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Abstract. Text-to-speech (TTS) synthesis is the technique of generat-
ing intelligible speech from a given text. The most recent techniques for
TTS are based on machine learning, implementing systems which learn
linguistic specifications and their corresponding parameters of the speech
signal. Given the growing interest in implementing verbal communication
systems in different devices, such as cell phones, car navigation system
and personal assistants, it is important to use speech data from many
sources. The speech recordings available for this purpose are not always
generated with the best quality. For example, if an artificial voice is cre-
ated from historical recordings, or a voice created from a person whom
only a small set of recordings exists. In these cases, there is an addi-
tional challenge due to the adverse conditions in the data. Reverberation
is one of the conditions that can be found in these cases, a product of
the different trajectories that a speech signal can take in an environment
before registering through a microphone. In the present work, we quanti-
tatively explore the effect of different levels of reverberation on the qual-
ity of artificial voice generated with those references. The results show
that the quality of the generated artificial speech is affected considerably
with any level of reverberation. Thus, the application of algorithms for
speech enhancement must be taken always into consideration before and
after any process of TTS.

Keywords: Hidden Markov Models · PESQ · Reverberation · Speech
synthesis

1 Introduction

Text-to-speech (TTS) synthesis is the technique created for the generation of
artificial, intelligible speech from any given text [15], usually from computers or
high technology devices. There are many implementations of TTS in commercial
applications and many potential areas where it can be applied. For example,
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any circumstance that requires the transfer of information between people and
machines is a potential application. One of the main advantages of applying TTS
for this purpose is the fact that speech is the most widely used communication
method between humans. Additionally, verbal communication is natural and
requires no special training [4].

TTS systems are divided into two main components [7]: A “front end”, where
the text is processed to produce a linguistic specification, so the units of speech
(such as phonemes or syllables) can be described in terms of their surrounding
components, and a “back end”, that take the linguistic specification as input
and generates a waveform.

The development of TTS has evolved from the creation of isolated words or
phrases to general purpose voices in different languages, with different styles and
emotions [1,3]. There is a significant effort in research to obtain improvements
in the multiple challenges that TTS systems have today, as its extensive use in
applications depends on obtaining more natural and close-to-human voices.

The most recent techniques to generate TTS have emerged from the idea of
machine learning algorithms applied to store and reproduce parameters of the
speech [19–21]. The first model that successfully applied those techniques was
the Hidden Markov Models (HMM), learning parameters such as fundamental
frequency (f0) and Mel-Frequency Cepstral Coefficients (MFCC). This set of
parameters and models were known as Statistical Parametric Speech Synthesis.
More recently, Deep Learning-based algorithms have been applied to voice gener-
ation from text [9,12], or as post-filter to the results obtained with HMM [2,11].

Previous references have reported a significant quality drop in artificial speech
when the training parameters of the speech data are noisy. This condition
requires the compensation of the voice signals with several techniques [6,17,18].
For example, speech enhancement algorithms can be used to clean the available
noisy data.

This problem has been addressed in several references, but only some of
them have objectively measured the impact of specific conditions, particularly
noise [10]. The interest in predicting the effects of different degrees of reverber-
ation in the results of statistical parametric speech synthesis relies on the prior
evaluation of usability for future experiences with speech synthesis.

For this purpose, in this work we want to address the impact of reverbera-
tion on objective quality measures in speech synthesis, in comparison to those
produced with clean speech.

To answer this question, we made several experiments with different condi-
tions of reverberation, and measure the impact between clean and reverberated
speech, and between the artificial speech generated with both.

The rest of this paper is organized as follows: Sect. 2 gives the background
and context of the problem. Section 3 describes the experimental setup, Sect. 4
presents the results with a discussion, and finally, in Sect. 5, we present the
conclusions.
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2 Background

2.1 Hidden Markov Models

Hidden Markov Models (HMM) can be described from a Markov process, in
which state transitions are given by probability. There is a second process
described with probability, which models the emission of symbols when it comes
to each state, according to probabilistic rules. There are several kinds of HMM,
applied to model many important areas.

In Fig. 1, a representation of a particular HMM, known as a left-to-right, is
shown. This is the most common type of HMM applied in speech technologies.
Here, the first state is at the left, from which transitions can occur. These tran-
sitions lead to the same state or to the next on the right, according to some
probability pij . Transitions cannot occur in the reverse direction.

Fig. 1. Left to right example of an HMM with three states. Ok represents the obser-
vation emitted in state k.

An HMM can mathematically be described by a tuple:

λ = (S, πi, a, b) (1)

where S is the set of states, π a probability vector that establishes the probability
of i to be the initial state. a is the transition probability matrix between states,
and b the probabilistic rule of observations of specific symbols in each state.

2.2 Statistical Parametric Speech Synthesis

Statistical parametric speech synthesis based on HMM follows a procedure with
a training part and a synthesis part. The training part requires recordings of
speech and their corresponding text transcriptions. This data is presented to a
set of HMM (or other machine learning algorithms) that learns the parameters
corresponding to a certain sound of the speech.

In the synthesis part, any text can be applied to the models, which output
the corresponding parameters to the specific sounds of the utterance, and then a
filter produces the waveform. This scheme has been applied since the creation of
the HMM-Based Speech Synthesis (HTS) System [16,24] for several languages,
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and allows specific definition for phonetic units, customizing training parameters
according to needs and the amount of available data.

For applications of speech recognition and synthesis, the probabilistic rule at
the output of each state of a HMM, named b in Eq. 1 is assumed as a multivariate
Gaussian distribution defined as:

bi(ot) =
1

√
(2π)d|Σi|

exp
{−1

2
(ot − μi)

�Σ−1
i (ot) − μi

}
(2)

where μi and Σi are mean vector and covariance matrix, respectively. d is the
dimension of vector of acoustic parameters, and ott is an observation vector of
parameters at frame t.

The training process of a HMMs for a speech synthesis application can be
described as finding the best parameters of λ given observed parameters of the
speech (O). This process can be written as:

λmax = arg max
λ

p(O|λ,W ), (3)

where p is probability and W a specific word or sound.
In the synthesis part, the problem of getting the best parameters related to

a given W which need to be synthesized can be stated as:

omax = arg max
o

p(o|λmax, w) (4)

In the following sections, we describe the application of these models to produce
artificial speech and study the influence of reverberating conditions in training.

3 Experiments

In order to test the effects of reverberated speech to Statistical Parametric Speech
Synthesis based on HMM, the experimental setup can be summarized in the
following steps:

3.1 Database

For the experimentation, we used the SLT voice of the CMU Arctic databases,
developed at the Language Technologies Institute at Carnegie Mellon Univer-
sity [8]. This database was specifically designed for research in speech synthesis.
It consists of a number 1150 utterances selected from out-of-copyright texts from
Project Gutenberg.

For degrade this data with reverberation, we use five impulse responses from
the MARDY database [22] and the Center for Digital Music (C4DM) at Queen
Mary, University of London [14].

The following nomenclature will be used for each condition:

– MARDY, from the corresponding database.
– GH (Great Hall), from the C4DM database.
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– OC (Octagon), from the C4DM database.
– CR1 y CR2 (Classroom 1 y 2), from the C4DM database.

The speech files of the CMU database were convolved with the impulse
responses of each condition. The output is the speech signal with the rever-
beration of the space where the impulse response was recorded.

3.2 Synthesis of Reverberated Speech

With the clean version of the SLT/CMU voice, an artificial voice where build
using the HTS system [23]. To compare the influence of the different reverberat-
ing cases, the HMM-based synthetic voices were produced with each of the five
conditions after the convolution: MARDY, GH, OC, CR1, CR2.

A set of comparisons between clear speech, artificial speech produced with
the clear speech, artificial speech produced with reverberated speech and the
reverberated speech were performed. This comparison was made to measure the
effect of reverberation before and after the process to produce artificial speech.

Figure 2 illustrates the general procedure for each of the conditions of rever-
beration.

Fig. 2. Procedure to obtain and compare reverberated and artificial speech.

3.3 Evaluation

To evaluate the results given from our experiments, we use the PESQ (Per-
ceptual Evaluation of Speech Quality), defined in the ITU-T recommendation
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P.862.ITU. Results are given in interval [0.5, 4.5], where 4.5 corresponds to a
perfect reconstruction of the signal. PESQ is computed as [13]:

PESQ = a0 + a1Dind + a2Aind (5)

where the Dind is the average disturbance and Aind the asymmetrical distur-
bance. The ak are chosen to optimize PESQ in measuring speech distortion,
noise distortion, and overall quality.

We also use the MOS-LQO (Mean Opinion Score - Listening Quality Objec-
tive) measure, performing a mapping function from the PESQ, by the relation

MOS-LQO = 0.9999 +
4.999 − 0.999

1 + e−1.4945·PESQ+4.6607
, (6)

according to the ITU-T P.862.1 [5].
We are interested in measuring the effects of reverberation in the speech sig-

nals before and after the process of generating artificial speech with the HTS Sys-
tem. To perform these measures, we applied the following comparisons between
groups of utterances:

– Natural speech and HTS voice produced with natural speech.
– Natural speech and reverberated speech.
– Natural speech and HTS voice produced with reverberated speech.
– HTS voice produced with natural speech and HTS voice produced with rever-

berated speech.
– Reverberated speech and HTS voice produced with reverberated speech.

Besides those five comparisons, there are other possible combinations that
do not give information about the effects on artificial voice generation. For each
of the five cases of reverberation, we compare the PESQ measure. Additionally,
we report spectrograms and pitch contours for direct visualization of the results.

4 Results and Discussion

In this section, we show the influence of the different reverberations on clean
and artificial speech. The reverberation in speech signals greatly affects the esti-
mation of the pitch, which is one of the most important parameters for speech
recognition and generation.

For example, in Fig. 3 it is noticeable how the reverberation produces more
voiced frames (those with positive values for pitch) in the MARDY condition.
The GH, with a bigger degree of reverberation, almost produces only voiced
frames, introducing great distortion and affecting the quality of the speech.

The spectrograms also show different levels of distortion when compared to
the Clean voice and the correspondent artificial voice 4. For example, Fig. 5 show
some recognizable characteristics of the spectrum in the MARDY condition,
which seems to produce some light distortions in the artificial voice constructed
from this data.
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(c) Pitch contour of the GH condition

Fig. 3. Comparison of pitch contours for clean voice and two reverberating conditions
in the utterance: “Author of the danger trail, Philip Steels, etc.”

On the other hand, Fig. 6 shows evident degradation of the signal with the
OC condition and almost unrecognizable spectrum in the artificial speech. From
this spectrograms, it is remarkable how different levels of reverberation can affect
the quality of artificial speech.
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Fig. 4. Spectrograms of the utterance “Not at this particular case, Tom, apologized
Wittmore“, with the Clean Voice (at the top) and artificial voice (at the bottom). Pitch
contour is also highlighted.

Fig. 5. Spectrograms of the utterance “Not at this particular case, Tom, apologized
Wittmore”, with reverberated voice with MARDY condition (at the top) and arti-
ficial voice produced with this reverberation (at the bottom). Pitch contour is also
highlighted.

The results and comparisons for the PESQ measure are presented in form
or radar plots. The radar plots allow the comparison between all the measures
indicated in Sect. 3.3. The more contracted the radar plot, the lower perceptual
quality in the reverberated and artificial voice. All the plots have the same scale.
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Fig. 6. Spectrograms of the utterance “Not at this particular case, Tom, apologized
Wittmore”, with reverberated voice with OC condition (at the top) and artificial voice
produced with this reverberation (at the bottom). Pitch contour is also highlighted.

Clean-HTS(Clean)

Clean-Reverb

Clean-HTS(Reverb)

HTS(Clean)-HTS(Reverb)

Reverb-HTS(Reverb)

Fig. 7. Radar plot of Mean PSQ Values for MARDY Condition

Figure 7 shows the radar plot for the MARDY reverberation condition. As
shown previously, this is the case where the reverberation produces lower dis-
tortion on the signal. When compared to the rest of the radar plots, this is the
less contracted plot.
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The radar plot for the Octagon condition (Fig. 8) shows a smaller value of
PESQ for the reverberated voice. This lower quality also influences the lower
perceptual quality for synthetic speech in relation to natural and artificial speech
produced without reverberation.

Clean-HTS(Clean)

Clean-Reverb

Clean-HTS(Reverb)

HTS(Clean)-HTS(Reverb)

Reverb-HTS(Reverb)

Fig. 8. Radar plot of Mean PSQ Values for Octagon Condition

The GH reverberation produces a degradation of the signal which heavily
affects all the process, from the reverberated speech to the synthetic speech.
As shown in Fig. 9, this is the most contracted plot in terms of all categories
of speech without reverberation. According to these plots, this seems to be the
condition that affects more the speech signal and the correspondent artificial
voice.

Finally, the two CR conditions (Figs. 10 and 11) show similar degrees of rever-
beration and similar degradation on the perceptual quality of artificial speech.
In comparison with GH, OC presents lower PESQ when compared the reverber-
ated signal with the clean speech, and a better measure in the comparison of the
reverberated signal and the artificial speech.

The results of the MOS-LQ measure, obtained from Eq. 6 are presented in
Table 1. The greater effect on this measure before the generation of synthetic
speech tend to produce bigger negative effects on the results. But the relationship
does not seem to be linear.
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Fig. 9. Radar plot of Mean PSQ Values for GH Condition
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Clean-Reverb

Clean-HTS(Reverb)
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Fig. 10. Radar plot of Mean PSQ Values for CR1 Condition
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Clean-HTS(Clean)

Clean-Reverb

Clean-HTS(Reverb)

HTS(Clean)-HTS(Reverb)

Reverb-HTS(Reverb)

Fig. 11. Radar plot of Mean PSQ Values for CR2 Condition

Table 1. MOS-LQ values from the different cases of reverberation. The results are
ordered from worst to best level of reverberation. Clean voice does not have MOS-LQ
for being the reference.

Reverberation MOS-LQ reverberated speech MOS-LQ HTS

Clean - 1.30

CR1 1.18 1.15

CR1 1.18 1.12

OC 1.26 1.13

GH 1.30 1.11

MARDY 1.56 1.16

All cases of reverberation produce artificial voice with lower MOS-LQ value
than those produced with clean speech. But, different degrees of reverberation
produces similar degradation, according to this measure. Being the reverberation
a non-additive process, the results show also a complex relationship between the
source speech and the result of the statistical parametric speech.

5 Conclusions

In this paper, it was explored the effects of reverberated speech on the creation
of artificial voices obtained with statistical parametric techniques, based on Hid-
den Markov Models. The importance of this research relies on the application
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of objective measure to the quality of speech before and after the process of
generating artificial voices.

For comparison purposes, we proposed the application of radar plots for the
multiple visualizations of PESQ measures on all the relevant combinations of
clean/artificial speech. These plots show how different levels of reverberation
affects the signal before and after the generation of voices with the HTS system.

The results show that reverberation in all analyzed degree is an undesir-
able condition for the generation of artificial voices with statistical parametric
techniques. Particularly for the effects on pitch detection.

This knowledge allows the discrimination of future sources of speech for gen-
erating synthetic voices. Having all degrees of reverberation significant negative
effects on the quality of synthetic speech, it is critical for the speech synthesis
the use of de-reverberation or enhancement procedures before the application of
machine learning models.

For future work, new quality measures and more conditions of reverbera-
tion can be included. Additionally, statistical validation of results and extended
graphical evidence of the degraded signals of natural and artificial speech.

Acknowledgements. This work was supported by the University of Costa Rica
(UCR), Project No. 322-B9-105.

References

1. Black, A.W.: Unit selection and emotional speech. In: Eighth European Conference
on Speech Communication and Technology (2003)
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