% in case of multiplication while the false positive rate
remains around the 10% level as can be seen in Table 1 (rows 14–15). By E(Δt)
and H(data) we denote the Euclidean and Hamming distances on the delay and
data respectively.

The next step in improving detection capabilities consists in covering the full
trace since monitoring a single ID would involve one trained model for each CAN
ID and leads to the need for large computational/memory resources which may
not be available. The full trace contains frames having 10 ms, 20 ms, 40 ms, and
100 ms cycle times. The full attack trace was build as following. We define the
attack probability for each frame as a constant Pr(A). A variable ε ∈ [

0, 100
]

is randomly generated and if ε is less than or equal to Pr(A), then the frame
is attacked otherwise it is left unaltered. For our experiments we configured
Pr(A) = 30. Therefore, the input in our classifier accounts for the CAN ID
before the Δt and data field.

The results over the full trace for replay attacks, are presented in Table 1
(rows 16–19), Table 2 from Appendix 2 (rows 31–38), and rows 20–22 from
Table 1, rows 39–44 from Table 2, for fuzzy attacks. Even if for an extended
evaluation, with a single trained model, the results remain satisfactory. In case
of replay attacks, the detection rates are similar (for 0.001 ms and 5 ms delays)
or even better (for 9.750 ms delays) than those obtained for a single ID. This
happens since the attack frame that has 9.750 ms delay is sent on the bus ahead
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or even overlaps with the authentic frame just in case of 10 ms cycle, while the
full trace contains more cycle times values for which the attack frame is even
more conspicuous. A cleverer adversary may of course choose delays that are
closer to the cycle time of each frame. This scenario is presented in the row 18
of Table 1 and rows 37–38 of Table 2. The detection rate is approximately two
percents lower than monitoring for a single ID in case of the directed replay
attacks (around 50%). For random attacks, the sensitivity is most of the part
close to 100%, except for the 9.750 ms delay, where it drops to around to 90%
in case of using one neighbor and to 60% when more neighbors are employed.

6 Conclusion

Our work explores the integration of adversary models and intrusion detection
systems in CANoe. Since adversarial actions are modeled over real-world in-
vehicle traces, the results offer a more realistic testbed for in-vehicle network
attacks. As future work it would be of interest to allocate specific parts of the
traffic to a particular ECU which would allow targeted attacks toward specific
ECUs. A complete simulation for the behavior of each ECU is a more com-
plex goal but perhaps achievable in the future. Adversarial actions are easier
to test inside a simulation environment and the risk for damaging the actual
car is removed. Adding MATLAB functionalities for machine-learning in order
to classify CAN packets is a convenient way for designing and testing such an
IDS due to the rich machine learning toolset offered by MATLAB. Adding other
algorithms for intrusion detection is an immediate goal for extending our frame-
work.
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Appendix 1 - Brief Description of the CAN bus

CAN provides bit rates of up to 125 kbit/s for low-speed CAN and up to 1 Mbit/s
on high-speed CAN while carrying up to 8 bytes of payload. Increased communi-
cation speeds and payloads of up to 64 bytes are possible by using the CAN-FD
(CAN- Flexible Data) protocol extension.

At the physical layer, CAN is implemented as a two wire (CAN-high and
CAN-low) differential bus. A common CAN network topology is shown in
Fig. 6(a). The main communication element used by CAN is the data frame
with a structure as presented in Fig. 6(b). The data frame is received by all
ECUs but it is only used by ECUs interested in its content for processing pur-
poses. This frame filtering is usually done based on the CAN ID (identifier). The
ID also serves for assuring packet arbitration as part of the collision avoidance
mechanism which gives higher priority to frames with lower ID values in the case
two frames are simultaneously transmitted. The CAN ID can be either 11 bits
long (in standard frames), or 29 bits (in extended format).
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Fig. 6. CAN network topology (a) and data frame format (b)

Appendix 2 - Results for Various Number of Neighbors
over a Single ID and over Full Trace

Table 2. Detection rates for various types of attacks (k-NN with 3 or 15 neighbors)

Attack params. No. messages k-NN Parameters Detection rates

No. Att.
type

Operand Delay ms training testing No.
neigh.

Distance TNR TPR FPR FNR

1. r n/a 9.750 500 19500 3 Euclidean 98.55% 99.31% 1.45% 0.69%
2. r n/a 9.750 500 19500 15 Euclidean 97.55% 97.83% 2.45% 2.17%
3. r n/a 0.001 500 19500 3 Euclidean 100% 100% 0% 0%
4. r n/a 0.001 500 19500 15 Euclidean 100% 100% 0% 0%
5. r n/a 0.001 500 19500 3 Euclidean 90.02% 100% 9.98% 0%
6. r n/a 0.001 500 19500 15 Euclidean 91.32% 100% 8.68% 0%
7. r n/a 5 500 19500 3 Euclidean 89.99% 100% 10.01% 0%
8. r n/a 5 500 19500 15 Euclidean 91.30% 100% 8.70% 0%
9. r n/a 9 500 19500 3 Euclidean 91.61% 52.53% 8.39% 47.47%
10. r n/a 9 500 19500 15 Euclidean 91.33% 31.11% 8.67% 68.89%
11. r n/a 9.750 500 19500 3 Euclidean 89.33% 50.67% 10.67% 49.33%
12. r n/a 9.750 500 19500 15 Euclidean 91.26% 50.67% 8.74% 49.33%
13. r n/a 50 500 19500 3 Euclidean 89.96% 83.75% 10.04% 16.25%
14. r n/a 50 500 19500 15 Euclidean 91.40% 83.75% 8.60% 16.25%
15. ir n/a 0.001 500 19500 3 Euclidean 99.70% 100% 0.30% 0%
16. ir n/a 0.001 500 19500 15 Euclidean 98.63% 100% 1.37% 0%
17. ir n/a 9.750 500 19500 3 Euclidean 99.70% 100% 0.30% 0%
18. ir n/a 9.750 500 19500 15 Euclidean 98.63% 100% 1.37% 0%
19. isa α = 2 0.001 500 19500 3 Euclidean 91.37% 100% 8.63% 0%
20. isa α = 2 0.001 500 19500 15 Euclidean 91.13% 100% 8.87% 0%
21. isa α = 2 9.750 500 19500 3 Euclidean 92.15% 51.01% 7.85% 48.99%
22. isa α = 2 9.750 500 19500 15 Euclidean 91.09% 50.40% 8.91% 46.60%
23. ism α = 2 0.001 500 19500 3 Euclidean 91.39% 100% 8.61% 0%
24. ism α = 2 0.001 500 19500 15 Euclidean 91.12% 100% 8.88% 0%
25. ism α = 2 9.750 500 19500 3 Euclidean 92.16% 60.70% 7.84% 39.30%
26. ism α = 2 9.750 500 19500 15 Euclidean 91.11% 50.59% 8.89% 49.41%
27. isa α = 2 9.750 500 19500 3 E(Δt), H(data) 91.07% 100% 8.93% 0%
28. isa α = 2 9.750 500 19500 15 E(Δt), H(data) 91.06% 100% 8.94% 0%
29. ism α = 2 9.750 500 19500 3 E(Δt), H(data) 91.06% 85.52% 8.94% 14.48%
30. ism α = 2 9.750 500 19500 15 E(Δt), H(data) 91.09% 85.17% 8.91% 14.83%
31. r n/a 0.001 5000 45000 3 Euclidean 96.74% 100% 3.26% 0%
32. r n/a 0.001 5000 45000 15 Euclidean 98.77% 100% 1.23% 0%
33. r n/a 5 5000 45000 3 Euclidean 96.75% 100% 3.25% 0%
34. r n/a 5 5000 45000 15 Euclidean 98.70% 100% 1.30% 0%
35. r n/a 9.750 5000 45000 3 Euclidean 96.79% 65.33% 3.21% 34.67%
36. r n/a 9.750 5000 45000 15 Euclidean 98.83% 35.95% 1.17% 64.05%
37. r n/a

{
9.75, 19.75, 39.75, 99.75

}
5000 45000 3 Euclidean 96.40% 48.94% 3.60% 51.06%

38. r n/a
{
9.75, 19.75, 39.75, 99.75

}
5000 45000 15 Euclidean 98.68% 47.41% 1.32% 52.59%

39. ir n/a 0.001 5000 45000 3 Euclidean 99.47% 100% 0.53% 0%
40. ir n/a 0.001 5000 45000 15 Euclidean 99.57% 100% 0.43% 0%
41. ir n/a 5 5000 45000 3 Euclidean 99.31% 100% 0.69% 0%
42. ir n/a 5 5000 45000 15 Euclidean 99.49% 100% 0.51% 0%
43. ir n/a 9.750 5000 45000 3 Euclidean 99.53% 86.46% 0.47% 13.54%
44. ir n/a 9.750 5000 45000 15 Euclidean 99.63% 60.97% 0.37% 39.03%
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