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Preface

The use and development of high performance computing (HPC) in Latin America is
steadily growing. New challenges come from the capabilities provided by clusters,
grids, and distributed systems for HPC, promoting research and innovation in many
scientific disciplines. Building on the great success of the previous editions, the 6th
Latin American Conference on High Performance Computing (CARLA 2019) was
held in Turrialba, Costa Rica, during September 25–27, 2019. The main goal of
CARLA 2019 was to provide a regional forum to foster the growth of the HPC
community in Latin America through the exchange and dissemination of new ideas,
techniques, and research projects. This edition also had a new element: the special track
on Bioinspired Processing (BIP). It constituted the evidence of the growing crossover
between HPC sciences and both theoretical and applied nature-related disciplines. The
conference featured invited talks from academia and industry in the form of short- and
full-paper sessions, presenting both mature work and new ideas in research and
industrial applications.

The list of topics included, among others: Parallel Algorithms-Multicore Architec-
tures and Accelerators, Parallel Programming Techniques-Grid, Cloud and Edge
Computing, HPC Education and Outreach, HPC Infrastructure and Datacenters,
Large-scale Distributed Systems-Scientific and Industrial Computing, HPC Applica-
tions and Tools, Biodiversity Informatics (application of ICT to biodiversity conser-
vation), Ambient Computing, Visual Analytics for Biological Information,
Ecoinformatics, Healthcare Informatics, Pattern Recognition for Biological and Related
Signals, Bioinformatics, Biocomputing, and Computational Systems Biology.

All submitted papers were carefully examined by at least three reviewers. Out of the
62 submissions received, 32 were accepted to be presented at the conference.

September 2019 Juan Luis Crespo-Mariño
Esteban Meneses-Rojas
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Optimizing Water Cooling Applications
on Shared Memory Systems

Edson Luiz Padoin1,2(B), Andressa Tais Diefenthaler1, Matheus S. Serpa2,
Pablo José Pavan2, Emmanuell D. Carreño3, Philippe O. A. Navaux2,

and Jean-François Mehaut4

1 Department of Exact Sciences and Engineering, Regional University
of the Northwest of the State of Rio Grande do Sul – UNIJUI, Ijúı, Brazil

{padoin,andressa.tais}@unijui.edu.br
2 Informatics Institute, Federal University of Rio Grande do Sul – UFRGS,

Porto Alegre, Brazil
{msserpa,pjpavan,navaux}@inf.ufrgs.br

3 Department of Informatics, Federal University of Paraná – UFPR, Paraná, Brazil
edcarreno@inf.ufpr.br

4 Laboratoire d’Informatique de Grenoble, University of Grenoble – UGA,
Grenoble, France

jean-francois.mehaut@imag.fr

Abstract. The Network Search method is not yet widely used in com-
putational simulations due to its high processing time in the solutions’
calculation. In this sense, this paper seeks to analyze the gains achieved
with the parallel implementation of the Network Search method algo-
rithm for shared memory systems. The results achieved with the parallel
implementation of the algorithm applied in a real water cooling system
achieved a reduction of the total execution time by up to 160 times and
reduction of energy consumption by up to 60 times. Given the significant
reduction of the execution time achieved with the parallelization of the
Network Search method, it can be applied in different scientific problems
in substitution of other methods that have less accuracy in their results.

Keywords: Network Search method · High performance computing ·
Water cooling

1 Introduction

Computing has been responsible for significant changes in science. Through com-
puters, problems that until now could not be solved, or that required a long
time to be solved, were within reach by the scientific community. The evolution
of computer processors, which currently incorporate multiple processing units,
allow the execution of tasks in parallel, allowing a reduction in execution time
and an increase in the accuracy of the results. Thus, with the significant increases
in computational power of computer architectures, the range of problems that
can be treated computationally has been broadened.
c© Springer Nature Switzerland AG 2020
J. L. Crespo-Mariño and E. Meneses-Rojas (Eds.): CARLA 2019, CCIS 1087, pp. 3–17, 2020.
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4 E. L. Padoin et al.

These problems include the principles of thermodynamics, an area of physics
dedicated to the study of heat movement, which helps explain different real phys-
ical phenomena related to temperature variation. In everyday life, it is possible
to identify different situations and phenomena related to thermodynamics, such
as the conservation of hot water in thermal bottles, which is directly related to
the phenomenon of heat transfer, with heat, according to Halliday et al. [11],
energy transferred from a system to the environment or vice versa by virtue of
a temperature difference [7].

This water cooling process was modeled in an experiment involving four
glass ampoules, differentiated by the presence or absence of vacuum and mir-
roring [6]. In order to obtain the mathematical model that describes the experi-
mental data’s behavior, the Inverse Problem’s resolution was considered by the
numerical method Network Search, which was validated by the Direct Problem’s
solution by Newton’s Cooling Law.

However, the Network Search method is configured as an exhaustive method,
which finds the best set of parameters by calculating the data distributions
through all the possibilities of combinations of parameters, within the initially
defined intervals, which demands a high time computational [25].

In this context, aiming to analyze the use of multicore processors in solving
scientific problems, this paper presents a parallelization study of the Network
Search method applied in a real application of water cooling in ampoules of
thermal bottles. Our main contributions are:

– Parallel implementation of the Network Search method algorithm for shared
memory systems;

– Analysis of the power demand, execution time and power consumption of the
parallel version with mapping techniques;

– The tradeoff between execution time and energy consumption.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 4 describes the methodology used in the execution of the tests, the
equipment used, the mathematical modeling of the real application through the
inverse problem and direct problem. Results are discussed in Sect. 5, followed by
conclusions and future work, in Sect. 6.

2 Related Work

Power consumption today is a central issue in the development of the next gen-
erations of supercomputers. Research efforts have focused on both performance
and energy consumption, with priority being given to reducing power demand.
However, there are still gaps for parallelization of scientific applications. Some
research has focused on the use of ARM processors and others the use of GPGPU
accelerators to increase the energy efficiency of HPC systems.

In the first group, Andreolli et al. [1], the authors focused on acoustic wave
propagation equations, choosing the optimization techniques from systematically
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tuning the algorithm. The usage of collaborative thread blocking, cache block-
ing, register re-use, vectorization, and loop redistribution resulted in significant
performance improvements. Our proposal chooses a largely used seismic imag-
ing simulation based on the acoustic wave propagation and provides a deeper
evaluation of the hardware impact of the optimizations applied to the Xeon and
Xeon Phi processors. Blake et al. [2] developed a comparison between multi-
core processors. In this study, aspects such as caching and microarchitecture are
analyzed from ARM Cortex-A9, Intel Atom, XMOS XS1-G4, Intel Core i7, and
Sun Niagara T2 processors. Dongarra et al. [8] analyze the energy efficiency of
equipment with ARM, Intel, AMD, and NVIDIA processors. The results point
to the better energy efficiency of ARM processors. However, their energy con-
sumption measurements considered the entire system and not just the processing
unit. Similar, in the work of Valero et al. [28] are presented results of Cortex-A9
architecture. In this work, an efficiency of up to 8 GFLOPS is estimated for the
Cortex-A15 ARM processors. The use of ARM and Intel processors has been
an important topic of research in scientific applications of Padoin et al. [20],
highlighting the metrics runtime, power demand, and power consumption. Liu
et al. [17] propose an approach based on profiling to determine thread-to-core
mapping on the Knights Corner architecture that depends on the location of
the distributed tag directory, achieving significant reductions on communication
latency. Caballero et al. [4] studied the effect of different optimizations on elas-
tic wave propagation equations, achieving more than an order of magnitude of
improvement compared with the basic OpenMP parallel version.

In the second group, several studies have evaluated the performance and
power consumption of GPUs. Huang et al. [13], compare performance between
CPUs and GPUs using matrix multiplication algorithms. The authors conclude
that heterogeneous systems with GPUs achieve performances up to 46 times
higher with energy consumption up to 17 times lower. Buck et al. [3] propose four
applications to evaluate the performance of heterogeneous architectures. Jiao
et al. [16] utilized a subset of these applications to analyze the performance and
energy efficiency of CPUs and GPUs when their dynamically changed voltage
and clock frequency. Both authors indicate that using GPUs is the right course
to achieve green computing. In a similar work, Padoin et al. [21] investigate
the energy efficiency of a heterogeneous system (CPU + GPU) using a scientific
application. In Luk et al. [18], the authors propose a methodology that auto-
matically performs workload mapping and allocation in heterogeneous systems.
Its approach reduces execution time by up to 25% and power consumption by
up to 20% when compared to workload allocation statically.

The third group focused on process mapping as an effective way to improve
the performance of parallel applications and propose new methods to perform
the mapping more efficiently. Tousimojarad and Vanderbauwhede [27] show that
the default thread mapping of Linux is inefficient when the number of threads
is as large as on a many-core processor and presents a new thread mapping
policy that uses the amount of time that each core does useful work to find
the best target core for each thread. Liu et al. [17] propose an approach based
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on profiling to determine thread-to-core mapping on the Knights Corner archi-
tecture that depends on the location of the distributed tag directory, achieving
significant reductions on communication latency. He, Chen, and Tang [12] intro-
duces NestedMP, an extension to OpenMP that allows the programmer to give
information about the structure of the tasks tree to the runtime, which then
performs a locality-aware thread mapping. Cruz et al. [5] improve state of the
art by performing a very detailed analysis of the impact of thread mapping on
communication and load balancing in two many-core systems from Intel, namely
Knights Corner and Knights Landing. They observed that the widely used met-
ric of CPU time provides very inaccurate information for load balancing. They
also evaluated the usage of thread mapping based on the communication and
load information of the applications to improve the performance of many-core
systems. Serpa et al. [23] focus on Intel’s multi-core Xeon and many-core accel-
erator Xeon Phi Knights Landing, which can host several hundreds of threads
on the same CPU. Execution time was reduced by up to 25.2% and 18.5% on
Intel Xeon and Xeon Phi Knights Landing, respectively.

Other works explore the use of ARM processors and GPGPU accelerators to
improve runtime and power consumption. This work seeks to explore the use of
the various processing units present in the current multicore processors, making
it possible to use the network searching method. Thus, this paper discusses the
gains of the parallelization of this method based on aspects of a real thermody-
namics application.

3 Thermodynamics and Computational Models

Thermodynamics is related to the different phenomena of everyday life that
involve temperature variations, which instigate as to its cause or effect. Among
these situations, it is worth noting the cooling of the hot water in thermal bot-
tles. The scientific application that refers to the processes of transfer of heat
in ampoules of thermal bottles is not recent. The invention of these containers
is related to the creation of the Dewar flask in the 19th century by the Scot-
tish physicist-chemist James Dewar (1842–1923). When evidencing that the best
thermal insulator is the vacuum, Dewar began to manufacture bottles with dou-
ble walls, leaving a space between them (vacuum) and coating its interior with
a silver film, in order to reflect the radiation [14].

The thermos bottle is a container composed of an external body (jar or bottle
made of different materials such as plastic, stainless steel) and an internal part
constituted by an ampoule (usually glass). These bottles are widely used in the
daily life of individuals to conserve the temperature of drinks, hot or cold, and
are also manufactured in different capacities and with different storage systems.

It is to be understood that the ampoules currently manufactured are com-
posed of two glass walls, with or without a vacuum between them, and may or
may not be mirrored. According to [19] these constituent materials are deter-
minants for the operation of the containers, which is based on the principle of
avoiding the exchange of heat between the contents of its interior and the envi-
ronment. Seeking to prevent the occurrence of the three forms of heat transfer:
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(i) Conduction: the heat exchange occurs by the shock of the particles that make
up the system [15]. It is avoided due to the material in which the ampoule is
manufactured, the glass, which is considered good thermal insulation; (ii) Con-
vection: occurs in the fluids (gases and liquids), caused by the difference in the
density of the system components [11]. In the ampoules, it is avoided due to the
vacuum between the double walls of glass and the insulating cover, which pre-
vents the contact between hot water and air; and (iii) Radiation: it occurs from
electromagnetic waves, and the mirrored walls cause the infrared rays emitted
by the hot water to be reflected, attenuating the heat exchanges. Despite these
characteristics, there are no perfect insulating materials, and therefore, there
is still heat exchange, which causes the hot water inside the containers to cool
down over time.

In conducting heat transfer, the exchange occurs by the shock of the par-
ticles. In this way, conduction is avoided due to the material from which it is
produced, the glass, which is considered excellent thermal insulation, because it
has high thermal resistance (R). A property obtained by the ratio between the
thickness L of a plate and the thermal conductivity k of the material in which it
is manufactured: R = L

k (the glass is an insulation material, has a low thermal
conductivity (k) 1,0 W/mK, which guarantees its higher capacity to conserve
heat) [11].

The vacuum region between the ampoules’ double walls also serves to prevent
heat transfer by conduction and convection. The convection exchange occurs
in the fluids (gases and liquids), caused by the system components’ density
variation [11]. In this way, the vacuum, as well as the presence of an insulating
cover (to keep the bottle closed), prevent contact between hot water and air,
thereby attenuating this form of heat transfer.

When the ampoules are mirrored, the infrared rays emitted by the hot water
are reflected, attenuating the heat exchanges by radiation and aiding in the water
temperature’s conservation. In this way, due to the ampoules’ characteristics, the
heat transfer can be reduced - by conduction, convection, and radiation - and
conserve the hot water for longer inside the thermal bottles. However, there are
no perfect insulating materials, and after a while, the water cools [19].

3.1 Mathematical Modeling

For the data’s mathematical modeling, we considered the equation of the natural
exponential function decreasing (since the temperature of the water decreases
and tends to stabilize over time), that is, y = A ∗ e−Bx + C, with three non-
linearizable parameters A, B and C. In [6], the characteristic equations of the
data sets (nonlinear adjustment of curves) were obtained, from the resolution of
the Inverse Problem through the Network Search method, being these validated
by means of a comparison with the equations and determination coefficients
found by the resolution of the Direct Problem, considering, for this, the Law of
Cooling of Newton’s bodies.

Diefenthaler et. al [6] model the problem of heat transfer in bottles. For this,
a practical experiment related to the principles of thermodynamics was carried



8 E. L. Padoin et al.

out and the four types of glass ampoules efficiency, differentiated by the presence
or absence of vacuum and mirroring, from the cooling process the hot water over
time was analyzed. The experimental data obtained were modeled, is possible to
find the cooling curves’ equations in each container from the Inverse Problem’s
resolution through the Network Search method, which was validated through
the comparison with the results provided by the Direct Problem resolution, by
Newton’s Cooling Law. From the developed one, the method’s efficiency was
evidenced, because the results were coherent, and high determination coefficients
were obtained.

In each ampoule, a volume of 1 L of hot water was added at an initial tem-
perature of 70 ◦C. Temperature measurements were performed using four Mer-
cury thermometers, ranging from −10 ◦C to 110 ◦C. Temperatures were recorded
every 20 min (1200 s by SI) in degrees Celsius, for a time of 7 h (25200 s), total-
ing 22 measurements. To obtain the data, in [6] the temperature of 1 L of water
at an initial temperature of 70 ◦C over 7 h (25200 s) was measured, which were
measured every 20 min (1200 s), totalizing a set of 22 data. This article considers
only the bulb manufactured in a vacuum and mirrored glass, since it presents
better performance in heat conservation, as can be observed in the results shown
in Fig. 1.
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Fig. 1. Data measured in the laboratory in the process of water cooling in ampoules.

3.2 Inverse Problem via Network Search Method

The problem is configured as an Inverse Problem since from the realized exper-
iment we have the phenomenon’s effects (the experimental data), but its causes
are unknown, as well as the equation (mathematical model) that represents
the phenomenon and allows obtaining these data. In this way, the Inverse
Problem consists of determining unknown causes from desired or observed
effects [9] and [25]. In a resolution by the Direct Problem, the cause and the
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equation are known - Newton’s Cooling Law - from which the effects are deter-
mined - the temperature that the water reaches at a given time -. Already in
the resolution by the Inverse Problem, we have only the experimental data and,
observing its behavior and using numerical methods; it is possible to model the
data and obtain an equation that “causes these effects.”

Thus, in the case of an inverse problem, the problem presented here is con-
sidered an ill-posed problem. According to [10], a well-put problem is one that
presents three characteristics: (i) Existence of solution; (ii) Uniqueness (exis-
tence of a single solution), and (iii) Stability of the solution (the solution has a
continuous dependency smooth with the input data).

In order to determine the parameters of the equation y = A∗e−Bx+C, in [6]
it was proposed the resolution through the Network Search method, which con-
sists in the definition of valid intervals for each parameter to be estimated and of
several partitions for each interval. This method finds the best set of parameters
by exhaustion, calculating the distributions of the data through all possibilities
of combinations of parameters, within the defined initial intervals [24]. Thus,
according to [26], this method can be considered a method of suboptimal solu-
tions, since there is no convergence criterion and the guarantee that the optimal
solution belongs to the predefined intervals.

This method was implemented based on information: number of points (22),
Vector X (time vector in seconds), Vector Y (temperature vector in Celsius),
previous intervals in which the parameter values (A - 0 to 50, B - −0.01 to 0 and
C - 0 to 50) and the number in which each of these intervals (1000 divisions)
will be divided. Thus, the following algorithm was used to determine the Z
parameters:

Step 1 - It is estimated the intervals (minimum and maximum) of values of
each parameter A, B, C, that contain the optimal value of A, B, C ;
Step 2 - Construct a partition of n points in which each interval is divided (in
this case, we have 1000 possible values for A, 1000 for B and 1000 possibilities
for the value of C );
Step 3 - For each set of values (A1, A2, ..., A1000 ; B1, B2 ..., B1000 ; C1,
C2, ..., C1000 ), solve the function that represents the Direct Problem;
Step 4 - Calculate the differences between the estimated solutions and the
experimental data; and
Step 5 - Identify the smallest difference, which corresponds to the set of
parameters A, B and C optimal for the estimated interval.

This method was chosen because of its efficiency and practicality because it
is possible to define the previous intervals for each parameter to be estimated in
this situation and also because it does not involve the calculation of derivatives;
however, is a method that demands long execution time.

There are different methods for solving an Inverse Problem since the choice
of the Network Search algorithm is due to its efficiency and practicality since it
is possible to predefine intervals for the parameters to be estimated (A, B, and
C ) and not wrap or derivative calculation. Although the method is exhaustive
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(combining all possibilities of solution), this problem seeks to determine only
three parameters, a number that does not require a large execution time, which
allows a solution via the Network Search method in an easy and efficient.

The values’ choice of the intervals of A,B, and C and the number of subdi-
visions were made from the scatter diagram of the collected data. Through it,
it was evidenced that the temperature decreases over time, but remains positive
until reaching the thermal equilibrium with the medium, which was maintained
at a constant temperature of 23 ◦C, which justifies the choice of intervals from
0 to 50 for parameters A and C. As for parameter B, it was verified that the
temperature variation is minimal for a time long interval (in seconds) and will
be negative, due to the cooling process (decreasing exponential), so opted by the
range of −0.01 to 0, adopting 1000 divisions for all intervals.

4 Methodology

This section describes the methodology used in this study. First, it presents the
execution environment for parallel execution. In the sequence is presented the
measurement methodology used in the experiments and the real thermodynamics
application that was modeled through the inverse problem and validated from
the direct problem.

4.1 Execution Environment

The platform used for the experiments is an Altix UV 2000 designed by SGI.
The platform is composed of 24 NUMA nodes. Each node has an Intel Xeon
processor E5-4640 Sandy Bridge-EP x86-64 processor with eight physical cores
of 2.40 GHz. Each core of the Intel Xeon E5-4640 has L1 cache memories of 32 KB
for instruction and 32 KB for data and 256 KB of L2 cache. All eight cores share
a cache of 20 MB L3. Each node has 32 GB of DDR3 memory, which is shared
with other nodes in a cc-NUMA form through SGI’s NUMAlink6. In general,
this platform has 192 physical cores and 768 GB of DDR3 memory. The platform
runs an unmodified SUSE Linux Enterprise Server operating system with kernel
3.0.101-0.29 installed. All applications were compiled with GCC 4.8.2. Table 1
displays the main execution environment’s characteristics.

4.2 Measurement Methodology

To analyze the performance, power demand, energy consumption, and define a
Tradeoff of performance × energy. The EMonDaemon [22] tool was used to collect
and analyze runtime and processor power demand during execution. This tool
facilitates the relation of this information since the current systems have different
interfaces to collect information about its components. Also, some of the existing
tools provide data to be parsed only after execution. Thus, for performing the
EMonDaemon tool tests, it has been configured to perform processor power
demand measurements every 1 s.
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Table 1. Equipment’s configuration

Platform Intel Sandy Bridge-EP

Manufacturer Intel

Processor model E5-4640

Clock frequency 2,4 GHz

Number of cores 8

Memory 32 GB

Cache L1 64 KB

Cache L2 256 KB

Cache L3 20 MB

Manufacturing technology 32 nm

Instruction set architecture AVX

Floating-Point Unit (FPU) VFPv3

Out-of-order execution Yes

In order to increase the performance of this application in multicore systems,
a parallel version was implemented in language C with OpenMP 1, popular
programming for shared memory systems. The parallel version of the application
distributes the iteration intervals between the available cores. For the mapping
of threads, the tool hw lock

2 was used.
Each of the tests performed in this work was repeated 10 times, to achieve

a relative error of less than 5% and 95% of statistical confidence for a Student’s
t-distribution. Between each of the tests, the system was left in idle for at least
20 s, so that the power demand of the system stabilized.

5 Results

This section describes the results measured with the Network Search method’s
parallel runtime applied in a real water cooling system in ampoules. For the
measurements, the platform described in Sect. 4.1 and the EMonDaemon tool.
In order to facilitate the analysis, the results were organized in the following
order:

– Power demand of processors with or without thread mapping;
– Execution Time versus energy consumption with or without thread mapping;

and
– Tradeoff between Execution Time and Energy Consumption of the parallel

version.

1 http://www.openmp.org/.
2 https://www.open-mpi.org/projects/hwloc/.

http://www.openmp.org/
https://www.open-mpi.org/projects/hwloc/
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5.1 Power Demand

Our testbed equipment has 24 processors, each one with 8 cores, totaling 192
cores. Thus, in the first test, each processor power demand was measured when
the equipment was idle. This measurement is important to define the power
demand in idle and its an increasing during the executions of each test. In the
idle state, the average power demand measured of the processors was (20.54 W).

 34.5

 35

 35.5

 36

 36.5

 37

 37.5

 0  200  400  600  800  1000 1200 1400 1600 1800

P
ow

er
 (

W
)

Time (s)

1 core
2 cores
3 cores
4 cores
5 cores
6 cores
7 cores
8 cores

(a) The power demand of the executions without threads
mapping

 30

 35

 40

 45

 50

 55

 60

 0  200  400  600  800  1000  1200  1400  1600  1800

P
ow

er
 (

W
)

Time (s)

1 core
2 cores
3 cores
4 cores
5 cores
6 cores
7 cores
8 cores

(b) The power demand of the executions with threads map-
ping

Fig. 2. Instantaneous power measured for each processor during executions.

The first test was performed without the thread mapping. 8 threads were
created leaving to the operating system the decision to choose which of the 192
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cores to run each one of the threads. Thus, the threads were randomly mapped in
cores of different processors. For the power analysis, it then measured of each one
of the processors used in the execution. In Fig. 2(a) is showed the instantaneous
power of the processors used in the tests. Each row represents an execution of
the application for several threads. From the analysis of the results, we can see a
small difference between the processors’ power demands, which had a variation
of 8%. In this test, the power varies between 34.77 W and 37.03 W.

A second test was performed using the thread mapping with the tool
(hw lock). The main goal this test is to execute all threads on the same pro-
cessor; each one is mapped to each of the cores. In this test, given the different
amount of cores used, there are different power demands for each execution.
When only 1 core is used, the average power demand was 34.9 W. On the other
hand, the power demand achieves 57.8 W when all 8 cores were used.

However, as the execution time and the power demand determine the total
energy spent, the next section will analyze the impact of these variations.

5.2 Execution Time and Energy Consumption with Thread
Mapping

The execution time of the sequential version of the application is 1679.2 s for a
matrix order equal to 1.000 (Table 2).

With the parallel version’s development that uses shared memory, the exe-
cution time has been reduced from 1679,2 s to 210,1 s, representing a gain or
speedup of 7.99 to 8 cores, that is, a speedup practically linear.

Statistical tests indicate that the runtimes’ results presented in this section
are significantly similar since small variations were observed in the measurements
performed between the two sets of tests performed (with or without mapping).
Thus, in this section, for the energy consumption analysis and comparison, the
average execution time measured in the two tests was taken as the basis.

In the first test (without thread mapping) different processors were used.
Thus, to compute the total energy spent was considered the processors’ average
power that performs threads added to the processors’ average power demand
that remained in idle state.

In this way, it is noticed that with the parallel implementation is achieved a
reduction of 79.98% in total energy consumption when running the application
with 8 threads in 8 different processors. The total energy spent was reduced
from 300.2 KJ to 60.1 KJ. The runtimes, the power demands, and total energy
consumption for different threads numbers are presented in Table 2.

In the second test was used the threads mapping aiming at the execution of
the 8 threads in the 8 cores of the same processor. As shown in the previous
section, for each threads number, there is a processor power demand, which
varies from 34.9 to 57.8 W. On the other hand, processors that have remained
idle have an average power demand of 20,546 W. Thus, running 8 threads on
1 single processor was achieved a reduction of up to 85.88% in total energy
consumption. It is observed, however, that with the use of thread mapping, it
was possible to reduce energy consumption even further, which was 5.9% higher
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Table 2. Execution time, power demand and power consumption without thread map-
ping

Processors 1 2 3 4 5 6 7 8

Time (s) 1679,2 839,7 561,1 419,5 337,2 281,7 241,3 210,1

Power of used processors (W) 34,9 71,0 110,2 143,6 179,3 216,2 250,9 286,0

Power of processors in idle (W) 143,8 123,3 102,7 82,2 61,6 41,1 20,5 0,0

Energy (KJ) 300,2 163,1 119,5 94,7 81,2 72,5 65,5 60,1

Energy save (%) 45,66 60,19 68,44 72,93 75,85 78,18 79,98

than the unmapped tests. The tests’ results with mapping for different threads
number are presented in Table 3.

5.3 Execution Time×Energy Consumption Tradeoff

As the mapping presented a more significant reduction in energy consumption,
a third test was carried out aiming to relate the runtime to the total amount of
energy consumed when the number of threads is increased until all the system’s
cores are used. In Fig. 3 shows the execution times and power consumption when
varied the number of threads from 1 to 192.

Since the application is highly parallelable and does not have much com-
munication, we realize that, with the parallel implementation, was obtained a
total execution time’s reduction of 160 times for 192 cores, that is, the time was
reduced from 1679.2 s to 10.3 s. The total power consumption was also reduced
with the parallel version. In the sequential version, considering the 24 proces-
sors octa cores of the system, the energy consumption was 866,5 KJ. With the
parallel implementation that uses the 192 available cores, the consumption has
been reduced to 14.4 KJ, which represents a reduction of 60.3 times.

Two factors justify the difference between time and consumption gains, 160
times, and 60.3 times, both for 192 cores. The first is linear velocity observed
up to approximately 70 threads. From these cores used, the execution time’s
reduction became smaller tending to stabilize, as shown in Fig. 3. The second
is due to the increase in static power demand of approximately 14.9 W each
inclusion of a new processor in the parallel application execution.

Table 3. Execution time, power demand and power consumption with thread mapping

Processors 1 2 3 4 5 6 7 8

Time (s) 1679,2 839,7 561,1 419,5 337,2 281,7 241,3 210,1

Power of used processors (W) 34,9 39,5 42,7 45,9 48,8 51,8 54,9 57,8

Energy of used processors (KJ) 58,6 33,1 24,0 19,2 16,4 14,6 13,2 12,2

Total power demand (W) 178,8 183,3 186,6 189,7 192,6 195,6 198,8 201,6

Total energy spent (KJ) 300,2 153,9 104,7 79,6 64,9 55,1 48,0 42,4

Energy save (%) 48,72 65,12 73,49 78,36 81,64 84,02 85,88
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Fig. 3. Execution time and energy consumption for different number of threads.

However, according to the results obtained, it can be concluded that the Net-
work Search method is shown as a practical and accurate and efficient method
when used in its parallel version. Thus, the problem related to the high sequen-
tial version’s execution time could be solved with parallel implementation and
execution in multicore environments.

6 Conclusions

In this paper, we discuss our gains of up to 160× in time and up to 60× in
energy consumption achieved with parallelization and process mapping in mul-
ticore processors of Network Search method applied to an actual water cooling
application.

We showed that parallel Network Search Method has good efficiency and
accuracy, as well as the influence the computer’s configurations and architecture.
We also show that Network Search Method can be applied in different scientific
problems in substitution of other methods that have less accuracy in their results.

Future work includes working with other methods of parameter determina-
tion (Inverse Problem) to see if the simulation time is better than this one.
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7–16 (2008)

15. Incropera, F.P., Dewitt, D.P.: Fundamentos de transferência de calor e de massa,
vol. 6. LTC, Rio de Janeiro (2011). 698 p

16. Jiao, Y., Lin, H., Balaji, P., Feng, W.: Power and performance characterization of
computational kernels on the GPU. In: IEEE/ACM International Conference on
Green Computing and Communications (GreenCom) and International Conference
on Cyber, Physical and Social Computing (CPSCom), pp. 221–228. IEEE (2010)



Optimizing Water Cooling Applications on Shared Memory Systems 17
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dos parâmetros do modelo de rakhmatov e vrudhula. Dissertação de Mestrado do
Programa de Pós-Graduação em Modelagem Matemática da Unijúı, Maio 2013.
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1 Introduction

High-performance computing is nowadays one of the main components in the process
of supporting large-scale experiments. Such experiments are related to solving complex
scientific and applied problems in various spheres of human activity. Depending on the
scale of problems, the computational infrastructure may include personal computers
(PCs), servers, clusters, resources of public access computer centers, Grid systems, and
cloud platforms. Thus, a heterogeneous distributed computing environment is created
to execute applications that are characterized by the following properties:

• Varying degree of computation scalability,
• Different sensitivity to a resource heterogeneity,
• A necessity of environment resource virtualization,
• A demand for integrating subject domains of applications with information about

the software and hardware of nodes including administrative policies defined in
them.

Applications that are sensitive to resource heterogeneity are usually executed in the
homogeneous cluster nodes or in a virtual environment. The need for such virtual-
ization also arises for applications that use software other than that installed in the
nodes.

Among the applications being developed for a distributed computing environment,
we distinguish a special class of applications that includes distributed applied software
packages. Such packages are characterized by the use of a modular approach, a high
degree of scalability, and the possibility of their execution on heterogeneous resources.

Usually, collaborative development and use of packages by various categories of
users (developers, administrators, and end-users) is implemented. This often leads to
the necessity of integrating different packages through the computational models,
calculated data, and computations management transferring.

End-users of packages are interested in maximizing the summarized computing
performance of the environment. In the models of subject domains in packages, the
computational process is represented as a problem-solving scheme. Such scheme
closely correlates with the concept of the workflow [1]. Systems for developing and
applying workflows can be considered as a special case of distributed applied software
packages.

Software, hardware, and information resources of heterogeneous distributed com-
puting environments tend to permanent change. This entails the following problems:

• Reconfiguring the computing environments of packages,
• Module libraries modification and/or development of new software,
• Supporting the interaction correctness of different versions of modules within a

problem-solving scheme,
• Accounting the conditions of applying these versions.

To solve the aforementioned problems, the tools for Continuous Integration,
Delivery, and Deployment (CIDD) of software can be used to one or the other extent [2].
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However, supporting the technological chain that integrates CIDD is still a non-
trivial problem for the package development tools, including systems for the workflow
applying [3]. These tools are often not ready to fully support the complex CIDD
process in packages. The main difficulty arises from the need to support the conceptual
modeling traditionally used in such packages. In addition, applying of subject-oriented
knowledge extended by specialized information about the software and hardware
infrastructure of the environment is required.

In this regard, we propose a new approach to ensuring CIDD for package modules.
It is based on the merging of the methodology for creating such packages with modern
software development practices based on its CIDD. We assume to use the subject-
oriented knowledge where is it possible. In addition, we developed a technological
scheme for joint use of our developed tools and external CIDD systems.

The rest of the paper is structured as follows: Sect. 2 provides a brief overview of
tools for CIDD. It also discusses some important problems in their integration. Sec-
tion 3 addresses issues related to the development of distributed applied software
packages in Orlando Tools. In Sect. 4, we offer the technological scheme for the CIDD
of package modules. The practice results of applying CIDD in Orlando Tools are given
in Sect. 5. Finally, Sect. 6 concludes with the main results of our study.

2 Related Work

In the process of developing complex software systems, their developers need to
support interaction between the components of such systems. Individual components
can be created by different developers using a wide set of programming languages.
They also can be oriented to work under the control of various software and hardware
platforms. The main CIDD purpose is to identify and eliminate problems of interaction
between individual components during the software system operation by automating
their assembly, debugging, joint testing, etc. [4].

Over the years, a wide set of tools designed to automate different CIDD processes
during the development of complex software systems is developed. Systems CircleCI
[5], Jenkins [6], TeamCity [7], Travis [8], GitLab [9], and many other tools [10, 11] are
among them. Each system has its own specific features related to the provided capa-
bilities, a sequence of actions taken by users of this system, and its administration. All
of them have certain advantages and drawbacks.

For example, CruiseControl.NET [12] and Apache Gump [13] are strongly oriented
to the programming language that maximizes their own capabilities in conjunction with
specialized tools for managing program libraries. An example of such a specialized tool
is the Conan system for C++ [14].

Other tools provide access only as of the cloud service (CircleCI or TeamCity).
They do not allow developers placing all the necessary set of CIDD tools on their
resources.

Distinct difficulties arise with the integration of some tools (BuildMaster [15] and
Travis [16]) with development environments due to the use of different data formats.

Fulfilled comparative analysis of the CIDD tools allows us to conclude that GitLab
is one of the most promising systems for our purpose. It provides integration of
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automated software testing processes and storing its source code using the Git repos-
itory [17]. GitLab also supports rich test run capabilities on software build servers. For
tests run, we can apply the following means:

• SSH network security access protocol [18],
• Scripts in the Shell programming language [19],
• VirtualBox software package for virtualization of various operating systems

(Windows, Linux, FreeBSD, macOS, Solaris/OpenSolaris, ReactOS, etc.) [20],
• Parallels virtualization software products [21],
• Docker [22], Docker Swarm [23], and Kubernetes [24] for automating the

deployment and management of applications taking into account all dependencies
that need to their run,

• Container registry [25] for storing the Docker images.

Package developers have the ability to install GitLab on their own computational
resources. This ability enables the developers to support the necessary level of security
and flexibility of the CIDD system overall.

Table 1 provides a comparative analysis of the provision of important capabilities
in GitLab and the most popular CIDD tools. The analysis results show the advantage of
GitLab in providing the full spectrum of the considered capabilities in comparison with
other systems.

Information elicited from the subject-oriented data, and the problem-solving results
obtained in executing packages are often the weakly structured, heterogeneous, and
frequently changed. In this regard, CIDD processes require the use of a flexible,
knowledge-based model. It has to allow developers to determine the relations between
the primary information and the data structures used by such packages. Well-known
CIDD tools do not support this feature.

Table 1. Results of the comparative analysis

Capability Travis TeamCity Jenkins CircleCI GitLab

Installing the system on developer
resources

− + + − +

Software testing support for Linux + + + + +
Software testing support for
Windows

− + + − +

Monitoring software − − − − +
Program code quality verification − − + − +
Supporting the container registry − − − − +
Supporting the delivery and
deployment of software

+ + + + +
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3 Orlando Tools: Development and Use of Distributed
Applied Software Packages

We develop distributed applied software packages for solving large-scale scientific and
applied problems using the Orlando Tools framework [26]. It provides the created of
subject-oriented computing environments in which various infrastructures that support
both grid and cloud computing are integrated.

Three conceptually separate layers of knowledge (computational, schematic, and
productional) form a computational model of the package that is developed in Orlando
Tools. On this model, problems are formulated, and schemes of their solving are
constructed.

Modules that represent applied software of the package implement the computa-
tional layer. Parameters and operations of the package reflect schematic knowledge.
The parameters represent the relevant characteristics and properties of the subject
domain. Operations determine the relations of computability between two subsets of
subject domain parameters. Such a relation makes it possible to calculate the searched
values for the parameters of the first subset when the values for the parameters of the
second subset are known.

Package modules are software that implements operations. The specification of
each module includes information about the executable program (name, version, input
and output parameters, assembly and compilation processes, launch instructions,
allowable classes of resources for its execution, etc.).

Conditions of performing operations form the productional layer of knowledge.
The current computations progress of the problem-solving scheme execution and state
of resources determine the fulfilment of these conditions.

A problem formulation is the formalized description of the problem in terms of
parameters and operations. Problem formulations are formed on the computational
model of the package. The problem statement determines the following conditions:

• Input parameters (data required to solve the problem),
• Output parameters (results of solving the problem),
• Operations that can or must be performed over the parameter field,
• Constraints that determine the ability to perform operations,
• Quality criteria (time, cost, reliability, etc.) for problem-solving.

The problem-solving scheme is planned based on its formulation. It reflects the
information and logical relations between package operations. The problem-solving
scheme can be included in a computational model of any package as a new operation.

4 Technological Scheme of CIDD in Orlando Tools

In the paper, we represent a prototype of the new Orlando Tools subsystem that
supports CIDD. The Git repository is applied in Orlando Tools for managing module
source code versions. GitLab is used to access to the Git repository and manage by the
CIDD pipeline process.
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The building of modules is carried out automatically when making changes related
to the adding or modification of a module source code in Git. The building runs on
specialized servers or nodes of the environment using the pre-installed GitLab Runner
agent executed in the Docker container.

We plan to support GitLab Runner agents for a different type of programming
languages and with different compilers for modules. Each module specification con-
tains a section with requirements for GitLab Runners. Figure 1 shows the general
scheme of the interaction of Orlando Tools with the external CIDD systems.
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Fig. 1. Scheme of supporting CIDD in Orlando Tools
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The syntax of specifications for the main objects of the computational model of a
package in Orlando Tools is shown below.

Parameter Parameter_name Extension;

Operation Operation_name module | task

Module_name | Task_name (Input_parameters > Output_parameters);

Module Module_name (Input_parameters > Output_parameters)

Repository_name Project_name;

Task t1(Input_parameters > Output_parameters);

We provide the examples of this specifications:

Parameter z1 xml;

Operation o1 module m1 (z1, z3, z2, z4 > z7, z9);

Module m1 (initial_data,vulnerable_elements multiplicity,

number_of_perturbation_subsets > perturbation_subsets,

statistics_file_name) repo1 R1.master;

Task t1(z1, z2, z3, z4, z5, z6 > z8);

The keywords Parameter, Operation, Module, and Task correspond to the fol-
lowing objects of the computational model: parameter, operation, module, and
problem-solving scheme. Specification items Repository_name and Project_name
support the continuous integration process. They indicate the repository name and
module project name in the repository respectively. In the module specification, these
elements contain information about the location of this module in the repository and its
dependency on other modules. Additional information about the module required for its
launch and testing is stored in the module repository in the special files.

In the case of the successful compilation and passing tests of the first stage, the
binary files of the module are packed into a Docker-container at the Docker images
build server. The Docker-container that contains a new version of the module is sent to
the Docker Registry. In addition, the Docker-container is placed in the Orlando Tools
test environment. There it is used in each distributed applied software packages for the
advanced testing the problem-solving schemes that include operations implemented by
the module. The advanced testing is carried out automatically.

After successful completion of all tests, the Orlando Tools subsystem for contin-
uous delivery creates new versions of distributed applied software packages with the
new version of the module. Then the Orlando Tools subsystem for continuous delivery
interacts with the Orlando Tools subsystem for continuous deployment to automatically
install the new version of the module to all required nodes of the heterogeneous
distributed computing environment.

Verification of tests status at CIDD stages and transitions between them can be
performed automatically or step-by-step in the manual mode.

24 A. Feoktistov et al.



5 Applying CIDD in Orlando Tools

As an example of applying CIDD, we consider the development of the distributed
applied software package for vulnerability analysis of energy systems. Energy systems
play a crucial role in the modern world. A failure in such a critical infrastructure leads
to great damage to the economy and society as a whole. Thus, ensuring critical
infrastructures resilience has great priority on both the national and international levels.
Resilience is often understood as the ability of a system to reduce the disturbance
probability, mitigate disturbance consequences, and rapidly recover after a failure.

The system vulnerability can be defined as the overall sensitivity of a system to a
particular disturbance. It can be measured by the damage magnitude that occurs
because of the disturbance.

The system vulnerability conditioned by failures in its elements shows their criti-
cality. The more system sensitive to element failures leads to the more critical of these
elements [27].

The vulnerability analysis helps a lot in support of decision making in providing
critical infrastructure resilience. A vulnerability analysis related to the determination of
the critical elements is extremely difficult when estimating multiple simultaneous
failures.

A failure set is defined as a specific combination of failed elements. It is charac-
terized by a set size, which indicates the number of elements that fail simultaneously.
Applying the analysis of the critical elements, we process and compare sets of different
sizes separately before ranking them. The number of possible failure sets is t!

t�kð Þ!k!,
where t is the total number of elements and k is the size of a failure set [27]. Thus, for a
system consisting of some hundreds of elements and more, we use distributed com-
puting for processing the failure sets included larger than two elements.

An energy system under consideration is the Russian natural gas supply system. At
the initial time moment of the modeling, its network includes 387 nodes (33 producers,
96 consumers, 29 underground storages, and 229 key compressor stations) and 786
pipelines sections as arcs. There are 415 arcs and 291 nodes that can be failed. Thus,
t ¼ 706. The failure sets size k is changed from 1 to 3.

The computational model of the package for analyzing the critical elements of the
energy system includes two problem-solving schemes.

The scheme t1 generates the failure sets of the specific size and calculates the
consequences of simultaneous failures for elements combination. It includes the
operations f2 � f6.

At the first stage of executing the scheme t1, the operation f4 calculates a number of
records needed to keep the consequences data of every failure set of specific size. Next,
two operations are performed. The operation f6 prepares the distributed database for
storing consequences data. The operation f2 generates failure sets of specific size. Then
the operation f3 estimates the consequences of simultaneous malfunction of elements of
the generated set in parallel. Finally, the operations f5 increases the failure set size by 1.
In the computational model, the scheme t1 is represented by the operation f7.
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The scheme t2 generates and processes failure sets of different sizes in a loop. It
calls the operation f7 until the modeling with all failure sets sizes of the given interval
are carried out.

Figures 2 and 3 show the schemes t1 and t2 created in the Orlando Tools graphical
editor.

Fig. 2. Problem-solving scheme t1

Fig. 3. Problem-solving scheme t2

26 A. Feoktistov et al.



Parameters in Figs. 2 and 3 are interpreted as follows:

• Network is multi-period data of the energy system network,
• Failure_size is the specific size of failure sets,
• Time is a time moment at which the energy system network data is retrieved,
• Failed_elements is a set of failed network elements,
• Resources is the list of computing resources allocated for problem-solving,
• Database_host is the host address of a distributed database where failure sets and

consequence data are read from and written to,
• DB_records_number is a total number of records in the distributed database,
• DB_last_record is the last record number in the distributed database,
• LP_solver is a name of the linear programming problem solver that is applied to

optimize the energy flow over the given energy system network,
• Filters is a list of the filters for the decision variables after applying the solver,
• Reserve_vars is the extra number of the distributed database records to keep the

consequences data of every failure set of the specific size,
• Failure_sets is generated failure sets,
• Variable_block_size is a variable block size,
• Consequences is a failure set consequences,
• Failure_max_size is the maximum size of failure sets.

The parameters DB_records_number, DB_last_record, Failure_sets, and Vari-
able_block_size are intermediate parameters of the scheme t1.

In the package, the operations f2�f6 are implemented by the cross-platform applied
modules m2�m6. These modules are built using additional software libraries.

The development of the current package version and the computational experiments
took about 30 h. All computations are carried out using 1 personal computer (PC) of
the package developers and resources of public access computer center Irkutsk
Supercomputer Center of SB RAS (2 pools of HPC-cluster nodes) [28]. The quotas of
end-users of the computer center are limited to 10 nodes.

Table 2 shows the time of solving the scheme t2 on heterogeneous resources in
seconds for different values of k. This time was obtained taking into account the wait
time of jobs for executing modules in queues of local resource managers.

Table 2. Time of solving the scheme t2

k PC (1 core Intel
Core i5-650,
3.4 GHz, 8 GB
RAM)

Pool 1: 10 nodes with 2
processors AMD Opteron 6276
(16 core, 2.3 GHz, 64 GB
RAM)

Pool 2: 10 nodes with 2
processors Intel Xeon CPU
X5670 (18 core, 2.1 GHz,
128 GB of RAM)

1 362 179 174
2 190479 475 411
3 >540000 53093 25790
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It is obvious that the end-user can rationally select resources for problem-solving,
depending on the k. When k ¼ 1, the use of resources of the pools 1 and 2 is irrational
owing to the large overheads related to starting instances of the module m3, which
implements operation f3. With an increase k, the use of these resources significantly
reduces the problem-solving time.

The computational model of the package allows Orlando Tools automatically
selects the necessary computing resources based on the failure sets size k. In the
Table 2, we represent the evaluation of the scheme t2 solving time on PC for k ¼ 3.

Figure 4 represents the time spent by the package developer at various stages of
their work with CIDD using Orlando Tools (OT) and the estimated time that can be
spent by the developer without Orlando Tools (Without OT). The developer makes the
following main actions:

• Preparation of data for CIDD (A1),
• Configuring of the CIDD process (A2),
• Development or modification the package modules (A3),
• Module sources commit to the GitLab server (A4),
• Modules build (A5),
• Testing the modules (A6),
• Placing the modules into a binary repository (A7),
• Package modification (A8),
• Testing problem-solving schemes with the package modules (A9),
• Verification of tests results (A10),
• Delivery of the package modules (A11),
• Deployment of the package modules (A12),
• Launch and shutdown of external systems for CIDD (A13).

These results show a significant decrease in the time spent by the developer in the
first case with the Orlando Tools use. The stages of the module build, testing the
module, placing the module into a repository, testing schemes with the module, veri-
fication of tests results, module delivery, and module deployment are performed in
Orlando Tools automatically without the direct participation of the developer. Largely,
this is due to the carrying out the configuring of the CIDD process.

The time decrease in the first case is because of the exclusion of the overheads. In
the second case, such overheads are associated with the launch and shutdown of

0 10 20 30 40 50

Without OT

OT

Hours
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

Fig. 4. Continuous integration runtime
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external systems for CIDD, and the conversion or transfer of data between them. In the
first case, the developer spent time on different stages of developing and using the
package.

Results for the second case were obtained on the base of the average time of
developer actions evaluated by developers of the similar packages represented in [26,
29]. The developers took into account both the development and integration of these
packages. They made about 30–40 module modifications a week.

Based on the experience in modular programming, the developers evaluate the
increase of the software operation predictability through the preliminary detecting and
eliminating errors about 35–40%. In addition, they highlight decreasing the error
correction cost about 50–60%.

In many cases, the average time spent for one module modification significantly
exceeds the computation time (Fig. 5). This is a common situation for the subject
domain of the package. Thus, reducing the experiment preparation time through CIDD
is extremely relevant.

We provide a comparative analysis of the main capabilities of GitLab and the
developed prototype the CIDD system of Orlando Tools (Table 3). It shows the
opportunity of applying the new additional key possibilities of the proposed prototype
in developing distributed applied software packages. These possibilities are especially
important when the collaboration is implemented within integrating different packages
through the computational models, calculated data, and computations management
transferring.

Module modification within CIDD Solving the problems on heterogeneous resource 

Fig. 5. Average continuous integration runtime for the modification of one module via the
problem-solving time for t2 on the heterogeneous resources
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6 Conclusions

We propose a new approach to ensuring CIDD for modules of distributed applied
software packages that developed and used with the help of Orlando Tools for the
special class of scientific applications. We develop a new subject-oriented subsystem
that implements CIDD. In contrast to the well-known tools of similar objective, it
provides both the traditional functions (software version control, automation of their
assembly and testing, etc.) and new automated functions, such as:

• Unifying module assembly processes both on the dedicated servers and on the
developer machines through using the specialized virtual machines,

• Synthesizing test problem-solving schemes on conceptual models,
• Testing problem-solving schemes on heterogeneous resources,
• Integration of CIDD processes into the unified technological sequence,
• Applying CIDD within the collaborative development and application.

Application of the developed prototype to solve real problems demonstrates the
following advantages:

• Reducing experiment preparation time within the collaborative development and
use of packages,

• Increasing the predictability of a software package operation in heterogeneous
resources through the preliminary detecting and eliminating errors,

• Decreasing the error correction cost.

The future work is related to the CIDD extension. We plan to implement methods
and tools for predicting modules’ execution times on heterogeneous resources. We will
use new methods and tools to allocate resources more efficiently. We will develop the
subject-oriented environment for solving large spectrum problems of decision-making
for supporting the energy resilience adapted for developers with different affiliations
and locations. Packages for problem-solving will be integrated within a framework of
the environment using computational models and data transferring management.

Table 3. Results of the comparative analysis of possibilities

Possibility GitLab Orlando
Tools

Applying CIDD within the collaborative development of modules + +
Automation of modules CIDD + +
Manual configuring of modules CIDD for heterogeneous resources + +
Automated configuring modules CIDD for heterogeneous resources − +
Applying CIDD within the collaborative development of problem-
solving schemes in packages

− +

Automation of CIDD of problem-solving schemes in packages − +
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Abstract. Hand in hand, computer simulations and High Performance
Computing are catalyzing advances in experimental and theoretical
fusion physics and the design and construction of new confinement
devices that are spearheading the quest for alternative energy sources.
This paper presents the Biot-Savart Solver for Computing and Tracing
Magnetic Field Lines (BS-SOLCTRA), a field line tracing code devel-
oped during the first Stellarator of Costa Rica (SCR-1) campaign. We
present the process towards turning BS-SOLCTRA into a full parallel
simulation framework for stellarator devices. Message passing, shared-
memory programming, and vectorization form the underlying parallel
infrastructure and provide scalable execution. The implemented paral-
lel simulator led to a 1, 550X speedup when compared to the original
sequential version. We also present the new powerful scientific visualiza-
tion capabilities added to the BS-SOLCTRA framework.

Keywords: Plasma fusion · Simulation · High Performance
Computing · Parallelism · Stellarator · Message Passing Interface
(MPI) · Open Multi-processing (OpenMP) · Vectorization

1 Introduction

Nuclear fusion has become a very relevant topic in scientific research worldwide.
This relevance comes out of the quest for alternative energy sources that is
driving many initiatives to find a solution to the emerging energetic crisis, as
the world population rapidly increases. Fusion represents an attractive idea for
obtaining energy as it exploits the type of phenomenon that fuels the Sun, that
is, energy gain through the fusion reaction of hydrogen or hydrogen isotope
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particles, which gives rise to faster particles capable of enabling further fusion.
It is easy to see why the idea of fusion became relevant considering the high
abundance of hydrogen and hydrogen related isotopes present on this planet.

Despite representing a striking idea, putting fusion to action in a controlled
manner is a different story. There are many challenging issues all over the fusion
field. These challenges are more related to the engineering part of fusion rather
than to the physics involved. To date, the fusion scientific community has opted
for the development of two kind of controlled thermo nuclear fusion devices:
tokamaks and stellarators [5]. Simulations are of great importance as these allow
analysis of how well a particular magnetic structure (among many other impor-
tant issues) could enhance fusion parameters safeguarding the cost-benefit ratio
of the device operation.

Advances in experimental and phenomenological plasma physics are being
catalyzed by computer simulations and the growth of High Performance Com-
puting (HPC). Understanding fusion and plasma physics is one of the major
challenges in the search for clean and renewable energy sources. The use of
supercomputers in the design, construction, and validation of new confinement
devices like stellarators and tokamaks has become ubiquitous thanks to the abil-
ity to simulate complex plasma phenomena with increasing detail.

1.1 Plasma Confinement in Stellarator Devices

Plasma confinement in stellarator devices is a result of a helicoidal magnetic field
that is composed of toroidal and poloidal magnetic fields. This combination of
magnetic fields is used because there are drifts that would lead to a complete loss
of charged particles if a pure toroidal magnetic field was used [13]. Helicoidal
magnetic fields generate force lines that act as tracks that charged particles
follow freely around the device. This force lines are under constant pressure as
long as the magnetic field is sustained.

As magnetic force lines are projected into a perpendicular toroidal plane,
irrational closed surfaces named magnetic flux surface are created. They are
called irrational surfaces because each force line does not pass at the same point
that it started. In fact, many force lines compose the cross-section of the magnetic
flux surface, which is nested to a characteristic line force that converges in the
same point at all flux surfaces called magnetic axis.

Being able to determine magnetic flux surfaces and other physical parameters
of a plasma confinement device is crucial to verify whether an specific stellarator
design would actually confine plasma.
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Fig. 1. SCR-1 stellarator

1.2 SCR-1

The Stellarator of Costa Rica 1 (SCR-1) started operations on 2016 and is the
first modular stellarator in Latin America [11,12]. The main characteristics of
this device, shown in Fig. 1, are: 2 field periods, mayor radius of 247.7 mm and
an aspect ratio of 6.2. Its magnetic field is created by twelve modular coils and
an input current of 4350 A which produce an average magnetic field strength
of 41.33 mT. The SCR-1 is equipped with an electron cyclotron heating system
(ECRH) whose maximum input power is 5 kW and heats at the second harmonic
with microwaves at 2.45 GHz. The SCR-1 construction lasted for six years and
required an investment of $500, 000. With this achievement, Costa Rica became
part of the fusion research community in stellarators, made up of the United
States, Australia, Japan, Germany and Spain. Currently, the SCR-1 stellarator
is in an experimental campaign where plasma diagnostics are being implemented
to characterize the real conditions of the plasma and to optimize plasma heating
to obtain higher electron density and temperature.

The goal of this paper is to present a new plasma confinement simulation
code, BS-SOLCTRA, and describe the first steps in the process of turning it into
a full-scale, parallel simulation framework for stellarator devices with modular
coil systems. BS-SOLCTRA is a field line tracing code that simulates a 3D
vacuum magnetic field using Biot-Savart’s law and a simplified model of the
device coils. It also provides input for scientific visualizations like the magnetic
flux surfaces. This simulation code was specially developed for the first stellarator
of Costa Rica (SCR-1). The paper is organized as follows:

– The basic computing model used in BS-SOLCTRA and the functionality
provided by the code are presented in Sect. 2.

– An analysis of sequential performance and the parallelization process to
improve BS-SOLCTRA is shown in Sect. 3.

– An overview of how the results of BS-SOLCTRA are used to generate scien-
tific visualizations is given in Sect. 4.
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2 Biot-Savart Solver for Computing and Tracing
Magnetic Field Lines

As part of the design and verification process for the SCR-1, the Biot-Savart
Solver for Computing and Tracing Magnetic Field Lines (BS-SOLCTRA) was
created. This C++ code is based on the field line tracing technique and it simu-
lates a 3D vacuum magnetic field using Biot-Savart’s Law. Through this simula-
tor, the user is able to determine whether or not plasma particle confinement is
being achieved under an specific coil configuration and further plasma phenom-
ena can be inferred from simulation results.

2.1 Simulation and Modeling

BS-SOLCTRA computes particle trajectories based on the influence of the mag-
netic field created by the modular coils present in the SCR-1 device. For a set of
input particle positions, their movement is calculated in simulation steps, using
a configurable amount of steps and step size. For each particle, every step is cal-
culated sequentially, until the entirety of the steps have been completed or until
a divergence criterion is fulfilled. The simulator finishes when particles complete
their step count or all particles diverge.

Fig. 2. BS-SOLCTRA simulator

As Fig. 2 shows, in each simulation step the code has the task of updating
the position of each particle. This is done by computing the new location based
solely on the effects of the magnetic field, created by the set of modular coils, over
each particle. Particle interactions and further physical phenomena derived from
said behavior is not taken into account in BS-SOLCTRA. With this in mind,
each particle and their trajectories are totally independent from each other.

Simulation requires a set of input particle positions which are read from
a file as (x, y, z) initial conditions. Next-steps computation is done by using a
simplified model of the SCR-1 modular coils to determine the magnetic field
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they create and the influence they have over each input particle. Calculating the
magnetic field produced by known currents in coils is a well-known process in
plasma physics. BS-SOLCTRA is based on a technique that approximates each
coil as a sequence of straight line segments, each connected end-to-end to form
a closed polygon in space [6]. Coil data is loaded into BS-SOLCTRA from files.
Each SCR-1 coil is represented as a set of (x, y, z) points.

Fig. 3. Filamentary segment contribution to magnetic field

Figure 3 shows a diagram of a single filamentary segment and important
measures to model the influence it has on an observation point x. The segment
starts at position xi and finishes at xf . With this in mind, the length of the
segment is defined as L = |xf − xi|, the unit vector along the segment is ê =
(xf − xi)/L. Ri(f ) = x − xi(f) are the vectors from segment end points to the
observation point x and Ri(f) = |x − xi(f)|. The magnetic field is approximated
using Eq. 1 [6] and contributions from each segment are then added numerically
to obtain the total magnetic field over an observation point.

B =
μ0 · I
4π

ê×Ri
2L(Ri + Rf )

RiRf

1
(Ri + Rf )2 − L2

(1)

A Runge-Kutta fourth order (RK4) algorithm is used to determine the tra-
jectory of each particle under the explained model for the magnetic field. Coil
information for the simulation is loaded once during the whole execution. A loop
is executed for each particle to get the RK4 calculation like shown in Algorithm1.

Algorithm 1. Fourth Order Runge-Kutta Algorithm
1: procedure RK4(start point, num steps, coils data)
2: P0 ← start point
3: for i ← 0, num steps do
4: K1 ← MAGNETIC FIELD(P0, coils data)
5: P1 ← K1

2 + P0

6: K2 ← MAGNETIC FIELD(P1, coils data)
7: P2 ← K2

2 + P0

8: K3 ← MAGNETIC FIELD(P2, coils data)
9: P3 ← K3

2 + P0

10: K4 ← MAGNETIC FIELD(P3, coils data)

11: P0 ← P0 + K1+2∗K2+2∗K3+K4
6

12: WRITE TO FILE(P0)
13: end for
14: end procedure
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A divergence criterion is checked every timestep for each particle. Basically, if
the new position of the particle is anywhere outside or on the border of the SCR-
1 dimensions, the simulation for that particle is finished as the model given in
Eq. 1 diverges and behavior is no longer scientifically sound. As a consequence of
the Runge-Kutta algorithm, the used magnetic field model, and the number of
computations per particle and per timestep that most be solved, BS-SOLCTRA
is a CPU-bound application. However, because of the independent nature of the
particle trajectories, this code is a great candidate for parallelization on HPC
architectures.

3 Accelerating BS-SOLCTRA

The parallelization process and the measurements presented in this section were
carried out using Intel’s second generation of Xeon Phi processors, the Knights
Landing architecture (KNL). Specifically, the KNL model used was the 7210
with 64 cores @ 1.3 GHz and hyper-threading capabilities. Knights Landing is a
Many-Integrated Core (MIC) architecture standalone processor in which cores
are integrated as couples into structures named tiles. Each tile has a shared
1 MB L2 cache and each core is connected to two vector processing units. This
last feature makes vectorization fundamental in exploiting this platform’s com-
putational power.

KNL architecture introduced the 512-bit Advanced Vector Extensions (AVX-
512). These 512-bit vector instructions provide SIMD support and allow
up to eight double-precision multiply-add operations or sixteen single-precision
multiply-add operations. Most AVX-512 programming can be done on high-
level C/C++ languages through vectorizing compilers and pragmas to guide
vectorization. In addition to vectorization support, the traditional hybrid
MPI+OpenMP programming is also useful in getting the most out of a KNL
cluster.

The following subsections detail the process we followed in order to accelerate
BS-SOLCTRA and reduce the time-to-results for the physics team in this plasma
fusion project. We used an incremental approach to building a full multinode
parallel version of BS-SOLCTRA. All versions of the code were compiled using
gcc 7.2.0. Different compilation flags were used during the different stages of
parallelization. These flags will be specified in every subsection. All experiments
have been carried out using a workload of 1024 particles, 500 k simulation steps
and a step size of 0.001 m. Each experimental setup was executed 20 times and
the arithmetic mean is used to report back results.

3.1 Sequential Profiling

The first step towards transforming BS-SOLCTRA into a parallel simulation
framework was locating the main performance bottlenecks in the code. To do
so, a profiling study of the code was done using the GNU gprof performance
analysis tool, specifically gprof 2.27-34.base.el7. GNU gprof is able to measure
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code that has been instrumented by the compiler. This is done by using the -pg
flag during the compilation/linking phase.

Sequential execution of BS-SOLCTRA for the input problem size of 1024
particles and 500 k simulation steps took 119.64 h. Profiling results reflected on
what was already expected from this code. The amount of time spent in the
magnetic field computation from Eq. 1 hoards up the simulation as the number
of particles and the simulation steps increases. According to gprof results, the
magnetic field computation function represents 99.69% of the execution time in
this simulation. All other functions in BS-SOLCTRA are negligible in terms of
computing time.

Computing the magnetic field for an observation point using the model
explained in Sect. 2.1 is computationally intensive. For a given observation point,
the influence of a coil is calculated as the sum of magnetic contributions for each
filamentary segment that makes up a coil. For each pair of vectors Ri and Rf

that represent the distance from the end-points of a segment of the coil to the
observation point, Eq. 1 is used. Furthermore, this needs to be done for all of the
twelve coils in the SCR-1. Adding to this, each RK4 iteration calls the magnetic
field function four times and RK4 execution depends on the amount of simula-
tion steps. Based on this outlook, the magnetic field function was the first hot
spot we needed to address in terms of parallelism.

3.2 Vectorization

Announced as one of KNL’s key features, the AVX512 vector operations are
crucial to the performance of most of the applications that run on the Knights
Landing Architecture [8]. Building on this hardware support, vectorization was
the first approach we used to accelerate BS-SOLCTRA. Specifically, we used it
to improve the performance of the magnetic field function which is the greatest
time consumer in this simulation.

In terms of code, the magnetic field function computes Eq. 1 in phases. As
Algorithm 2 shows, for each coil and for all of the x, y, z points that make
up a coil (loops in lines 3 and 4), the Ri and Rf vectors for each filamentary
segment to the observation point are calculated (loop in line 7). This is done
for the three x, y, z components of the vectors. These operations are completely
independent so vectorization can be used to compute the vectors simultaneously.
Furthermore, computing the actual magnetic field x, y, z components can also
be done concurrently as well as the intermediate operations (loop starting in line
12).

Vectorization currently relies on two aspects. First, modern compilers are able
to identify loops that can be vectorized. Second, the programmer can explicitly
point out vectorizable portions of code by using SIMD language directives. As a
first step, we let the compiler figure out what could be vectorized, so a set of com-
pilation flags to enable AVX512 vector and KNL architecture-specific instruc-
tions was used (-ffast-math -march=knl -mavx512f -mavx512pf -mavx512er -
mavx512cd). We added the -fopt-info-vec-all flag to determine whether the com-
piler had automatically managed to vectorize the magnetic field algorithm. Even
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Algorithm 2. Magnetic Field Function
1: procedure magnetic field(obs point, coils data) � Magnetic Field at obs point

2: multiplier ← μ∗I
4π

3: for i = 0 to TOTAL OF COILS do
4: for j = 0 to TOTAL POINTS COIL do
5: final ← End of Chunk � Total coil points divided into chunks
6: #pragma omp simd
7: for jj = j to final do
8: Rmi[i].{x, y, z}[jj] ← obs point.{x, y, z} − coils data.{x, y, z}[jj]
9: Rmf [i].{x, y, z}[jj] ← obs point.{x, y, z} − coils data.{x, y, z}[jj + 1]
10: end for
11: #pragma omp simd reduction(Bx, By, Bz)
12: for jj = j to final do
13: norm Rmi ← |Rmi|
14: norm Rmf ← |Rmf |
15: U.{x, y, z} = multiplier ∗ ê.{x, y, z} � Left term of cross product

16: C =
2∗L∗(norm Rmi+norm Rmf)

norm Rmi∗norm Rmf ∗ 1
(norm Rmi+norm Rmf)2−L2

17: V.{x, y, z} = Rmi[i].{x, y, z}[jj] ∗ C � Right term of cross product
18: Bx = Bx + ((U.y ∗ V.z) − (U.z ∗ V.y)) � Cross product component x
19: By = By − ((U.x ∗ V.z) − (U.z ∗ V.x)) � Cross product component y
20: Bz = Bz + ((U.x ∗ V.y) − (U.y ∗ V.x)) � Cross product component z
21: end for
22: end for
23: end for
24: end procedure

though the compiler managed to vectorize some other minor loops in the code,
it reported issues due to unaligned access on the magnetic field algorithm loops.
To solve this, we re-factored the involved memory allocations to use GNU ’s
aligned alloc function. However, for C/C++ arrays, aligning the data is not
enough and an assume aligned declaration must be used before the loops of
interest. In the case of the magnetic field function, this data alignment was
applied to the Rmi and Rmf vectors.

As a way to enforce vectorization and ensure the compiler that no further
dependencies existed between data in the loops in Algorithm 2, OpenMP SIMD
directives were added. SIMD provides data-parallelism so that a single instruc-
tion can be applied to multiple data items simultaneously [9]. The OpenMP
SIMD construct was applied to loops in lines 7 and 12. By performing all of
these changes, execution time was reduced from 119.64 h, as reported in the
sequential section, to 26,53 h (95,533 s) amounting to a 4.5× gain in perfor-
mance. Intel VTune Amplifier 2019 was used to profile this version of the code
and a 97% VPU utilization was reported. This proves that vectorization was suc-
cessfully added to BS-SOLCTRA and that it is a key parallelization technique
to exploit the hardware resources of the KNL architecture. The next sections
will use the vectorized time result as the performance baseline rather than the
pure sequential version.

3.3 Shared-Memory

The next stage in this parellelization effort was taking advantage of the inde-
pendence of each particle trajectory. As stated in Sect. 2.1, the fourth order
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Runge-Kutta algorithm is applied to each of the input particles in the simu-
lation. Each RK4 execution does not depend on the results of other particles
so this was a clear candidate for OpenMP parallelization. A simple for loop
was being executed to iterate over each input particle and within that loop, the
RK4 function was called. Algorithm 3 shows the basic execution flow for the
simulation. As stated, each iteration of the loop is completely independent so
OpenMP threads can be used to concurrently compute various particle trajecto-
ries. A simple OpenMP parallel for pragma was used to distribute work among
shared-memory threads. The -fopenmp flag was added to the compiler set of flags,
building on the vectorization ones used before. In terms of OpenMP environment
variables to control thread behavior, we set the scheduling policy to dynamic
(OMP SCHEDULE=dynamic), we specified that each OpenMP thread should run on
a KNL core (OMP PLACES=cores) and that they should be scattered across all
cores(OMP PROC BIND=spread). This set up was chosen after trying out different
combinations of environment variables and measuring their performance.

Algorithm 3. Run Particles Function
1: procedure runParticles(coils data, particles data, num particles, num steps)
2: cartesian A = 0, 0, 0
3: #pragma omp parallel for private(A) schedule(runtime)
4: for i ← 0, num particles do
5: A.x = particles data[i]
6: A.y = particles data[i]
7: A.z = particles data[i]
8: RK4(A, num steps, coils data)
9: end for
10: end procedure

We performed classic strong scaling experiments to measure the impact of
adding threads to the simulation. We measured execution time for the experi-
mental setup explained in the beginning of this section. The number of threads
was varied from 1 and up to the maximum number of threads the KNL archi-
tecture supports, 256 threads. Figure 4a shows speedup results obtained under
this strong scaling single-node scheme. Each point is labeled with the number of
threads used for each experiment.

As expected because of the independent nature of the particle trajecto-
ries, adding more threads does increase performance. The maximum speedup
obtained was 59.8× for 128 threads. However, speedup gains seem to saturate
after 64 threads and efficiency diminishes significantly after this point, as Fig. 4b
shows. Because of this behavior, using 64 threads per KNL node (1 thread per
physical core due to the selected thread affinity) seems to be the best configu-
ration to maximize speedup and resource utilization for this application. This
shows that the KNL is able to reach maximum performance with one thread per
core [8] in BS-SOLCTRA, thanks to the efficient VPU usage and an appropiate
software mapping to the underlying resources.



42 D. Jiménez et al.

(a) OpenMP Speedup (b) OpenMP Efficiency

Fig. 4. Strong scaling results for OpenMP BS-SOLCTRA version

Fig. 5. BS-SOLCTRA parallel implementation and execution flow

3.4 Distributed-Memory

Finally and again building on the independence among particle computations,
we added a third level of parallelism through the Message Passing Interface
(MPI). In doing so, multiple KNL nodes can be used to accelerate the simulation.
We used the MPICH version 3.2.1 implementation of the MPI standard as
it was the one available on the execution platform. Before reaching the loop
shown in Algorithm 3, the total amount of particle positions is divided among
variable amounts of MPI ranks. We relied on simple MPI BCAST operations to
communicate basic simulation parameters like the number of simulation steps,
step sizes and the amount of particles to simulate. The body of particle positions
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(a) MPI Execution Time (b) MPI Speedup

Fig. 6. Strong scaling results for MPI+X version

was divided as evenly as possible and distributed through MPI Scatterv function
calls. Each MPI rank is assigned a sub-group of particles to compute and report
as Fig. 5 shows.

The final parallel version of BS-SOLCTRA follows the execution flow shown
in Fig. 5. Particles are distributed among MPI ranks, each rank then uses a con-
figurable amount of OpenMP threads to concurrently compute the trajectories
of its corresponding particles. Each Runge-Kutta step relies on the vectorized
magnetic field function shown in Algorithm 2. At the end, each simulated particle
produces a trajectory file that can be used to study further physical phenomena.

We performed strong and weak scaling experiments to determine whether this
parallel implementation betters simulation performance or not. For strong scal-
ing, we varied the number of MPI ranks from 1 and up to 8. Each rank occupies
a whole KNL node and spawns 64 OpenMP threads. This MPI ranks/OpenMP
threads ratio configuration was chosen after measuring performance of different
scenarios and determining which one provided the best performance-efficiency
relation.

Figure 6 shows experimental results for the specified configurations under
strong scaling (fixed problem size of 1024 particles). Figure 6a displays how
increasing the amount of KNL nodes impacts the execution time of the sim-
ulation. Considerable execution time reductions are achieved all the way up to
4 nodes after which performance gains seem to be not as steep as before. This
behavior is reflected in Fig. 6b where quasilinear speedup behavior is achieved
for the different configurations. This means that adding more KNL nodes does
indeed increases performance whilst maintaining a relatively acceptable usage of
resources. However, we presume that the observed sub-linear speedup is a result
of load imbalance in the simulation. As explained in Sect. 2, certain particles
diverge during the simulation before completing all of the simulation steps. This
is, some particle trajectories are shorter than others leading to some KNL cores
doing much more work than others, thus reducing the total amount of resource
utilization. However, at this point, execution time for BS-SOLCTRA and the
1,024 particle problem has been reduced from 119.64 h, for the pure sequential
version, to just 4.58 min with the 8 node MPI+X version of the simulator.
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Under weak scaling, we set the number of particles per rank to 128. This is,
we experimented with 1 rank (128 particles), 2 ranks (256 particles), 4 ranks (512
particles), 6 ranks (768 particles) and 8 ranks (1,024 particles) to see how well
the application scales. Figure 7 shows experimental results for weak scaling. In
terms of execution time, Fig. 7a shows that BS-SOLCTRA indeed is able to scale
as the number of nodes and the problem size increases. Execution time remains
almost constant so that a greater problem could be solved if more hardware
resources were available. As for the speedup shown in Fig. 7 we see a similar
behavior to that of the strong scaling analysis. Again, sub-linear speedup gains
are achieved possibly due to the load imbalance derived from the nature of the
simulation. This result is rather important because it would be possible to scale
the problem greatly and maintain a small execution time if enough hardware
resources were available.

(a) MPI Execution Time (b) MPI Speedup

Fig. 7. Weak scaling results for MPI+X version

Table 1. Speedup obtained after different parallelization strategies used

Program Duration (s) Speedup

C++ Sequential 430, 730.00 1X

Vectorized version 95, 533.30 4.51X

OpenMP (64 Threads) + Vectorized 1, 671.54 57.15X

MPI+X (8 nodes) 274.52 6.01X

Total – ≈1,550 X

In summary, through vectorization, threading and distributed processes, exe-
cution time for BS-SOLCTRA was reduced by considerable factors. Further-
more, for physicists, the possibility to simulate greater bodies of particles and
verify their confinement is now a reality thanks to the parallel nature of the
BS-SOLCTRA framework. Table 1 sums up the success of the implemented par-
allelization strategies used in BS-SOLCTRA. A total speedup of approximately
1, 550X was achieved through careful vectorization, threading, and load distri-
bution among hardware nodes.
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4 Scientific Visualization

Numerical methods allow researchers to test, simulate, and study complex
plasma phenomena. As part of the process of turning BS-SOLCTRA into a
simulation framework for stellarator devices, scientific visualization capabilities
are being added to it. Specifically, as a result of the Runge-Kutta method (RK4)
used in this simulator, raw data is obtained which requires some processing so
that it can be used as input for the generation of visualizations. These visualiza-
tions allow physicists to identify and verify various machine characteristics like
coil configurations or magnetic flux surfaces, which are essential to the operation
of stellarator devices.

The visualization software selected as the main tool was Paraview 5.6.0 [1]
because of its ease of use and the variety of filters that it offers. Additionally, it
adapts to the needs of the visualizations required for this research project. Also,
the amount of data that needs to be handled for this problem is a manageable
volume for the software.

Output data from the BS-SOLCTRA simulation was converted into a Par-
aview compliant format, usually structured as a table of 500,000 rows with 3
or 4 columns. Three columns are used to represent each point on the x, y, z
dimensions and an optional fourth column may represent the magnitude of the
magnetic field (|B|) that affects a point, as influenced by the coil configuration
at execution time. Once the data is entered into the visualization software, filter
layers are applied to give a context to the data. In our case, dataset grouping
filters are applied to unify the different data sources and a final representation
of the data as a table is obtained through the Table to Points filter.

One of the key aspects that researchers need to understand through simu-
lation is how the magnetic field is shaped throughout the vacuum chamber of
an stellarator device. To do so, they normally rely on the visualization of mag-
netic flux surfaces. These surfaces are produced by the magnetic confinement but
they are not visible so diagnostics are added to Stellarators to approximate them.
Because of this, a representation called a Poincaré plot can be created with the
results of computer simulations to validate and visualize magnetic flux surfaces.
Poincaré plots are obtained from planes extracted from a segment of the toroid.
They are called poloidal planes, which intersect the confinement chamber of the
stellarator in the form of a toroid and are perpendicular to the magnetic axis.
A plot consists of several concentric rings, each composed of a finite number of
points. To produce these rings, the intersections of a magnetic field line with
a poloidal plane are calculated at an arbitrary angle. Figure 8a shows some of
the resulting Poincaré plots created through BS-SOLCTRA simulations and the
added Paraview tool. Another important aspect for physicists is the creation of
animations the enable the analysis of plasma behavior under confinement con-
ditions at a given time. Results of BS-SOLCTRA simulations provide sufficient
data to recreate a short time period of the plasma particle trajectories present
in the vacuum chamber. For the construction of these particle trajectories ani-
mations, collecting a certain amount of particles and their simulation steps is
necessary to animate their trajectories. A 8,192 particle simulation is used as
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(a) BS-SOLCTRA Poincaré plot (b) BS-SOLCTRA animation with 8,192
simulated particles

Fig. 8. Scientific visualizations constructed for BS-SOLCTRA

the basis of the visualization. Each particle trajectory file used is composed by
500,000 simulation steps where each step is an x, y, z position in the space of the
simulation.

Subsequently, a data unification procedure, which consists of the union of
instants of the simulation, is needed to generate the input data for the visualiza-
tion software. The process consists of iterating over all particle trajectory files
and extracting the points belonging to the same instant of the simulation. For
all particle trajectory files, the same line or instant is extracted and written into
a new file that represents the instant N , where N is the line number that was
taken from the files. As Fig. 8b shows, once all the files were generated they were
used as input for the visualization software and the animations of the particles
are displayed with their respective confinement trajectory.

5 Related Work

Simulators for plasma fusion physics are not new to the scientific computing
community. Several efforts have been carried out to advance research in mag-
netic confinement devices. A previous attempt to accelerate BS-SOLCTRA was
done using Intel’s AVX-512 vectorization, threading and MPI [3]. Several opti-
mizations were applied to the core code (AoS to SoA transformations and strip-
mining for example). However, because of design choices, parallelism was limited
by the number of coils in the SCR-1 which heavily impaired performance gains.
Furthermore, Intel’s compiler technology was used so the application was also
poorly portable.

A similar project to BS-SOLCTRA was developed for the Wendelstein 7-
X(W7-X) modular stellarator [2]. A web-service based field line tracer was cre-
ated for the W7-X that enabled scientists to produce Poincaré plots, construct
magnetic coordinates and determine the spectra of error fields. However, this
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simulator was not optimized for HPC architectures as its focus was on providing
the web-service to scientists.

One of the most relevant codes for confinement studies of plasma phenom-
ena is the Variational Moments Equilibrium Code (VMEC)[7]. This code enables
scientists to simulate the equilibrium problem found in the physics of magnetic
fusion devices through magnetohydrodynamics (MHD). It allows the full 3D
nature of stellarators to be studied using a steepest descent method that mini-
mizes the MHD energy functional. VMEC has been parallelized for distributed-
shared memory machines using the Power Fortran Analyzer and a message pass-
ing version obtained through shmem[10].

Many other codes have been developed for studying specific phenomena of
plasma physics or confinement in Tokamak devices. CORSICA [4], GTS [14],
FOCUS [15] are some of the simulation tools in the fusion plasma ecosystem.
However, many of these codes are specific to a machine topology or research
group and access to these simulators is usually restricted to users of certain
clusters or supercomputers.

6 Final Remarks

This paper presented the first steps in turning the BS-SOLCTRA simulator into
a full scale parallel simulation framework for stellarator devices. Vectorization
through AVX-512, shared-memory threading through OpenMP and distributed-
memory parallelism through MPI were the key techniques used to increase
simulation performance. All these optimizations were applied using GNU’s gcc
compiler to ensure portability. A final speedup of approximately 1, 550X was
achieved thanks to the parallel implementation. Furthermore, BS-SOLCTRA is
capable of scaling successfully and enabling physicists to perform bigger experi-
ments while maintaining a satisfactory execution time. Additionally, new visual-
ization capabilities have been added that help scientists understand and charac-
terize some of the complex phenomena present in magnetic plasma confinement.

Future work for this framework includes increasing software modularity so
that different stellarator configurations and topologies can be used as input.
Also, new tools are being developed to provide physicists with further under-
standing of plasma phenomena like the rotational transform, magnetic profiles,
magnetic well, and magnetic field error estimation. In terms of visualization,
parallel and in-situ techniques will be explored to accelerate this process. This
work is the cornerstone for a simulation framework that will allow scientists to
design, explore, and verify new plasma confinement devices in a high performant
computing manner.
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Abstract. Spiking Neural Network (SSN) simulators based on clusters
of FPGA-based System-on-Chip (SoC) involve the transmission of large
amounts of data (from hundreds of MB to tens of GB per second) from
and to a data host, usually a PC or a server. TECBrain is an SNN sim-
ulator which currently uses Ethernet for transmitting results from its
simulations, which can potentially take hours if the effective connection
speed is around 100Mbps. This paper proposes data transfer techniques
that optimize data transmissions by grouping data into packages mak-
ing the most of the payload size and the use of thread-level parallelism,
trying to minimize the impact of multiple clients transmitting at the
same time. The proposed method achieves its highest throughput when
inserting simulation results directly into a No-SQL database.

Using the proposed optimization techniques over an Ethernet con-
nection, the minimum overhead reached is 2.93% (out of the theoreti-
cal 2.47%) for five nodes sending data simultaneously from C++, with
speeds up to 95 Mbps on a network at 100 Mbps. Besides, the maximum
database insertion speed reached is 32.5 MB/s, using large packages and
parallelism, which is 26% of the bandwidth of the connection link at
1 Gbps.

Keywords: High perfomance computing · No-SQL · High-speed
networks · Embedded software

1 Introduction

The typical approach to create supercomputers is by clustering servers [18], try-
ing to exploit modern processors in parallel, with Instruction Set Architectures
(ISA) that include instructions for complex data manipulation and computa-
tion. However, there are alternative techniques for particular niche application-
specific supercomputers, which use Field-programmable Gate Arrays (FPGA)
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[3], heterogeneous Systems-on-Chips and Graphics Unit Processors (GPU) [10]
as cluster nodes.

Clusters based on GPUs and FPGAs are becoming more popular in High-
Performance Computing (HPC) as they are more efficient in terms of computa-
tions per unit of power (given in GFLOPs/Watt) than standard server clusters [7]
[9]. And in terms of computation performance per unit of power, FPGAs take the
lead over GPU-based servers. Recent comparisons point that, for instance, while
NVidia Jetson boards have a typical performance of around 50 GFLOPs/watt
[14] for a particular application, a Xilinx Kintex-7 FPGA can perform under the
same specifications at 70 GFLOPs/watt [9].

The intrinsic parallelism capability and logic flexibility of FGPAs arguably
allow for the more efficient tackling of complex problems involving large amounts
of data [20]. This would lead to better results against traditional CPU and
GPU approaches, when developing application-specific clusters. Furthermore,
the reconfigurability of FPGAs offers the possibility of having, for instance, an
heterogeneous SoC FPGA based board in which the main processor is coupled
with a flexible accelerator residing on the fabric; such accelerator may be recon-
figured on-the-fly depending on the specific requirements of the models being
executed, adapting it to its optimal conditions.

These considerations are at the base of TECBrain, a biologically accurate
neural network hardware accelerated simulator developed by Instituto Tecno-
logico de Costa Rica (see [2]). Using FPGA based heterogeneous boards as clus-
ter node technology, makes the simulator capable of running multiple models
by simply reconfiguring the hardware accelerators that best fits the simulation
model running on the SoC cores. And as the simulated network grows in size, it
can be partitioned among several similar nodes. One major bottleneck, nonethe-
less, quickly surfaces as simulation results need to be taken from the cluster and
sent for storage and analysis in another platform with visualization capabilities
(typically a PC). In the case of TECBrain, an initial approach was storing the
simulation results into an SD card; this, of course, severely impacts efficiency as
a class 10 SD Card can achieve up to 10 MB/s in transmission speed, with the
added limitation in data size handling for larger simulations.

Now, considering that in the case of TECBrain it is possible to simulate
up to 8000 eHH neurons in a cluster composed of four Zedboards (see [2,21]),
and the voltage values are represented by Floating-Point numbers, each simula-
tion step consumes 31.25 kB according to [21]. For 10000 simulation steps, the
entire results file needs 2.98 GB of space. Additionally, the simulator is intended
to be available online, which means that the results have to be available to the
users through the Internet. Retrieving all results from a master node will take
some time and fragmenting the data for their visualization is laborious. After
discarding the storing data into an SD Card, TECBrain now uses 1 Gbps Eth-
ernet for communication with the data server, streaming each result as soon as
it is ready to be sent. However, the effective transmission speed is currently less
than 30% of the channel capacity, leading to high latency and the increase of
the total simulation time.
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Other SNN simulators have faced the same problem with transmission
through Ethernet, reporting bottlenecks when transmitting results. SpiNNaker,
for instance, a SNN simulator, which utilizes 864 ARM processors as computing
units embedded in several customized SoCs [8]. The stimulus data and results
are transferred through 100 Mbps Ethernet. The authors highlight that this con-
nection is the primary bottleneck in the system, which they propose solving by
using an FPGA-based Gigabit Ethernet bridge. Another case reported in [16]
for a radar application with multiple devices sending data simultaneously, uses a
1 Gbps Ethernet link, achieving a maximum transference speed of 500 Mbps by
means of an Ethernet controller implemented into an FPGA. They report a two
times gain in speed by moving the Ethernet control from the CPU to FPGA.

Another existing bottleneck TECBrain is the insertion time taken when writ-
ing results. The storage of results is based on MongoDB, which is a No-SQL
database. A Mongo database was initially selected for TECBrain because of
emerging popularity of No-SQL databases for remote data logging, due to their
reported higher capability for managing larger amounts of data [13]. Specifi-
cally, the superiority of No-SQL databases in Create, Read, Update, and Delete
(CRUD) operations are reported in [19], where after evaluating SQL against
No-SQL databases, results show that in terms of CRUD operations, insertion
times for MySQL (SQL) take 14.69 times more than in MongoDB (No-SQL).
Nonetheless, using MongoDB results in a restriction in the number of data writ-
ten per document (16 MB per document according to [15]). Consequently, the
current database scheme must be redesigned in order to be suitable for storing
a many data.

This paper proposes an optimized method for data transmission to a database
server for the storage of simulation data, and its subsequent retrieval for anal-
ysis and display via a web server. The method is founded on the evaluation of
network transmission speed, the total delivery time of result packages, latency
inside the server and communication degradation when the server receives data
from multiple master nodes simultaneously, incorporating as well the analysis
of database insertion time when there are single or multiple operations on the
database, gaining up to 3.24 times in results transmission and 1022.7 times in
database insertion time.

This document starts with Sect. 2, describing the current design used in the
project and also the considerations for improving it. Then, Sect. 3 describes the
two back-end frameworks considered for the project data server, emphasizing
on their features and libraries available for connecting to databases. Section 4
shows the results after evaluating each architecture by using different results
package sizes and a different number of clients transmitting results to the data
server, demonstrating the superiority of C++ over NodeJS for handling data
reception and the communication throughput in each experiment case. Section 5
presents a data schema proposal for expanding the storage capability by selecting
a proper data representation and using data pagination. Also, it shows the per-
formance of MongoDB while inserting data from a single and multiple threads,
leading to a proposal for maximizing the data insertion throughput. Finally,
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Sect. 6 summarizes the results obtained after studying the back-end technologies
and MongoDB data insertion.

2 Design Considerations

TECBrain currently implements several biologically accurate SNN models on
a cluster of Zedboards, with the main portion of the algorithms running on
the Zedboard’s Zynq Z7020 SoC cores (called the PS in Xilinx’s lingo), with
a DMA AXI-Stream interface to the SoC FPGA fabric, called the PL, from
Programmable Logic, in Xilinx’s lingo (see Fig. 1). Data is transferred to the
hardware accelerators in the fabric as required, avoiding unneeded extensive
memory transfers while the simulation is running (as explained in [1,2]). This
strategy reduces communication overhead during execution on the fabric. Each
Zedboard is interconnected through a 1 Gbps Ethernet switch using the TCP-IP
protocol, with the SoC cores in charge of the protocols for loading and retrieving
data from each node, and the whole cluster being managed using MPI. Using
such interconnection approach for the simulation process of course comes with
the inherent limitations of TCP-IP Ethernet for the final goal of TECBrain: real
brain time simulation of a sizable amount of cells (at least 100, implying time
steps in the order of 50µs to 1 ms depending on the use of white box or black
box neural cell models [2]), and fast simulations for SNN populations of 1000
and more. This situation, nonetheless, is not the main focus of this paper and is
to be handled elsewhere. Anyway, in the case of final results’ handling for display
and offline analysis, where such timing restrictions are not applicable, TCP-IP
Ethernet would still be the best I/O scheme for TECBrain for it flexibility and
ease of integration with existing database architectures.

Regarding results’ data handling, TECBrain currently uses a back-end frame-
work entirely based on NodeJS. Under this framework, the master node streams
each input/output datum as it is produced by the simulator, in order to avoid
local storage of data. This, under the current interconnect architecture, inter-
feres to top it all with simulation data exchange among the boards, subtracting
from the available bandwidth for the simulation itself. This results in longer sim-
ulation and transmission times than those expected, taking up to one minute in
a simulation with 1000 eHH neurons and 10000 steps, which involves 40 MB of
data. This was observed after finishing the simulation. The application still keeps
sending data even when the OLED showed that the simulation was completed.
Hence, as already mentioned, an alternative interconnect strategy is currently
being designed for the cluster, to improve data sharing bandwidth. But even
after this is carried out, the communication of the simulator with the server
for final data storage, display and analysis keeps being a challenge requiring a
transmission scheme with low latency.

It is also crucial to check the use of CRUD operations by the database in
order to avoid possible asynchronous bottlenecks while writing or retrieving
results. TECBrain currently writes the results by appending them to a array in
a single document in double precision floating-point format. This technique has
two major negative consequences: first, more CRUD transactions; and, second,
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Fig. 1. Current heterogenous SoC architecture to simulate SNN with eHH model. The
main portion of the algorithms runs on the Zynq Z7020 ARM-A9 cores, and the SoC
FPGA fabric executes the electrical synapses of each neuron.

wasted space because of the use of double precision floating-point representa-
tion. Therefore, an exploration aimed at minimizing the number of queries to
the database is also pertinent.

Nevertheless, the key issue for effectively joining database and network resides
in the server application. It must allow multiple connections with low resources
consumption. A potential communication bottleneck is the writing of results,
where the database middleware is supposed to introduce minimum overhead to
the streaming.

3 Server Back-End Architectures Under Study

There are two possible approaches for selecting the server back-end framework:
first, focusing on performance and basing it all on C/C++ language; and, second,
considering languages typically used for heavy load traffic, such as NodeJS.

Both C++ and NodeJS have libraries (called middlewares in the case of
NodeJS) which provide MongoDB connectivity. In case of C++, MongoDB
developers have MongoCXX for C++ [4], while Mongoose exists for NodeJS
[17]. In order to measure each architecture’s performance and their network
throughput, a particular scheme is set up, as outlined in Fig. 2, according to
the ultimate purposes of this work (all the measurements are referred to TCP
sockets, because of TCP’s reliability in error and flow control).

NodeJS is a Web server back-end framework that uses Javascript, with non-
blocking instead of thread-based execution, which should perform better at
handling network instructions [17]. Now, though Javascript execution is single-
threaded, it is also capable of managing events, making thus the most of multi-
core platforms. This feature allows for simultaneous file reading, database query-
ing and HTTP requests handling, without the need for explicit use of threading
structures in the code. This is possible because NodeJS can use the libuv library,
that focuses on asynchronous I/O and just-in-time execution [11]. The NodeJS
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Fig. 2. Current TECBrain architecture for communicating the simulator FPGA-based
nodes with the user website. The back-end is in charge of performing the archiving
of results and preparing the nodes for the simulation of a determined model. One of
the points to evaluate is whether to use NodeJS or C++ for implementing the nearer
modules to the nodes.

developers emphasize its enhanced networking capability, which according to
them is even better than alternatives such as PHP. However, being NodeJS is
interpreted, it is inherently inferior in performance than compiled language such
as C++ [6].

For this paper, throughput measurements were carried out based on the
back-end architecture presented in Fig. 3a. In the particular case of NodeJS, the
architecture has events linked to each client, which local variables that monitor
the last time (ti−1) and verify the buffer length (l) in order to calculate the
data transfer speed in bytes per nanosecond, avoiding thus the need to load
each computational event. Each result is appended to a results list which is then
written in a file with all results for offline analysis.

The C++ based server back-end behaves similarly to the NodeJS back-end.
The main difference relies on how clients are managed. For this particular case,
when a new client connects, a new thread (using the pthread library), is cre-
ated for data reception from the connected node. Inside the thread, there is a
blocking read function which is timed before and after its execution, using a
chrono high-resolution timer. Measurement includes the time when the system
is ready to read new data up until data is completely read. The Δt taken for
reading the incoming data is logged into an array.

All client nodes (running on a Zedboard), on the other hand, are written in
C++, single-threaded. Figures 3b shows the flow diagram of package handling
by the clients.

4 Network Performance of NodeJS and C++

IEEE 802.3 specifies the standard for defining the Ethernet frame size and its
binary assignment [12], illustrated in Fig. 4. The Ethernet frame has different
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Fig. 3. Basic scheme used for measuring network throughput. All the clients send
data to the server and they are based on C++ because of its compiled nature and
performance. The server, instead, is based on either NodeJS and C++, the candidates
for the back-end architecture.

control bytes, which makes its size variable depending on the connection max-
imum speed. Considering the best scenario (a frame of 1538 bytes), the mini-
mum overhead achievable is 2.47%, with 4.15% being the worst case as indicated
by [12].

Preamble
7 bytes

SFD
1 bytes

Dest/Src Addr
12 bytes

Length
2 bytes

802.2 Ctrl
3 bytes

Payload
M − 1500 bytes

FCS
4 bytes

Fig. 4. Ethernet package frame. The control uses between 29-38 bits and the payload
uses 1500 for transmitting data. Based on [12].

For measuring the network performance of each basic architecture, five client
nodes are run on a small C++ client program, which sends an adjustable number
of packages Np with Nf number of floats each.

For a complete analysis, the C++ clients were made to process packages
with sizes between one to 1000 floats (four bytes), from three, four and five
client nodes, all simultaneously sending data. All the nodes were synchronized
by the server program, whether C++ or NodeJS. Servers were run a on per-
sonal computer with a Core i7 processor, and with some residual network traffic
consumption on a link at 100 Mbps.
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Fig. 5. Network speed comparison between both back-end platforms for package sizes
between 1 and 1000 floats, for three, four and five nodes. The current TECBrain
version is able to run at 30Mbps with NodeJS. Choosing C++ and a package size near
the payload size leads to a better throughput, with throughput peaks up to 97.07 Mbps
(upper black whisker at 500 floats).

Figure 5a shows that the optimal package size for the current TECBrain Eth-
ernet TCP-IP is around 500 floats (2000 bytes). This is naturally close to the
optimal payload of the Ethernet protocol [12], 375 floats. After that point, the
protocol splits bigger packages and send them separately, leading to expected
slower results given that one of the packages has the maximum capacity of the
protocol and the other will be smaller than it. In terms of peer-to-peer transmis-
sion, the average overhead impact was 13.98%, possibly caused by the package
splitting, because at Nf = 500, the received/sent package ratio is 1.45, which
means that for one package, the server received 1.45 packages (two in average).
For three nodes, the minimum overhead reached is 6.70% and for five nodes is
2.93%; both at the same package size point (Nf = 500). This means that the
C++ architecture is capable of handling at maximum capacity the Ethernet
protocol, adding low overhead to the clients, near the theoretical value of 2.47%.

Figure 5b shows the network performance results for NodeJS under the same
test. One of the notorious changes is that different Nf values do not affect the
performance significantly for Nf > 5, as the transfers’ throughput keeps on
average at 70 Mbps. This means that the event-based data receiver tries to make
groups of data. NodeJS is supposed to have a better performance managing
data compared to thread-based platforms. Comparing it against a the C++
based server, at Nf = 500, NodeJS shows a received/sent package ratio up to
0.9928, which means that data is received in just one transfer.

However, as seen from the evaluation, NodeJS is introducing a higher over-
head than C++. At Nf = 10000, NodeJS only achieves a maximum transfer
speed of 78.59 Mbps, well under the average speed for C++. It results in an
overhead 5.16 times greater than C++.
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5 MongoDB Performance on NodeJS and C++

MongoDB developers use a special library for communication with C++, called
MongoCXX. This library is used to build Binary Javascript Object Notation
(BSON) objects and provides the methods to interact with them using C++.
On the other hand, NodeJS uses Mongoose, a middleware for communicating
with MongoDB. MongoDB is more oriented to NodeJS due to its data han-
dling approach, based on BSON [17]. To measure the dfferences of performance
between NodeJS and C++, a test program was used to write floating-point data
array into the MongoDB database.

5.1 Proposed Database Scheme

By default, BSON data has a maximum size of 16MB, established by Mon-
goDB’s architecture [15]. This limits the maximum storage. In terms of the
TECBrain application in particular, only 2,000,000 steps per each neuron can
be stored, in double precision floating-point representation This also entails that
only 2,285,714 neurons can be simulated, a each neuron ID occupies seven bytes
[15].

By default, MongoDB uses 8-byte double precision floating-point represen-
tation for representing fractional numbers in BSON, whereas TECBrain uses
single 4-byte precision floating-point to represent its inputs and outputs. Trying
to save TECBrain data directly into the database leads to representing a number
in more precision than it comes. Hence, an enhancement to make the most of
the database storage is to save the data keeping the original resolution, using a
raw format instead of as numbers.

Still, larger simulations typically require 4,000,000 and more steps to be
stored. For example, for Δt = 50µs, this represents a simulation of only 200
seconds (3.33 min) To overcome the limitations both in the number of simula-
tion steps and neural cells, TECBrain uses a page indexing strategy, depicted in
Fig. 6.

Using this pagination approach, the new limits are now : 2,285,700 ×
4,000,000 ≈ 9.143 ×1012 simulation steps per each neuron, with 2,285,700 ×
2,285,700 ≈ 5.224 ×1012 neurons per simulation.

A dedicated server is used for querying data and decoding it from the
database, when loading a simulation. Each page requires up to 16 MB of RAM,
which means that it is possible to load 64 pages (256M steps per neuron or
146.28M neurons with one step) with 1 GB of RAM. This poses a challenge for
the back-end framework with an evident trade-off between storage capability
and computation power required for loading and displaying data in the website,
as RAM memory usage in a web browser impacts the client speed.

To avoid this, results are compressed before being transmitted, with the real
quantity of data sent being adjusted as required by the number of points to be
plotted in the webpage.
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Simulation

– id
– timestamp
– name1
– ownerId
– configs
– neuronsPages:

(array)

NeuronsPage

– id
– firstIndex
– lastIndex
– neurons:

(array)

Neurons

– id
– index
– stepsPages: (array)

StepsPage

– id
– firstIndex
– lastIndex
– steps: (value array)

Fig. 6. MongoDB schema proposed by this research

5.2 MongoCXX Performance

Given thus that C++ has shown to more efficient than NodeJS in terms of data
reception added overhead, it follows that an evaluation of the impact of inserting
data into MongoDB using the C++ MongoCXX library instead of NodeJS is the
next step.

Measurements were carried out for the writing of a floating-point array with
different lengths. Multiple writing threads were used, in order to check whether
there are length related improvements, and how good is the management in
writing speed. Both results are presented in Fig. 7.

Figure 7a shows the impact on the writing speed of varying the inserted array
size, following two possible techniques: first, inserting directly the array as raw
data and, second, inserting each element using a loop with C++ lambdas, as
documented in the MongoCXX API [4]. In both cases, it is taken into account
the casting and the insertion times from float to either bytes or doubles.

As well as it was seen in the network transmission evaluation, the package size
influences the writing speed to the database. When the package is larger, faster
is the write speed. It makes possible then to join the network receptor directly to
the MongoCXX insertion process without making it granular or decompose data
to insert them piece-per-piece. Furthermore, the results illustrate that inserting
raw data results in a better throughput compared to using lambda as the Mon-
goCXX documentation suggests. Therefore, it is possible to perform the regis-
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Fig. 7. Impact of length and number of threads on the insertion write speed. By using
larger packages and multiple insertion threads lead to better writing speeds compared
to performing single-threaded insertions.

tration of the results in two possible ways: first, insert the data as they come,
although this technique leads to wasted throughput; second, capture the data
into a buffer and register them as soon as it is full, which prepares the data until
it has an optimal size to be inserted.

The main reason to evade the iterative insertion using C++ lambdas is due
to the loop overhead, whereas inserting the raw data directly avoids loops and
makes the most of each write transaction in the server secondary storage. Chang-
ing the package size enhances the insertion speed is 82.7 times by using a pack-
age size of 3 MB, where the minimum achieved by inserting a 15 kB package is
0.0278 kB/s and the maximum at 3 MB is 2.28 MB/s.

Figure 7b shows the impact of the thread-level parallelism factor on the write
speed given a package size of 13.35 MB (near the 16 MB limit). Using multiple
threads and large package size for writing results in a speedup of 1022.7 times
for insertions. It also is possible to see that there is an optimum number of
writing threads, where the global speed (the total data are written per second)
is maximum, located near to six threads. After that point, the writing speed
decays (57.22% for seven threads). This phenomenon may vary depending on the
platform and it must be studied before implementing the desired parallelism.

On the other hand, it is possible to see how the parallelism impacts on
each thread. Figure 8 depicts the writing process for 20 threads. The average
writing time takes around 5 seconds for every thread, thus improving insertion
throughput to the MongoDB server. Notice again however the performance decay
when running seven threads, as shown in Fig. 7b. Here, the writing process of
the 7th thread has a delay of around 1 s, which suggests the reason for this
throughput degradation.

In general, data buffering, and parallelization lead to the highest insertion
throughput when using C++ and MongoDB with MongoCXX. It is recom-
mended to consider for future implementations the data loading process, since
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Fig. 8. Insertion processes represented during the time. The measurement script simul-
taneously sends 20 packages, 3 MB each. Each insertion process has a similar execution
time (five seconds), and that boosts the writing speed

at the current version of the database, MongoDB aggregation and filtering capa-
bilities are not used, which can lead to more RAM consumption (see [5]).

6 Conclusions

This study has shown potential optimizations for data transmission and insertion
into a database for the TECBrain simulator, making the most of parallelism and
the Ethernet protocol. Clearly, data package sizing for Ethernet transmission is
a major factor that can maximize the impact of the protocol overhead on the
global speed of the transmission.

NodeJS has be shown to be efficient in its treatment of data packages, getting
an almost stable reception speed for most of the data package sizes analyzed
by this paper. However, NodeJS’ interpreted nature limits its maximum speed,
degrading the maximum speed by more than 20%, whereas C++ reached more
than 95% of the maximum speed achievable, leading to C++ as the best option
for the clients’ communication side of the back-end, minimizing the overhead
impact to 2.93% (from a theoretical 2.47%).

On the other hand, MongoDB performed at a good throughput when the
insertion task is split into different threads and package sizes close to the the
BSON limit, achieving 32.5 MB/s. This leads to a speed up of 1022.7 times con-
trasted to 28.42 kB/s achieved by inserting 15 KB of data. Comparing network
speeds, it is 2.6 times the transmission speed at 100 Mbps and 26% the trans-
mission speed at 1 Gbps Hence, to make the most of MongoDB, buffering data
is highly recommended during data transmission.

This work provides the basis for improving the TECBrain connection system
and back-end framework, indicating the way to make the most of the optimal
points of the Ethernet protocol and MongoDB server.

At the server client side, the MongoDB thread decay has to be studied in
order to determine the optimal number of insertion threads to make the most of
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the MongoDB service in order to get the highest throughput possible. Besides,
the data acquisition side of the back-end has to be studied and analyzed in detail
in order to minimize the impact of results’ pagination, exploiting alternatives
such as caching in both on the web browser and on the server side.

On the other hand, it becomes mandatory to contrast Ethernet against other
alternatives, such as PCI-e and custom-made connections, which may have less
overhead and better throughput compared to this protocol.
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Abstract. Fog Computing is characterized as an intermediate layer
between the Internet of Things layer and the Cloud Computing layer,
which pre-processes information closer to the sensors. However, given
the increasing demand for numerous IoT applications, even when close to
the sensors, Fog nodes tend to be overloaded, compromising the response
times of IoT applications that have latency restrictions, and consequently
compromising users’ quality experience too. In this work, we investigated
ways to mitigate this problem in order to keep Fog Computing with a
homogeneous distribution of load, even in heterogeneous environments,
through the distribution of tasks among several computational nodes
that compose Fog Computing, performing a dynamic load balancing in
real time. For this, an algorithm model is presented, which takes into
account the dynamics and heterogeneity of the computational nodes
of Fog Computing, which allocates the tasks to the most appropriate
node according to the policies predefined by the network administrator.
Results show that in the proposed work the homogeneous distribution of
tasks was achieved between the Fog nodes, and there was a decrease in
response times when compared to other proposed solution.

Keywords: Fog Computing · Load balancer · Internet of Things ·
Internet of Everything

1 Introduction

The extensive growth of IoT applications in a wide range of domains has required
a latent demand for solutions that seek to reduce common problems in this envi-
ronment, such as the massive bandwidth usage and time-consuming response
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times. Fog Computing (FC) is the technology currently designated as the promis-
ing technology that provides support for improvements in IoT systems, like
response time and network usage performance indexes, that makes a Cloud
Computing extension to the edge network [3]. These resources are available in
routers, access points and other types of equipment [15], each composing a Fog
Node, that provides compute, storage and network services for IoT applications
on a virtualized and distributed platform [13]. That is, FC provides distributed
resources with greater proximity of users, and consequently, with lower response
times, and lower network bandwidth usage, since it is near of the sensors.

Despite this, it is necessary to know that an FC may not be able to meet all
the needs of the environment in general, since the number of IoT sensors and
applications will reach levels of billions of connected intelligent things, gener-
ating and consuming information [1]. Therefore, nothing prevents the FC from
overloading, compromising the performance of the system as a whole, thus, the
scalability must be a native feature of the Fog Computing [5]. Added to this is
the fact to that, some IoT applications can have time-restrict tasks, that needs
quick communication, and priority is not the focus of the FC, so, it does not
deal with this concerns. Then, the priority-based load balancing technique aims
at the best distribution of load between the processors on the systems and aims
to improve the performance of such applications [4,10,12].

This article proposes the use of a priority-based load balancer (LB), that is
located between the nodes of the FC that employs management methods and
creates a holistic view of the infrastructure, which collects detailed information
about the computational resources that are available to it. The LB has knowledge
of the workload of the FC nodes for any application of balancing policies, as well
the priority level of the task coming from the sensors, which was previously
defined by the network administrator.

Thus, in this work, a new architecture of IoT environments is proposed and
validated, which adopts the proposed algorithm that are priority-based, and
therefore, such architecture presents an additional layer defined with LB, whose
purpose is to mitigate the load unbalance between the nodes of FC. The LB
allocates tasks based on the execution priority and isolates those nodes from
the FC that are faulted or overloaded, hiding these issues from the clients on
the environment. These factors are achieved by using a load-balancing algorithm
where system-ranking policies are created.

The remaining sections of this paper are organized as follows. Section 2 dis-
cuss the basic topics that are covered in this work. Section 3 discusses some of
the related works on Fog Computing and Load Balancing. The main concepts
of our proposed load balancer (SmartFogLB), as well as its implementation
details, are discussed in Sect. 4. In Sect. 5 we present the evaluation methodology
used in the conducted experiments. In Sect. 6 we address the results obtained
from the experiments. Finally, the Sect. 7 emphasizes the scientific contribution
of the work and notes several challenges that we can address in the future.
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2 Theoretical Reference

2.1 Internet of Things

The concept of the Internet of Things refers to sensors and actuators connected,
usually through wireless links, where they collect information or interact with the
environment in which they are inserted. This interaction may occur by reporting
their data to a gateway, making numerous possible applications in the most var-
ied fields of research, among them manufacturing, health care, smart cities, smart
campus, smart houses and smart environments in general, security, agriculture,
among others [1]. These sensor-based environments capture data and can make
decisions based on the discovery of knowledge that occurs through their gate-
way that processes information, and are also known as the devices that make up
the Internet of Everything (IoE) [6]. However, many Internet of Things applica-
tions can have time restrictions, like patient monitoring in a hospital, connected
vehicles, and others. So, the traditional Internet of Things applications send
your data to the cloud, that is far from the sensors/actuators, and then, a high
latency, consequently a high response time and high usage of network bandwith
may occur.

2.2 Cloud and Fog Computing

In [7], the authors define cloud computing as a convenient structure consisting
of hardware and software, with the purpose of providing computing, network,
storage services, which can provide rapid provisioning of resources. As large-scale
applications are increasingly common, cloud computing makes it easier to deploy,
serving a huge number of requests, and providing users with an ever-lower cost,
as well as payment for what is consumed. The authors in [12] define that the
architecture of Cloud Computing is divided into layers, namely: (i) Software-
as-a-Service (SaaS): referring to an application service provider model that
supports many clients, where they do not care about infrastructure issues, only
use the software; (ii) Platform-as-a-Service (PaaS): where your target audi-
ence is developers, providing systems and environments to deploy the entire
lifecycle of your applications; (iii) Hardware-as-a-Service (HaaS): In a nut-
shell, it is the situation where customers buy servers for some period of time, but
may not need them, so it only pays for what to use; (iv) Infrastructure-as-a-
Service (IaaS): that refers to the delivery of all computational infrastructure
to the client, being that it manages to his liking, and still, the customer pays
only for what to use.

Fog Computing is an extension of Cloud Computing, which is performed
closer to the sensors (data source) and actuators (data source and consumer).
Thus, this new paradigm is positioned at the edge of the network where IoE
applications send their data to be treated in the fog. In the context of Fog
Computing surveys have been developed. The authors [3] proposed the concept
of Fog Computing, where it extends cloud computing capabilities to the edge of
the network, available in routers, access points and other types of equipment [15],
each composing a fog-forming node, providing computational resources such as
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processing, storage, and network to the IoT application sensors on a virtualized
and distributed [13] platform. Such a paradigm is located at the edge of the
network, or at most a leap away from the sensor, providing low latency, location
awareness as well as a geographically distributed platform, which meets the needs
of mobile users based on their location. The Fog Computing plays a key role in
Internet of Things environments, because the increasing adoption of Internet
of Things sensors in several applications, a growing demand for processing and
data volume will be generated, justifying the adoption of Fog Computing and
consequently, of load balancing between its nodes.

2.3 Load Balancer

Load Balancing has been proposed to achieve the best load distribution between
the processors in parallel systems and aim to improve the performance of parallel
applications [10]. Load balancing consists of the distribution of tasks between
nodes, where these nodes are under the management of a balancer that receives
the requests and distributes them between their nodes to be processed, in a
fair way among all [14]. In distributed systems such as Cloud Computing, load
balancing plays an important role, since in the cloud, systems must meet all client
requests in the best possible time, and must be tolerant of network failures, such
as delays heterogeneity, processing node failures, and other [2].

Load balancing algorithms are classified as static and dynamic. Stable and
homogeneous environments benefit from static algorithms. However, such algo-
rithms are not flexible and do not take into account sudden changes in the envi-
ronment in question. On the other hand, dynamic algorithms are more flexible,
taking into account heterogeneous environments and their different attributes at
run time, adapting to the sudden changes that may occur in the environment,
however, they have a higher computational cost [2]. The author in [4] highlights
that the scheduling problem have three main components: (i) consumers, (ii)
resources and (iii) policy. In this work, the consumers are the sensors/actuators,
the resources are the Fog nodes, and the policy is subject of this work, that is
about the scheduling algorithm.

3 Related Work

In analyzing the literature, some works shown the concern of authors in trying
to mitigate the unbalance of the Fog Computing systems. In this sense, among
the works found, the authors Oueis et al. [9] are concerned with the Quality
of Experience (QoE) of the users, so they proposed the establishment of a low
complexity computational cluster in 5G networks. That is, an LB is proposed
applied in a specific domain, also, it presents an algorithm that does not worry
about the separation of priority levels, only knows the time limit of execution.

In the work of the authors Yin et al. [16], a proposal is presented to balance
the load between the containers in an industrial network, based on the evaluation
if it can process the task in question. The request evaluator, that was proposed by
the authors, performs an evaluation of the tasks, and decides if such is processed
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on the fog layer (that is formed by containers) or on the cloud layer. A increase
of 5% of accepted tasks was achieved, and a 10% of reduction time of each task
too. But this work does not deal with priority of the tasks, that is the main focus
of our paper.

A different approach is presented by the authors Ningning et al. [8], that is
a self-organized topology through the technique of graph repartitioning, where
was proposed an algorithm that organizes the Fog Computing nodes in such a
way that most of the overloaded ones are not scaled. On the other hand, the
priority of the tasks was not discussed in the work.

The author Puthal et. al.[11] went beyond load balancing in Edge Data Cen-
ters environments, proposing a secure authentication method between them, and
later load balancing. However, this work does not classify the priorities of the
sensor requests, and the tests conducted were performed with a low number of
tasks.

With the consistent focus on Fog the author Verma et al.[14] proposed a
balancer called Fog Master Server, applied at two priority levels, however, when
a real task arrives at the balancer, it performs the actual processing itself, that
is, it assumes this task, thus compromising the performance of the main load
balancing activity. This work is near of the our paper, but, in our work the
load balancer only performs load balancing tasks, that is better for performance
issues.

From the exposed works we define open-ended gaps presented that this work
intends to fill, for that the allocation of the tasks be on the dedicated load
balancer, and also, the proposed scheduling algorithm takes into account the
priority level of the tasks. The Table 1 presents the differences between the
implementation of the previous papers correlated with this work exposed here,
whose objective is to fill this gap.

Unlike these works, our proposed approach uses the fog-shaped gateway and
also a load balancer for task allocation based on its priority, and we also present a
2-priority priority classification, where SmartFogLB ranks and chooses where
to allocate the task based on it in its priority. The one related work that deal
with priority, is the work of Verma et al. [14], but the referenced work process
the high priority tasks on the load balancer, what may cause the high workload,
and may compromises the performance of the main function of the LB.

4 Architecture and Load Balancer Proposal

In this section, we will present a general architecture of the proposed load bal-
ancer, as well an algorithm to perform the balancing task.

4.1 Internet of Things Architecture

The Internet of Things architecture in this article is organized in 3 layers:

Sensing. This is the first layer of the architecture, and is also known as the ubiq-
uitous computing or IoE layer, that consists of sensors and actuators, whether
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Table 1. Comparison between works

Work Priority
level

LB implementation

Oueis et al. [9] 0 Clients send computational tasks with a maximum
time requirement

Ningning et al. [8] 0 Self-organizing topology by the repartitioning of
graphs, there is no central element that performs
the distribution of tasks

Verma et al. [14] 2 Data arrives at the fog server master and are
allocated on the nodes, but real-time tasks are
allocated in the fog server master itself

Yin et al. [16] 0 Allocate the task in the container based on the
evaluation of the task

Puthal et al. [11] 0 The data arrives in the Edge Data Center, if it is
overloaded, the task is sent to another neighboring
data center, and so on until finding a node with a
low workload

SmartFogLB 2 Tasks are allocated according to their priority,
where nodes are allocated according to specific
policies, but never in the balancer itself

mobile or not. The sensors act by capturing data from the environment, for exam-
ple, a temperature sensor, offloading requests of mobile devices, smart vehicles,
among others. Such devices capture data and send it to Layer 2, i.e., the Fog
Computing. Actuators are devices that interact with the environment, such as
a relay that drives a lamp or air conditioner, or an electronic door lock. These
devices receive instructions that come from layer 2, the Fog Computing.

Fog Computing. It is the layer responsible for processing and making decisions
in the environment. A Fog Computing is composed of many nodes with lower
computational power than the cloud. However, they are more in number, and
they have higher processing power than the sensors from IoT applications. It
can be understood as a gateway that aggregates incoming data, processes it and
generates information for decision making and also, this layer acts by sending
the generated data to persistence in the cloud.

Cloud Computing. It is the layer that receives the processed data from the
middle layer for storage. This layer is not the subject of discussion in this work.

Therefore, considering the Internet of Things architecture, we propose the
SmartFogLB load balancer, that is inside of layer two, but can be managed
by Fog Controller in layer three, as shown in the Fig. 1. The Fog Controller have
the architecture overview, and it can instantiates more fog nodes if necessary, or
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alocate virtual servers on the cloud, if the fog computing resources are over-
loaded, however, this is not the focus of this work.

Fig. 1. General Internet of Things architecture

4.2 SmartFogLB

The SmartFogLB is implemented in the second level and the Fog Controller
in the third level. SmartFogLB logically positions itself between the source of
the data (sensors and actuators) and their destination (nodes that make up the
Fog Computing), which will process them. The goal of the load balancer in the
architecture is to distribute tasks from the first layer (IoT sensors), allocating
them among the nodes that are under its control, as well, isolate the fog nodes
that are unhealthy by any reason.

Some tasks have time constraints, for example, a vehicle network that needs
to know the best way to guide the car between two points in a smart city, or a
patient in a hospital that needs to have your health monitored. If the respective
application gateway fails, the entire application may be compromised, and can
cause serious damages. This tasks needs to be performed as quickly as possible
because the car is in movement, and the embedded GPS that is inside of the car
needs to be updated with the best path; or, the patient is in movement but needs
to take your remedy quickly. In this way, some nodes for the processing of this
and other tasks will be necessary, which makes the figure of the load balancer
vital because it is aware of the current workload of the fog nodes as well as
the computational power (CPU, memory), network (bandwidth, latency), and
priority of the task that arrives at it for processing.
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Algorithm. In this subsection, we will deal with the algorithm responsible for
load balancing tasks from the Internet of Things sensors that compose the smart
city.

When the task reaches the load balancer, it must take into account two
priority levels: 0 (for low priority) and 1 (for high priority). Also, the algorithm
responsible for balancing needs to know the number of nodes that are under its
management. For each node under its management, the balancer needs to know
the number of cpu cores, current load average, available memory(%), network
bandwidth utilization(%), network latency between the fog node and balancer,
available disk space(%) and time since the last update. Then the load balancer
will decide on which node that is under its command the task will be allocated.

To assist the main algorithm on decision making about where to allocate
the task, a daemon that runs in the background becomes necessary. It collects
necessary information about the fog nodes so that the balancing algorithm uses
them in real-time, and also, in the case of a node having its load average greater
than or equal to a pre-defined limit, for a defined period of time, it will not
receive new tasks, nor will it compose the list of available nodes. Additionally,
if a node fails for any reason, it also does not enter the list of available nodes.

The algorithm in question has three distinct phases: the first is the task
receiving phase, where it will know its priority and will store in a temporary
table the job id, remote host address and its priority. In the second phase, task
allocation is performed at a specific node. The third phase refers to the return
of the task by the node to the balancer.

After the first phase, the next step will be load balancing. At this point, the
algorithm will query the list of available nodes that are under its command, as
well as the availability of computational resources of each. This list is populated
by the daemon running in the background, and the collected data are kept in
the memory, such data are updated in a predefined interval.

The policy to allocate the task to a particular node is as follows: for tasks
with high priority (1), we consider that this type of priority must have the
fastest processing time, and so, the fog node table will be sorted by lowest load
average, lowest latency, the highest number of cores and available memory, in a
descending order. Of these, the node with lower load average, higher available
memory, lower latency and greater network bandwidth will be selected to process
the task. Thus, the task will be executed on the minor possible time. For the
tasks with low priority (0), we assume that this type of task does not need to be
performed on the minor possible time, and so, the same can wait for processing,
or be forwarded to the cloud, that is not subject of this work. For these tasks,
the selected node will be the one that has a lower load average, independently
of the other attributes. Once the processing node is defined, the load balancer
will allocate the task with its id on its node, and so, in turn, receives the task,
processes and resends the load balancer.

Just for instance, in the Table 2 we give an hypothetical scenario with three
fog nodes. If a high priority task arrives the load balancer, then the fog node
one will be selected, because the node satisfies the requirements of the previous
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algorithm. However, if a low priority task arrives the load balancer, the fog node
three will be selected, because only lowest load average it matter.

Table 2. Hypothetical scenario with 3 Fog nodes

Fog node 1 2 3

Current Load Average (%) 40 50 40

CPU Cores 4 8 2

Free Memory (MB) 400 800 200

Latency (ms) 15 15 15

Network Bandwidth (Mbps) 100 100 100

The third balancing moment deals with the result of the task performed by
the node on the load balancer, where the balancer receives back the result and
the process id, then it can mark the task as completed, and optionally return
feedback to the sensor or another sensor/actuator a specific command. This
moment is important because if the fog node fails, the task that was allocated
to the node is lost, so, the load balancer algorithm waits the response from the
node, and, in case of failure, the task is realocated to another node.

5 Experimental Methodology

For validation of the proposal, the entire structure described previously was
implemented using the object-oriented Java programming language. The tests
were conducted in two moments, the first without load balancer, and the second
with using SmartFogLB, for a environment with 1, 000, 10, 000 and 100, 000
sensors.

The tests were performed ten times each, totaling thirty tests at each
moment. The tests with load balancing were performed with 2 and 5 fog nodes,
and were conducted on an Altix UV 2000 platform designed by SGI. Our plat-
form is composed of 24 NUMA nodes, each node has an Intel Xeon E5-4640
Sandy Bridge-EP x86-64 processor with 8 physical cores running at 2.40 GHz.
The platform runs an unmodified SUSE Linux Enterprise Server operating sys-
tem with kernel 3.0.101-0.29 installed. All applications were compiled with Java
version 1.8 update 191. The results presented are the average of at least 10 runs.
The relative error was less than 5% using a 95% statistical confidence by Stu-
dent’s t-distribution.

For the tests, the policy of task allocation, overhead and response time
adopted was the same in both moments of simulation, so that the results are
fair. Each sensor sends to his gateway his requests that are packets, and, it has
been defined that when the packet arrives at the fog node, it checks whether its
current load is below 90% of its capacity. If it is equal or above, the processing
time of the package is penalized with 10 ms of execution delay and waits for the
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node to decrease its processing; still, the execution is stopped in 10 ms in both
cases for to simulate the latency of the network. If the node’s current load is at
100%, then it has no more capacity to process it, so for this test, the packet that
arrived at this node will be discarded (dropped).

Each instantiated sensor stays within a thread and afterward, each one sends
the data to its gateway, either the fog node (for the test without balancer) or
the balancer. The job on the fog node that receives the packet to be processed is
encapsulated inside a method in the developed simulation tool, which in turn is
in a java class that represents the object of the fog node. Thus, given the number
of threads involved, the fog node receives the data, increases the processor load
by 5% for each packet, after the load is checked and if there is no overflow, the
packet is processed, reaching the end of the method decreasing 5% load. The
method undergoes a delay in its execution, which is the latency of the network,
and in case of overloading, it is added to the total execution delay.

The fact of the processes occurs in threads gives dynamicity to the environ-
ment, and so, they do not necessarily occur at the same time. A package may
suffer a delay, or be rejected because of the fog node is overloaded on the moment
it arrives at the fog, or be processed quickly if the fog node load is below 90%.
These results, therefore, justify the high rates of packet rejection when there is
no load balancer present.

In the process involving the load balancer, that is represented by another
java class, the sensors are unaware of the presence and amount of fog nodes that
are under the management of the balancer, since they only send their data so
that they are processed along with their priority in the same amount of threads
and same policies at the moment of the test without balancer. When the packet
arrives on the balancer, the algorithm that is responsible for scheduling checks
if the packet priority is 0 or 1, and orders its nodes according to the policy.

If the packet has high priority, we understand that the same has to be pro-
cessed on the minor possible time, what means the high urgency of a service
like a patient monitoring in a hospital, or a connected smart vehicular network.
Then, the Fog nodes with the lowest load average, lower latency to the balancer,
higher number of CPU, higher available memory, higher available free disk space,
and higher available network bandwidth will be selected to process the package,
what results in a more quickly compute.

On the other hand, if the packet has low priority, we understand that the
same has no urgency for quickly processing, and if it is the case, can wait a more
significant time to be processed. Then, for this packet, the Fog node that will be
selected, will be the node with lower load average.

6 Results

In this section, we will discuss the results that were obtained from the proposed
method. First, we defined that when the Fog node reaches the load average
equal to or greater than 90%, the packet will be rejected (dropped). With our
proposed load balancer, it has been proved that with the adoption of more than
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one cooperating Fog node, the discarded packet rates have been reduced to zero.
This result happens because the balancer is endowed with intelligence to indicate
which node is the most appropriate.

The load average rates were reduced inversely proportional to the more sig-
nificant number of nodes that are processing, so, the more Fog nodes that are
processing, the lowest load average of them will be obtained.

It is observed that although having many nodes in the Fog Computing, it
is necessary a layer that manages them, whose objective is the distribution of
the packets between these Fog nodes, avoiding the workload imbalance. For
this work, this layer is the SmartFogLB, and Fig. 2 shows the results of the
implementation, that is highlighted the response time of the proposed algorithm.
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Fig. 2. Response Time measured in tests with SmartFogLB- log.

It is noted that an increase in the number of sensors in 10 times, from 1, 000 to
10, 000, the response time increase from 105.7 ms to 360.47 ms, which represent
an increase of 3.4 times. Similarly, from 10, 000 to 100, 000 sensors, the response
time also increase 3.3 times that was of 360.47 ms to 1, 200.76 ms. So, we can
understand that our proposed algorithm can scale and handles a high number
of requests, and the response times will be lower as possible.

We also realized that without the SmartFogLB, the drop rate increases
with the increase in the number of sensors. In the first test, with 1, 000 sensors,
the drop rate was 91.16%. Since the fog node is overloaded (CPU load of 100%),
so a high amount of packets was discarded. When the number of sensors was
increased to from 10, 000 and 100, 000, the drop rate increase to 98.61% and
99.64% respectively. In these tests, almost all packages were discarded.

On the other hand, the discarded packet rate was reduced to 0% from 2 fog
nodes regardless of the number of sensors. This happens first because there are
more than one Fog node, and also because the balancer can allocate the task
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in the fog node with a lower load average, distributing the packets that arrive
in it somewhat, so that the nodes can hardly reach 100% of their capacity due
to this. Already the response times, decreased by 6.06% and 63.95%, using two
and five fog nodes on the balancer.

7 Conclusions

Providing adequate infrastructure for Internet of Things environments requires
the adoption of many technologies since it needs to perform a series of activi-
ties interconnecting many systems. The adoption of IoT has been increasingly
adopted, and Fog Computing comes to potentiate it, saving on network band-
width width and decreasing response times. Thus, workload distribution between
its nodes becomes crucial for the Internet of Things systems to operate without
breaks and in the shortest possible time.

Performing Load Balancing has been a constant concern in the most diverse
sub-areas of computing. Fog Computing will also take advantage of this technique
since it is a dynamic structure, in the sense that is formed by heterogeneous
nodes, and takes advantages of the virtualization technologies.

With the use of these new technologies, a significant reduction of data trans-
fer can be achieved. However, traditional Internet of Things applications have
become a sizeable critical amount of data mover. This concern is now growing
when applying together with ubiquitous techniques, so, in this paper, in response
to this challenge, we focused on reducing the data transfer, response times and
proposed a new architecture to Internet of Things applications and new Fog load
balancers called SmartFogLB.

Our main idea is to provide fair task allocation, mitigating the workload
unbalance between the nodes of the fog, as well as, providing fault tolerance,
hiding from the sensor possible faults that may occur. Experimental results pre-
sented improvements in response time average and dropped packets rate when
our SmartFogLB load balancer was used with 1, 000, 10, 000 and 100, 000 sen-
sors. The drop pack rate was reduced to zero, response fell 68%, maintaining the
load average below 90%.

For this work, we have defined that when the Fog node reaches the threshold
of workload in 100%, the packet will be dropped. In a real scenario, however,
this behavior may not be acceptable, then as future work, we plan to implement
a queue mechanism, or a cloud environment to receive low priority tasks. This
will avoid the high packet drop rates and will be more suitable to implement
in a real scenario. Another point is that the proposed load balancer is a point
of failure, and this needs our attention in future works, as well, the failure of
the Fog nodes. Also, we intend to provide internal improvements in the balancer
and to prove its effectiveness by allocating Internet of Things environments with
up to 1 million of sensors, as well compare it with one of the related works.
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Abstract. Cloud storage is one of the most popular models of cloud comput-
ing. It benefits from a shared set of configurable resources without limitations of
local data storage infrastructures. However, it brings several cybersecurity
issues. In this work, we address the methods of mitigating risks of confiden-
tiality, integrity, availability, information leakage associated with the informa-
tion loss/change, technical failures, and denial of access. We rely on a
configurable secret sharing scheme and error correction codes based on the
Redundant Residue Number System (RRNS). To dynamically configure RRNS
parameters to cope with different objective preferences, workloads, and cloud
properties, we take into account several conflicting objectives: probability of
information loss/change, extraction time, and data redundancy. We propose an
approach based on a genetic algorithm that is effective for multi-objective
optimization. We implement NSGA-II, SPEA2, and MOCell, using the JMetal
5.6 framework. We provide their experimental analysis using eleven real data
cloud storage providers. We show that MOCell algorithm demonstrates best
results obtaining a better Pareto optimal front approximation and quality indi-
cators such as inverted generational distance, additive epsilon indicator, and
hypervolume. We conclude that multi-objective genetic algorithms could be
efficiently used for storage optimization and adaptation in a non-stationary
multi-cloud environment.
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1 Introduction

In cloud storages, data is housed in a virtualized storage space, usually provided by
third parties accessible throughout the internet. There are many publicly available data
storages like Google Drive, Microsoft OneDrive, Dropbox, Amazon Cloud Drive,
Windows Azure Storage, etc. However, reliability, security, and quality of service
required for long-term data storage are still emerging problems.

To improve these characteristics, Basescu et al. [1] proposed a multiple clouds
model called inter-cloud or cloud-of-clouds. This model uses multiple services from
different providers in a transparent manner for users; that is, they are provided as
services of a virtually single cloud.

There are numerous studies of cloud storage security. As mentioned by AlZain
et al. [2]: “Ensuring the security of computing in the cloud is a factor of great
importance because users regularly store important information with their respective
suppliers, they tend to distrust these providers.” This distrust is one of the issues which
does not allow increasing the popularity of multi-cloud environments.

In 1979, Shamir [4] proposed k; nð Þ threshold Secret Sharing Schemes (SSS). These
schemes are of special interest, since, due to their distributed nature, they can be used in
the multi-cloud environment.

Ermakova et al. [5] presented real case studies of European hospitals in multi-cloud
architecture and evaluated the performance of encryption algorithms.

Tchernykh et al. [3] provided a study of uncertainty on large scale computing
systems and cloud computing systems. They address methods for mitigating the risks
of confidentiality, integrity, and availability associated with the loss of information,
denial of access for a long time, and information leakage.

Miranda-López et al. [6] provided an experimental analysis of a distributed cloud
storage with eleven real storage providers. The authors used Asmuth-Bloom and
Mignotte k; nð Þ threshold schemes, and evaluated upload-download and coding-
decoding speeds with different k; nð Þ configurations.

Babenko et al. [7] addressed error correction codes to improve the performance of
Berkeley Open Infrastructure for Network Computing under uncertainty of users’
behavior. The authors used Redundant Residue Number System (RRNS) moduli set of
the special form to correct user unfairness and increase data reliability, decreasing
redundancy and network traffic.

Chervyakov et al. [8] proposed a data storage scheme called Approximate
Rank RRNS (AR-RRNS), which combines the concept of RRNS and SSS properties to
divide and distribute secrets. The authors use numerical approximation strategies to
reduce the computational cost of the algorithm. By the theoretical analysis, they show
that through the appropriate selection of the RRNS parameters, the system allows
configuring security, reliability, as well as data redundancy.

Tchernykh et al. [9] proposed the algorithm called Anti-Collusion RRNS (AC-
RRNS) a computational secure and reliable SSS in RRNS. They solve the problem of
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cloud collusion by the simultaneous use of the ideas behind the Mignotte SSS and
asymptotically ideal Asmuth–Bloom SSS.

Tchernykh et al. [10] proposed a multi-cloud storage model called Weighted
Access RRNS (WA-RRNS) that combines the weighted access scheme, SSS, and
RRNS with multiple failure detection/recovery mechanisms and homomorphic ciphers.

In this work, we provide mechanisms for multi-objective configuration and opti-
mization of the AR-RRNS data storage model.

In the k; nð Þ RRNS, a file is divided into n chunks in such a way that with k chunks
or more, data can be recovered. To select k; nð Þ parameters of the system and define
specific clouds to be used for data storage, three optimization criteria are taken into
account: probability of information loss/change, extraction time, and data redundancy.

Multi-objective optimization has practical importance since almost all real-world
optimization problems are suited to be modeled using multiple objectives. A Multi-
objective Optimization Problem (MOOP) deals with more than one objective function.

Genetic algorithms (GAs) are among the most successful computational intelli-
gence techniques. They are meta-heuristics suitable to solve multi-objective opti-
mization problems. That is why, in this paper, we propose an approach based on
genetic algorithms for multi-objective optimization and configuration of AR-RRNS
data storage model.

The rest of the paper is organized as follows. In Sect. 2, we present the data storage
model and formulate MOOP. In Sect. 3, we present the design of our GA-based
approach. In Sect. 4, we provide an experimental study. In Sect. 5, we describe the
obtained results. Section 6 concludes the paper and describes future work.

2 AR-RRNS Data Storage Model: Multi-objective Scenario

In this section, we briefly describe the residue number system and AR-RRNS data
storage model. We define the configuration of the storage model as a multi-objective
optimization problem and specify objective functions and restrictions.

2.1 Residue Number System and Its Properties

RNS represents an integer as a set of its residues according to a moduli set. RRNS is
formed by adding redundant moduli into an existing moduli set to extend the legitimate
range of the original information moduli [11].

Given a set of k pairwise prime positive integers m1;m2; . . .;mk called moduli set, a
nonnegative integer X uniquely represented by the n-tuples x1; x2; . . .; xk of their

residues modulo mi xi ¼ Xj jmi
; i ¼ 1; 2; . . .; k

� �
in the range 0;M½ Þ, where M ¼

m1 � m2 � . . . � mk [12].
RRNS uses a set of n ¼ kþ rð Þ-tuples to represent an integer in the range 0;M½ Þ. It

uses m1;m2; . . .;mk;mkþ 1; . . .;mn modulis and x1; x2; . . .; xk; xkþ 1; . . .; xn digits.
mkþ 1; . . .;mn and xkþ 1; . . .; xn are called the redundant moduli and redundant digits,
respectively.
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2.2 AR-RRNS Data Storage Model. Problem Statement

AR-RRNS is based on configurable and reliable RRNS systems in multi-cloud envi-
ronments to ensure security, robustness, and confidentiality [13]. The operation that
consumes more resources in the implementation of RNS is the operation of division
while finding RNS residues of dynamic range. To increase the efficiency of the data
processing and decrease the energy consumption during the coding and decoding of
data, RNS moduli of a special form 2b � � are used, which allow finding a division
residue with linear complexity. The approximation of the range (AR) allows to sub-
stitute operations of finding residue by taking higher bits of a number based on the
introduced function of computing the approximate rank of RNS number. Based on the
properties of the approximate value and arithmetic properties of RNS, the AR-RRNS
method was proposed for error detection, correction, and controlling computational
results.

Let us consider a set of N clouds C ¼ c1; c2; . . .; cNf g. Each cloud cj ¼
uj; dj; errj

� �
is characterized by the speed of uploading uj, speed of downloading dj and

failure probability errj, for all j ¼ 1; . . .;Nf g.
In RRNS with a k; nð Þ setting, where data D is divided into n chunks, data can be

recovered with k or more chunks. Each chunk i ¼ sif g has size si for each
i ¼ 1; . . .; nf g. Table 1 shows used notations.

To apply AR-RRNS, we have to find the configuration k; nð Þ and a subset C0 of
clouds minimizing the probability of information loss (Pr k; nð Þ), redundancy (R), and
extraction time (Tex). The problem can be formalized as:

– Minimize Pr k; nð Þ, which is calculated as:

Pr k; nð Þ ¼
Xn

A2Fn�kþ 1

Y
j2A

errj
Y
jc2Ac

1� errjc
� �

; ð1Þ

where Fn�kþ 1 is the set of all n� kþ 1 possible subsets of C. Information can be lost
only if n� kþ 1 parts are lost.

– Minimize R, which is the ratio of the size of the stored coded information DE and
original size D:

R ¼ DE

D
ð2Þ

– Minimize Tex, which represents how fast it downloads information from each of the
clouds and decodes it. It is calculated as the sum of the decode time TD and
download time Tdow:

Tex ¼ TD þ Tdow; Tdow ¼
Xn

i¼n�kþ 1

sEi
di

ð3Þ
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We assume that each chunk is sequentially downloaded from the clouds. The
process ends when k pieces are downloaded correctly.

The probability of information loss Pr k; nð Þ conflicts with the other two criteria Tex
and R. For Pr k; nð Þ, the configurations that generate the worst solutions are in the form
n; nð Þ. While for Tex and R, these configurations generate the best solutions. The
strategy that provides the best result for Pr k; nð Þ is the least suitable for the criteria Tex
and R.

Other constraints to guarantee a security threshold are:

(a) At least 2 clouds must be used for storage chunks of information: n � 2;
(b) At least two clouds are needed to reconstruct the original information: k � 2;
(c) The number of clouds where the information is stored must be greater than or

equal to the number of clouds needed to retrieve the information: k � n.

2.3 Multiobjective Optimization

Let us consider MOOP X; fð Þ, where X is the solution space, and f ¼ f1; . . .; fi; . . .; fdð Þ
is an objective function vector such that fi is to be minimized for all i 2 1; . . .; df g. Let
Z ¼ f Xð Þ be the objective space, Z � R

d . Each solution x 2 X is associated with an
objective vector z 2 Z such that z ¼ f xð Þ.

An objective vector z 2 Z is dominated by an objective vector z0 2 Z z 	 z0ð Þ iff
8i 2 1; . . .; df g : z0i � zi and 9i 2 1; . . .; df g : z0i � zi such that z0i\zi. Two objective
vectors z; z0 2 Z are mutually non-dominated iff z§ z0 and z0 § z. An objective vector
z� 2 Z is Pareto optimal or non-dominated iff there does not exist a z 2 Z such that
z� 	 z.

Similar definitions can be formalized for solutions x 2 X by using the associated
objective vectors z 2 Z, such as z ¼ f xð Þ. The Pareto front Z� � Z is the set of non-
dominated objective vectors. The Pareto set X� � X is a set of solutions that maps to
the Pareto front, i.e. f X�ð Þ ¼ Z�. One of the most challenging issues in multiobjective
optimization is to identify the Pareto set/front, or its good approximation for complex
problems [14].

Table 1. Notation of the AR-RRNS data storage model.

Definition Definition

D Size of the original data Tdown Encrypted data upload time
DE Size of the encrypted data Tup Encrypted data download time
di Size of the i� th chunk Ts TE þ Tup
vdowni Download speed of i� th chunk Tex Tdown þ TD. Extraction time
vupi Upload speed of i� th chunk R Redundancy
TE Data encryption time erri Probability of the i� th storage failure
TD Data decryption time Pr k; nð Þ Probability of information loss
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In our multi-objective optimization problem, we define the following objective
functions: f1 ¼ Pr k; nð Þ, f2 ¼ R, and f3 ¼ Tex. Thus, f ¼ f1; f2; f3ð Þ is the objective
function vector such that fi is to be minimized for all i 2 1; 2; 3f g.

3 System Design and Implementation

In this section, we briefly describe the essential concepts of Genetic Algorithms
(GAs) and present the design of our GA-based approach.

3.1 Genetic Algorithms

The concept of genetic algorithm was developed in the 1960s and 1970s. GAs are
inspired by evolutionary theory: weak and unsuitable species face extinction by natural
selection, and stronger ones have more opportunities to pass on their genes to future
generations through reproduction. In GA terminology, a solution is called an individual
or chromosome. A chromosome corresponds to a unique solution in the solution space.
The GA works with a set of chromosomes called population. It uses two operators to
generate new solutions from the existing ones: crossing and mutation. They form the
basis of evolutionary systems: 1. Variation operators (crossing and mutation) create the
necessary diversity within the population; 2. Selection acts as a force increasing the
average quality of the solutions in the population. Their combination produces the
improvement of the objective function.

Being a population-based approach, GAs are well suited to solve MOOP. The
ability of GA to simultaneously search different regions of a solution space provides
finding a diverse set of solutions for difficult problems with non-convex, discontinuous,
and multi-modal solutions spaces. The crossover operator of GA exploits structures of
good solutions with different objectives to create new non-dominated solutions in
unexplored parts of the Pareto front.

In a cloud storage system, performance and quality are the most important
requirements. Multi-Objective Cellular Genetic Algorithm (MOCell) [15] demonstrates
a better performance and quality solutions than the existing algorithms according to
some chosen test problems.

Fast Nondominated Sorting Genetic Algorithm (NSGA-II) [16] is a genetic algo-
rithm, which is the standard algorithm in multi-objective optimization.

Improved Strength Pareto Evolutionary Algorithm (SPEA2) [17] shows very good
performance in comparison to other multi-objective evolutionary algorithms. It has
been a point of reference in various studies.

We include SPEA2, NSGA-II, and MOCell in our experimental study to verify how
they can be used for the optimization of the AR-RRNS storage system. Table 2 shows
the main characteristics of these algorithms.

There are several programming frameworks for multi-objective optimization with
metaheuristics. Among them, JMetal stands out for the following reasons: it is an
object-oriented Java-based framework, open source, based on software design patterns,
easy to use, with flexibility, extensibility, and portability, parallel execution, support,
and improvements.
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It is a tool used by many researchers in the area with excellent results. For all these
reasons, JMetal is chosen as the framework for the optimization of the AR-RRNS
storage system.

3.2 Chromosome Encoding

We use a representation of the chromosome containing two variables: the first one is a
binary vector representing the parameter k, while the second one is a binary vector of
length N (amount of clouds). If a position j is set to 1, the cloud cj is used to store
information. The number of non-zero elements determines n of our k; nð Þ configuration.

For example, the chromosome in Fig. 1 represents a solution k ¼ 3; n ¼ 7, that is
k; nð Þ ¼ 3; 7ð Þ. It specifies that the information is stored in the clouds c2; c3; c5;
c7; c8; c10; c11.

4 Experimentation

In this section, we present the process of calibrating GA parameters, the input data,
genetic operators, configuration of the algorithms, quality indicators to evaluate genetic
algorithms and describe the methodology of the experimental evaluation.

Table 2. SPEA2, NSGA-II and MOCell comparisons.

Algorithm SPEA2 NSGA-II MOCell

Fitness
assignment

Strength of dominators Ranking based on
non-domination
sorting

Ranking based on
non-domination
sorting

Diversity
mechanism

Density-based on the k-th
nearest neighbor

Crowding distance Cell-based
crowding distance

Elitism Yes Yes Yes
External
population

Yes No Yes

Advantages Improved SPEA. Make
sure extreme points are
preserved

Single parameter
(N) Well tested
Efficient

Good performance
Fast convergence

Disadvantages Computationally
expensive fitness and
density calculation

Crowding distance
works in objective
space only

Not popular

Fig. 1. Example of chromosome representation.
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4.1 Quality Indicators

A (unary) quality indicator is a function 2Z ! R that assigns each approximation set to
a (scalar) value reflecting its quality.

We use a subset of conventional quality indicators from the multi-objective liter-
ature. Let A � Z be a set of mutually non-dominated objective vector (i.e. a Pareto
front approximation), and R � Z be a reference set (ideally the exact Pareto front when
it is discrete, i.e. R ¼ Z�). Below, we describe three used quality indicators: inverted
generational distance, additive epsilon indicator, and hypervolume.

IGD: The inverted generational distance [18] gives the average distance between any
point from the reference set R and its closest point from the approximation set A.

IGD Að Þ ¼ 1
Rj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
r2R

min
a2A

a� rj jj j22
r

ð4Þ

The Euclidean distance (L2-norm) in the objective space is usually used for distance
calculation. Obviously, the smaller the IGD value, the closer the approximation set
from the reference set. An indicator value of 0 implies R � A.

EP: Additive epsilon indicator [19] gives the minimum factor by which the approx-
imation set has to be translated in the objective space to (weakly) dominate the ref-
erence set. It is based on an additive factor.

EP Að Þ ¼ max
r2R

min
a2A

max
i2 1;...;df g

ai � rið Þ ð5Þ

The smaller the EP value, the closer the approximation set from the reference set. An
indicator value of 0 implies R � A.

HV: Hypervolume [20] gives the multidimensional volume of the portion of the
objective space that is weakly dominated by an approximation set.

HV Að Þ ¼
Z zmax

zmin
�A zð Þdz;

where : �AðzÞ :¼f1 if 9 a A such that z 	 a

0 otherwise
ð6Þ

In practice, only the upper bound vector zmax 2 R
d is required to compute the

hypervolume. This parameter is called a reference point. A Pareto front with a higher
HV than another one could be due to two factors: some solutions in the former front
dominate solutions in the second one, or, solutions in the first front are better dis-
tributed than in the second one. Thus, algorithms with larger values of HV are desir-
able. The main advantage of the hypervolume over many other performance indicators
is its Pareto compliance property.
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4.2 Calibration of GA Parameters

The method used in the calibration of the parameters for the experimental analysis has
the following steps:

(a) test all instances produced with possible combinations of parameters for each
algorithm;

(b) obtain the best solution for each instance;
(c) apply the Multifactor Variance Analysis (ANOVA) with a 95% confidence level

to find the most influential parameters;
(d) set algorithm parameters based on selected parameters values;
(e) calculate the relative difference of the calibrated algorithm and other adapted

algorithms over the best solutions.

In experiments, we use the following software platform: JMetal 5.6 and JDK 11.0.1
(64-bits). The hardware platform is Dell Precision T3610, Intel Xeon CPU E5-1606 @
2.80 GHz, 16 GB DDR3 RAM with Windows 10 Enterprise 64-bits.

The following parameters are set for the calibration: Crossover operators: “Single
Point Crossover” and “HUX Crossover”; Crossover probability (Pc): 0.6, 0.7, 0.8 and
0.9; Mutation probability (Pm): 0.05, 0.1, 0.2 and 0.3.

Hence, 2 * 4 * 4 = 32 different setups are considered to calibrate the algorithms.
We also use the common configurations: Mutation operator: “Bit Flip Mutation,”
Population size: 100, Maximum number of evaluations: 25,000, Selection method:
“Binary Tournament Selection.” Table 3 shows characteristics of the eleven cloud
storage providers used in our study.

The performance measure of the algorithms is calculated as the percentage of the
relative distance of the obtained solution from the best one:

Heusol � Bestsol
Bestsol


 100;Heusol ¼ 1� IHVð Þþ IEP þ IIGD; ð7Þ

where Heusol is the sum of the quality indicators (EP: Epsilon, HV: Hypervolume, and
IGD: Inverted generational distance) normalized in the range {0… 1}. Bestsol is the
best value obtained during the testing of all possible parameter combinations.

To assess the statistical difference among the experimental results and observe how
the selection of the parameters impacts on the quality of the solution, the ANOVA
technique is applied. The analysis of variance is used to determine factors that have a
significant effect and are most important. Parameters of the genetics algorithms are
considered as factors and their values as levels. The results are presented as increase
over the best solution in percent. The data are expressed in terms of mean and standard
deviation (the lowest value is the best). The crossover operator “Single Point Cross-
over” (1:0350�1:3e�02) is better than “HUX Crossover”(1:0420�1:1e�02). The cross-
over probability 0.9 (1:0440�1:4e�02) is better than 0.6 (1:0455�1:3e�02), 0.7
(1:0450�1:1e�02), and 0.8 (1:0445�1:4e�02). The mutation probability 0.1
(1:0425�1:1e�02) is better than 0.05 (1:0462�1:3e�02), 0.2 (1:0430�1:2e�02), and 0.3
(1:0475�1:4e�02).
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4.3 Experimental Setup

All algorithms (SPEA2, NSGAII, and MOCell) are executed with a maximum of
25,000 evaluations.

Our genetic algorithms are tuned up by the following parameters obtained during
the calibration step. The population size is 100. The probability of the crossover
operator is Pc ¼ 0:9, the probability of the mutation operator to PN ¼ 1=N (where N is
the number of clouds. E.g., for N ¼ 11, it would be, � 0.1). The crossover method is
“Single Point Crossover,” The mutation type is “Bit Flip Mutation” and the selection
method is “Binary Tournament Selection”.

We carried out an experimental study to compare SPEA2, NSGA-II, and MOCell.
Four instances of the problem are considered: GAKN1 (8 clouds), GAKN2 (9 clouds),
GAKN3 (10 clouds), and GAKN4 (11 clouds).

We performed 50 independent runs of each experiment, and record the mean and
standard deviation. As there is no reference Pareto Front for our problem, we calculate
the approximate Pareto front, from the combination of the non-dominated points of
SPEA2, NSGAII, and MOCell.

We use real data of eleven cloud storage providers from the works [10, 21], where
average values of download speed, upload speed, and failure probability are provided
(Table 3).

5 Obtained Results and Discussion

The results of the experimental study of SPEA2, NSGA-II, and MOCell algorithms for
AR-RRNS storage model are presented below.

Table 3. Characteristics of the clouds

Cloud storage
provider

Average upload
speed (MB/s)

Average download
speed (MB/s)

Average
probability of
failure

c1 Google Drive 2.98 3.06 0.00109019
c2 Microsoft OneDrive 1.46 2.18 0.00099030
c3 Dropbox 2.93 3.25 0.00145548
c4 Box 2.55 2.62 0.00269549
c5 Egnyte 1.70 2.30 0.00109874
c6 Sharefile 0.51 0.75 0.00021404
c7 Salesforce 0.64 0.71 0.00092609
c8 Alibaba Cloud 2.73 2.86 0.00109345
c9 Amazon Cloud Drive 1.28 2.79 0.00058234
c10 Apple iCloud 2.75 2.48 0.00056648
c11 Windows Azure Storage 2.24 2.71 0.00043609
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Tables 4, 5, and 6 show the quality indicators described in Sect. 4.1. The best value
of each quality indicator is marked by shaded background.

Considering Epsilon quality indicator (EP) (Table 4), MOCell achieves the best
results (the lowest value with lower standard deviation), followed by SPEA2, then by
NSGA-II. It has IEP 77.5% better than NSGA-II and 83.3% better than SPEA2.

Table 5 shows the hypervolume indicator (HV), where the larger value with lower
standard deviation is better. The first place is MOCell and NSGA-II, then SPEA2, both
achieving a value in IHV 2.0% better than SPEA2.

Considering IGD indicator (Table 6), where the lowest value with lower standard
deviation is better, MOCell outperforms the rest of the algorithms, reaching a value of
IIGD 78.0% better than SPEA2 and 80.3% better than NSGA-II.

We can conclude that MOCell is better than SPEA2 and NSGA-II in all test cases,
taking into account three quality indicators. It reaches a good balance between con-
vergence and diversity.

Table 4. EP quality indicator. Mean and Standard Deviation.

Table 5. HV quality indicator. Mean and Standard Deviation.

Table 6. IGD quality indicator. Mean and Standard Deviation.
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Concerning the number of obtained solutions (Table 7) that belong to Pareto
optimal, we observe that MOCell has the best results. MOCell is 10.3% better than
NSGA-II and 21.9% better than SPEA2. For example, if we focus on the GAKN4
problem, MOCell is in the first place, followed by NSGA-II and SPEA2 (71, 68 and 53
Pareto optimal solutions, respectively). The data in Table 7 represent the mean and
standard deviation. The highest value is the best.

Performing 1000 iterations, the algorithms found excellent approximations to the
Pareto front in an acceptable time: NSGA-II (4:51eþ 02�2:5eþ 01 ms), MOCell
(5:33eþ 02�4:9eþ 01 ms) and SPEA2 (5:34eþ 02�2:4eþ 01 ms).

Figures 2 and 3 show the results of bi-objective optimization. Figure 2 shows the
probability of information loss versus redundancy. Figure 3 shows the probability of
information loss versus extraction time.

We can see that MOCell obtains a front that covers a wide range of different
solutions, as well as obtains a greater number of solutions that integrate the approxi-
mate Pareto front.

Table 7. Results of the number of solutions contained in the best front found.

Fig. 2. Examples of the obtained front of solutions. Pr k; nð Þ vs R
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In Fig. 4, we plot normalized values obtained by MOCell, when performing
multiobjective optimization of Pr k; nð Þ, R, and Tex.

The normalization is done using the min-max method to place all the values within
the range [0, 1], where 0 represents the best value and 1 the worst.

We can observe that at the points where the value of k is far from the value of n, for
example (2, 10) or (2, 11), we obtain the best values of probability of information loss,
but the worst values of redundancy and extraction time.

While in the points where the value of k is close to the value of n, for example (9,
10) or (10, 11), we obtain the worst value of the probability of information loss, but the
best values of redundancy and time of extraction.

If the decision-maker wants a compromise solution, he could choose the configu-
ration (8, 10) or the (9, 11), where the three objectives have lowest values.

Table 8 shows examples of obtained solutions, indicating the clouds that should be
used to store the information, configuration k; nð Þ of the AR-RRNS system, and cor-
responding values of Pr k; nð Þ, R, and Tex.

Fig. 3. Examples of the obtained solution fronts. Pr k; nð Þ vs Tex

Fig. 4. Points of the approximate Pareto front, plot three objectives vs k; nð Þ configuration.
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The results show that MOCell is efficient to find a configuration of the secure multi-
cloud data storage system in a non-stationarity environment with risks of confiden-
tiality, integrity, and availability violations. It configures parameters to cope with
different objective preferences, workloads, and cloud properties. The system selects
k; nð Þ configuration and specific clouds to use. Then, the secret sharing algorithm is
applied and the secret is divided into n chunks to be stored in different clouds. When
the user requests the data, the system downloads chunks from k clouds that are active to
retrieve the original information.

6 Conclusions and Future Work

In this paper, we study the problem of multi-objective optimization of the multi-cloud
storage system based on AR-RRNS. We propose mechanisms to configure storage
parameters k; nð Þ for coding/decoding and select specific cloud storages. We consider
three optimization criteria: the probability of information loss/change, redundancy, and
extraction time. We give a brief description of AR-RRNS data storage model with
k; nð Þ threshold scheme and how this model can be applied to the multi-cloud envi-
ronment. We design configuration mechanisms based on genetic algorithms specifying
the chromosome encoding, fitness evaluation function, and constraints.

We provide an experimental study using real data from eleven cloud storage pro-
viders. We compare the performance of three genetic algorithms: MOCell, NSGA-II,
and SPEA3 using three quality indicators: Inverted generational distance, additive
epsilon, and hypervolume. We show that MOCell outperforms NSGA-II and SPEA2 in
all quality indicators. IEP of MOCell is 77.5% better than of NSGA-II and 83.3% better
than of SPEA2. The numbers of solutions belonged to the Pareto front approximation
of MOCell is 10.3% better than NSGA-II and 21.9% better than SPEA2.

As future work, we will design weighted SSS and study a variety of artificial
intelligent and computational intelligent mechanisms to configure distributed cloud
storage.

Acknowledgments. The work is partially supported by Russian Federation President Grant
MK-341.2019.9.

Table 8. Examples of solutions. MOCell GA.

Clouds k; nð Þ Pr k; nð Þ R Tex
c1; . . .; c7; c9; . . .; c11 (2, 10) 2.39E−27 10.00 1521.09
c1; . . .; c7; ; c9; . . .; c11 (8, 10) 1.11E−07 2.50 452.73
c1; . . .; c6; c8; . . .; c11 (9, 10) 4.45E−05 2.22 406.31
c1; . . .; c11 (2, 11) 2.37E−30 11.00 2421.43
c1; . . .; c11 (9, 11) 1.52E−07 2.44 443.1
c1; . . .; c11 (10, 11) 5.38E−05 2.20 399.18
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Abstract. Bounding Volume Hierarchy (BVH) is the main accelera-
tion mechanism used for improving ray tracing rendering time. Several
research efforts have been made to optimize the BVH algorithm for GPU
and CPU architectures. Nonetheless, as far as we know, no study has tar-
geted the APU (Accelerated Processing Unit) that have a CPU and an
integrated GPU in the same die. The APU has the advantage of being
able to share workloads within its internal processors (CPU and GPU)
through heterogeneous computing. We crafted a specific implementation
of the ray tracing algorithm with BVH traversal implemented for the
APU architecture and compared the performance of this SoC against
CPU and GPU equivalent implementations. It was found that the per-
formance of the APU surpassed the other architectures.

Keywords: Bounding Volume Hierarchy · Accelerated Processing
Unit · Ray tracing · CPU · GPU · APU · BVH · Heterogeneous
computing

1 Introduction

A ray tracing algorithm spends most of its execution time computing ray/object
intersections [30]. A ray tracer without any acceleration structure has an O(I n)
complexity, where I is the number of pixels in the image and n is the number
of objects. Scenes with thousands of objects can be unbearable in rendering
time [33]. Several mechanisms have been created to improve performance in
the ray/object intersection, but currently, only two of them are relevant [23]:
Bounding Volume Hierarchy (BVH) which pre-processes the scene to form a tree
of containers that are used to discard big groups of objects [22]; and Kd-trees
that uses a recursive adaptive spacial subdivision [8]. Of them, BVH has become
the most popular because of its good performance for static and dynamic scenes,
widely available open implementations, and its use in state of the art tools [8,16].

There have been active efforts to improve the performance of the BVH in
the CPU and GPU architectures [39,42], but as far as we know, no research has
focused on a solution that utilizes the heterogeneous computing capabilities that
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are available in the very available commodity hardware known as the Accelerated
Processing Unit (APU). This device is a tightly coupled heterogeneous computer
architecture that incorporates a multi-core CPU and a GPU in the same silicon
die [15].

We crafted a specific BVH traversal that uses the heterogeneous computing
resources of the APU. We found that our implementation delivers better per-
formance than a CPU or GPU from the same price range. The possibility of
using the APU architecture for high demanding tasks like the one explored in
this work could position this kind of devices as a viable and low-cost solution
for computationally expensive workloads [9–11].

Section 2 presents a brief explanation of the BVH mechanism and reviews
different efforts aimed at improving its performance. This section also details
the heterogeneous computing platform APU. The BVH acceleration method
designed for the APU can be found in Sect. 3. Section 4 describes the experiments
executed, the hardware used, and the analysis method for the obtained data. The
results are presented in Sect. 5 and discussed in Sect. 6. In Sect. 7, we summarize
the main conclusions and identify future work.

2 Background

2.1 Bounding Volume Hierarchy

The Bounding Volume Hierarchy for accelerating ray/object intersections is
based in a subdivision of the objects that are present in the scene. The objects
are partitioned in a hierarchy of disjoint sets. As can be seen in Fig. 1 (taken
from [30]), elements that are part of the scene are incorporated in containers,
forming a binary tree data structure. Objects are stored on the leaves of the
tree, and each intermediate node stores a bounding box for the elements in the
nodes beneath it [8,33].

When a ray traverses through the BVH tree and does not intersect a bounding
box contained in a node, all the subtree for that node can be clipped. This
algorithm is a solution to a more general problem called collision detection,
which is at the core of a broad spectrum of engineering and computer science
applications, such as physics-based simulations, robotic motion planning, haptic
processing, virtual disassembly, and general computer graphics [12]. The main
advantages of the BVH accelerator against other techniques are:

– It is faster to build [38].
– It is numerically more robust and less prone to missed intersections due to

rounding errors [30].
– It is used for real-time rendering because of its good performance [8].

The performance gain provided by BVH goes from O(I n) to O(I log n).
The scene objects will be contained in the leaves of a binary tree of height log n,
so the collision detection for a ray will have to travel in average log n nodes
(in scenes where the objects are spread) to find if the ray intersects a primitive
[12,17,40].
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Fig. 1. Bounding Volume Hierarchy diagram.

BVH was initially conceived to run in CPUs, and it was later ported to GPUs
by [7]. Among other reasons, it is a difficult endeavor to use the GPU as the
default platform for ray tracing with BVH because the RAM-VRAM transac-
tions are frequent, and when compared with the CPU, GPU has a small cache, so
more bandwidth is needed for memory transactions [16,30]. With that in mind,
recent initiatives focus specifically on the acceleration of the ray/object intersec-
tion in ray tracing through GPUs [42]. They propose a mechanism to compress
the BVH data structures of the pre-processed objects that are sent to the GPU
memory, which reduces the required communication bandwidth between RAM
and VRAM. A disadvantage of this approach is the additional time for data
compressing added to each GPU VRAM transaction. Furthermore, this app-
roach only works well with scenes that require a lot of memory transactions.

Other authors have pointed that BVH traversal does not map well in
GPUs [25,36,37]. Naive GPU implementations could result in hardware under-
utilization due to inefficient work distribution. This problem leads to modifica-
tions of the BVH algorithm to reduce its penalty when running in GPUs [13].
An example of these modifications is the explicit caching of BVH node-pairs to
improve its access time the next time that Bounding Volume Test Tree is accessed
[13,25,36]. Another method implements private work-stacks to improve mem-
ory access costs and reduce inter-thread synchronization [24,25]. Nonetheless,
these approaches generate new problems like work-flow divergence and load-
imbalances that degrades performance [12].

2.2 PCI-Express

PCI-Express is an I/O standard that implements a switched network with point-
to-point serial links [18]. It is widely used in modern computer systems and it
is the de facto bus used to interconnect a GPU with a CPU [34]. All traffic
form main memory and the CPU to the GPU must go through this communica-
tion link. It has the disadvantage that its bandwidth is significantly lower than
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access to DRAM, so it becomes a serious bottleneck in heterogeneous computing
algorithms that are heavily communication-dependent [21].

2.3 Accelerated Processing Unit

An Accelerated Processing Unit (APU) is a tightly coupled heterogeneous com-
puter architecture that in the same integrated circuit has a CPU and a GPU
that shares system memory (RAM) and Input/Output resources. Both units
have a coherence mechanism between their memories and the ability to share
data structures in an efficient manner [15]. This kind of computational unit
brings the opportunity of creating specialized algorithms that make use of it
specific characteristics to obtain better performance [18,21].

It is mentioned in [21] that there is pending work in evaluating the perfor-
mance of APUs in tasks where GPU performance is not practical. The APU can
provide acceleration in tasks that are impacted by the PCI-Express bus transfer
rate, the code is sequential, has a high number of branches, or the inability of
efficiently sharing data structures between the CPU and GPU severely degrades
performance [20,21].

3 Design

We crafted a novel BVH algorithm for APU that uses all its computing resources
to improve the performance of this task. Our mechanism obtains high perfor-
mance by using the ability to share, in an efficient manner, data structures
between the integrated GPU and the CPU as they use the same memory. This
advantage avoids the memory transactions that get bottle-necked through the
PCI-Express bus [21,42].

We developed the same BVH traversal algorithm for the CPU (using C) and
the GPU (using OpenCL). Both processors use the same data structures. None
of the implementations provides any optimization that favors any architecture.
Our implementation of the BVH traversal is heavily based in [30,32,35]. Also,
to obtain acceptable GPU performance we followed the recommendations found
in [21]. The APU code of its internal units (CPU and GPU) is exactly the same
code as the discrete CPU and the discrete GPU. We used OpenCL in all available
GPU architectures as it is the only supported language by the APU GPU. Using
CUDA for the discrete GPU adds another factor to the evaluation that could
lead to wrong conclusions as the performance across GPUs is being measured
for different programming languages.

We used a zero copy mechanism described in [2–4] to share the same data
structures between the CPU and the integrated GPU. We verified the behavior
of the shared memory data structures between the CPU and the integrated GPU
by using the tool CodeXL [1,14]. As expected, none of the data structures were
copied (see Fig. 2). This was not the case with the discrete GPU as can be seen
in Fig. 3.
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Fig. 2. CodeXL profiling result for the developed APU algorithm with zero data trans-
fer.

Fig. 3. CodeXL profiling result for the discrete GPU.

Our algorithm is presented in Fig. 4. All CPU and GPU cores works simulta-
neously to render the image. Both units use the same BVH data structure stored
in RAM. The algorithm divides the image into 16×16 pixel workloads. A thread
is generated for each available CPU core. Each thread will process a workload
and saves its result to memory. If there is no more pending work, the thread
will finish. On the GPU side, we follow the recommendations found in [4,21] to
maximize the GPU resources utilization. We achieved the desired performance
with a workload size of 6×N units, with N representing the total of computing
units in the GPU.

The integrated GPU works in parallel along with the CPU. After processing
its work, the GPU checks if there are at least 6 ×N workloads available. If the
amount is less than that quantity, all remaining work is processed by the CPU
cores. When there are no more workloads remaining, the image is generated and
the process finishes.

4 Methodology

Factorial Analysis of Variance (ANOVA) methodology was chosen due to its
capacity to evaluate the performance of the BVH algorithm across the APU,
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Fig. 4. APU ray tracing algorithm with BVH collision detection.

CPU and GPU architecture in function of the object quantity and resolution
factors [26].

The response variable of the experiment is rendering time. A factor is a com-
ponent that might impact in some way the response variable [26]. Our goal with
the ANOVA experiment is to be able to determine if our selected heterogeneous
computing platform is statistically different from the other architectures across
different object quantities and resolution scenarios.

The factors and its levels that we selected for the experiments are:

– Architecture: This factor is crucial to test the ability of our proposed design
to accelerate BVH traversal and compare its performance against the CPU
and GPU architectures. The levels are:
• APU.
• CPU.
• GPU.

– Objects: The number of objects in a scene directly impacts the rendering
time as it increases the number of BVH nodes that the ray tracing algorithm
needs to traverse [17]. The following amounts for objects were used:
• 1000.
• 4000.
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Table 1. Hardware description.

Characteristic CPU GPU APU

Manufacturer AMD Nvidia AMD

Model Ryzen 5 2600 1050Ti Ryzen 5 2400g

Price ($) 199 199 169

CPU Cores/Threads 6/12 – 4/8

Power Consumption (W) 65 75 65

CPU Cache L2/L3 (MB) 3/16 – 2/4

CPU Frequency (GHz) 3.4–3.9 – 3.6–3.9

GPU Memory (GB) – 4 Shared RAM

GPU Frequency (GHz) – 1.29 1.25

GPU Cores – 768 704

GPU GFLOPS – 2138 1736

• 16000.
• 65000.
• 260000.

– Image resolution: Resolution directly impacts the amount of work that is
processed and the number of BVH traversals [19]. The resolutions selected
for this experiments are:
• 1280 × 720.
• 1440 × 900.
• 1920 × 1080.

There are 5 × 3 × 3 = 45 combinations of the levels of the factors, since it
was decided to have 15 replications, we ended up with 45×15 = 675 runs of the
experiment. Scripts were developed to run the experiments in a random order
and recollect data.

This experiment differs from the approach taken in [31], where effects such as
transparencies, reflections, and anti-aliasing were contemplated as factors in the
ANOVA because their presence impacts rendering time as it loads the processor
with mathematical operations. In the specific case of BVH, the 3 factors defined
above are sufficient to test the acceleration capabilities induced by the APU.

We used two computers to run the experiments that had the same amount of
RAM (8 GB at 2400 MHz single channel) and a 256 GB SSD. One held the CPU
and GPU architecture, and the other had the APU. Table 1 shows the details of
each system.

For each object quantity scenario, the scene is constituted from randomly
placed primitives across the x and y axis of the projection frame and the z axis
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of the scene. From there the factors of resolution and architecture were adjusted
for each experiment run. Following [29], we used rendering time as our response
time to evaluate the performance.

Table 2. Obtained metrics for the APU, CPU and GPU architectures (lower is better).

Metric APU CPU GPU

Average Time (s) 67.53 150.18 204.94

Performance/Pixel (µs) 15.75 34.99 47.75

Our acceleration mechanism as well as the obtained data from the exper-
iments can be found in: https://github.com/ernestoriv7/APU-performance-
evaluation.

5 Results

The data collected from the experiments needed a square root transformation
in order to comply with the ANOVA adequacy requirements [26]. Nonetheless,
we present the de-transformed (i.e., elevated to its square) data results in order
to simplify reader interpretation.

We used the R software [41] to analyze our experiments. The obtained
ANOVA table can be seen in Fig. 5. The average rendering time for each archi-
tecture (the crucial factor of this research) is shown in Fig. 6. Finally, Figs. 7 and
8 present the behavior of each architecture in relation to the other factors.

Fig. 5. ANOVA Table.

https://github.com/ernestoriv7/APU-performance-evaluation
https://github.com/ernestoriv7/APU-performance-evaluation


102 E. Rivera-Alvarado and F. J. Torres-Rojas

A summary of the average rendering time and average performance/pixel
per architecture (for all the combinations of resolutions and object quantities)
is presented in Table 2.
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Fig. 6. Average rendering time in function of the architecture.
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Fig. 8. Object quantity and architecture.

We tested the correctness of our proposed algorithm by verifying that all
three architectures render exactly the same image under the same circumstances.
Typical images generated through the experiments are shown in Figs. 9 and 10.

Fig. 9. 16000 objects
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Fig. 10. 260000 objects

6 Discussion

The ANOVA table presented in Fig. 5 shows that all the main factors defined
are statistically significant (p values lower than 0.05 as pointed by the asterisks),
which means that all they influence the response variable. A Welch’s t pairwise
test determined that APU is statistically different from the other two. As Fig. 6
shows, the APU provides the lowest rendering time and the best performance for
creating an image with BVH acceleration in the average of all the interactions
of object quantities and resolutions.

The metrics obtained in Table 2 are aligned with this result and indicates
that the heterogeneous computing capabilities given by the APU and our design
delivers the best rendering time per pixel, when compared against the time
of the CPU and GPU platforms. Analyzing the performance difference from the
same table we can see that the heterogeneous computing capabilities of the APU
architecture is able to provide a performance gain of 55.03% against the CPU
and a 67.04% gain when compared against the GPU architecture. The impact
of resolution, object quantity, and their interactions on rendering time is vastly
explained in [8,19,30,32,35].

Analyzing the graphs of Figs. 5, 7 and 8 through the ANOVA and Welch’s t
pairwise tests we found that:

– The APU is statistically better in performance to the other two architectures
at any level of resolution. The resolution level impacts in the amount of
processed work and the number of BVH traversals for each pixel. Processing
a pixel implies at least one ray (more because of the anti-aliasing, reflections
and transparencies effects in the scene) which in itself triggers intersection
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detection through BVH. Hence, Fig. 7 evidences that our acceleration method
appears to be less sensitive to the increase of traversals in the BVH data
structure.

– The quantity of objects in the scene directly impacts the amount of intersec-
tions and nodes that need to be detected through the BVH data structure,
which generates more memory accesses and mathematical operations. The
Welch’s test and the data obtained in Fig. 8 shows that the APU render-
ing time is statistically different and better than CPU or GPU, for 4000 or
more objects. The reason of this behavior is that the internal components
of APU architecture have an easy access to RAM where the BVH data tree
and objects are stored. This situation is different in a GPU implementation,
where as object quantity increases, PCI-Express bus memory transfers also
does, which negatively impacts the rendering time. Also, it has been iden-
tified that collision detection with GPUs is challenging because of compute
units sub-utilization and inefficient memory access patterns due to the unpre-
dictability of which the BVH data structure needs to be accessed [12].

Floating point numbers with 64 bits (FP64) operations are required to cal-
culate correct intersections in the BVH tree for rendering images like the ones
illustrated in Figs. 9 and 10. If a lower bit quantity operation is used (FP32) the
rendered image shows incorrect artifacts.

Finally, we see that the correct outputs and the metrics obtained from the
analysis performed provides evidence that the proposed heterogeneous comput-
ing BVH traversal acceleration mechanism crafted specifically for the APU, is a
viable option for improving the performance of this task.

7 Conclusions and Future Work

We presented a novel mechanism for accelerating BVH traversal through a
tightly coupled heterogeneous architecture known as the APU. Our design uti-
lizes all available computing resources in the APU (integrated GPU and CPU)
to render a ray traced image with BVH for collision detection. Our approach
takes advantage of the particular characteristics of the APU architecture, for
instance, its ability to share data structures from RAM and the ability to effi-
ciently coordinate work within its internal processors.

From our experiments we were able to demonstrate the potential of the
selected heterogeneous computing architecture as a viable platform for improving
the performance of BVH traversal. Data shows that through our specialized algo-
rithm the APU performance advantage becomes more significant as the memory
access, mathematical operations and BVH nodes increases.

The correctness of the generated image is dependent on the floating point
operations resolution of the architecture. In our case, FP64 was required for
obtaining correct results so it is implemented in our design. This could lead to
that other computing platforms with optimized FP64 operations could benefit
from our mechanism. On the other hand, several techniques to minimize the
FP32 rounding error [30] can also be used.
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For future work, we plan to evaluate additional ray tracing features and
acceleration methods in our design. We also plan to test new heterogeneous
computing platforms as they could change the results of this research. We want
to study other workloads besides BVH to measure whether the approach taken
in this research effort keeps its performance advantage in those tasks. Also,
a more in-depth evaluation that measures the performance in function of the
enabled cores in all architectures could provide valuable information. The effect
of enabling or disabling hyperthreading and governors in the CPUs to evaluate its
impact on performance it’s another pending evaluation. Since the APU uses the
same code as their CPU and GPU counterparts, it would be interesting to explore
the effects of vast optimization of the rendering code in the three architectures
with different programming languages and commercial/vendor specific solutions
like Nvidia OptiX [27,28], Intel Embree [6], Radeon Rays [5] and PowerVR [40].
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Abstract. The solution of sparse triangular linear systems (SpTrSV) is
a fundamental building block for many numerical methods. The impor-
tant presence in different fields and the considerable computational cost
of this operation have motivated several efforts to accelerate it on dif-
ferent hardware platforms and, in particular, on those equipped with
massively-parallel processors. Until recently, the dominant approach to
parallelize this operation on this sort of hardware was the level-set
method, which relies on a costly preprocessing phase. For this reason,
much of the research on the subject is focused on the case where several
triangular linear systems have to be solved for the same matrix. How-
ever, the latest efforts have proposed efficient one-phase routines that
can be advantageous even when only one SpTrSV needs to be applied
for each matrix. In these cases, the decision of which solver to employ
strongly depends of the degree of parallelism offered by the linear sys-
tem. In this work we provide an inexpensive algorithm to estimate the
degree of parallelism of a triangular matrix, and explore some heuristics
to select between the SpTrSV routine provided by the Intel MKL library
and our one-phase GPU solver. The experimental evaluation performed
shows that our proposal achieves generally accurate predictions with run-
times two orders lower than the state of the art method to compute the
DAG levels.

Keywords: Multi-core · GPU · Sparse triangular linear systems ·
Parallelism estimation

1 Introduction

Several scientific problems require the solution of sparse triangular linear systems
(SpTrSV). Some examples are found in the context of Krylov subspace methods
to solve general sparse linear systems, where usually preconditioners have to be
applied in each iteration of the solver. A popular family of preconditioners are
those based on approximate factorizations, and their application involves the
solution of two triangular linear systems [12]. On the context of direct methods,
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this operation is also required to solve the linear systems arising from the sparse
LU factorization [2].

Parallel algorithms for the SpTrSV face several performance issues due to
the nature of the operation. Specifically, in the general case, the elimination
of one unknown in an equation depends on the previous elimination of others,
which constrains the parallel scheduling of the algorithm. These dependencies are
determined by the sparsity pattern of the sparse matrix, which can be interpreted
as a Directed Acyclic Graph (DAG) where each node is an equation or unknown
and the edges represent the dependencies between equations. Additionally, the
triangular structure of the matrix usually generates load imbalance between
tasks.

The importance of this kernel for the construction of numerical algorithms,
together with its considerable computational cost, has motivated several efforts
to accelerate this operation on different hardware architectures [1,13] and, in
particular, on massively-parallel platforms such as GPUs [5,9,11,14]. Much of
the research on the subject is focused on the case where several triangular lin-
ear systems have to be solved for the same matrix. In this sort of scenarios,
the dominant approach to parallelize this operation on this kind of hardware
is the level-set method [1]. This method relies on analyzing the dependencies
between rows of the sparse matrix to determine an ordered group of level-sets
that contain rows that are independent and can be solved in parallel. The cost
of this operation is proportional to the number of nonzero entries of the sparse
matrix and, in general, is superior to the cost of solving one triangular system.
The advantage of this method is that using the analysis information can reduce
the runtime of the solution phase significantly. However, recent efforts [3,4] have
proposed efficient one-phase routines that can be advantageous even when only
one SpTrSV needs to be applied. These are based on a different paradigm where
each task is assigned with a row to solve and starts its processing as soon as the
dependencies of that row have been solved.

The performance of parallel algorithms for the SpTrSV varies greatly
according to the sparsity pattern of the matrix. In these sense, it is useful to
determine beforehand which kind of solver is likely to perform better for a spe-
cific matrix. Our previous research on the subject [5] suggests that the number
of level-sets of a sparse matrix is an important factor to take into account for the
prediction of the performance of this kernel on GPUs. In general, it is strongly
linked to the degree of parallelism offered by the structure of the sparse matrix.
This parallelism can be exploited (or not) by a given SpTrSV implementa-
tion. However, the computational effort required to obtain the total number of
level-sets is similar to that of solving a triangular linear system with the cor-
responding matrix, which makes this metric impractical when attempting to
predict the performance of a triangular solver.

In this work we propose an algorithm to estimate the total number of level-
sets of a triangular sparse matrix that is, in general, several orders of magnitude
faster than the proper algorithm to compute the level-sets. Then we show how
this estimator can be used to predict whether or not our GPU triangular solver



Towards a Lightweight Method to Predict the Performance 111

will perform better than the one of the Intel MKL [7] for a given matrix. The
experimental evaluation performed showed that our proposal is able to clas-
sify the triangular matrices with remarkable accuracy, with an almost negligible
computational effort.

The rest of the article is structured as follows. Section 2 summarizes the main
aspects related with the solution of sparse triangular linear systems. Later, in
Sect. 3, we describe our proposal to estimate the degree of parallelism offered
by the sparse triangular linear systems. After that, the experimental evaluation
performed is summarized in Sect. 4. Finally, in Sect. 5, the main conclusions
arrived in this work and the future lines of work are exposed.

2 Solution of Sparse Triangular Linear Systems

If L ∈ R
n×n is a lower sparse triangular matrix, b ∈ R

n is the RHS (right hand
side) vector, and x ∈ R

n is the sought-after solution, the linear system

Lx = b (1)

can be solved by simple forward-substitution. The procedure consists on replacing
the value of the solved unknowns on the following equations. To obtain unknown
xi, it is necessary to multiply each nonzero coefficient lij by xj , subtract the
obtained value from bi, and finally divide the result by the diagonal element
or row i. It can be noticed that the solution of xi requires that the xj that
correspond to the column indexes of the nonzero entries of row i have been
solved previously. This clearly implies some degree of serialization, since row i
cannot be computed in parallel with those rows.

Algorithm 1 represents the serial version of the lower SpTrSV, where the
matrix L is stored in CSR sparse storage format. The most straightforward
procedure to parallelize this algorithm consists on a pool of concurrent tasks,
each one responsible of solving one or more equations, that wait until their data
dependencies have been resolved to start their execution. We refer to this idea
as the self-scheduled approach.

A more advanced strategy for the parallelization of this algorithm, called
level-set scheduling, is based on interpreting the sparse matrix as a Directed
Acyclic Graph (DAG) that represents the dependencies of each unknown. A
nonzero element in lij means that the equation i depends on the value of
unknown j, so there is an edge in the DAG from node j to node i. By means of
renumbering the nodes of this DAG, they can be organized into an ordered list of
levels, in which the nodes in one level depend only on the nodes of the previous
levels; see Fig. 1. This means that all nodes (equations) in one level can be solved
in parallel provided that the previous levels have already been computed.

2.1 The Self-scheduled strategy in GPU

In 2016, Liu et al. [8,9] presented a synchronization-free SpTrSV method for
matrices stored in CSC (Compressed Sparse Columns) format [6,12], that takes
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Algorithm 1. Serial solution of sparse lower triangular systems for matri-
ces stored in the CSR format. The vector val stores the nonzero values of L
by row, while row ptr stores the indexes that correspond to the beginning
of each row in vector val, and col idx stores the column index of each ele-
ment in the original matrix. The nonzero elements of each row are ordered
by column index.
1 Input: row ptr, col idx, val, b
2 Output: x

x = b
for i = 0 to n − 1 do

for j = row ptr[i] to row ptr[i + 1] − 2 do
x[i] = x[i] − val[j] × x[col idx[j]]

end for
x[i] = x[i]/val[row ptr[i + 1] − 1]

end for

Fig. 1. Nonzero pattern of lower triangular sparse matrix (top), its DAG (bottom-left),
and its level-set reordering (bottom-right).

advantage of the computational power offered by modern GPUs. The procedure
assigns a warp to each column and performs a busy-wait until all its depen-
dencies have been fulfilled. This information is obtained through a “vector of
dependencies” that needs to be initialized by a fast preprocessing stage. Once
the warp has no dependencies it computes the solution element associated with
that column and the contribution of each nonzero of the column to the rest of the
unknowns, updating the corresponding positions in the vector of dependencies.

In [4], the authors proposed a variant of this strategy for the CSR storage
format that does not perform any preprocessing of the sparse matrix but the
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initialization of one (ready) vector, and avoids the use of the slow atomic oper-
ations. The experimental results showed that this version outperforms the CSC
counterpart in all cases.

Later, in [3] the same authors proposed three other variants of the algorithm,
which take advantage of some particularities of the different linear systems and
the GPU execution model. In particular an improved version of the one-stage
solver that avoids representing the state of each row with an integer in the ready
vector is presented. Rather, the solution vector is initialized with an invalid
value (NaN), and instead of querying the ready vector until a nonzero value is
obtained, each thread will fetch the corresponding value of the solution vector
and consider it the final value if the most significant half of the floating point
value is different from NaN.

A simplified version of our GPU kernel is presented in Algorithm2. The input
parameters are the three vectors representing the sparse matrix stored in CSR
format, the right hand side, the dimension of the system, and a pointer to the
memory reserved for the ready vector. As an output parameter, the function
receives a pointer to the vector of unknowns.

Algorithm 2. Simplified pseudo-code of our solution kernel.
1 Input: row ptr, col idx, val, b
2 Output: x

wrp ← global warp identifier
lne ← lane identifier
row start ← row ptr[wrp]
left sum ← 0
while not ready[col idx[row + lne]] do

. . .
end while
left sum ← left sum + val[row start + lne] × x[col idx[row start + lne]]
Reduce left sum inside the warp
if lne = 0 then

x[wrp] ← b[wrp] − left sum/val[row ptr[wrp + 1] − 1]
ready[wrp] ← 1

end if

2.2 Solution of One Sparse Triangular Linear System

In a previous work [10], we studied the benefits offered by the different SpTrSV
methods in the context the resolution of only one linear system.

This study shows that the two best methods to solve sparse triangular linear
systems in this context are the routine offered by the MKL library to run in
CPU and our method on the GPU. Additionally, the performance advantage of
one method or the other is strongly conditioned by the parallel level offered by
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each the linear system. Specifically, the authors compute the ratio between the
number of the levels in the DAG and the dimension of the matrix. However, the
computational effort required to obtain the total number of level-sets is similar to
that of solving a triangular linear system with the corresponding matrix, which
makes this metric impractical when attempting to predict the performance of a
triangular solver.

3 Proposal

The number of level-sets of a triangular sparse matrix is equal to the length of
the longest-shortest path starting from a root node to any of the nodes (a node
with no incoming edges) in the associated DAG.

To obtain the number of level-sets of a lower-triangular sparse matrix L, it
is necessary to compute the maximum between the depth of all the nodes, which
is defined recursively as

depth(i) =

{
1 if lij = 0 ∀j < i

maxj<i{1 + depth(j) : lij �= 0} otherwise

The computation of the depth of all nodes requires O(nnz) operations. Thus,
the computational cost of the operation is similar to that of solving the linear
system, which makes impractical the use of the number of level sets to estimate
the performance of a following linear system solution. However, a sufficiently
accurate estimation of the number of level-sets and, in general, of the available
parallelism of the sparse triangular system, can be computed with a much lower
computational effort.

Our proposal is based on computing the maximum between the length of a
set of paths that are constructed following certain rules. In general, the more
paths are constructed the more accurate, but also the expensive the estimator
will be.

The paths are constructed departing from a node v in the DAG that has at
least one incoming edge. The next node in the path will be the higher numbered
node v′, with at least one incoming edge, such that there is a directed edge from
v′ to v. The (lower-)triangular structure of the sparse matrix enforces that all
the incoming edges of a given node depart from nodes with lower number. We
select the higher numbered node hoping that this will make the number of the
following nodes in the path decrease more slowly, and thus result in a longer
path. Although this is not necessarily true, it is a reasonable assumption in
practice.

The procedure is then repeated replacing v with v′ until all the nodes that
have outgoing edges ending in v′ have no incoming edges.

Considering the sparse matrix, the procedure moves upwards, setting the
next row to visit as the column index of the rightmost nonzero entry before
the diagonal such that the corresponding row has more than one nonzero. To
maximize the probability of finding the longest path with this procedure, it is
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desirable to select the starting rows such that the rightmost nonzero has a high
column index. However, finding the row that maximizes this property can be
expensive and does not guarantee the resulting estimation to be more accurate.
As a compromise solution, we select the starting rows from the bottom of the
sparse matrix.

A pseudocode that describes the procedure that operates on the sparse matrix
is presented in Algorithm 3.

Algorithm 3. Pseudo-code for the procedure that computes the estimated
number of level-sets of a lower triangular sparse matrix stored in CSR for-
mat. The procedure receives the arrays that determine the nonzero struc-
ture of the sparse matrix, and the number of paths to construct as param-
eters. The number of paths is related to the accuracy and to the cost of
computing the estimation.
1 Input: row ptr, col idx, n paths, n
2 Output: est levels

for i = 0 to n paths − 1 do
path length = 0
current row = n − i
while current row has only one nonzero do

current row = current row − n paths
end while
while current row has more than one nonzero do

off = 2
next row = col idx[row ptr[current row] + nnz row − off ]
while next row has only one nonzero and off < nnz row + 1 do

off = off + 1
next row = col idx[row ptr[current row] + nnz row − off ]

end while
path length = path length + 1
current row = next row

end while
est levels = max(est levels, path length)

end for

Although the procedure presented is serial, it could be easily parallelized
since the construction of the paths is completely independent. After the length
of all paths is recorded, the maximum can be taken in logarithmic time by a
reduction procedure. As the main purpose of this work is to present and validate
the usefulness of the estimation procedure, the parallel implementation is left
for future work.

In the worst cases, as the case of a bidiagonal matrix composed by the diag-
onal and the first subdiagonal, or the case where the bottom row is full and all
the other rows have no nonzeros other than the diagonal pivot, the procedure to
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construct one path requires O(n) operations. However, on both cases the estima-
tion is equal to the exact number of level-sets. On the average case, the cost of
the estimation is expected to be significantly inferior to the cost of the level-set
analysis, if a moderate number of paths is constructed.

4 Experimental Evaluation

In this section we present the experimental evaluation performed with the aim
of validating our proposal. Next, we describe the hardware platform and test
cases employed, to later discuss the experimental results.

4.1 Hardware Platform

The hardware platform employed is a server equipped with a Intel Xeon
Gold 6138 CPU of 20 cores at 2.00 GHz and 128 GB of RAM connected to a
Nvidia P100 GPU with 12 GB of RAM. The operation system used is the Cen-
tOS Linux 7 (Core) and the CUDA Toolkit for the GPU is version 9.2.

4.2 Test Cases

To perform the experimental evaluation we used a set of real matrices, of medium
and large dimension, extracted from the SuiteSparse Matrix Collection1 (for-
merly known as the University of Florida Matrix Collection –UFMC–). In par-
ticular, we considered the lower triangular part of all the matrices in this col-
lection with real coefficients and of dimension larger than 10,000, obtaining 585
sparse matrices. The execution of the double precision solver failed for 5 of these
matrices. This relates to the larger memory requirements of this variant com-
pared with the single precision counterpart. For this reason, the evaluation of
the estimator routine is performed on the remaining 580 matrices.

Figure 2 summarizes the distribution of the test cases considering the dimen-
sion and the number of nonzero coefficients. It can be observed that, although
most matrices do not surpass the 120,000 rows, the test set is sufficiently var-
ied regarding the matrix size. A similar observation can be made regarding the
number of nonzeros. Especially considering that the distribution of the number
of nonzeros does not correspond with the distribution of the matrix dimension.

All the runtimes presented next are the average of 100 independent execu-
tions. Additionally, we employ the IEEE floating point representation, in single
or double precision, for all the experiments.

4.3 Experimental Results

The experimental evaluation of our proposal has to be performed considering
two different aspects. First, we shall evaluate the accuracy of the estimation of

1 http://faculty.cse.tamu.edu/davis/suitesparse.html.

http://faculty.cse.tamu.edu/davis/suitesparse.html
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Fig. 2. Dimension (left) and number of nonzero coefficients (right) of the test matrices
ordered by dimension. The y axis is in logarithmic scale.

the number of level sets obtained by our proposal. In particular, it is important
to evaluate if the obtained estimation is sufficient to distinguish the matrices for
which our GPU solver will perform better than the CPU solver. Second, we need
to evaluate our proposal from the point of view of its execution time, because the
estimation will be useful only if its computation is much faster than computing
the actual level-sets.

Figure 3 shows the runtime difference between the GPU solver and the MKL
solver relative to the runtime of the slower solver for each matrix, which is
calculated as

ΔT =
tMKL − tGPU

max(tMKL, tGPU )
. (2)

We adopt this metric to visualize more clearly the cases for which one solver
is better than the other, and so that taking the average for all matrices makes
sense. The runtimes in the figure are ordered according to the number of level-
sets delivered by each of the evaluated routines.

The first thing that can be observed from the figure is that the shape of the
first three graphs is more or less similar, while the fourth graph differs from the
others. A breaking point can be clearly spotted between the 300th and the 350th
matrix of each of the first three graphs, which is equivalent to approximately
400 level-sets or an estimation of 260 level-sets (note that, by construction, the
proposal tends to under-estimate the actual number of level-sets). The matrices
that appear before this breaking point are suitable, in general, to be solved by
our GPU routine, while the matrices past the breaking point are best suited for
the CPU solver. This suggests that both the actual number of level-sets and the
estimation, using 500 and 50 paths, are by themselves a good indicator to select
one solver or the other.

To evaluate if the proposal is useful in terms of its computation time, we
again compute the difference between the runtimes of the routine to compute
the depths of all the nodes in the GPU and our proposal (executed with 500,
50, and 5 paths) relative to the runtime of the slower routine. In Table 1 we
display the minimum, maximum and average of this metric obtained for each
of the estimations. It is important to consider, that this comparison is not fair
with our proposal, because the routine that computes the depth of the nodes
is parallel and runs on a GPU, while the proposal implementation is serial and
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Fig. 3. Runtime difference between the GPU solver and the MKL solver relative to the
runtime of the slower solver (ΔT ). The results are presented in four different orders:
ordered by ascending actual number of level-sets (top left), ordered by ascending num-
ber of level-sets estimated with 500 paths (top right), ordered by ascending number
of level-sets estimated with 50 paths (bottom left), ordered by ascending number of
level-sets estimated with 5 paths (bottom right). Positive values mean the GPU solver
is faster.

runs on a CPU. Furthermore, the GPU routine computes the depth of each node
but does not include a reduction of these values to compute the total number of
level-sets. However, the results show that even in this conditions, the proposal
executed with 500 paths is, on average, 81% faster than computing the actual
level-sets, while with 50 paths is at least 72% faster, with an average of 98%.
With 5 paths, the proposal has a negligible cost, but the accuracy of the previous
classification deteriorates significantly.

Table 1. Runtime difference between the routine to compute the depths of all the
nodes in the GPU and our proposal (executed with 500, 50, and 5 paths) relative to
the runtime of the slower routine. Positive values mean our proposal is faster.

Number of paths

500 50 5

Min −0,55 0,72 0,95

Max 1,00 1,00 1,00

Avg 0,81 0,98 0,99

Finally, we evaluate how this estimation of the number of level-sets can be
combined with other matrix features to obtain more accurate predictions. In
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particular, we are interested in evaluating the interaction with the dimension n,
the number of nonzero elements nnz and the average number of nonzero elements
per row, because this metrics can be obtained in O(1).
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Fig. 4. Relation between ΔT (color), the actual number of level-sets (left), the esti-
mated number of level-sets with 500 paths (middle), with 50 paths (right), and n (top),
nnz (middle), and nnz/n (bottom). The points in yellow correspond to matrices for
which our GPU solver shows significantly better performance, while the blue points
correspond to those matrices for which the MKL solver is better. (Color figure online)

Figure 4 plots ΔT according to the actual and estimated number of level-
sets and the other three matrix features mentioned above. The points in yellow
correspond to matrices for which our GPU solver shows significantly better per-
formance, while the blue points correspond to those matrices for which the MKL
solver is better.

In the plots that link the number of level-sets and the dimension, the dis-
tribution of the points is similar to the one previously obtained for the number
of level-sets alone. Combining the number of level-sets with the dimension does
not improve significantly the clustering of the points.

On the other side, in the clustering of the points in the graphs that link
the number of level-sets with the number of nonzeros of the matrix, it can be
observed that for matrices with large nnz the GPU performance is competitive
with that of MKL even when the number of level-sets is large. For the average
number of nonzeros per row, this clustering is even clearer.
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Given these results, the application of a machine learning algorithm that
considers n, nnz and the estimated number of level-sets, as well as an analytical
model that links the three metrics, can be useful to achieve a more accurate
classification of the matrices.

5 Final Remarks and Future Work

In this work we have advanced in our study towards the characterization of the
performance of sparse triangular solvers in HPC hardware platforms. Specifically,
we have analyzed the operation in the context of the solution of one linear system
per matrix pattern, where one stage methods are preferred in general over two-
phase methods that require a preprocessing stage.

The results obtained previous work indicated that the number of level-sets
of a triangular sparse matrix is an important factor to take into account when
selecting between a parallel GPU solver and a CPU one. Unfortunately, the cost
of computing this number makes it impractical to use with this purpose.

In this work we address the design of a lightweight algorithm to estimate the
degree of parallelism offered by each linear system. This strategy is a good tool
to select between the two prominent HPC methods in this context, namely, our
GPU solver and the CPU routine offered by the MKL library.

Our proposal is based on a fast heuristic that estimates the number of level-
sets of the sparse matrix. The experimental evaluation of our tool was performed
over 580 different sparse triangular linear systems from the SuiteSparse Matrix
Collection. Although our method is not computationally optimized, it largely
outperforms the runtimes offered by the state of the art (GPU) method. Addi-
tionally, the classification of the linear systems obtained with the estimator,
according to which is the best performing solver in each case, is remarkably
similar than that obtained using the actual number of level-sets.

Some parts of our effort can be extended in order to improve several aspects.

– First of all, it is mandatory to develop a parallel version of our method,
possibly including a GPU variant. This will allow to obtain more accurate
estimations at a lower computational cost.

– Considering the last part of our experimental evaluation, it seems reason-
able to study an estimator that considers also the dimension and number of
nonzeros of the system by means of machine learning techniques.

– Finally, another interesting line of work is the study the usage of recent GPU
innovations, such as Tensor Core processors and cooperative groups, for both
the acceleration of the SpTrSV GPU solver as well as our heuristic.
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Abstract. The Friedman Test has been proposed in 1937 to analyze
tables of ranks, like those arising from a wine contest. If we have N
judges and k wines, the standard problem is to analyze a table of N
rows and k columns holding the opinion of the judges. The Friedman’s
Test is used to accept/reject the null hypothesis that all the wines are
equivalent. Friedman offered an asymptotically valid approximation as
well as exact tables for low k and N . The accuracy of the asymptotic
approximation for moderate k and N was low, and extended tables were
required. The published ones were mostly computed using Monte Carlo
techniques. The effort required to compute the extended tables for the
case without ties was significant (over 100 years of CPU time) and an
alternative using many-core processors is described here for the general
case with ties. The solution can be used also for other similar tests which
yet lack for large enough tables.

Keywords: Friedman Test with ties · Critical values calculation · High
Performance Computing · HPC · Graphics Processing Units · GPUs

1 Introduction

The Friedman Test [8] was proposed to analyze a table of ranks. The standard
problem can be illustrated with a wine contest, where N judges analyze inde-
pendently the properties of k wines, producing each a rank among wines without
ties. The key problem is to discern if the resulting answers find any difference
between the wines or not. If they found it, there exist other test with lower statis-
tical power which will compare the wines pairwise to decide if one is significantly
better than the other.

The answers of the judges are organized in a table of integer entries, of N rows
and k columns. The original Friedman statistic was designed for the case without
ties. Each row has exactly the same set of elements (integers from 1 to k) and
c© Springer Nature Switzerland AG 2020
J. L. Crespo-Mariño and E. Meneses-Rojas (Eds.): CARLA 2019, CCIS 1087, pp. 122–135, 2020.
https://doi.org/10.1007/978-3-030-41005-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41005-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-41005-6_9


Accelerating the Calculation of Friedman Test Tables 123

just differ in the permutation. However, there exist other variants which deal
with the general case, and will be presented in Sect. 2. In a particular problem,
with k and N given, the statistic is computed and then it should be compared
against critical values. In its original paper, Friedman offered exact tables for
the critical values of the statistics for low k and N . They were obtained by brute
force through enumeration. Later, other researchers expanded somewhat the set
of tables using either brute force, symbolic computation and/or Monte Carlo
simulation, thus covering low and moderate (k,N) values. For higher values of k
and N asymptotic estimates are offered based upon the chi-square and normal
distribution.

In practical situations, k and N are given, so practitioners face two situations:
if they are lucky enough, there exist a table for such k and N to use. Other-
wise, they should use the asymptotic estimate without any clue about the error
assumed. Recently López-Vázquez and Hochsztain [13] have presented extended
tables for this problem as well as a review of the literature, finding some cases
where the use of the asymptotic estimate led to the wrong conclusion because of
the lack of a better estimation. They computed such extended tables using an
embarrassingly parallel approach, requiring more than a year of wall-clock time
using 100 processors for the case without ties.

Since the analytical case is intractable, the procedure to estimate the prob-
ability density function (PDF) was based upon Monte Carlo simulation. The
PDF of the Friedman’s statistic is discrete, a fact which is more evident for
low k an N . The authors reported that a significantly large number of events
(of the order of 108) were required to attain convergence for each pair (k,N).
Associated wall time per event varied due to a number of reasons, including the
(k,N) values themselves, the sequential CPU processing speed, etc. but has a
log-normal distribution.

In recent years, the development of hardware platforms was restrained by
the physical limits of materials that compose computer processors. In order to
mitigate this deceleration, the most spread strategy is the use of several proces-
sor units concurrently. In this line, Graphics Processing Units (GPUs) appeared
as new resource on the High Performance Computing (HPC) hardware land-
scape [11]. GPUs include a large number of processor units, typically hundred
or thousands of CUDA cores, reaching impressive performance rates. Another
remarkable characteristic of this kind of platforms is that they are largely cheaper
than other HPC options (e.g. clusters). Thus, GPUs in the present are widely
used in several scientific environments [1,6].

The high execution time involved in the calculation of the Friedman Test
tables, caused by both the large number of events (up to 108) required for making
an accurate estimation, and the elevated number of pairs (k,N) (up to 10390 pair
of values [13]), motivates the design of more efficient implementations. Monte
Carlo simulations have represented an inspiring problem for the design of GPU
implementations, since these type of simulations are highly parallel and well
suited for such devices [5].
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In this work, we explore the use of GPUs for accelerating the computation of
the Friedman’s test table. Since the critical values of the statistics have already
been calculated for the original Friedman test without ties, we focus in the
general case that includes ties. To the best of our knowledge this is the first effort
to implement this kind of computation with the massive parallel paradigm. Our
goal in this paper is to study how the procedure for estimating the critical values
using a Monte Carlo simulation can be ported efficiently to the GPU platform,
but not to make the complete estimation of the whole PDF for all the (k,N)
pairs. The main idea of our proposal is to group calculations of several events
in a single kernel grid, thus generating a large number of thread blocks with a
high degree of parallelism.

The experimental evaluation performed over three different test cases in a
GeForce GTX 980 Ti GPU obtained runtime reductions that range between
9.97× and 18.90×. This reduction means conservatively that for this problem a
single GPU is equivalent to the workforce of ten processors. From these results,
and since there are no Friedman Test tables in the general case (with ties) at
the moment, this effort could be used in the future for making the complete
estimation of the PDFs of the statistic.

Additionally, the one by Friedman is not the only statistic proposed for ana-
lyzing the table of ranks. Quade [19] designed another statistic that also has
an asymptotic chi-square approximation for large N . Iman and Davenport [10]
derived an alternative statistic using the one by Friedman as starting point,
and proved that asymptotically fits the F-distribution. In a parametric setting,
Fawcet and Salter [7] suggested another statistic which also fits asymptotically
the F-distribution. This is not an exhaustive list; other less popular propos-
als exist. In all cases there is no mention about the accuracy of the asymptotic
approximation for the case of low and moderate values of k and N . Our proposal
in this paper can be easily extended to such statistics.

The rest of the article is structured as follow. Section 2 summarizes the main
aspects of the Friedman test, specifically the case that includes rank ties, as well
as the procedure for calculating the Friedman Test tables. Later, in Sect. 3, our
proposal is described. After that, the experimental evaluation for validating our
approach is showed in Sect. 4. Finally, the principal conclusions arrived in our
effort and the future lines of work are summarized in Sect. 5.

2 Friedman’s Test

The Friedman’s test is a non-parametric statistical test developed by Friedman
in 1937 [8,9,22]. It is used to detect if an ordinal factor (dependent variable)
has any statistical difference between several groups. The test is also used when
considering continuos data that is not distributed following a normal distribu-
tion (what excludes the use of other tests like one-way ANOVA with repeated
measures [22]). For instance, it is frequently employed for checking if the differ-
ences in the quality of the numerical results of different stochastic algorithms
are statistically significant among a set of problems [2,4,18].
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In this section, first we explain the idea of the Friedman’s test considering
rank ties, and then we address some aspects related to the procedure for calcu-
lating the critical values of the statistics for this test.

2.1 Friedman’s Test with Rank Ties

To explain the idea of the Friedman’s test with ties, we return to the wine
contest example. Now, each judge assigns a rank to each wine between 1 (the
best ranking) and k (the worst ranking) but ties in the ranking are allowed. The
null hypothesis is that there are no significant differences in the quality of the
wines, i.e., they taste similarly for the judges involved in the contest.

Since we are dealing with the Friedman’s test with rank ties, if there are any
ties in the results, the final ranks of the wines are computed as the average rank
of the tied wines. For example, if the results are:

[2, 3, 5, 3, 1], (1)

the final ranks of the wines are:

[2, 3.5, 5, 3.5, 1]. (2)

After the update of the ranks of the ties, the ranks obtained by each wine for
each judge are averaged in order to calculate the final rank (Rj for algorithm j).
If all the wines taste similarly for the judges involved in the contest, then their
ranks Rj should be similar. The Friedman statistic with ties Fr is computed
as [3]:

Fr =

N(k − 1)

⎡
⎣

k∑
j=1

R2
j

N
− CF

⎤
⎦

∑
r2ij − CF

(3)

where CF is the ties correction (1/4)Nk(k+1)2 and rij is the rank corresponding
to the problem j in column i. If the null hypothesis holds, and N and k are big
enough, then Fr is distributed according to a chi-square (χ2) distribution with
k − 1 degrees of freedom.

2.2 Algorithm for Computing the Friedman’s Test Table Values

The goal is to produce an implementation that allows to compute a large number
of events1 for each of the required pair (k,N)2. For this reason, the implemen-
tation has to be efficient in order to complete the Monte Carlo simulations in a
reasonable time.

1 Estimated in the order of 108.
2 Set of 10390 pairs (k;N) whose asymptotic estimates differ more than a percentage

w.r.t. the Monte Carlo ones.
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The set of (k,N) pairs that needs to be estimated was determined in [13].
The region of interest is:

{
2 ≤ k ≤ 400

2 ≤ N ≤ 3 + 250√
k

(4)

For each pair (k,N), the procedure for computing the Friedman’s test table
value involves the construction of a histogram that approximates the probability
density function. The data for the histogram is generated using Monte Carlo
simulations, and therefore a large number of events has to be calculated in order
to make an accurate approximation. The steps required for calculating a single
event are the following (these steps have to be calculated 10390 × 108 times for
completely estimating the Friedman’s test table values):

1. Generate a N -by-k matrix of natural numbers between 1 and k following a
uniform distribution.

2. Sort each of the rows in ascending order, storing only the index of each element
of the sorted row. If there are any ties in the values, the indexes are calculated
as the average rank.

3. Compute
k∑

j=1

R2
j :

(a) Sum the elements of each column of the matrix obtained in the previous
step. The result is a vector of k elements.

(b) Compute the final result of the experiment as the sum of the squares of
the elements of the vector obtained in Step 3a.

4. Compute
∑

r2ij :
(a) Calculate the square of each element of the matrix.
(b) Sum all the resulting values from in Step 4a.

Thus, the relevant operations to implement efficiently the calculations asso-
ciated with a single event are:

– the process of generation of random numbers
– the sorting of each row of the matrix
– the computation of the sum of the elements in each column of the matrix
– the sum of the elements of the vector
– the sum of the squares of the elements of the matrix

Random number generation is a rather common problem due to its use in
different areas such as statistics and cryptography. In this context, Pseudo Ran-
dom Number Generators (PRNGs) are used. A PRNG is an algorithm that uses
mathematical formulas and an initial value (or seed) to produce a deterministic
sequence of numbers with similar properties to random numbers.

CUDA CURAND Library [16] is used for the random number generation on
the GPU. Among several generators available in the library, we have selected
Philox 4x32 10 [20] since it has pass both the BigCrush test [16] and the Ising
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test [14]. BigCrush is the most demanding battery in TestU01 [12,17] (a library
that provides tools for the statistical testing of random number generators) and
it is widely accepted for testing the quality of random numbers. It includes a
total of 106 tests and uses close to 238 random numbers.

The Philox 4x32 10 generator is able to produce 264 subsequences of pseudo
random numbers with period 2128, which is larger than the maximum amount of
numbers required for the experiments (15 × 400 × 108). To generate the random
numbers of the algorithm in the CPU, we use the Random123 library [20,21]
since it provides a CPU implementation of the Philox 4x32 10 generator.

Next, we briefly comment on the CPU implementation of the other three rel-
evant operations for computing the Friedman’s test table values. For sorting each
row of the matrix, and since the CPU implementation is coded in C++, we use
the sort function available in the C++ Standard Template Library (STL) [23].
The sort function is used on the random number values for computing the index
of the ordered values. Finally, for the sum of the columns and of the resulting
vector, the implementation on CPU is straightforward and each independent
element is processed iteratively.

3 GPU Calculation of the Friedman’s Test Table Values

The implementation proposed in this paper offloads the calculation of the events
for a given pair (k,N) to the GPU. The algorithm computes the

∑
R2

j and
∑

r2ij
on the GPU for each of the events, and transfers the whole results to the CPU.
After the results are received by the CPU, in a post-processing stage, that we
are not detailing in this paper, the values are adjusted (taking into account the
constants involved in Eq. 3) to obtain the numerator and the denominator of
Eq. 3. Finally, these values are used for constructing the histogram of the pair
(k,N). From now on, when we refer to the algorithm, we are not considering the
post-processing stage as a part of the algorithm.

The main concept in our proposal is that the algorithm developed computes
several events for a given pair (k,N) in parallel using a single grid of thread
blocks. Since the number of events is in the order of 108, this idea enables to
benefit from the massively parallel paradigm that is the basis of the architecture
of GPUs.

Algorithm 1 presents the pseudocode of our proposal for the host side. Ini-
tially, the seed for the random number generation is transferred from the CPU to
the global memory of the GPU. Then, the states of the random number genera-
tor is initialized on the GPU (Step 2). At each iteration, e events are calculated.
This calculation involves three different steps, the generation and sorting of the
random numbers (Step 5), the sum of the squares of the elements of the matrix
and the sum by columns of the matrix (Step 6), and the sum of the resulting
vectors (Step 7). Finally, when the algorithm reaches the stop condition, the
results are transferred from the GPU to the CPU.

Now, we detail the organization of the data on the GPU memory. The kernel
operation is explained next.
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1 transfer seed for random numbers to GPU
2 call initCurandState kernel
3 events = 0
4 while events < maxEvents do
5 call generateAndOrderNumbers kernel
6 call sumColumns kernel
7 call sumVectors kernel
8 events = events + e

9 end
10 transfer results from GPU to CPU

Algorithm 1: Host Side Pseudocode.

3.1 Data Organization

Our proposal employs several data structures that are stored in the different
memory spaces of the GPU. These data structures are briefly described next:

– State matrix : This matrix is used to store the state of each random number
generators. The dimension of this matrix is equal to the size of the matrix
required for storing random numbers, i.e. N × k. The matrix is stored in the
global memory of the GPU.

– Random numbers vector : For computing the table values, the random num-
bers of each row only need to be temporarily stored since the real important
data is the ranking. For this reason, a k elements vector for storing the ran-
dom numbers is allocated in shared memory of the GPU. This structure is
used specially for accelerating the ranking computation in the Step 5 of the
algorithm.

– Main matrix : This matrix is used for storing e times the resulting indexes
from the ordering of the rows (e is the number of events that are processed
by the grid of thread blocks). The matrix has N2 × e rows and k2 columns,
where N2 and k2 are the first numbers that are power of 2 and larger than
or equal to N and k, respectively. These dimension were chosen in order to
make the computation of the reduction more efficient.

– Partial sum vector : This vector is used for storing the partial results of the
sum by columns of the matrix. It is a vector of k elements of double pre-
cision floating point numbers that is stored in shared memory of the GPU.
It is employed to accelerate the memory access when computing the sum of
squares.

– Final results vector for
∑

R2
j : This vector is used to store the final result

of the sum of squares for each event. This vector has e elements of double
precision floating point numbers, i.e., the number of independent events that
are concurrently performed.

– Results vector for
∑

r2ij : This vector is used to store the result of the sum of
squares of all the elements of the matrix. This vector also has e elements of
double precision floating point numbers.
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3.2 Kernel Operation

The initCurandState kernel (Step 2 of Algorithm 1) initializes the states of the
random number generators. The kernel is launched with N blocks, i.e., one block
for each row, and with k threads per block, i.e., one thread for each column. Each
thread independently initializes one state using the seed of the experiment and
one monotonously increasing number, which is computed using the block id and
thread id [16]. As a consequence, each of the matrix elements is initialized with
a different value, and thus determines N × k different random sub-sequences.

The generateAndOrderNumbers kernel (Step 5 of Algorithm 1) generates
the random number for each row, and then it sorts them. The kernel is also
launched with N blocks and with k threads per block. Each block computes a
different row. Initially, each thread reads their state from the state matrix, and
then repeats e times the following tasks:

1. Generate one random number between 1 and k, and store it in the corre-
sponding position of the random numbers vector.

2. Calculate the ranking associated to the random number. Instead of using an
auxiliary structure for the indexes and directly sorting the values, we used
a different strategy that is better suited for the GPU. We use two auxiliary
counter variables per thread, one for storing the index (initialized in one) and
one for the number of ties (initialized in zero). In our strategy, the random
number of each thread is compared with the rest of the elements of the vector,
adding one to the index variable for each element that is lower than the
number associated with the thread, and adding one to the ties variable for
each element that is equal to the number associated with the thread. The
ranking is thus calculated as the sum of the index variable and half of the
ties variable.

3. Store the ranking values in the main matrix in the global memory. The posi-
tion in the matrix is determined by the number of repetition (that determines
which of the e submatrices is involved), the block id (that determines the
row) and the thread id (that determines the column). Since the main matrix
is stored by rows, all writes are coalesced.

Finally, the states of the generator are stored in the state matrix in order to
be used in the next invocation of the kernel.

The sumColumns kernel (Step 6 of Algorithm 1) performs the sum by columns
of the rankings stored in the main matrix. It involves the application of the
well-known reduction pattern [15] and several invocations of the kernel. In each
invocation of the kernel, and with the goal of keeping the access coalesced to
the global memory, each block reads all the elements of two rows, and sum the
values of the same column.

The kernel is invoked log2(N2/2) times (N2 is chosen as a power of 2), the first
time is launched with e×N2/2 blocks of k threads each, and reducing the number
of blocks by half in each invocation. Thus, the final invocation is launched with
e blocks, and the resulting sum by columns of each of the e independent events
that are being calculated are stored on the first row of each of the e submatrices
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stored in the main matrix. It should be noted that the input matrix may have
more rows than the N required. For this reason, the remaining rows have to
completed with zeros to properly compute the reduction without affecting the
final result of the sum.

In the first invocation of sumColumns kernel, and since all the elements of the
matrix are read, the kernel also calculates the sum of squares of all the elements
of the matrix. This computation also involves the use of the reduction pattern
along the columns, as well as the use of atomicAdd operations to sum the values
calculated by different blocks without incurring in race conditions. The results
is stored in the corresponding position of the results vector for

∑
r2ij in global

memory.
The sumVectors kernel (Step 7 of Algorithm 1) computes the squares of

the elements of the vectors produced by the previous kernel, and then sum the
resulting values. The kernel is launched with e blocks (one for each row) of
k2 threads each. First, the kernel copies the values of the row from the global
memory to the shared memory and computes the square of the numbers. Then,
the sum of squares is computed using the reduction pattern, performing log2(k2)
iterations in which pairs of numbers are added together. At last, the final result
is copied from shared memory to the corresponding position of the final results
vector for

∑
R2

j in global memory.

4 Experimental Evaluation

This section reports on the results of the experiments performed to evaluate the
algorithm implemented on the GPU. First, we present the experimental setup.
Then, we detail the experimental results and discussion.

4.1 Experimental Settings

We have implemented the algorithm described in Sect. 2.2 (without the his-
togram calculation) both in CPU and GPU. The CPU implementation was coded
in C++, while the GPU implementation was coded in CUDA using the CUDA
Toolkit release 9.2.

The execution platform for the CPU implementation was a PC with a Quad
Core Intel i7-6700 at 3.40 GHz with 64 GB RAM using the CentOS Linux 7.0
operating system. The CPU implementation was executed as a single-threaded
application. The GPU implementation was run in an Nvidia’s GeForce GTX 980
Ti (2816 CUDA cores at 1000 MHz, Maxwell architecture) connected to the PC
used for the CPU executions.

As we previously explained, the goal of this work is to study how the process
of estimating the PDF of the Friedman’s statistic with ties can be accelerated,
but not to actually estimate it. For this reason, we have selected three different
scenarios for the experimental evaluation: N = 48 and k = 30 (the associated
matrix has 1440 elements), N = 20 and k = 200 (4000 elements), and N = 15
and k = 400 (6000 elements). It should be noted that even though the scenarios
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with a larger k have more elements in their matrices, larger values of N involve
a greater number of thread blocks in the GPU implementation, which helps to
take advantage of the inherent parallelism of the GPU.

4.2 Experimental Results

Before analyzing the performance, we have evaluated the numerical performance
of the GPU implementation. With this goal, we have made executions using
toy examples that can be calculated analytically. In such cases, the numerical
results of the GPU implementation match the results of the analysis. In addition
to this, we have also compared the numerical results of the CPU and GPU
implementations, corroborating that there are no significant differences.

The first experiment is focused on the study of the effect of the number of
events (e) that are computed by a single grid of thread blocks of the GPU.
Table 1 presents the runtime in milliseconds in the three previously presented
escenarios for an overall of 210 × 102 (roughly 105 events), considering e from 1
and doubling the number of events computed concurrently until 1024.

Table 1. Runtime in milliseconds of the GPU version for 210 × 102 events.

Number of events in parallel

N k 1 2 4 8 16 32 64 128 256 512 1024

48 30 3971 2387 1596 1213 968 890 845 833 822 815 810

20 200 5597 3890 2760 2446 2301 2213 2169 2158 2155 2155 2150

15 400 7194 5541 4491 4169 4014 3944 3903 3903 3886 3885 3879

The best results are in bold

The results summarized in Table 1 show a similar behaviour for the three
scenarios considered. More in detail the computation of less than 64 events by
the kernel grid produces an important overhead in the runtime of the algorithm.
This is aligned with the theory, since in the sumColumns kernel the last invocation
to the reduction procedure is launched with only e blocks. On the other hand,
when we consider the configurations with 64 or more events, the differences in
runtime are almost negligible in all the cases. In particular, it should be noted
that in such configurations the largest difference is less than 4%. Additionally, the
best performance for the three cases is obtained when 1024 events are computed
by the grid. For this reason, we adopt this configuration that will be used in the
rest of the experiments.

Let us now analyze the comparative performance among CPU and GPU
implementations. Table 2 presents the runtime in seconds of both implemen-
tations and the Speedup obtained using the GPU version for three scenarios
considered. Both implementations were evaluated considering different number
of events, ranging from approximately 103 (210) to more than 108 (210 × 105).
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Table 2. Runtime in seconds and Speedup for different number of events.

Number of events

210 210 × 10 210 × 102 210 × 103 210 × 104 210 × 105

N = 48 CPU 0.05 0.55 5.54 55.50 555.60 5571.81

k = 30 GPU 0.50 0.53 0.81 3.44 29.75 294.83

Speedup 0.10 1.04 6.84 16.15 18.67 18.90

N = 20 CPU 0.20 2.05 20.56 206.13 2056.08 20579.09

k = 200 GPU 0.52 0.68 2.15 16.97 166.05 1641.77

Speedup 0.39 3.01 9.56 12.15 12.38 12.53

N = 15 CPU 0.33 3.46 33.86 339.11 3372.38 33794.63

k = 400 GPU 0.54 0.86 3.88 34.40 339.31 3388.09

Speedup 0.62 4.02 8.73 9.86 9.94 9.97

The best results are in bold

The number of events required to make an accurate estimation for each pair
(k,N) coincides with the largest case considered in this experiment.

The comparison between the runtime of the CPU and GPU implementations
yields predictable results. In other words, when the number of events calculated
is small and the massive parallelism of the GPU can not be leveraged, the CPU
implementation outperforms the GPU counterpart. Specifically, when only 210

events are calculated, the CPU version has a shorter runtime for the three test
cases considered. However, when a medium or large number of events is consid-
ered, the GPU variant show its potential and offers an impressive calculation
capacity.

Figure 1 shows graphically (using a logarithmic scale on the x axis) the
Speedup reached by the GPU version according to the number of addressed
events. As it can be appreciated both in the table and in the figure, the val-
ues of Speedup attained with the GPU versions grow strongly with the number
of events. Although this improvement stalls (in the first scenario the inflection
point is in 210 × 104, while in the other two cases is around 210 × 103) when the
GPU is completely harnessed, the reached Speedup values are at least of 10×.
In particular, the Speedup values for the number of events involved in the esti-
mation of the PDF are 9.97×, 12.53× and 18.90× for the largest, the medium
and the smallest scenarios, respectively. This behaviour, at a first glance, can be
considered strange for the typical GPU computations since the better Speedup
values are obtained for the smaller test case. However, as we explained in Sect. 3,
the number of thread blocks of several kernels is determined by e and N , and
for this reason, the test cases with a larger value of N show a larger improve-
ment in the performance. Thus, as a future work, we need to consider alternative
computation strategies that would allow to increase the number of thread blocks
for the different combinations of N and k, e.g., partitioning into several thread
blocks the computation of a single row.
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Fig. 1. Evolution of reached speedups according the number of addressed events.

It should be highlighted that the hardware platform used in this work is not
a cutting edge GPU. We employed a Geforce GTX 980 Ti, which was launched
to the market in 2015. This GPU has a theoretical peak performance in single
precision floating point of 4.6 TFLOPS. This performance is low in compari-
son with current GPUs, such as the Geforce GTX 2080 Ti, which has a peak
performance of more than 11 TFLOPS.

From the analysis performed, and even using a not cutting edge GPU, it
can be concluded that the runtime reduction of the GPU implementation over
the CPU implementation is at least of 10× when considering the number of
events needed in the PDF estimation. That is to say that this reduction means
conservatively that a single GPU is equivalent to the workforce of ten processors.
This is specially remarkable considering the important effort of 100 years of CPU
time (equivalent to a year of wall-clock time using 100 processors) that was
involved in the Friedman Test without ties table calculation. Thus, our effort
opens a real alternative to perform this kind of computations in a reasonable
time using a cluster with several modern GPUs.

5 Final Remarks and Future Work

In this work, we have studied the acceleration of the Friedman Test table calcu-
lation by leveraging the computational power offered in massive parallel hard-
ware platforms, such as GPUs. In particular, we designed and developed a GPU
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implementation able to compute several events in a single grid of thread blocks
and that is specially parallelized in the dimension of the N parameter. The
implementation uses the CURAND library for generating random numbers in
the GPUs, which assures that the period is larger than the amount of numbers
required for the experiments.

The experimental evaluation carried out over three different scenarios con-
firms that our proposal is able to obtain an important runtime reductions with
respect to the CPU counterpart. More in details, the GPU version reaches
Speedup values of up to 19×, and when the larger number of events are consid-
ered, the values are of at least 10× in all test cases considered. This corroborates
that our proposal has a great potential for helping to compute this problem in
a reasonable time.

With the experience acquired in the development of the present effort, we
have identified several lines of future work. The most highlighted are:

– Evaluate our proposal in a more modern GPU, analyzing the effect in perfor-
mance of the new technologies.

– Design and implement a distributed extension of our GPU proposal, i.e., a
version able to compute in several GPUs at the same time.

– Related with the previous issue, it is also interesting to develop a hybrid
version that can exploit both the CPU and the GPU concurrently, offloading
the computation of the most time consuming (k,N) pairs to the GPU and
computing the smallest scenarios in the CPU.

– Additionally, it is interesting to evaluate other parallelization strategies to
exploit the GPU in different contexts, e.g., when the N parameter is not
large enough.

Finally, it is interesting to advance in making our source codes available in
order to enhance the interaction with the statistics community.
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13. López-Vázquez, C., Hochsztain, E.: Extended and updated tables for the Friedman
rank test. Commun. Stat. - Theory Methods 48(2), 268–281 (2019)

14. Manssen, M., Weigel, M., Hartmann, A.K.: Random number generators for mas-
sively parallel simulations on GPU. Eur. Phys. J. Spec. Top. 210(1), 53–71 (2012)

15. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Pat-
terns for Efficient Computation, 1st edn. Morgan Kaufmann Publishers Inc., San
Francisco (2012)

16. Nvidia Corporation. CUDA Toolkit 10.0 CURAND Library Programming Guide.
Nvidia Corporation, September 2018

17. L’Ecuyer, P., Simard, R.: TestU01 Website (2007). http://simul.iro.umontreal.ca/
testu01/tu01.html. Accessed June 2019

18. Pedemonte, M., Luna, F., Alba, E.: A systolic genetic search for reducing the
execution cost of regression testing. Appl. Soft Comput. 49, 1145–1161 (2016)

19. Quade, D.: Using weighted rankings in the analysis of complete blocks with additive
block effects. J. Am. Stat. Assoc. 74(367), 680–683 (1979)

20. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel random numbers:
as easy as 1, 2, 3. In: Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, p. 16. ACM (2011)

21. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Random123 Website (2011).
http://www.thesalmons.org/john/random123/. Accessed June 2019

22. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures,
Fifth edn. Chapman and Hall, London (2011)

23. Stepanov, A., Lee, M.: The Standard Template Library. Hewlett Packard Labora-
tories (1995)

http://tensorflow.org
http://simul.iro.umontreal.ca/testu01/tu01.html
http://simul.iro.umontreal.ca/testu01/tu01.html
http://www.thesalmons.org/john/random123/


Modelling Road Saturation Dynamics
on a Complex Transportation Network

Based on GPS Navigation Software Data

Mariana Cubero-Corella1(B), Esteban Durán-Monge2, Warner Dı́az1,2,
Esteban Meneses1,3, and Steffan Gómez-Campos2
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Abstract. High traffic concentration during weekdays in the Great Me-
tropolitan Area of Costa Rica causes severe traffic congestion and high
costs for the population. It is crucial to deeply understand the dynamics
of traffic congestion to design and implement long term solutions. Given
the lack of official data to study traffic congestion, we model it using a
transportation network based on data captured throughout the year 2018
by a GPS navigation software application (Waze), provided by the Min-
istry of Public Works and Transportation (MOPT in Spanish). In this
paper, we focus on the data transformation procedure to create the trans-
portation network and propose a traffic congestion classification with the
available data. We developed a practical methodology which consists of
four main stages: data preparation, road network modelling, road satura-
tion estimation, and saturation dynamics analysis. The results show it is
possible to model road saturation level using the proposed methodology.
We were able to classify road segments in five categories that effectively
represent the levels of road saturation. This classification gives us a clear
overview of the real-world conditions faced by road network users.

Keywords: Delay · Traffic jam · Transportation network · Urban
mobility · Waze

1 Introduction

A total of 1,346,344 vehicles [9] and 47,905 km of roads and highways [15] were
reported in Costa Rica in 2015. In that same year, Costa Rica was the second
country with more vehicles in Central America following Guatemala [18] and one
of the Latin American countries with most vehicles per thousand inhabitants.
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It is only surpassed by Argentina and Mexico [15]. But Costa Rica is a smaller
country with a very dense road network where the population struggle to move
over a million vehicles with the available road infrastructure. As a result, traffic
congestion has become a problem that only becomes more complicated due to
the growth of the vehicle fleet. Since most of the traffic congestion is located
in the Great Metropolitan Area Road Network [16], these routes make a good
place to study traffic congestion effects on mobility.

The Highway Capacity Manual (HCM) allows to perform calculations and
predictions of indicators such as the saturation flow rates in roads and highways
for optimal infrastructure design [7]. This manual includes accurate methods
to predict saturation rates, but to do so it uses many parameters such as base
saturation flow rate, adjustment factor for lane width, adjustment factor for
heavy vehicles in traffic stream and so on [19]. In Costa Rica most of these
parameters can not be measured easily or simply do not exist for the majority
of highways and roads. Certainly, finding historical data about traffic dynamics
with enough detail is not an easy task.

Since there are no sensors on the field or updated official information avail-
able, we use traffic jams data obtained from Waze application data base in
2018 to access information about the behavior of jams throughout the year and
study its effects on transportation dynamics on the main roads and highways
in the Great Metropolitan Area. Particularly, we consider that this data pro-
vides information to estimate road network saturation accurately. This could be
a very important information to the decision-makers to prioritize infrastructure
projects of the government or a better use of resources. However, the structure
of the data is not intended to make this type of estimations. Waze application
uses this data in real time to provide navigation information to its users about
the best routes available at each moment. We want to take advantage of the
annual stored data to calculate road saturation levels and thus understand its
effects on vital routes for mobility. Important data transformations are required
to allow this analysis.

We developed a methodology to re-build main roads in the Great Metropoli-
tan Area based on Waze application data. Here we present Route 39 transporta-
tion network. This road serves as a road ring around the capital city and has an
vital role for mobility and reduction of traffic flows entering the city downtown
area. Using reported traffic congestion data we estimate delays and their vari-
ations for each 100-meter segment of the road to comprehend the geographical
distribution of the saturation. This study is the first step to understand and
predict saturation rates with the limited data available in Costa Rica. The rest
of the paper is organized as follows. Subsection 1.1 refers to related work to this
paper. Section 2 presents the data analysis methodology where we explain the
process to clean and prepare the data to be analyzed. Section 3 explains how
we estimate the road saturation and Sect. 4 shows the results of the analysis.
Finally, we present our conclusions and future work related to this research in
Sect. 5.
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1.1 Related Work

Previous studies on this data pointed out the top ten traffic traps in the country
[3,16]. They do a similar analysis as ours, but they focus on the behavior of
jams in areas of a city within a diameter of 1 km. In our case we focus on
the behavior in the segments of a particular road. Also, using cluster analysis
techniques, the State of the Nation Program found that jams reports in 2017 can
be grouped in three clusters in the Great Metropolitan Area. These clusters are
the roads that connect the center with periphery of the cities, the population
centers and the economic centers [3,16]. But Waze data was not the optimal
structure to reach the desired level of detail we wanted. In a similar study,
but with simulated data Huang et al. [8] propose a hierarchical road model for
shortest path discovery in vehicular networks. They use the driving time as the
metric for the shortest path calculation. This inspired us to create a weighted
road network with the average delay obtained through Waze application data.
They also use a hierarchical graph with different types of roads, for instance,
urban roads, bypass routes, and express highways. This oriented us to select
only the National Road Network in order to consider the fact that not all the
roads have the same behavior. Instead of using simulated data, we seek to prove
that it is possible to build a road network using Waze data as main input. This
a first step to create more complex networks considering the hierarchy proposed
by Huang et al. [8].

Also Gebetsroither-Geringer et al. [4] present three cases where web-based
applications are useful to support urban decision making and study urban
dynamics and traffic congestion. First, to inform, create awareness and increase
transparency. Secondly to report or identify current problems. And finally to
support mid and long term planning processes. In our case, the lack of official
information is one of the main reasons to use navigation software application
data as input to identify current problems in congestion. However, the motiva-
tion behind this study is closely related to the mentioned use cases. As for the
methodology, a similar concept is used by Moore et al. [12] to create a weighted
and two way directed graph. In their work they estimate road capacity in a road
network as a function of speed.

2 Data Analysis Methodology

To process the data, we followed the workflow shown in Fig. 1. It follows three
main steps: (i) data preparation of both data sources, (ii) exploratory data
analysis of the Waze data, (iii) road network modelling, where we execute most
of the main transformations to the data.

2.1 Data Sources

Waze Dataset. Jams data is provided by the Ministry of Public Works and
Transport (MOPT). Downloads take place every 5 min directly through Waze
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Fig. 1. Data analysis methodology.

Application Programming Interface. In the downloaded data a jam is a com-
bination of jam reports made by several users. The application integrates the
set of reports and estimates the indicators, such as delay, by jam. Each report
contains a list of coordinates that detail the jam length and exact location. Data
is originally stored in JSON (Javascript Object Notation) format and each file is
named with the information about its date (year, month, day) and time (hour,
minutes, seconds) at the moment of download. This is very important, since date
and time data is not registered in the data frame that contains the reports of the
traffic jams. The full 2018 data set contains 52,422,040 jams reported throughout
the year. During weekdays there are 39,955,000 reports, where Thursdays and
Fridays represent 20.7% and 23% of reports, respectively. We use three variables
to create the road network:

– Delay : the delay in seconds based on the average speed of the segment.
– Line: is the list of coordinates (latitude and longitude) of each jam.
– ID : the id of each jam.

Other variables in the data set are the city, jam length, road type, speed and
street name.

National Road Network. The spatial lines frame object of the National Road
Network (NRN) is an essential input for the transportation network construction
as it is. This will be the reference to aggregate all the jam information and
build the network. This data was provided by the Ministry of Public Works and
Transportation as a shape-file. It includes around 7,700 km of roads and gathers
the location of more than 300 routes in the country. It comprises the busiest
routes in the entire network.
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2.2 Data Preparation

Data Creation. Jam data is stored in JSON files. Those files are read and inte-
grated in a single data frame using R programming language. Each file contains
a subset of jams, so we join them by column names. One of the first changes
made to the table of jams is the selection of important columns. Some of the
initial variables are not entirely relevant to our purpose, since these contain spe-
cific information related to the Waze application. It is important to mention that
although the new frame includes the geographic coordinates for each jam, this
format still is not appropriate for spatial analysis.

Data Completion. One of the major hurdles in preparing the data is deal-
ing with lost data. It usually happens because connection problems during data
download. Now, clearly these days can not be filled in with any kind of infor-
mation, let alone random information. We created a strategy to fill in the gaps
that does not substantially affect the variance of one day with respect to another.
When we find a hole, it is filled with the average of data from the other days that
belong to the same day of the week in the same month. For instance, assuming
we do not have data for Tuesday January 1, this day will be filled in with the
average of information on days January 8, 15, 22 and 29 (the remaining Tuesdays
in January). The average of those days is used to add the missing day.

Data Augmentation. There are specifically 5 columns added. These are
related to the date, and they are extracted from the name of the files. The
5 columns are: year, month, day of the year, hour, and day of the week that
which is obtained from the first three.

National Road Network Retagging and Segmentation. After exploring
the spatial data, some corrections are made due to road classification errors
and unclassified routes. Jam length may vary a lot according to the moment,
place, and severity of each traffic report. So we proceed with the spatial lines
segmentation and divide the routes in equal length segments of 100 m. Working
with short segments will allow us to explore jams data with great detail in
very specific areas. As a result, the National Road Network is divided in 76,884
segments.

2.3 Road Network Modelling

Exploratory Data Analysis. It led us to select the scenarios of interest for
this paper. During week days, the hours with more reported jams where from
5 to 7 in the mornings and from 4 to 6 in the evenings. This matches with
the hours where most people goes to and from work. The analysis focuses on
this time range and includes two scenarios: mornings and evenings. Considering
that the Great Metropolitan Area (GMA) is highly relevant to the economic
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development of the country, it has a high concentration of population and traffic
jams [16]. We first decide to focus on modelling the highly complicated road
network in this area as a first step to eventually escalate this work to the whole
country.

In order to build the GMA road network we use two main data sources:
National Road Network spatial object and traffic jams data obtained from Waze
application in 2018. As we mention before, this data is not meant to be used
as a formal estimation of saturation rates. We want to build a network to sum-
marize in a easy visual way how users are affected by traffic jams and compare
between scenarios. That is why we prepare the data in 5 stages to create the
transportation network.

Transforming Jams to a Spatial Object. Waze data is stored as a data
frame that contains a list of coordinates for every reported traffic jam. We need
to transform this table in order to have a spatial georeferenced format to match
the National Road Network spatial object. It is important to note that data
frame contains over 4 million reports in the mornings and over 12 million in the
evenings. It is necessary to transform each list of coordinates to a spatial line.
Then, we aggregate all the lines in one shape and finally assign the corresponding
attributes such as the delay, the id of the jam, and the route. To compute this,
we used the R [17] function SpatialLines of the library SP 1.3-1 [1,14].

Buffer Creation around the Segmented NRN. A navigation system such
as Waze has inaccuracies related to GPS precision. To account for these inaccu-
racies we transform the segmented National Road Network using buffers. To do
so, we build a buffer with the R function buffer from the raster package [6] of
10 m around the base road network. For the main roundabouts and intersections
we used 50 m buffers to capture traffic congestion that affects these areas. The
transformed segmented NRN is used as a reference to be compared with the
Waze data.

Intersection of both Data Sources. After the data is ready, it is necessary to
intersect both spatial objects to identify which jams match each NRN segment
in the Great Metropolitan Area. Due to the large volume of data, this phase is
divided in a few steps prior to the intersection. The first step is transforming
each spatial object to a simple features (sf) object in R [13]. This R package
transforms the base road network and the jams to a simpler structure that is
processed using parallel computing. The second step consists in parallel comput-
ing the intersection of both data sources with eight threads using the R packages
foreach and doParallel [2,11]. Once the intersection is done, we transform the
data back to an spatial object. The result of this stage is a spatial object with
100 meter long jams that match with the segments of the NRN buffers.
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Fig. 2. Road saturation data example and notation.

Jams Direction Classification. Finally, to build the new road network we
need to classify every jam according to its direction. The original data does not
provide any explicit information about the origin or the destination of the user,
or the jam direction, so we use coordinates from both data sources to estimate
directions. To do this we take the first and last coordinates of every jam segment
and every NRN segment. We compute the bearing [5] between the starting and
ending point of each jam segment. Then, for the NRN segments we do the same
estimation but in both directions. That is, direction A (from the start to the
end point), and secondly direction B (from the end to the start point). Note
that the bearing estimates the direction between the two points following the
shortest path on an ellipsoid (geodetic) and it changes continuously while going
along the path [5]. Then we compare every road segment’s bearing to all the
matching jams segment’s bearings in both directions. If the jam has the same
sign, either positive or negative, than that specific direction, it is classified in
that direction. If the jams segment’s bearing is different from the reference is
classified as a jam going in the opposite direction. Once the data is classified,
we build the network based on the methodology proposed by Lu et al. using the
R package shp2graph, which provides tools to convert a spatial objects into an
igraph graph of the igraphR package [10].

3 Road Saturation Estimation

In order to estimate the road saturation with the available data, we use the result
of the intersection of the jams segments and the NRN segments. Considering the
number of jams that took place in every segment and the registered delay for
each jam, we calculate the weighted average delay per segment. We consider only
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those jams that had a delay greater than 0. We calculate the weight of each jam
using the following equation:

Wjs =
delayj

Σns
j=1delayjs

, (1)

where:
ns = number of jams in segment s.
j = jam in segment s.
s = segment of network.
The weight Wjs of each jam helps to summarize the impact of every jam on a

particular segment. For example, in Fig. 2 where we have 5 jams in one segment:
4 of them with a delay of 4 min and 1 jam with a delay of 20 min, the length
of each line represents the length of each jam. The simple average is 7.2 min of
delay and may not show the impact of severe jams. Instead, we use the weighted
average DelayW

s as shown in Eq. (2). The weighted average of this example is
12.8 min in that segment. This gives a greater impact to the severe jams. To
aggregate this information we calculate the weighted average delay per segment
as shown below:

DelayW
s =

ns∑

j=1

Wjs · delayjs. (2)

Now, with this measure we can easily identify the segments with greater
delays and the hot spots in traffic chaos.

But these metrics are simply not enough to understand how traffic behaves.
Going back to the example of the 5 jams, we want to identify where it is more
likely to be a hot spot in each scenario using Eq. (3).

Ds =
ns

N
, (3)

where:
Ds = density per segment.
N = total number of jams in each road.
Additionally, we want to be able to differentiate segments where the traffic is

constantly problematic from sporadic events that may affect the average delay.
This is why we also calculate the standard deviation σs of the average delay
DelayW

s and the actual observed delay as in Eq. (4).

σs =

√√√√
ns∑

j=1

W 2
js ∗

ns∑

j=1

(
(delayjs) − DelayW

s

)2

. (4)

To get the whole picture, we also calculate the density of reports, that is,
how many reports we have per segment. Now it is possible to find which are the
segments with more reports for each scenario. The idea is to analyze average
delay, standard deviation of the average delay, and density. This is an efficient
and simple way to find rare events, which is the constant behavior in the studied
area.
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4 Results

Using the proposed methodology, we build the transportation network. To show
the results we present and analyze Route 39 network. Road saturation esti-
mations consider the complete Route 39. This includes some small roads that
represent connections to other routes and highways. Visualizations presented
here for the road network do not show these connections for aesthetic reasons.

Table 1 shows the estimated performance measures for the Route 39 network
modelling procedure. Execution time is presented by stage. As it is shown, phases
1 and 3 have the highest values. These results give the first clues about the need
to implement techniques to obtain a better performance, especially if we want
to scale up the analysis to the whole country road network.

Table 1. Time required for Route 39 network modelling by stage.

Stage Duration (s)

Spatial object creation 10,440.9

Buffer calculation 11.9

Intersection detection 4,481

Jam direction estimation 480.3

Saturation estimation 22.8

Network creation 2.9

Total execution time 15,439.8

To show the results obtained through the proposed methodology, first we
analyze the network and its behavior in the mornings. To do this, the three
estimated saturation measurements are presented and analyzed, these are: aver-
age delay, delay standard deviation and jams density. The latter indicates the
proportion of traffic jams reported in a segment in relation to the amount of
traffic jams reported throughout the whole network for the selected scenario.
As we can see in Fig. 3 the relationship between the average delay and its stan-
dard deviation is moderately linear in both directions. Segments with greater
delay show greater variability. But also, it is important to note that the average
delay in most segments is between 5 and 10 min. In the west-to-east direction,
two atypical segments with high delay and variability are identified. However,
these segments have very low density. These segments show a rare behavior, with
intense jams that do not happen often.

Figure 4 shows Route 39 networks in both directions. The edge width repre-
sents the average delay estimation and edge color shows the density. Here, it is
possible to visualize the results spatially. The observed pattern allows to under-
stand that there are different types of traffic jams. With the estimated indicators
we can classify the segments in five categories:
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Fig. 3. Comparison of relationship between the average weighted delay and its standard
deviation in opposite directions during mornings (based on data from 2018 Waze jam
reports in Route 39). The density indicates the proportion of traffic jams reported in
a segment in relation to the amount of traffic jams reported throughout the whole
network for the selected scenario.

1. Type 1 includes segments with extreme affectation that have short jams
located in few segments, very high delays and constant congestion during
most of the week.

2. Type 2 considers segments with a very high affectation due to cumulative
effect that occur in many consecutive segments, with high-intermediate delay
levels and steadily during the week.

3. Type 3 segments have intermediate affectation with short jams, long delays
and occur with less consistency on certain days of the week.

4. Type 4 shows low affectation with jams concentration in few segments and
lower delay levels that occur steadily during the week.

5. Type 5 includes the least problematic segments with better traffic flow.

In Fig. 4 in the east-to-west direction we can see that some segments that
are constantly with a medium high delay are the segments located near Hatillo.
This area represents the 16 percent of the jams in the complete route. Some
remarkable hotspots in the west-to-east direction are near the General Cañas
Highway intersection, the entrance to Hatillo, Zapote, and San Pedro as we can
see in Fig. 4.

If we analyze the networks in each direction following the sequence of seg-
ments, it is possible to see the location of the above categories. In Fig. 4, starting
from Uruca, it is easy to note that in east-to-west direction the major problem-
atic area is the General Cañas Highway intersection, these few segments with a
critical situation are classified as type 1. Right after this area we can observe type
2 segments, where congestion affects many consecutive segments until Hatillos.
Then there is a sequence of type 3 segments from Hatillo to Parque de la Paz.
Once passed this point the segments becomes of type 5, with a better traffic
flow until San Pedro. Afterwards type 3 segments appear again. Finally near
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(a) East-to-west morning rush hour (b) West-to-east morning rush hour

Fig. 4. Comparison between the opposite directions of the weighted road networks
during mornings (based on data from 2018 Waze jam reports in Route 39).

Mercedes and Calle Blancos we observe type 2 segments until the end of the
route.

Also in Fig. 4, in the west-to-east direction starting from Calle Blancos, Route
39 begins with a small group of type 5 segments. However, two segments with
intermediate delay and constant congestion over the week are observed near
Guadalupe. After a few segments with better traffic flow, type 2 segments start
in the area near San Pedro. Here the effect of congestion accumulates over many
segments. This behaviour extends until Parque de la Paz. Then the section of
the route from San Sebastián to Hatillos shows type 3 segments, with high-
intermediate delays that occur less frequently during the week. From this area
and until Highway 27 intersection, type 2 segments take over again. In this
direction, the intersection with the highway General Cañas is also a critical
point with intermediate delay levels but constant jams during the week. Note
that in this direction we observe shorter type 5 jams. It’s also important to
mention that in this scenario the most common type of jam is the type 2, the
impact of this type is higher when we consider it’s cumulative.

Now we analyze Route 39 evening network. Figure 5 shows that the linear
relationship between the delay and its standard deviation is maintained. How-
ever the levels of both indicators are higher in both directions when compared
with the morning results. This behavior is stronger in the east-to-west direction
where the average delay is almost 9 min. Outlier segments are present in both
directions, but now these show a very high density. These atypical segments rep-
resent critical spots, with very high delay values and constant congestion during
the week.

If we analyze Fig. 6 we find some of the five types of segments listed before,
but in this case the volume of reports is almost three times the amount of jams we
had in the mornings. Please note that the scales from the figures of the morning
scenario is not directly comparable with the figures of the evenings, due to the
big difference in the volume of reported jams in both scenarios.
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Fig. 5. Comparison of relationship between the average weighted delay and its standard
deviation in opposite directions during evenings (based on data from 2018 Waze jam
reports in Route 39).The density indicates the proportion of traffic jams reported in
a segment in relation to the amount of traffic jams reported throughout the whole
network for the selected scenario.

(a) East-to-west evening rush hour (b) West-to-east evening rush hour

Fig. 6. Comparison between the opposite directions of the weighted road networks
during evenings (based on data from 2018 Waze jam reports in Route 39).

As it is shown in Fig. 6, the east-to-west direction network has several seg-
ments with high delays at different locations. The General Cañas Highway inter-
section stands out for having the highest values. Once again this sector gathers
type 1 segments. Just after this area of high congestion, it starts a long series
of segments with high-intermediate delay values, that is, type 2 segments. This
behaviour extends until Hatillos. Starting from this point, a long chain of type 3
segments begins. We observe a few segments with a good traffic flow near Par-
que de la Paz. Then, in the sectors of Zapote and San Pedro, another section of
high affectation stars due to the accumulated effect of many segments with high
values. Then near Guadalupe we observe a few type 3 segments almost at the
end of the of the network.

Rout 39 network in west-to-east direction (Fig. 6) shows moderate values
when compared with the opposite direction. However most of the route suffer
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the effects of type 2 segments. So the users of the network experience a constant
medium - high delay through most of the network. From San Pedro and until
Parque de la Paz there are many consecutive segments with important values in
both delay and density. Although there is a section of segments of low affectation
in San Sebastián sector, from Hatillo and until the end of the route there is a
clear predominance of type 2 segments.

5 Conclusions and Future Work

One of the most important results of this work is the fact that our methodology
to re-built a road network with data not meant for that purpose works. Road sat-
uration estimations are actually helpful to understand the traffic flow dynamics.
The data used for this work can be used as a great input in the analysis of traffic
dynamics and how the users of the roads and highways are affected by traffic
jams. Also we have a very detailed network that helped to identify specifically
the problematic spots.

These findings represent an advance in the diagnosis of traffic congestion
in the country. Now, it is possible to think of interventions required for each
particular case and to prioritize interventions. The result of this investigation can
be a useful tool to optimize the resources and create more effective interventions.

This methodology can be escalated to the whole country to give a better
understanding of the traffic saturation dynamics inside and outside the Great
Metropolitan Area. But in order to do so, it is necessary to improve performance,
implement parallel processing and face the typical challenges associated with big
data. Considering this, tools like Spark and GraphX might be good options to
optimize the use of our computational resources and properly escalate our work.
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Derek Schafer4 , Ignacio Laguna5 , and Kathryn Mohror5

1 University of Tennessee at Chattanooga, Chattanooga, USA
{tony-skjellum,martin-ruefenacht}@utc.edu

2 Auburn University, Auburn, USA
nzs0034@auburn.edu

3 EPCC, University of Edinburgh, Edinburgh, Scotland, UK
4 Tennessee Tech University, Cookeville, USA

djschafer42@students.tntech.edu
5 Lawrence Livermore National Laboratory, Livermore, USA

{lagunaperalt1,kmohror}@llnl.gov

Abstract. The difficulty of deep experimentation with Message Passing
Interface (MPI) implementations—which are quite large and complex—
substantially raises the cost and complexity of proof-of-concept activ-
ities and limits the community of potential contributors to new and
better MPI features and implementations alike. Our goal is to enable
researchers to experiment rapidly and easily with new concepts, algo-
rithms, and internal protocols for MPI, we introduce ExaMPI, a mod-
ern MPI-3.x subset with a robust MPI-4.x roadmap. We discuss design,
early implementation, and ongoing utilization in parallel programming
research, plus specific research activities enabled by ExaMPI.

Architecturally, ExaMPI is a C++17-based library designed for mod-
ularity, extensibility, and understandability. The code base supports both
native C++ threading with thread-safe data structures and a modular
progress engine. In addition, the transport abstraction implements UDP,
TCP, OFED verbs, and LibFabrics for high-performance networks.

By enabling researchers with ExaMPI, we seek to accelerate innova-
tions and increase the number of new experiments and experimenters,
all while expanding MPI’s applicability.

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC (LLNL-CONF-775497) and partial sup-
port from the National Science Foundation under Grants Nos. CCF-1562659, CCF-
1562306, CCF-1617690, CCF-1822191, CCF-1821431. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation or Lawrence
Livermore National Laboratory.

c© Springer Nature Switzerland AG 2020
J. L. Crespo-Mariño and E. Meneses-Rojas (Eds.): CARLA 2019, CCIS 1087, pp. 153–169, 2020.
https://doi.org/10.1007/978-3-030-41005-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41005-6_11&domain=pdf
http://orcid.org/0000-0001-5252-6600
http://orcid.org/0000-0003-1597-3369
http://orcid.org/0000-0001-8438-5144
http://orcid.org/0000-0002-9374-4433
http://orcid.org/0000-0002-1366-1655
https://doi.org/10.1007/978-3-030-41005-6_11


154 A. Skjellum et al.

Keywords: MPI · Middleware architecture · Parallel programming
models · Performance portability · Cost of portability

1 Introduction

The complexity of leading open source implementations of MPI is daunting when
it comes to experimentation and modification with new and different concepts
for MPI-4 or other research experiments. Production open source MPIs have
successfully focused on completeness of coverage, correctness, compliance, and,
of course, middleware portability and performance. But, they typically lever-
aged software architectures rooted in legacy implementations of MPI-1 or earlier
message passing systems, where assumptions were made based on then-extant
architectures, processor resources, assumptions of intra-node concurrency, and
performance levels. Production open source MPIs possess complex internal archi-
tectures, layers, and global state, and cross-cutting issues can arise when trying
to experiment. Such issues make it difficult and expensive to achieve new changes,
while also limiting certain kinds of experiments like overlapping of communica-
tion and computation.

To enhance and simplify researchers’ ability to explore new and diverse
functionality with MPI with quality performance potential, the authors have
devised ExaMPI, a new, BSD-licensed open source implementation. A few fac-
tors enhance both the validity and necessity of building up a modular, research
MPI at this time. First, over the past few years, a number of robust data movers
such as Libfabric, Portals, and even InfiniBand verbs have decreased the impor-
tance of complex “channel devices” and other transport abstractions within MPI
itself. These transports often include internal progress (independent of user calls
to MPI) for sufficiently smart NICs and will soon include collective communica-
tion offload for some networks. Second, and as important, most MPI applications
don’t use a huge fraction of the MPI standard, which means that the complexity
associated with full API support isn’t needed for many kinds of applications
and, hence, application experiments.

The remainder of this paper is organized as follows: Sect. 2 discusses selected
prior MPI implementations. Section 3 offers motivations for ExaMPI. Section 4
discusses requirements. Section 5 explores the design of the internal library, and
Sect. 6 discusses various implementation topics. Section 7 illustrates the utility
of ExaMPI. Lastly, Sect. 8 summarizes the efforts toward the ExaMPI library
and mentions future work.

2 Background

MPI implementations have existed since 1993, commencing with MPICH [14] (of
which the first author of this paper was one of the original authors). Over the
past 26 years, MPICH, Open MPI [12], and other open source MPIs have grown
in size, complexity, support, and usership. Commercial MPI products based on
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proprietary code and/or open source derivatives were also created, and some of
them are still in use today.

During this time, there has been consistent and even growing interest in
experimenting with MPI in terms of additions, changes, and enhancements to
implementations and functionality. Commercial and free derivative products of
these open implementations have also been successful, such as Cray MPI [1],
Intel MPI [5], IBM Spectrum MPI [2], and MVAPICH [25].

However, the complexity of effecting significant improvements, modifications,
and/or changes in design to these large-scale MPIs is a daunting task, with
over 1M lines of code present in both middleware products. This large scale
makes deep experimentation with or changes to MPI prohibitive, except in device
drivers and incremental APIs. For instance, changing the modes of progress or
the modes of completion of MPI implementations is a tall order, as is managing
their ability to cope with internal concurrency or state.

Furthermore, constrained environments, such as embedded devices and
FPGAs, may also prefer to execute MPI functionality without coping with the
entirety of large middleware implementations.

In certain of our research projects, we sought to explore different method-
ologies for implementing MPI, including new modes of strong progress, fault
tolerant concepts, and extensions to the standard that require highly effec-
tive progress. Such efforts have been thwarted to varying degrees by the legacy
assumptions of Open MPI, MPICH, and MVAPICH1.

The recognition that many MPI applications require only a small to mod-
erate subset of functionality also motivated our design of a new research MPI
implementation. By supporting a sound design and allowing functionality to be
added systematically over time, we provide incremental ability to run practical
codes while reducing the total amount of MPI middleware by orders of mag-
nitude. Furthermore, with a sound, first-principles design, this new MPI would
have little dead code, or the technical debt associated with assumptions about
node concurrency or progress made in the 1990s.

Furthermore, the availability of high-performance, converged APIs for many
networks is a relatively recent development. This growth has enabled ExaMPI’s
design to focus on Libfabric as the key production networking interface for
ExaMPI in addition to fundamental UDP/IP and TCP/IP network drivers. Our
decision to focus on Libfabric was pragmatic yet performance-oriented. Libfabric
has providers for many fast networks; while Portals is of interest as well, many
ideas in Portals have been migrated to Libfabric. UCX was specifically considered
but rejected because it is InfiniBand-only, and is immature. However, nothing
in our development efforts prevents us or third parties from adding support for
Portals and UCX in the future.

1 In fact, a raft of papers (e.g., [7–10,15,16,18,24,27,29]) in the literature show
workarounds to polling progress involving sporadically and haphazardly strewing
one’s code with MPI Test. Also, the OSU benchmark for overlap explicitly depends
on the use of MPI Test [4,22].
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3 Motivation

The authors’ main motivation for MPI is not to replace key blocks of function-
ality or policy in existing production MPI implementations such as MPICH and
Open MPI, or in commercial derivatives thereof. Rather, the following motiva-
tions have driven the design, implementation, and future roadmap for ExaMPI.
The authors intended to

– Enable rapid prototyping of
• New algorithms for existing MPI operations,
• New approaches to progress engines and resource allocation in large mul-

ticore nodes, and
• New MPI operations and APIs well before potential standardization;

– Identify and elucidate opportunities to improve MPI at-large, such as
• Identifying situations where production MPIs could improve performance,
• Enabling a community of “MPI makers” who can mix and match pieces

to build MPI experimental systems and usable middleware in existing
and new applications, and

• Providing enhanced insights into the use of modern programming tech-
niques for “lean middleware” that does not add extra layers or abstraction
barriers while being highly maintainable over time;

– Support experimentation, such as
• Exploration of unified resource management of cores, threads, and mem-

ory that unify policies between MPI and OpenMP runtimes and
• Specialization of entire MPI stacks for large-scale MPI applications that

use relatively little of the total source base but want to “aspect” or oth-
erwise tune the MPI specifically for their purposes;

– Support the research interests of the authors, including topics such as
• Designing, prototyping, and eventually standardizing first-class language

interfaces for C++, Python, etc., as opposed to purely transliterations of
the current MPI C bindings,

• Exploration of new fault-tolerant MPI approaches (e.g., MPI Stages [28]),
• Integration of multiple fault-tolerant MPI models insofar as possible,
• Provision of first-rate support for persistent collective operations using a

an RDMA implementation strategy internally,
• Creation of a platform for experimentation with MPI Sessions,
• Demonstration of the value of progress and notification options in an open

implementation of MPI (including tunability per application or commu-
nicator), formerly only in MPI/Pro [3],

• Study and prototyping of point-to-point and collective partitioned com-
munication (finepoints) syntax, semantics, and performance, thereby
accelerating its path to standardization by the MPI Forum, and

• Enablement of experiments with MPI in FPGA softcores and in next-
generation programmable NICs, such as Mellanox BlueField.

The overall goal is markedly to reduce time from conception to best practices
to adoption of new and better MPI through a free, well-designed middleware
research platform.
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4 Requirements

In developing ExaMPI, we built on specific functional and non-functional
requirements. In certain cases, there are quasi-functional requirements related
to the modularity and extensibility of the software itself for use in specific appli-
cations. The following non-functional requirements were identified at the outset
of the project:

1. Use C++ in a modern development style2

2. Create understandable code that is maintainable
3. Enable strong progress3

4. Enable choice of polling and blocking notification
5. Employ an extensible software architecture that supports extensibility
6. At least support UDP, TCP, and Libfabric transports
7. Enable experimentation with new fault-tolerance models for MPI
8. Focus on persistent and non-blocking operations as fundamental, rather than

blocking (point-to-point and collective)
9. Enable a community of contributors of compatible extensions that are BSD-

license compatible
10. Enable efficient overlapping of communication and computation when work-

ing with high-performance networks

These functional requirements were identified:

1. Support a useful subset of the MPI 3.1 standard4

2. Achieve point-to-point throughput that is initially competitive with produc-
tion free MPI’s

3. Achieve latency that is appropriate for a strong progress implementation
4. Specifically, enable the MPI Stages model of MPI fault tolerance [28].

5 Design

In this section, we provide an overview of ExaMPI’s design, then discuss progress-
engine design, and conclude with ExaMPI’s transport design (data movers).

2 to avoid code cloning, enable use of compiler-supported threads, employ metapro-
gramming and polymorphism where appropriate, and enable enhanced modularity
over C.

3 independent progress of messages through the network, independently of how often
an application calls MPI functions, see also Sect. 5.2.

4 based on the long experience of the first author and review of many applications’
use of MPI as supported by a recent study by some of us and others [23].
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Fig. 1. General overview of the ExaMPI structure

5.1 Overview

The first step in designing ExaMPI was to do a design extraction from the
MPI Standard, extending ideas presented in [26]. From this effort thus far, we
derived Fig. 1, which provides a Unified Modeling Language (UML) class diagram
that also expresses certain choices for practical implementation. This diagram
contemplates both the top-down view of the standard APIs and data structures
and the bottom-up view of data movers implementing transports for MPI.

Here are some specific facets of the design implied by Fig. 1:

– Different interfaces can be supported for different standard levels (releases)
of MPI.

– One can drop in any progress engine rather than having this choice be fixed
in the design.

– Transports are also pluggable, akin to other major MPI implementations.
– The Universe is a special class to avoid global state.

Furthermore, the nomenclature and thinking of this MPI’s design is required to
be compatible with the nomenclature and approach of [6].

Figure 2 reflects the design for the progress engine. First of all, the entire
progress engine is pluggable so that other researchers can experiment with alter-
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Fig. 2. Structure of the progress layer of ExaMPI

natives to this approach. With reference to Dimitrov’s diagram [11] as shown in
Fig. 3, we enable all these possible combinations of message progress and notifi-
cation. This feature is important because prior work has shown that overlapping
of communication and computation is severely hampered by polling behavior in
progress and/or notification.

5.2 Progress Engine Design

The progress engine abstraction is designed to allow any progress engine to be
implemented inside the ExaMPI library. We restrict all progress to be made
through the progress engine by requiring all operations to construct a request
object. The request object is posted to the progress engine, which then will
progress the request objects and the underlying transport implementations.

Figure 3 shows the four classes of MPI progress engines that are possible
to be constructed. Currently, ExaMPI implements a strong progress engine.
By “strong” we mean that the progress is independent with separate progress
threads from the user threads and the notification of completion is blocking.
When a user thread waits on a request, the user thread is unscheduled until the
request is complete. Further progress engines are being developed to implement
the weak and saturated progress classes.
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Figure 2 shows the decomposition of the functionality within the Progress
class. We separate the matching engine from the progress engine through an
interface that allows us to implement many separate algorithms to perform
matching. Currently the SimpleMatcher implements a unmatched message queue
and posted received queue with a complexity of O(N2).

In addition, we decompose further the mechanism for decision about which
protocol and algorithm is to be used for any MPI operation. The SimpleDecider
object implements the expected behaviour of the point-to-point functionality. By
implementing a custom decider class, developers can map any MPI operation to
any underlying algorithm.

5.3 Transport Design

The transport layer present within ExaMPI is intended to allow abstraction of
all available network APIs. Figure 4 shows the hierarchy and required functions
any Transport class currently is required to have implemented. Further develop-
ment on this aspect of the library will enable offloading collectives and one-sided
remote memory operations.

The current implementations present are the UDP and TCP transports,
which allow for global usage but are not as performant as a high-performance
network. Each transport implementation is entirely responsible for handling the
memory associated with the network. As such, TCP and UDP use the kernel IP
stack as a form of network buffer, but buffer payloads separately once received.
Future implementations with more complex communications fabrics will require
handling of receive queues.
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6 Implementation

In this section, we describe the interface layers (language bindings) and our
comprehensive usage of C++17 [21] for performance, flexibility, and code quality.

Fig. 4. Structure of the transport layer in ExaMPI

6.1 Interface Layers

The MPI Standard defines bindings for both C and Fortran, which must be avail-
able from any compliant MPI implementation. Currently ExaMPI only provides
the C language interface, but building the Fortran interface is trivial above the
current implementation, similar to other MPI implementations that build their
Fortran bindings to simply call the C bindings.

In Fig. 5, the current interface structure of ExaMPI is presented. The C
symbol names for both the MPI layer and PMPI layer are defined in the mpi.h
header file. The MPI symbols are defined to be weak linked to facilitate the
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Fig. 5. UML describing interface layers

overloading of their functionality by MPI-compatible tools. The default MPI
functions directly call the equivalent PMPI function.

The PMPI layer then uses the root universe to find the interface to the
underlying C++ interface. The Interface class declares and defines the same
interface as the C bindings of MPI but within a C++ class structure. This
structure allows the abstraction of various interfaces for further work such as
MPI Stages or FA-MPI.

In addition to extendability, the BasicInterface class allows us to encapsulate
all top-level MPI behavior into a single location, which includes error checking
and subsetting of blocking and non-blocking paths into persistent path, which
is implemented by the underlying library.

6.2 Utilization of C++17

The ExaMPI implementation is written using C++17, which enables many pro-
ductivity and language features that are not present in earlier C++ or C specifi-
cations. In addition, C++ allows for object-oriented programming, which allows
the MPI implementation to directly deal with objects instead of the handles to
objects. Using objects allows us to develop expressive source code without the
clutter required with a C implementation.

We intend for ExaMPI to support full thread safety—with as much internal
concurrency as reasonably possible—through the entire library. This arrange-
ment is currently achieved with locks provided by the C++11 specification. By
utilizing the built-in threading facilities, we reduce our dependence on external
libraries. In the future, we will develop thread-safe, lockless data structures that
will allow for the overhead of locking to be removed. They are also supported
with built-in atomic operations.
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Fig. 6. UML description of stages

The C++ language also provides many capabilities that are tedious to use
in C. One of these capabilities is string objects, which provide simpler handling
of textual data. Another is exception handling. In C, the error code mechanism
requires branches through the code base and forces design decisions. Within
C++, exceptions are provided and allow for much cleaner internal working with
errors. We utilize exceptions throughout the internal MPI library but provide
error codes to the top-level MPI layer.

7 Early Applications of ExaMPI

In this section, we describe practical applications of ExaMPI. Two distinct fault-
tolerant MPI models have been integrated into ExaMPI. The prospect of sup-
porting multiple fault-tolerant MPI models at once is also discussed.

7.1 MPI Stages

MPI Stages [28] is a global-restart model that supports fault tolerance in bulk
synchronous MPI applications. In this model, a checkpoint of the MPI state is
saved along with the application checkpoint: this MPI state can contain a state
that is visible to the user (e.g., MPI communicators) and an MPI state that is
only visible to the MPI library (such as network connectivity). Each stage is a
period between synchronous checkpoints and provides a temporal containment of
faults. Upon failure, the runtime system transparently replaces the failed process
by restoring both the MPI and application states, respectively, from their last
synchronous checkpoints and continue without restarting the overall MPI job.
Live processes roll back only a few iterations within the main loop instead of
rolling back to the beginning of the program, while a replacement of a failed
process restarts and reintegrates, thereby achieving faster failure recovery.

We introduced failure recovery support using MPI Stages in ExaMPI. The
ExaMPI library isolates the new API extensions (StagesBasicInterface) added
by MPI Stages from the standard MPI API as shown in Fig. 5. We can enable
the MPI Stages feature in ExaMPI library using the command line parameter –
enable mpi stages with mpiexec. The two main design aspects of MPI Stages are
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Fig. 7. State diagram of fault dæmon

Node Hardware

Operating System

Scheduling System Daemon (one per node)

Fault Daemon

Head Daemon (one per node)

Controller Daemon (rank 0)

MPI Application

Fig. 8. Runtime system dæmon layers

(1) managing and capturing internal MPI state and (2) transparent replacement
of a failed process by the MPI runtime system.

MPI Stages requires the user to save and load the internal state of MPI. To
support state checkpointing, the ExaMPI library provides a Stages interface
as shown in Fig. 6. Different modules of the ExaMPI library (e.g., Progress,
Transport) could save/load their MPI state in a checkpoint by implementing
this interface. The interface also provides a halt and cleanup method to handle
process failure for live processes.

The ExaMPI runtime system supports the transparent replacement of a
failed process as required by MPI Stages. The runtime system of ExaMPI sup-
ports both local execution and the Slurm job scheduling system. The runtime is
designed using a double-dæmon method for compatibility with many job schedul-
ing systems. The job scheduling system has the management daemon on the node
that executes the second layer dæmon, the fault dæmon. The fault dæmon then
in turn launches the MPI application as a sub-process. This design allows us
to intercept any failure of the MPI application and prevents the job scheduling
system from terminating the job prematurely. The fault dæmon also prepares
the final application environment variables. The fault dæmon waits for the pro-
cess to terminate and thereby avoids using any processing power from the node.
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1 int main()

2 {

3 /*MPI Initialization and variable setup*/
4 while(operations_left)

5 { /*Start the FA-MPI Transaction*/
6 MPI_TryBlock_start(comm, MPI_TRYBLOCK_GLOBAL, &try_request);

7 /*Do normal MPI Operations*/
8 MPI_Operation();

9 /*Finish the FA-MPI Transaction*/
10 return_code = MPI_TryBlock_finish(try_request);

11 /*Check for errors in the transaction*/
12 if(MPI_SUCCESS != return_Code)

13 { /*Perform recovery*/ }

14 }

15 /*MPI Finalize and other cleanup*/
16 }

Fig. 9. A simple example of an FA-MPI TryBlock

This feature is useful because there is a one-to-one application and fault dæmon
relationship. Figure 7 shows the state diagram of the fault dæmon.

Potentially, two more dæmons are launched. First the fault dæmon, which
both executes the local root rank and executes the head dæmon on each node.
The head dæmon launches the final dæmon, the controller dæmon, if it is rank 0.
With this structure, there are two dæmons (head dæmon and controller dæmon)
awake on the root node of the job allocation and one dæmon (head dæmon) on
every other node. This arrangement enables hierarchical scaling for side-channel
communication—that is, data not directly related to the MPI application via
socket-based TCP/IP. Figure 8 shows the sub-process relationships.

7.2 FA-MPI

Fault-Aware MPI (FA-MPI) is a lightweight, transaction-based fault tolerance
model for MPI [17]. With this transaction-based model, an application can
choose to use FA-MPI to achieve a fine-grain fault tolerance model by encapsu-
lating every MPI operation in a single transaction. Or, should the application
want to balance performance with fault tolerance, the application can choose
to instead put many MPI operations into a single transaction. As FA-MPI is
designed to be an extension of the MPI API, the application can use the fault
awareness provided by FA-MPI to determine the level of fault tolerance it wants.
While FA-MPI does provide the means to do failure recovery, it is also flexible
and lets the application decide what its failure recovery method should be. As
stated in the original documentation, “Applications using FA-MPI will run to
completion with higher probability than with a non-fault aware MPI” [17].

These nestable transactions allow a series of operations to be committed if
they were successful or to be retried if a fault was detected by one or more pro-
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cesses. To create these transactions, FA-MPI uses non-blocking collective func-
tions and encapsulates a transaction with special TryBlock functions. TryBlock
transactions can be local in scope—where only the local process must decide
what to do—or global in scope—where all failures are synchronized among all
processes. FA-MPI incorporates timeouts into its fault detection methods to pre-
vent the possibility of deadlock introduced when dealing with fault tolerance.
These timeouts can be user defined. FA-MPI also allows users to raise their own
errors, should users want to test their fault tolerance model or have a fault that
MPI can’t detect. Once a TryBlock has finished, all alive processes will have the
same view of the current status of the program. Processes then query FA-MPI
for information about the fault, which can then be used to form a consensus on
how to proceed. Figure 9 provides a brief example of how the TryBlocks might
be used. To help with the recovery process, FA-MPI provides functionality to
repair or rebuild communicators that were potentially broken during the fault.

FA-MPI is in the process of being integrated into ExaMPI. This integration
will provide several benefits to both ExaMPI and FA-MPI. The first noticeable
benefit for FA-MPI is ExaMPI’s fundamental focus on non-blocking operations,
something FA-MPI makes heavy use of and requires from MPI for its implemen-
tation [17]. Additionally, ExaMPI allows for further exploration of the FA-MPI
fault tolerance model and how the model performs in the presence of faults.
Since FA-MPI has already been implemented and tested in OpenMPI, we have
a base level to compare how well FA-MPI performs in ExaMPI. Lastly, ExaMPI
will also help quantify the necessary functionality required from MPI implemen-
tations to support its fault tolerance model, which will help enable ExaMPI (and
perhaps other MPIs) to support fault tolerance models more successfully.

7.3 Multi-FT Library

The authors are designing approaches to compose multiple fault-tolerant models
into ExaMPI. Apart from single models such as Reinit or ULFM and checkpoint-
restart, we are not aware of successful integration of multiple models. Both the
syntax and semantics of such combined models are of interest, but implications
for MPI middleware architecture are also of tremendous consequence. We are
exploring how to manage the complementary, at-times conflicting, and otherwise
independent impacts on an MPI implementation arising from multiple models,
including how to manage conflict resolutions between multiple models.

8 Conclusions and Future Work

In this paper, we described ExaMPI, a new, experimental implementation of the
MPI Standard. ExaMPI solves the problem that full-scale open source MPIs are
legacy middleware projects of large-scale and long-running development by many
contributors; they are difficult to learn, modify, and use for middleware research,
except in limited ways. Where they are usable, they are adequate, but many
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experiments are either intractable or require students and professors to spend
inordinate amounts of time “modifying around the edges” of such middleware.

Thus far, ExaMPI has proven to be a useful research vehicle for a small num-
ber of people. As we move to a community of developers, researchers, and users,
we look to increasing that utilization dramatically and expect the modularity
of design to allow for many interesting hybridizations of our baseline code and
concepts with others’ ideas, prototypes, and additions.

A set of robust additions and experiments with ExaMPI are planned for the
near future and include support for MPI-4 persistent collective communication
[20], support for finepoints [13], and support for MPI-4 Sessions [19]. Also, revis-
iting unrolling of collective operations and experiments for communication and
computation overlap are planned. These projects and others are keyed to the
research interests of the authors and their immediate collaborators. We expect
further research undertaken by others once the fall 2019 release of ExaMPI
occurs contemporaneously with the publication of this paper.
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Abstract. Performance Portability frameworks allow developers to
write code for familiar High-Performance Computing (HPC) architec-
ture and minimize development effort over time to port it to other HPC
architectures with little to no loss of performance. In our research, we
conducted experiments with the same codebase on a Serial, OpenMP, and
CUDA execution and memory space and compared it to the Kokkos Per-
formance Portability framework. We assessed how well these approaches
meet the goals of Performance Portability by solving a thermal conduc-
tion model on a 2D plate on multiple architectures (NVIDIA (K20, P100,
V100, XAVIER), Intel Xeon, IBM Power 9, ARM64) and collected exe-
cution times (wall-clock) and performance counters with perf and nvprof
for analysis. We used the Serial model to determine a baseline and to
confirm that the model converges on both the native and Kokkos code.
The OpenMP and CUDA models were used to analyze the parallelization
strategy as compared to the Kokkos framework for the same execution
and memory spaces.

Keywords: Performance Portability · OpenMP · CUDA · Kokkos ·
High-Performance Computing · HPC · Parallel programming

1 Introduction

The objective of a performance portability framework is to allow application
developers to focus on science outcomes without concerning themselves with
system details [13]. Parallelization and code optimization become the respon-
sibility of the framework. In theory, if a framework is optimized for multiple
architectures, the applications based on this framework will be automatically
optimized as well [9].

Several such frameworks are under development, such as RAJA, BOAST, and
Kokkos [5,10,12,13]. Each framework provides a different approach to separating
application details from the architectural details, but a common feature is that
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the specific parallel programming model for the architecture is not evident in
the application code. For example, a framework might use OpenMP directives
or CUDA kernels, but this detail is not present in the application code. This
lack of detail leaves decisions on how best to parallelize to the framework, which
is crucial for high performance.

Pragma-based parallel programming techniques such as OpenMP, OpenCl,
and OpenACC hide some details from the programmer, but gaining high per-
formance when using these approaches requires low-level understanding of the
target system [5,6].

In our research, we assess how well Kokkos meets the goals of Performance
Portability by writing a stencil-based numeric kernel in C++ to solve a thermal
conduction model on a 2D plate. These results will enable developers to make a
conscious decision and evaluate the trade-offs between portability versus loss/-
gains of performance. This code was executed on three programming platforms
to capture execution time and performance counters to get performance metrics.
The same codebase was transformed with the Kokkos portability framework, and
the same metrics were captured for comparison. These tests were performed on
several available systems with different architectures to assess how well Kokkos
is able to port the code and assess its performance. We intend for our findings
to help developers make an informed decision and understand what factors to
consider for Performance Portability.

The goals of Performance Portability, Kokkos approach as a Performance
Portability framework, and our interest in assessing this process are described
in Sect. 2. Section 3 covers related research in HPC and Performance Portability
frameworks. Details of the stencil-based numeric problem, the approach we used
for our experiments, the data collection process, and the architectures used are
included in Sect. 4. The results of our experiments are presented in Sect. 5, and
we discuss the execution times and performance counters collected.

2 Performance Portability, Kokkos Framework,
and Parallel Programming Models

The goal for Performance Portability is for developers to code a solution for a
specific problem on a familiar multi-core architecture and port it to a different
architecture with little or no loss of performance [13]. This is the theoretical
goal, and it is not easy to achieve [6]. In our research, we assess how well current
approaches meet the goals of Performance Portability. To do so, we selected a
portability framework and a representative stencil-based numeric kernel to test
a computational problem on an HPC system and then port it to other HPC
systems. We chose Kokkos as our portability framework for our experiments.

The development of Kokkos is built on key concepts of User Accessibility
and Performance Portability [3]. Minimizing the need for users to have specific
knowledge of an architecture and limiting usage of parallel directives through-
out the code are fundamental to user accessibility [3]. Achieving the same or
nearly the same performance is their goal for performance portability [3]. This
programming framework provides abstraction layers for data allocation and
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computation that allows for code written for scientific and engineering applica-
tions to be ported to different computing platforms [3,13] and makes it possible
to isolate developers from the nuances and complexities associated with these
specific architectures.

Kokkos uses template libraries that abstracts and treats execution space
and memory space differently where it defines the parallelization strategy and
includes details of the physical location of memory respectively [13]. The parallel
execution and multidimensional array abstraction layer allows multi-core sys-
tems to access architecture-bound memory structure through the Kokkos API
and selects the best memory storage ordering (Array of Structures (AoS) or
Structure of Arrays (SoA)) without modification of the kernel [3].

Kokkos and programming models like OpenMP hide the architecture from the
developer. OpenMP use processor directives to implement multithreading par-
allelization through a master thread that spawns multiple threads that execute
independently within their code sections in each core. All threads use the main
memory and respective core caches [8]. CUDA, another programming model,
also differs in the way it uses memory and code execution. CUDA uses a master
program that runs sequentially on the CPU and invokes compute-intensive code
to be executed on the GPU to run on thousands of cores in parallel. The data
is managed by the master program in main memory and copies it to and from
the GPU’s memory when it is needed for execution [7].

3 Related Work

Research and development in the area of Performance Portability has been
deemed a priority by the Department of Energy (DOE) [4]. The focus on this
research has provided the opportunity to study how these new frameworks
behave in comparison to the architecture-specific counterparts. Some of these
studies utilize a tool called TeaLeaf [4–6] that contains a collection of physics
applications for the purpose of researching performance portability, scalability,
and optimization [5], while others use known algorithms such as Jacobi and
Dense Linear Algebra [4] that can be adjusted to different computational inten-
sities for the purpose of testing performance.

One of these studies identifies the IBM Power systems and Intel Xeon Phi
nodes as the two main architectures in their research [4]. This is a similar app-
roach we utilized in our research. Their main objectives are to understand if it
is possible to select a single programming model for developing on multi-core
systems and the potential trade-offs in performance and productivity [4]. Their
research does not focus on a framework like Kokkos but rather on the new fea-
tures included in OpenMP 4.5 and OpenACC implementations that allow for
execution on homogeneous shared memory systems and offload capabilities to
heterogeneous accelerators [4].

BOAST (Bringing Optimization through Automatic Source-to-Source Trans-
formation) is a metaprogramming framework and another option for Perfor-
mance Portability that is currently on v1.0 as of October 2018. Its aim is to
simplify optimization of HPC application computing kernels [12]. The benefits
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of their framework include portability, increased productivity, good code perfor-
mance, and non-regression testing [12]. This is achieved by writing the applica-
tion with BOAST DSL (Domain Specific Language), selecting a target language,
and selecting the performance metrics and compiler to use. BOAST currently
supports C, C with Vector Library, OpenCL, FORTRAN, and CUDA [12].

Another study explores the portability of OpenCL, OpenMP 4.0, Kokkos,
RAJA, and OpenACC [6]. This study uses TeaLeaf as the baseline application
to provide standardization of computational problems for testing each of these
frameworks and programming models. Similar to our research, they use TeaLeaf
to solve a 2-dimensional heat equation and compares them in the categories of
Portability, Complexity, Productivity, Tuneability, and Performance [6]. Their
findings show a range of scores under each category and provide readers a com-
parison chart to help make an informed decision on which framework or model
to choose.

RAJA is being developed by Lawrence Livermore National Laboratories
(LLNL) and uses a C++ abstraction layer that allows for integration of existing
code and a development model to be used for new code [10]. This ability to sup-
port both existing and new code is advantageous because it saves productivity
time and gives the developers the ability to port their existing code rather than
having to start a new design from the ground up. The core to RAJA’s abstrac-
tion is the separation of the inner loop from iteration patterns [10]. It also boasts
enhanced readability and maintenance compared to other programming models
due to its simplified layout [10].

We have previously analyzed the performance of a Kokkos-enabled finite-
element application on a single architecture [11].

4 Methodology and Benchmark

Selecting a computational problem for our experiment is trivial but fundamental
to our research. To test the Performance Portability of Kokkos, we had several
options to consider such as using TeaLeaf, a scientific application containing
physics algorithms [5], or developing our own program based on known algo-
rithms. For the purpose of our research, we wrote a stencil-based numeric kernel
to test a computational problem in C++ code to solve the thermal conduction
model on a 2D plate with the Poisson equation. We used a single code base con-
figured to compile on their respective testing architecture. The process we used
to solve the thermal conduction model with the Poisson equation is described in
Algorithm 1.

4.1 Poisson Equation

Poisson is a partial 2D differential equation [1]. Since we have Dirichlet boundary
condition (the outer boundaries of the region), we are solving for the interior
values. Figure 1 illustrates an example. Given known values from the applied
heat source shown by the outer boundary dots, we will use the 2D Poisson
Equation to estimate the inner values indicated by the red dots. See Fig. 1.
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Algorithm 1. Iterative method for Poisson equation
1 Set Tolerance = 1e−10;
2 Set maxDiff = 0;
3 initialization: boundaries, inside points;
4 do
5 Save current Grid values (old);
6 Calculate new Grid values (new);
7 diff =| new − old |;
8 if diff ≤ maxDiff then
9 maxDiff = diff ;

10 end

11 while maxDiff ≤ tolerance;

Fig. 1. Thermal conduction model

The Poisson Equation is given as follows.

∇2T = S(x, y) (1)

Algorithm Development: (1) can be written as follows.

∇2T =
∂2T

∂x2
+

∂2T

∂y2
= S(x, y) (2)

where
∂2T

∂x2
=

Ti+1,j − 2Ti,j + Ti−1,j

h2
+ ε1 (3)

∂2T

∂y2
=

Ti,j+1 − 2Ti,j + Ti,j−1

k2
+ ε2 (4)



Assessing Kokkos Performance on Selected Architectures 175

h = �x and k = �y (5)

Like many numerical iterative methods, the idea is to discretize the solution
domain into a grid (structured in this case), using constant spacing (steps) in
x-axis and y-axis respectively, and approximate the value of T at a given grid
point. The point (i, j) is given by Ti,j . For a grid with N and M grid points, if
N = M i.e h = k the grid is said to be a uniform grid.

For administrative and verification purposes, we will use the following infor-
mation: 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1, Subject to the following boundary conditions
T (0, y) = 0, T (2, y) = 2ey, T (x, 0) = x, and T (x, 1) = ex, and with the following
source term T (x, y) = 2ey. Note that the exact solution to the PDE is T = xey.

Listing 1.1. Serial stencil kernel

for ( int i =1; i < n−1; i++) {
for ( int j =1; j < m−1; j++) {

double d i f f = T( i , j ) ;
T2( i , j ) = ( mainCoff ∗(T( i −1, j )

+ lambda∗T( i , j −1)+T( i +1, j )
+ lambda∗T( i , j +1)−(H∗F( i , j ) ) ) ) ;

d i f f = fabs ( d i f f − T2( i , j ) ) ;
i f ( d i f f > maxDiff ) {

maxDiff = d i f f ;
}

}
}

Listing 1.1 illustrates the main loop that evaluates the 5-point stencil. This
loop is parallelized in different ways throughout this project.

4.2 Execution Spaces

We selected three programming platforms to solve this thermal conduction model
and refer to these as the native platforms: Serial, OpenMP, and CUDA. These
platforms were selected because they allowed us to make a one-to-one comparison
with the Kokkos execution space model and assess the approach and performance
of the portability code generated by Kokkos. These comparisons were grouped
into the Serial, OpenMP (Multi-Core), and CUDA (GPU) Execution Spaces
respectively. Compilation of these programs utilized compiler optimization flags
uniformly and whenever possible to attain the highest performance allowed. Each
program was executed individually to minimize resource sharing and contention
on the selected architecture to obtain the best execution time estimation. All
versions of the program used the same kernel. Kokkos was built with the default
execution space set to Serial, OpenMP, and CUDA versions of Kokkos.

The Serial Execution Space provides us a baseline measurement between a
native Serial code and the Serial code generated by Kokkos. The OpenMP Exe-
cution Space compares native OpenMP and Kokkos’ OpenMP generated code.



176 C. Phuong et al.

The Serial and OpenMP Execution Spaces gave us a view into the performance
difference when the code is executed on single-core and multi-core architectures
respectively. The CUDA Execution Space allowed us to compare between native
CUDA and Kokkos CUDA, as well as between multi-core architecture and GPU
on both the native and their counterparts generated by Kokkos.

To experiment with these different execution spaces, we’ve taken the serial
kernel from Listing 1.1 and modified it to parallelize the outer loop in dif-
ferent ways depending on the target architecture. For the native OpenMP
version, we simply use a #pragma omp parallel for on the outer loop. For
Kokkos, we wrap the inner loop in a C++ lambda expression and pass this to a
Kokkos::parallel_for which parallelizes the outer loop. For native CUDA, we
wrote a tiling-based kernel, for comparison. The data accesses using parenthe-
ses in the kernel (e.g., T(i,j)) are C macros in the native versions, which are
replaced by traditional 2D array accesses. In the Kokkos version, this parenthe-
sized syntax is the expected way to access Kokkos View data structures.

4.3 Data Collection

The comparisons of these programs were performed through the collection of
execution time measurements on a large grid dimension that would provide a
high level of density of points for the calculations. Our decision to capture the
execution time is to remain true to the concept of Performance Portability [3]
and to set a standard metric to benchmark performance. This entails allowing
Kokkos to transform the code and to manage the memory space and execution
space for parallelization based on the underlying architecture [11,13] so that
we can understand the fundamental performance differences based on a native
execution time measurement.

Solving a thermal conduction model on a 2D plate is trivial for the HPC
domain; however, increasing the plate grid dimension creates a problem that
is more interesting and that meets the basic characteristics of a problem that
requires Data Parallelism. In our experiment, we used a 1, 000 × 1, 000 grid size
for the Serial and OpenMP programs. For CUDA, we used a 10, 000 × 25 grid
size to match the loop structure to the underlying hardware of the multi-cores
and memory bandwidth. These programs were executed multiple times for each
category to ensure consistency of the execution time.

On the Serial and OpenMP Execution Spaces, perf [2] is used to collect
hardware performance counters for analysis. The following selected counters
were available and reported on all architectures used in our experiments: cycles,
cache-references, cache-misses, total number of instruction, L1-dcache-loads, L1-
dcache-load-misses, and time elapsed. These metrics allow us to assess how the
code is being executed in each architecture and compare the performance relative
to the native and ported code. The collection of perf data was performed on a
1, 000 × 1, 000 grid size over 1, 10, and 100 iterations. For the CUDA Execution
Space, nvprof was used to collect GPU performance counter data. This data,
in conjunction with execution times, gives a rough measure of how well CUDA
kernels are able to take advantage of the GPU hardware.
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4.4 Architectures

This experiment was conducted on four architectures for comparison of perfor-
mance consistency over the three programming models and the selected grid
dimensions. Kokkos was compiled on each of the architectures for code opti-
mization. The experiment for the OpenMP Execution Space was conducted on
these architectures without hyperthreading to avoid oversubscribing the cores.
These architectures are included in Table 1.

Table 1. Architectures

Architecture XEON K20

Cores 16

CPU Intel Xeon ES-2650v2 2.60 GHz

RAM 256GB

GPU Tesla K20m 2496 Cores 706 MHz

GPU Memory 4GB 2600 Mhz, 208GB/s

CUDA Version 9.2

Architecture XEON P100

Cores 28

CPU Intel Xeon E5-2680v4 2.40 GHz

RAM 132GB

GPU P100 3584 Cores 1329 MHz

GPU Memory 16GB 715 Mhz, 732GB/s

CUDA Version 8.0

Architecture POWER9 V100

Cores 40

CPU IBM Power9, altivec supported

RAM 256GB

GPU V100 5120 Cores 1530 MHz

GPU Memory 16GB 877 Mhz, 900GB/s

CUDA Version 9.2

Architecture XAVIER

Cores 4

CPU ARMv8 Processor v81 2.26 GHz

RAM 16GB

GPU Xavier 512 Cores 1500MHz

GPU Memory 16GB 1500 Mhz, 137GB/s

CUDA Version 10.0
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5 Results

5.1 Serial

To confirm that our C++ code works properly and to get a baseline metric on
each of the selected platforms, we compiled and executed the code in each of
the architectures for native serial and Kokkos serial execution space and allowed
the program to run to completion. A grid size of 400 × 400 was used for this
experiment, and the number of iterations it took the program to solve the Poisson
equation was recorded at 588,921 iterations for all versions of the program to
converge.

Fig. 2. Serial code execution time in seconds

Native Serial. The execution time for the two XEON and POWER9 archi-
tectures performed comparably to each other and were up to 190% faster than
the XAVIER architecture. We did not expect to see XEON P100 outperform
POWER9 V100 by 5% because the POWER9 V100 is a newer HPC system and
has faster cores. See Fig. 2.

Kokkos Serial. The Kokkos version did not perform as well as the Native Serial.
When comparing between the Kokkos serial in XEON, POWER9, and XAVIER
architectures, the XEON and POWER9 were up to 166% faster than the
XAVIER. All architectures performed better in their native serial than Kokkos
and stayed within the 10% margin [3]. The exception was on the POWER9 V100
architecture where the Native Serial performed 33% better than Kokkos Serial.
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5.2 OpenMP

The first part of our Performance Portability parallel test is performed with the
OpenMP execution space. We conducted a series of Strong Scaling tests on each
of the architectures with a grid size of 1, 000 × 1, 000 and stopped the execution
at 5,000 iterations. Our scaling factor was 1, 2, 3, 4, 8, 16, 28, and 40 cores
(Fig. 3). This design allowed us to make a base comparison between each of the
architectures along comparable scaling, up to the maximum number of cores
(Fig. 4). Hyperthreading was turned off to prevent oversubscribing the cores.

Fig. 3. Strong scaling execution time in seconds

Fig. 4. Line chart - strong scaling execution time in seconds



180 C. Phuong et al.

Native OpenMP. The execution time consistently dropped by half for each
of the architectures as the scaling of the cores doubled. This behavior confirms
that Strong Scaling is occurring for both Native OpenMP and Kokkos OpenMP
execution spaces.

Kokkos OpenMP. We saw a consistent 17%–35% faster performance of the
Native OpenMP over the Kokkos version. This result is not consistent with those
obtained by other research [3]. POWER9 V100 native OpenMP experienced an
average of 170% to as much as 218% faster performance over the Kokkos version.
This behavior may be due to the way Kokkos handles memory layout and views
for the IBM Power 9 and merits further research with Kokkos developers to
determine if our code requires additional optimization flags for the IBM Power
9 versus Intel Xeon.

We ran our kernel with 1, 10, and 100 iterations and collected perf hard-
ware counters. As we increased the number of iterations, the counter stats also
increased. We used the perf data to better understand the execution time results.
On XAVIER, Kokkos outperformed native OpenMP. The Kokkos version exe-
cuted 4.06 Instructions per Cycle (IPC) versus 1.95 IPC on native OpenMP. On
the XEON architectures, both Kokkos and native versions performed compara-
bly. On POWER9 V100, the results were opposite to XAVIER. Native OpenMP
executed 7.53 IPC versus Kokkos 0.77 IPC with a higher percentage of Cache-
Misses to Instructions at 1.33% versus 7.56%.

Fig. 5. Native vs Kokkos OpenMP perf stats

Figure 5 estimates the IPC based on the perf data collected. The higher IPC,
the more efficiently the processor is executing instruction on the system. The
ratio of cache-misses to instructions will give an indication of how well the cache
is working.
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5.3 CUDA

The second part of our Performance Portability parallel test is performed in the
CUDA execution and memory space. In our CUDA experiments, we set Kokkos
to use Unified Virtual Memory (UVM) to simplify the process of using a single
codebase for all tests. We used two grid sizes, a 10, 000 × 25 and a 25× 10,000,
to make sure the data fits into memory to minimize unnecessary paging and to
maximize core parallelization. We captured the execution times at 1,000, 10,000,
and 100,000 iterations (Figs. 6 and 7) and nvprof was used to capture the GPU
stats.

Fig. 6. CUDA execution time in seconds

Fig. 7. Kokkos CUDA execution time in seconds

Native CUDA. Execution time increased linearly as the number of iterations
increased by powers of 10. This behavior was consistent across all architectures
for Native CUDA for both grid sizes of 10,000 × 25 and 25× 10,000. The time
in seconds is larger for XAVIER but proportionally similar in percentage to the
rest of the architectures. The ARM architecture has 512 GPU cores compared
to 2496, 3584, and 5120 cores for XEON K20, XEON P100, and POWER9 V100
respectively. XAVIER also has a maximum of 137 GB/s memory bandwidth
compared to 208, 732, and 900 GB/s for XEON K20, XEON P100, and POWER9
V100 respectively. These technical specs directly impact the timed results. A
notable data point in this experiment is between XEON P100 and POWER9
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V100. The XEON P100 GPU runs at 200 Mhz slower than the POWER9 V100
GPU with nearly 1,500 fewer cores and with memory speeds 150 Mhz slower.
Even with a slower hardware configuration, the XEON P100 was on average
14% faster than the POWER9 V100. We are anecdotally aware of criticisms
surrounding CUDA kernel launch latency on Power9, and will be exploring this
in future work.

Kokkos CUDA. As in the OpenMP case, we used a naive Kokkos implemen-
tation to replace the outer nested loop with a C++ lambda expression passed to
Kokkos::parallel_for(). At runtime, each row is handled entirely by a single
CUDA thread, which has dramatic influence on execution runtimes.

Execution time increased linearly as the number of iterations increased by
powers of 10. This same behavior was consistent across all architectures for
Kokkos CUDA for both grid sizes of 10,000 × 25 and 25× 10,000. These same
results were observed for Native CUDA as well. For the grid size 10,000 × 25,
Kokkos CUDA overall performance was within expected parameters [13]; how-
ever, on the grid size of 25 × 10,000, Kokkos CUDA overall performance was
much worse by an average of 2,400% on XAVIER, 10,250% On XEON K20,
8,760% on XEON P100, and 4,070% on POWER9 V100.

The poor performance of Kokkos when using the 25× 10,000 grid size is
due to a naive approach to parallelism that is somewhat hidden by the Kokkos
abstractions. What appeared to be adequately performant on other architectures
suffers greatly on GPU hardware, leading to an observation about Kokkos: per-
formance depends on having a clear understanding of how template choices map
to architectural details. With this Kokkos::Cuda implementation, each row of
the grid is processed by a single CUDA thread, and there is not enough work to
take advantage of all the CUDA cores. The Native CUDA implementation does
not suffer from this problem because the CUDA kernel uses a 2-dimensional
partitioning, producing good performance in any grid configuration.

Fig. 8. XEON P100 Kokkos CUDA MDRange execution time in seconds
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Kokkos developers have introduced an experimental MDRangePolicy that
reproduces the same 2-dimensional partition configuration utilized in the Native
CUDA implementation. MDRangePolicy allows for loop partitioning in multiple
dimensions and nested parallization. When we applied this MDRangePolicy in
our experiment on the XEON P100, the Kokkos CUDA version achieved perfor-
mance similar to the Native CUDA version. Figure 8 shows that MDRangePolicy
drastically improved the performance over the Naive execution on the XEON
P100. Notable differences in the results can be seen between the Native
and MDRangePolicy for both 10,000 × 25 and 25× 10,000 grid sizes. In the
10,000 × 25 grid size, the MDRangePolicy performed better than the Native code.
We expect that Kokkos outperforms ours in this instance because its implementa-
tion of parallel reduction is more mature than our native version. When the grid
size is flipped, the Native code performed better than Kokkos MDRangePolicy;
however, the MDRangePolicy performance is within the expected parameters [3].

6 Conclusions

Researchers are developing new programming models and frameworks that
enable Performance Portability. Each has distinct features and varying levels of
complexity to learn and implement. As shown by previous research [4,6,12,13]
and our own here, we have to consider the various factors such as Productivity,
Portability, Performance, etc. [6] when making a decision on which portability
framework to use and consider the trade-offs. Even after considering these fac-
tors, the portability process is not trivial. There are limitations to each of these
frameworks associated with their level of support of current HPC architectures
that will continue to evolve and make it more difficult to future-proof [6].

Solving a thermal conduction model on a 2D plate is trivial for the HPC
domain; however, we believe it is appropriate for the types of experiments we
conducted to collect basic performance metrics and to understand the behavior
and capabilities of the Kokkos libraries on fundamental transformation opera-
tions in contrast to a more complex implementation where additional factors
would hinder the analysis. Our research has shown that the effort of writing
code to solve a computational problem for parallel programming models such
as OpenMP and CUDA is relatively trivial compared to fully achieving Per-
formance Portability [9]. The Kokkos framework provided abstraction layers to
shield us from the details of the underlying architecture [13]. The compiled code
is supposed to be optimized to the architecture; however, our experiments show
that optimization for performance was not always achieved for the specified
architecture when we approach the problem with a naive implementation.

Achieving Performance Portability is not without a cost. The developer must
make conscious decisions for trade-off on ease of portability versus loss of perfor-
mance. It is not easy to know the performance gain or loss of code until baseline
tests are executed on all HPC systems involved. The developer should also con-
sider the optimization strategy, the architecture limitations, and abstractions
supported by the portability framework in the hopes that it will continue to



184 C. Phuong et al.

maintain performance on future architectural platforms. If the goal is to achieve
portability, then current frameworks will provide the means to do so; however,
if the goal is to maintain performance, then the developer should not approach
the problem with a naive implementation. In our case, when we approached the
problem naively, we did not achieve optimal performance with Kokkos; however,
by using multiple levels of parallelism, we were able to achieve the same or nearly
the same level of performance [3].

Our future work beyond this research involves exploring how Kokkos opti-
mizes code for the architectures used in these experiments, nested parallelization
options used in Performance Portability frameworks, and the effects of hyper-
threading on Performance Portability.
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1 Introduction

There has been a growing effort in the field of neuroscience to produce, on the
one hand, accurate-enough neural models that help avoid the use of invasive
in-vivo techniques for the precise characterization of neural tissue responses to
determinate stimuli and, on the other hand, having flexible, tractable models
that allow for the analysis of neural networks of representative sizes in order to
study particular regions of the nervous system [11]. These models are generally
referred to as spiking neural networks (SNNs), because of their ability to imitate
the natural spiking behaviour of real neural cells. The creation of models for this
sort of cells requires, first, the need for integrate numeric modelling techniques
that accurately represent the behavior of nervous cells from a chemical, biological
and physical perspective, while, secondly, optimizing those same models in order
to make them portable to existing computer hardware and software [20]. This
has meant, usually, moving from the theoretical analysis of low level abstraction
models—typically rich in detail—to higher abstraction models, easier to scale
and simulate for more practical situations [20], depending of the final applica-
tion. But recently, the effort has moved in the direction of tying the low-level
analysis models with large-scale observable experiments, particularly because of
the increasing computing power and computational techniques of the last decade
that, some day, may help improving the comprehension of the brain information
processing, the origin of the consciousness [4], and the understanding of the
mechanics in mental illness such as Parkinson syndrome [9].

A platform which is gaining adoption as a potentially efficient vehicle for
accelerating SNN simulations is the Field Programmable Gate Array (FPGA),
due to its inherent ability to carry out parallel power-efficient numerical comput-
ing (see for instance [22] for a completely custom hardware approach of porting
a eHH based SNN to a multi-FPGA platform). Yet, porting software algorithms
to FPGAs is not straightforward for those not versed in synchronous, concurrent
digital design: the dataflow nature of digital hardware, and the timing aspects
related to floor-planning and routing, though somewhat simplified by standard
practices in hardware description languages (HDL) and synthesis tools, escape
software designers, ending in non-optimal designs. It is a common misconcep-
tion, even among junior digital designers, to see HDLs as programming languages
instead of what they really are: a way of structurally describing logical circuits,
that certain tools may correctly (or not) interpret in order to generate the said
circuit. This, of course, complicates the exploration of SNN variants, as custom
hardware design as the one reported in [22] is time consuming, and ends in
systems not amenable to quick modifications.

As a way of bridging this gap between algorithm design and its hardware
implementation, a new batch of high level synthesis (HLS) tools have appeared
in the past decade, aimed at accelerating the deployment time on FPGAs [5].
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These tools allow for quick explorations of hardware implementations such as
the one reported in [18] (one of the authors in [18] is Smaragdos who is also an
author in this work). But such direct translations into hardware from high level
language constructs are not as efficient in terms of processing when compared
with direct custom implementations in applications specific integrated circuits
(ASICs), or even to software running on standard Von Neumann and vectorial
processors (particularly because of the 65–70% speed penalty imposed by the
programmable FPGA fabric, among other handicaps vis-á-vis integrated circuits
clearly explained in [3,12]), and require extra effort if one intends providing them
with standard interfaces that allow for scalability and communication with other
computational systems. A way of overcoming this is resorting to heterogeneous
platforms such as Xilinx Zynq SoCs, that incorporate both standard processing
cores and FPGAs. In this way, those coding structures more amenable to a
standard sequential programming model may be implemented directly on the
SoC cores (with the added advantage of having access to arithmetic, interfaces
and even memory running at full core or bus speed), while a parallel accelerator
running on the FPGA takes care of those operations that can run faster in high
level described customized hardware.

Our previous implementation of a SoC-FPGA heterogeneous solution for the
eHH ION model has already been presented in [1], where the main approach
used was a divide and conquer strategy, with the programmable logic (PL) of the
device being used for the solution of the expensive O(n2) GJ operations, while the
SoC core (PS) was used both for handling the linear scaling computations of the
ION dentrite, soma and axon compartments, and the required data scheduling
for the complete simulation of the model. The current work shows how the
results obtained in the latter can be improved in at least an order of magnitude,
by using particular C++ code transformations within an HLS guided hardware
design methodology, applied to the hardware accelerator unit executing the gap-
junctions interactions of the network population.

This paper is structured as follows: Sect. 2 gives a theoretical background
on SNNs and the complexities associated with accelerating their simulation,
and summarizes related work around proposed solutions for the simulation bio-
logically accurate SNN models, centred mainly on recent FPGA-based imple-
mentations of the eHH ION model, and their performance against typical HPC
multi-core and GPU-based solutions. Section 3 describes in detail the structure
of an heterogeneous approach towards SNN simulation acceleration, while Sect. 4
presents the design methodology hereby proposed in order to speed up the lat-
ter. Section 5 discusses the results obtained and potential improvements in the
system, compared with previous implementations of the ION model, and the
authors’ previous results given in [1]. This section also discusses how to carry
out modifications required in order to simulate alternative SNN models. Section 6
provides with conclusions and recommendations for future work.
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2 Spiking Neural Networks Modelling and Simulation
Acceleration

Biological neural networks are also referred to as spiking neural networks (SNNs)
because of their spiking nature, in order to differentiate them from artificial neu-
ral networks (ANNs). Now, depending on the goal of a researcher, a single neuron
may be modeled as a simple sum operation or as a multi-compartment system
with rich biological detail, with a whole range of multiple levels of model com-
plexity in between [11], where SNNs are typically based on the most complex
models and ANNs on the simplest. Almog et al. [2] explain that a realistic model
is characterized by how effectively does it reproduce the behavior of a biological
neuron, but not the other way around. A more complex model requires more
fitting parameters and, as such, it becomes easily constrained by the classical
multidimensional problem. For practical reasons, a simpler model is always pre-
ferred if it recreates the experiments with satisfactory results.

Historically, the first widely accepted low level abstraction model of a neu-
ral cell was proposed by Hodgkin and Huxley: a basic Resistance-Capacitance
electric model that was able to emulate the behavior of neurons in the analog
computers of the 1950s [8]. Other models, such as the Iz model, proposed by
Izhikevich, and the Integrate and Fire model (IaF), are also widely used, but
their limitations in biologically accuracy sometimes prevent their use in partic-
ular cases (see [11] for a good guide on how and when to use each).

Now, the trait that enables neurons to communicate among themselves are
the synapses, which are highly specialized structures [7]. There are two main
types of synapses: electrical and chemical synapses. The electrical synapses are
the simplest form, and consist of inter-cellular channels which allow ions and
small molecules to pass from one cell to the next. These synapses are also known
as gap-junctions (GJ), and they do not distinguish between pre and post-synaptic
interconnects [7]. Chemical synapses, on the other hand, consist of a sequence
of interactions, where the pre-synaptic signals are transmitted via the release of
neurotransmitters that bind to receptors at the post-synaptic neurons [7].

2.1 The Inferior Olivary Nucleus Model

The inferior olivary nucleus (ION) forms an intricate part of the olivocerebellar
system which is believed to be related to the timing of motor commands and
learning [6]. The main feature of this cell is that it forms part of the densest
brain region where its activity only gets triggered when multiple neurons are
synchronized (and subsequently transmitting a short burst of spikes [6]). To
effectively emulate this behaviour, De Gruijl et al. [6] developed a model based
on a three-compartmental cell (dendrite, soma and axon) with GJ interactions
between each neuron’s dendrite-compartments (see Fig. 1). The model is also
called the extended Hodgkin-Huxley model (eHH). The operations are performed
with single-precision floating-point (SPFP) representation; a summary of the
required SPFP operations and data transfer needed for the different sections of
the model are given in Table 1.
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Fig. 1. Schematic representation of the three-compartmental cell model proposed in [6].
Each arrow indicates an ion channel or electrical current direction. Figure based on [6].

Table 1. Single-Precision Floating-Point (SPFP) operations and transfers per simula-
tion step, per neuron [15,16]. Here, N means the total neuron population.

Operational compartment No. of SPFP operations

Gap junction unit 12×N

Cell compartment (Axon, soma, dendrite) 859

I/O and storage No. of SPFP transfers

Neuron state (R/W) 19

Evoked input (R) 1

Connectivity vector (R) 1×N

Neuron conductances (R) 20

Axon output (W) 1 (axon voltage)

As discussed in [1,16,17], the eHH ION model has a computational com-
plexity that is mainly determined by the GJ interactions, particularly when the
network is densely interconnected, being the worst case an all-to-all connection,
when the complexity becomes Ogj(n2), with n the number of dendritic con-
nections for each cell. As an aside, since a required property of a biologically
accurate cell model is that the neural network must be synchronized in order
to guarantee the correct calculation of the dendritic phenomena, event-driven
simulations are discarded [19], and the differential equations are usually solved
via the Euler method [6].

2.2 FPGA Approaches at Simulating Biologically Accurate SNN
Models

Plenty of work has been carried out in porting SNN models to FPGAs, as the
already mentioned cases of [18,22]. But there are also simpler based SNN imple-
mentations, as that of [13,21], and some have also already used heterogeneous
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Fig. 2. Overall system architecture. The GJU-IP is managed by one thread of the
ARM A9, via AXI4, while the other thread handles the axon, soma and dendritic
compartmental models, and takes care of the system’s I/O.

platforms as the one used in this work (see [14]), proposing a cluster of 32 boards
in order evaluate the communication performance of a sparse graph-oriented
application using MPI (in this case a sparsely distributed Iz based SNN). These
simple, sparse SNN models are, nonetheless, not able to support the ION model
easily, which is one of the main objectives that motivated this work. As already
discussed, a key aspect of the ION system is the dense interconnection among
the cell population. Researchers in [18] and [22] center their strategy around mul-
tiple instances of execution units of neural cells called physical cells (PC). Each
cell-state is associated with one PC, then each PC executes a set of cell-states
each simulation step. In both cases, their approaches are fast enough to achieve
locked-step simulation at a 50µs time step (necessary for the model’s conver-
gence, in order to have simulation timings equivalent to the brain’s own real
time response), but circumscribed to a small cell population in a all-to-all den-
dritic connection. This sizing restriction is mainly due to the inner gap-junction
interactions within the dendrite compartment. These operations are modelled
as a pair of nested for loops (see Listing 1.1), that scale in a O(n2) fashion
as the number of dendritic connections, n, increases. One could easily try to
port to hardware via an HLS loop-unrolling directive that distributes into paral-
lel hardware the arithmetic operations. But this direct approach, unfortunately,
does not scale effectively because of hardware resources sharing among the rest
of the PC’s compartments, which in the case of [18], limit the total number of
real-time simulated cells to 96. The work of [22], claims bringing up the total
number of real-time running cells up to 768 for a single Zedboard (in what seems
to an 8-way connection scheme among neurons, with no specific experimental
timing results given for their proposed Multi-FPGA platform), at the cost of a
customized structure, not readily ported to a different SNN model. Both [18,22]
claim the capacity of accommodating larger SNNs if this real-time constraint is
removed, nonetheless.
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3 An Heterogeneous Approach to SNN Simulation
Accelerators

This work aims at providing an efficient accelerated implementation of the eHH
ION model, that is also flexible enough in case of requiring extensive modifica-
tions of the model used, without losing efficiency. The overall high level archi-
tecture used is shown in Fig. 2, using Avnet’s Zynq-7020 SoC ZedBoard with
512 MB DDR3 RAM. The processing region of the Zynq (called PS) includes
a dual-core ARM A9 CPU, with NEON SIMD capabilities, plus several I/O
controllers such as an Ethernet interface. The integrated Artyx-7 FPGA fabric
(called the PL region) is interconnected via several AXI4 bus channels to the PS.
The simulation task is partitioned between the PS and PL regions: the soma,
the axon, and the dendrite compartments described by the eHH equations (see
[1] for details) are executed on the ARM cores. The gap-junction interactions
are processed in the PL region. Note that the latter has limited local on-chip
memory (technically called BRAM by Xilinx), making difficult for the whole
conductance matrix to reside locally next to the gap-junction processing unit
(here called GJU), if the said so matrix is over a few thousands elements. This
entails a continues transfer of such matrix between the DDR3 RAM and the
GJU, in each computation step (a handicap that may easily be overcome on
FPGAs with bigger BRAMs).

Listing 1.1. Gap-junction pseudocode

f loat Vdend [N ] ; f loat Iout [N ] ;
f loat Conn [N ] [C ] ;
for ( indxNeu=0; indxNeu<N; indxNeu++){

f loat f a c c =0; f loat vacc=0;
for ( indxCon=0; indxCon<C; indxCon++){

v=Vdend [ indxNeu]−Vdend [ indxCon ] ;
f=v∗ expf(−v∗v ∗0 . 0 1 ) ;
f a c c+=Conn [ indxNeu ] [ indxCon ]∗ f ;
vacc+=Conn [ indxNeu ] [ indxCon ]∗ v ;

} Iout [ indxNeu ]=0.8∗ f a c c +0.2∗ vacc ;
}

Listing 1.2. Gap-junction strip-mined
optimization pseudocode (one strip)

VRow[ STRIP SIZE ] ; VCol [ STRIP SIZE ] ;
popFirstV ( input ,VRow, VCol ) ;
Facc [ STRIP SIZE ] ; Vacc [ STRIP SIZE ] ;
while ( count<ColBlockProc ){
for ( row=0;row<STRIP SIZE ; row++){
cond [ STRIP SIZE ] ;
popCond( input , cond ) ;
popV( input , VCol ) ;
for ( c o l =0; col<STRIP SIZE ; co l++){
#pragma HLS UNROLL
V = VRow[ row ] − VCol [ c o l ] ;
F = V ∗ expf (V ∗ V ∗ hundred ) ;
Facc [ row ] += F ∗ cond [ co l ] ;
Vacc [ row ] += V ∗ cond [ co l ] ;

}
}count+=STRIP SIZE

}
I [ STRIP SIZE ] ;
for ( row=0;row<STRIP SIZE ; row++){
I [ row ]=0.8∗ Facc [ row ]+0.2∗ Vacc [ row ] ;

}pushI ( output , I ) ;

An initial version of the GJU was designed using C++ and compiled to
RTL using Vivado HLS. To optimize the parallelism of operation in the pro-
grammable fabric, a strip-mined loop transformation was used [5]. Results are
reported in [1]. Differences between the optimized code and a naive direct app-
roach (simply porting the original C++ code) describing the GJU as reported
in [18] may be gleaned from code Listings 1.1 and 1.2. Note that in Listing 1.2,
the input and outputinterfaces match to the AXI-Stream interfaces of the GJU.
The Xilinx’s AXI-DMA IP feeds the voltage from the dendrite and the inter-
connect conductance values to the interface, then writes back to the RAM the
generated current values. As a drawback, the data packets fed to the stream
have to be previously sorted in software, imposing an extra processing load on
the CPU.
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4 Applying Hardware Architecture Design Patterns
for Improving the GJ Accelerator in HLS

In order to improve the previous GJU, two specific modifications were first car-
ried out: increasing the GJU input bus-width from 32 to 64 bit in the initial
design, and allocating the dendrite’s voltage vector on BRAM while executing
the GJ interactions (eliminating the cost of DRAM fetching and packets sorting
that was required in the implementation reported in [1]). But, most importantly,
a structured methodology of design was followed in order to produce the C++
description of the algorithm, such that the HLS would produce the optimal hard-
ware, according to the guidelines for vectorization and pipelining given in [5].
This methodology is general enough to be applied on other instances of high
level hardware design, and requires, as an initial step, a block diagram of the
intended hardware, that makes explicit the desired data-path procedure.

4.1 Architectural Design and Coding Methodology

As [5] indicates, two different but equivalent C++ portions of code producing
the same results, will not necessarily be ported to the same hardware processing
structure, let alone the most efficient. The inherent dataflow/parallellism nature
of hardware must somehow be made explicit to the HLS, which means that a
detailed block diagram of the intended architecture must be constructed in order
to facilitate the best resulting code in terms of the final generated hardware.
This is a mandatory practice in Register Transfer Level hardware design, which
requires at least high level architectural knowledge on behalf of the designer.
Even though modern HLS tools ease the translation between the description
of functional data processing algorithms and their hardware implementation,
the timed, concurrent nature of hardware is still difficult to circumscribe using
general programming constructs, which means that synthesis tools are still not
capable of generating optimal solutions without guidance.

Therefore, an iterative study of the required GJU operations was first car-
ried out, in order to discover all data dependencies and thus create an efficient
datapath. The final block design, shown in Fig. 3, is the result of such iterative
process. It is composed of five software-programmable and independent mod-
ules. Each module shares configurable parameters which allow for partial or full
execution of the GJ interactions, given a maximum defined number of rows in
the conductance matrix and a maximum fixed cell population (which in this
case was limited to 10000 cells in an all-to-all connection, due to system require-
ments constraint at this value, nonetheless on the board could fit more cells).
Each module is synchronized by FIFO interfaces. The blockControl module
receives the data from the AXI-DMA stream. Meanwhile, data is packaged in
128-bit words and written through the V read and acc FIFO interfaces. The
V read module manages the storage of the updated dendrite’s voltages in the
local BRAM and fetches the voltages according to the access pattern required
(based on the conductance matrix row-column indexes). The calc module com-
putes the values of v and f (the same name variables as those from Listing 1.1)
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Fig. 3. Overall system architecture. The GJU-IP is managed by one thread of the ARM
A9, via AXI4, while the other thread resolves software calculations and I/O outside of
the ZedBoard.



194 K. Alfaro-Badilla et al.

in data words of four Vj ; therefore, the acc module accumulates each word and
sends each block component to I calc module.

The data parsing model is shown in Fig. 4; here, the conductance matrix
is swept row-wise, each row being divided into sub-matrices (this particular
matrix accommodation allows for later partitioning of the network among sev-
eral boards). Pipelining is used in order to traverse local rows from each sub-
matrix (each row is composed of 128-bit words). The I calc module writes to
the output-stream in a burst of four Iout vectors, when the main row is com-
pleted. The design’s performance is bound by the input-stream throughput (the
time it takes to read each dendrite’s voltage and associated conductances matrix
from DRAM).

Fig. 4. Representation of the execution procedure in the GJU-IP. The conductance
matrix is divided in sub-matrices with 16 conductances each. Each row in the blocks
is traversed in a pipelined fashion by the calc and acc modules. The results after
processing each row are accumulated by the I calc module which, after processing all
data blocks in the sub-matrix, produces the results of four GJ currents.

Listing 1.3. Gap-junction unit wrap-
per pseudocode

void GapJunctionIP (
in64Bi t s &input , Stream &output ,
int s i z e , int FirstRow , int LastRow){
#pragma HLS INTERFACE ax i s port=input
#pragma HLS INTERFACE ax i s port=output

Config simConfig ;
s imulat ionConf ig<Config>

( simConfig , FirstRow , LastRow , s i z e ) ;
execute ( input , output , simConfig , s i z e ) ;

}

Listing 1.4. Gap-junction unit execu-
tion processes pseudocode

void execute (
in64Bi t s &input , Stream &output ,
Config &simConfig , int s i z e ){
stat ic 128 bitStream Vdata ( ”Vdata” ) ;
stat ic 128 bitStream Cdata ( ”Cdata” ) ;
stat ic 128 bitStream pData ( ”pData” ) ;
stat ic Stream fData ( ” fData” ) ;
stat ic 128 bitStream F(”F” ) ;
stat ic 128 bitStream V(”V” ) ;
stat ic 128 bitStream Facc ( ”Facc” ) ;
stat ic 128 bitStream Vacc ( ”Vacc” ) ;
#pragma HLS DATAFLOW

blockContro l (
input , Vdata , Cdata , simConfig , s i z e ) ;

V read (
Vdata , pData , fData , simConfig , s i z e ) ;

c a l c (
pData , fData ,F ,V, simConfig ) ;

acc (
F ,V, Cdata , Facc , Vacc , simConfig ) ;

I c a l c (
output , Facc , Vacc , simConfig , s i z e ) ;

}

In order to translate into hardware the design in Fig. 3, the C++ code must be
now be written using the guidelines given in [5], by identification the appropriate
constructs that would described the intended hardware structure. The architec-
ture is functionally translated by dividing each module as a task in which each
communicator matches to a FIFO interface during the synthesis process.
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Dividing the project in multiple independent modules allows for individual
module optimization tuning and testing, and makes therefore for a more main-
tainable base code. Later performance inspection provides important feedback
in order to balance the each module’s optimization tweaking, such that there
is no module faster in latency than the others (which could complicate gen-
eral synchronization). A wrapper function is used to contain each modules: code
Listings 1.3 and 1.4 show the integration of each module in order to form the
GJU-IP main interfaces. Note that the specific DATAFLOW directive in Listing 1.4
indicates to the HLS that processes are expected to execute concurrently.

5 Final Results

Xilinx Vivado HLS is used for the implementation on a Zynq XZ7020 of the
synthesized design. The GJU-IP, with all the required AXI4 interfaces runs at
120 MHz on the FPGA. The complete system performance is measured at this
clock speed. The resources utilization is given in Table 2 an a comparison in
Table 3, between the authors’ previous work [1] and the current’s. Note that
the current design needs about 41% less arithmetic primitives (multiply and
accumulate units, DSPs in Xilinx lingo) and 43% less look-up tables (LUTs).
Nonetheless, due the temporal storage of the dendritic voltages and the FIFO
interfaces among the modules, about 14% more programmable LUTRAM and
600% more BRAM are needed. This is not so serious, any way, as total LUTRAM
required is under 5% and BRAM at 30% of the XZ7020-1 resources count for
each. Table 4 shows a comparison between the effective utilization of the FPGA
resources required to solve SPFP operations for same ION model (although
not the same connectivity scheme). The current work exhibits better FLOPS
throughput per DSPs and LUTs.

Table 2. FPGA resource utilization summary based on the ZedBoard development
platform. Note that room is still available if one were to fit another instance of the
GJU-IP in order to parallelize simulations further, taking advantage of the four 64-bit
AXI4-HP Bus channels available in the XZ7020-1.

Resources This work XZ7020-1 Total (%)

LUT 15 266 53 200 28.70

LUTRAM 846 17 400 4.86

FF 21 616 106 400 20.32

BRAM 42 140 30.00

DSP 91 220 41.36

The board software stack is built on a embedded Linux OS (more details
at [1]). An open-source memory map driver manages memory coherency between
the software applications and the hardware in charge of the DMA transfers. The
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Table 3. Comparison between prior authors’ work [1] and this one, in terms of FPGA
resources utilization for the GJU. The use of LUTRAM and BRAM primitives increase
because of the local storage of the dendritic voltages for the GJ execution. Still, major
savings are noticeable.

Resources Prior work This work Diff. (%)

LUT 26 877 15 266 ↓43.20

LUTRAM 739 846 ↑14.48

FF 27 468 21 616 ↓21.30

BRAM 6 42 ↑600.00

DSP 156 91 ↓41.67

Table 4. Utilization of FPGA resources and performance capacity of SPFP operations
executed on the FPGA fabric, compared against a all-to-all ION network [18] imple-
mentation, and a 8-way connectivity reported in [22]. The tstep column represent the
execution time during one simulation step and the SimC column means the total of
neuron population simulated. This work displays a more efficient performance density
(ratio of FLOPS and FPGA resources) for the given DSPs and LUTs units.

Source FPGA fclk DSPLUTSimC tstep
(ms)

MFP

opts

MFLOPSMFLOPS/

DSP

MFLOPS/

LUT

FLOPS/

(DSP ·fclk)

This work Zynq-7000120MHz 91 15k 1056 4.8 13.38 2788 30.64 0.183 0.2532

1188 6.03 16.94 2809 30.86 0.184 0.2551

Smaragdos [18]Virtex7 100MHz1600251k 1056 1.1 14.29 12990 8.119 0.052 0.0812

Zjajo [22] Virtex7 100MHz1008190k 1188 0.05 1.135 22690 22.51 0.012 0.2251

execution of the eHH model is distributed on the ARM’s two threads. One thread
executes the soma and axon compartmental models, while the second manages
the GJU-IP in order to carry out the dendrite compartment computations.

A comparison of performance against the authors’ previous work and a
baseline model performance extrapolated from results from [18] is shown in
Fig. 5a (logarithmic scale on both axes). Average resolution time for a computa-
tional step is improved here 4× against results in [1] for ION cell populations of
1000 cells and more, while reaching to 10× and more for ION cell populations
under 1000 cells (in an all-to-all connection scheme). The system is now only an
order of magnitude slower that the results given by [18] for a 100 cells ION simu-
lation, on a much bigger FPGA. The simulation timing step, nonetheless, is still
an order of magnitude over the required 50µs for converging to real brain tim-
ing. For reference, a comparison of a simulation output is shown in Fig. 5b. Note
here how the error extracted from this simulation case is bounded at 0.00001
for the worst case. The time required to generate three seconds of brain activity
in this implementation takes about 9 min (PS@666 MHz, PL@120 MHz), while a
multi-threaded PC implementation completes in 2:40 min (i7-7820HQ@3.9 GHz).
That’s only a third of the speed for a much slower, cheaper alternative, both in
cost and in power needs, the latter implied in the total power consumption
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reported by Vivado for this design: two Watts, against the 45 W reported for a
i7-7820HQ@3.9 GHz at full resources utilization (as reported in [10]).

Fig. 5. Results from evaluating the ION eHH model, with the GJU-IP running on a
ZedBoard’s Zynq XZ7020-1. The soma, axon and dendrite compartments are executed
on the Zynq PS, under Linux. The PL runs at a 120MHz clock frequency. Average
computation performance is given in sub-figure 5a for a single step. Sub-figure 5b
shows that error ε is under 0.00001.

6 Conclusions

This paper has reported the application of a hardware-oriented methodology
based on HLS dataflow transformations, in order to improve FPGA-based HLS
designs both in time performance and resources saved. As a study case, results
on the acceleration of the simulation of a biologically accurate neural network
on a heterogeneous SoC-FPGA platform have been presented. The final design
consumes fewer resources and runs 10 to 4 times faster than a previous imple-
mentation of the same algorithm on the same board: a ION eHH based model.
The IP generated for the dendritic gap junction model runs as a hardware accel-
erator in parallel with the model’s implementation on the XZ7020-1 SoC cores,
reaching processing speeds only 66% slower than those of an 8 core, Intel based,
64-bit processor at 3.9 GHz processor, and consuming an order of magnitude less
power than the latter. For smaller cell populations (<1000), a faster CPU would
improve the execution time (for instance using a Ultra96 FPGA board with a
4 core ARM-A53@1 GHz), whereas, for larger cases (>1000), a replication of
instances of the GJU-IP would take advantage of the AXI-HP 64-bit channels
bandwidth, not used at full capacity in this work. One thing to keep in mind here
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is that, being this a C++ based design, it is readily portable to faster FPGAs,
and may be re-configured to more restrictive FPGAs as well. Additionally, the
GJU-IP may be easily reused in other neural models different to the eHH with-
out requiring a re-synthesis of the IP. This because the GJU-IP communicates
via an standard Linux software driver to the main model algorithm.

Work in progress seeks to implementing multiple instances of the GJU-IPs
running in multiple boards, with the software parts of the model parallelized
also along the boards’ cores using an openMPI API.
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Abstract. Artificial intelligence (AI), particularly deep learning, is enabling
tremendous advances and is itself of great research interest. To address these
research requirements, the Pittsburgh Supercomputing Center (PSC) expanded
its Bridges supercomputer with Bridges-AI, providing the world’s most pow-
erful AI servers to the U.S. national research community and their international
collaborators. We describe the motivation and architecture of Bridges-AI and its
integration with Bridges, which adds to Bridges’ capabilities for scalable,
converged high-performance computing (HPC), AI, and Big Data. We then
describe the software environment of Bridges-AI, particularly the introduction
of containers for deep learning frameworks, machine learning, and graph ana-
lytics, and PSC’s approach to container deployment. We close with a discussion
of the range of research challenges that Bridges-AI is enabling breakthroughs,
highlighting development of AI-driven methods to identify immune responses
with automated tumor detection in breast cancer.

Keywords: Artificial intelligence � Deep learning � Machine learning � GPU �
Containers � Singularity � Digital pathology � Cancer

1 Introduction

Artificial intelligence (AI), particularly deep learning, has emerged as a powerful tool
for extracting insight from large-scale scientific and societal data, augmenting scien-
tists’ abilities and improving the results of simulation and modeling. While AI’s pro-
gress has been rapid and impressive, it is still in its infancy. Research on AI algorithms
and applications is vigorous and increasing with each year [1, 2]. Deep learning is
enabling advances such as helping radiologists improve the accuracy of diagnoses,
driving the discovery of new materials to produce energy more efficiently, analyzing
pedestrian and vehicular traffic patterns to improve urban spaces, and selecting optimal
crops to boost agricultural production. Intense interest in AI spurred development of
specialized computer processors, initially through incremental advances in graphics
processing units (GPUs) and, more recently, through functional units designed
specifically to accelerate the tensor operations that are central to deep learning. The
new functional units are more than an order of magnitude more powerful, and they are
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pivotal to vital breakthroughs in AI and AI-driven applications. These factors create an
urgent need for state-of-the-art cyberinfrastructure to support fundamental AI research,
AI applications, and AI-enabled simulation.

Since January 2016, the Pittsburgh Supercomputing Center (PSC) has operated
Bridges [3–5], a national supercomputing resource that pioneered the convergence of
high-performance computing (HPC), AI, and Big Data. Supported by the National
Science Foundation (NSF), Bridges is allocated at no charge for open research and
education through the XSEDE (Extreme Science and Engineering Discovery Envi-
ronment) program. Bridges was designed to bring HPC to communities and applica-
tions that traditionally had not made use of HPC. One such community was computer
science, and the AI community was, and is, very active on Bridges because of the
GPUs (NVIDIA Tesla K80 and P100) that Bridges provides. However, requests for
GPU resources on Bridges consistently and greatly exceeded available capacity. Also,
emergence of new functional units to accelerate deep learning provided opportunity to
introduce to the research community extremely powerful new GPU resources that
would accelerate AI research and applications and free the existing GPUs in Bridges
for simulation applications, including AI-enabled simulation.

To address the need for new AI technology, in October 2018 PSC introduced
Bridges-AI, an expansion of Bridges that supports the most complex deep-learning
models with the highest accuracy and incorporating the largest data sets. Bridges-AI
balances maximum capability and capacity and is fully integrated with Bridges. PSC
conducted an Early User Program in November and December 2018, after which
Bridges-AI entered production operation on January 1, 2019.

The remainder of this paper is organized as follows. Section 2 describes the
architecture of Bridges-AI. Section 3 addresses the software environment for Bridges-
AI including the introduction of containerized frameworks to improve the software
environment for users and simplify system administration. Section 4 presents results of
some well-known benchmarks to illustrate performance. Section 5 surveys research
being done on Bridges-AI, addressing both the Early User Period and current pro-
duction operations. We conclude with a summary and ideas for next steps.

2 Bridges-AI Architecture

The goal of Bridges-AI is to provide to the research community a resource for scalable
AI that integrates with complementary research involving big data and HPC to
transform research. Maximum performance, reliability, and reproducibility are essen-
tial. Therefore, Bridges-AI targets scaling to large numbers of datacenter class GPUs.

Bridges-AI consists of two kinds of two kinds of nodes: an NVIDIA DGX-2
enterprise AI research system (“AI-V16”), and nine Hewlett Packard Enterprise
(HPE) Apollo Gen10 servers (“AI-V32”).

The NVIDIA DGX-2 enterprise AI research system provides maximum scalability
with 16 NVIDIA Tesla V100 (Volta architecture) GPUs interconnected by the
NVSwitch. The DGX-2 serves the applications that need the highest possible number
of GPUs, the largest possible aggregate GPU memory, the maximum bisection
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bandwidth between GPUs, and the highest bandwidth to training data. It also serves
large-scale graph analytics requiring large memory and maximum bisection bandwidth.

Nine Hewlett Packard Enterprise (HPE) Apollo 6500 Gen10 servers, each with
eight V100 GPUs fully interconnected by NVLink 2, balance great AI capability and
capacity. The Apollo 6500 servers are an invaluable complement to the DGX-2,
addressing the many AI and ML applications that need performance much greater than
that found in campus resource but not at the extreme scale addressed by the DGX-2.

2.1 Bridges: An Architecture and an Ecosystem

AI nodes (servers) alone are not sufficient. An AI platform for research needs an
ecosystem, consisting also of general-purpose nodes for data preparation, traditional
machine learning, and simulation, and a large-capacity, high-performance filesystem.
Beyond hardware, the ecosystem must support collaboration, including access by
researchers across the United States and their collaborators worldwide, community
datasets, data sharing with (where necessary) provisions for data use agreements, and
interoperation with other computing infrastructure, scientific instruments, and clouds.

Bridges provides the ecosystem into which Bridges-AI is integrated. Bridges was
designed to be extensible, and new data infrastructure for the Brain Image Library [6],
the Human BioMolecular Atlas Program [7], and other projects has already been
integrated. With each addition, the whole become again greater than the sum of its
parts.

Figure 1 illustrates Bridges-AI integrated into Bridges. As described in [4], Bridges
implements a custom topology designed by PSC for its Omni-Path interconnect,
designed to optimally serve moderate-scale HPC, high performance data analytics, and
data-intensive workflows and to provide multiple, resilient paths to persistent data. An
important characteristic of that configuration is that not all ports of the radix-48 Omni-
Path edge switches in the 6-member “core” subnetwork are used, allowing for
expansion. Bridges includes the following types of processing nodes: 752 nodes with 2
CPUs with 128 GB of RAM (red cubes); 42 nodes with 4 CPUs (64–80 cores) and
3 TB (purple cubes); 4 nodes with 16 CPUs (288–352 cores) and 12 TB (orange); 32
nodes with 2 CPUs (28 cores), 128 GB, and 2 K80 GPU cards (4 GPUs) (green, third
row from front right); and 16 nodes with 2 CPUs (32 cores), 128 GB, and 2 P100
GPUs (green, second row from front right). Bridges-AI (green, front right) adds an
NVIDIA DGX-2 containing 16 V100 GPUs, 512 GB of HBM2 memory, 2 CPUs, and
1.5 TB of CPU RAM; and 9 HPE Apollo 6500 GPU servers, each containing 8 V100
GPUs, 128 GB of HBM2 memory, 2 CPUs, and 384 GB of CPU RAM. A custom
deployment of the Intel Omni-Path Architecture interconnect (core switches: orange
spheres; leaf switches: yellow spheres; links: orange, green, and blue lines, of different
colors solely for clarity in the figure) provides high-performance communications
between Bridges’ compute nodes and shared parallel filesystem (gray). An additional
leaf switch connects Bridges-AI nodes at full bandwidth (12.5 GB/s/direction).

Sections 2.2, 2.3 and 2.4 describe the Volta GPU, DGX-2, and HPE Apollo servers
that comprise Bridges-AI. Table 1 details the hardware configuration of Bridges and
Bridges-AI.
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Fig. 1. The Pittsburgh Supercomputing Center’s Bridges supercomputer couples different types
of processor nodes, each optimized for different tasks, using a unique interconnect topology. Its
architecture is designed to support the confluence of HPC, AI, and Big Data, including high
performance data analytics and data-intensive workflows. Section 2.1 summarizes the full system.
Bridges-AI (green, front right) adds an NVIDIA DGX-2 and 9 HPE Apollo 6500 GPU servers,
totaling 88 NVIDIA Tesla V100 GPUs, fully integrated into Bridges. (Color figure online)
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Fig. 2. Internal topology of Bridges-AI NVIDIA DGX-2 (left) and HPE Apollo 6500 (right)
nodes. Each is fully connected by NVLink 2.0, with the DGX-2 using 12 NVSwitch chips to
realize bisection bandwidth of 2.4 TB/s.
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Table 1. Detailed configuration of Bridges compute nodes. New nodes (AI-V32, AI-V16)
introduce in Bridges-AI are highlighted in bold. Node types ESM, LSM, and RSM denote
Extreme shared Memory, Large Shared Memory, and Regular Shared Memory, respectively.
RAM refers to CPU memory. For each CPU type, core counts and base and maximum turbo
frequencies are given in parentheses. Bridges also includes a 10 PB (usable) parallel filesystem,
served by the 20 Storage nodes below, and 7.3 PB of node-local storage distributed across
compute nodes.

Node type RAM # CPU/GPU/SSD Server type

AI-V32 1.5 TBd 1 16 � NVIDIA V100 32 GB SXM2
+ 2 � Intel Xeon Platinum 8168
+ 8 � 3.84 TB NVMe SSDs

NVIDIA DGX-2

AI-V16 192 GBd 9 2 � Intel Xeon Gold 6148 + 4 � 2
TB NVMe SSDs

HPE Apollo 6500

ESM 12 TBb 2 16 � Intel Xeon E7-8880 v3
(18c, 2.3/3.1 GHz)

HPE Integrity
Superdome X

12 TBc 2 16 � Intel Xeon E7-8880 v4
(22c, 2.2/3.3 GHz)

LSM 3 TBb 8 4 � Intel Xeon E7-8860 v3
(16c, 2.2/3.2 GHz)

HPE ProLiant DL580

3 TBc 34 4 � Intel Xeon E7-8870 v4
(20c, 2.1/3.0 GHz)

RSM 128 GBb 752 2 � Intel Xeon E5-2695 v3
(14c, 2.3/3.3 GHz)

HPE Apollo 2000

RSM-
GPU

128 GBb 16 2 � Intel Xeon E5-2695 v3
+ 2 � NVIDIA Tesla K80

128 GBc 32 2 � Intel Xeon E5-2683 v4
(16c, 2.1/3.0 GHz)
+ 2 � NVIDIA Tesla P100

DB-s 128 GBb 6 2 � Intel Xeon E5-2695 v3 + SSD HPE ProLiant DL360
DB-h 128 GBb 6 2 � Intel Xeon E5-2695 v3 + HDD HPE ProLiant DL380
Web 128 GBb 6 2 � Intel Xeon E5-2695 v3 HPE ProLiant DL360
Othera 128 GBb 16 2 � Intel Xeon E5-2695 v3 HPE ProLiant DL360, DL380
Gateway 64 GBb 4 2 � Intel Xeon E5-2683 v3

(14c, 2.0/3.0 GHz)
HPE ProLiant DL380

64 GBc 4 2 � Intel Xeon E5-2683 v3
96 GBd 2 2 � Intel Xeon

Storage 128 GBb 5 2 � Intel Xeon E5-2680 v3
(12c, 2.5/3.3 GHz)

Supermicro X10DRi

256 GBc 15 2 � Intel Xeon E5-2680 v4
(14c, 2.4/3.3 GHz)

Total 286.5 TB 920

a Other nodes consist of front end (2), management/log (8), boot (4), and metadata server (4).
b DDR4-2133
c DDR4-2400
d DDR4-2666
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2.2 Volta: A GPU for Deep Learning

Bridges-AI nodes are accelerated by NVIDIA Tesla V100 GPUs, which introduce
NVIDIA’s Volta architecture. Volta delivers powerful new capabilities focused on deep
learning training, plus improvements across all aspects of performance. The following
new features of V100 GPUs accelerate Bridges-AI:

1. A new Streaming Multiprocessor (SM) architecture introduces Tensor Cores,
independent thread scheduling, combined L1 data cache and shared memory unit,
and 50% higher energy efficiency over the previous architecture.

2. Tensor Cores accelerate deep learning training and inference, providing up to
12 � and 6 � higher peak flops, respectively, over the P100 GPUs previously
available in XSEDE-allocated resources.

3. The NVLink 2.0 interconnect between GPUs increases link speed to 25 GB/s per
direction, delivering 300 GB/s total bandwidth over six links per V100. This is
nearly a two-fold increase over Pascal (the previous-generation), which had
aggregate bandwidth of 160 GB/s over four NVLink 1.0 links, and it is a 19�
improvement over the PCIe 3.0 �16 interface of the P100 GPUs currently available
in XSEDE.

4. Larger, faster HBM2 memory doubles maximum GPU memory capacity to 32 GB,
enabling larger models, and increases bandwidth to 900 GB/s (from 732 GB/s on
Pascal). In addition to the increase in theoretical memory bandwidth, Jia et al. report
that ratio of actual to theoretical memory bandwidth is also improved, from 69.6%
in GP100 to 83.3% in GV100 [8].

5. Other improvements in Volta include a Multi-Process Service (MPS), enhanced
Unified Memory and Address Translation Services, Maximum Performance and
Maximum Efficiency Modes, Cooperative Groups and new Cooperative Launch
APIs, and Volta-optimized software (see Sect. 3).

2.3 NVIDIA DGX-2

The NVIDIA DGX-2 enterprise AI research system tightly integrates 16 NVIDIA Tesla
V100 SXM2 (i.e., NVLink 2.0-connected) GPUs, totaling 81,920 CUDA cores and
10,240 tensor cores, to provide 2 petaflop/s (Pf/s) of mixed-precision tensor perfor-
mance, 251 teraflop/s (Tf/s) 32-bit performance, and 125 Tf/s 64-bit performance. Each
of the DGX-2’s 16 Volta GPUs has 32 GB of HBM2 GPU memory, aggregate 512 GB
with 14.4 TB/s aggregate memory bandwidth. This is the maximum number of GPUs
and GPU memory that currently can be tightly coupled, thereby providing excellent
support for large models. The node is supported by two Intel Xeon Platinum 8168
CPUs (“Skylake” microarchitecture, with 24 cores, 2.7 GHz and 3.7 GHz base and
boost frequency, 33 MB L3 cache, and 3 UPI links) and 1.5 TB of DDR4-2666 RAM.
Twelve NVSwitch chips (described below), each with 900 GB/s aggregate bandwidth,
are configured to provide 2.4 TB/s bisection bandwidth. Two 960 GB NVM Express
(NVMe) SSDs host the Ubuntu Linux operating system, and eight 3.84 TB (aggregate
*30 TB) NVMe SSDs provide on-node, high-performance working storage for user
data. Eight Mellanox ConnectX adapters support both EDR InfiniBand and 100 Gb/s
Ethernet connectivity. Together, the innovations in Bridges-AI’s DGX-2 create high
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system balance and enable models 8� larger and peak performance 20� greater than
the 4-way, 16 GB P100 resources previously available through XSEDE.

NVSwitch
The NVSwitch [9] is an 18 � 18-port, fully connected crossbar. Internally to the DGX-
2, 12 NVSwitch chips connect the 16 Volta GPUs with 2.4 TB/s aggregate bandwidth
(Fig. 2, left). NVSwitch bandwidth is 25 GB/s/direction per port, 50 GB/s per port
bidirectional, totaling 900 GB/s aggregate switch bandwidth. Data integrity is ensured
is ensured by link-level cyclical redundancy coding (CRC) checks to detect errors and
retry when necessary. Data paths, routing, and state structures are protected with error-
correcting codes (ECC). Final hop-address fidelity checks, buffer overflow, and buffer
underflow checks are also supported. Data security is supported by indexing and
control of routing tables by the NVIDIA fabric manager, which limits applications’
access to specific ranges.

2.4 HPE Apollo 6500 Servers

The Hewlett Packard Enterprise (HPE) Apollo 6500 Gen10 servers each integrate eight
NVIDIA Tesla V100 SXM2 GPUs to accelerate deep learning (and potentially HPC)
workloads. In Bridges-AI, these serve challenging and routine AI applications not
needing the leadership-class scalability of the DGX-2, thereby addressing the full
spectrum of users’ requirements.

Each Apollo 6500 Gen10 server also includes two Intel Skylake Gold 6148 CPUs
(“Skylake” microarchitecture, 20 cores, 2.4 GHz and 3.7 GHz base and boost fre-
quency, 27.5 MB L3 cache, and 3 UPI links), 192 GB DDR4-2666 memory, four 2 TB
NVMe SSDs, and one 100 Gb/s Intel Omni-Path host channel adapter (HCA).

The eight Volta GPUs and two Xeon CPUs are connected in a hybrid cube-mesh
topology (Fig. 2, right), using NVLink 2.0 between the GPUs and PCIe3 to the CPUs,
optimized for high performance on deep learning and AI applications.

3 Software Environment

Bridges-AI both supports end-user application of deep learning frameworks and
algorithm development that requires access to full-featured software stacks.

Bridges runs the CentOS operating system, currently CentOS 7.4. This is main-
tained for the AI-V16 nodes. The DGX-2 (AI-V32 node), however, initially supported
only Ubuntu, which is also the version of Linux for which various deep learning
frameworks are distributed. We retained Ubuntu for the DGX-2 and adapted other
aspects of the Bridges user environment to work with Ubuntu, thereby maintaining
reasonable consistency across all Bridges and Bridges-AI compute nodes.

Bridges supports an extremely flexible user environment, allowing interoperation of
HPC, Spark, Hadoop, and single-node (even single-core) applications and letting users
transparently scale Python, Jupyter, R, MATLAB, and Java applications by up to three
orders of magnitude by using large memory or advanced GPU resources. Web browser-
based access to Jupyter notebooks, R, and MATLAB is provided through an Open
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OnDemand interface. Bridges-AI, like Bridges, supports Anaconda as an effective way
of managing package installation and the complex dependencies that are typical of
today’s deep learning frameworks.

Bridges-AI and Bridges also support the module utility [10, 11] through which
users can selectively load (and unload) specific versions of software such as compilers,
libraries, and applications, even including different versions of Anaconda. For example,
“module load anaconda3” loads the default version of Anaconda for Python 3
(currently Anaconda 5.2.0, for Python 3.7) into the user environment, and “module
load Anaconda2/5.1.0” loads Anaconda 5.1.0 for Python 2.7. Bridges currently
supports 545 modules, many of which also apply to Bridges-AI, so rather than bringing
software in a virtual machine as users must do for clouds that offer only Infrastructure-
as-a-Service (IaaS), in most cases the software that users need is already pre-installed
on Bridges. The module utility is highly effective for a large number of scenarios,
except for managing complex Python dependencies, for which Anaconda and con-
tainers are superior.

3.1 Containers

Packages that have complex dependencies, including dependencies on a particular
operating system (typically Ubuntu) require an approach that better supports correctly
built, well-optimized software. The need is exacerbated by the very rapid evolution of
deep learning frameworks, for which new distributions are sometimes released faster
than monthly. Building them is laborious and error-prone, especially on non-Ubuntu
hosts. This creates a situation that is frustrating for users, who want current, fully-
configured versions (and, occasionally, older versions as well, for compatibility with
models they have developed), and excessively time-consuming for system adminis-
trators, who do not have time to repeatedly rebuild a large suite of frameworks.
Underlying these challenges are the complex dependencies in the software stacks on
which deep learning frameworks are built, requiring an intricate combination of ver-
sions of Python, Python packages, other libraries, and operating systems.

A productive approach to managing that complexity is to distribute applications
and frameworks in application containers, which are lightweight virtual environments.
Application containers are complete environments, including all necessary dependen-
cies and abstracting operating system functions to support the environments of different
operating system variants atop a host operating system. Because containers share the
kernel of the host operating system, they incur very little performance overhead, at least
for applications that run within a node.

Bridges has supported application containers since 2017. Certain science gateways
run in vetted Docker containers, such as a Galaxy portal for bioinformatics. However,
securing Docker is typically done by running in a virtual environment and avoiding
shared infrastructure such as direct access to large parallel filesystems. Therefore, for
Bridges, PSC encourages use Singularity [12] containers, which can be run securely in
user space. The singularity build utility makes it very easy to convert Docker con-
tainers to Singularity images.

With Bridges-AI, PSC began to encourage the use of containerized frameworks
provided by NVIDIA in NVIDIA GPU Cloud (NGC). NGC now supports containers
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for HPC, deep learning, machine learning and graph analytics, inference, visualization,
and several domains such as smart cities and medical imaging.

NGC containers are distributed as Docker images. These can easily be pulled and
converted to Singularity images. On Bridges, Singularity versions are managed by the
modules utility. An NGC container is converted to Singularity with the following
sequence:

To maximize convenience for Bridges users, each month PSC staff pull the most
commonly-used NGC Docker container images, convert them to Singularity images,
and maintain those Singularity images in a local repository on Bridges with tags that
parallel those in NGC. The local repo has an added benefit of caching a single copy of
each NGC container, rather than having potentially hundreds to thousands of replicas
of multi-gigabyte containers residing in individual users’ directories.

4 Performance

Baseline benchmarks were run using the NGC TensorFlow 1.10 container (ten-
sorflow:18.10-py3). Synthetic image classification data was used to isolate GPU per-
formance from data bandwidth dependencies, which will be addressed in a subsequent
paper. The models run were AlexNet [13], Inception V3 [14], VGG16 [15], ResNet-50
[16], and ResNet-152 [16].

Figure 2 illustrates performance of Bridges-AI nodes relative to the previous-
generation P100 GPUs (Pascal architecture). The upper, middle, and lower figures
show performance for Bridges-AI-V32, Bridges-AI-V16, and Bridges P100 nodes,
respectively. For each model, training rates with 1, 2, 4, 8, and 16 GPUs, as applicable
to each node type, are shown from left to right. Results for AlexNet are not shown
because their much higher training rates (e.g., 43716 images/second for ResNet-50 on
AI-V32) would compress the scale, obscuring the salient performance differences
between GPU types. Results for K80 GPUs were not obtained because optimized NGC
containers are available only for Pascal and Volta architecture GPUs. Standard devi-
ations are generally low, i.e. 0.1–6.4%, with the exception of VGG16 models run on
AI-V16 nodes, for which standard deviations were 8.5–35.9%. (The cause for this is
being examined.)
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Fig. 3. Performance of Bridges-AI nodes relative to prior Bridges GPU nodes for training
InceptionV3, VGG16, ResNet-50, and ResNet-152 using TensorFlow 1.10 for Python 3 (NGC
container tensorflow:18.10-py3) and batch size 64 on synthetic data.Upper: AI-V32 nodes
(NVIDIA DGX-2: 16 V100 SXM2 GPUs, 32 GB HBM2 per GPU).Middle: AI-V16 nodes
(HPE Apollo 6500: 8 V100 SXM2 GPUs, 16 GB HBM2 per GPU).Lower: RSM-GPU nodes (2
P100 GPUs, 16 GB HBM2 each).
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Training rates on going from Pascal (P100) to Volta (V100) improve by factors of
1.52–1.69 for Inception V3, ResNet-50, and ResNet-152 for 1 and 2 GPUs. Results for
VGG16 are less consistent, showing speedups of 1.24–1.71. The difference between
these speedups and the ratios of peak performance can be attributed to a combination of
TensorFlow 1.10 not yet optimally using the V100 GPUs’ Tensor Cores, data move-
ment exclusive of core tensor operations, and possibly the limited size of the training
task imposed by the synthetic image classification benchmark. Additional performance
analysis is available in [17].

5 Research Enabled by Bridges-AI

The purpose of Bridges-AI is to enable research. With each new supercomputer, PSC
performs an advance evaluation of users’ requirements, then follows up with Early
User Programs prior to production operations to provide the earliest possible access to
users and work with them to ensure that the environment is ready for production.

Bridges-AI is now serving 109 production allocations of size ranging from 71 to
58,000 V100-hours and with project-specific storage allocations ranging from 100 GB
to 88 TB. Some of those projects also draw on large-scale community data hosted on
Bridges, such as The Cancer Genome Atlas, which is 1.2 PB. The 109 projects rep-
resent 46 self-reported principal fields of study.

Section 5.1 describes the Early User Program, which served to prepare Bridges-AI
for production use, and Sect. 5.2 briefly describes how digital pathology is benefiting
from Bridges-AI for analysis of multi-gigapixel whole slide images.

5.1 Bridges-AI Early User Program

The Bridges-AI Early User Program, conducted November through December 2018,
provided an opportunity for users to gain experience with Bridges-AI and for PSC to
get their feedback on the new resource and its user environment. Groups were provided
with new or supplemental XSEDE allocations to streamline their transition to pro-
duction operation, which began in January 2019. During the Early User Program, usage
was not “charged” to users’ allocations. (“Charging” is in terms of “service units”,
which are provided free of cost for open research and education based on peer review
of proposals for allocations.) The Principal Investigators (PIs) from each group agreed
to provide feedback to PSC by means of a survey following the Early User Program.
59 users from 28 research groups actively participated in the Bridges-AI Early User
Program. Of the early users, 20 responded to the survey. Results, on a score of 1
(“poor”) to 5 (“excellent”) are as follows (Table 2):

The researchers used a wide variety of frameworks including TensorFlow (which
was used by most researchers, in addition to other frameworks), PyTorch, Keras,
Theano, Kaldi nnet3, and Chainer. Their models were also diverse, including convo-
lutional neural networks (CNNs), three-dimensional CNNs, recurrent neural networks
(RNNs), long short-term memories (LSTMs), generative adversarial networks (GANs),
and fully-connected networks.
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5.2 AI-Driven Methods to Identify the Immune Response
with Automated Tumor Detection in Breast Cancer

Pathology is the central hub of oncology since it informs cancer diagnosis and ulti-
mately therapy decisions, and the precise characterization of tumor tissue is critical for
impactful translational cancer science. Tools and methodologies that augment or enable
precise characterization of tissue samples for patients with cancer can have a tangible
impact in translational cancer research and improve the practice of pathology for
precision oncology. The term Pathomics refers to the automated quantification of a
image-based phenotypic features from whole-slide images (WSIs) in tissue samples of
cancer. We have generated pathomics biomarkers from WSIs in large patient cohorts
for discovery studies that include The Cancer Genome Atlas (TCGA), Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC), and cancer surveillance projects such as
SEER (Surveillance, Epidemiology, and End-Results).

Quantitative characterization of tumor infiltrating lymphocytes (TILs) to generate
spatial maps of different populations of tumor and immune cells is a particularly
important and timely problem [18]. These maps provide a snapshot of the interaction
between a tumor and the patient’s immune system. High densities of TILs correlate
with favorable clinical outcomes including longer disease-free survival or improved
overall survival in multiple cancer types. The spatial context and the nature of cellular
heterogeneity are important in cancer prognosis. TILs are particularly important in
predicting response to cancer immune therapies. Since pathology laboratory studies are
routinely performed for virtually every cancer patient, it is feasible to obtain large
quantities of correlative clinical data to gain an understanding of the significance of TIL
maps and their ability to predict patient outcomes and response to cancer treatments.

Figure 3 depicts AI-driven analyses of multi-gigapixel WSIs of breast cancer
obtained from the Cancer Genome Atlas (TCGA) collection that is publicly available.

The Saltz group has developed methods capable of (1) resolving TIL infiltrated
tissue to a resolution of 50 microns, (2) mapping out the relationship between lym-
phocytes and tumor cells, (3) identifying and labeling different categories of cells found
within a tumor and (4) methods for carrying out high resolution in-stance segmentation
of all cells in a tissue specimen. They are working closely with numerous cancer research
groups as well as the National Cancer Institute Surveillance, Epidemiology, and End
Results Program (SEER; https://seer.cancer.gov/), the International Immuno-Oncology
Biomarker Working Group on Breast Cancer (https://www.tilsinbreastcancer.org/),

Table 2. Bridges-AI Early User Program survey responses.

Question Responses Mean Std.
Dev.

“How would you rate your overall experience with Bridges-
AI?”

20 4.50 0.67

“How would you rate the Bridges-AI documentation?” 15 4.40 0.88
“Based on your individual needs, how would you rate the
Bridges-AI environment and tools?”

20 4.35 0.65
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the NCI Division of Cancer Epidemiology and Genetics (https://dceg.cancer.gov/), and
the Food and Drug Administration (Fig. 4).

The work carried out on Bridges-AI has been transformative in allowing the group
to develop a new generation of TIL prediction methods. These methods both

Fig. 4. Rows A-D depict the hematoxylin and eosin (H&E) stained WSIs of tissue sections in
the left column, followed by the probability of TILs mapped to the tissue in the middle column,
culminating in a combined tumor-TIL map in the right column (tumor detection and probability
map by AI-model not shown). (A) depicts an example that is diffusely infiltrated by TILs;
(B) shows TILs that are primarily outside and adjacent to the tumor at the invasive leading edge
but unable to infiltrate the tumor; (C) shows limited scattered TILs in the tumor; and (D) shows
scant TILs in a focal area of the tumor (see [19] for TIL classification scheme).
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substantially improve ability to classify TILs for multiple tumor types and also now
make it possible to create high resolution characterization of interrelationship between
tumor and TIL regions.

6 Conclusions

Bridges-AI introduces transformational new technologies – namely Tensor Cores,
NVSwitch, and scalability to 8 and 16 NVIDIA Volta GPUs – to the NSF XSEDE
program. Following a successful Early User Program through which advance users
helped to ensure a highly usable environment and indicated high satisfaction with the
system and its performance, production operations began on schedule in January 2019.
An important new element for Bridges-AI is the introduction of containers, specifically
a local repository of Singularity images for deep learning frameworks, which has
delivered substantial benefit to both users and system administrators. Bridges-AI and
Bridges are available at no charge for open research and education to U.S.-based PIs
and their (potentially international) collaborators.

Acknowledgments. This work used the Bridges system, which is supported by NSF award
number OAC-1445606, at the Pittsburgh Supercomputing Center (PSC). Thanks to PSC’s
Facilities Technology Group for their contributions to configuring Bridges-AI.
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Abstract. Internet of Things (IoT) is a paradigm in which every object
has the capacity of communicating through the Internet. Cloud Com-
puting is designed to provide computational resources to costumers geo-
graphically distributed following an elastic payment strategy. Fog/Edge
Computing aims to decrease bandwidth usage keeping the computation
near the source of data and avoiding the collapse of network infrastruc-
ture when moving all the data from the edge to the cloud data centers.
Fog and Cloud environments define a large scale distributed system com-
posed of heterogeneous resources, which has huge theoretical computing
power. But using these computational resources poses challenges to dis-
tributed applications and scheduling policies. In this work, we show the
initial steps to develop a tool to support evaluate the impact of resource
information quality to guide scheduling policies. This tool combines sim-
ulation and validation and simplifies the deployment of experiments on
both sides. The evaluation of this initial proof of concept consists of the
deployment of experiments with a different number of devices in a single
site and in three different sites across France. Our results show that both
simulation and validation platforms present good agreement.

Keywords: Resource information · Internet of Things · Validation

1 Introduction

The current trend is continuing with the increment of devices connected to the
Internet. Internet of Things (IoT) emerges as the paradigm which is characterized
by the massive amount of mobile phones, different types of sensors and even
smart clothes that can communicate or collaborate in different computational
tasks [1]. The devices involved in IoT have a wide range of characteristics from
the computational power to the battery capacity and interconnection technology.

Cloud Computing is designed to provide computational resources to cos-
tumers all over the world despite their geographical location and based on an
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elastic payment strategy. The customer can increase the number of resources
used according to an increment in their computational needs and can decrease
it when they are no longer needed. Resource state information is a fundamental
component of any Cloud Service or Federation [9,10].

The expected growth of interconnected devices and the data generated by
them pose a challenge to the infrastructure provided by Cloud Computing data
centers. This situation could lead to a collapse of this ecosystem, not only for
the increasing computational needs but mainly for the network infrastructure
that needs to be greatly improved to support the data movement.

Fog Computing was recently proposed [4] to increase the computation being
performed near the network edge using smart devices. Fog/Edge Computing
aims to decrease bandwidth usage keeping the computation near the source
of data and avoiding the movement of information to the cloud data centers.
The combination of Fog and Cloud Computing defines a large scale distributed
system interconnected by a wide range of network technologies with different
computer resources, storage, and latency. Although this system possesses a huge
theoretical computing power, there are still challenges to tackle key components
to take advantage of it. Scheduling policies, resource discovery and interchange
of status information [8] are some of the software actors that have to be modified
in this new scenario.

One aspect that is especially important in Fog/Cloud Computing is using the
state information and computational characteristics to select the most adequate
devices to send tasks to be solved. This scheduling component needs to take
into consideration the computational resources available in the device but also
its battery capacity and previous history, but in an IoT scenario, it cannot be
assumed to have control over the devices. More than one scheduler could be
sending tasks to be solved in the edge. This poses additional challenges to the
quality of the information used by the schedulers to guide the selection of the
resources to be used when trying to solve a computational task. The component
responsible for gathering the state information of the resources is known as
the indexer and the way it is configured to obtain these data is known as the
resource information distribution policy. Verghelet and Mocskos [16] propose
improvements to the resource information distribution policies based on a super-
peer overlay. The same authors analyze a learning-based strategy and propose
optimizations that lead to a better policy performance [17], but the validation
experiments in the scale analyzed in those two papers are almost impossible to
perform.

In this work, we show the first steps creating a platform to explore the impact
of information quality in the design and development of scheduling policies
in Fog/Edge environments combining simulation and validation. The ultimate
objective is providing a platform to allow the exploration of new ideas, testing
using different conditions and scenarios, and deployment of experiments in a
controlled tested to validate their limits and working conditions.

The study of heuristics to obtain better scheduling policies in distributed
systems has a long and rich history but also new proposals can be easily found
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and are being developed by the community. For example, Luo et. al [12] and
Anglano et. al [3] propose new scheduling policies in Fog/Edge/Cloud environ-
ments in both works the experimentation and validation are not based on an
integrated platform and the resource information is not considered as one of the
aspects to simulate or evaluate, they suppose that the schedulers have all the
information they need. Moreover, the number of available devices to be used in
the experiments is small, which also decrease the range of scenarios that can be
analyzed. Another approach is shown by Chen and Zang [7] which proposes to
handle the need for additional resources using a Device-to-Device (D2D) tech-
nique to offload tasks. They use a simulation tool which is not specified and
consider different working parameters and no validation is mentioned.

The rest of this paper is organized as follows: Sect. 2 introduces the facility
used to deploy the validation experiments while in Sect. 3 we present some details
of the simulation engine. The layer of software designed to link both platforms
is shown in Sect. 4 and the methodology to evaluate the quality of the informa-
tion stored in a system is presented in Sect. 5. Finally, in Sect. 6 we detail the
experiments performed and Sect. 7 includes the conclusions.

2 Experimental Platform: FIT/IoT-LAB

When considering new scheduling policies in Fog/Edge environments, creation,
management, and deployment of a distributed infrastructure to validate new
ideas could become extremely difficult or even impossible. In spite of this, the
use of hardware similar to the devices that could be installed in the projected
scenario could provide insight and a different perspective than only relaying in
simulation tools.

FIT IoT-LAB is an open and free to use testbed offering access to a multi-
user scientific tool supporting the design, development, tuning, and experimen-
tation related to IoT [2]. FIT IoT-LAB is a facility with thousands of wireless
nodes focused on the evaluation and experimentation of very large scale wireless
IoT technologies. FIT IoT-LAB testbeds are located at six different sites across
France.

To experiment using the FIT IoT-LAB’s resources, it is necessary to plan
their usage and reserve them using a web-based tool. A reservation is called a
slice in terms of FIT IoT-LAB’s terminology. A slice can be configured to access
the resources immediately or for a specific time and date in the future.

The available infrastructure provided by FIT IoT-LAB includes a wide range
of sensors, robots and computing resources distributed in different sites. An
experiment could use resources from only one site (i.e. local resources) which are
connected by a local switch or can be composed of distributed resources among
two or more sites. The connectivity between the sites is provided by RENATER
which also supports the access of researchers worldwide through the different
advanced networks in each country. Experiments can be monitored using usual
networks tools and to deploy data or applications to the nodes, each site has a
shared file system mounted on each device. As the file system is only shared by
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Fig. 1. Verification of the network infrastructure behavior for some of the FIT IoT-
LAB’s sites. Pings between devices is recorded during five consecutive days during
November 2018. Average Round Trip Time (RTT) of near 14000 observations of intrasite
connectivity (expressed in ms)

the nodes internally in each site, the user has to manually transfer data between
different sites.

When combining validation and simulation, network parameters must be
clearly defined. We need to evaluate the behavior of local network infrastructure
and intersite links to confirm the values to be used in the simulation tool. We
set up an experiment to monitor the state and response time (i.e. RTT) of the
connections between four sites and their internal behavior monitoring the RTT
during the first 10 min of each hour for five consecutive days.

Figures 1 present the results of monitoring measurements for internal traffic
(i.e. intrasite) during November 2018. Saclay, Strasbourg, and Paris present a
similar average RTT near 1.2 ms while Grenoble has considerable lower RTT
around 1.0 ms. In terms of stability, Saclay and Strasbourg have a more regu-
lar behavior with a small deviation. Grenoble and Paris have larger deviations,
being Paris the most irregular site. Similarly, intersite latency was also observed
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(results not show) obtaining, as expected, that the latency depends on the dis-
tance (in terms of network hops) between sites. The analysis of intrasite and
intersite traffic patterns can help the user to select which site fits better the
requirements for each experiment. This analysis also guides the configuration of
the network properties in the simulation tool. In this sense, Strasbourg presents
more stable traffic intrasite patterns, but using Strasbourg for intersite experi-
ments increments the noise and effective latency.

3 Simulation Platform: Simgrid

The simulation tool needs to capture the main characteristics of a Fog/Edge
environment. Some options that can be adopted are: CloudSim [5], Simgrid [6],
iFogSim [11], and pysimgrid [15]. But to select the application, some important
characteristics should be considered:

– Computing power : in a Fog/Edge environment, the devices can have a wide
range of type processors and configurations. The simulation tool needs to
support executing jobs considering the difference in the resources involved
especially in a highly heterogeneous scenario.

– Connectivity : to collaborate in a computational task, messages have to be
interchanged among the nodes. Data, applications, and synchronization direc-
tives have to be distributed in a heterogeneous environment. The simulation
tool has to consider the latency and bandwidth of the link to incorporate the
effects of generated by, for example, congestion. Moreover, the devices in the
edge usually use wireless technology with variable capacity, can be moving or
have eventual connectivity.

– Energy consumption: the battery capacity is extremely important in devices
not connected directly to the power grid. In some cases, these devices can have
access to solar panels or local generators which provides energy intermittently.
These factors should be considered when distributing computational tasks in
a Fog/Edge environment.

Cloudsim and iFogSim are event-based simulators focused on orchestration of
virtualization-based systems and analysis of applications to be used in Cloud and
Fog scenarios respectively. These tools use very simplified models for communi-
cation and computing with no support for wireless communication and mobile
devices. As these tools are implemented in Java, adding new modules or models
imposes using this technology.

Another event-based tool is Simgrid which has sophisticated and versatile
communication and computing models. Similarly to the two previous tools,
Simgrid cannot model moving devices. This tool is natively programmed in
C/C++ which gives a good performance but can be used also with other languages
(like Java and Python). pysimgrid is a Python-based framework to interact with
SimGrid.

We select SimGrid and pysimgrid to support the simulation. This selection
is based on the versatility of the tool, an active user community and our previous
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experience using it. In our design, we consider including an abstraction layer to
allow using different simulation engines but in this prototype, we tested only
Simgrid.

The simulation tool needs to support realistic models for heterogeneous
devices and the communication network. Simgrid allows configuring the network
topology using an input file in which the topology, bandwidth, and latency for
each link are defined. The computing power of all the resources is also specified in
this configuration file. SimGrid has several communication models implemented
that need to be selected by the user. Each model is focused on different condi-
tions of the network technology and state, then it computes the time required for
a message to reach its destination taking into consideration latency, bandwidth,
and message size.

4 Linking Simulation with Validation: Watsapi

In spite of having a simulation engine (Simgrid) and a validation platform (FIT
IoT-LAB), one more component is still needed. This component has to combine
them to ease the configuration, deployment, monitoring, and analysis of results.
Additionally, it should implement the indexer to distribute and gather resource
information.

(a) Software modules used and developed. (b) Interactions between entities.

Fig. 2. Software modules involved in the design of Watsapi, a tool to combine simula-
tion and validation focused on the evaluation of the role of resource information quality
in Fog/Edge environments

Watsapi is the software component acting as the glue between simulation and
validation. Watsapi uses Simgrid to support network traffic and task execution
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and prepares the information to deploy the experiments in FIT IoT-LAB. The
communication support is provided by Simgrid’ s4u API, which is a replace-
ment for the deprecated MSG interface.

Figure 2a presents the current software modules involved in the evaluation of
resource information distribution including those present in Simgrid. Figure 2b
shows how the modules in Watsapi and Simgrid interact to perform a sim-
ulation. The HostWatsapi represents the base software entity which can be
specialized to become a scheduler or a worker. In this work, we focus on the
distribution of resource information between nodes in a P2P way. Every node
has also support for indexing resources and querying neighbors for information.
In terms of SimGrid, each of these entities is an Actor executing a process on
a Host called HostWatsapi. The registration mechanism provided by SimGrid
allows assigning functions to execute in each entity. These functions are specified
in the input configuration file.

The interactions marked in Fig. 2b are described next:

(a) Simgrid reads the platform file to configure the network topology, link
bandwidth and latency, and type and amount of nodes.

(b) The specification of the functions (i.e. processes) to execute in each node is
declared in another configuration file which is called deploy. This file also
specifies the variables to monitor during the simulation. Each host in this
file is instantiated as an object of the class s4u::Actor.

(c) Simgrid’s host class is specialized to support to become the HostWatsapi
class. This new class supports specific logging functions and the manage-
ment of the resources owned by neighbors in the system. As in a Fog/Edge
environment, on-the-fly clustering is one possible strategy to deal with com-
plex tasks, the knowledge of near resources could be necessary for centralized
schedulers, but also for other workers in the edge.

(d) and e) Push-Cli class is a specialization of Actor class. To be able to
communicate with other entities, this class has to define a Simgrid commu-
nication port (i.e. mailbox in Simgrid terminology).

(f) The Push-Srv usually have to wait for a message from an instance of
Push-Cli class. To receive one resource information message, a Push-Srv
uses the communication infrastructure provided by Simgrid. It starts wait-
ing until a message is received in its mailbox.

(g) A Push-Srv uses the Simgrid communication layer to receive the informa-
tion from an object of Push-Cli, then it updates the resource information
dictionary.

(h) The module LI-Mon (Local Information Monitor) is included in each instance
of HostWatsapi class. It computes and stores periodically the quality of the
resource information in each host (see LIR definition in Sect. 5).

The standard scenario for our experiments can be described as follows: each
node owns some amount of resources which could be used for computing some
task, it also has a dictionary of known hosts, resources, and expiration time.
Initially, all the nodes only know information about itself. At a predefined period,
it uses a resource information distribution policy to select one node to contact
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and shares its stored information. The distribution policies use periodic cycles
to share information between nodes. When a node receives information from
another one, the new data can be merged with its dictionary.

5 Methodology

As a simplification, normally the impact of information age is discarded in the
evaluation of scheduling strategies in distributed systems, oversimplifying the
dynamical nature of this kind of systems. Mocskos et al. [14] propose two met-
rics to evaluate and analyze the information obtained by the nodes about the
resources in the system: Local Information Rate (LIR), which is local to each
node and Global Information Rate (GIR) which can be used as a global measure
of the information quality distributed in the system:

– LIR: captures the amount of information that a particular host has from all
the entire system in a single moment. For the host k, LIRk is:

LIRk =
∑N

h=1 f(ageh, expirationh) · resourceCounth
totalResourceCount

(1)

where N is number of hosts in the system, expirationh is the expiration
time of the resources of host h in host k, ageh is the time passed since the
information was obtained from that host, resourceCounth is the number of
resources in host h, totalResourceCount is the total amount of resources
in the whole system, and f is the information decay function which can be
selected capture how frequently this information changes.

– GIR: captures the amount of information that the whole system knows of
itself, calculated as the mean value of every node’s LIR.

The resource information can include available processors and their charac-
teristics, free memory, type of network connectivity, network protocols supported
among others. There are two main types of information: almost constant and
fastly changing. The first could be stored when the resource is discovered ini-
tially and only needs to be updated when a major upgrade is performed. The
fastly-changing data depend on the task being executed, state of the network
and even can depend on the position of the resource. In this work, we focus on
this type of information. To inform the state and availability of resources, two
strategies can be used: push (proactive strategy), poll (reactive strategy) [13],
or a combination of both. When using the proactive strategy, each node selects
another one to send its information about the known resources. On the other
case, the nodes chose one node to ask the information it knows.

To be able to coordinate simulation and validation, the network topology
used in the simulation tool should follow the real topology of FIT IoT-LAB.
This information is extracted from the experiments presented in Sect. 2. On the
other hand, the information distributed policy should also be specified in the
configuration of both tools (simulation and validation).



Resource Information in IoT 223

(a) Simulation: Simgrid-based tool

(b) Validation: real hardware execution in distributed sites

Fig. 3. Resource information distribution in simulation and validation platforms. In
both cases, one of the nodes sends its information about resources to another one
and then it receives the information from another node. The validation platform uses
RENATER infrastructure and a distributed filesystem to support the experiments

The relationship between simulation and validation stages is introduced in
Fig. 3. The top two figures correspond to two consecutive time steps in the
dynamics of the involved entities during the simulation step, while the other two
represent the validation step deployed in FIT IoT-LAB.

In these figures, some of the events are marked in both stages to show how
they are linked:

(I) In both platforms, the deployment of the experiment includes specifying
the resources owned by each node. Watsapi provides tools to automatize
the submission of the configuration to the validation platform. For the
moment, some manual adjustments are still needed, but work is in progress
to improve this support. When the experiment is deployed in FIT IoT-LAB,
all the nodes access the file with the deploy information using the shared
file system.
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(II) Part of the definition of the experiment includes configuring the refresh
period, which is the amount of time every node waits until performing a
query to a neighbor asking for information about resources or sending its
own resource information to a peer. This event represents the moment in
which the central node sends a message containing its resource information
to one of its neighbors.

(III) Every node keeps a record of the known hosts and their resources. Jointly
with this information, a timestamp and an expiration time are also stored.
When the information is no longer valid, it is deleted.

(IV) A node receives a message asking for its resource information. In simulation
and validation, the node has two resources and no additional information.
The answer carries this information to the source node.

(V) After some time (Δt), the node receives the message containing resource
information. These data are merged enlarging the knowledge about the
resources in the system. In the case of receiving a previously known resource
information, the node keeps the newest.

(VI) This last event represents the moment in which another node starts sending
a message containing resource information. In this case, this node selects
the central one as the message destination.

6 Results

The experiments are focused on testing if the proposed prototype could be used
to simulate a Fog/Edge scenario and then validate it in a real hardware platform.
When dealing with systems with less than 40 nodes, almost any resource distri-
bution policies shows similar behavior [16,17]. We use a random-based resource
distribution policy to simplify the development and debugging of this proof of
concept. Every node randomly selects another one to send a message contain-
ing its information about the system. This operation is performed based on the
refresh rate selected for each scenario (is one of the parameters of the experi-
ments). The expiration time of the information is fixed at 60 s which is a rea-
sonable time to capture the dynamics of this kind of systems.

In all the experiments, each node uses the deploy file to identify the rest of
the nodes in the system, we do not focus on resource discovery. The nodes in
both platform (simulation and validation) only execute the indexer components
to distribute and store the resource information. The resource information is
stored every 5 s by the LI-Mon component in a local file. The experiments last
for approximately 1200 s in all cases.

3-nodes Intrasite (Strasbourg). The first experiment corresponds to the deploy-
ment of three nodes in the same site, in this case Strasbourg is selected due
to the stability of its internal network (recall Fig. 1). One node has two generic
computing resource, one three and the last five, totalizing ten resources. This
simplifies the comparison between expected and obtained values for LIR and
GIR metrics. As with the same of the experiments included in this work, each
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node sends its information to a randomly selected peer at a predefined period of
time. The refresh period is configured to 10 s, 30 s and 60 s.
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(a) Validation: 60 s refresh time
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(b) Simulation: 60 s refresh time
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(c) Validation: 10 s refresh time
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(d) Simulation: 10 s refresh time

Fig. 4. LIR (Local Information Rate) and GIR (Global Information Rate) for a sce-
nario with three nodes deployed in the same site. Random Policy is used as resource
information distribution policy, the expiration time is 60 s, and the refresh interval are
10 s and 60 s

Figure 4 presents the Local Information Rate (LIR) in both platforms jointly
with Global Information Rate (GIR) of the system. As was introduced in Sect. 5,
LIR and GIR go from 0 (bad) to 1 (ideal). The first column shows the results
obtained in the validation platform while the second one includes the obtained
values with the simulation tool. In spite of showing a complex behavior based
on the stochastic nature of the distribution policy, for all the considered refresh
times, both simulation and validation present good agreement.

The peaks in LIR correspond to the arrival of new data while the decay
after them are based on the aging of the information. As the nodes to send
the information are selected randomly, it may happen that some node is not
chosen for one or more cycles. This can be seen in Fig. 4: constant LIR values
are observed during some time, in all cases, these values do not decrease further
due to the information about their own resources.

As the refresh rate is decreased, the nodes in the system send more messages
in the same time period, improving the quality and amount of information they
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have from the rest of the system. This can be observed by comparing the figures
from top to bottom, clearly, the values for more frequent refresh close to the
ideal limit of 1. Figure 5a shows, in a single figure, the mean GIRs and standard
deviations for each case in both platforms. The simulations are repeated 1000
times while each case of validation is performed 48 times. When selecting 10 s
as the refresh rate, the system shows the larger GIR values (at the cost of
sending more messages and using more bandwidth). As the refresh period is
increased, the system presents lower GIR values. This behavior is observed in
both platform, showing a good agreement between them.
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Fig. 5. Same cases presented in Fig. 4 but for both 3-nodes Intrasite (5a) and 3-nodes
Intersite (5b), showing three refresh times and a random policy. Expiration time is
60 s and the nodes are deployed in Strasbourg (Intrasite) and in Grenoble, Saclay and
Strasbourg (Intersite). Average and deviation of 1000 simulations with Watsapi and
48 times on FIT-IoTLab

3-nodes Intersite (Grenoble-Saclay-Strasbourg). In this experiment, we use a
similar configuration as in the previous one but the devices are deployed in
different sites: Grenoble, Saclay, and Strasbourg. The device in Grenoble has
two resources, the one in Saclay three, and in Strasbourg the node has five.
As in the previous experiment, every node sends its resource information to a
randomly selected node at a predefined refresh time.

Figure 5b compares the obtained GIRs for the scenarios under consideration.
The results are similar to the included in Fig. 5a: 10 s of refresh time produces
higher GIR using more messages then the rest of the cases. These dynamics are
observed in both platforms showing similar behavior. In this system, no impact
of the additional latency can be traced in the results.



Resource Information in IoT 227

20-nodes Intrasite (Grenoble). Here, we move towards a larger system. We use
20 nodes in Grenoble, which is selected based on the availability of resources.
Every node has one computational resource and sends its resource information
to a randomly selected neighbor.

This experiment records a situation that could happen in this kind of facili-
ties: 20 nodes are reserved and granted, but only 17 can be used. The remainder
nodes cannot be accessed due to hardware problems or configuration issues that
need to be solved by local administrators. To solve this kind of situation, we
start a new line of development to add the management of this kind of events
to Watsapi, which is another work in progress.
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Fig. 6. Mean GIR and standard deviation (96 repetitions for validation and 1000 for
simulation) in a scenario using 20 nodes deployed in the same site (Grenoble). Random
Policy is used as resource information distribution policy, the expiration time is 240 s,
and the refresh interval is 60 s

Figure 6 shows mean GIR (points) and standard deviation (limiting lines
using the same color as mean values) for both platforms. The two platforms
have similar behavior: the peaks corresponds to the moment of new information
arrival. During the period between each peak, the information gets older and the
mean GIR decreases. As is known from the literature [16,17], the random policy
loses performance as the system size increases. In these cases, GIR values are very
low, which means that the system has old resource information. This highlights
the importance of having up-to-date resource information, if a scheduling policy
is based on old information, it could select unavailable nodes or do not manage
the system load balancing accordingly.
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7 Conclusions

The expected growth of interconnected devices and the data generated by them
pose a challenge to the infrastructure provided by Cloud Computing data cen-
ters. Fog Computing proposes to increase the use of devices in the network edge,
aiming to decrease bandwidth usage by keeping the computation near the source
of data and avoiding the movement of information to the cloud data centers. The
combination of Fog and Cloud Computing possesses a huge theoretical comput-
ing power, but there are still challenges to scheduling policies, resource discovery
and interchange of status information.

In this work, we show the initial development of a computation tool to mind
the gap between simulation and validation in the development of new scheduling
strategies. Our tool combines a simulation tool with a software layer to deploy
and control actual devices in a distributed platform.

To test our proposed tool, we present different experiments: (i) small-scale
system deployed in the same site, (ii) small-scale system using geographically
distributed resources, and (iii) medium-scale system using resources in the same
site. In all cases, there is a good agreement between simulation and validation.
GIR values for the medium-scale system (20 nodes) are low remarking the need
to use up-to-date information to not incur in inefficient task assignment.

Our proposal is the first step in creating a tool that fills a gap which is
not covered by any known application and that could improve the development
and evaluation of scheduling policies in complex distributed systems such as
Fog/Cloud environments.
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Aires (UBACyT 20020170100765BA), Consejo Nacional de Investigaciones Cient́ıficas
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Abstract. The growth of data to be processed in the Oil & Gas indus-
try matches the requirements imposed by evolving algorithms based
on stencil computations, such as Full Waveform Inversion and Reverse
Time Migration. Graphical processing units (GPUs) are an attractive
architectural target for stencil computations because of its high degree
of data parallelism. However, the rapid architectural and technologi-
cal progression makes it difficult for even the most proficient program-
mers to remain up-to-date with the technological advances at a micro-
architectural level. In this work, we present an extension for an open
source compiler designed to produce highly optimized finite difference
kernels for use in inversion methods named Devito c©. We embed it with
the Oxford Parallel Domain Specific Language (OP-DSL) in order to
enable automatic code generation for GPU architectures from a high-
level representation. We aim to enable users coding in a symbolic repre-
sentation level to effortlessly get their implementations leveraged by the
processing capacities of GPU architectures. The implemented backend is
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space-order discretization levels of 3D acoustic isotropic wave propaga-
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1 Introduction

A wide variety of physical phenomena can be formalized in terms of partial
differential equations (PDE) such as sound, heat, diffusion, electrostatics, elec-
trodynamics, fluid dynamics, elasticity, and quantum mechanics. The develop-
ment of computationally efficient methods for obtaining numerical solutions of
PDEs through stencil kernels has been mentioned as a key computational sci-
ence and engineering challenge to be addressed as one of the “seven dwarfs of
computation” for at least the next decade, in 2009 [13]. In fact, large-scale PDE
inversion algorithms that can be solved by finite-difference (FD) schemes used in
exploration seismology such as full waveform inversion (FWI) and reverse time
migration (RTM) constitute some of the current most computationally demand-
ing problems in industrial and academic research.

In general, a stencil on structured grids is defined as a function that updates a
point based on the values of its neighbors. The stencil structure remains constant
as it moves from one point in space to the next. In the context of a wave-equation
solver, the stencil is described by the support (grid-locations) and the coefficients
of FD schemes. Using parallel designs such as graphics processing units (GPU)
has relatively recently become the preferred choice to improve existing code for
the current commercial and scientific community that performs stencil compu-
tations.

However, a significant barrier that has become increasingly more notable
is the difficulty in programming these systems. As the hardware architectures
grow in complexity, exploiting the potential of these devices requires higher
know-how on parallel programming. The issue has further been compounded
by a rapidly changing hardware design space, with a wide range of parallel
architectures. For example, some designs offer many simple processors vs. fewer
complex processors, some depend on multi-threading, and some even replace
caches with explicitly addressed local stores. As no conventional wisdom has yet
emerged, it is unsustainable for domain scientists to re-write their applications
for each new type of architecture regarded that developing and validating a PDE
solver usually takes decades of effort.

To address the problem of algorithm sustainability, taking into account the
uncertainty in future architectures, one solution involves decoupling the work of
a domain scientist and a computer scientist. In this approach, Domain Specific
Languages (DSL) are developed by high-performance computing (HPC) special-
ists, and the specifics of the problem and the numerical solution method are
specified in the DSL by the domain scientist. Using source-to-source translation,
the numerical solver can be targeted towards different hardware backends. This
ensures that only the backend that interfaces with the new architectures need to
be written and supported by the translator. The underlying implementation of
the solver remains the same, thereby introducing a separation of concerns that
results in a direct payoff in productivity.

Interest in building generic DSLs for solving PDEs is not new with early
attempts dating back as far as 1970 [1–3]. More recently, two prominent finite
element software packages, FEniCS [6] and Firedrake [11], have demonstrated
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the power of symbolic computation using the DSL paradigm. The optimization of
regular grid and stencil computations has also produced a vast range of libraries
and DSLs that aim to ease the efficient automated creation of high-performance
codes [4,5,9,16].

In this work, we present an implementation for automatic GPU code-
generation to Devito. This objective can be translated into extending Devito’s
backend in such a way that the generated stencils are compatible with this tar-
get architecture. Currently, two backends exist in Devito: the default backend
to run it on standard CPU architectures; and an alternative backend using the
YASK stencil compiler to generate optimized C++ code for Intel R© Xeon R© and
Intel R© Xeon Phi

TM
architectures [8]. Our strategy is to utilize one of the Oxford

Parallel Domain Specific Languages (OP-DSL), called OPS, to build a third
backend for Devito. OPS is a programming abstraction embedded in C/C++
for writing multi-block structured mesh algorithms, and it is composed by the
corresponding software library (an Application Programming Interface – API)
and code translation tools (compilers) to enable automatic parallelization of the
intermediary-level code produced (here, by Devito) using different parallel pro-
gramming approaches.

As a result, it is expected that executable artifacts wrote in CUDA, Ope-
nACC, OpenCL, OpenMP, and MPI get automatically and transparently com-
posed for a diverse range of hardware from high-level symbolic descriptions of
PDEs. It has been shown that OPS generated code is capable of matching or
outperforming hand-coded and tuned implementations [12], which implies con-
siderable confidence in such an approach being capable of delivering high per-
formance, code maintainability and future proofing.

It is possible to speculate that it would take much longer not only to com-
pose complex FD problems but also to produce their various hand-coded parallel
implementations, each of which would have to be then debugged and validated.
The authors claim that the time savings on combining code generation with
automatic parallel implementation for state-of-the-art hardware will have a sig-
nificant impact on the efforts for modeling seismic inversion algorithms.

The remaining of this paper is organized as follows. In Sect. 2 we present
both the Devito and the OPS compiler, altogether with the model for isotropic
wave propagation considered in our study. Section 2.3 describes how the code
generated by Devito should be modified in order to match the syntax of the
OPS compiler, and also the roof-line model for evaluating the performance of
the generated kernels on the GPU devices considered in this work. In Sect. 4
we show and comment on the the results. Section 5 encloses this paper with
concluding remarks.

2 Background

2.1 Devito

Devito is a tool to solve partial differential equations (PDEs) which is a math-
ematical tool to describe numerous problems that are heavily constrained by
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physical laws. Some areas in which it has uses are: geophysics, earth and climate
science, material science, chemical and mechanical engineering, medical imag-
ing and physics, even in economics. It uses a domain specific language (DSL)
as method to simplify development process for the user, and also solve it using
finite difference method that is a numerical method.

Devito automatically generates C/C++ code with different levels of opti-
mization for finite-difference schemes from a symbolic Python representation of
partial differential equations, with a performance that is competitive with, and
often better than, hand-optimized implementations. To illustrate this, consider
the Eq. 1 that is a wave propagation with a source injection and its initial con-
ditions.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m(x, y, z)
d2u(x, y, z, t)

dt2
− ∇2u(x, y, z, t) = qs,

u(x, y, z, 0) = 0,
du(x, t)

dt
|t=0 = 0,

(1)

where:

• m(x, y, z) = 1
c(x,y,z)2 , represents the square slowness model as a function of

the three space coordinates (x, y, z);
• u(t, x, y, z), is the spatially varying acoustic wave field in each time step;
• qs, is the source term representing the source injection;

As Devito uses Sympy library for an easier symbolic representation, writing
this equation is as simple as shown in Algorithm 1.1 , which represents a small
part of the solution.

1from sympy import Eq , s o l v e
2from dev i to import Function , TimeFunction , Grid
3

4g r id = Grid ( shape=( s i z e , s i z e ) )
5u = TimeFunction (name=’u ’ , g r id=gr id , space o rde r =6,

t ime order=2)
6m = Function (name=’m’ , g r id=gr id )
7

8#Symbolic r ep r e s en t a t i on
9eqn = Eq(m ∗ u . dt2 − u . l a p l a c e )
10

11s t e n c i l = so l v e ( eqn , u . forward ) [ 0 ]

Algorithm 1.1. Example of Devito declaring an acoustic wave propagation

Devito performs just-in-time compilation and execution, so the domain
expert can focus on the mathematical formulations, instead of writing low-level
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code. Following the example, the C code automatically generated from Devito
using Python can be seen in Algorithm 1.2 .

1f o r ( i n t x = x m ; x <= x M ; x += 1)
2{
3#pragma omp simd a l i gned (damp ,m, u : 3 2 )
4f o r ( i n t y = y m ; y <= y M ; y += 1)
5{
6f l o a t r0 = 1 .0F∗dt∗m[ x+2] [ y+2] [ z+2] +
75 .0 e−1F∗( dt∗dt )∗damp [ x+1] [ y+1] [ z +1] ;
8

9u [ t1 ] [ x+2] [ y+2] [ z+2] =
101 .0F∗(−dt∗m[ x+2] [ y+2] [ z+2]∗u [ t2 ] [ x+2] [ y+2] [ z+2]/ r0 +
11( dt∗dt∗dt )∗u [ t0 ] [ x + 1 ] [ y + 2 ] [ z + 2 ]/ r0 +
12( dt∗dt∗dt )∗u [ t0 ] [ x + 2 ] [ y + 1 ] [ z + 2 ]/ r0 +
13( dt∗dt∗dt )∗u [ t0 ] [ x + 2 ] [ y + 2 ] [ z + 1 ]/ r0 +
14( dt∗dt∗dt )∗u [ t0 ] [ x + 2 ] [ y + 2 ] [ z + 3 ]/ r0 +
15( dt∗dt∗dt )∗u [ t0 ] [ x + 2 ] [ y + 3 ] [ z + 2 ]/ r0 +
16( dt∗dt∗dt )∗u [ t0 ] [ x + 3 ] [ y + 2 ] [ z + 2 ]/ r0 ) +
172 .0F∗dt∗m[ x+2] [ y+2] [ z+2]∗u [ t0 ] [ x+2] [ y+2] [ z+2]/ r0 +
185 .0 e−1F∗( dt∗dt )∗damp [ x+1] [ y+1] [ z+1]∗u [ t2 ] [ x+2] [ y+2] [ z+2]/ r0 −
196 .0F∗dt∗dt∗dt∗u [ t0 ] [ x + 2 ] [ y + 2 ] [ z + 2 ]/ r0 ;
20}
21}

Algorithm 1.2. Devito auto generated C code using core backend. Represents the
propagation update for stencil of space order 2.

The user doesn’t even need to see this code, it will all be handled by Devito’s
compiler and the result from its execution will be available for the developer.
Programming the Algorithm 1.1 is much simpler and maintainable than Algo-
rithm 1.2 and it enables the code execution in different architectures using the
same python code.

In this work, we leveraged Devito to support the OPS library (described
in Subsect. 2.2) for computing stencil kernels in a GPU environment using the
CUDA parallel computing platform.

2.2 OPS

OPS provides high-level code abstraction aimed at multi-block structured grid
computations. It can be embedded in C/C++ and its API provides a basic
structure for grid computations such as: blocks, datasets defined on these blocks
representing constants and state variables, and parallel loops across a block,
accessing data defined on the grid points. Which are used to deliver code for
different parallel architectures: MPI, OpenMP, OpenACC, CUDA and OpenCL.

The diagram in Fig. 1 shows the traditional work flow of OPS programs:
starting from the desired structured mesh application then programming the
C/C++ algorithm using OPS API, compiling and linking it with OPS libraries
and executing the desired platform.

OPS and Devito integration enables automatic code generation for GPU
architectures from a high level representation.
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Fig. 1. OPS traditional work flow

2.3 Devito-OPS Integration

To accomplish Devito and OPS integration we need to understand the process
Devito uses to generate C/C++ code. Devito generates an intermediate repre-
sentation to perform a sequence of operations to the expressions and iterations,
this includes:

• Equations lowering;
• Local analysis;
• Clustering;
• Symbolic optimization;
• Iteration/expression tree (IET) construction;
• Synthesis;
• Operator specialization through backends;

the last step is where Devito will specialize data types aiming an interested API,
which is OPS in this research. Devito with OPS backend share all the compilation
pipeline until the specialization.

In this section, we stress seven (i–vii) essential building blocks required to
accomplish our prototype solution.

The integration starts with generating OPS Expression’s (i), which are
expressions translated into OPS syntax. An expression that initially is repre-
sented in C/C++ language as

u[t+1][x][y] = u[t][x][y] + 1

has an OPS representation syntax given by:
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ut10[OPS_ACC0(0,0)] = ut00[OPS_ACC1(0,0)] + 1

The array access u in the first representation will be replaced for ut10 when
indicating a one position forward in the time dimension, and replaced for ut00
when accessing the current time dimension. The term OPS ACC#(0,0) is a macro
that OPS syntax uses when translating the index to the desired architecture.

Producing this transformation in Devito requires that the parts of a given
expression are separated into nodes. For example, an Indexed object containing
the indices that corresponds to displacements over dimensions at Devito level,
corresponds to C-arrays. The Algorithm 1.3 illustrates the recursive method
used to transform Devito expressions.

1de f make ops ast ( expr , n fops ) :
2i f expr . i s Symbol or expr . is Number :
3re turn expr
4e l i f expr . i s I ndexed :
5re turn nfops . new ops arg ( expr )
6e l s e :
7re turn expr . func ( ∗ [ make ops ast ( i , n fops ) f o r i in

expr . args ] )

Algorithm 1.3. Method to evaluate the given expression and translate to OPS syntax

We are interested in transforming expressions from offloadable loops. These
expressions can be parallelized into a device code that will efficiently get exe-
cuted by GPU architectures. Parallelizable expressions of the same nest can be
grouped inside an outlined function that we call OPS User Kernel (ii), called by
ops par loop (iii) in the OPS API syntax. The iteration range defines the range
in which a OPS User Kernel will operate over the mesh. It is described as an
integer array that defines the boundaries in each spatial dimension. The mesh
that will be written into or read from throughout the kernel operation is the
dataset that is represented by ops dat (iv) in the OPS API syntax.

Others API calls needed to generate a compilable OPS code ultimately are:

(v) ops init and ops end are calls that will mark the beginning and ending of
OPS syntax usage. All OPS declarations must be located between these
two calls.

(vi) ops block is used to group datasets together.
(vii) ops partition triggers a multi-block partitioning across a distributed mem-

ory set of processes.

The diagram in Fig. 2 represents an overview of the Devito and OPS inte-
gration.

The main contribution of this work is a prototype solution that will automat-
ically generate kernel code for a GPU environment. This code can be coupled in
a manually generated C code, that is capable of calling this generated kernels.
In Sect. 5 we discuss in future works how to fully generate the host code.
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Fig. 2. Diagram of Devito and OPS integration

3 Experiment

3.1 Acoustic Wave Propagation

The current investigation involved generating isotropic 3D wave propagation
stencil kernels in an automatic fashion for two NVIDIA architectures and ana-
lyzing the performance of the generated algorithms by the roofline model [13].
Kepler and Volta were selected as target GPU architectures, with specifica-
tions summarized in Table 1. They use CUDA cores, which is compatible with
the syntax supported by the OPS programming interface. Executable artifacts
were produced by NVCC compiler with flags -Xcompiler=‘‘-std=c99’’ -O3,
altogether with specific micro architectural flag depending on the specific archi-
tecture.

GTX Titan Z is a graphics card launched in 2014. It combines two graphics
processors for increased performance, although here we only consider one of
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Table 1. Specifications of evaluated graphical cards.

Titan Z Tesla V100

Memory Bandwidth (GB/s) 336 × 2 900

Single Precision Peak Performance (GFLOPS) 4746 14000

Double Precision Peak Performance (GFLOPS) 1582 7000

Memory (GB) 6 × 2 16

those cores. This card uses Kepler microarchitecture and specific compilation
flags -gencode arch=compute 35, code=sm 35.

Tesla V100 is a PCIe 16GB launched in 2017. The micro architectural flag
specific for Tesla is -gencode arch=compute 70,code=sm 70.

The performance of the produced solutions was analyzed in terms of
their floating-point performance, operational intensity and memory performance
through the roofline model. This model reveals the rate between the extent
of performance usage and the theoretical peak performance of the evaluated
devices.

The maximum performance of each architecture was calculated using Eq. 2
considering the hardware specifications described in Table 1. Any algorithm run-
ning in the same architecture will be bound to this very same roof.

Attainable Peak Performance[GFLOP/s] = min

{
Peak Floating-Point Performance
Peak Memory Bandwidth x OI

(2)

The Operational Intensity (OI) measures the Dynamic Random Access Mem-
ory (DRAM) bandwidth needed by a kernel in a particular architecture. In the
devices considered in this paper, each read or write transaction between the
DRAM and the caches have a 32 bytes size. Using this definition, the Eq. 3 is
used to determine the OI.

OI[FLOP/Byte] =
#Single Precision Floating-Point Operations

(#Memory Transactions) ∗ 32
(3)

A kernel performance measures the number of floating-point operations per
second. Performance can be directly calculated using Eq. 4.

Performance[FLOP/s] =
#Single Precision Floating-Point Operations

Kernel Execution Time
(4)

4 Results

Data obtained in previous studies indicated that Devito is able to efficiently
utilise Intel architectures1 with a high degree of efficiency, while maintaining the
ability to increase accuracy by switching to higher order stencil discretization

1 IntelR© XeonR© E5-2690v2 with 10 physical cores, and IntelR© XeonR© PhiTM acceler-
ator card.
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dynamically [8]. Luporini et al. show that remarkable speed-ups from 3x up to 4x
can be attainable for those architectures on scenarios with what they call “aggres-
sive” optimizations to avoid redundant computation over 3D grids with space
order discretization levels varying from 4 to 16. In our study, we measure the
performance of a new backend for Devito on the NVIDIA R© architectures GTX
Titan ZTM and Tesla V100TM considering scenarios with no symbolic optimiza-
tions (basic DSE), and with an aggressive symbolic optimization implemented
by Devito (aggressive DSE). An isotropic acoustic wave propagation model with
absorbing boundaries as described by Eq. 1 is utilized.

In this study, we measured the rate between attainable performance and the
peak machine performance according to specifications, for both the considered
devices. We take into account the roofline model described in Sect. 3 to evaluate
how efficiently the generated algorithms utilize the GPU for varying space order
levels of the generated propagation stencil kernels. For each of the considered
space orders we profiled the propagation kernel using nvprof 2 in order to obtain:
(a) the number of single precision floating-point operations, (b) the number of
memory transactions, and (c) the kernel execution time.

For each space order, the produced stencil kernel ran five times for 30.000 time
steps. Table 2 shows the values collected for GTX Titan Z and Table 3 shows the
values collected for V100, for basic and aggressive symbolic optimization levels,
and space orders levels of 8, 12, 16 and 24. The values for OI are obtained
according to Eq. 3 whereas the values for performance are obtained according to
Eq. 4.

Figures 3 and 4 display the OI (FLOP/Byte) versus performance (GFLOP/s)
from the values found in Tables 2 and 3, respectively. Each of the points in those
plots are characterized by two values: (i) the space order, and (ii) the percentage
from the device peak performance. The performance bounds were obtained from
vendor peak performance specifications in Table 1.

Table 2. Data collected from profiling propagation kernel in GTX Titan Z using nvprof.

Space order FP 32 count Memory operations Execution time (s) OI (Flop/Byte) Performance (GFlop/s)

Basic optimization

8 1,450,112,268 22,722,746 553.92 1.99 78.54

12 2,013,392,118 28,068,109 854.39 2.24 70.70

16 2,375,372,938 29,871,728 907.72 2.48 78.51

24 2,898,342,158 33,348,001 1,150.01 2.71 75.61

Aggressive optimization

8 641,887,345 22,637,047 135,73 0.89 141.88

12 760,134,906 27,737,029 179.15 0.86 127.29

16 842,931,505 29,704,549 180,55 0.89 140.06

24 929,761,776 32,926,331 219,76 0.88 126.92

2 The nvprof profiling tool enables you to collect and view profiling data from the
command-line, and is present in the NVIDIAR© CUDAR© Toolkit.
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Table 3. Data collected from profiling propagation kernel in V100 using nvprof.

Space order FP 32 count Memory operations Execution time (s) OI (Flop/Byte) Performance (GFlop/s)

Basic optimization

8 1,450,996,129 9,245,436 553.92 4.90 693.77

12 2,013,446,796 9,112,947 854.39 6.90 740.48

16 2,375,384,531 7,722,032 907.72 9.61 816.86

24 2,898,311,328 11,862,338 1,150.01 7.64 719.60

Aggressive optimization

8 641,882,304 9,256,098 15.31 2.18 1258.16

12 760,133,342 9,289,727 20.37 2.56 1119.42

16 842,930,745 8,026,245 20.21 3.28 1251.51

24 929,760,267 11,670,483 18.48 2.49 1509.60

Considering the results for GTX Titan Z in Fig. 3, we can see that the oper-
ation intensity increases with higher space order levels for basic optimization,
whereas the operation intensity are nearly the same for an aggressive optimiza-
tion.

Considering the results for GTX Titan Z in Fig. 3, we can see that for the
basic optimization, the operation intensity increase with higher the space orders,
while using the aggressive optimization they almost did not differ. One can also
see that aggressive optimization produces code with better performance than
with basic optimization in all scenarios, enabling approximately 24% of peak
performance to be achieved versus 6% for the basic scenario.

Executing the experiment in the V100 graphic card, we achieve better perfor-
mance, as illustrated in Fig. 4. Performance gains using aggressive optimization

Fig. 3. Roofline chart for GTX Titan Z GPU. Propagation field with 2563 points and
space order values of 8, 12, 16 and 24 using Devito optimizations aggressive and basic.
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Fig. 4. Roofline chart for V100 GPU. Propagation field with 2563 points and space
order values of 8, 12, 16 and 24 using Devito optimizations aggressive and basic.

goes from approximately 16% to 63%. It is worth noting that there is a decrease
in OI for so 24, this result was not expected as there are more operations in
higher so. Looking at the data from Table 3 we can verify that the amount of
data transferred in so 24 is 45% higher than the so 16, while the difference in
data transfer in the other scenarios was at most 15%. We can thus conclude
that the amount of data needed for so 24 is much larger than expected, which
indicates that memory accesses in GPU are not coalesced for this case.

In both GTX Titan Z and V100 tests, the aggressive optimization led to three
times higher peak performance than the basic optimization. The results from the
aggressive optimization corroborate results presented in a related experiment,
Luporini et al. [8] that enabled Devito to generate code for the YASK framework
and obtained peak performances going from 53% to 63% for Intel R© Xeon R© and
Intel R© Xeon R© Phi

TM
architectures.

Another analysis possible due to the Roofline model is for future optimiza-
tions. All the points are located before the ridge point at both the roofline plots
in Figs. 3 and 4, which indicates that all the tested cases are memory bounded
instead of compute bounded. This means that the produced codes should get
greater benefits from optimizations targeted to perform memory exchanges more
efficiently than from optimizations focused on increasing throughput. Therefore,
enabling FLOPs reduction and data locality such as common sub-expression
elimination, factorization, and code motion should be considered as a priority
for future works.
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5 Conclusion

The open-source project Devito R© [7,8] has been attracting the attention of aca-
demic [10,14] and industrial [15] community. As a DSL for seismic inversion
applications, it already provides a set of automated performance optimizations
during code generation that allow user applications to fully utilize the tar-
get hardware without changing the model specification, such as vectorization,
shared-memory parallelism, loop blocking, auto-tuning, common sub-expression
elimination (CSE), cross-iteration redundancy elimination (CIRE), expression
hoisting and factorization. Devito also supports distributed-memory parallelism
via MPI, and several halo-exchange schemes are available. Classic optimizations
such as computation-communication overlap (relying on asynchronous progress
engine) are implemented. It can be integrated with a wide variety of meth-
ods (e.g. L-BFGS-B3) for solving minimization problems, such as in FWI. It
can perform FWI on distributed memory parallel computers with Dask. It also
implements support for standard CPU architectures, and for Intel R© Xeon R© and
Intel R© Xeon Phi

TM
architectures. However, the support to code specialization

for GPU architectures is yet a work in progress.
In this study, we created an extension of Devito to enable code generation for

the OPS syntax. We also evaluated the new backend in terms of processor perfor-
mance concerning off-chip memory traffic for varying space order discretization
levels on the NVIDIA R© devices GTX Titan ZTM and Tesla V100TM. We found
that the implemented backend achieves up to 62.82% of the peak performance on
V100, which is consistent with results from work using Devito to generate YASK
framework code [8]. We also observed that isotropic 3D wave propagation stencil
kernels generated with aggressive symbolic optimizations have three times higher
peak performance than with no symbolic optimizations. This study, therefore,
indicates that it is possible to use the available power of GPU architectures in
Devito for solving seismic inversion algorithms.

This work is the first study to our knowledge that investigates a seamless
coupling between Devito and OPS compilers. However, some limitations are
worth noting as the capability of the implemented solution still only covers source
injection and forward propagation. The forward model is the basis for further
implementations of inversion processes using Devito operators. Yet, in order to
enable a seamless source-to-source translation of FWI algorithms, future work
should provide support for receiver interpolation and backward propagation as
well. Moreover, the automatic generation of host code, responsible for calling the
device code that will execute in GPU, is currently in implementation. Finally, to
complete Devito integration, it is necessary to automatically translate, compile,
and execute the GPU code through the Devito pipeline and return the result
from the execution to the Devito workflow.

3 Large-scale Bound-constrained Optimization.
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Abstract. Convolutional Neural Networks (CNN) are successfully
being used for different computer vision tasks, from labeling cancer-
ous cells in medical images to identify traffic signals in self-driving
cars. Supervised CNN classify raw input data according to the patterns
learned from an input training set. This set is typically obtained by man-
ually labeling the image which can lead to uncertainties in the data. The
level of expertise of the professionals labeling the training set sometimes
varies widely or some of the images used may not be clear and are diffi-
cult to label. This leads to data sets with pictures labeled differently by
different experts or uncertainty in the experts opinions.

These kind of errors on the training set do happen more frequently
when the CNN task is to classify numerous labels with similar character-
istics. For example, when labeling damages on civil infrastructures after
an earthquake, there are more than two hundred different labels with
some of them similar to each other and the experts labeling the sets fre-
quently disagree on which one to use. In this paper, we use probabilistic
analysis to evaluate both the likelihood of the labels in the training set
(produced by the CNN) and the likelihood’s uncertainty. The uncertainty
in the likelihood is represented by a probability density and represents a
spreading (as it were) of the CNN’s likelihood estimate over a range of
values dictated by the uncertainty in the truth set.

Keywords: Neural Networks · Belief network · Density function

1 Introduction

CNN have been hugely successful in many classification tasks [14]. Still CNN can
easily be fooled [4] giving high confidence predictions for unrecognizable images.
Traditional CNN are trained to produce specific outcomes by optimizing a set
of tunable parameters, the optimization is typically carried out using some form
of gradient descent. For example a CNN can be trained with labeled images
of dogs and spiders. During the inference (deployment after training) the CNN
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will be able to automatically label new images of dogs and spiders. But what
happen if during inference we feed the network the image of a cow? It will
classify the image as a dog with high probability, since a CNN output predictive
probability is just the probability with respect to the other labels, and a dog
label is more probable then a spider. The CNN output predictive probabilities
are often erroneously interpreted as model confidence. A CNN can be uncertain
in its prediction even with a high softmax output. This type of problem will
happen when the assumption of having distinct classes is not met for example
when out of distribution test data (like the dog, spider example), incomplete
data (dog is partially hidden), trying to learn from small amounts of data, and
other cases. This uncertainty is very important and in some cases it can cost
lives. For example, the Tesla incident [3] where a CNN classified a white truck
in front of the self-driving car with a very clear path to advance and crushed the
car killing the pilot. Some CNN have also been tricked about what kind of road
sign they are seeing [4].

In this paper, we propose a method to evaluate the uncertainty for each of
the labels the experts tags and use this uncertainty estimation on the CNN as an
output. This way if a model returns a result with high uncertainty we can decide
to pass the input to a human for classification, instead of returning a completely
wrong and potentially dangerous label. In Fig. 1 we show a real example of two
different experts labeling the same image, it can be seen that there are clear
differences.

(a) Expert 1 (b) Expert 2

Fig. 1. Two experts labeling same image

1.1 Previous Work

There are several recent papers on how to capture the model uncertainty a
posteriori by using Bayesian Neural Networks. Sun et al. [4] uses Bayesian
learning to quantify posterior uncertainty on deep neural networks (DNN)
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models parameters; considering the matrix variate Gaussian to develop a scalable
Bayesian outline inference algorithm by adopting a probabilistic backpropaga-
tion framework and stochastic gradient Markov Chain Monte Carlo (MCMC) on
synthetic data. Kendall and Gal [5] analyzes the different kinds of uncertainty
in the model and focus its work on the importance of adding aleatoric uncer-
tainty (cant be explained away given enough data) to the model; proposes the
use of Bayesian Neural Network for computer vision tasks improving 1–3% the
model performance. Gal and Ghahramani [6] analyzes Neural Networks (NN)
model certainty; in the paper they prove that the dropout layer can be used
as a Bayesian approximation of a well known probabilistic model, the Gaussian
process. The paper uses these outputs to determine the model uncertainty and
propose to pass the input to a human for classification if the output has high
uncertainty. Deceus [7] proposes the use of belief functions to represent imprecise
and or uncertain knowledge of class labels (soft labels) and proposed changes to
common clustering algorithms to adapt to these types of labels, presenting result
on synthetic data. Kendall et al. [15] presents a version of the segmentation algo-
rithm SegNet that also outputs the uncertainty of the segmentation regions is
presented, and is used on segmentation of street scenes. The authors provide as
an output the uncertainty on each frame for the segmentation enabling users to
decide on actions if the uncertainty is high. In general Bayesian Neural Networks
(BNN) do not have fixed weights for the neurons but a distribution, quantifying
the uncertainty in a NN which allows to find images for which the net is unsure
of their prediction, but several experiments with BNN [16] show that they also
provide a high level of certainty even for out of distribution test data, and they
do require long training times, concluding that a Bayesian neural network with
Monte Carlo dropout is too crude of an approximation to accurately capture
the uncertainty information when dealing with image data. In our paper we
approach the problem in a different way than a BNN and instead of adding a
probability distribution to the weights of the neurons we will ask the individual
expert for their certainty in labeling the images. Then through statistical and
probabilistic analysis using belief networks [9–11] we spread the CNN’s predicti
ve output over a range of values reflecting the expert’s own self-certainty.

1.2 Structure of Paper

The remainder of this paper is organized as follows. Section 2 explains how to
create a probability density function representing the certitude of an expert’s
assessment of a (label, image) pair. It may occur that many experts provide an
evaluation of the same (label, image) pair. Section 3 explains how these multiple
evaluations may be combined into a single (label, image) pair. This combination
represents a consensus opinion of the (label, image) certitude by averaging, as
it were, the evaluations of all expert opinions. These preparations are made in
support of using a belief network model (described in Sect. 4) to get a final quality
assessment of both the CNN conclusions and the quality of the expert. Finally,
Sects. 5 and 6 presents the simulations results, the conclusions, and future work,
respectively.
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2 Creating a Probability Distribution Function for Each
Expert

Each of the N photographs is assessed by an expert. During this assessment,
experts will assign some number of labels to a photograph i. For example, these
labels indicate the severity, type, and location of damage exhibited by the struc-
ture in the photograph.

2.1 Basic Assignment

Begin by defining the random variable V to be the conditional probability that
expert E assigns label L to a given photograph Φ.

V = VL|E,Φ = P [label L is assigned by E to photograph Φ].

The variable V is taken to be a continuous random variable whose value is
affected by the intrinsic quality of the expert, the focus of the expert at the
time of the assessment, the clarity of the photograph, and so on. A conditional
probability density function for V is constructed based on two metrics:

1. the expert’s self assessment of the likelihood of the assignment of a particular
label to the given photograph (call this V ∗), and

2. the expert’s success percentage compared to the truth source (call this p̃).

Symbolically, the conditional density function is denoted by

fL|E,Φ(x) 0 ≤ x ≤ 1

and represents a measure of the certainty (x) attached to each (label, expert,
image) association. That is, the probability that the expert’s assessment of label
likelihood (for a given photograph) falls below x may be measured by

P [L ≤ x |E,Φ] =
∫ x

0

fL|E,Φ(y) dy 0 ≤ x ≤ 1.

A common tactic [9–11] is to adopt a triangularly shaped function as a mea-
sure of this density (as shown in Fig. 2). We explain how to obtain these density
distributions next.

2.2 Weighted Self-Assessment: V ∗ Component

As part of the assessment process, each reviewer is required to supply a self-
assessment of their certitude (denoted by V ∗). According to [9], a self-assessment
using familiar qualifiers provides a good mechanism for self-evaluation. Since we
want a probabilistic schema we assign values in the range [0, 1] to each qualitative
descriptors as follows:
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Fig. 2. Density function shape

Definitely: 0.92± Almost Certain: 0.64± Probably: 0.36± Maybe: 0.08±
The descriptors were chosen as a qualitative mechanism through which the

experts express their own belief about the certainty in their evaluations. The
probabilities attached to each descriptor are the values assigned to V ∗ – chosen
to have a uniform spacing (with some margin on each end) over the interval
[0, 1].

To gather this data the GUI shown in Fig. 3 is used. As can be seen the
expert who is labeling the data selects the location, damage and the certainty
concerting the label assignment.

Fig. 3. GUI for gathering expert certainty per label-image

2.3 Weighted Self Assessment: p̃ Component

The expert E labels a group of images and creates for each image a set of (label,
image) pairs; note that each image may have one or more labels attached to it.
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For each image (call it Φ), let eΦ, tΦ, cΦ represent, respectively, the total
number of labels identified by the expert, the total number of labels identified
by the truth set, and the total number of labels common to both the expert
and the truth set. The quality rating for that expert vis-a-vis a single image
Φ is given by the ratio (r) of agreements to the total number of identifications
(agreements plus disagreements):

r =
cΦ

cΦ + (eΦ − cΦ) + (tΦ − cΦ)
=

cΦ

eΦ + tΦ − cΦ
.

For the complete collection of photos evaluated by expert E, the success
percentage is computed by forming the ratio of the total number of agreements
found over all photographs examined by the expert to the total number of iden-
tifications (agreements, omissions, and additions) made by the expert. This ratio
is the success proportion, p̃, and is given by

p̃ =
S

M
=

∑
Φ cΦ∑

Φ(eΦ + tΦ − cΦ)
, (1)

where S =
∑

Φ cΦ is the total number of agreements between E and the truth
set and M =

∑
Φ(eΦ + tΦ − cΦ) is the total number of identifications made

by E and the truth set (the sums are taken over all images examined by the
expert E).

2.4 Triangle Base Width

The proportion of successes p̃ (given by Eq. 1) is known to be a good estimate of
the probability, p, that the expert E assigns a correct label to a photo. To esti-
mate statistically how close p̃ is to p, a confidence interval, [L,R], is constructed
around the parameter p. The natural confidence interval to be used is that for a
proportion: well-known and given by the interval

[L,R] = [ p̃ − zα/2

√
p̃(1 − p̃)/M , p̃ + zα/2

√
p̃(1 − p̃)/M ]

= [ p̃
(
1 − zα/2

√
1 − p̃

p̃M

)
, p̃

(
1 + zα/2

√
1 − p̃

p̃M

)
],

where p̃ and M are as stated in Eq. 1 (note: M is assumed to be large, i.e.
M ≥ 30). The confidence level, (1−α), is the probability to be assigned (in this
analysis) to the truth of the statement: L ≤ p ≤ R.

The base of the triangular distribution function for V is found by scaling the
interval [L,R] by V ∗ (the expert’s self-assessment). That is the endpoints of the
base of the triangle are given by a = V ∗L and b = V ∗R. It is also desired to keep
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0 < V ∗L < V ∗R < 1. Therefore, set a = 0 if V ∗L < 0, set b = 1 if 1 < V ∗R. In
summary:

a = max (0, V ∗p̃
(
1 − zα/2

√
1 − p̃

p̃M

)
)

b = min (1, V ∗p̃
(
1 + zα/2

√
1 − p̃

p̃M

)
) .

2.5 Triangle Height

To make this triangular function into a density function, the area under this
triangle must equal one. Therefore, the height of the triangle must be 2/(b − a).
Outside of this triangle the density function is zero.

2.6 Example

Table 1 presents a brief example of how to evaluate the quality of two expert’s
assignment of labels to two photos. The label name indicates a damage/structure
type and its location, for example: “shear flexture Short column 4 100 190 300”.
This indicates that different damages names with same locations will be consider
different labels. The table represents a case in which two experts have evaluated
two photographs and attached up to three labels (called A,B, and C) to each
image. A corresponding ground truth is also given for these two images.

Table 1. Representative classification

Expert 1 Expert 2 Ground Truth
Photo 1 Photo 1 Photo 1

label A Maybe: 0.08 label A Definitely: 0.92 label A Definitely: 0.92
label B Certain: 0.64 label B Certain: 0.64 label B Definitely: 0.92
label C Maybe: 0.08

eΦ = 3 cΦ = 2 eΦ = 2 cΦ = 2 tΦ = 2
M1,1 = eΦ + tΦ − cΦ = 3 M2,1 = eΦ + tΦ − cΦ = 2

Photo 2 Photo 2 Photo 2
label D Certain:0.64 label D Definitely:0.92 label D Definitely:0.92

eΦ = 1 cΦ = 1 eΦ = 1 cΦ = 1 tΦ = 1
M1,2 = 1 M2,2 = 1

p̃1 = 3/4 p̃2 = 1

Out of these values it is now possible to determine the shape of each of the
triangular certainty functions, a summary of the calculation can be found in
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Table 2. In Sect. 3.1 the certainty functions are denoted by fL|E,Φ(l). To ease the
notation here this form will be abbreviated to fl,e,φ corresponding to identifiers
l:label, φ:photograph, and e:expert. Note that for these intervals, a confidence
level of 0.05 was assumed.

Table 2. Distribution parameters

(l, e, φ) a = Left V∗p̃ = Center b = Right

(A, 1, 1) 0.026 0.08 0.094

(B, 1, 1) 0.208 0.64 0.751

(C, 1, 1) 0.026 0.08 0.094

(D, 1, 2) 0.208 0.64 0.751

(A, 2, 1) 0.92 0.92 0.92

(B, 2, 1) 0.64 0.64 0.64

(D, 2, 2) 0.92 0.92 0.92

The certainty functions fl,e,1 obtained from the values for photo 1 (stated
in Table 2) are represented in Fig. 4. It can be seen that the certainty functions
associated with expert 1 are triangular and wider while the certainty functions
associated with expert 2 are impulsive. This is due to the fact that expert 1 made
several mistakes in assigning labels (compared to the truth set) while expert 2
is not only certain about the labels but has also made correct assignments1.

Fig. 4. Experts density function shapes (for Photo 1):fl,e,1

3 Combining Multiple (label, image) Expert Evaluations

To model a collection of photos and labels as a belief network, each (label, image)
pair is treated as an edge in a directed graph (see Sect. 4). To simplify these

1 At this stage of development, a triangular density function with a very narrow base
has been used instead of an impulse.
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directed graphs, multiple evaluations of same (label, image) pair by different
experts are combined into a single composite evaluation; Fig. 5 shows a graph of
this process. Assume that image number s in the truth set (call it Φs) has been
evaluated independently by K experts each of whom have assigned label Lj to
the Φs. Assume further that the assignment of images to experts has been done
in an unbiased fashion. That is, for example, an expert on structural damage
near windows is just as likely to receive a window image as a non-expert.

Fig. 5. Combine experts evaluations into one edge

These assumptions yield the following relationship

VL|Φ = P [Lj |Φs] =
1
K

∑
i

P [Lj |Ei, Φs] =
1
K

∑
i

VL|Ei,Φ.

That is, the certitude function for VL|Φ is the certitude function for the arithmetic
average of the variables VL|Ei,Φ. Since the variables VL|Ei,Φ are assumed to be
independent, elementary probability theory provides a way to computing the
certitude function for VL|Φ using two basic equations:

faX(x) =
1
a
fX(

x

a
)

fY (y) =
(
fX1 � fX2 � . . . � fXK

)
(y),

where a is a constant, Y =
∑

i Xi is the sum of K independent random variables,
and � represents the convolution operation

(f � g)(x) =
∫ ∞

−∞
f(t)g(x − t) dt.

In this application, a = 1/K and Xi = aVL|Ei,Φ.
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3.1 Example

Continuing with the example in Sect. 2.6, the expert’s evaluations yield (label,
image) pairs with the following values2:

(L,E,Φ): label,image(L,Φ), Expert, triangle base: a; V ∗p̃; b

(A,1,1): label,image (A,1), Exp1, tri. base: 0.026; 0.06; 0.094
(A,2,1): label,image (A,1), Exp2, tri. base: 0.920; 0.92; 0.920
(B,1,1): label,image (B,1), Exp1, tri. base: 0.208; 0.48; 0.752
(B,2,1): label,image (B,1), Exp2, tri. base: 0.640; 0.64; 0.640
(C,1,1): label,image (C,1), Exp1, tri. base: 0.026; 0.06; 0.094
(D,1,2): label,image (D,2), Exp1, tri. base: 0.208; 0.48; 0.752
(D,2,2): label,image (D,2), Exp2, tri. base: 0.920; 0.92; 0.920

Notice that (label, image) pairs (A, 1), (B, 1), and (D, 2) have each been
evaluated by experts 1 and 2. The certitude functions for the two evaluations of
(A, 1) are convolved together to form a combined certitude function. Note that
each expert’s certitude function for this (label, image) pair is weighted equally
in the convolution.

(a) Label A:Photo 1 (b) Label B:Photo 1

Fig. 6. Combined experts 1 and 2 for labels A and B

Figure 6a shows the combined certitude function result for pair (A, 1) as well
as the two input certitude functions (A, 1, 1) and (A, 2, 1). The input certitude
functions are shown with dashed lines with the combined certitude output rep-
resented by a solid line. The Fig. 6b shows the same action applied to combine
the two evaluations for (label, image) pair (B, 1). On Fig. 6a, the combined cer-
titude is representative of an average of the two input certitudes – both the
expert’s evaluations, (as represented by the center location of the triangle base)
and quality of the expert (represented by the width of the triangle base) appear
to have been averaged. In Fig. 6b, expert 1 has an asymmetric certitude function

2 This is a restatement of Table 2 ordered by photo id.
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with a peak over 0.64 while expert 2 is asserting certainty about the evaluation
0.64. Note in this case that the combined certitude still averages the peak values
of its inputs (as in Fig. 6a) but has lost the sharpness of expert 2’s evaluation
while improving the dullness of expert 1’s evaluation.

4 Belief Network for Assessing the Uncertainty of the
Label

A Belief Network (BN) is a directed graph where each node represents an event,
an object, or some similar static item and the directed edges indicate the pres-
ence of causality or dependence (see [10]). Consider the belief network shown in
Fig. 7. The nodes Lj represent a list of three labels, the nodes Φi represent three
photographs in the image collection, and Φ represents a new (unseen by any of
the experts) image. The directed arrows travelling from the image collection,
{Φi}, to the set of labels, {Lj}, represent the evaluations done by the experts
and the directed arrows going from the given, new image, Φ, to the image collec-
tion describe the amount of similarity between the new image and the images in
the image collection. Note that the photos Φ1, Φ2, Φ3 are the same images that
have been used during the training of the NN.

Fig. 7. Example of belief network

A BN (such as the one depicted in Fig. 7) provides a simple way of assigning
probabilities and certainty distributions to each of the labels. For a single label,
Lj , this equation holds:

P [Lj ] =
∑
Φi

P [Lj |Φi]φiP [Φ].

Single probabilistic values for the labels L1, L2, and L3 are the outputs from
a CNN softmax layer. That is, for example, if the NN output gives P [L1] =
0.7, P [L2] = 0.26, and P [L3] = 0.04 then it means that the CNN did recognize
the existence of label L1 in the image Φ. The relationships between the values
φi = P [Φi](i = 1, 2, . . . , I) and lj = P [Lj ](j = 1, 2, . . . , J) are linear:
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L =

⎡
⎢⎢⎢⎣

l1
l2
...
lJ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f11 f11 . . . f1I

f21 f21 . . . f2I

...
...

...
...

fJ1 fJ1 . . . fJI

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

φ1

φ2

...
φI

⎤
⎥⎥⎥⎦ = FΦ, (2)

where fij = P [Lj |Φi]. The matrix F = [fij ]J×I of conditional probabilities
have known conditional distribution functions and from this, the distributions
of the quantities in the L vector may be determined provided that the vector
Φ = [P [Φi]]I×1 is known.

In the example at hand (Fig. 7) assume that the links from photo Φi to labels
Lj have the certitude functions described in Fig. 6 and its accompanying table.
These assignments are summarized below:

Φ1 → L1 ⇔ (A, 1)
Φ1 → L2 ⇔ (B, 1)
Φ2 → L1 ⇔ (D, 2, 2)
Φ2 → L3 ⇔ (C, 1)
Φ3 → L3 ⇔ (D, 1, 2)

φ1 = 6/15 φ2 = 6/15 φ3 = 3/15

With these assignments, probability densities for the components of the vec-
tor L may be determined by simulation. These results are shown in Fig. 8.

Fig. 8. BN generated certitude functions (from image probabilities)

The incorporation of the NN’s estimation of the label probabilities into the
generation of certitude functions is accomplished by inverting the linear system
described above to produce candidate values for φi to be used in the a priori
computations. By using the BN in this manner, we are assigning a certainty
function to each value produced by the NN (see Fig. 9).
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Fig. 9. Example of Output of a Neural Network with the uncertainty added from Belief
Network. The red lines represent the uncertainty distribution for the label

The simplex method should be able (1) to show that a solution to this linear
program exists, and (2) to produce a particular solution to the problem, see [13].

5 Results

We did perform several tests to show that the methods described in Sect. 2
through 4 can be used to evaluate the quality of the experts and to assign a
certainty range to the labels with which different experts tag the images. To
shorten the length of the paper we used synthetic data throughout to show that
the proposed method works well without having to add all the details of a real
NN configuration. These results are shown in Sect. 2.3 and in Figs. 4, and 6.

The BN described by Fig. 7 has been simulated3 using the a posteriori eval-
uation described at the end of Sect. 4. The table of (image, label) certitude
functions defined by Fig. 7 is summarized below: The values P1, P2, and P3
shown in Fig. 7 are the outputs from the softmax layer in the NN that indicate
that the NN recognizes labels L1, L2, and L3 as possibly present in the new
input image—L1 being the most likely. These NN outputs are used to define the
vector L = [0.70, 0.26, 0.04]T . The matrix equation L = FΦ (Sect. 4 Eq. (2)) is
solved to produce candidate solutions Φ. These solutions are in turn fed back
through this same equation (via a simulation) to produce certitude functions for
each coordinate of L (Table 3).

Table 3. Belief network input data (95% confidence)

V* p∼ epsilon a V*∼p b (L, E, Phi) Individual (L, Phi) Convolved

Designation Mean Convolved Mean

0.08 0.75 0.565792867 0.026052428 0.06 0.093947572 A11 0.06 A1=A11*A21 0.49

0.64 0.75 0.565792867 0.208419424 0.48 0.751580576 B11 0.48 B1=B11*B21 0.56

0.08 0.75 0.565792867 0.026052428 0.06 0.093947572 C11 0.06

0.64 0.75 0.565792867 0.208419424 0.48 0.751580576 D12 0.48

0.92 1 0 0.92 0.92 0.92 A21 0.92

0 64 1 0 0.64 0.64 0.64 B21 0.64

0.92 1 0 0.92 0.92 0.92 D22 0.92

3 The output of the NN are simulated, we guess the output values of a NN based on
our previous paper [1] where we used a Single Shot MultiBox Detector (SSD) [18].



260 M. Pantoja et al.

Fig. 10. BN generated certitude functions (from label probabilities)

Figure 10 shows the results of these computations—three certitude functions
corresponding to the three softmax layer evaluations by the NN. With respect
to label L1, the narrow width of the base of the triangular function indicates
that the softmax layer value of 0.70 is supported by the expert’s opinions. The
base of this triangle is the interval [0.688, 0.711] with the peak over the certitude
value 0.699 (all values are approximate). In probabilistic terms the probability
that an expert would assign label L1 to the new image lies between 0.688 and
0.711 (relative error of about ±1.6%). For labels L2 and L3 the base intervals
are [0.195, 0.342] and [0.018, 0.059 with peaks over 0.258 and 0.039 respectively.
Similar probabilistic statements apply to labels L2 and L3 (relative errors of
±28.5% and ±52.6% respectively).

If the reader is interested in replicating the experiments and calculating the
BN, you can find all code use here in the github [19].

6 Conclusion and Future Work

In this project we developed a method to evaluate the uncertainty of pictures
used for training CNN. We provide a methodology based in probability analysis
to combine different experts tagging same images to obtain a more accurate
set of training images that can later be used in training a CNN. The assessed
quality of the experts evaluated can also be used to spread the output of the
Neural Network over a range of values increasing the robustness of the classifier.

The method proposed in this paper can be used in any training set where the
labels contain uncertainty and were provided by different experts, for future work
we are going to use it on civil engineering damage labeling since we already have
the data set labeled by different experts and we already have results showing
increase of accuracy of around 3%, for brevity the detailed description to this
CNN will be presented in a different paper.
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Abstract. In this work, we assess the impact of the adaptive unsharp
mask filter as a preprocessing stage for breast tumour multi-class classi-
fication with histopathological images, evaluating two state-of-the-art
architectures, not tested so far for this problem to our knowledge:
DenseNet, SqueezeNet and a 5-layer baseline deep learning architecture.
SqueezeNet is an efficient architecture, which can be useful in environ-
ments with restrictive computational resources. According to the results,
the filter improved the accuracy from 2% to 4% in the 5-layer baseline
architecture, on the other hand, DenseNet and SqueezeNet show a neg-
ative impact, losing from 2% to 6% accuracy. Hence, simpler deep learn-
ing architectures can take more advantage of filters than complex archi-
tectures, which are able to learn the preprocessing filter implemented.
Squeeze net yielded the highest per parameter accuracy, while DenseNet
achieved a 96% accuracy, defeating previous state of the art architectures
by 1% to 5%, making DenseNet a considerably more efficient architecture
for breast tumour classification.

Keywords: Breast cancer · Histopathological images · Deep learning ·
Multi-class tumour classification

1 Introduction

Cancer is a major public health problem [3], it affects millions of people and
every year, new cases and deaths are recorded globally. Breast cancer is the
second most diagnosed cancer world-wide. Last year 2, 088, 849 new cases of
breast cancer were discovered and 626, 679 deaths registered [3].
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Detecting and treating a tumour in early stages increases recovery and sur-
vival rates for patients. A method for estimating the stage and type of breast
cancer is a histopathological image analysis, in which a pathologist examines a
histology to diagnose an existing malign or benign tumour. Histopathological
analysis is carried out after suspicious masses are found in a previous diagnostic
mammogram. Subjects with mammograms categorized by level 4 or 5 accord-
ing the Breast Imaging Reporting and Data System (BI-RADS) standard, are
usually advised to perform further histopathological analysis.

Based on the deep learning and architectures based on convolutional neural
networks success for image analysis applications, the development of accurate
Computer Aided Diagnosis (CAD) systems for medical purposes is becoming
increasingly popular, however often limited by data availability from clinics and
hospitals. Few initiatives for creating open data repositories can be found in
the medical community. An example of these initiatives is the breast cancer
histopathological database known as BreakHis [24]. This dataset is composed of
breast tumor tissues images labeled as benign or malign.

Automated histopathological analysis systems can be implemented on a
medic device or embedded system to support pathologist every day sample anal-
ysis, improving tumor detection accuracy, and allowing the pathologist to focus
in most urgent cases. Moreover, efficient deep convolutional architectures are
of interest for the usage in mobile phones and embedded computers. For small
clinics in underdeveloped areas with poor internet access, implementing efficient
deep learning architectures can be useful.

Frequently, data samples present noise or signal degradations, decreasing the
signal to noise ratio. Therefore a preprocessing stage becomes necessary, with
input images transformed, normalized, enhanced, denoised or filtered depending
on the problem to solve. In [4,5,17,20], different techniques are proposed for
contrast enhancement and edge sharpening preprocessing.

In this work, we assessed the impact of an adaptive unsharp mask filter [17] as
preprocessing stage for three different convolutional network architectures based
approach for breast tumour multi classification, evaluating the breast cancer
histopathological database (BreakHis) as training and testing data.

As contributions, we evaluated the intensity and edge based adaptive unsharp
masking filter for color image enhancement as a preprocessing stage for breast
tumour classification.

In order to evaluate the impact of a filter in complex and simpler architec-
tures, we chose DenseNet and Squeezenet: two novel state-of-the-art architec-
tures. On the other hand, we also contribute to the state of the art on breast
tumour classification, since to our knowledge, there is not a lot of related work
with these two architectures on breast cancer multi-class classification problems.

2 State of the Art

Deep learning has been a successful approach for the development of computer-
aided systems for medical purposes, since its techniques, methods and architec-
tures applied to medical images have yielded successful and accurate results so
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far [15,19,21,22]. However, a challenge faced by the scientific community is the
lack of open datasets to be able to develop and test these systems since most
of the medical information is private. Recently, [24] authors and collaborators
released a dataset of breast cancer histopathological images [24] for research and
benchmarking purposes, therefore, we focus our literature exploration in works
presenting image analysis solutions tested with the BreakHis dataset. Binary
classification is a common problem in computer vision and machine learning, in
which the data is classified in two classes as BreakHis, that is divided in two
mainly classes: benign and malign tumours.

In [2], authors present a study of the state of the art, as they compared
their deep learning methods, the baseline model architecture (InceptionV3)
and results with [23–25] for binary classification. In [24] authors used classical
machine learning classification methods, meanwhile [25] used a standard convo-
lutional neural network architecture and [23] an AlexNet model baseline [8]. [25]
obtained the best results on patient level accuracy: 96.7%, 93.2%, 89.8%, 92.3%
and 96.1%, 89.9%, 87.2%, 85.2% on image level accuracy in 40×, 100×, 200× and
400× magnifications respectively, on the other hand, [2] obtained the best results
on F1 score: 93%, 88.9%, 89.4% and 86.4% in the respective magnifications.

Binary breast tumour classification is studied on [18], in this work, authors
assess the impact of transfer learning on three pre-trained models: VGG16,
VGG19, and ResNet50. All the models posses a logistic regression classifier as a
top model. The fined-tuned pretrained VGG16 with logistic regression classifier
yielded obtained the best performance with 92.60% accuracy.

Recent DenseNet architecture [13], based on the idea of implementing several
skip connections to overcome the vanishing gradient problem, has been evalu-
ated in [11] for breast tumour binary classification using the BreakHis dataset as
training and testing data. Xgboost [6] was used for feature extraction and princi-
pal component analysis for dimensionality reduction. They achieved 94.71± .88,
95.9± 4.2, 96.76± 1.09 and 89.11± 0.12 in patient level accuracy on 40×, 100×,
200× and 400× magnifying factors respectively.

The two mainly classes of BreakHis: benign and malign are divided in four
subtypes each, allowing to perform a multi-class classification to determinate
the type of tumour presented in a histology. Binary classification has been
thoroughly investigated, [25] reports a maximum accuracy of 96%, therefore,
we consider that binary classification on BreakHis is a solved and well-known
problem through deep learning techniques, demonstrating a better performance
and efficiency since feature extraction is learned through the training iterations
by deep convolutional neural networks instead of handcrafted methods as [24],
which employs traditional machine learning and feature extraction techniques to
solve the binary classification, performing an accuracy of 73% to 85%. On the
other hand, breast tumour multi-class classification is not solved and most of
the authors in current literature address and face the multi-class breast tumour
classification problem using deep convolutional networks, as is shown in [1], a
deep learning convolutional neural network was evaluated and results of 91.54%
accuracy have been reported on the BreakHis dataset.
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Another approach is proposed in [12], which suggest an end-to-end recogni-
tion method by a novel deep learning based architecture to multi-class classifica-
tion. A frequent problem in breast histopathological images is class imbalance,
since samples for certain types of tumours are less common. To handle imbal-
anced datasets as BreakHis, author used a data augmentation based approach
and obtained an average of 93.2% accuracy.

Authors in [9] reported a 95.15% accuracy with a deep residual network based
framework. The base model used is ResNet, which classifies between benign or
malign, followed by a top meta decision tree that classifies the ResNet output
between one of the different eight subtypes of tumours of the BreakHis dataset.

Preprocessing is an important stage on every deep learning baseline, in this
step, data can be denoised or filtered depending on the problem to solve, in [4]
authors analyze the impact of denoising, contrast and edge enhancement using
the deceived non local means filter in a convolutional neural network based
approach for age estimation using digital X-ray images from hands, this filter
has two remarkable features: noise removing and border highlighting. Since the
filter has two parameters, combinations were tested and reported the results
for each. As conclusion, authors asserted the significance on how changing the
parameters of the filter affects the learning process of the model. They proved
that for some combinations, the filter improved the learning process and the
accuracy of the deep learning model. This leads us to explore preprocessing
impact in a deep learning classification model.

3 Proposed Method

BreakHis dataset presents a wide variety of cases for the adaptive unsharp mask
filter to be tested on, four magnification values, four types of benign and malign
breast tumours. Since we aim to test the effect of the filter as a preprocessing
stage, this assortment of scenarios allows us to test the behaviour of the AUM
with images presenting different levels of detail and contrast. As seen in [4,5]
a filter can have a significant impact on the learning process and accuracy of a
deep learning model.

The tested architectures deep learning DenseNet [13] and SqueezeNet [14].
We compare DenseNet since remarkable results have been reported in [10] on
binary breast tumour classification.

We seek to assess the impact of the preprocessing stage has on a lightweight
network a heavyweight one, this is why SqueezeNet and DenseNet are used. We
know SqueezeNet is a lightweight network with a good number of parameters -
accuracy ratio [14], and we aim to measure the impact of the proposed AUM pre-
processing step, as also compare its accuracy and resource consumption with the
more complex DenseNet architecture. DenseNet implemenents a lot of parame-
ters, and is a huge network in comparison to SqueezeNet, thus we also test its
multi classification accuracy. We want to measure the impact AUM has on of
both big and small networks alike. All the architectures have a softmax function
as a final activation for the eight prediction output, therefore, cross entropy was
used as loss function.
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3.1 Dataset

We evaluated the Breast Cancer Histopathological Database [24] known as
BreakHis, composed of 7,909 microscopic images of breast tumor tissue collected
from 82 patients using different magnifying factors (40×, 100×, 200×, and 400×,
the × stands for times.) as seen in Fig. 1. The database is basically divided in
two major classes: benign and malign. These two classes are then subdivided into
four subtypes each: Adenosis (A), Fibroadenoma (F), Phyllodes Tumour (PT)
and Tubular Adenona (TA) as benign subtypes and Carcinoma (DC), Lobular
Carcinoma (LC), Mucinous Carcinoma (MC) and Papillary Carcinoma (PC)
as malignant subtypes.

40× 100× 200× 400×

Fig. 1. Samples of the four magnifying factors presented in BreakHis dataset

3.2 Preprocessing: Adaptive Unsharp Mask

Previous work [4,7] reported a significant performance impact of preprocessing
on Convolutional Neural Networks (CNNs). Therefore, we used the intensity and
edge based Adaptive Unsharping Mask Filter (AUM) filter [17] as a preprocessing
stage. The main difference in comparison with USM, is the iterative process in
which the variable that controls the amount of image enhancement: gain factor
is updated. Let G be the enhanced image described by Eq. 1:

G = U + λAB (1)

U is defined as the original image, then difference of Gaussians algorithm
is applied to U in order to calculate B and λA is the adaptive gain factor
which can be decomposed as a product of three factors; general gain(λG), color
enhancement(λC) and edge sharpening(λE). An example of result G is shown in
Fig. 2.

Once AUM is applied, images are normalized from 0 to 1, and resized from
700 × 460 to (n × n) using bilinear interpolation to keep the image ratio, where
n is the input size of the respective model.
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Input (U) Output (G)

Fig. 2. Example of AUM applied to a BreakHis sample

3.3 DenseNet

The concept of a deep dense convolutional network known as DenseNet was
proposed in [13]. The main goal of this architecture is to improve information
and gradient flow between layers using dense connectivity blocks as is shown
in Fig. 3. We evaluated the DenseNet 161-layer architecture who has 26,474,209
trainable parameters.

Fig. 3. Densed connectivity block

3.4 SqueezeNet

An important drawback of complex deep convolutional networks is usually the
huge amount of parameters, which increases computational time and resources.

To solve the aforementioned problem [14], the well-known SqueezeNet was
proposed. It is an AlexNet-based architecture with 50x less parameters, lower
size filters, downsampling and channel reduction.

The main feature of this architecture is the fire module. It is combined with
convolution layers, another fire modules and max-pooling operations to create
the SqueezeNet. A fire module relies on a compressing and expanding layer, the
compressing layer has 1 × 1 convolutional filters, which are then passed to the
expanding layer composed of both 1 × 1 and 3 × 3 convolutional filters as is
shown in Fig. 4. This model has 723,809 trainable parameters.
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Fig. 4. Fire block

4 Experiments and Results

We used a 5-fold cross-validation for training and testing. To divide the data we
accounted for the number of images of each tumour sub type, in order to avoid
class bias; the information of each patient was not taken into consideration. To
face class unbalance, the loss function was weighted and balanced according to
the number of samples of each tumour class, forcing the model to punish more
errors in classes with less samples.

Each model was trained with 100 epochs; using Adam [16] optimizer with
learning rate of 0.0001. The batch size used for training and testing was 28 and
18 for SqueezeNet and DenseNet, respectively, to avoid memory overflow.

To evaluate the performance of the models, we calculated the patient level
accuracy, image level accuracy and F1-score.

The patient level accuracy metric is defined as follows. For each patient,
let Nt be the total number of images and Nc the number of images correctly
classified, then patient score S can be defined as:

S =
Nc

Nt
(2)

Therefore, the patient level accuracy can be calculated as

Patient level accuracy =
∑T

i=1 Si

T
(3)

Where T is the total number of patients.
The image level accuracy measures the rate of correctly classified images to

the total number of images in the dataset. Let N be the total number of images
in testing data and C the number of correctly classified images.

Image level Accuracy =
C

N
(4)

DenseNet and SqueezeNet have obtained outstanding results [13,14]. There-
fore, we also evaluated a 5-layer deep CNN architecture, in order to evaluate
the impact of preprocessing on a traditional deep convolutional baseline. The
architecture is described in Table 1, where b is the batch size.
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Table 1. 5-layer CNN architecture

Layer Input size Output size Kernel size

Conv 1 + ReLU (b,3,229,229) (b,32,227,227) 3

Conv 2 + ReLU (b,32,227,227) (b,64,225,225) 3

Max pooling (b,64,225,225) (b,64,112,112) 2

BatchNorm (b,64,112,112) (b,64,112,112) -

Conv 3 + ReLU (b,64,112,112) (b,128,110,110) 3

Conv 4 + ReLU (b,128,110,110) (b,256,108,108) 3

Max pooling (b,256,108,108) (b,256,54,54) 2

BatchNorm (b,256,54,54) (b,256,54,54) –

Flat operation (b,256,54,54) (b,256 * 54 * 54) –

FC + Softmax (b,256 * 54 * 54) (b,8) –

Table 2. F1-score mean± std

Architecture Preprocessing

AUM No AUM

40× DenseNet 0.94 ± .022 0.96 ± .035

SqueezeNet 0.90 ± .051 0.94 ± .024

5-layer CNN 0.61 ± .147 0.30 ± .143

100× DenseNet 0.90 ± .034 0.93 ± .021

SqueezeNet 0.87 ± .049 0.91 ± .037

5-layer CNN 0.30 ± .110 0.27 ± .168

200× DenseNet 0.89 ± .038 0.91 ± .042

SqueezeNet 0.86 ± .053 0.88 ± .04

5-layer CNN 0.37 ± 104 0.32 ± .067

400× DenseNet 0.87 ± .061 0.90 ± .039

SqueezeNet 0.78 ± .061 0.83 ± .057

5-layer CNN 0.33 ± .118 0.32 ± .088

Table 3. Patient level accuracy mean± std

Architecture Preprocessing

AUM No AUM

40× DenseNet 0.94 ± .022 0.96 ± .013

SqueezeNet 0.89 ± .027 0.95 ± .014

5-layer CNN 0.45 ± .043 0.41 ± .057

100× DenseNet 0.93 ± .018 0.93 ± .023

SqueezeNet 0.89 ± .025 0.92 ± .021

5-layer CNN 0.39 ± .026 0.38 ± .018

200× DenseNet 0.91 ± .017 0.92 ± .016

SqueezeNet 0.89 ± .012 0.88 ± .05

5-layer CNN 0.48 ± .034 0.44 ± .023

400× DenseNet 0.88 ± .025 0.9 ± .015

SqueezeNet 0.79 ± .034 0.83 ± .069

5-layer CNN 0.40 ± .039 0.39 ± .021
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Table 4. Image level accuracy mean± std

Architecture Preprocessing

AUM No AUM

40× DenseNet 0.95 ± .006 0.96 ± .012

SqueezeNet 0.90 ± .015 0.94 ± .012

5-layer CNN 0.53 ± .048 0.48 ± .038

100× DenseNet 0.92 ± .013 0.94 ± .011

SqueezeNet 0.88 ± .008 0.91 ± .013

5-layer CNN 0.45 ± .015 0.45 ± .037

200× DenseNet 0.90 ± .010 0.92 ± .015

SqueezeNet 0.87 ± .009 0.89 ± .014

5-layer CNN 0.51 ± .034 0.50 ± .016

400× DenseNet 0.89 ± .013 0.91 ± .006

SqueezeNet 0.80 ± .013 0.84 ± .019

5-layer CNN 0.50 ± .017 0.46 ± .033

(a) AUM (b) No AUM

Fig. 5. ROC curve of DenseNet on x40 magnifying factor

(a) AUM (b) No AUM

Fig. 6. ROC curve of SqueezeNet on x40 magnifying factor
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(a) AUM (b) No AUM

Fig. 7. ROC curve of 5-layer CNN on x40 magnifying factor

Fig. 8. Accuracy per parameter table scaled 0–100

Table 5. Comparation of 40× magnifying factor results with other works, NR stands
by non reported

Work Patient level accuracy Image level accuracy F1-Score Classification

[2]: Inception v3 + DeCAF 91.5 90.2 93 Binary

[9]: ResNet-152 + Stain norm NR 95.6 NR Multi

[12]: CSDCNN 94.1 92.8 NR Multi

[11]: DenseNet-169 + XGboost NR 94.7 NR Binary

[23]: AlexNet + DeCAF 84.0 84.6 88 Binary

[25]: AlexNet 90.0 85.6 92.9 Binary

DenseNet-161 with AUM 94.2 95.6 94.7 Multi

DenseNet-161 without AUM 96.2 96.1 96.1 Multi

SqueezeNet with AUM 89.2 90.1 90.5 Multi

SqueezeNet without AUM 95.1 94.1 94.2 Multi

5-layer with AUM 45.5 53.4 47.3 Multi

5-layer without AUM 41.5 48.3 31.0 Multi

Looking at the F1-score in Table 2 its clear that the preprocessing stage con-
tributes in a negative manner, most of the cases for SqueezeNet and DenseNet,
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but in case of the 5-layer implementation it seems to improve the accuracy in
some cases.

As previously discussed, the use of a adaptive unsharp mask preprocessing
stage was proposed because an improvement in the accuracy of the model was
expected, but results proved this supposition to be wrong. In Tables 3 and 4 a
considerable negative impact on patient and image level accuracy is seen on all
implementations when using the AUM. DenseNet achieved 2% lower accuracy
when using the AUM filter in it worse case, this can be due to it high amount
of parameters that allow it to become numb to the changes made by the fil-
ter. On the other hand, the AUM had a larger negative impact on SqueezeNet,
where the accuracy loss varies between 1% and 6% using 200x and 40x magnifi-
cation respectively, it can be argued that this is because of network having less
parameters and therefore less flexibility to adjust the change produced by the
filter.

As for the 5-layer CNN tested, it yielded an important accuracy increase when
using the AUM as a preprocessing stage, yielding an accuracy boost of around
5%, as seen in Tables 3 and 4. The lack of generalization can be appreciated in
Fig. 7, which shows the positive ratio of 5-layer CNN model trained with and
without AUM. The Receiver Operating Characteristics (ROC) curve shows a
better positive ratio by the AUM model, showing a better percentage of true
positives in comparation to the model without AUM that focus on classes 2 (F),
3 (PT) and 4 (TA). Contrary case is observed in DenseNet and SqueezeNet ROC
curves on Figs. 5 and 6, where the positive ratio with and without AUM is alike.

When using the F1 score to measure the accuracy for each class in the dataset,
a clear pattern can be seen in Table 5, that is the negative effect the AUM has
on elaborate networks like DenseNet and SqueezeNet. It seems like the use of
the filter might even removing information useful in the classification process,
this effect was not present when the 5-layer CNN was tested, instead an signif-
icant improvement of almost 30% was achieved in some cases and in others a
downgrade was also reported.

According to the results obtained, DenseNet achieved the highest (96%)
F1-score, patient and image level accuracy. Both architectures DenseNet and
SqueezeNet demonstrated an important decrease in precision. On the contrary,
simpler models (e.g., 5-layer CNN) provided a significant performance gain with
AUM images. Therefore, very basic CNNs can take more advantage of prepro-
cessing than complex state-of-the-art architectures. Note that similar results and
conclusions were previously obtained in [5].

The top performance of each model is obtained in 40× magnifying factor
since the images posses global information that is removed when the magnify-
ing factor increases, affecting the learning of the models. Thus, Table 5 reports
the results with other works on this specific magnifying factor, showing that
DenseNet obtained a better performance than other works. It can be noted that
as the input image has a higher magnifiers factor, the accuracy decreases, this
happens not only on DenseNet but all tested architectures. This could be due
the fact that as the magnification increases the amount of local information
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captured in each image is less, and it ends up being a very localized picture,
therefore losing important information of the surrounding area.

Moreover, SqueezeNet ranked second using less than 25 million parame-
ters compared to DenseNet. Although it is fast, there is room for improvement
regarding accuracy rates. SqueezeNet is also a lightweight network that offers a
remarkable efficiency per parameter. This feature could be useful in a embed-
ded environment as a first line of detection in a histology, and become, to our
knowledge, the first neural network to be used in a embedded system for breast
tumour detection. The considerable resource consumption/accuracy higher ratio
of SqueezeNet can be seen in Fig. 8.

5 Conclusions

We analyzed the impact of the preprocessing AUM filter on three different deep
learning architectures to classify breast tumours in histopathological images
and determined that the usage of this preprocessing stage for DenseNet and
SqueezeNet decreases the accuracy of both networks in every single test case,
with variable magnification and multiple classes. It can be said that the filter
removes key characteristics from the images and this does not help with the
learning process of this networks, as also more complex networks are likely to
become numb to noisy or degraded samples. On the other hand, the 5-layer
CNN architecture improved its results and showed that simple convolutional
architectures can be enhanced by the use if this kind of preprocessing stage for
histopathological images, as it is less likely to learn the filter behavior by itself.

The results obtained by DenseNet and SqueezeNet shows the negative impact
of the filter on complex architectures in comparison with the 5-layer CNN, whose
results improved significantly with the filter, meaning that small and simpler
convolutional neural networks can take more advantage and benefits of filters
than complex architectures.

SqueezeNet yielded an outstanding accuracy per parameter, demonstrating
that huge amount of parameters are not necessary to achieve a satisfactory accu-
racy. Is also a suitable architecture to be used in medical devices or embedded
system as an extra help to help detect cases higher risk of developing cancer,
being specially useful in places were there are many cases to check but very few
people to do the job. SqueezeNet proved to be a potentially viable network to be
used in embedded systems due to its low parameter but high accuracy relation,
it showed it’s capable of being toe to toe with a network as huge as DenseNet.
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Abstract. Implementing voice recognition systems and voice analysis
in real-life contexts present important challenges, especially when signal
recording/registering conditions are adverse. One of the conditions that
produce signal degradation, which has also been studied in recent years
is reverberation. Reverberation is produced by the sound wave reflections
that travel through the microphone from multiple directions.

Several Deep Learning-based methods have been proposed to improve
speech signals that have been degraded with reverberation and are proven
to be effective. Recently, recurrent neural networks, especially those with
short and long term memory (LSTM), have presented surprising results
in those tasks.

In this work, a proposal to evaluate the robustness of these neural
networks to learn different reverberation conditions without any previ-
ous information is presented. The results show the necessity to train
fewer sets of LSTM networks to improve speech signals, since a single
network can learn several conditions simultaneously, in contrast with the
current method of training a network for every single condition or noise
level.

The evaluation has been made based on quality measurements of the
signal’s spectrum (distance and perceptual quality), in comparison with
the reverberated version. Results help to affirm the fact that LSTM net-
works are able to enhance the signal in any of five conditions, where all
of them were trained simultaneously, with equivalent results as if to train
a network for every single condition of reverberation.

Keywords: Speech enhancement · Reverberation · Deep learning ·
LSTM

1 Introduction

Speech signals are often affected by additive noise, reverberation and other dis-
tortions in real-world environments due to background elements that produce
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sounds or represent obstacles,thus modifying to the signals. Communication
devices and applications of speech technologies may be affected in their per-
formance [2,26,33,34] with such noise added to the speech information.

Over the past decades, speech enhancement algorithms have been presented
to suppress or reduce such distortions, as well as preserving or enhancing the
perceived signal quality [17]. Several recent algorithms for the task of enhancing
speech signals are based on deep neural networks (DNN) [7,8,16,25]. The most
common approach is that of learning mapping features from noisy speech into
the features of the corresponding clean speech, using autoencoders based on
perceptrons or recurrent neural networks (RNNs).

Among the new types of RNNs, the LSTM network successfully mapped
features derived from the spectrum, usually Mel-Frequency Cepstrum Coeffi-
cients (MFCC) [4]. These features have been used widely in speech-related tasks
because automatic speech recognition systems are frequently based on them.

The benefits of using RNNs are the better modeling of the dependent nature
in speech signals. Among its drawbacks are the high computational cost of their
training procedures.

In this work, we extend on the previous experiences of speech enhancement
with LSTM by measuring its robustness, considering more than one level of
noise with a single network. Benefits from this type of speech enhancement can
be applied to more realistic tasks in mobile phones, Voice over Internet Protocol,
speech recognition, and devices for hearing-impaired listeners [18].

The idea of enhancing speech signals with DNN has been a hot topic in
research during the past few years. Typically, the implementation relies on the
enhancement of spectral features, such as MFCC [1,21,29].

The deep learning approaches have been successful in outperforming classical
methods based on signal processing when the speech signals have been degraded
with different types of noise at several Signal-to-Noise Ratio (SNR) [3,19,23,31],
or reverberant speech [11,22,37]. Also, the advantage in reducing the musical
artifact commonly present in speech enhancement using classical algorithms has
been observed [35].

The principal method for enhancing the signals using deep learning is to apply
the networks as mapping models, adjusting an unknown function from the noise
parameters of the speech into the corresponding clean parameters [24,33]. To
provide robust enhancement of reverberated speech, in [34], a combination with
signal-processing based algorithms were also proposed. The usage of deep autoen-
coders has been analyzed in these references also with several parametrizations
of the speech signal.

LSTM networks for speech enhancement have been presented previously in [6,
34], using MFCC as features, for the case of applying one LSTM network for
enhancement of each noise type and SNR level, or a specific condition. Even
though the LSTM outperforms other deep networks in this task, the training
process for its successful implementation requires single specific conditions (i.e.
a noise level or specific reverberation), and prior knowledge of the noise type,
level or reverberation during the test procedure.



278 C. Paniagua-Peñaranda et al.

In the present paper, we consider a more realistic scenario for speech enhance-
ment under different conditions of reverberation, where the networks are trained
with more than one of these conditions. We pretend to measure the capacity
of the LSTM networks to enhance speech signals without apriori information of
the condition of the signals.

Several objective measures are used to test the results, which show the capac-
ity of the LSTM in robust speech enhancement under reverberation conditions.
The rest of this paper is organized as follows: Sect. 2 gives the background and
context of the problem of enhancing reverberating speech and the LSTM, Sect. 3
describes the experimental setup, Sect. 4 presents the results with a discussion,
and finally, in Sect. 5, we present the conclusions.

2 Background

2.1 Problem Statement of Robust Speech Enhancement

In real contexts where speech signals are being recorded with microphones, it is
common the occurrence of reverberations, which are produced by reflections of
the signal on its way to the microphone.

In these cases, it can be assumed that the reverberated signal x is a degraded
version of a clean signal s. The relationship between both signals can be expressed
by [27]

x(n) = hT (n)s(n), (1)

where h = [h1, h2, . . . , hL]T is the impulse response of the acoustic channel from
the source to the microphone.

Degraded speech with reverberation can be described as distant, with an
echo perception. These effects usually increase as the speaker’s distance to the
microphone increases.

Since this effect is unwanted for adequate recognition and analysis of the
voice, new algorithms have been proposed to minimize it. Algorithms based on
machine learning are the ones that have stood out in recent years.

In machine learning-based approaches, s(n) can be estimated using an
approximated function f(·) between the reverberated and the clean data of the
form:

ŝ(t) = f (x(t)) . (2)

The quality of the approximation f(·) usually depends on the amount of data
and the algorithm selected, typically deep neural networks. Previous attempts
have estimated f(·) for each condition of reverberation, i.e. for each impulse
response associated with a particular space. It means that for N conditions,
there is a set of N neural networks, applied separately to estimate the set
fR1(·), fR2(·), · · · , fRN

(·), where Ri is the condition for each of the impulse
response.

A robust application of enhancing reverberated speech can provide a single
network capable of enhance several conditions. It means there is no need to have
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prior knowledge of the impulse response presented at the input of the network.
With this robust network, it is expected to have

fR1(·) ≈ fR(·) (3)

fR2(·) ≈ fR(·)
...

...
fRn

(·) ≈ fR(·),

and for any signal at the input, the approximation should be similar to those of
the network trained with the specific condition.

2.2 Long Short-Term Memory Neural Networks

Over the last few decades, a variety of neural networks have been tested for classi-
fication and regression purposes. Recent kinds of networks, such as DNN, which
are organized in many layers, achieved good results when tested for problem-
solving of diverse applications.

Since the arrival of RNNs, there have been new alternatives for modeling
the dependent nature of sequential information. This kind of neural networks
are able to store information by feedback connections between neurons in their
hidden layers or another network that is in the same layer [10,36].

With the objective of expanding the abilities of RNNs by storing informa-
tion in the short-term and long-term, LSTM networks shown in [20] introduced
a set of gates within memory cells that are able to control the access, storing
and propagation of values over the network. The results obtained by the LSTM
networks in areas that depend on previous states of the information, such as
speech recognition, music composition, and handwriting synthesis, were encour-
aging [13,14,20].

To maintain values in the short-term and the long-term, the LSTM has four
gates that control the operations of input, output, and erasing the memory.
Further details on the training procedure and the mathematical modeling of the
LSTM can be found in [12].

Training neural networks in speech enhancement and noise reduction became
a solid idea with its first application in binary input patterns. Some years later,
this idea was used in the modelling of acoustic coefficients, these were modelled
with a single layer. Working with large sets of data or introducing hidden layers
was impossible due to limiting computer capabilities and undeveloped algorithms
for the purpose [19].

Moreover, with the goal of having the output as close to the uncorrupted
signal as possible, training data is used by the network’s parameters to perform
noise reduction and regression-based tasks [32].
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A denoising autoencoder is a recent neural network architecture that has
had success in several speech-related tasks [5]. It consists of an encoder that
transforms an input vector s into a representation h in hidden layers through
a mapping f . It also has a decoder, which takes the hidden representation and
transforms it back into a vector in the input space.

The training stage is conducted by using the noise distorted features as inputs
of the denoising autoencoders, its clean features are presented as outputs. Fur-
ther, for the network to learn the complex relationships between these sets of
features, the training algorithm adjusts the network’s parameters. Today, com-
puters and algorithms have the capacity to accomodate large data sets, as well
as networks with lots of hidden layers.

3 Experimental Setup

In order to test the robustness of LSTM networks for enhancing reverberated
speech, the experimental setup can be summarized in the following steps:

1. Selection of conditions: Due to the high amount of impulse responses contem-
plated on the database, we randomly chose five conditions of reverberated
speech. Each one of the conditions has the correspondent clean version on
the database.

2. Feature extraction and input-output correspondence: A set of parameters
was extracted from the reverberated and the clean audio files. Those from the
reverberated files were used as inputs to the networks, while the corresponding
clean features were the outputs.

3. Training: During training, the weights of the networks were adjusted as the
reverberated and the clean utterances were presented to the network. As
usual, on recurrent neural networks, the updating is performed using back-
propagation through time algorithm. A total of 210 utterances for each con-
dition (about 70% of the total database) were used for training each case.
Details and equations of the algorithm followed can be found in [15].

4. Validation: After each training step, the sum of squared errors were computed
within the validation set of about 20% of utterances, and the weights of the
network updated in each improvement.

5. Test: A subset of 50 randomly selected utterances (about 10% of the total
amount of utterances of the database) was chosen for the test set, for each
condition. These utterances were not part of the training process, to provide
independence between the training and testing.

In the following subsections, further details of the main experimental setup
are given.

3.1 Database

In our work, we use the Reverberant speech database [30]. The database was
created at the University of Edinburg and was designed to train and test speech
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dereverberation methods. Reverberated speech was made by convolving clean
speech of 56 native English speakers with several room impulse responses. For
the purpose of this work, we randomly chose the following conditions: ACE
Building Lobby 1, Artificial Room 1, Mardy Room 2, ACE Lecture Room 1 and
ACE Meeting Room 2.

3.2 Feature Extraction

The audio files of the reverberated and the clean speech were downsampled to
16 kHz, 16 bits, to extract parameters using the Ahocoder system [9]. A frame
size of 160 samples and frame shift of 80 samples were used to extract 39 MFCC,
f0 and energy of each sentence.

For this work, neural networks were applied only to improve the 39 MFCC
coefficients, while the rest of the parameters remained invariant.

3.3 Evaluation

To evaluate the results given from our experiments, we use the following well-
known speech spectrum measures:

– Euclidean Distance: This measure is computed between each of the MFCC
vectors (dimension 39) of clean and enhanced speech in the test set. For a vec-
tor s of MFCC, and the corresponding enhanced ŝ, the distance is computed
as:

Eu(sj, ŝj) =

(
n∑

i=1

(sji − ŝji)
2

) 1
2

, (4)

where n is the number of frames in the test sentences, and j ∈ {1, . . . , 39}
the index of the MFCC.

– Mean Absolute Distance (MAD): This measure is computed as

MAD(xj, x̂j) =
1
39

39∑
j=1

1
n

n∑
i=1

|xji − x̂ji | (5)

We use MAD as a measure for each MFCC, but reported the first five mea-
sures due to the similar behaviour presented in all of them.

– PESQ (Perceptual Evaluation of Speech Quality): This measure uses a model
to predict the subjective quality of speech, as defined in the ITU-T recom-
mendation P.862.ITU. Results are given in the interval [0.5, 4.5], where 4.5
corresponds to a perfect signal enhancing. PESQ is computed as [28]:

PESQ = a0 + a1Dind + a2Aind (6)

where Dind is the average disturbance and Aind the asymmetrical disturbance.
The ak are chosen to optimize PESQ in measuring the speech overall quality.

Additionally, we show contours of MFCC coefficients to illustrate and com-
pare the results.
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3.4 Experiments

For the purpose of testing the robustness of LSTM networks in enhancing rever-
berated conditions, we train several sets of networks to directly map the rever-
berating features to the clean features. The experiments are described following
the nomenclature:

– LSTM-5: The LSTM network were trained using sentences containing all the
conditions at the input and the corresponding clean sentences at the output.

– LSTM-3: The LSTM network were trained using sentences containing MFCC
from three conditions at the input. This case required different networks for
the experimentation, to consider a target condition and two other conditions
randomly chosen.

– LSTM-1 (base system): One network for each condition was trained. This is
the case analyzed in previous references, and we consider the base results for
comparison.

– Reverb: The evaluation measures were applied to the reverberated speech.

The LSTM architecture for the networks was defined by trial and error.
Initially, we considered a single hidden layer with 50 units and then increased
the size with steps of 50 units, up to three hidden layers with 300 units in each
layer. The final selection consisted of a network with three layers containing 100,
100 and 100 units in each one.

This network gave the best results in the trial experiments, and also had a
manageable training time. The training procedure was accelerated by a NVIDIA
GPU system, taking about six hours to train each LSTM.

4 Results and Discussion

The results are presented in a comparative way for different conditions: Reverb,
LSTM-1, LSTM-3, and LSTM-5. On Table 1, the results of the PESQ measure
are shown. The ability of the LSTM-1 neural network to improve the spectrum
of Reverb can be observed. However, the values obtained with LSTM-3 and
LSTM-5 do not differ significantly from this base result.

Table 1. Mean PESQ Results for the test sets. Higher values represent better results.
* is the best result.

Condition Condition

Reverb. LSTM-1 LSTM-3 LSTM-5

Building Lobby 1.68 2.22 2.26 2.27*

Artificial Room 1.96 3.12 3.14 * 3.07

Mardy Room 1.59 2.09* 2.00 2.02

Lecture Room 1.58 1.94 2.00* 1.97

Meeting Room 1.44 2.00 2.04* 2.01
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For the Building Lobby case, LSTM-5 even presented the best result. On the
other hand, for the Artificial Room, Lecture Room, and Meeting Room cases,
the best results were obtained with LSTM-3. These PESQ results indicate that
the LSTM networks obtain similar results regardless of whether they are trained
with only one or several conditions.
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Fig. 1. Euclidean distance between MFCC (Building Lobby) and Clean Speech

Similar results can be observed for the Mardy Room (Fig. 2), Artificial Room
(Fig. 3), Meeting Room (Fig. 4) and Lecture Room (Fig. 5). The most outstand-
ing case can be observed in Fig. 3, where reverberation affected the MFCCs
of high index considerably and the LSTM networks accomplished significant
improvements.

Figure 1 shows the Euclidean distance between each one of the 39 MFCC of
the Building Lobby and clean speech condition. It can be observed that a smaller
distance, equivalent to improvement, is obtained in each one of the coefficients
with the LSTM autoencoders.
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Fig. 2. Euclidean distance between MFCC (Mardy Room) and Clean Speech
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Fig. 3. Euclidean distance between MFCC (Artificial Room) and Clean Speech
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Fig. 4. Euclidean distance between MFCC (Meeting Room) and Clean Speech
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Fig. 5. Euclidean distance between MFCC (Lecture Room) and Clean Speech

The previous results were obtained with LSTM-5, but as it can be verified
with the other measures, there is an equivalent between this condition, LSTM-3,
and the base case LSTM-1.

Table 2 shows the MAD measure results in each one of the tests performed.
These results prove that the LSTM networks are equivalent when trained for
one, three, or five conditions simultaneously. In all cases, differences with the
Reverb case are notorious.
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Table 2. Mean absolute distance results. The lower values represent better results. *
is the best result

MFCC Reverb. LSTM-1 LSTM-3 LSTM-5

Artificial Room

1 0.18 0.10* 0.10* 0.11

2 0.16 0.09* 0.09* 0.10

3 0.11 0.07* 0.08 0.08

4 0.14 0.07* 0.07* 0.08

5 0.10 0.07* 0.07* 0.07*

Building Lobby

1 0.47 0.25 0.24* 0.24*

2 0.33 0.20 0.19 0.18*

3 0.20 0.15 0.14* 0.14*

4 0.22 0.14 0.14 0.13*

5 0.20 0.12* 0.12* 0.12*

Lecture Room

1 0.52 0.26 0.26 0.25*

2 0.32 0.20* 0.20* 0.20*

3 0.25 0.16 0.16 0.15*

4 0.22 0.15 0.14* 0.14*

5 0.19 0.13 .012* 0.12*

Mardy Room

1 0.47 0.22* 0.24 0.27

2 0.32 0.1*9 0.21 0.24

3 0.22 0.14* 0.15 0.16

4 0.25 0.13* 0.15 0.16

5 0.27 0.13* 0.15 0.15

Meeting Room

1 0.50 0.23* 0.23* 0.23*

2 0.32 0.18* 0.18* 0.18*

3 0.27 0.14* 0.15 0.14*

4 0.20 0.13* 0.13* 0.13*

5 0.20 0.13 0.12* 0.12*

The previous results show that LSTM networks are able to generalize de-
reverberation of the MFCC coefficients. This has significant advantages for its
application in real contexts. For example, it’s possible to make improvements of
signals with a small set of neural networks, instead of using a specific one for
each condition.
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Fig. 6. Trajectory of the first MFCC for the MARDY condition

Finally, Fig. 6 shows the evolution of the first MFCC coefficient during 300
frames, which shows how the improvement with the LSTM network provides a
better approximation of the values over time. The way in which reverberation
affects this parameter both with values above and below the clean voice is also
evident. The LSTM networks managed to improve the parameter in both cases.

In these results, the simultaneous training of several conditions produce
results that are comparable or even better than the base case in almost every
condition. It has to be taken into consideration that the LSTM-3 has three
times the amount of training and validation data than the LSTM-1. In the case
of LSTM-5, the amount of data is five times those of the base system.

This larger data-sets provide the network with better information to properly
update the amount of internal weights in the network. A detailed study on the
influence of the amount of data should be performed to verify the capacity of
generalization under lower data.

5 Conclusions

In this work, we assessed the capability of LSTM recurrent neural networks to
generalize the enhancement of reverberated speech signal’s spectrum. Previous
references have analyzed the case of improving speech signals with a specific
single neural network for each condition or noise type and level.

The results present in this study show that LSTM networks can learn the
approximation function, which achieves the enhancement of the signals, where
training with several conditions simultaneously. This new information about the
capacity of the LSTM networks is a significant contribution to the comprehension
of the capability of recurrent neural networks to solve problems in a real-life
context, where there is no previous knowledge of the condition of the signal that
needs to be improved.
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The capability of the networks to generalize can come from the large sets of
data when there is training with several conditions at the same time, instead of
a single group of data for a specific case. The methodology to assess this gener-
alization capability can be extended to other types of neural networks and wider
noise or reverberation conditions, to test the robustness of other architectures
and contexts.

As future work, experimentation with the whole set of reverberation condi-
tions from the database used, as well as the combination of reverberation with
natural and artificial noise is proposed, to measure the networks’ generalization
capability under multiple conditions. Implementing various conditions simulta-
neously can require considerable quantities of computer capacity and memory,
this also represents a challenge for future work.
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Abstract. In this work, we compare different neural network architec-
tures, for the task of mapping spectral coefficients of noisy speech sig-
nals with those corresponding to natural speech. In previous works on
the subject, fully-connected multilayer perception (MLP) networks and
recurrent neural networks (LSTM & BLSTM) have been used. Several
references report some initial trial and error processes to determine which
architecture to use. Finding the best network type and size is of great
importance due to the considerable training time required by some mod-
els of recurrent networks. In our work, we conducted extensive tests
training more than five hundred networks, with several architectures to
determine which cases present significant differences. The results show
that for this application of neural networks, the architectures with more
layers or the greater number of neurons are not the most convenient, both
for the time required in their training and for the adjustment achieved.
These results depend on the complexity of the task (the signal-to-noise
ratio or SNR) and the amount of data available. This exploration can
guide the most efficient use of these types of neural networks in future
mapping applications, and can help to optimize resources in future stud-
ies by reducing computational time and complexity.

Keywords: Deep learning · LSTM · Noise · Speech enhancement

1 Introduction

Deep learning-based techniques have been prevalent in the denoising speech field
for the past few years. Moreover, they often surpass the results of traditional sig-
nal processing and statistically-based algorithms. Thus, many different types of
Deep Neural Networks (DNN) structures have been considered for this purpose,
such as the classic Multilayer Perception (MLP) and recurrent neural networks
(RNN). However, little work has been done in systematic comparisons and eval-
uations of different DNN structures for the task of speech enhancement under
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noisy conditions. To address this limitation, we implement a variety of DNN-
based speech enhancing networks with different structures, to map noisy speech
spectrum to the corresponding clear speech.

1.1 Related Work

The idea of enhancing speech signals, degraded with noise or reverberation, using
DNN has been an important topic in research during the past decade. Generally,
the most frequent implementation relies on the enhancement of spectral features,
such as MFCC [1,14,23], often used as parameters for classification of these
signals.

Several references have reported the DNN approaches as being successful
in enhancing speech, outperforming classical methods based on signal process-
ing. [3,13,17,24], or reverberated speech [8,15,29]. The capacity of a neural
network to approximate functions (such as mapping between noise and clean
speech) have defined its expressive power [19].

The important universal approximation theorem states that depth-2 net-
works which have suitable activation function can approximate any continuous
function on a compact domain to any desired accuracy [2,9]. However, there is
no information available regarding the size of each layer for neural networks to
perform a particular tasks.

Besides the more traditional MLP, some kinds of RNN, such as Long Short-
term Memory (LSTM) and Bidirectional Long Short-term Memory (BLSTM
networks) have been previously presented in [4,6,27], for the task of enhancing
speech. Although the LSTM outperforms other deep networks in this task, sys-
tematic comparisons about training conditions, such as the number of units or
layers in the network, is not commonly reported in the references.

A known limitation for the experimentation with a larger amount of units or
layers in this RNN is the high computational costs [5,6]. From our own experi-
ences, this is the main reason that limits extender experimentation for this task
in previous references.

The search for the better architectures, in terms of a number of units and
hidden layers, which have been addressed with bio-inspired algorithms, such as
genetic algorithms [21]. Considering the computational cost of recent models or
RNN, is not yet possible to implement such algorithms in the search for proper
architectures of networks, due that any change in each recurrent network should
require several hours to assess the result.

In the present paper, we consider the application of three kinds of artificial
neural networks (MLP, LSTM and BLSTM) for the task of speech enhancement.
Our main motivation is to contribute to the knowledge of neural networks for
this task. Moreover we aim to guide future research through objective knowl-
edge about the neural network architecture that is more convenient concerning
capacity and efficiency.

The rest of this paper is organized: Sect. 2 gives the background and con-
text of the problem of selecting an architecture of networks for enhancing noisy
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speech. Section 3 describes the experimental setup, Sect. 4 presents the results
with a discussion, and finally, in Sect. 5, we present the conclusions.

2 Background

2.1 Problem Statement

Given a feedforward neural network θ, which comprises layers of computational
units, there is a unique function fθ : Rd → R, which depends on the particular
architecture and configuration of θ. If L denotes the number of internal (hidden)
layers of the network, and N the number of units in each layer (assuming a
constant number in each layer), the goal of finding a particular θ that satisfies
a particular task can be stated as [18]:

min
f̃∈F(N,L)

||f − f̃ || ≤ ε (1)

Specifically, it is of interest to find a proper N as a lower bound, for a given
fixed value of L. On the other hand, it is also relevant to find a value of L as a
lower bound.

In this work, we explore several values of N for different cases of L, in
three types of feedforward and recurrent neural networks. The pursuit of a good
approximation of f for a denoising tasks, with efficient and manageable time, is
the desired application to such a finding.

2.2 Enhancing Speech with Artificial Neural Networks

Training artificial neural networks in speech enhancement became a solid idea
with its first application; the modeling of acoustic coefficients with single layer
networks. Working with large sets of data or introducing hidden layers was not
possible until the last decade, due to limiting computer capabilities and unde-
veloped algorithms for the purpose [13].

Within the network, an input vector s (with information of noisy speech) is
transformed into a representation h in hidden layers through a mapping function
f . The hidden representation is transformed back into a vector in input space,
at the output of the network.

With the goal of having the output of the models being as close to the uncor-
rupted signal as possible, training data is used by the network’s parameters to
perform noise reduction and regression-based tasks [25]. The training stage is
done by using the noise distorted features as inputs of the networks, and its
clean features as the outputs. In order for the network to learn the complex
relationships between these sets of features, a training algorithm, such as back-
propagation or backpropagation through time, adjusts the network’s parameters.
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2.3 LSTM and BLSTM Networks

Over the last few decades, a variety of neural networks have been tested for
classification and regression purposes, extending the capacities of the MLP.

Since the arrival of RNNs, there have been new alternatives for modeling the
dependent nature of sequential information [7,28].

With the objective of expanding the abilities of RNNs by storing information
in the short-term and long-term, LSTM networks shown in [20] introduced a set
of four gates within memory cells that are able to control the access, storage and
propagation of values over the network.

Instead of direct feed-forward propagation of values, there is a set of equation
that models the behaviour of the four gates: i is the input gate (controls whether
or not the value enters the unit), f the forget gate (whether or not the internal
value is erased), o the output gate (whether or not the unit outputs the value
or its memory), and c the internal value of the memory. Wmn are the weight
matrices from each cell to gate vector. h is the output at the unit for the LSTM
network. The corresponding equations are [10]:

it = σ (Wxixt + Whiht−1 + Wcict−1 + bi) (2)

ft = σ (Wxfxt + Whfht−1 + Wcfct−1 + bf ) (3)

ct = ftct−1 + it tanh (Wxcxt + Whcht−1 + bc) (4)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) (5)

ht = ot tanh (ct) (6)

To train these complex relationships, the backpropagation through time algo-
rithm is applied.

The BLSTM is a more recent model of recurrent neural networks. The idea
is to use not only previous information, but also future context with respect to
current position in the speech frames. To create a BLSTM network, connections
between layers should be made such that the output of each hidden layer will
propagate to both the forward and backward LSTM layer forming the successive
hidden layer [22].

In our implementation we use the Current system [26,27]. The forward and
backward process represent a higher computational cost during the training of
BLSTM.

The results obtained by the LSTM and BLSTM networks in areas that
depend on previous states of the information, such as speech recognition, music
composition, and handwriting synthesis, were encouraging [11,12,20]. Further
details on the training procedure and the mathematical modeling of these net-
works can be found in [10].

3 Experiments

To evaluate the performance of the neural networks proposed in this paper, a
procedure was established in the following steps:
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3.1 Database and Setup

We used the CMU Arctic databases, constructed at the Language Technologies
Institute at Carnegie Mellon University [16]. The databases were designed for
research speech synthesis, and consist of around 1150 utterances for each speaker
selected from out-of-copyright texts from Project Gutenberg. A detailed report
on the structure and content of the database, as well as the recording conditions
is available in the Language Technologies Institute Tech Report CMU-LTI-03-
177 18. We chose the first female voice of the database (SLT) to add the white
noise with five SNR levels.

With this data, the next steps were followed:

1. Selection of conditions: In previous references for the improvement of signals
degraded with noise, different levels of natural and artificial noise have been
contemplated to affect the signal with slight to high distortion. In our experi-
ments we used white noise and added it to the speech signal with five different
SRN levels: SNR-10, SNR-5, SNR0, SNR5, SNR10.

2. Pre-processing and feature extraction: We extracted 39 MFCC for each 10
ms window in each utterance of the database. Each utterance is encoded in
16-kHz, 16-bit WAV format.

3. Training: During training, the pairs (clean speech, speech with noise) are
presented to the input and output of each type of neural network considered
in this work. The internal weights are adjusted to improve the approximation
that the network can make for the mapping between both. Figure 1 illustrates
the procedure.

4. Validation: After each training step, the sum of squared errors were computed
within the validation set of about 30% of utterances, and the weights of the
network updated in each improvement.

Fig. 1. Procedure followed for data preparation and training strategy

The stop criteria for the networks was 25 epochs since the last best result,
or a maximum of 2000 epochs.
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3.2 Evaluation

To evaluate the results given by our experiments, we use the following well-known
measures for the training efficiency of the networks:

– Number of epochs: Each epoch consists of a feedforward and backforward step
to adjust the weights of the connections, when the result in the validation set
is improved. The time taken to train a neural network is directly associated
with the amount of epochs in training.

– LVE: This is a common measure for lowest validation error during training.
LVE is defined as:

LVE(θ) =
T∑

n=1

(cx − ĉx)2 (7)

=
T∑

n=1

(cx − f(cx))2 (8)

where cx is the desired output of the network, ĉx is the obtained output,
T the number of frames, and f the mapping function the networks perform
between its inputs and its outputs. A lower value of LVE means that the
network is producing MFCC coefficients that are more closely related to the
those of the natural voice at the output.

– EF: It is the number of the epoch in which the best set of internal weights of
the network was found. A lower value of EF means that the training process
was more efficient.

Given the high training times required by the LSTM and BLSTM networks,
this work only considers networks with one, two and three hidden layers. On
the other hand, according to previous references, a number between 25 and 100
neurons were considered in each hidden layer, with steps of 25 between each
experiment. There were 180 different neural networks trained in total, three
times each one.

4 Results and Discussion

The results are organized in SNR levels and present all the types of networks
and number of layers and units. For each type of neural network and each of the
five levels of white noise, the networks were trained three times. The repetition
of experiments were performed to establish a valid comparison, independent to
the random initial set of weights.

We use the following notation to present the results:

– LVE: Lowest Validation Error
– EF: Epoch in which the LVE was found.
– TE: Time per Epoch, in seconds.
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Table 1 shows the total number of connections for each type of network con-
templated in the present work. It can be seen that the recurrent networks have
an average of connections about ten times the number of connections of the
MLPs. Thus, the complexity and training time are higher.

Table 1. Number of internal connections (weights) for each type and size of networks

Hidden layers Units Network Number of weights

3 100 MLP 28139

LSTM & BLSTM 221639

75 MLP 17364

LSTM & BLSTM 128739

50 MLP 9089

LSTM & BLSTM 60839

25 MLP 3314

LSTM & BLSTM 17939

2 100 MLP 18039

LSTM & BLSTM 140939

75 MLP 11664

LSTM & BLSTM 83214

50 MLP 6539

LSTM & BLSTM 40489

25 MLP 2664

LSTM & BLSTM 12764

1 100 MLP 7939

LSTM & BLSTM 60239

75 MLP 5974

LSTM & BLSTM 37689

50 MLP 3989

LSTM & BLSTM 20139

25 MLP 2014

LSTM & BLSTM 7589

Table 2 shows the results of the different measures obtained with the SNR-10
noise level in each type of network.

It is observed that BLSTM presents better results than LSTM and MLP in
all cases, although with a tendency to a greater number of epochs required and
more time in each one. In this SNR, the higher one considered in our experiments,
MLP networks do not present any benefit. The results indicate poor capacity to
map the noisy spectral coefficients to those of clean speech.

The results for SNR-5 are shown in Table 3. For this noise level, both LSTM
and BLSTM greatly exceed what was obtained with MLP. On the other hand,
BLSTM tends to obtain better LVE values than LSTM, although the number of
epochs required to reach that value tends to be higher. In the same way, time per
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Table 2. Results for all type and size of networks for the spectral mapping of speech
signals with SNR −10 dB. * is the best result.

Hidden layers Units Type LVE EF TE (s)

3 100 MLP 835.48 12 1.3

LSTM 547.25 152 35.9

BLSTM 459.85 165 40.5

75 MLP 836.61 23 1.6

LSTM 555.56 83 26.2

BLSTM 456.05 164 31.9

50 MLP 644.04 2000 1.0

LSTM 538.06 206 18.4

BLSTM 448.47 187 25.0

25 MLP 674.75 2000 0.5

LSTM 541.03 204 12.3

BLSTM 455.63 212 18.2

2 100 MLP 683.76 2000 1.5

LSTM 544.96 277 20.6

BLSTM 457.77 264 25.7

75 MLP 682.98 2000 1.1

LSTM 540.40 159 14.3

BLSTM 455.15 246 18.1

50 MLP 681.94 2000 0.7

LSTM 536.21 182 8.9

BLSTM 445.97* 326 9.5

25 MLP 706.17 2000 0.4

LSTM 539.08 256 4.2

BLSTM 471.89 179 5.5

1 100 MLP 730.08 2000 0.7

LSTM 528.63 356 10.5

BLSTM 476.83 278 12.0

75 MLP 732.91 2000 0.6

LSTM 536.88 285 8.0

BLSTM 473.08 550 10.1

50 MLP 741.02 2000 0.5

LSTM 535.70 275 6.0

BLSTM 498.43 163 8.4

25 MLP 749.09 2000 0.3

LSTM 554.98 187 2.9

BLSTM 489.55 558 4.3

epoch is also greater. For example, for the case of three layers with 100 neurons
in each one, the best value obtained with BLSTM required 29% more of the
total time, of around 1.5 h.
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Table 3. Results for all type and size of networks for the spectral mapping of speech
signals with SNR −5 dB. * is the best result.

Hidden layers Units Type LVE EF TE (s)

3 100 MLP 554.95 2000 1.3

LSTM 455.06 150 35.7

BLSTM 388.76 170 40.6

75 MLP 556.32 2000 1.6

LSTM 451.85 167 26.0

BLSTM 388.87 152 32.0

50 MLP 560.34 2000 1.0

LSTM 448.47 219 18.4

BLSTM 380.53 269 25.0

25 MLP 568.46 2000 0.5

LSTM 450.64 300 12.3

BLSTM 392.44 220 18.2

2 100 MLP 573.80 2000 1.5

LSTM 251.92 238 20.6

BLSTM 380.18* 285 25.7

75 MLP 572.72 2000 1.1

LSTM 452.96 218 18.1

BLSTM 381.19 273 14.3

50 MLP 574.69 2000 0.7

LSTM 447.65 314 8.9

BLSTM 388.89 233 9.5

25 MLP 584.18 2000 0.4

LSTM 444.56 551 4.2

BLSTM 383.39 665 5.5

1 100 MLP 591.60 2000 0.7

LSTM 452.18 279 10.5

BLSTM 399.95 402 12.0

75 MLP 596.25 2000 0.6

LSTM 452.91 333 8.0

BLSTM 399.14 479 10.0

50 MLP 596.17 2000 0.5

LSTM 448.12 373 6.1

BLSTM 403.96 532 8.4

25 MLP 605.67 2000 0.3

LSTM 454.66 469 2.9

BLSTM 407.31 876 4.3

The results for the SNR0 are shown in Table 4. The difference between
BLSTM and LSTM are lower than the two previous cases, although the BLSTM
shows tendency to show better values. It is important to note that the best values
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Table 4. Results for all type and size of networks for the spectral mapping of speech
signals with SNR 0 dB. * is the best result

Hidden layers Units Type LVE EF TE (s)

3 100 MLP 477.47 2000 1.3

LSTM 386.15 203 38.4

BLSTM 334.80 160 40.8

75 MLP 474.25 2000 1.2

LSTM 384.86 228 25.7

BLSTM 323.97* 305 31.9

50 MLP 476.13 2000 1.0

LSTM 283.37 337 18.4

BLSTM 326.90 248 25.0

25 MLP 483.80 2000 0.5

LSTM 392.71 170 12.3

BLSTM 363.60 99 18.4

2 100 MLP 486.04 2000 1.5

LSTM 386.55 225 20.6

BLSTM 350.03 134 25.7

75 MLP 485.79 2000 1.1

LSTM 385.87 252 14.3

BLSTM 326.96 390 18.1

50 MLP 482.65 2000 0.7

LSTM 385.47 307 8.9

BLSTM 329.79 412 9.5

25 MLP 491.37 2000 0.4

LSTM 379.47 648 4.2

BLSTM 329.21 628 5.5

1 100 MLP 491.12 2000 0.7

LSTM 381.91 504 10.5

BLSTM 343.70 370 12.0

75 MLP 491.15 2000 0.6

LSTM 383.14 402 8.0

BLSTM 334.61 755 10.0

50 MLP 493.63 2000 0.5

LSTM 383.85 385 6.2

BLSTM 339.30 914 8.4

25 MLP 499.35 2000 0.3

LSTM 384.38 656 2.9

BLSTM 365.16 319 4.4

are not obtained with the network of the largest number of layers and neurons.
For example, the two-layer BLSTM, with 75 units in each layer, obtains better
LVE values than the three-layer BLSTM of 100 units each. This was even done
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Table 5. Results for all type and size of networks for the spectral mapping of speech
signals with SNR 5 dB. * is the best result.

Hidden layers Units Type LVE EF TE (s)

3 100 MLP 404.18 2000 1.3

LSTM 330.51 197 35.5

BLSTM 286.67 244 40.4

75 MLP 404.32 2000 1.6

LSTM 335.71 145 25.7

BLSTM 282.41 343 31.9

50 MLP 406.14 2000 1.0

LSTM 330.46 266 18.4

BLSTM 281.26 474 25.0

25 MLP 413.36 2000 0.5

LSTM 334.65 274 12.3

BLSTM 285.59 772 18.4

2 100 MLP 410.61 2000 1.5

LSTM 332.71 238 20.6

BLSTM 279.47 487 25.7

75 MLP 409.44 2000 1.1

LSTM 328.29 298 18.1

BLSTM 282.90 475 14.3

50 MLP 412.05 2000 0.7

LSTM 327.0 486 8.9

BLSTM 277.30* 885 9.5

25 MLP 416.74 2000 0.4

LSTM 322.0 1011 4.2

BLSTM 283.76 1465 5.5

1 100 MLP 413.91 2000 0.7

LSTM 322.93 722 10.5

BLSTM 289.62 1060 12.0

75 MLP 414.30 2000 0.6

LSTM 326.25 444 8.0

BLSTM 288.07 1310 10.0

50 MLP 417.97 2000 0.5

LSTM 319.57 980 6.0

BLSTM 292.41 1559 8.4

25 MLP 422.04 2000 0.3

LSTM 326.50 1376 4.3

BLSTM 321.52 329 5.2

with a 15% lower processing time, which means that it is a better option in all
aspects with this level of white noise.

The results for the lowest noise levels, SNR5 and SNR10, are shown in
Tables 5 and 6 respectively. Again in both cases, the BLSTM networks are the
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Table 6. Results for all type and size of networks for the spectral mapping of speech
signals with SNR 10 dB. * is the best result.

Hidden layers Units Type LVE EF TE (s)

3 100 MLP 341.99 2000 1.3

LSTM 289.51 182 36.31

BLSTM 249.93 266 40.5

75 MLP 367.53 853 1.6

LSTM 274.87 574 25.6

BLSTM 242.81* 648 32.0

50 MLP 345.67 2000 1.0

LSTM 283.37 337 18.4

BLSTM 261.12 210 25.0

25 MLP 351.52 2000 0.5

LSTM 273.25 1417 12.3

BLSTM 251.44 927 18.2

2 100 MLP 348.28 2000 1.5

LSTM 278.06 402 20.6

BLSTM 243.23 603 25.7

75 MLP 348.10 2000 1.1

LSTM 277.13 500 18.1

BLSTM 250.46 422 14.3

50 MLP 349.66 2000 0.7

LSTM 271.63 898 8.9

BLSTM 243.9 998 9.5

25 MLP 352.57 2000 0.4

LSTM 279.0 1070 4.2

BLSTM 252.69 1491 5.5

1 100 MLP 349.20 2000 0.7

LSTM 269.27 1111 10.5

BLSTM 249.60 1247 12.0

75 MLP 349.95 2000 0.6

LSTM 275.19 1199 8.0

BLSTM 249.80 19.44 10.0

50 MLP 352.54 2000 0.5

LSTM 275.46 1315 8.4

BLSTM 254.12 1997 12.1

25 MLP 358.77 2000 0.3

LSTM 282.3 1955 2.9

BLSTM 268.54 2000 4.3

ones that show the best results, however, the number of epochs tends to be
considerably higher than with the LSTM.

In the case of SNR5, the best result obtained is with the 2-layer, 50 units per
layer architecture. In the case of three-layer networks, the results tend to be more
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similar to each other than in previous cases. They are similar even considering
three and two layers, with small differences in favor of the use of two layers,
where the training times also tend to be smaller given the greater simplicity of
the network.

For both SNR5 and SNR10, MLPs do not present competitive results with
recurrent networks with memory. The results of SNR10 have the greater sim-
ilarity between LSTM and BSTLM, however, the number of epochs required
for BLSTM is considerably higher. For example, for the case of the largest size
considered (three hidden layers with 100 units per layer), the difference between
BLST (249.93) and LSTM (289.51) is lower than in previous cases, but the total
training time increases by 63%.

These results, in which more than five hundred neural network training pro-
cesses were carried out, show that there is a dependence between the best archi-
tecture that can be used and the difficulty in the mapping sought. For example,
the more the signal gets degraded by noise, the more convenient it is to use
medium-size BLSTM networks, within the range studied.

On the other hand, when the signals have a small noise component, the
BLSTM have fewer advantages than the LSTM, and a considerably longer train-
ing time. Both BLSTM and LSTM exceed in all cases similar size MLPs, which
is an example of the advantages of the recurrent connections and the internal
storage capacity of these networks. This is for the considered application, the
mapping between coefficients of noisy and clean signals, for the improvement of
speech signals.

It is possible that this may be reflected in other cases where neural networks
are required to map data sets that present dependent behaviour, as in speech
or varied conditions. The dependent behaviour is clearly an indicator of the use
of networks with memory. The complexity of the task, namely the difference
between one set of values and another, can help make the choice between LSTM
and BLSTM in terms of efficiency.

5 Conclusions

In this work we explore several neural network architectures applied to the pro-
blem of mapping the spectrum of noisy speech signals to those of clean speech
signals. More than five hundred networks were trained, to establish comparisons
between different types of neurons and different sizes of layers.

The results have shown that it is not necessarily convenient to apply large
or deep networks in this application. Instead, good results can be obtained with
architectures of fewer units, which are more efficient to train.

The lower the SNR level of the noisy signal, that is, the greater the difficulty
in mapping the spectrum of this signal to clean speech, the BLSTM networks
have shown better results. This is in exchange of a longer training time per epoch
in all cases, given its greater number of connections.

The amount of data available in the database may depend on the convenience
of the size of the neural network applied. When the database is not very large,
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networks with proportional characteristics may offer better performance and
results. Therefore, taking this information into account can guide future exten-
sive experimentation with these types of neural networks in similar applications,
where computing time remains an important limitation.

As future work, more experimentation of network architectures, new noise
or reverberation conditions, and the study of the dependence of the size of the
database with the results are planned. Also, algorithms to explore and find the
best architectures automatically can be applied with larger computing capacities.

Acknowledgements. This work was supported by the University of Costa Rica
(UCR), Project No. 322-B9-105.
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Abstract. In this paper we performed cluster analysis using Fuzzy K-
means over the image-based features of two models, to assess how dataset
heterogeneity impacts model accuracy. A highly heterogeneous dataset is
linked with sparse data samples, which usually impacts the overall model
generalization and accuracy with test samples. We propose to measure
the Coefficient of Variation (CV) in the resulting clusters, to estimate
data heterogeneity as a metric for predicting model generalization and
test accuracy. We show that highly heterogeneous datasets are common
when the number of samples are not enough, thus yielding a high CV.
In our experiments with two different models and datasets, higher CV
values decreased model test accuracy considerably. We tested ResNet
18, to solve binary classification of x-ray teeth scans, and VGG16, to
solve age regression from hand x-ray scans. Results obtained suggest that
cluster analysis can be used to identify heterogeneity influence on CNN
model testing accuracy. According to our experiments, we consider that
a CV < 5% is recommended to yield a satisfactory model test accuracy.

Keywords: Cluster analysis · Heterogeneity · Transfer learning ·
Small dataset · Convolutional Neural Network

1 Introduction

The latest advances in medicine and computer science have resulted in the Preci-
sion Medicine (PM) field, where several problems in medicine, involving images,
patients and medical data are solved by state-of-the-art computer science tech-
niques and can be adequate to individual cases [9]. For instance, physicians and
oncologists from all over the world deal with cancer patients every day using
imaging techniques due to its non-invasive nature, low risk and cost [9]. X-ray
Computed Tomography (CT) is a regularly used imaging technique that mea-
sures tissue density at high resolution and exhibition of strong contrasts among
c© Springer Nature Switzerland AG 2020
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different tissue types [34]. In the past few years different initiatives in PM have
been solved by making use of Convolutional Neural Networks (CNN). Sampaio
et al. talks about how segmentation and feature extraction of mammograms are
done by a CNN architecture in order to identify tumorous masses [36]. Liang
et al. works on a CNN used to automatically classify single cells in thin blood
smears on standard microscope slides as either malaria infected or uninfected
[30]. Whereas in some cases CNNs can perform in astounding ways, these mod-
els have several issues that are far from resolved: hyper-parameter optimization,
spatial information loss, cost effective and high data dependency in both quality
and quantity [2,37,43].

Due to its high data dependency, CNN models are at risk of being overfit
or underfit to the training dataset and therefore usually require the process of
tweaking hyper-parameters in order to obtain the best fit. However, when a small
dataset is used for training, most of Artificial Intelligence (AI)-models have a
hard time to overcome a space with limited samples, which translates in to a
highly heterogeneous dataset. This usually results in an unsatisfactory testing
accuracy [19]. Literature recommends enlarging the dataset, which can be as
simple as collecting more samples, involving costs on experts to label the data; or
using artificial data augmentation approaches. Han and Le Guennec et al. show
several techniques such as: spatial and morphological transformations, slicing,
zooming, noising and filtering, in order to augment the dataset and improve
model accuracy [21,29]. Recently, new approaches have been applied to generate
new samples using generative adversarial networks [4,16]. These models aim to
learn the data distribution and are able to create new samples that were never
used on training. However, when we are using a medical imaging dataset it is
often not possible to obtain more data given the availability of specific patient
types, accurate labeling and high data generation cost. Nevertheless, if it is
possible to enlarge the dataset, variation (i.e. heterogeneity) of data points is
often ignored at model training. Handling an homogeneous dataset could yield a
model that performs poorly on new very atipic data points, whereas having a too
heterogeneous but small dataset could limit the learning of the model resulting
in a poor testing accuracy for outlier points [20,32].

This paper assess CNN model test accuracy with small datasets using cluster
analysis metrics such as the Coefficient of Variation (CV), of image-based fea-
tures. By evaluating patient clusters that differed in accuracy, dataset-oriented
decisions can be done to improve model test accuracy by, for example, adding
more layers to the CNN model and tweaking hyper-parameters for reducing
overfitting on small heterogeneous sample data sets. Subsect. 1.1 refers to the
implications that entails using a small dataset to train a CNN model and Sub-
sect. 1.2 details how cluster analysis can help to identify the problem. Later, on
Sect. 2 the proposed method is explained and is tested on Sect. 3 of experiments
and results, where the correlation between the proposed CV data heterogeneity
metric and model test accuracy is done. Finally, main conclusions and future
work is addressed in Sect. 4.
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1.1 Importance of Data

Researchers on AI and Data Science often face dataset related short-comings.
A common issue is small dataset size, leading to overfitting models and non-
optimal solutions. Medical imaging datasets often require complex labels, making
labeling a time-consuming and expensive task, which often prevents yielding not
enough training samples for the AI model [43]. Several Machine Learning (ML)
architectures have been successfully applied on small datasets, where it is shown
that supervised fine-tuning with a relatively small dataset on a network pre-
trained with a large image dataset of generic objects (e.g., ResNet [22], VGG16
[38]) can lead to significant improvement in performance; an approach known
as transfer learning [8,12,18,33,44]. However, using transfer learning does not
guarantee a model that performs well for every sample, due to sample size, the
observed data points and outliers, which can be linked to dataset heterogeneity.

Data heterogeneity is often analyzed in medical studies from three perspec-
tives: the clinical perspective, referring to data variation from observed subjects.
When data heterogeneity is generated from study procedures, it is referred as
methodological heterogeneity. Finally, statistical heterogeneity refers to varia-
tion on study measurements [14]. In this paper we focus in two applications
with clinical and statistical heterogeneity.

Medical heterogeneous datasets have been investigated extensively [5,39]. For
instance, Altman et al. assesses heterogeneity on epidemiological clinical trials,
aiming to identify different subgroups of patients, to find whether the observed
relationship between an exposure and disease is different among these subgroups
[3].

For an AI model, a relatively large heterogeneous dataset is desired to train a
model, as it can learn from a lot of samples that introduce variation, making the
model to adjust better for the problem to estimate, i.e. improving model gener-
alization, as it is better trained for samples that were not used on the training
stage. A relatively small heterogeneous dataset forces the model to adjust for the
observed sample set, yielding poor accuracy for samples not used in the train-
ing stage, i.e. yielding a reduced generalization. Thus, in order to mitigate the
effect of heterogeneity from small sample sizes, statistical approaches are used by
Frantziskonis and Wardenaar et al. where methods such as: latent class analysis,
parametric functions, factor analyses and mixture growth analyses, attempt to
change or remove heterogeneous samples to build a more homogeneous dataset
[15,40].

1.2 Cluster Analysis of Features as a Mean to Assess the Impact
of Heterogeneity

Cluster analysis is the formal study of methods and algorithms for grouping
or clustering objects, according to measured or perceived intrinsic characteris-
tics or similarity [25]. There are several techniques to apply clustering analysis
on a dataset, used to identify low-heterogeneous subgroups of data with com-
mon features [26]. In the medical field, cluster analysis is often used as a way
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to understand clusters of patients and improve medical diagnosis [23,41]. For
instance, Fitzpatrick et al. uses ward hierarchical clustering to identify asthma
phenotypes, applied to school-age children with persistent asthma across a wide
range of severities, giving as outcome 5 significant clusters [13].

Whereas literature have focused lately on CNN models and cluster analysis,
the powerful mixture between both has not yet been fully addressed in liter-
ature, specially in medical imaging analysis. Xu et al. addresses sparseness of
text representation with a CNN architecture used to extract features from word
embeddings to later cluster them with K-means. The model yields a short text
classification pipeline capable of outperform related works [42]. Donahue et al.
works on semantic clustering on trained CNN’s features in order to create a
framework for semi-supervised learning [12]. Moreover, no work could be found
using both methods and the study of heterogeneity on medical imaging data.
Although, similar work has been addressed on the statistical calibration of mod-
els as the Hosmer-Lemeshow test [24], where subgroups from a numerical dataset
are identified to assess the goodness of fit for logistic regression on small sample
sizes.

Sample dimensionality is an issue when clustering is performed [31]. High
dimensional samples impairs clustering algorithms performance due to the
decreasing significance of the clusters yielded in high dimensional spaces, linked
to the curse of dimensionality. In this work the clustered samples are features
extracted from a CNN. Moreover, image-based features are often of high dimen-
sionality, making the use of a dimensionality reduction method necessary, like
Principal Component Analysis (PCA).

2 Proposed Method

In this work, we aim to evaluate how well a CNN model deals with heterogeneity
on small and large datasets using clustering analysis as a tool to measure its
impact, using a cluster quantitative measure as the CV. Common CNN-transfer
learning based model can be divided in two sections: back model and top model.
The back model contains all the convolutional calculation and feature extraction
filters, whereas the top model implements data transformations to yield the
intended predictions, based on the features from previous stage [19].

This research proposes to perform cluster analysis on the principal compo-
nents of the back model outputs. Thus, we propose to reduce the original feature
space created by the convolutional layers using PCA. We performed PCA assum-
ing that medical data is often generated from normal distributions [27], creating
a new feature space with the highest dataset covariance dimensions.

We propose to evaluate model accuracy in the clustered data, using the pre-
dictions of the top model. Both the back and top model need to be trained before
applying the proposed method.

For the cluster analysis, an exploration on the number of clusters and the
algorithm that perform the best for the extracted data was made. If every cluster
performs similarly as if the whole dataset was evaluated, we can infer that the



Clustering Analysis on CNN Image Features of a Heterogeneous Dataset 311

back model was able to generalize well, i.e. the heterogeneity in the dataset
did not affect model test accuracy. However, differences between the clusters
accuracies and the whole dataset are found, suggesting a back model unable to
generalize the distribution for every sample given, i.e. data heterogeneity affected
the model performance. We propose to use CV [1] as a quantitative normalized
measure that takes into account the accuracy for each cluster. CV measures the
dispersion on data points, in our case, our data points correspond to cluster’s
accuracy; if dispersion is relatively high, it means that there is a significant
difference in model performance. On the other hand, a relatively low dispersion
is a sign of well-generalized training.

We aim to measure and find an appropriate CV interval, which can ensure
enough data homogeneity and subsequent model generalization. We tested
two models with different datasets and objectives, predicting classification and
regression. VGG16 and Resnet18 are popular architectures, the models were
selected for their transfer-learning affine structure, the ability to extract image-
based features, training simplicity and dataset availability. Tested datasets
belong to the medical imaging domain, a domain where the lack of data is usual,
yielding into more small and possible heterogeneous datasets. The models are
detailed in Sects. 2.1 and 2.2.

(a) PSP plate image (b) Bone Age Image

Fig. 1. Image from PSP plates dataset (a). Image from Bone Age dataset (b).

2.1 PSP Plates with Resnet18

This model solves the binary classification of each sample between discard the
plate (yes) or keep it (no). Due to the number of samples, high resolution images
and prediction complexity this model converged easily, making it a good model
to try with different sample sizes. A simple metric as the accuracy, number of
right decisions over total amount of decisions, will be used.
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The first test model was ResNet 18 [22] back model and a fully connected
layer as top model. ResNet introduces skip connections in order to avoid the
vanishing gradient problem. The features used on this model were the outputs
of the last layer of the back model giving 512 image-features to work with.

The dataset for this model is composed by the superimposition of two images,
a Physical Photostimulable Phosphor (PSP) plate and a CMOS teeth scan.
The dataset was built at the Faculty of Dentistry at the University of Toronto
(Toronto, Canada) using a Carestream CS 7600 for the former, MiPACS and
Carestream RVG 6200 for the latter. A selection of 25 PSP plates were mixed
with 100 cases of CMOS scans giving a total of 2928 samples. The 25 PSP plates
consists of 10 severe damage plates, 10 with intermediate damage, 4 new plates,
and one blank mask. As well, 25 dentists with at least 1 year of experience
labeled the scans in two categories: keep the plate or discard it. The dataset is
composed by teeth x-ray scans of 1152 × 869, as reference see Fig. 1.

2.2 Bone Age with VGG16

This model predicts the bone age for each subject, solving a regression problem.
The metric used for this model was the 1-Normalized Root Mean Squared Error
(1-NRMSE).

The model implemented is based in a VGG16 [38] back model, and a 4-
layers fully connected model as top model [6]. VGG16 uses the smallest filter
size capable of encoding directional information, i.e. 3× 3 filters. The filters are
used along the whole network allowing to learn the same information as the
larger filters used on other networks. This feature allows VGG16 to train with
significantly fewer parameters. As the previous model, 512 image-features are
extracted.

The dataset used in this model consists of radiographs from left hands of both
male and female subjects with different races and ages ranging from 1 month
to 228 months (19 years) for a total of 12600 samples. The Radiological Society
of North America made the dataset publicly available, and was acquired from
Stanford Children’s Hospital and Colorado Children’s Hospital [17], as reference
see Fig. 1. For the following experiments because of the computation complexity
on training with thousands of images and the number of tests that we had to
run, just the female radiographs were used giving a total of 5674 images to work
with.

3 Experiments and Results

Four sample sizes on each model were selected to show the increase of accuracy
and the expected decrease of heterogeneity; for model Sect. 2.1 the sample sizes
were 100, 300, half (1464) and the whole dataset (2928), as well, for model
Sect. 2.2, 300, 700, half (2837) and the whole dataset (5674).

The models were trained using 4-fold validation for every sample size, to min-
imize data split randomness and keep computational requirements reasonable.
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For every fold the image-based features (back model outputs) were extracted as
well as the model prediction (top model outputs). Cluster analysis was performed
on every fold and the metrics were averaged to give an overall representation for
the sample size. The metrics were calculated using the model prediction and
were performed separately for every cluster.

The extracted image-based features were reduced from their original amount
to 10 principal components using PCA. Later, clustering was performed on prin-
cipal component based space. Dimensionality reduction was performed to atten-
uate the curse of dimensionality and minimization of correlated features. For
cluster analysis, we picked a clustering algorithm and the number of clusters.
The latter was unknown as clustering was performed on the extracted image
features with PCA dimensionality reduction, where the number of classes is
unknown. We tested different clustering algorithms: K-Means, Fuzzy K-Means
and Gaussian Mixture Model using unsupervised clustering performance metrics
such as Elbow Method [28], Silhouette Coefficient [35], Calinski-Harabaz Index
[7], Davies-Bouldin Index [11] and amount of patients in each cluster. For both
models Fuzzy K-Means with 4 clusters were found to give the most demonstra-
tive results for all combinations.
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Fig. 2. PSP plates clusters testing accuracy over different sample sizes (left). Bone
Age clusters testing error over different sample sizes (right). The blue line measure the
whole dataset. (Color figure online)

Due to the stochastic nature of clustering, several trainings of the algorithm
were made in order to average accurate clustering metrics. The way that a cluster
algorithm assigns labels is arbitrarily, meaning that no criteria is used to label
them making it random within each training. Thus, the algorithm was trained
10 times and cluster identifying and re-labeling was performed using the clus-
ter patients and accuracy; in that way, each cluster had the same label across
trainings. Every metric shown is the average of the several runs.
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Fig. 3. PSP plates clusters’ size over different sample sizes (top). Bone Age clusters’
size over different sample sizes (bottom). The amount is shown as a percentage of the
whole sample size. The clusters were made using Fuzzy K-Means.

In Fig. 2 is shown the evaluated clusters for each model using the selected
sample sizes. In this figure is demonstrated that there was a relationship between
sample size and heterogeneity that affected model test accuracy. The more data
you have the better the model will generalize for every cluster of samples, reduc-
ing the negative effect of its heterogeneity.

Figure 3 displays clusters’ sizes in percentage for each sample size, showing
that Fuzzy K-Means is able to find significant clusters with characteristics in
common and similar number of patients between each other. A bad clustering
algorithm would give unrealistic clusters with few isolated patients that do not
reflect real-world data samples.
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Figure 4 shows the level of variation between clusters over the sample sizes.
In clinical chemistry literature a CV < 10% is very good, 10%–20% is good,
20%–30% is acceptable, and CV > 30% is not acceptable [10]. The plots show
that CV stability is achieved when more samples make relative small change
to the dispersion of the clusters, that can translate into a model that performs
almost the same for all clusters of samples.

Figure 5 shows the correlation between model accuracy and the CV for both
models. In this figure is demonstrated how we are able to estimate the accuracy
or error given a CV and viceversa. Both models show negative correlation with
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Table 1. Centroid and closest-point euclidean distances between each cluster.

Model PSP plates with Resnet18 Bone Age with VGG16

Data Sizes/Clusters 0–1 0–2 0–3 1–2 1–3 2–3 0–1 0–2 0–3 1–2 1–3 2–3

Centroid

distance

100 10.88 10.53 11.06 10.83 10.13 10.05 300 5.12 5.07 6.2 5.22 5.94 5.96

300 10.91 10.30 10.16 10.57 10.79 10.74 700 13.06 11.92 9.27 9.42 11.26 9.76

1464 11.26 10.29 9.82 10.59 10.98 10.21 2837 9.53 10.49 10.79 10.25 9.42 10.16

2928 11.48 11.34 10.83 11.75 11.06 12.38 5674 11.5 10.72 10.52 11.21 11.67 11.65

Closes-point

distance

100 6.63 6.74 6.7 6.79 6.18 6.98 300 1.44 1.48 1.49 1.13 1.26 1.29

300 4.89 4.69 4.92 4.28 4.41 4.55 700 1.62 1.26 1.24 1.6 1.63 1.36

1464 2.64 2.61 2.62 2.67 2.82 2.58 2837 1.47 1.22 1.79 1.20 1.31 1.57

2928 2.01 1.96 2.02 1.91 2.14 2.14 5674 1.04 1.19 1.52 1.02 1.48 2.34

Table 2. Euclidean distance between the cluster centroids and their points.

Model PSP with Resnet18 Bone Age with VGG16

Clusters/distance Min Max Mean StDv Min Max Mean StDv

Cluster 0 100 5.65 18.38 11.52 3.02 300 2.49 21.40 6.10 3.80

300 5.73 21.52 11.97 3.37 700 2.62 43.66 8.11 5.61

1464 4.70 26.51 12.22 3.68 2837 4.10 56.36 11.36 6.45

2928 4.42 29.84 11.67 3.48 5674 3.91 76.97 12.73 7.39

Cluster 1 100 6.55 18.85 11.92 3.3 300 2.44 27.51 6.81 4.35

300 5.72 21.81 11.77 3.24 700 1.89 45.92 7.95 6.27

1464 4.83 26.24 11.88 3.61 2837 3.01 78.48 9.69 6.08

2928 4.41 31.11 12.11 4.03 5674 3.26 90.62 11.69 7.61

Cluster 2 100 6.68 21.95 13.38 3.65 300 2.38 27.46 7.08 4.38

300 5.51 21.03 11.91 3.23 700 1.37 42.81 5.08 4.17

1464 4.84 25.85 12.04 3.59 2837 3.72 80.60 12.83 7.30

2928 4.14 30.49 11.49 3.94 5674 3.06 70.42 9.74 5.47

Cluster 3 100 7.55 22.75 13.82 3.58 300 2.44 23.73 6.57 3.93

300 5.93 21.06 11.93 3.33 700 2.45 48.78 7.85 7.47

1464 4.70 24.91 11.75 3.48 2837 3.70 53.70 11.47 6.19

2928 4.40 27.94 11.60 3.78 5674 3.66 63.21 10.15 6.23

a Pearson Coefficient of −0.9871 for the PSP plates model and −0.9832 for
the Bone Age model. A negative correlation means that the lower CV we have,
the higher testing accuracy our model will get. Thus, if we want our model to
perform over a certain accuracy, we have to achieve a generalization that gives
a favorable CV. Although, 4 points are not enough for calculating a reliable
coefficient, it shows an expectable negative trend. From the results in Fig. 5, we
can infer that a CV lower than 5% is desirable in order to keep testing accuracy
high.

We calculated the inter-cluster and intra-cluster Euclidean distances to ana-
lyze cluster quality and consistency. Table 1 shows how the distances between
cluster change over sample sizes. On the other hand, Table 2 shows how clus-
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ters change when we increase the sample size. Both tables show the behavior
of the clusters with increasing sample sizes. Within a specific sample size, the
centroids appear to remain relatively fixed; however, as sample size increases,
clusters grow in spread and get closer to each other until it becomes almost one
big cluster. In a well-trained model every sample cluster should have almost the
same accuracy as others; this is the result of how image-based extracted features
improve its representation, and also the dataset increases its homogeneity when
we more training samples are available.

4 Conclusions and Future Work

All figures showed that cluster analysis, using the right algorithm and number of
clusters, is an effective way to identify and assess how affected the model testing
accuracy is by dataset heterogeneity, in classification and regression problems.
Moreover, CV can be used as a predictor of model testing accuracy and viceversa.
We consider a dataset with a CV of less than 5%, homogeneous enough to allow
the model generalize data properly and avoid overfitting.

Cluster analysis could be used as a tool to identify if the CNN model is
affected by heterogeneity from the dataset fed; even if your model has a high
accuracy it can still perform poorly for a cluster of samples and this method may
serve to identify it. Furthermore, this approach could assist to calibrate a model
to be able to perform well for every sample cluster, or discard under-performing
data clusters.

As future work, we aim to experiment on more datasets and more models
generalizing the application of using cluster analysis to identify heterogeneity
affection on model training for a CNN transfer learning problem, obtaining more
evidence of our claim.

Another approach proposed as future work is the tracking and identification
of the image-based features belonging to a principal component, and identify
which features define a good cluster of images. Understanding how features are
related to patient samples can be useful to gain insight on how CNNs extract
information from data. As well, knowing which features produce a better patient
cluster can be useful to improve those samples that did not perform well.
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Abstract. This article presents the application of evolutionary algo-
rithms to solve the bus synchronization problem. The problem model
includes extended synchronization points, accounting for every pair of
bus stops in a city, and the transfer demands for each pair of lines on
each pair of bus stops. A specific evolutionary algorithm is proposed
to efficiently solve the problem and results are compared with intuitive
algorithms and also with the current planning of the transportation sys-
tem on real scenarios from the city of Montevideo, Uruguay. Experimen-
tal results indicate that the proposed evolutionary algorithm is able to
improve in up to 13.33% the synchronizations with respect to the current
planning and systematically outperforms other baseline methods.

1 Introduction

Transportation systems play a major role in nowadays society and are an impor-
tant component of modern smart cities [7,14]. Public transportation accounts for
the most travels in large cities and provides the most efficient and environmental-
friendly mean for citizens’ mobility. However, the efficacy of public transporta-
tion systems requires a proper planning of routes, timetabling, buses, drivers,
and other relevant subproblems, in order to provide good quality of service [4].

Synchronization of bus frequencies is an important goal from the point of
view of users. Traditional approaches for public transportation network design
and planning considered that having many different lines with different desti-
nations and few synchronization (or transfer) points in the network allows a
better transportation system, but in turn, that approach significantly increases
the operation costs, because a larger number of lines are needed. Good quality
of service can also be provided having a reduced number of lines and allowing
transfers between them. In this scenario, the synchronization problem tries to
define frequencies and headways of each line in order to maximize the transfer
of passengers without significant waiting times. This way, the resulting public
transportation system is more attractive to passengers and provides a better
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quality of service [4]. Synchronization is one of the most difficult tasks in public
transportation planning. It has been often addressed intuitively, assuming that
experienced operators are able to take proper decisions [3].

Nowadays, some public transportation systems have no limitations on the
number of transfers that a passenger can perform. All bus stops are possible syn-
chronization points, providing a more freely scenario for passengers to commute.
In this scenario, the bus synchronization problem is more complex, as updated
information must be considered to take into account the more frequently used
connections. This is the situation of the public transportation system in Monte-
video, which is the case study addressed in this article. Since the implementation
of the Urban Mobility Plan [10], all pairs of bus stops are possible synchroniza-
tion points for passengers to transfer between buses of different lines, using an
intelligent card for ticket sales and travels. Thus, the formulation and scenarios
of the bus timetabling synchronization problem are different of the ones pre-
viously proposed in literature. Furthermore, synchronization has become more
important for citizens, as transfers allow improved mobility and more tickets are
sold as the system provides a better service.

This article proposes a specific Evolutionary Algorithm (EA) [13] for effi-
ciently solve the bus synchronization problem. The experimental evaluation is
performed over realistic instances built considering real data from the Metropoli-
tan Transportation System in Montevideo, Uruguay. Results obtained by the
proposed EA are compared with intuitive algorithms to optimize synchroniza-
tions and also with the current planning of the transportation system in Mon-
tevideo. Plannings computed by the proposed EA improve up to 13.33% the
number of synchronized trips, with respect to the current planning.

The research reported in this article was developed within the project ‘Pub-
lic transportation planning in smart cities’ [15], funded by Fondo Conjunto de
Cooperación Uruguay–México (2018–2019). The article is organized as follows.
Section 2 introduces the bus synchronization problem and Sect. 3 reviews related
works. The proposed EA for bus synchronization is described in Sect. 4. The
experimental evaluation of the proposed method over realistic instances in Mon-
tevideo is reported in Sect. 5. Finally, the conclusions and the main lines for
future work are formulated in Sect. 6.

2 The Bus Synchronization Problem

This section presents an integer programming formulation for the bus synchro-
nization problem, based on the previous model presented by Ibarra and Rios [9].
Specific features are included in order to model the reality and flexibility of
nowadays Intelligent Transportation Systems.

2.1 Problem Model

The problem accounts for the main goals of a modern transportation system:
providing a fast and reliable way for the movement of citizens, while maintaining
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reasonable fares. The problem model mainly focuses on the quality of service
provided to the users, i.e., a better traveling experience with reduced waiting
times when using more than one bus for consecutive trips.

In the proposed model, the events of favoring passenger transfers with limited
waiting times are called synchronization events. The study is aimed at solving
real scenarios, based on real data from urban transit systems that accounts for
the number of passengers that perform transfers between lines on each bus stop.

The main idea of the problem model is to divide any day into several plan-
ning periods on the basis of demand and travel time behavior of passengers.
This way, the analysis of historical data allows obtaining similar accurate and
almost deterministic information to build the problem scenarios. The mathemat-
ical formulation of the bus synchronization problem addressed in this article is
presented in the next subsection.

2.2 Problem Formulation

The mathematical formulation of the bus synchronization problem considers the
following elements:

– A set of lines of the bus network I = {i1, i2, . . . , in}. For each line i ∈ I, J(i)
is the set of lines that may synchronize with line i (in a synchronization node,
see next item). Buses that operate each line have a maximum capacity C for
passengers that board the bus in a second leg of a transfer trip.

– A set of synchronization nodes B = {b1, b2, . . . , bm}. Each node b ∈ B is a
triplet <i, j, dijb > indicating that lines i and j synchronize in b, and that the
bus stops for lines i and j are separated by a distance dijb .

– A planning period [0, T ], expressed in minutes, and the number of trips needed
to fulfill the passengers’ demand for each line, fi.

– A traveling time function TT : I × B → Z. TT i
b = TT (i, b) indicates the

time to reach the synchronization node b for buses in line i (from the origin
of the line). Generally, this value depends on several features, including the
bus type, bus velocity, traffic in roads, passengers’ demand, etc.

– A walking time function WT : B × I × I → N. WT i,j
b = WT (i, j, b) indi-

cates the time needed for a pedestrian to walk the distance dijb , according
to a walking speed ws and specific features of synchronization node b (e.g,
existence of pedestrian lines, crowding, traffic lights in intersections, etc.).

– A demand function P : I × I × B → Z. P ij
b = P (i, j, b) indicates the number

of passengers that transfer from line i to line j in synchronization node b, in
the planning period.

– A maximum waiting time W ij
b for each synchronization node, indicating the

maximum time that passengers are willing to wait for line j, after alighting
from line i and walking to the stop of line j, in a synchronization node b.

– A headway time, defining the separation between consecutive trips of the
same line i, defined in an interval [hi,Hi]. Values of hi and Hi are usually
defined by the city administration.
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The synchronization problem proposes finding appropriate values for the
departure time for every trip of each line to guarantee the best synchroniza-
tion for all lines with transfer demands in the planning period T .

The mathematical model is formulated in Eq. 1a–1g. Departure times of each
trip are represented by integer variables Xi

r. Synchronizations are represented
by binary variables Zij

rsb that define if trip r of line i and trip s of line j are syn-
chronized in node b. The proposed objective function weights synchronizations
according to the number of passengers that transfer in the planning period, thus
giving priority to synchronization nodes with larger transfer demands.

maximize
∑

b∈B

∑

i∈I

∑

j∈J(i)

fi∑

r=1

fj∑

s=1

Zij
rsb × min(

P ij
b

fi
, C) (1a)

subject to Xi
1 ≤ Hi (1b)

T − Hi ≤ Xi
fi ≤ T (1c)

hi ≤ Xi
r+1 − Xi

r ≤ Hi (1d)

(Xj
s + TT j

b ) − (Xi
r + TT i

b ) > WT i,j
b if Zij

rsb = 1 (1e)

(Xj
s + TT j

b ) − (Xi
r + TT i

b ) ≤ Wb + WT i,j
b if Zij

rsb = 1 (1f)

Xi
r ∈ {1, . . . , T}, Zij

rsb ∈ {0, 1} (1g)

The objective function of the problem (Eq. 1a) proposes maximizing the number
of synchronized transfers, weighted by the corresponding transfer demand for
each trip in each synchronization node. When computing the objective function,
the demand is split uniformly among the fj trips of line j. This is a realistic
assumption for planning periods where demand does not vary significantly, such
as in the case study presented in this article. The number of synchronized pas-
sengers on each synchronization node is bounded for the capacity for transfer
passengers C. Equations 1a–1g specify the constraints of the problem.

3 Related Works

Daduna and Voß [5] studied the schedule synchronization problem on bus net-
works, to minimize the waiting time of passengers. Different objectives were
studied, including a weighted sum considering transfers and the maximum wait-
ing time at a transfer zone. Simulated Annealing and Tabu Search were analyzed
for simple versions of the problem. Tabu Search computed better solutions than
Simulated Annealing over randomly generated examples based on the Berlin
Underground network. In addition, three real-world cases from different German
cities were studied. The trade-off between operational costs and user efficiency
suggested that multiobjective approaches should be considered.

Ceder et al. [2] studied the problem of maximizing the number of synchro-
nization events between bus lines at shared stops, i.e., maximizing the number
of simultaneous arrivals. An heuristic approach based on a greedy procedure to
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select nodes from the bus network was proposed, to efficiently solve the problem
by defining custom timetables. Both articles were focused on simultaneous bus
arrivals, and results reported consisted of examples is presented that illustrate
synchronizations on small instances with few nodes and few lines.

Fleurent et al. [6] considered a synchronization metric including weights
defined by experts and public transport authorities to minimize vehicle schedul-
ing costs. An heuristic algorithm was proposed to solve network flow problems
that accounts for the synchronization metric and other operation costs. Experi-
ments performed on just two small scenarios from Montréal, Canada, computed
different timetables when varying the weights used in the proposed metric.

Ibarra and Ŕıos [9] studied the bus synchronization problem in the bus net-
work of Monterrey, Mexico. A flexible formulation of the problem was proposed,
considering a time window between travel times to account for variations. A
Multi-start Iterated Local Search (MILS) was evaluated over 8 instances model-
ing the bus network in Monterrey (15 to 200 lines, and 3 to 40 synchronization
points). MILS was compared against a Branch & Bound method (which failed
to compute optimal solutions in two hours) and a simple upper bound computed
by adding the possible trips to synchronize. The method was able to compute
efficient solutions for medium-size instances in less than one minute, but the
gaps of MILS did not scale, as they were small for large instances.

Later, Ibarra et al. [8] solved the multiperiod bus synchronization problem,
optimizing multiple trips of a given set of lines. MILS, Variable Neighborhood
Search and a simple population-based approach were proposed to solve the prob-
lem. All methods computed solutions with similar quality to an exact approach
over academic instances with few synchronization points. Multiperiod timeta-
bles were up to 20% better than merging single period timetables. Results for a
sample case study using data for a single line showed that maximizing synchro-
nizations for a specific node usually reduces synchronizations for other nodes.

The model considered in our article includes additional features to the one
proposed by Ibarra and Ŕıos [9]: scenarios where every pair of bus stops are
possible transfer zones to synchronize, and real transfer demand in each possible
transfer zone. The proposed EA also captures the features of existing solutions
and accounts for real operation constraints for the case study in Montevideo.

4 The Proposed EA for Bus Synchronization

This section describes the main features of the proposed EA for solving the bus
synchronization problem.

4.1 Solution Encoding

Candidate solutions to the problem are represented using integer vectors, where
each integer value represents the headway (in minutes) of a bus line, i.e., the time
between consecutive trips of the same line. More formally, a candidate solution
to the problem is represented by X = x1, x2, . . . xn, where n is the number of bus
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Fig. 1. Example of a solution representation

lines in the problem instance, xi ∈ Z+, and hi ≤ xi ≤ Hi. Figure 1 describes a
solution representation for a problem instance with N bus lines. In the example
shown, buses from line 1 are scheduled to depart every 12 min, buses from line
2 every 8 min, etc.

4.2 Evolution Model and Evolutionary Operators

Evolution Model. The (μ + λ) evolution model [1] is applied in the proposed
EA: μ parents generate λ individuals, which compete between them and with
their parents, to determine the individuals that form the new population on
the next generation. Preliminary experiments demonstrated that (μ + λ) evolu-
tion was able to provide better solutions and more diversity than a traditional
generational model.

Initialization Operator. A seeded initialization is applied in the proposed EA.
Randomly generated solutions are included in the initial population, accounting
for the constraints defined for the headways of each line. In addition, values
for the headways from the currently real solution applied by the transportation
administration in Montevideo are included in the initial population. Solutions
generated by greedy approaches to maximize the number of synchronizations are
also included. Some of the initial solutions are modified by applying a shaking
procedure that randomly modifies some of the information for specific lines. This
initialization procedure intends to capture the main features of existing solutions
and accounts for real operation constraints for the case study in Montevideo, and
also provide diversity to the evolutionary search.

Selection Operator. The traditional tournament selection is applied, with tour-
nament size two individuals, and one individual survives. Tournament selection
allowed to compute better results than proportional selection in preliminary cal-
ibration experiments, mainly due to the appropriate level of selection pressure
for the evolution of solutions.

Recombination Operator. The recombination operator is a specific variant of
two-point crossover. It defines two crossover points randomly and exchanges the
information encoded in both parents between the crossover points. This operator
was conceived to preserve specific features of lines already synchronized in parent
solutions, trying to keep useful information in the offspring generation process.
The recombination operator is applied to individuals returned by the selection
operator, with a probability pR.
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Mutation Operator. The mutation operator applied is a specific variant of Gaus-
sian mutation. Specific position(s) in a solution are modified according to a
Gaussian distribution, and taking into account the thresholds defined by the
minimum and maximum frequencies for each line. The mutation operator is
applied to every gene with a probability pM .

4.3 Fitness Function Description

The fitness function accounts for the number of synchronized trips and their cor-
responding demands, according to the formulation in Eq. 1a–1g. The fitness is
computed by the procedure described in Algorithm1. For each synchronization
point (sp) of the scenario, the demand is accumulated for each pair of synchro-
nized trips. Variables x,y are the frequencies assigned by the solution (sol) to
the lines involved in the synchronization point sp, and the function get trips
generates two vectors with the departing time of each trip of these lines.

Algorithm 1. Fitness evaluation for solutions
INPUT: sol, scenario OUTPUT: fitness

1: fitness ← 0
2: for sp in get sync points(scenario) do
3: line i,line j,TT i,TT j,dist,demand,W b ← get elements(sp)
4: t dist ← ((dist/1000) /WALK SPEED) × 60
5: x,y ← get sol freqs(sol,line i,line j)
6: trips i,trips j ← get trips(x,y,T)
7: for i = 1 to len(trips i) do
8: for j = 1 to len(trips j) do
9: wait time = (trips j[j] + TT j) − (trips i[i] + TT i) − t dist

10: if wait time > y then
11: wait time ← y
12: end if
13: if wait time > 0 & wait time ≤ W b then
14: fitness ← fitness + min(demand × x, C × T)
15: break
16: end if
17: end for
18: end for
19: end for

5 Experimental Evaluation

This section reports the experimental evaluation of the proposed EA for the bus
synchronization problem.
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5.1 Methodology for Generating Problem Instances: General
Considerations

Real problem instances were built using real data from the Metropolitan Trans-
portation System in Montevideo, Uruguay: bus lines description, routes, sched-
ules, and bus stops location in the city. Transfers information corresponds to
real data from 2015 [11].

The key elements of the scenario and problem instances and how they were
built are described next:

– The type of day determines if the considered problem instance corresponds
to a working day or a weekend.

– The period is the interval of hours considered for the schedule. A period is
characterized by its duration, traffic level (rush hour, normal demand, or low
demand) and overall bus demand.

– The demand function is computed from transfers information, registered by
smart cards used to sell tickets.

– Synchronization points are chosen according to their demand. The pairs of
bus stops with the largest number of registered transfers for the period in the
corresponding type of day are selected.

– The bus lines are the ones passing by the synchronization points.
– The time traveling function t(i, b) for line i in synchronization point b are

computed by Eq. 2, where r are trips of line i in the period, atro is the arrival
time of trip r to the first stop in the route, atrb is the arrival time to the stop
of the synchronization point b and fi is the number of trips in the period.

t(i, b) =
∑fi

r=1 atrb − atro
fi

(2)

– The walking time function is the estimated walking speed of a person multi-
plied by the distance between bus stops in each synchronization point, com-
puted using geospatial information about stops.

– The headway limits for each line (hi and Hi) are computed considering the
real bus schedule in period.

– The maximum waiting time is equal to λH, with λ ∈ [0.75, 0.9, 1.0]. This
formulation allows configuring instances with different levels of quality of
service.

5.2 Problem Instances Using Data from Montevideo

Thirty problem instances were defined, accounting for three different dimensions
(30, 70, and 110 synchronization points), using real information about bus oper-
ating in Montevideo, Uruguay. Synchronization points were chosen randomly
from an universe of 170 points (the most demanded transfer zones for the con-
sidered period).

Each problem instance is named as BS.[hh].[HH].[NP].[NL].[T].[λ].[id]. hh is
the start hour of the period, HH is the end hour of the period, NP is the number
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Fig. 2. Geographic distribution of synchronization points in Montevideo

of synchronization points in the instance, NL is the number of bus lines, T is the
duration of the planning period, λ is the coefficient applied to Wb (percentage)
and id is a relative identifier for instances with the same NL and λ.

In the instances solved in the experiments, hh is 12 (12:00 hs), HH is 14 (14:00
hs) NP in [30, 70, 110], NL is determined by the selected synchronization points,
the period T is 120 min, in line with related works, and λ in [75, 90, 100]. Figure 2
shows sample synchronization points chosen for building instances, distributed
in the map of Montevideo.

5.3 Baseline Solutions and Metrics Description

A set of baseline solutions were considered for the comparison of the EA results.
The main point for comparison is the current schedule in the transportation
system of Montevideo (the real timetable), which provides the actual level of
service regarding direct travels and transfers. In addition, solutions using the
minimum headway (hi) and the maximum headway for each line for each line
(Hi) are used. These two solutions are included in the comparison, even though
they are not useful to be implemented in practice, because configuring all lines to
operate at minimum headway accounts for a very large (and expensive) number
of trips, and configuring all lines to operate at maximum headway provides a
very limited quality of service, regarding travel time.

The main metrics applied for the evaluation are the number of synchronized
trips for passengers and the waiting time, computed as the average of the time
difference between the arrivals of a trip of line i and the next trip of line j to
the synchronization point, considering the walking time.
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5.4 Parameter Setting

EAs are stochastic methods, thus parameter setting analysis are required to
determine the configuration that allows computing the best results. The values
of stopping criterion (#gen), population size (ps), recombination probability
(pR), and mutation probability (pM ) were studied on three instances, differ-
ent from the ones used in validation experiments, in order to avoid bias. Fifty
independent executions of the proposed EA were performed for each problem
instance. Candidate values for the studied parameters were #gen ∈ {500, 1000,
2000}, ps ∈ {50, 100, 200}, pR ∈ {0.6, 0.75, 0.9}, and pM ∈ {0.01, 0.05, 0.1}.

Results allowed concluding that population size and stopping criterion did
not affect solution quality, as the EA rapidly converges to high quality solutions
in a few (i.e., hundred) generations, despite the population size, so #gen=1000
and ps=100 were selected for validation experiments. Regarding operator prob-
abilities, the best results according to a Student’s t-test applied to analyze
the results distributions were obtained with the configuration pR = 0.9 and
pM = 0.01.

5.5 Development and Execution Platform

The proposed EA was implemented in Malva (github.com/themalvaproject).
The experimental evaluation was performed on a Quad-core Xeon E5430 at
2.66 GHz, 8 GB RAM, from Cluster FING, Universidad de la República [12].

5.6 Numerical Results

Table 1 reports the numerical results of the proposed EA and the reference results
for the baseline solutions. The number of synchronized trips (st) are also reported
for both real timetable and EA solutions.

Results in Table 1 indicate that the proposed EA computed accurate solu-
tions, systematically improving the number of synchronized trips over the current
real solution according to the actual timetable defined for the transportation sys-
tem in Montevideo. Best fitness and synchronized trips of the EA in each problem
dimension, are marked in bold. Overall, the average number of synchronized trips
for EA solutions was 37.62% greater than the one in the current timetable and
the most notable difference was 51.92%. The percent improvements (GAP) of
the solutions computed by the proposed EA over the considered baseline algo-
rithms are reported in Table 2. The best GAPs of the EA regarding hi, Hi, and
current planning in each problem dimension are marked in bold.

Results confirm that the proposed EA is able to improve over both cur-
rent planning and also over naive solutions that account for the minimum and
maximum headway. The best improvement was 13.33% in (weighted) synchro-
nizations with respect to the current planning in Montevideo. In average, the
proposed EA improved 8.79% over the current planning.

Regarding robustness and scalability, results indicate that the EA scaled
properly when solving problem instances with a larger number of synchronization

http://github.com/themalvaproject
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points. GAPs improved from 7.77% (average) and 11.36% (best) in small problem
instances with 30 synchronization points to 9.44% (average) and 13.33% (best)
in medium problem instances with 70 synchronization points. The GAPs of the
proposed EA over baseline solutions are graphically presented in Fig. 3.

Table 1. Numerical results for the bus synchronization problem.

Scenario Real timetable hi Hi EA

fitness st fitness st

BS.12-14.30.36.120.90.2 32194 244 33310 22990 34142 345

BS.12-14.30.37.120.100.2 27913 217 30148 22938 30868 301

BS.12-14.30.37.120.90.0 30005 235 32745 22644 33415 338

BS.12-14.30.38.120.100.3 30407 292 31082 27327 31843 346

BS.12-14.30.38.120.100.4 29222 288 30544 25409 31449 355

BS.12-14.30.38.120.90.3 30827 274 32181 23252 32725 305

BS.12-14.30.39.120.100.0 23380 210 24393 18707 25536 295

BS.12-14.30.39.120.75.3 31508 217 33147 22621 33710 386

BS.12-14.30.40.120.90.4 23199 235 24633 18006 25501 278

BS.12-14.30.41.120.100.1 33965 292 34896 29907 35672 359

BS.12-14.70.59.120.100.3 67065 607 69430 59005 71587 834

BS.12-14.70.62.120.100.0 57979 528 61179 47123 62988 786

BS.12-14.70.63.120.90.4 57665 522 62145 47087 63361 661

BS.12-14.70.64.120.90.2 64486 561 67972 49122 69912 776

BS.12-14.70.65.120.100.2 62293 510 66559 52874 68269 668

BS.12-14.70.65.120.90.0 65681 569 70446 48348 71938 808

BS.12-14.70.66.120.90.1 57007 551 60906 43406 62447 740

BS.12-14.70.66.120.90.3 66642 597 70380 50242 71696 845

BS.12-14.70.67.120.75.1 63145 525 67926 43789 70183 721

BS.12-14.70.68.120.75.0 61457 543 67678 40321 69648 783

BS.12-14.110.77.120.100.3 103929 935 108875 90401 111314 1335

BS.12-14.110.78.120.90.4 95902 845 101384 74668 103662 1262

BS.12-14.110.79.120.75.3 93480 855 101364 65490 103434 1291

BS.12-14.110.79.120.90.1 96438 838 101931 73964 104232 1111

BS.12-14.110.79.120.90.3 96064 912 101723 74398 103930 1325

BS.12-14.110.81.120.100.1 97745 908 102858 85600 105444 1273

BS.12-14.110.82.120.75.0 96298 886 105089 64377 107311 1346

BS.12-14.110.83.120.100.2 94269 834 100642 81916 102754 1191

BS.12-14.110.83.120.75.2 89073 799 96965 58840 99235 1113

BS.12-14.110.83.120.90.0 94522 829 101517 71081 103932 1163
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Table 2. GAPs of the proposed EA over baseline algorithms.

Scenario GAP real GAP hi GAP Hi

BS.12-14.30.36.120.90.2 6.05% 2.50% 48.51%

BS.12-14.30.37.120.100.2 10.59% 2.39% 34.57%

BS.12-14.30.37.120.90.0 11.36% 2.05% 47.57%

BS.12-14.30.38.120.100.3 4.72% 2.45% 16.53%

BS.12-14.30.38.120.100.4 7.62% 2.96% 23.77%

BS.12-14.30.38.120.90.3 6.16% 1.69% 40.74%

BS.12-14.30.39.120.100.0 9.22% 4.69% 36.51%

BS.12-14.30.39.120.75.3 6.99% 1.70% 49.02%

BS.12-14.30.40.120.90.4 9.92% 3.52% 41.63%

BS.12-14.30.41.120.100.1 5.03% 2.22% 19.28%

Average n = 30 7.77% 2.62% 35.81%

BS.12-14.70.59.120.100.3 6.74% 3.11% 21.32%

BS.12-14.70.62.120.100.0 8.64% 2.96% 33.67%

BS.12-14.70.63.120.90.4 9.88% 1.96% 34.56%

BS.12-14.70.64.120.90.2 8.41% 2.85% 42.32%

BS.12-14.70.65.120.100.2 9.59% 2.57% 29.12%

BS.12-14.70.65.120.90.0 9.53% 2.12% 48.79%

BS.12-14.70.66.120.90.1 9.54% 2.53% 43.87%

BS.12-14.70.66.120.90.3 7.58% 1.87% 42.70%

BS.12-14.70.67.120.75.1 11.15% 3.32% 60.28%

BS.12-14.70.68.120.75.0 13.33% 2.91% 72.73%

Average n = 70 9.44% 2.62% 42.94%

BS.12-14.110.77.120.100.3 7.11% 2.24% 23.13%

BS.12-14.110.78.120.90.4 8.09% 2.25% 38.83%

BS.12-14.110.79.120.75.3 10.65% 2.04% 57.94%

BS.12-14.110.79.120.90.1 8.08% 2.26% 40.92%

BS.12-14.110.79.120.90.3 8.19% 2.17% 39.69%

BS.12-14.110.81.120.100.1 7.88% 2.51% 23.18%

BS.12-14.110.82.120.75.0 11.44% 2.11% 66.69%

BS.12-14.110.83.120.100.2 9.00% 2.10% 25.44%

BS.12-14.110.83.120.75.2 11.41% 2.34% 68.65%

BS.12-14.110.83.120.90.0 9.96% 2.38% 46.22%

Average n = 110 9.18% 2.24% 43.07%

Overall average 8.79% 2.49% 40.61%
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Fig. 3. Improvements (GAP) over baseline solutions

Regarding quality of service metrics, results of average waiting time per trip,
reported in Tables 3 (values) and 4 (GAPs) indicates that the EA improves over
the real timetable solutions for all scenarios. Furthermore, the EA also improves
or equals hi solutions in six scenarios (marked in bold). The best GAPs over hi,
Hi, and current planning in each problem dimension, are marked in bold.

Finally, regarding performance, the proposed EA had a remarkable compu-
tational efficiency. The average execution time required to perform 1000 genera-
tions was 78.2 s. The execution time did not increase significantly when solving
the largest problem instances (in those instances, the average execution time
was 122.7 s). These results confirm that the proposed EA is a useful tool for
performing fast planning in Intelligent Transportation Systems, able to account
for dynamic situations required in nowadays smart cities. Results demonstrated
that the proposed EA can compute updated frequency plans (e.g., for the next
hour) or even analyze different schedules accounting for different quality of ser-
vice, a scenario that cannot be addressed with traditional exact methods (e.g.
Branch and Bound), which fail to compute solutions in one hour for even small
problem instances, as reported in related works [9].
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Table 3. Average waiting time results.

Scenario Real timetable hi Hi EA

BS.12-14.30.36.120.90.2 6.54 4.39 11.56 5.28

BS.12-14.30.37.120.100.2 8.14 5.34 14.11 6.08

BS.12-14.30.37.120.90.0 7.16 5.27 12.20 5.14

BS.12-14.30.38.120.100.3 7.53 5.25 12.65 6.36

BS.12-14.30.38.120.100.4 7.50 5.24 13.45 5.71

BS.12-14.30.38.120.90.3 6.78 4.59 12.60 6.19

BS.12-14.30.39.120.100.0 7.98 5.96 14.86 5.86

BS.12-14.30.39.120.75.3 8.31 5.93 15.17 5.65

BS.12-14.30.40.120.90.4 8.00 5.66 12.76 6.22

BS.12-14.30.41.120.100.1 7.50 5.67 14.62 6.42

BS.12-14.70.59.120.100.3 7.85 5.85 13.19 5.85

BS.12-14.70.62.120.100.0 7.68 5.46 13.50 5.60

BS.12-14.70.63.120.90.4 8.52 5.37 16.54 6.43

BS.12-14.70.64.120.90.2 7.88 5.40 13.84 5.59

BS.12-14.70.65.120.100.2 8.40 5.66 14.49 6.95

BS.12-14.70.65.120.90.0 7.34 5.05 12.75 5.03

BS.12-14.70.66.120.90.1 8.40 5.40 17.07 7.05

BS.12-14.70.66.120.90.3 8.08 5.61 14.76 5.82

BS.12-14.70.67.120.75.1 7.65 5.41 13.62 5.59

BS.12-14.70.68.120.75.0 7.81 5.75 13.48 6.55

BS.12-14.110.77.120.100.3 7.84 5.64 13.75 5.71

BS.12-14.110.78.120.90.4 8.02 5.39 15.42 5.73

BS.12-14.110.79.120.75.3 8.26 5.59 15.90 5.61

BS.12-14.110.79.120.90.1 7.83 5.28 15.06 6.62

BS.12-14.110.79.120.90.3 8.35 5.79 14.90 6.36

BS.12-14.110.81.120.100.1 8.20 5.50 14.47 6.08

BS.12-14.110.82.120.75.0 7.59 5.48 13.08 5.42

BS.12-14.110.83.120.100.2 8.27 5.57 15.86 5.81

BS.12-14.110.83.120.75.2 8.47 5.77 16.64 8.05

BS.12-14.110.83.120.90.0 7.88 5.36 13.88 6.27
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Table 4. GAPs on waiting time of the proposed EA over baseline algorithms.

Scenario GAP real GAP hi GAP Hi

BS.12-14.110.77.120.100.3 27.17% −1.24% 58.47%

BS.12-14.110.78.120.90.4 28.55% −6.31% 62.84%

BS.12-14.110.79.120.75.3 32.08% −0.36% 64.72%

BS.12-14.110.79.120.90.1 15.45% −25.38% 56.04%

BS.12-14.110.79.120.90.3 23.83% −9.84% 57.32%

BS.12-14.110.81.120.100.1 25.85% −10.55% 57.98%

BS.12-14.110.82.120.75.0 28.59% 1.09% 58.56%

BS.12-14.110.83.120.100.2 29.75% −4.31% 63.37%

BS.12-14.110.83.120.75.2 4.96% −39.51% 51.62%

BS.12-14.110.83.120.90.0 20.43% −16.98% 54.83%

Average n = 30 21.61% −11.34% 55.79%

BS.12-14.70.59.120.100.3 25.48% 0.00% 55.65%

BS.12-14.70.62.120.100.0 27.08% −2.56% 58.52%

BS.12-14.70.63.120.90.4 24.53% −19.74% 61.12%

BS.12-14.70.64.120.90.2 29.06% −3.52% 59.61%

BS.12-14.70.65.120.100.2 17.26% −22.79% 52.04%

BS.12-14.70.65.120.90.0 31.47% 0.40% 60.55%

BS.12-14.70.66.120.90.1 16.07% −30.56% 58.70%

BS.12-14.70.66.120.90.3 27.97% −3.74% 60.57%

BS.12-14.70.67.120.75.1 26.93% −3.33% 58.96%

BS.12-14.70.68.120.75.0 16.13% −13.91% 51.41%

Average n = 30 24.20% −9.98% 57.71%

BS.12-14.30.36.120.90.2 19.27% −20.27% 54.33%

BS.12-14.30.37.120.100.2 25.31% −13.86% 56.91%

BS.12-14.30.37.120.90.0 28.21% 2.47% 57.87%

BS.12-14.30.38.120.100.3 15.54% −21.14% 49.72%

BS.12-14.30.38.120.100.4 23.87% −8.97% 57.55%

BS.12-14.30.38.120.90.3 8.70% −34.86% 50.87%

BS.12-14.30.39.120.100.0 26.57% 1.68% 60.57%

BS.12-14.30.39.120.75.3 32.01% 4.72% 62.76%

BS.12-14.30.40.120.90.4 22.25% −9.89% 51.25%

BS.12-14.30.41.120.100.1 14.40% −13.23% 56.09%

Average n = 110 23.67% −11.34% 58.57%

Overall average 23.16% −10.88% 57.36%



Evolutionary Approach for Bus Synchronization 335

6 Conclusions and Future Work

This article presented a specific EA designed to efficiently solve a variant of the
bus timetable synchronization problem.

A new problem formulation is presented, accounting for features of real sce-
narios modeled from data collected by nowadays Intelligent Transportation Sys-
tems. A specific EA was proposed to solve the problem, including simple and
intuitive variation operators to provide both accuracy and diversity on solutions.
The proposed fitness values takes into account the number of synchronized trips
and the real demands of transfers on each bus stop. The proposed approach
is generic and can be easily adapted to be applied and scale up to different
scenarios.

The experimental evaluation of the proposed algorithm was performed over
instances of significantly larger dimension than those previously addressed in the
related literature. Problem instances based on real-data from the ITS in Monte-
video, Uruguay were built, consisting of up to 83 lines and 110 synchronization
points. Results show that the proposed evolutionary approach is able to com-
pute accurate solutions, improving up to 13.33% in the fitness values and up to
24.20% in the waiting times, when compared to the current real timetable in
Montevideo.

The main lines for future work are related to develop explicit multiobjective
methods to solve the problem and improve the accuracy of the computed results.
In this regard, historical GPS location data of buses can be used to obtain more
accurate approximations of headways and travel times in the public transporta-
tion system. Furthermore, dynamic models should be explored to account for
real-time location information to react to traffic congestion and demand spikes
and deal with transfer synchronization at the operational level.
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Ingenieŕıa, Universidad de la República. Revista de la Asociación de Ingenieros del
Uruguay 61(1), 12–15 (2010)

13. Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods
for optimisation. Int. J. Metaheuristics 3(4), 320–347 (2014)

14. Nesmachnow, S., Baña, S., Massobrio, R.: A distributed platform for big data
analysis in smart cities: combining intelligent transportation systems and socioe-
conomic data for Montevideo, Uruguay. EAI Endorsed Trans. Smart Cities 2(5),
1–18 (2017)
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Abstract. This article explores the application of evolutionary algo-
rithms and agent-oriented programming to solve the problem of search-
ing and monitoring objectives through a fleet of unmanned aerial vehi-
cles. The subproblem of static off-line planning is studied to find initial
flight plans for each vehicle in the fleet, using evolutionary algorithms
to achieve compromise values between the size of the explored area, the
proximity of the vehicles, and the monitoring of points of interest defined
in the area. The results obtained in the experimental analysis on repre-
sentative instances of the surveillance problem indicate that the proposed
techniques are capable of computing effective flight plans.

Keywords: Unmanned aerial vehicles · Autonomous flight ·
Evolutionary algorithms

1 Introduction

Unmanned Aerial Vehicles (UAVs) are aerial vehicles that do not have an
onboard crew. They can be controlled remotely by a pilot on the ground or
fly autonomously [18]. UAVs are often used in situations where manned flight is
considered too dangerous. UAVs can remain in the sky over an area for a given
period of time, sending information in real time to the pilot on the ground.

UAVs are very useful to perform various tasks in modern smart cities [3],
including detection and management of risks, citizen safety, and traffic con-
trol, etc. Regarding disaster identification and management, UAVs can use their
capabilities to observe the terrain from the air to carry out search and rescue
operations, fight fires, inspect pipes, spray crops, make measurements, among
others. In these cases, the ability to perform actions remotely through the use
of UAVs results in an increase in the safety of people against traditional tech-
niques. Regarding urban safety, UAVs provide an economical and safe alternative
c© Springer Nature Switzerland AG 2020
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to perform surveillance tasks. UAVs provide an especially viable alternative for
police departments and state agencies with limited economic resources that can
not afford larger vehicles (helicopters or airplanes).

In order to carry out the activities described above it is of fundamental impor-
tance to have the possibility that the UAVs fly autonomously. An autonomous
system is one that has the capacity to carry out actions and make decisions by
itself [12]. Such systems try to achieve their objectives independently, without
human intervention, even in situations of uncertainty or in the face of unfore-
seen situations. The UAVs have a control system that allows them to maintain
a stable flight and perform movements according to orders sent by an operator
or following a pre-established flight plan, providing a basic level of automated
flight capacity. Transforming the specification of a task (provided by humans)
into a low level description suitable for controlling a UAV is not an easy task,
given the large number of variables involved. In this context, the application of
computational intelligence techniques has been proposed in order to facilitate
the generation of flight plans of UAVs that fulfill the objectives of a mission
autonomously [4,16].

Employing a fleet of UAVs allows the implementation of a cooperative app-
roach to carry out the task that is to be carried out. This supposes a set of
advantages, including: (i) granting a greater robustness, guaranteed by the exis-
tence of multiple agents that carry out the task; (ii) expanding the coverage
area in which the mission is carried out; and (iii) specializing different UAVs
to perform different tasks and improve flight time and the use of batteries, a
fundamental requirement to offer a functional solution. To provide an effective
and efficient cooperation scheme, it is necessary to apply flight planning tech-
niques that allow the implementation of appropriate strategies to meet various
objectives.

The flight route planning problem is NP-difficult, as it is a variant of the
Orienteering Problem (OP) [15]. Heuristics and metaheuristics [9] are applied to
find quality solutions at reasonable times, especially to compute solutions that
can be implemented in real time.

In this line of work, this article presents an approach to solve the problem
of searching and monitoring objectives through a fleet of unmanned aerial vehi-
cles. The subproblem of static planning (off-line) is addressed by evolutionary
algorithms to find a series of flight plans for each member of the fleet, with the
aim of achieving good compromise values between the size of the area explored,
the proximity of the UAVs and the monitoring of certain pre-established points
of interest. The second proposed algorithm solves the subproblem of search
and surveillance of objectives autonomously and cooperatively applying agent-
oriented programming (POA), based on the offline planning found by the evo-
lutionary algorithm. The combined approach proposed in this paper allows for
efficient and versatile flight plans, taking offline planning as a solid starting point
and including the flexibility to adapt to the changing situations of the environ-
ment provided by POA.
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The document is structured as follows. Section 2 presents the formulation of
the problems addressed in the work. The techniques applied in the study are
described in Sect. 3. A review of the main related work is presented in Sect. 4.
The proposed algorithms for solving the problem are described in Sect. 5. The
experimental analysis is reported in Sect. 6. Finally, Sect. 7 presents the conclu-
sions and the main lines of future work.

2 The Problem of Autonomous Flight Planning of a Fleet
of UAVs

This section describes the problem of planning a fleet of UAVs and its mathe-
matical fomulation.

2.1 Generic Description of the Planning Problem

Given a fleet of UAVs, the problem is to plan a set of routes or routes for each of
the UAVs with the objectives of maximizing the surface explored, maintaining
communication between agents and monitoring the objectives. The explored
surface is defined as the union of the surfaces explored by each UAV in its route
in the planned time. The area covered by a UAV at a given time is determined
by a circumference of coverage radius that has it as its center. In order to ensure
communication between the UAVs, a maximum distance to which the UAVs
can be found is defined: two UAVs can communicate with each other when the
distance between them is less than a communication radio.

There are two variants of the problem: (i) an offline version, where a static
planning is sought, assuming perfect information about the elements of the prob-
lem; and (ii) an online version that considers partial information by the agents
(i.e., UAVs), limited by their sensory capacity (camera images and messages
received through the network). The static version corresponds to a simpler prob-
lem, whose solution is useful as a starting point for dynamic planning capable of
interacting with the environment. The problem model assumes total autonomy
of the UAVs, since it does not consider a central base that defines the movements
to be performed by each UAV interactively.

2.2 Formulation of the Static Planning Problem

The mathematical formulation of the problem of static flight route planning for
UAVs in surveillance missions considers the following elements:

– a set of UAVs, U = {u1, . . . u|U |}
– a mission time period T , which is uniformly discretized in s time steps; T =<

t1, t2, . . . ts >
– a maximum travel speed of UAVs, vD

– a set of targets to surveil O = {o1, . . . , o|O|}
– a maximum speed for the targets vO
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– a vector P = (p1, p2, . . . p|O|), where pi is the benefit associated to surveil
target oi for all i = 1...|O|.

– an object position matrix OP (dimensions |O| × s). OPij indicates the coor-
dinates of the target oi in timestep tj .

– a coverage radius r̄o and a circumscribed coverage square with side ro = 2r̄o√
2
.

– a communication radius rc.
– an area to explore of dimensions H × W , discretized in squares of length

ro, defined by matrix Aj , as presented in Eq. 1. Matrix Aj determines the
position of all UAVs at timestep tj with aj

x,y ∈ Q with Q = U ∪ O ∪ {∅}.

Aj =

⎡
⎢⎢⎢⎢⎢⎣

aj
11 . . . aj

1(� W
ro

�)
aj
21 . . . aj

2(� W
ro

�)
...

...
aj

(� H
ro

�)1 . . . aj

(� H
ro

�)(� W
ro

�)

⎤
⎥⎥⎥⎥⎥⎦

(1)

– a base B, defined by coordinates (xB , yB), which is the departing point for
UAV missions. The base B is located within the area to explore, i.e., 1 ≤
xB ≤ � H

ro
�) and 1 ≤ yB ≤ �W

ro
�).

The problem proposes finding a planning for the fleet of UAVs, i.e., a function
p : U × T → Q� H

ro
�×� W

ro
�, that maximizes three functions simultaneously: the

benefit of having a vision of an objective (δ(p), Eq. 2), the benefit of forming an
ad-hoc network (γ(p), Eq. 3) and the benefit for exploring (φ(p), Eq. 4).

δ(p) =
|U |∑
i=1

|T |∑
j=1

|O|∑
z=1

found(pos(ui, tj), pos(oz, tj)) × pz (2)

γ(p) =
|U |∑
i=1

|U |∑
h=i+1

|T |∑
j=1

connected(pos(ui, tj), pos(uh, tj)) (3)

φ(p) =
� H
ro

�∑
x=1

� W
ro

�∑
y=1

|T |∑
j=1

explored(x, y, j) × 1
ro

2
(4)

The auxiliary functions considered in the formulation correspond to the ones
defined in Eqs. 6–8:

pos(qi ∈ Q, tj ∈ T ) = (x, y) such that aj
x,y = qi (5)

found(c1 ∈ N
2, c2 ∈ N

2) =
{

1 if d(c1, c2) ≤ r̄o

0 otherwise (6)

connected(c1 ∈ N
2, c2 ∈ N

2) =
{

1 if d(c1, c2) ≤ rc

0 otherwise (7)

explored(x ∈ N, y ∈ N, tj ∈ T ) =
{

1 if aj
x,y ∈ U

0 otherwise (8)
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With d being the Euclidean distance. Given the definition of φ, the benefit
obtained is inversely proportional to the size of the covered area. This perfor-
mance indicator is called Spatial Exploration Ratio [17].

3 Evolutionary Algorithms

EAs are stochastic techniques that emulate the process of natural evolution to
solve problems of optimization, search and learning [1]. They are especially useful
for solving complex real-world problems in multiple application areas [9].

An EA is an iterative technique. In each iteration (called generation) proba-
bilistic operators are applied on a set of individuals (the population). The initial
population is generated by applying a random procedure or using a specific
heuristic for the problem. Each individual codifies a tentative solution to the
problem and has assigned a fitness value that determines its suitability to solve
the problem. The goal of the EA is to improve the fitness of individuals in
the population, applying evolutionary operators, such as the recombination of
parts of two individuals and the random mutation of an individual’s coding.
These operators are applied to individuals selected according to their fitness,
thus guiding the EA toward tentative solutions of higher quality. Algorithm1
presents the generic schema of an EA with a population P.

Algorithm 1. Schema of an evolutionary algorithm.
1: initialize(P (0))
2: t←0 {generation counter}
3: while not stopping criterion do
4: evaluate(P (t))
5: parents←selection(P (t))
6: children←variation operators(parents)
7: newpop←replacement(children,P (t))
8: t++
9: P (t)←newpop

10: end while
11: return best individual found

The stop criterion usually involves a fixed number of generations, a quality
level on the fitness of the best individual, or detecting convergence. An EA uses a
policy of selection of individuals to participate in the recombination and a policy
of replacement to determine which new individuals are inserted into the popu-
lation in each new generation. Finally, the EA returns the best solution found
in the iterative process, taking into account the fitness function considered. In
this article, a traditional EA and a Mutation and Selection Only Evolution-
ary Strategy (MOSES) variant are proposed, the details of which are presented
below.
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MOSES [2] is an EA that uses only selection/mutation operators and an
optimization scheme based on the Monte Carlo method. Working on a population
P to optimize a function f , MOSES defines a Markov string Xn on Ek, where E
is the problem state space and k the cardinality of P . The transitions of Xn are
given by a mutation operator that defines a search graph specifying the adjacency
between individuals of the population. Algorithm2 presents the generic scheme
of MOSES for solving a minimization problem.

Algorithm 2. Schema of the MOSES algorithm.
1: initialize(P (0))
2: t←0 {generation counter}
3: while not stopping criterion do
4: evaluate(P (t))
5: find the best individual I+ = min f(Ih);1 ≤ h ≤ k
6: sort an integer Z ∈ (0, k] according to a Binomial law (k,e−1/T )
7: for individuals Ir,1 ≤ r ≤ Z do
8: change Ir = (i1, i2, . . . , is) by Iq = (i′1, . . . , i

′
s)

9: end for
10: for individuals Ir,Z + 1 ≤ r ≤ k do
11: change Ir = (i1, . . . , is) for I+

12: end for
13: t++
14: end while
15: return best individual found (I+)

In each generation the best individual (I+) is determined, according to the
fitness values. For each individual in the population Ir = (i1, . . . , is) it is decided,
according to a mutation probability pM , to transform it into another individual
Iq = (i′1, . . . , i

′
s), following a stochastic walk defined over the search space by

a motion operator or transforming it into the best individualI+. This strategy
introduces a mechanism of elitism implicit in the selection used by the MOSES
algorithm.

Mutation probability pM it is defined as a function of a parameter T that
plays a role analogous to temperature in the metaheuristic Simulated Anneal-
ing [9]. In the canonical version of the MOSES algorithm (ordered, with reinitial-
ization) pM = e−1/T and a scaled decrementing scheme is applied for parameter
T , defined by Eq. 9, where D is the diameter of the search space defined by the
movement operator.

∀q ∈ N,∀n ∈ (
e(q−1).D, eq.D

)
T (n) = 1/q (9)

In MOSES, the mutation probability is reinitialized when the decay scheme
assigns a minimum value, given by a parameter pMIN .
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4 Related Works

The analysis of the related literature allows identifying several recent proposals
on the application of computational strategies for the flight planning of a fleet
of UAVs. The main related works are reviewed next.

Ponda et al. [11] studied methods to design trajectories to increase the
amount of information provided by a set of measurements of an objective, made
by sensors on board, to determine their position. Estimation algorithms for locat-
ing targets were explored, including Kalman extended filters, Fisher information
matrix, and Cramér-Rao coordinates to evaluate the performance of the esti-
mation of measurements. The experimental analysis considered two scenarios:
(i) the identification of points to perform the measurements considering a max-
imum number of measurements, and (ii) the optimization of trajectories of a
single UAV with movement restrictions. A gradient descent method was applied
for optimization, which showed some drawbacks typical of a deterministic tech-
nique (e.g. it tended to group measurements). A case study was also proposed,
simultaneously optimizing the trajectories and the estimation of objectives, for
the cases of static and objective that follow a predetermined trajectory. The
reported results show that the calculated trajectories improve the estimation,
collecting the same amount of information as a non-optimized strategy with
only half of the measures. The work did not propose the application to flight
planning of UAV fleets, although the first scenario can be used to coordinate the
measures provided by several UAVs to improve the movement estimates of the
target. Mufalli et al. [7] studied the problem of sensor selection and route plan-
ning of UAVs in military reconnaissance missions, which is a generalization of the
Team Orienteering Problem. The authors presented a mathematical program-
ming model that they could only solve in an exact way (using CPLEX) for very
simple missions. To address more realistic missions, the authors proposed two
heuristics, augmented by the column generation technique. The results obtained
on scenarios of up to 100 × 100 positions with up to 100 targets and fleets of
up to eight UAVs indicated that the heuristics were able to find good solutions
quickly. The generation of columns improved the solution in many instances,
with a minimal impact on the execution time.

Schleich et al. [13] proposed a decentralized and localized approach to con-
trol mobility in fleets of UAVs flying from a base. The problem considered an
area to be monitored and a fleet of UAVs in charge of patrolling it. The fleet
is deployed from the base station and all UAVs are equipped with communica-
tion modules. A mobility model, called connected coverage model was proposed.
It is responsible for physically moving the UAVs to fulfill the surveillance mis-
sion. The model consists of three sequential steps: selection of the neighborhood
to stay connected, calculation of options for the future position of the UAV,
and pheromone-based behavior to choose the best direction from the options.
The mobility model was compared with a random strategy to select destina-
tions according to quality metrics to evaluate coverage and connectivity. The
numerical results show that the proposed mobility model has a reduced negative
impact on coverage, but connectivity performance is significantly better than
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that of the other models. The work of Schleich et al. presents a very similar
approach to the one proposed in this article, but without applying computa-
tional intelligence and without the reactive navigation component provided by
agent-oriented programming.

Oh et al. [10] presented a framework to construct safe and feasible routes
to visit a set of points in cooperative missions of multiple UAVs, maintaining
communication with a ground control station that centrally controls the mission.
Three methods were proposed: (i) an exact linear programming method to assign
paths to UAVs by minimizing the total flight time; (ii) an heuristic to build
routes by adding segments of transit routes considering their insertion cost; and
(iii) a negotiation model to solve conflicts between areas visited by more than
one UAV, to minimize the cost of flight plans. Two cases were studied: the
planning of surveillance/search missions on a road network and the planning of
routes to maintain communication with a command base. For missions planning,
the insertion heuristic obtained paths 12% longer than the exact method, but
it was effective for the online calculation of trajectories, finding paths in less
than a second. For the cooperation problem, results considering only two UAVs
indicated that the negotiation model was effective to generate flight plans to
monitor the scenario and avoid prohibited zones. However, the communications
were lost for a total time of 1200 s, suggesting that in order to successfully carry
out the mission, it is necessary to have a larger fleet. The work presented a
centralized approach due to the existence of the control base, for which reason
the flight plans are not totally autonomous as those proposed in our research.

Shang et al. [14] proposed a hybrid EA with ant colony algorithm (ACO)
to plan missions of a fleet of UAVs. The algorithm replaces bad individuals
of the EA population with new individuals constructed using ACO and Path
Relinking. Results suggested that the hybrid algorithm can solve test instances
effectively in reasonable times. The hybrid was studied in selected test cases,
and compared with several methods of the literature. Results indicate that the
proposed algorithm can obtain better results in several of the instances and
obtain optimal solutions in the majority, suggesting that it can be used in large-
scale problems.

Han et al. [6] proposed a multi agent system integrating UAVs that collabo-
rate to perform complex missions. Several mechanisms were proposed for coor-
dination and cooperation: tracking to follow objectives, artificial potential field
to maintain a formation and avoid obstacles, and auction to allocate and select
missions. The developed system was tested using simulation, but the article did
not present real experiments.

The analysis of the related works allows identifying several proposals of intel-
ligent mobility models and algorithms to optimize the operation of UAV fleets
for different missions. These proposals helped to model the problem and inspire
the solutions developed in our research.



Autonomous Flight of Unmanned Aerial Vehicles 345

5 Evolutionary Algorithms for Flight Planning of UAVs
for Surveillance

This section describes the proposed EAs to solve the problem of autonomous
flight planning of a fleet of UAVs: a traditional EA and a MOSES algorithm
in its ordered version with restart. Both methods use initialization and special
operators to define a good scan pattern of the solution space of the problem.

5.1 Development and Execution Platform

The proposed EAs were developed on Watchmaker, a library for evolutionary
object-oriented and extensible computing implemented in Java [5]. The classes
provided by the library were extended to incorporate concepts related to the
resolution method and the problem to be solved.

The experimental evaluation was performed on a Dell Power Edge server,
Quad-core Xeon E5430 processor at 2.66 GHz, 8 GB RAM, from Cluster FING,
Universidad de la República, Uruguay [8].

5.2 Solution Encoding

Individuals encode the position of each UAV at each instant of time. A matrix
M (dimensions u× s, number of UAVs× timesteps) is used, where each element
Mij is a pair (xij , yij) that represents the position of each UAV in a Carte-
sian coordinate system. A sample of solution encoding is presented Fig. 1 for an
problem considering two UAVs and five time steps.

1

1

1 1 1

2 22

2

2

[
(0, 0) (1, 1) (1, 2) (2, 2) (3, 2)
(0, 0) (1, 0) (1, 0) (2, 1) (3, 0)

]

Fig. 1. Sample solution encoding.

5.3 Fitness Function

The fitness function is defined as the linear aggregation of the benefit functions
presented in the formulation: fitness(p) = δ(p) + γ(p) + φ(p).
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5.4 Evolutionary Operators

Population Initialization. The initial population is generated by the following
procedure. The route of each UAV is established by generating a path that starts
at the base position and moves away towards a certain direction at maximum
speed. This direction is determined by the angle i × 2π

u + j × 2π
u×Z , where i ∈

[0, u − 1] is the UAV identification, j ∈ [0, Z] is the number of the candidate
solution, and Z is the population size. This way, each candidate solution is a
rotation of another.

Selection. The Stochastic Universal Sampling (SUS) with Sigma Escalation (σ)
is used as selection operator. There are mainly three advantages of using SUS+σ
versus other selection techniques: i) SUS is not biased to highly fitted individuals;
ii) in the initial stage of the algorithm, σ helps to avoid premature convergence
caused by the dominance of a group of individuals with very high fitness, and
ii) in the final stage, σ helps to amplify small differences in fitness when the rate
of improvement has slowed down.

Recombination. The Single Point Crossover (SPX) operator is used for recombi-
nation. According to preliminary experiments, this operator provides an appro-
priate search pattern for the problem. Individuals resulting from the recom-
bination may encode infeasible solutions. In this case, a correction procedure
(described later on this section) is applied.

Mutation. A specific mutation operator was designed for the problem. First, the
number of positions to be modified is selected uniformly in [1, u × t

s ]. Positions
to mutate are randomly selected with uniform probability between the positions
in the individual. Once the new direction has been defined, the sense of flight
is chosen randomly in an equiprobable way and the speed of the UAV in this
new direction is set as the maximum. The mutation changes the direction of the
UAV to the perpendicular to the current one (computed from the current and
next position). Once the new direction has been defined, the sense of flight is
chosen randomly by applying a uniform distribution. The speed of the UAV is
set to maximum. Individuals resulting from the mutation may encode infeasible
solutions. In this case, a correction procedure is applied.

Correction of Unfeasible Solutions. There are two cases in which an individual
may encode an unfeasible solution to the problem: (i) when the path of a UAV
has two consecutive positions that are more distant than it can travel in a time
interval, and (ii) when a UAV does not return to the base after completing a
tour. To correct individuals that code solutions with infeasibility of type i, the
position from which it is not possible to reach the nearest one when the UAV
flies at maximum speed is changed. In order to correct infeasibility of type ii,
the latest simulation step in which it is still possible to return to the base is
determined, and the UAV trajectory is modified from that step towards the
base.

Stopping Criterion. The proposed EA uses the stagnation technique: the execu-
tion of the algorithm stops when detecting a stagnation in the best fitness value
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of the population during a certain number of generations, assuming that the loss
of diversity does not allow the EA to progress any further. On the other hand,
the MOSES algorithm uses the predefined effort criterion, where the execution
is interrupted after a certain number of generations. Stagnation is not useful in
this case, as MOSES has a stronger selection pressure and diversity generation
(MOSES relies on mutations to modify individuals), so the method usually is
able to improve even after a stagnation situation is detected.

6 Experimental Analysis

This section presents the experimental analysis of the proposed EA.

6.1 Baseline Greedy Algorithm

A simple greedy algorithm was designed and implemented for baseline compari-
son. This strategy assigns a different objective to each UAV for surveillance and
marks the assigned objectives as surveilled. Once a UAV finishes surveilling its
assigned objective, a new objective is assigned to it until no more unsurveilled
objectives are left or the UAV must return to the base.

6.2 Problem Instances

Four different problem instances were synthetically generated for the experi-
mental evaluation: one small-sized instance, two medium-sized instances and a
large-sized instance. The proposed instances are presented in Table 1, where all
distances are expressed in m and all speeds in m/s.

Table 1. Proposed problem instances

#I H W (xB ,yB) |U | vD |T | s |O| vO P ro rc

0 100 100 (50, 50) 5 2 100 10 2 1 <2,4> 3 2

1 1000 1000 (300, 300) 5 10 1000 10 4 5 <1,2,3,4> 5 5

2 1000 1000 (700, 700) 10 10 1000 10 4 5 <2,2,8,8> 5 10

3 10000 10000 (5000, 5000) 5 10 2000 20 5 0.1 <1,1,1,1,10> 2 1000

The starting location of each objective was generated randomly following a
uniform distribution and its motion behavior was generated by applying Rapidly-
exploring Random Tree, an efficient strategy for searching a multi-dimensional
space using trees, biased towards unexplored sections of the search space.
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6.3 Parametric Configuration Analysis

Configuration analysis was performed using instance #0 while the experimental
evaluation is performed using instances #1 to #3 to avoid bias in the resulting
configuration. The parameters pC and pM were studied for the EA while T and
Pmin were studied for MOSES. The studied candidate values for each parameter
were the following: pC ∈ {0.5, 0.8, 1.0}, pM ∈ {0.001, 0.1, 0.15}, T ∈ {1, 5, 100},
Pmin ∈ {0.1, 0.2, 0.3}. Population size and stopping condition are fixed and were
configured to be 200 individuals and 2000 generations without improvement for
both EA and MOSES. A total of 40 independent executions for each combina-
tion of candidate values was performed. Results are compared using the fitness
function and a score function score = mean(F ) − 2 × SD(F ) that takes into
account the mean (mean) and standard deviation (SD) of the set of computed
fitness values (F ).

Tables 2 and 3 report the score value and the minimum, median, maximum
fitness along with the first and third quartile fitness results for each combination
of parameter values. Best values are colored.

Table 2. Minimum (min), median (med), maximum (max), first (Q1) and third (Q3)
quartile fitness and score values computed by the EA for instance 0.

pM pC Fitness Score

min Q1 med Q3 max

0.01 0.5 537.22 624.88 725.83 946.44 1111.33 383.04

0.01 0.8 563.22 786.11 951.55 1043.50 1112.66 566.40

0.01 1.0 668.44 893.61 970.05 1058.61 1114.44 691.27

0.10 0.5 516.22 660.44 815.33 907.66 1097.33 405.56

0.10 0.8 671.77 838.72 928.33 982.72 1126.44 623.20

0.10 1.0 775.11 911.94 991.00 1047.22 1153.44 733.39

0.15 0.5 533.33 705.61 794.11 896.66 1480.33 381.58

0.15 0.8 730.11 851.44 937.61 965.22 1075.66 672.62

0.15 1.0 735.00 915.11 995.50 1064.16 1147.77 724.96

Results show that overall the best results are computed by the EA when
configured with pM = 0.10 and pC = 1.0 and by MOSES when configured with
T = 1 and Pmin = 0.2. Henceforth, all experiments are performed using these
configurations.

6.4 Experimental Results

A total of 40 independent executions where performed for both the EA and
MOSES for each problem instance from #1 to #3. Table 4 presents efficacy and
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Table 3. Minimum (min), median (med), maximum (max), first (Q1) and third (Q3)
quartile fitness and score values computed by MOSES on instance #0.

T Pmin fitness score

min Q1 med Q3 max

1 0.1 361.55 397.83 434.83 464.44 592.66 296.03

1 0.2 363.33 408.05 427.94 459.00 558.55 299.18

1 0.3 353.88 394.72 416.00 459.61 539.77 293.65

5 0.1 247.66 290.88 342.00 413.00 585.88 158.45

5 0.2 292.66 316.11 362.44 422.44 502.11 213.59

5 0.3 223.11 273.77 323.11 376.38 517.22 147.28

100 0.1 243.77 261.77 278.55 296.22 336.11 205.69

100 0.2 293.66 309.66 333.83 353.33 433.00 243.23

100 0.3 192.33 197.50 205.33 213.83 234.33 151.18

Table 4. Efficacy and efficiency metrics for the EA, MOSES and greedy algorithm for
problem instances #1 to #3.

instance #1 instance #2 instance #3

EA MOSES Greedy EA MOSES Greedy EA MOSES Greedy

Fitness

Best 5252.0 576.8 665.0 27222.5 2217.5 6608.0 22454.7 22461.5 3529.9

Mean 3167.1 495.5 – 12935.1 2059.8 – 22448.8 22452.6 –

σ 948.0 29.6 – 4404.2 54.1 – 3.58 3.3 –

Number of generations

Mean 2335.9 1968.6 – 300.3 1976.1 – 343.0 1913.0 –

Execution time (s)

Mean 307.1 179.8 0.1 437.2 457.6 0.1 429.1 388.3 0.1

σ 180.2 3.5 – 49.5 4.8 – 83.0 3.0 –

efficiency metrics for the EA, MOSES and the greedy algorithm for each problem
instance.

Results show the EA is more accurate than MOSES and the greedy algorithm
by one order of magnitude when solving problem instances #1 and #2. The
greedy algorithm is the second most accurate when solving problem instances
#1 and #2, outperforming MOSES in every execution. However, when solving
problem instance #3, both the EA and MOSES outperform the greedy algorithm
and present similar accuracy results with no significant difference between them.

Regarding efficiency, the greedy algorithm requires significantly less execution
time than the EA and MOSES in every problem instance. In average, MOSES
is the second most efficient algorithm, requiring less execution time than the EA
for problem instances #1 and #3.
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Figures 2 and 3 show the fitness computed by the EA, MOSES and greedy
algorithm for problem instances #1 and #2. Fitness computed for problem #3
is not presented because there is no noticeable difference between the EA and
MOSES.
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Fig. 2. Fitness computed by the EA, MOSES and the baseline greedy algorithm for
problem instance #1.
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Fig. 3. Fitness computed by the EA, MOSES and the baseline greedy algorithm for
problem instance #2.

7 Conclusions and Future Work

This article presented an approach to address the problem of searching and mon-
itoring targets using a fleet of autonomous UAV. A mathematical formulation
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for the problem is proposed for maximizing the visual surveillance of the targets,
the number of UAV connected to the ad-hoc communication network and the
coverage of the area of interest.

A set of four realistic problem instances were synthetically generated with
areas ranging from 300 m× 300 m up to 20.000 m × 20.000 m and with up to 5
moving targets for surveillance. Two different evolutionary algorithms were pro-
posed for dealing with the off-line variant of the problem, one based on a EA and
the other on MOSES. Furthermore, a baseline greedy algorithm was proposed
for comparison. The smallest instance is used for calibrating the algorithm and
the others for the experimental evaluation.

The experimental evaluation show that in average the proposed algorithm
based on the EA is 2.2× more accurate than MOSES and the baseline greedy
algorithm. The EA outperforms MOSES and the greedy algorithm in every
execution when solving two of the three problem instances considered for the
experimental analysis. However, the EA and MOSES compute equally accurate
solutions for the remaining problem instance, both of them significantly outper-
forming the greedy baseline algorithm.

When considering the execution time, results show the EA and MOSES
require around 6 min of execution time while the greedy algorithm requires just
0.1 s of execution time. Hence, the greedy algorithm is suitable for addressing
the on-line variant of the problem.

Overall, the proposed algorithm showed to be effective for addressing the
optimization problem in a reasonable execution time. The main lines for future
work are two. First, generating and studying a larger set of realistic problem
instances, thus leveraging the efficacy of the proposed algorithm in a wide range
of scenarios. Second, design additional planning algorithms for addressing both
the offline and the online variant of the proposed problem.
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Abstract. The detection of the fundamental frequency (f0) in speech
signals is relevant in areas such as automatic speech recognition and iden-
tification, with multiple potential applications. For example, in virtual
assistants, assistive technology devices and biomedical applications. It
has been acknowledged that the extraction of this parameter is affected
in adverse conditions, for example, when reverberation or background
noise is present. In this paper, we present a new method to improve the
detection of the f0 in speech signals with reverberation, based on ini-
tialized Long Short-term Memory (LSTM) neural networks. In previous
works, LSTM has used weights initialized with random numbers. We pro-
pose an initialization in the form of an auto-associative memory, which
learns the identity function from non-reverberated data. The advantages
of our proposal are shown using different objective quality measures, in
particular, in the detection of segments with and without f0.

Keywords: Deep learning · Fundamental frequency · LSTM ·
Reverberation

1 Introduction

The analysis of noisy and reverberant speech signals has been a topic of interest
over the past several decades. Moreover, it is well-known that speech signals
are degraded in real-world environments. The quality of the communications
systems or the recognition performance may affect their quality [3,30,40,41]
with such background noise, reverberation or other distortions degrading the
speech information.

The speech enhancement algorithms developed to enhance noisy or reverber-
ated speech can be considered successful if they enhance the signal quality [20],
according to objective or subjective measures. Also if the algorithms allow better
detection of relevant parameters, such as fundamental frequency (f0).
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There are some signal processing-based methods for the problem of enhancing
reverberated speech. But more recently, Deep Neural Networks (DNN) have
been presented in [10,19,33] for this purpose. The main approach for DNN is
the mapping of spectral features from degraded speech into the features of the
corresponding clean speech.

The new types of recurrent neural networks (RNN) have been applied where
there is a temporary dependence on the data. For example, in handwriting recog-
nition or speech processing. One recent kind of RNN, the Long Short-Term Mem-
ory Network (LSTM) has succeeded over other the types of networks for noise
reduction and reverberant distortions in speech signals.

Among the most important tasks in speech processing is the f0 detection,
because its accurately detection is very important in many applications. There
are still many possibilities for improvement in the algorithms proposed so far [42].

In this paper, motivated by previous successful experiences using LSTM in
enhancing speech signals, we present a new way to initialize LSTM neural net-
works to improve f0 detection in signals degraded with reverberation. The initial-
ization of the network is based on a supervised procedure. We show the benefits
for the detection of f0 in various conditions of reverberation, with the network
initialized.

1.1 Related Work

Previous references on robust fundamental frequency detection with signal proce-
ssing-based techniques have analyzed directly the information of the signals [19,
35], especially periodicity. In recent references, deep learning algorithms have
been used to noise or reverberation reduction and parameter detection, especially
using features derived from the spectrum. [1,7,24,34].

Some applications of deep learning have outperformed classical enhancing
algorithms on speech signals [6,15,21,25,26].

Unsupervised initialization and then fine-tuning processes with other net-
works, such as Restricted Boltzmann Machines (RBM), have been presented to
increase the effectiveness of the neural networks [9]. It is commonly considered
the breakthrough of effective training for deep neural networks the algorithms
for training deep belief networks (DBN), based on a combination of unsupervised
pre-training and supervised fine-tuning [11].

The benefits of unsupervised pre-training stages before the training algo-
rithms have been also verified in fields other than speech processing, such as
music classification [38]. Semi-supervised techniques have been also applied in
similar applications [39] combining at least one stage of unlabeled data to initial-
ize the weights of the neural networks. In recurrent neural networks, supervised
initialization has been previously applied for spectral parameters on noisy and
artificial speech [5,6].

In fundamental frequency detection, deep LSTM networks have recently out-
performed several other algorithms [28,29]. We use these previous works as ref-
erences, and provide our work with a better initialization state of the network
for the task of enhancing reverberated speech. The training process of neural
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networks is traditionally based on random initialization of weights, and then the
process of adjustment of those weights is based on the data presented to the
network.

The idea that a trained artificial neural network can be used as a guide to
the training of other models was proposed by [22,27], assuming that the first
model can transfer valuable information to other networks. This advantage has
been known as transfer knowledge [36].

In our approach, the initialization is supervised, with an Auto-associative
network trained to map the identity function between its inputs and its outputs,
using clear speech parameters in this stage. In f0 detection, this Auto-associative
network provides better results in reverberated speech, due to the approximated
state provided in the initialization.

1.2 Problem Statement

In real world environments, where a speech signal x(t) is produced and reg-
istered using microphones, there are several conditions that degrade x(t) to a
yR(t) finally recorded or processed. For example, in reverberation, a multi-path
propagation of x(t) to the microphone register is what produces the distortion.
In this case [31]:

yR(t) = hT
R(n) ∗ x(t) (1)

where hT
R is the impulse response of the transmission channel between the source

of the speech and the microphone.
The reverberation enhancement of the signal, consist on the approximation

of x(t) from yR(t).
For deep learning-based algorithms for speech enhancement, x(t) can be esti-

mated directly from data, employing algorithms that can learn a mapping func-
tion f(·) between noisy and reverberated variables:

x̂(t) = f (y(t)) , (2)

where x̂(t) is calculated from x(t) at the output of the neural network.
The amount of training data, the architecture of neural network and the

algorithm selected, are factors that modify the precision of the approximation
f(·).

During the training process, the set of weights θi of the network, needed
to start the process, are regularly established as random numbers. The process
began and run until the stop criteria is reached, where a set of updated weights
θi are stored and employed with the test sets.

For our proposal, θi is generated from a supervised process, in which is pre-
sented to the neural network the parameters of clean speech at the input and
the output. This way f(·) is close to the identity function.

We pretend to demonstrate that the nonrandom set of weights is a better
way to start the training process, in contrast with the random θi initialization,
mainly in terms of detecting voiced and unvoiced sounds. Voiced sounds have
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values of f0 > 0, and are present on vowels and some consonants, while unvoiced
sounds are present in silence and most consonants.

The rest of this paper is organized as follows: Sect. 2 brings some information
of the LSTM neural networks. Section 3 details the proposed system. Section 4
shows the experimental setup implemented to test the proposal. Section 5 expose
and discuss the results, and at last, conclusions are stated in Sect. 6.

2 Autoencoders of Long Short-Term Memory Neural
Networks

Over the last few decades, several kinds of neural networks have been imple-
mented in speech recognition and speech enhancement of degraded signals. More
recently, researchers have experimented with deep learning algorithms, consisting
on several layers of abstraction (typically neural networks with over two hidden
layers) when dealing with the problem of enhancing noisy or reverberated speech
and detection of f0 under degraded conditions. RNN [14], has helped to model
the dependent nature of speech parameters, due to feedback connections within
the neurons, to themselves but also other neurons on the same layer. LSTM is
an extended kind of RNN, that has been presented in [23], with the capacity
to learn long term relationships in data and store information for long or short
intervals.

Automatic speech recognition systems, speech synthesis, and handwriting
generation are only a few of successful implementations of LSTM, where the
information of past values are crucial to classify of performing regression [17,18].

The structure of LSTM is the following: a set of units inputs the sequences
y = (y1, y2, . . . , yT ), then hidden vector sequences h = (h1, h2, . . . , hT ) are cal-
culated through the set of weights between inputs and hidden units, of between
hidden and hidden units of the next layer. This structure is similar to those of
basic RNN.

Every unit of the network has a series of gates that allow the passing or the
storage of information through an arbitrary number of time steps. This char-
acteristic enables to model time-dependent sequences in a better way. Figure 1
illustrates the basic cell of an LSTM.

The RNNs have been reported with some difficulties during training, specially
for the vanishing gradient and exploding gradient problems described in [4].
The LSTM networks seems to address this problem [32]. Detailed mathematical
description of the LSTM networks can be found on [14,16,23]. In this work we
have followed the implementation described in [8].

2.1 f0 Estimation with Autoencoders

The f0 recognition in deep learning is performed by picking pairs of inputs and
outputs (contemplating spectral information as part of the information), and
training the neural networks with them. Subsequently, the f0 might be inferred
from this information.
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Fig. 1. Basic cell memory of a LSTM. x(t) is the input and h(t) the output of the unit.
i, o, f represent the gates, and c the value of the memory.

The denoising autoencoder is part of the architectures of neural networks
aimed to improve noisy or reverberant speech. The structure of an autoencoder
is as follows: A first section is an encoder, which maps an input vector y into
an internal representation h in the hidden layers. And a second section is the
decoder, making a mapping from the hidden representation into a x̂ vector.

The training process is performed presenting the corrupted reverberated fea-
tures at the inputs of the decoders, while the equivalent clean attributes of the
same dimensionality will be the outputs. The training algorithm adjusts the
internal connections of the network to learn the complex relationships between
input and output. After this process, an output with a better estimation of f0
can be obtained.

3 Proposed System

To detect f0 from reverberated speech, the mapping from corrupted f0 can be
learned directly from the data. For this purpose, we use sentences of reverberated
utterances and the corresponding clean version to train the LSTM auto-encoder
networks and divided the available set in training, validation, and test sets, as
commonly defined in machine learning algorithms.

The weights of the recurrent LSTM networks are initialized in two ways:

– Randomly: All the weights have random numbers produced from a normal
probability distribution (mean 0, standard deviation 1) at the first epoch of
training.

– Initialized: An auto-associative network is a neural network whose input and
target vectors are the same [2]. Here, the networks are trained a first time
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presenting the same clean data at the input and at the output. After this first
training, the weights of the Auto-associative networks became the initialized
weights of the corresponding recurrent LSTM networks for the detection of
the f0 parameter.

3.1 Corpus Description

In our experiments, we use the Reverberant speech database [37]. The database
was created at the University of Edinburg, and was designed to train and test
speech dereverberation methods. Clean speech was made reverberant by con-
volving it with several room impulse responses. For the purpose of this work, we
randomly chose five conditions from the whole data-set: ACE Building Lobby 1,
ACE Lecture Room 1, ACE Lecture Room 2, ACE Meeting Room 1 and ACE
Meeting Room 2. Those conditions contain utterances from the 28 speakers in
the training set 1 of the database.

3.2 Feature Extraction

The audio files of the database were downsampled to 16 kHz, in order to extract
the set of parameters from frames of speech using the Ahocoder system [12]. In
this system, the fundamental frequency fk

0 (zero-valued if invoiced), 39 MFCC,
plus an energy coefficient are extracted from each 10 ms frame. Details on the
parameter extraction and waveform regeneration of the Ahocoder system can be
found in [13].

3.3 Pre-trained Initialization

For each condition of reverberation, 400 utterances of clean speech (the approx-
imate amount of files for each condition) were used in the initialization proce-
dure. The 40-dimensional vectors (f0 + 39MFCC) was presented at the input
and output of the network simultaneously. The initial weights were established
as random numbers. To update the weights, the back-propagation through time
algorithm were applied. The stop criteria was twenty five epochs from the last
best result, or a maximum of one thousand epochs.

4 Experimental Setup

The experimental setup followed in this work can be summarized in the following
steps:

1. Feature extraction: A set of parameters was extracted from the reverberated
and the corresponding clean audio files. Those from the reverberated files
were used as inputs to the networks, while the corresponding clean features
were the outputs.
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2. Training and validation: During training, the weights of the networks were
adjusted as the pairs of inputs and outputs were presented. A validation set
of about 150 files for each case were also used.

3. Test: A subset of 50 randomly selected utterances (about 10% of the whole
utterances of each condition) was chosen for the test set. These utterances
were not part of the training process, to provide independence between the
training and testing.

In order to determine the benefits of the proposal, the following objective
measures were adopted [29], as previous references also applied:

– VDE (Voice Decision Error): This measure indicates the percentage of frames
misclassified in terms of voicing (with f0 > 0 )/unvoicing (with f0 = 0),
according to the equation:

V DE =
NV →U + NU→V

N
× 100%, (3)

where NV →U and NV →U represent classification errors of Voiced or Unvoiced
frames into the other category.

– DR (Detection Rate): This objective measure is evaluated only on voiced
frames. A correct value is considered correct if the deviation of the real clean
value of f0 is within 5%. This is performed following the equation:

DR =
N0.05

Np
× 100%, (4)

where N represent number of frames, and p the total number of voiced frames
of the clean speech.

– Sum of squared errors (sse): This is measure for the error in the validation
and test sets during training of a neural network. It is defined as:

sse(θ) =
T∑

n=1

(cx − ĉx)2 (5)

=
T∑

n=1

(cx − f(cx))2 , (6)

where cx is the known value of the outputs and ĉx the its approximation from
the network.

5 Results and Discussion

The following nomenclature is used to present the results:

1. Reverb: Refers to measures applied to the f0 parameter detected directly
from the reverberated speech.
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2. LSTM: Refers to measures applied to f0 detected with the recurrent LSTM
networks initialized with random weights.

3. LSTM-AA: Represent the f0 obtained from the networks initialized using the
weights of the auto-associative network.

Table 1 shows the results of the VDE measure for the three systems (Reverb,
LSTM and LSTM-AA), and the five cases contemplated from the dataset:

Table 1. Results for the VDE in the three systems. Lower values represent better
results, and * is the best result.

Reverberating condition None Initialized Random

ACE Building Lobby 1 15.59% 13.02% * 13.33%

ACE Lecture Room 1 16.00% 12.96% 12.69% *

ACE Lecture Room 2 19.11% 17.61% * 17.83%

ACE Meeting Room 1 17.76% 14.61% * 15.00%

ACE Meeting Room 2 21.83% 18.83% * 19.99%

Except for “ACE Lecture Room 1”, the proposed initialization presents bet-
ter values of VDE in all cases, compared to the random initialization. The excep-
tion can be explained in terms of the particular different parameters of the clean
speech used at the initialization of the network, which differs greatly from those
of the reverberated signal in each case and may affect differently the capacity of
the network to enhance the result.

The exception of “ACE Lecture Room 1” can be considered a close value
to the random initialization. The rest of results verified that the initialization
allows the recurrent LSTM to provide better Voiced/Unvoiced decisions. This
improvement in VDE could benefit automatic speech recognition systems and
perceptual quality of the signals.

Table 2 shows the results of the VR measure, comparing only the results
obtained with the recurrent LSTM in voiced frames. For these results, the ini-
tialization proposed presents better values on two of five cases. This few cases
can be considered as a less satisfying result compared to the previous case. Nev-
ertheless, it should be emphasized this measure is considering the precision of f0
in voiced frames only. To have a meaningful improvement in this measurement,
it is possible to foresee the application of new stages of enhancement applied
exclusively to voiced frames.

One additional advantage of the initialized LSTM-AA is the lower sse error
achieved. Table 3 shows the number of epochs required and the sse error for each
of the five cases. It can be seen how the initialization achieved significant lower
sse, and in one case even with fewer training epochs.

Figure 2 shows the evolution of sse in the validation set. It can be seen how
a lower error is obtained with the proposed initialization in each epoch. The
minimum value is achieved also in a less amount of epochs.
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Table 2. Comparison of the results for the VR in the detection f0. Higher values
represent better results. * is the best result.

Reverberating condition Random Initialized

ACE Building Lobby 1 90.5%* 88.6%

ACE Lecture Room 1 77.5% 81.58% *

ACE Lecture Room 2 80.0% * 68.0%

ACE Meeting Room 1 83.5% 87.0% *

ACE Meeting Room 2 74.6% * 70.8%

Table 3. Comparison of the training epochs and sse error for the five cases of rever-
berated speech. * is the best result.

Initialized Random

Reverberating condition Epochs sse Epochs sse

ACE Building Lobby 1 582 93.81* 526 127.42

ACE Lecture Room 1 736 101.76* 503 144.07

ACE Lecture Room 2 251 165.33* 160 201.13

ACE Meeting Room 1 374 167.87* 249 183.58

ACE Meeting Room 2 332 156.30* 355 193.95

0 50 100 150 200 250 300 350

500

1,000

1,500

epoch

ss
e

Random
Initialized

Fig. 2. Evolution of sse error for validation set of the ACE Meeting Room 2 case

Finally, in Fig. 3, three contours of f0 are shown, for different conditions of
reverberation. It can be seen how reverberated speech commonly presents some
misclassification of voiced and unvoiced frames, especially with positive values
of f0. The initialized LSTM improve these errors in numerous cases.
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Fig. 3. Comparison of f0 contour for several conditions

However, due to the nature of the neural networks, the values at the output
cannot change the value instantly, as the natural speech signal does. As different
phonemes occur in speech, the values of f0 can go from 0 to a positive value
immediately one frame after the other. Neural networks require some time steps
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to reach a stable value, and this is one reason the VR measure shown previously
might be worse.

Further, from these results, we consider an improvement in fundamental fre-
quency detection for the cases of reverberating speech, when the auto-associative
initialization of the recurrent LSTM network is employed, especially with the
VDE measure, and a more efficient way to train them.

6 Conclusions

In this paper, we implemented a new method of initialization LSTM neural net-
works, to improve the detection of the fundamental frequency in reverberated
speech signals. The reverberation in speech considerably affects the detection of
this parameter, as has been revealed with objective measures. As has been shown
in previous references, recurrent LSTM networks, typically initialized with ran-
dom numbers in their weights, can significantly enhance speech signals degraded
with noise or reverberation.

The results of our supervised initialization presented in this work show even
more significant improvements, given that pre-training the neural network affects
the correct detection of frames with positive values of f0, called voiced frames,
or value frames with f0 = 0, called unvoiced frames. The impact of this proposal
has not yet been verified on the accuracy of the value of f0 in the voiced frames,
which represents a great opportunity to explore our method with more detail
and with a wider variety of conditions. For example, new algorithms can be
applied in subsequent stages of refinement.

The benefits of our results can represent improvements in voice recognition
systems or analysis of speech signals registered in real-life environments, where
reverberation is common.

For future work, we plan to verify the proposed initialization in the total set
of conditions of reverberation presented in the database, and the refinement of
the results with multiple stages.
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7. Coto-Jiménez, M., Goddard-Close, J.: LSTM deep neural networks postfiltering for
enhancing synthetic voices. Int. J. Pattern Recogn. Artif. Intell. 32(01), 1860008
(2018)

8. Coto-Jiménez, M., Goddard-Close, J., Mart́ınez-Licona, F.: Improving automatic
speech recognition containing additive noise using deep denoising autoencoders of
LSTM networks. In: Ronzhin, A., Potapova, R., Németh, G. (eds.) SPECOM 2016.
LNCS (LNAI), vol. 9811, pp. 354–361. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-43958-7 42

9. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang.
Process. 20(1), 30–42 (2011)

10. Du, J., Wang, Q., Gao, T., Xu, Y., Dai, L.R., Lee, C.H.: Robust speech recognition
with speech enhanced deep neural networks. In: Fifteenth Annual Conference of
the International Speech Communication Association (2014)

11. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11(Feb),
625–660 (2010)
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Abstract. Text-to-speech (TTS) synthesis is the technique of generat-
ing intelligible speech from a given text. The most recent techniques for
TTS are based on machine learning, implementing systems which learn
linguistic specifications and their corresponding parameters of the speech
signal. Given the growing interest in implementing verbal communication
systems in different devices, such as cell phones, car navigation system
and personal assistants, it is important to use speech data from many
sources. The speech recordings available for this purpose are not always
generated with the best quality. For example, if an artificial voice is cre-
ated from historical recordings, or a voice created from a person whom
only a small set of recordings exists. In these cases, there is an addi-
tional challenge due to the adverse conditions in the data. Reverberation
is one of the conditions that can be found in these cases, a product of
the different trajectories that a speech signal can take in an environment
before registering through a microphone. In the present work, we quanti-
tatively explore the effect of different levels of reverberation on the qual-
ity of artificial voice generated with those references. The results show
that the quality of the generated artificial speech is affected considerably
with any level of reverberation. Thus, the application of algorithms for
speech enhancement must be taken always into consideration before and
after any process of TTS.

Keywords: Hidden Markov Models · PESQ · Reverberation · Speech
synthesis

1 Introduction

Text-to-speech (TTS) synthesis is the technique created for the generation of
artificial, intelligible speech from any given text [15], usually from computers or
high technology devices. There are many implementations of TTS in commercial
applications and many potential areas where it can be applied. For example,
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any circumstance that requires the transfer of information between people and
machines is a potential application. One of the main advantages of applying TTS
for this purpose is the fact that speech is the most widely used communication
method between humans. Additionally, verbal communication is natural and
requires no special training [4].

TTS systems are divided into two main components [7]: A “front end”, where
the text is processed to produce a linguistic specification, so the units of speech
(such as phonemes or syllables) can be described in terms of their surrounding
components, and a “back end”, that take the linguistic specification as input
and generates a waveform.

The development of TTS has evolved from the creation of isolated words or
phrases to general purpose voices in different languages, with different styles and
emotions [1,3]. There is a significant effort in research to obtain improvements
in the multiple challenges that TTS systems have today, as its extensive use in
applications depends on obtaining more natural and close-to-human voices.

The most recent techniques to generate TTS have emerged from the idea of
machine learning algorithms applied to store and reproduce parameters of the
speech [19–21]. The first model that successfully applied those techniques was
the Hidden Markov Models (HMM), learning parameters such as fundamental
frequency (f0) and Mel-Frequency Cepstral Coefficients (MFCC). This set of
parameters and models were known as Statistical Parametric Speech Synthesis.
More recently, Deep Learning-based algorithms have been applied to voice gener-
ation from text [9,12], or as post-filter to the results obtained with HMM [2,11].

Previous references have reported a significant quality drop in artificial speech
when the training parameters of the speech data are noisy. This condition
requires the compensation of the voice signals with several techniques [6,17,18].
For example, speech enhancement algorithms can be used to clean the available
noisy data.

This problem has been addressed in several references, but only some of
them have objectively measured the impact of specific conditions, particularly
noise [10]. The interest in predicting the effects of different degrees of reverber-
ation in the results of statistical parametric speech synthesis relies on the prior
evaluation of usability for future experiences with speech synthesis.

For this purpose, in this work we want to address the impact of reverbera-
tion on objective quality measures in speech synthesis, in comparison to those
produced with clean speech.

To answer this question, we made several experiments with different condi-
tions of reverberation, and measure the impact between clean and reverberated
speech, and between the artificial speech generated with both.

The rest of this paper is organized as follows: Sect. 2 gives the background
and context of the problem. Section 3 describes the experimental setup, Sect. 4
presents the results with a discussion, and finally, in Sect. 5, we present the
conclusions.
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2 Background

2.1 Hidden Markov Models

Hidden Markov Models (HMM) can be described from a Markov process, in
which state transitions are given by probability. There is a second process
described with probability, which models the emission of symbols when it comes
to each state, according to probabilistic rules. There are several kinds of HMM,
applied to model many important areas.

In Fig. 1, a representation of a particular HMM, known as a left-to-right, is
shown. This is the most common type of HMM applied in speech technologies.
Here, the first state is at the left, from which transitions can occur. These tran-
sitions lead to the same state or to the next on the right, according to some
probability pij . Transitions cannot occur in the reverse direction.

Fig. 1. Left to right example of an HMM with three states. Ok represents the obser-
vation emitted in state k.

An HMM can mathematically be described by a tuple:

λ = (S, πi, a, b) (1)

where S is the set of states, π a probability vector that establishes the probability
of i to be the initial state. a is the transition probability matrix between states,
and b the probabilistic rule of observations of specific symbols in each state.

2.2 Statistical Parametric Speech Synthesis

Statistical parametric speech synthesis based on HMM follows a procedure with
a training part and a synthesis part. The training part requires recordings of
speech and their corresponding text transcriptions. This data is presented to a
set of HMM (or other machine learning algorithms) that learns the parameters
corresponding to a certain sound of the speech.

In the synthesis part, any text can be applied to the models, which output
the corresponding parameters to the specific sounds of the utterance, and then a
filter produces the waveform. This scheme has been applied since the creation of
the HMM-Based Speech Synthesis (HTS) System [16,24] for several languages,
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and allows specific definition for phonetic units, customizing training parameters
according to needs and the amount of available data.

For applications of speech recognition and synthesis, the probabilistic rule at
the output of each state of a HMM, named b in Eq. 1 is assumed as a multivariate
Gaussian distribution defined as:

bi(ot) =
1

√
(2π)d|Σi|

exp
{−1

2
(ot − μi)

�Σ−1
i (ot) − μi

}
(2)

where μi and Σi are mean vector and covariance matrix, respectively. d is the
dimension of vector of acoustic parameters, and ott is an observation vector of
parameters at frame t.

The training process of a HMMs for a speech synthesis application can be
described as finding the best parameters of λ given observed parameters of the
speech (O). This process can be written as:

λmax = arg max
λ

p(O|λ,W ), (3)

where p is probability and W a specific word or sound.
In the synthesis part, the problem of getting the best parameters related to

a given W which need to be synthesized can be stated as:

omax = arg max
o

p(o|λmax, w) (4)

In the following sections, we describe the application of these models to produce
artificial speech and study the influence of reverberating conditions in training.

3 Experiments

In order to test the effects of reverberated speech to Statistical Parametric Speech
Synthesis based on HMM, the experimental setup can be summarized in the
following steps:

3.1 Database

For the experimentation, we used the SLT voice of the CMU Arctic databases,
developed at the Language Technologies Institute at Carnegie Mellon Univer-
sity [8]. This database was specifically designed for research in speech synthesis.
It consists of a number 1150 utterances selected from out-of-copyright texts from
Project Gutenberg.

For degrade this data with reverberation, we use five impulse responses from
the MARDY database [22] and the Center for Digital Music (C4DM) at Queen
Mary, University of London [14].

The following nomenclature will be used for each condition:

– MARDY, from the corresponding database.
– GH (Great Hall), from the C4DM database.
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– OC (Octagon), from the C4DM database.
– CR1 y CR2 (Classroom 1 y 2), from the C4DM database.

The speech files of the CMU database were convolved with the impulse
responses of each condition. The output is the speech signal with the rever-
beration of the space where the impulse response was recorded.

3.2 Synthesis of Reverberated Speech

With the clean version of the SLT/CMU voice, an artificial voice where build
using the HTS system [23]. To compare the influence of the different reverberat-
ing cases, the HMM-based synthetic voices were produced with each of the five
conditions after the convolution: MARDY, GH, OC, CR1, CR2.

A set of comparisons between clear speech, artificial speech produced with
the clear speech, artificial speech produced with reverberated speech and the
reverberated speech were performed. This comparison was made to measure the
effect of reverberation before and after the process to produce artificial speech.

Figure 2 illustrates the general procedure for each of the conditions of rever-
beration.

Fig. 2. Procedure to obtain and compare reverberated and artificial speech.

3.3 Evaluation

To evaluate the results given from our experiments, we use the PESQ (Per-
ceptual Evaluation of Speech Quality), defined in the ITU-T recommendation
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P.862.ITU. Results are given in interval [0.5, 4.5], where 4.5 corresponds to a
perfect reconstruction of the signal. PESQ is computed as [13]:

PESQ = a0 + a1Dind + a2Aind (5)

where the Dind is the average disturbance and Aind the asymmetrical distur-
bance. The ak are chosen to optimize PESQ in measuring speech distortion,
noise distortion, and overall quality.

We also use the MOS-LQO (Mean Opinion Score - Listening Quality Objec-
tive) measure, performing a mapping function from the PESQ, by the relation

MOS-LQO = 0.9999 +
4.999 − 0.999

1 + e−1.4945·PESQ+4.6607
, (6)

according to the ITU-T P.862.1 [5].
We are interested in measuring the effects of reverberation in the speech sig-

nals before and after the process of generating artificial speech with the HTS Sys-
tem. To perform these measures, we applied the following comparisons between
groups of utterances:

– Natural speech and HTS voice produced with natural speech.
– Natural speech and reverberated speech.
– Natural speech and HTS voice produced with reverberated speech.
– HTS voice produced with natural speech and HTS voice produced with rever-

berated speech.
– Reverberated speech and HTS voice produced with reverberated speech.

Besides those five comparisons, there are other possible combinations that
do not give information about the effects on artificial voice generation. For each
of the five cases of reverberation, we compare the PESQ measure. Additionally,
we report spectrograms and pitch contours for direct visualization of the results.

4 Results and Discussion

In this section, we show the influence of the different reverberations on clean
and artificial speech. The reverberation in speech signals greatly affects the esti-
mation of the pitch, which is one of the most important parameters for speech
recognition and generation.

For example, in Fig. 3 it is noticeable how the reverberation produces more
voiced frames (those with positive values for pitch) in the MARDY condition.
The GH, with a bigger degree of reverberation, almost produces only voiced
frames, introducing great distortion and affecting the quality of the speech.

The spectrograms also show different levels of distortion when compared to
the Clean voice and the correspondent artificial voice 4. For example, Fig. 5 show
some recognizable characteristics of the spectrum in the MARDY condition,
which seems to produce some light distortions in the artificial voice constructed
from this data.
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(c) Pitch contour of the GH condition

Fig. 3. Comparison of pitch contours for clean voice and two reverberating conditions
in the utterance: “Author of the danger trail, Philip Steels, etc.”

On the other hand, Fig. 6 shows evident degradation of the signal with the
OC condition and almost unrecognizable spectrum in the artificial speech. From
this spectrograms, it is remarkable how different levels of reverberation can affect
the quality of artificial speech.
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Fig. 4. Spectrograms of the utterance “Not at this particular case, Tom, apologized
Wittmore“, with the Clean Voice (at the top) and artificial voice (at the bottom). Pitch
contour is also highlighted.

Fig. 5. Spectrograms of the utterance “Not at this particular case, Tom, apologized
Wittmore”, with reverberated voice with MARDY condition (at the top) and arti-
ficial voice produced with this reverberation (at the bottom). Pitch contour is also
highlighted.

The results and comparisons for the PESQ measure are presented in form
or radar plots. The radar plots allow the comparison between all the measures
indicated in Sect. 3.3. The more contracted the radar plot, the lower perceptual
quality in the reverberated and artificial voice. All the plots have the same scale.
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Fig. 6. Spectrograms of the utterance “Not at this particular case, Tom, apologized
Wittmore”, with reverberated voice with OC condition (at the top) and artificial voice
produced with this reverberation (at the bottom). Pitch contour is also highlighted.

Clean-HTS(Clean)

Clean-Reverb

Clean-HTS(Reverb)

HTS(Clean)-HTS(Reverb)

Reverb-HTS(Reverb)

Fig. 7. Radar plot of Mean PSQ Values for MARDY Condition

Figure 7 shows the radar plot for the MARDY reverberation condition. As
shown previously, this is the case where the reverberation produces lower dis-
tortion on the signal. When compared to the rest of the radar plots, this is the
less contracted plot.
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The radar plot for the Octagon condition (Fig. 8) shows a smaller value of
PESQ for the reverberated voice. This lower quality also influences the lower
perceptual quality for synthetic speech in relation to natural and artificial speech
produced without reverberation.

Clean-HTS(Clean)

Clean-Reverb

Clean-HTS(Reverb)

HTS(Clean)-HTS(Reverb)

Reverb-HTS(Reverb)

Fig. 8. Radar plot of Mean PSQ Values for Octagon Condition

The GH reverberation produces a degradation of the signal which heavily
affects all the process, from the reverberated speech to the synthetic speech.
As shown in Fig. 9, this is the most contracted plot in terms of all categories
of speech without reverberation. According to these plots, this seems to be the
condition that affects more the speech signal and the correspondent artificial
voice.

Finally, the two CR conditions (Figs. 10 and 11) show similar degrees of rever-
beration and similar degradation on the perceptual quality of artificial speech.
In comparison with GH, OC presents lower PESQ when compared the reverber-
ated signal with the clean speech, and a better measure in the comparison of the
reverberated signal and the artificial speech.

The results of the MOS-LQ measure, obtained from Eq. 6 are presented in
Table 1. The greater effect on this measure before the generation of synthetic
speech tend to produce bigger negative effects on the results. But the relationship
does not seem to be linear.
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Clean-HTS(Clean)

Clean-Reverb

Clean-HTS(Reverb)

HTS(Clean)-HTS(Reverb)

Reverb-HTS(Reverb)

Fig. 9. Radar plot of Mean PSQ Values for GH Condition

Clean-HTS(Clean)

Clean-Reverb

Clean-HTS(Reverb)

HTS(Clean)-HTS(Reverb)

Reverb-HTS(Reverb)

Fig. 10. Radar plot of Mean PSQ Values for CR1 Condition
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Clean-HTS(Clean)

Clean-Reverb

Clean-HTS(Reverb)

HTS(Clean)-HTS(Reverb)

Reverb-HTS(Reverb)

Fig. 11. Radar plot of Mean PSQ Values for CR2 Condition

Table 1. MOS-LQ values from the different cases of reverberation. The results are
ordered from worst to best level of reverberation. Clean voice does not have MOS-LQ
for being the reference.

Reverberation MOS-LQ reverberated speech MOS-LQ HTS

Clean - 1.30

CR1 1.18 1.15

CR1 1.18 1.12

OC 1.26 1.13

GH 1.30 1.11

MARDY 1.56 1.16

All cases of reverberation produce artificial voice with lower MOS-LQ value
than those produced with clean speech. But, different degrees of reverberation
produces similar degradation, according to this measure. Being the reverberation
a non-additive process, the results show also a complex relationship between the
source speech and the result of the statistical parametric speech.

5 Conclusions

In this paper, it was explored the effects of reverberated speech on the creation
of artificial voices obtained with statistical parametric techniques, based on Hid-
den Markov Models. The importance of this research relies on the application
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of objective measure to the quality of speech before and after the process of
generating artificial voices.

For comparison purposes, we proposed the application of radar plots for the
multiple visualizations of PESQ measures on all the relevant combinations of
clean/artificial speech. These plots show how different levels of reverberation
affects the signal before and after the generation of voices with the HTS system.

The results show that reverberation in all analyzed degree is an undesir-
able condition for the generation of artificial voices with statistical parametric
techniques. Particularly for the effects on pitch detection.

This knowledge allows the discrimination of future sources of speech for gen-
erating synthetic voices. Having all degrees of reverberation significant negative
effects on the quality of synthetic speech, it is critical for the speech synthesis
the use of de-reverberation or enhancement procedures before the application of
machine learning models.

For future work, new quality measures and more conditions of reverbera-
tion can be included. Additionally, statistical validation of results and extended
graphical evidence of the degraded signals of natural and artificial speech.
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3. Coto-Jiménez, M., Goddard-Close, J.: LSTM deep neural networks postfiltering for
enhancing synthetic voices. Int. J. Pattern Recognit Artif Intell. 32(01), 1860008
(2018)

4. Holmes, W.: Speech Synthesis and Recognition. CRC Press, Boca Raton (2001)
5. ITU-T, R.P.: 862.1: Mapping function for transforming P. 862 raw result scores to

MOS-LQO. International Telecommunication Union, Geneva, Switzerland, Novem-
ber 2003 (2003)

6. Karhila, R., Remes, U., Kurimo, M.: Noise in HMM-based speech synthesis adap-
tation: analysis, evaluation methods and experiments. IEEE J. Sel. Top. Signal
Process. 8(2), 285–295 (2013)

7. King, S.: Measuring a decade of progress in text-to-speech. Loquens 1(1), e006
(2014)

8. Kominek, J., Black, A.W.: The CMU arctic speech databases. In: Fifth ISCA
Workshop on Speech Synthesis (2004)

9. Lee, J., Song, K., Noh, K., Park, T.J., Chang, J.H.: DNN based multi-speaker
speech synthesis with temporal auxiliary speaker id embedding. In: 2019 Interna-
tional Conference on Electronics, Information, and Communication (ICEIC), pp.
1–4. IEEE (2019)

10. Moreno Pimentel, J., et al.: Effects of noise on a speaker-adaptive statistical speech
synthesis system (2014)



382 M. Coto-Jiménez
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Abstract. Assistive Technology (AT) is a concept which includes the
use of technological devices to improve the learning process or the gen-
eral capabilities of people with disabilities. One of the major tasks of the
AT is the development of devices that offer alternative or augmentative
communication capabilities.

In this work, we implemented a simple AT device with a low-cost sen-
sor for registering speech signals, in which the sound is perceived as low
quality and corrupted. Thus, it is not suitable to integrate into speech
recognition systems, automatic transcription or general recognition of
vocal-tract sounds for people with disabilities.

We propose the use of a group of artificial neural networks that
improve different aspects of the signal. In the study of the speech
enhancement, it is normal to focus on how to make improvements in
specific conditions of the signal, such as background noise, reverberation,
natural noises, among others. In this case, the conditions that degrade
the sound are unknown. This uncertainty represents a bigger challenge
for the enhancement of the speech, in a real-life application.

The results show the capacity of the artificial neural networks to
enhance the quality of the sound, under several objective evaluation
measurements. Therefore, this proposal can become a way of treating
these kinds of signals to improve robust speech recognition systems and
increase the real possibilities for implementing low-cost AT devices.

Keywords: Artificial neural networks · Assistive Technology ·
LSTM · Speech enhancement

1 Introduction

Assistive Technology (AT) devices are important for many applications, as they
represent potential aids for people with physical and sensory disabilities which
might lead to improvements in the quality of life [34]. The wearable devices
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provides hands-free interaction, and are among the most valuable in the research
of AT, for purposes such as augmentative or alternative communication. The
development of these devices has been considered a rapidly evolving field, and
is expected to grow even more in the next ten years [27].

The speech signals used in AT, general-purpose communication devices or any
speech technologies are affected by distortions and became degraded in several
ways. For example additive noises, reverberations or others, produced by the
environment, or by the transmission, coding or reconstruction of the speech
signal. Applications that use these signals may be affected in their performance
because of these signal degradation.

In the past few decades, speech enhancement algorithms with many
approaches have been presented to suppress or reduce such distortions and
preserve or enhance the perceived signal quality. Several recent algorithms for
enhancing speech signals are based on deep neural networks (DNN) [8,17]. The
most common approach is learning mapping functions from degraded speech
into the features of the corresponding clean speech, using autoencoders or simi-
lar architectures of networks [6,7].

Among the new types of artificial neural networks, the Recurrent Neu-
ral Networks (RNN), and specially the Long Short-Term Memory Network
(LSTM) has succeeded in mapping features derived from the spectrum, usually
Mel-Frequency Cepstrum Coefficients (MFCC) and also fundamental frequency
(f0) [3]. The LSTM networks have overcome classical algorithms for enhancing
based on digital signal processing. These spectral and f0 features have been
used widely in speech-related tasks since the beginning of developing automatic
speech recognition systems.

In this work, we apply and extend previous experiences of speech enhance-
ment with LSTM networks for these parameters in real-world conditions of an
AT device, and applying several networks simultaneously. Benefits from this
proposal can be applied to realistic tasks of registering, recognizing and enhance
voice or any vocal-tract sounds produced in AT devices [18].

1.1 Related Work

Wearable assistive devices have been developed as task-specific solutions for
the blind, and hearing impaired, among other conditions, for activities such
as reading and travel [34]. Existing devices are very diverse, depending on the
necessity, the technology used and the location of the device on the body.

For example, in [37] a system for wearable audio navigation (called SWAN)
has been developed to serve as a navigation and orientation aid for persons
visually impaired. In this case, the device is audio-only output and tactile input
via a handheld interface. The automatic speech recognition for the input of this
device has not been implemented in the reference. Moreover, other devices with
tactile inputs have been also presented in [22,28], which are specifically designed
for visually impaired individuals.

Necklace-like devices, with sensors that use piezoelectric technology, have
been used to nutrition intake studies [1,2], analyzing features such as the spec-
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trum of the output of the sensor. Also, with a sonar function for assisting people
with visually impaired [35].

According to [23] a necklace is among the favorite placement of sensors for
elderly people and health professionals for this population (just behind watch
and bracelet). It is also the preferred option for relatives of the users. For speech
recognition and related technologies applied in AT devices, a necklace is a natural
option for its simplicity and little notoriety.

One of the main problems with the simplest sensors available for necklace
and registering speech signals is the low quality at the output of the sensor. For
the wearable use of personal assistants or augmentative communication systems
with a classification of audible vocalizations, is essential to provide a signal with
a high quality of sound. Several attempts in specific conditions for enhancing
signals from piezoelectric sensors have been conducted [26,38].

For the general case of enhancing speech signals, a great amount of research
has been conducted over several decades, more recently based on Deep Learning.
Typically, these techniques rely on the enhancement of spectral features of the
speech, such as MFCC [31].

The deep learning approaches, especially those based on DNN have suc-
ceeded in outperforming the classical signal processing-based methods when the
speech signals contain known noise of different types [5–7,19,36], or reverberant
speech [11,21,24,30].

The principal method for enhancing the signals using deep learning is to
apply the networks as regression models, mapping the corrupted parameters of
the speech into the corresponding of the clean speech.

One of the recent DNN models has included Recurrent Neural Networks and
specifically the LSTM units. Although the LSTM networks outperform other
deep networks in this task of speech enhancement [4,5], the training process for
its successful implementation requires single specific noise conditions and prior
knowledge of the SNR during the test procedure.

In the present paper, we consider the more realistic and challenging scenarios
of speech being registered with a piezoelectric sensor in a wearable necklace
device designed for AT. None of the previous references address this issue with
DNN. This study under uncertain corrupted signals is of importance for future
implementation of AT devices.

The rest of this paper is organized: Sect. 2 provides the background and
context of the problem of denoising speech signals registered using piezoelectric
sensors and the LSTM, Sect. 3 describes the experimental setup, Sect. 4 presents
the results with a discussion. Finally, in Sect. 5, we present the conclusions.

2 Background

2.1 Piezoelectric Sensors

A piezoelectric sensor, also known as a vibration sensor, produces an electrical
potential when subjected to physical strain [1], for example, pressure or accel-
eration. It has been used in many devices and applications. For the purpose of
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this paper, it was used to register speech signals, which was possible by placing
the sensor against the throat. This way, the muscle contractions while speaking
is represented in the output voltage of the sensor.

The simplicity and availability of piezoelectric sensors make their use in wear-
able devices ideal. The vibration produced in the throat when speaking can also
capture the signal with little influence of surrounding sounds, which constitute an
undesirable effect on the applications for the sensor. Further details of these sen-
sors and related explanations of its physical behavior can be found in [12,32,33].

2.2 Problem Statement

In the field of enhancing speech signals, it can be assumed that a signal with
background noise yR(t) (such as environmental noise or artificial noise caused
by the transmission or register of the signal), can be modeled as the sum of the
speech signal x(t), and a noise d, given by:

y(t) = x(t) + d(t). (1)

In the spectral domain, the formulation of the modeling of noisy signals
becomes:

Yk(n) = Xk(n) + Dk(n), (2)

where k is the frequency index and n the time-segment index.
In the case of reverberated speech, it can be assumed that the signal with

reverberation yR, is a degraded version of x, as a result of the multiple directions
from which the microphone receives the signal after the reflections produced by
the propagation of the sound in a particular environment. The relation between
them can be expressed as [29]

x(n) = hT (n)s(n), (3)

where h = [h1, h2, . . . , hL]T is the impulse response of the acoustic channel from
the source to microphone. The effects of the reverberation usually increase as
the distance from the speaker to the microphone increases.

The effect of the reverberation combined with background noise can be mod-
eled as

y(n) = hT (n)x(n) + d(n). (4)

However, when the speech signal is degraded in an unknown way, it can not
be assumed the model of additive or convolutive degradation. In this case, it
must be assumed that y(t) is related to x(t) through a function f , which can
have elements of noise or reverberation, but also other specific perturbations in
particular segments of the spectrum.

Signal improvement methods based on Deep Learning have made estimations
of f for conditions of noise and reverberation without assuming a priori the
characteristic of the distortion. This is why these methods constitute a viable
option to improve the degraded signal from the piezoelectric sensor yp.
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Having parallel registers of speech produced by a piezoelectric sensor and
a traditional microphone, makes it possible to estimate the function f with
algorithms based on DNN, due to the alignment between the registers from
both signals. The basic scheme is shown in the Fig. 1.

Fig. 1. Scheme of parallel register of a voice with a microphone and a wearable piezo-
electric sensor. The estimation of f is made with algorithms based on Deep Learning.

In DNN methods, an enhanced version of yp(t) can be estimated using algo-
rithms that learn an approximated function f(·) between yp(t) and the clean
data of the microphone x(t) of the form

ŷp(t) = f (x(t)) . (5)

The precision of the approximation f(·) usually depends on the amount of
training data, the type of artificial neural network or algorithm selected.

Previous attempts has estimated f(·) for specific conditions or noise levels. In
our approach, we apply a set of LSTM neural networks trained and then applied
separately to estimate a set of functions f1(·), f2(·) for f0|MFCC (fundamental
frequency as a reconstruction of the MFCC coefficients) and 39 MFCC.

The description of LSTM network is presented in the following section.

2.3 Long Short-Term Memory Neural Networks

Over the past decades, several kinds of artificial neural networks have been
tested for classification and regression purposes in many areas. In the recent
past DNNs, which are organized in many layers, have achieved good results in
problems that cover a wide range of applications. A new branch of possibili-
ties for modeling problems that naturally depend on sequential information has
been opened since the arising of RNNs, which allow storing information through
feedback connections between units to themselves or other neurons in the same
layer [10,39].
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A special kinf of RNN, the LSTM presented in [20], have introduced a set
of gates within the units, which control the access, storing and propagation of
information over the network, with the objective of enlarging the capabilities
of RNN by storing information in the short and the long term. These networks
presented promising results in different tasks, where information strongly depend
on previous states, such as speech recognition, handwriting synthesis, and music
composition [14,15,20].

The LSTM has four gates that control the operations of input, output, and
erasing the memory in order to achieve the goal of preserving values in the
long-term and the short-term. A more detailed exposition on the mathematical
modeling of the LSTM and the training procedure can be found in [13].

2.4 Denoising with Autoencoders

Denoising autoencoder is considered as one of recent architectures of artificial
neural networks that have achieved success. This innovative find consisting of two
steps: the first one, is the encoder, which performs a mapping f that transforms
an input vector y into a representation h in the hidden layers. The next step is
the decoder, which mapped back the hidden representation into a vector x̂ in
input space.

In the course of the training stage, the inputs of the denoising autoencoders
are the noise corrupted features, while the corresponding clean features became
the outputs. The training algorithm adjusts the parameters of the network in
order to learn the complex relationships between them. Current computers allow
the training of many hidden layers and larger sets of data.

3 Experimental Setup

In order to test the benefits of our approach for this low quality/corrupted
speech, the experimental setup, from data generation to evaluation, can be sum-
marized in the following steps:

1. Database generation: Two volunteer speakers recorded the database with the
wearable sensor in a necklace and with a microphone, as shown in Fig. 2. The
corresponding files were edited and represent parallel corrupted and clean
data.

2. Feature extraction and input-output correspondence: A set of parameters
was extracted from the speech of the wearable piezoelectric sensor, and the
clean audio files. Those from the piezoelectric sensor were used as inputs to
the networks, while the corresponding clean features were the outputs. The
low-latency that could exist between the inputs and outputs are compensated
with the RNNs.

3. Training: During training, using forward pass and back-propagation through
time algorithm, the weights of the networks were adjusted as the corrupted
and clean parameters were presented at the inputs and at the outputs.
Details of the training algorithm followed can be found in [16].



Enhancing Speech Recorded from a Wearable Sensor 389

Fig. 2. Recording with the wearable device and the microphone

4. Validation: After each training step, the sum of squared errors were com-
puted within the validation set of 40 utterances (about 20% of the total
database), and the weights of the network updated in each improvement.

5. Test: A subset of 30 randomly selected utterances (about 15% of the total
amount of utterances of the database) was chosen for the test set, for each
speaker. To provide independence between the training and testing, these
utterances were not part of the training process.

In the following subsections, further details of the main experimental setup
are given.

3.1 Database

Two Costa Rican speakers, recorded a set of 184 Spanish speech utterances each.
The 184 utterances included isolated words as well as sentences which could be
in the affirmative or interrogative forms. The distribution is shown in Table 1.

Table 1. Costa Rican wearable/clean corpus contents.

Identifier Corpus contents

1–100 Affirmative

101–134 Interrogative

135–150 Paragraphs

151–160 Digits

161–184 Isolated words

The recording were performed using the necklace wearable device and a pro-
fessional microphone, to achieve parallel register of the signals. The selection of
the words, sentences and paragraphs were the same as that of [25], originally
developed by the Center for Language and Speech Technologies and Applica-
tions of the Polytechnic University of Catalonia for the purpose of emotional
speech research. The recordings were performed in a quiet studio.
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3.2 Feature Extraction

The audio files of the necklace piezoelectric sensor and the clean recordings with
the microphone were downsampled to 16 kHz, 16 bits, to extract parameters
using the Ahocoder system [9]. A frame size of 160 samples and frame shift
of 80 samples were used to extract 39 MFCC, f0 and energy of each sentence.
The energy parameter were not part of the experiments, as we considered the
fundamental frequency and the spectrum the most important parameters for
speech perception.

3.3 Evaluation

To evaluate the results given by the enhancement method, we use the following
well-known measures:

– Mean Absolute Distance between spectrum coefficients: This measure is com-
puted as

MAD(xj, x̂j) =
1
39

39∑

j=1

1
n

n∑

i=1

|xji − x̂ji |, (6)

where xj, x̂j are the MFCC coefficients of the natural and the wearable device
or enhanced speech.

– Frequency Domain Segmental SNR (SegSNRf ): This is a frame-based mea-
sure, calculated by averaging the frame level Signal-to-Noise Ratio (SNR)
estimates, following the equation:

SegSNRf =
10
N

N∑

i=1

log

[ ∑L−1
j=0 S2(i, j)

∑L−1
j=0 (S(i, j) −X(i, j))2

]
, (7)

where X(i, j) is Fourier transform coefficient of frame i at frequency bin j,
and S(i, j) is the corresponding coefficient for the processed speech. N is
the number of frames and L the number of frequency bins. The values are
limited to the interval [−20, 35] dB.

The following two measures correspond to the fundamental frequency param-
eter:

– VDE (Voice Decision Error): Indicates the percentage of frames misclassified
in terms of voicing (with f0 > 0)/unvoicing (with f0 = 0), according to the
equation:

V DE =
NV →U + NU→V

N
× 100%, (8)

where NV →U and NV →U represent misclassification of Voiced or Unvoiced
frames.
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– DR (Detection Rate): This objective measure is evaluated only on voiced
frames, where a f0 estimate is considered correct if the deviation of its value
is within 5% of the clean value of f0. This is performed following the equation:

DR =
N0.05

Np
× 100%, (9)

where N represent number of frames, and p the total number of voiced frames
of the clean speech.

Additionally, we show spectrograms to illustrate the result for the different
experiments.

3.4 Experiments

For the purpose of testing the proposal, for each speaker we train a sets of two
LSTM Autoencoder Networks to directly map the corrupted features to clean
features.

The LSTM architecture for the networks was defined by trial and error. The
final selection consisted of a network with three layers containing 100, 100 and
100 units in each one. This network gave the best results in the trial experiments,
and also had a manageable training time. This procedure was accelerated by a
NVIDIA GPU system, taking about 7 h to train each LSTM.

4 Results and Discussion

As mentioned, the approximation function between the speech of a wearable
device and clean speech is an unknown function. Moreover, it does not have
accurate modeling, as opposed to the degradation by additive or convolutional
noises. Figure 3 shows an example of the trajectory of an MFCC coefficient of
the signal recorded with the microphone and the recording with the wearable
device. It is noticeable how the trajectory differs significantly and randomly,
which represents a complex problem for an estimate the best function f between
both.

Since noise is one components which is perceived the most in this wear-
able device, the Segmental SNR measurement is necessary to quantify the noise
reduction, as shown in Table 2. It is important to note that noise reduction is
only one of the tasks required by the set of LSTM networks, given that the signal
is also degraded by unknown conditions.

LSTM autoencoders significantly improve the objective measure of the
present noise, which indicates benefits in the proposed system for this appli-
cation. The spectrum improvement can also be verified with a MAD smaller
distance between the MFCC coefficients for both speakers, as it is present in
Figs. 4 and 5.

All MFCC coefficients are at a lower mean absolute distance after the LSTM
autoencoders compared to the wearable device. It is notorious how the distortion
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Fig. 3. Comparison of the trajectory of the first MFCC

Table 2. Comparison of the results for the Segmental SNR measure. Higher values
represent better results.

Speaker Wearable device Enhanced voice

Speaker 1 0.41 0.54

Speaker 2 0.47 0.58

presented in both speakers differs significantly, but the improved result has a
similar benefit.

The spectrograms of Fig. 6 show the comparison of the clean speech signal,
wearable device and the improved signal with the LSTM autoencoders. It is
remarkable how the speech of the wearable device is considerably noisy, while
the enhanced version resembles more to natural speech.

Finally, the case of improving the fundamental frequency parameter is
presented in Table 3. The VDE measurement improved considerably with
the LSTM, which indicated to have more precision for the detection of the
voiced/unvoiced segments for two speakers. Despite this, VR measurement did
not improve with the proposal.

Although the f0 detection improves in the decision of voiced/unvoiced, the
known nature in the prediction of the LSTM networks (the abrupt changes are
made gradually) maybe affects the precision of the value f0 in first frames of the
voiced segments are presented.

Although the results of the proposal related to the spectrum are signifi-
cant, in the case of the fundamental frequency, there is a considerable margin
of improvement, especially for the specific values of parameters in the voiced
segments. The results can be considered the first of several stages in the process
of reconstructing the speech signal coming from the piezoelectric sensor and the
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Fig. 4. Mean absolute distance between MFCC (Speaker 1)

Table 3. Comparison of the results for the VDE and VR in the detection f0. Lower
values of VDE represent better results, and higher values of VR represent better values.

Speaker Wearable device Enhanced

VR VDE VR VDE

Speaker 1 52.3% 24.3% 41.8% 12.9%

Speaker 2 65.7% 23% 51.6% 9.9%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0

0.2

0.4

0.6

0.8

MFCC index

va
lu
e

Wearable device Enhanced

Fig. 5. Mean absolute distance between MFCC (Speaker 2)
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(a) Clean speech (b) Speech from wearable device

(c) Enhanced speech

Fig. 6. Example of spectrograms (Speaker 1)

wearable device. The search for greater precision in the detection of f0 and incor-
porating new algorithms that provide the results closer to clean speech should
be considered for further research.

5 Conclusions

In the present work, we conducted a study of the enhancement of a speech signal
registered with a piezoelectric sensor within a wearable device. The purpose
of this device is to incorporate it into assistance technologies for people with
disabilities.

Further, to enhance the signal, we proposed a collection of LSTM autoen-
coders, which learned an approximation function of the speech registered in the
wearable device, with noisy and degraded characteristics, towards clean speech
registered with a professional microphone. In order to measure the results, it
was established several objective measurements on the spectrum and the fun-
damental frequency. These measures indicate that significant improvements are
achieved on the signal, especially in the spectral part.

Although the proposal of enhancing represents significant progress to utilize
the device as voice or vocal-tract sounds interface to recognition or classification
systems in real contexts where the user performs, the present work can be con-
sidered as the first stage of trial for the real device with own data. Moreover,
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through the processed signal using LSTM autoencoders, other algorithms that
provide further enhancement of the signal can be used, in more specific aspects
such as the fundamental frequency in the voiced frames, or in the spectrum in
particular sub-bands.

For future work, it can be considered the extension of the present work with
new quality measurements and new environmental conditions, also with sev-
eral stages of algorithms for the reconstruction of the signal, combining diverse
models of artificial neural networks or other machine learning algorithms.

Acknowledgements. This work was supported by the University of Costa Rica
(UCR), Project No. 322-B9-105 and ED-3416.
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5. Coto-Jiménez, M., Goddard-Close, J.: LSTM deep neural networks postfiltering for
enhancing synthetic voices. Int. J. Pattern Recogn. Artif. Intell. 32(01), 1860008
(2018)

6. Coto-Jimenez, M., Goddard-Close, J., Di Persia, L., Rufiner, H.L.: Hybrid speech
enhancement with wiener filters and deep LSTM denoising autoencoders. In: 2018
IEEE International Work Conference on Bioinspired Intelligence (IWOBI), pp. 1–8.
IEEE (2018)
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Abstract. This paper proposes the community the development of a
public web tool for fast image Ground Truth Authoring Tool (GTAT).
Image ground truth authoring tools are key to generate training and
validation data for image segmentation and classification systems. The
paper does a short review of similar publicly available GTAT’s, its fea-
tures and short-comings, in order to spot the key features missing for a
public GTAT to the community. Based in the concluded wished features,
we aim to develop a free and open GTAT in the future.

Keywords: Ground truth authoring tools · Machine learning ·
Labeling · Deep learning

1 Introduction

Over the last few years, image analysis has taken an important role in multiple
applications and fields, such as robotics, medical imaging, botany and micro-
biology. The sheer amount of images and videos produced for further analysis
demands instruments and tools that ease the work that has to be done to obtain
results. The generation and analysis of such data is increasingly assisted by sev-
eral techniques associated to computer vision, pattern recognition, machine and
deep learning, for instance image segmentation and classification tasks. Image
segmentation refers to the pixel wise classification in an image or frame into
different categories [1], which is also referred as semantic segmentation. If the
classification aims to distinguish different instances of the same object category,
the task is known as instance segmentation. Images and videos can be segmented
to track objects like cells or distinguish relevant items from the background, as
in [2–5].
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Image segmentation is a common problem in computer vision, well addressed
in literature. To measure metrics for an image segmentation algorithm, proper
ground truth data is needed, which means that a human must assist the seg-
mentation of a set of images. Generally, it is required that the generated ground
truth has few to no flaws, and ideally must be statistically relevant, thus several
subjects must build ground truth data. Nonetheless, ground truth generation can
make use of machine learning models and segmentation techniques to speed up
or semi-automate the process, an useful feature increasingly available in modern
ground truth authoring tools. For instance, sophisticated ground truth author-
ing tools implement automatic region initialization to speed the ground truth
authoring process. An example of a technique which could be used to initial-
ize ground truth masks is superpixels. In [6], pancreas computerized tomogra-
phy (CT) scans are sliced into 2D images. These images are segmented using a
superpixels based technique, which are later forwarded into a deep convolutional
neural network to aid image classification in computer assisted diagnosis. The
result is a faster and more reliable method to achieve pancreas image segmenta-
tion.

Superpixels typically over-segment the image, with groups of pixels clustered
into regions or segments. The segments generated contain enough information to
produce a valid initial segmentation and also, a segmentation easier to optimize
compared to an initial segmentation based on a grid of pixels [7]. For example, a
superpixels based web tool was also used by [5] to generate input for the training
of a convolutional neural network model.

In this paper, we propose a public available ground truth authoring tool
(GTAT) to validate image segmentation and object tracking algorithms. In
Sect. 2 we address previous similar GTAT tools, to identify missing and use-
ful GTA functionalities. Later we address our proposed GTAT, Insight GT, and
perform a set of experiments to compare existing GTATs with the proposed
prototype in Sect. 4, to finally reach the conclusions and future work in Sect. 5.

2 State of the Art

In this section, we review several tools and available software that addresses
ground-truth generation for image/video segmentation and object tracking.

FAST-GT (FAst Semi-automatic Tool for Ground Truth generation) [8] is a
generic framework for semiautomatic generation of ground truth, which allows
different implementations of building blocks. FAST-GT implements a detection
layer, which applies multiple object detectors to a frame or image, and takes
into account previous annotations (called trackers). Manual intervention is then
applied to the output of the previous layer. Finally, the trackers of the detection
layer are updated according to the resulting annotation of the manual step. This
tool is available to the general public. Its most important drawback is the need
of installing and compiling the source code, which depends on the OpenCV and
Eigen libraries.

LabelMe [9] is a GTAT which consists of a database of labeled images and
a web tool to manually annotate images. The LabelMe web tool provides an
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unsophisticated canvas that allows the user to annotate an image using a tool-
box consisting of a polygon tool and a paintbrush to generate a mask. LabelMe
presents the disadvantage that only accepts images in JPG format and the tool-
box available to annotate images is quite restricted.

In [10], VATIC is proposed as a tool that helps video annotation tasks by
providing a web based platform for crowd-sourced video labeling. VATIC allows
the user to annotate and delimit objects by surrounding them with a rectangular
shape. The user only needs to manually annotate a subset of the frames of a
given video, called the key frames. Then, VATIC performs an annotation for the
remaining frames, using interpolation methods. VATIC is web based, however
there is no free server running it, and it does not allow pixel wise tagging.

Sensarea, a public video editing tool, provides users with interactive tools to
perform video editing and effect generation, as also object tracking in videos and
ground-truth authoring. Before the object tracking process, the user can anno-
tate the first frame of the video, using basic tools such as paintbrush, polygon and
ellipse tools, for example. Then, the user can start the object tracking process to
readjust the mask automatically, enabling the user to correct it afterwards. We
experienced major performance shortcomings when drawing many masks, while
using Sensarea. Another drawback of Sensarea is its low portability given the
need of a Windows based installation.

In [11], it is presented interactive Video Annotation Tool (iVAT) as a tool
that aid and ease annotation tasks. iVAT provides manual, semi-automatic and
automatic annotation for videos. In the manual mode, the user must generate a
ground-truth mask for each frame on the video. The semi-automatic approach
requires ground-truth annotation for a given frame, to later calculate an annota-
tion mask for the next frames automatically. The automatic annotation involves
supervised detectors where a learning step has taken place, making the automatic
approach domain dependent. The tool does not allow image GT authoring, and
is not web based.

Ilastik [12] is a GTAT proposed as an easy-to-use tool to perform image
segmentation and classification. Ilastik makes use of user manual annotation to
begin a learning phase, which usually consists on mouse strokes across a canvas
to label regions of pixels. The tool implements the following steps: first, ilastik
calculates a generic basis to represent general image features. Later, a random
forest classifier is trained using user-labeled data to initialize pixel labels. Ilastik
is not web based, and its GUI usability is limited.

In addition, the tool Supervisely [13] allows to mark both images and videos
in a semi-automatic way, selecting the desired area to create the marking and
automatically generating the required shape. Supervisely also has tools to draw
the masks in a completely manual way. It has quick access commands to make
the marking process more efficient. Another important function is the ability to
make brightness and contrast adjustments to improve the marking process.

Another tool analyzed is LabelBox [14], it is a platform that allows to mark
and classify images and video manually. Labelbox enables collaborative work,
making possible to see and review the markings made by other people. A defi-
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ciency found is that to mark video it must be converted into a sequence of images
before uploading it. Also it requires the user to define the objects before they
start labeling the images and if there is a new or different object, the user must
go to the project menu, settings and add the new object.

Table 1 summarizes a feature comparison of the analyzed GTATs.

3 Proposed Tool

Given the presented state of the art, we propose Insight GT, a public web tool
consisting in a canvas that allows manual image annotation and a semi-automatic
segmentation approach to generate ground truth data from 2d images and videos.

The following the proposed functionalities implemented so far in our proto-
type available at https://insight-gt.hulilabs.xyz/canvas/. For region initializa-
tion, SLIC superpixels are computed [15]. A javascript implementation of the
algorithm can be found at [16].

– A canvas that allows manual image annotation with different brushes and
tools, as seen in [9,17,18], aided by region initialization, using super pixels
or a similar algorithm.

– Web tool: The GT authoring tool must be web based, to increment the tool
portability, and open to the community.

– Flexible storing format: The format must allow its usage with GT compro-
mising several (thousands) of GT masks, avoiding performance degradation.

– A semi-automatic algorithm for mask initialization: The tool must imple-
ment a technique for initializing the foreground masks, and allow user to
make adjustments to the masks.

– A semi-automatic algorithm for mask readjustment: For video segmentation,
the masks drawn for the first frame can be readjusted for next frames. An
algorithm which automatically estimates such readjustment is useful for a
GTAT, as implemented in Sensarea.

– Collaborative support and crowd-sourcing support: The tool must allow sev-
eral concurrent users working on the same project.

– Evaluation module: The tool must provide means to evaluate metrics for the
segmentation algorithms, including but not limited to: sensitivity, specificity,
accuracy, F-score, among others.

– Change history: the changes made by other users in the markings of the
images are shown in the tool.

4 Experiments and Results

We selected Supervisely and LableBox in order to compare it to Insight GT. This
applications where selected because they are all web applications. Additionally,
they allow to label different objects in order to track them.

https://insight-gt.hulilabs.xyz/canvas/
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Table 1. Comparison of GTATs

Proposed

tool

FAST-GT ITK-

SNAP

ROXAS LabelME Sensarea iVAT TWS Ilastik

Platform Web

based

Desktop Desktop Desktop Web

based

Desktop Desktop Desktop Desktop

Cross-platform • ◦ • ◦ • ◦ • • •
Image batch

segmentation

• ◦ • • ◦ • ◦ • •

Video

segmentation

• • ◦ • ◦ • • ◦ ◦

Manual

segmentation

• ◦ • ◦ • • • ◦ •

Available

toolbox

Brush,

polygon

Rectangle Brush,

polygon

? Brush Brush,

polygon

? Scribble Scribble

Semi-automatic

segmentation

• • • • ◦ • • • •

Automatic

segmentation

◦ ◦ ◦ • ◦ • • • •

Mask correction • • ? • ◦ • • ◦ •
Region

initialization

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Metric

Evaluation

• ◦ ◦ • ◦ ◦ • ◦ ◦

Restricted

Domain

◦ ◦ • • ◦ ◦ ◦ ◦ ◦

4.1 Quantitative Experiments and Results

To quantify user experience for each selected tool, we defined the following tests:

1. Open an image and with the rectangle tool mark the same sample image
with car that is in it. The input image is stored in a known location.

2. Mark with the brush tool one of the figures in the image. For this second
task, the user will modify an image that is already open.

3. With the eraser tool, correct the edge that is left of the image. The user must
open a mask that has been previously marked with a flaw easy to detect.

4. Save a previously created mask. The file containing the mask representation
must be in a previously known route by the user.

5. Open a previously created mask again. The file containing the mask repre-
sentation must be in a previously known route by the user.

The following are key aspects taken into account during the execution of the
proposed tests.

– Only initial and simple instructions were given to the user. We wrote down
the users’ mistakes.

– We performed simple questions to understand the user’s thought process.
– If the subject performs a faulty action several times, the test is finished. We

aim to understand how the person performs a task without knowledge of the
application, if the user tries many times to perform an action, it is likely
that the user will learn to do it by trial and error, and not by intuition.

– We collected a set of observations and suggestions per user for each tool.
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Table 2. Mean and Std. time in seconds for each test in each tool

Tool Test 1 Test 2 Test 3 Test 4 Test 5

Insight GT Mean 45.653 19.503 18.023 10.188 38.418

Std. 25.698 15.413 7.703 5.959 36.495

LabelBox Mean 83.995 19.069 11.185 103.97 20.454

Std. 13.654 6.838 7.055 24.636 12.531

Supervisely Mean 25.33 26.805 29.740 13.905 13.905

Std. 7.835 35.094 78.022 17.748 5.353

We tested 30 university engineering students, between the age of 18 and 25
that had no previous experience with any of the tools presented to them. Then
they were split into 3 groups of 10 for each tool. This was made in order to
prevent the user to learn from the similarities from the other tools (Table 2).

The first test measured the speed of opening an image for a project. Here
is the first difference between the platforms. In Insight GT user performed this
action in an average of 46 s, but it only loads one image, for LabelBox and
Supervisely the is able to select a folder or a group of images for the labeling
project.

The process in Supervisely was very straightforward and simple for loading
a group of photos. Labelbox was also simple to load images, but it required a
couple extra steps like defining the objects and color for labels, the tools to use,
and there a couple of screens that let you pick the objects that you will mark
on the images before you get to the marking screen.

The second and third tests the results were similar, with Insight GT yielding
the lowest times by a low margin. The resulting similar times for these tests are
likely to be explained by the simplicity of the tests. In the case of LabelBox,
the process to enable the necessary functionalities for tests 2 and 3 required to
manipulate a JSON file, however we did not include the time to perform this
task.

In the fourth test, LabelBox was the slowest, since it required the user
an extensive search for the functionality interface. Additionally, Labelbox only
allows to download the whole data set. As for Supervisely, the process was rather
simple, however it downloads a JSON file, not the mask in an image format.
Insight GT yielded the lowest average time for the fourth test.

For the last test, corresponding to opening a previously saved mask, it was
faster in average for Supervisely and LableBox, since both tools implemented a
cloud based recently saved mask option access.

5 Conclusions

The test showed that in the core functionalities of the tools, they are similar,
but upon further inspection of the work flow, it can be seen that the Supervisely
and LabelBox need some extra effort in learning the tool for some parts of the
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process that require editing JSON files. Insight GT keeps the core functionalities
simple and easier to learn.

We aim to make available Insight GT publicly available with its core func-
tionalities, along its source code. We think its important to build an user friendly
and web based GTAT with a powerful set of customizable mask initialization
algorithms to speed up image and pixel labeling.

As future work, we think it is possible to improve the accuracy of the usability
tests, with more accurate and modern tools like eye tracking, which would allow
us to validate and compare more accurately the implemented functions of the
proposed Insight GT tool with existing tools.

Thus, as future work, an user experience research should be develop to find
the requirements of the users with the objective of enhance the learning curve
and add features that improve the user experience and learning curve of the web
tool Insight GT.
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{francisco.siles,andres.morazuniga}@ucr.ac.cr
2 LabQT: Tumoral Chemosensitivity Laboratory,

Research Center on Tropical Diseases (CIET), School of Microbiology,
Universidad de Costa Rica (UCR), San José, Costa Rica
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Abstract. In our in vitro study to model and understand the regulation
networks that control the live and death of the cells, it is fundamental to
quantify the contribution of each of the cancer cell’ phenotypes: apopto-
sis, cell cycle arrest, DNA damage repair, and DNA damage proliferation.
For that, an automatic microscope is used to generate several images of
cell populations using brightfield microscopy. In the scientific literature,
several methods to extract features from microscopy images are avail-
able, but mostly for fluorescence or contrast phase microscopy, which
have the disadvantage of being phototoxic to the cells, and therefore
unsuitable for our study. In this paper a successful method to automati-
cally extract and classify the phenotypes of cancer cells is presented. The
method uses features extracted automatically from the M-phase (mitosis)
of cells from images obtained by brightfield microscopy. The classifica-
tion results are validated by comparing them with the correct manually
annotated classes for each instance. Four different classifiers: Support
Vector Machine (SVM), Linear Discriminant Analysis (LDA), k-Nearest
Neighbours (kNN), and Random Forests (RF) are compared using stan-
dard comparison metrics, such as precision, recall and F1-score. It is
finally shown that the LDA classifier provided the best results, reaching
an overall f1-score of 0.78 and an overall weighted f1-score of 0.88.

Keywords: In vitro cell research · Cancer phenotype classification ·
Brightfield microscopy · Mitosis features · Pattern recognition classifiers

1 Introduction

One of the most common mechanisms to treat cancer is Chemotherapy, which
aims to try to stop the growth of cancer cells [17]. The Chemotherapy uses
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genotoxic drugs, that might damage the DNA in the cells, in order to force the
cancer cells to enter (1) cell cycle arrest, defined as the interruption of the normal
cell cycle, that is, cells are unable to replicate as usual; or (2) apoptosis, which
consists of a programmed cell death, present in multicellular organisms.

Previous results of our research group have shown that some cancer cells
with enough DNA damage to force apoptosis, as a result of their treatment with
genotoxic drugs, are still proliferating [26]. The proliferation of cells with DNA
damage contributes to the propagation of cells that are genetically unstable,
which in fact may cause malign transformations on normal cells or propitiate
the evolution to multiresistance species or more aggressive cancer types [8,12,
16,27]. This phenomenon of DNA damage proliferation has raised the interest of
the international scientific community to model and understand the regulation
networks, responsible to define the survival or death of the cells [10,32,34].

In order to obtain information about those regulatory networks, we have
been performing experiments, where different levels of chemotherapy are being
applied to different living cell samples. For each cell sample, a microscopy image
is obtained every 10 min for about 92 h, using an automatic microscope. This
process is repeated for different cell samples. Four phenotypes are to be expected
in any such cell sample: (1) cell cycle arrest, (2) apoptosis, (3) DNA repaired
cells, and (4) DNA damage proliferation. Where DNA repaired cell phenotype
corresponds to those cells that have fixed the DNA damages caused by the
genotoxicity of the drugs, and therefore can continue their normal cell cycle,
and DNA damage proliferation phenotype consisting of those cells that, even
though present enough damage that should have been forcing them into cell cycle
arrest or apoptosis, continue to proliferate and propagate their DNA damage to
their offspring. The phenotypes present in the cell samples are to be quantified
based on the microscopy images in order to understand their contribution to the
regulatory networks.

Most of the available microscopy techniques use fluorescence staining to make
the cells glow, increasing their visibility and their contrast with respect to the
background [2,7,9,22,29,36]. The fluorescence staining is phototoxic to the cells,
an effect that would negatively affect the quantification of the phenotypes, pro-
ducing biased results. Therefore, brightfield microscopy is the only technique
available for our purposes.

In brightfield microscopy, there is no high contrast between each cell and its
surroundings, making the direct observation and counting of the cells a chal-
lenging task. Besides, the density of the live cells is increasing over time (to the
hundreds or even thousands), making almost impossible for a human being (even
for an experienced cell biologist) to be able to reliably annotate the required
information about the cell phenotypes in several samples. The characteristics of
our brightfield microscopy images (from now on referred to as 3J images) are:
(1) low contrast, (2) high cell density, and (3) high levels of brightness.

Due to the above-mentioned limitations, this paper presents the results of
the classification of the four cell phenotypes using features extracted from M-
phase in brightfield microscopy images. The different cell phenotypes can be
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distinguished by their visual clues and behaviour over time, for example, some
of the phenotypes change their intensity and shape, or take longer periods to
perform the cell division (M-phase).

2 Related Work

In order to classify the different dendritic cells’ phenotypes, in [35] they have
used gene expression. In that study, the phenotypes are not of interest for the
current study, and the type of input data does not correspond to microscopy
images. In [15] they have extracted features from the microscopy images, such
as the location of the chromosomes and organelles inside the cell, of the early
or late start of the stages of the cell cycles, and the time spent in each stage of
the cell cycle. But most of the used features cannot be extracted from the 3J
images.

On the other hand, characteristics of the mitosis have been used in order to
determine the phenotype of a cell. Mitosis is the process by which an animal cell
divides into two genetically identical daughter cells, and the cell cycle phase in
which this division occurs is called mitotic phase or simply M-phase [24]. Some
of the characteristics of normal mitosis are: (1) rounded cell before cell division,
(2) two daughter cells emerge quickly, (3) reduction in the migration rate of the
parent and offspring cells, (4) similar size and shape of the offspring with respect
to the parent [7]. Therefore, the duration of the M-phase can be an indicator
of DNA damage in case it extends longer periods. Also the number of daughter
cells (if different that two) can be another particular phenotype indicator.

Several methods have been presented for mitosis detection, for example: sym-
metry analysis [13], hidden-state-conditional neural fields [33], 3D convolutional
networks [23], support vector machine classifiers [18], and the Hough Circular
Transform (HCT) [14]. Some of these methods are not suitable for detection of
mitosis in 3J images. For example, in [13] the symmetry of the mitosis in fluores-
cence images is used to detect it, but in 3J images of cancer cells, the cancer cell
mitosis is not always symmetrical. In the case of [18], the required features are:
area, area of the convex hull, eccentricity, major axis length, minor axis length,
orientation, maximum intensity, mean intensity, and minimum intensity, but a
good segmentation is required in order to extract such features from the images,
which is not possible with 3J images. Also, in [23,33], more annotated images
than what it is available for our 3J images is required for the neural networks’
method proposed.

Also, since the (animal) cells during the M-Phase turn into a sphere [19,
20,28], approaches such as Hough Circular Transform (HCT) have proven to be
useful [14]. But the results were reported for phase-contrast microscopy, and uses
an active contour method to detect rounded cells. Active contours do not work
correctly in 3J images due to the lack of contrast, producing a weak external
energy component. Also, a local tracking (forward and backward) was used to
detect the start and end of the M-phase, and if cell division has occurred. In [25]
they have used as indicator of cell division, a level-set method to identify if a
region of single intensity transforms into two.
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In [11] the features were extracted using deep convolutional neural networks,
so not much information about the meaning of the features is available. In [1]
supervised learning using features extracted from the images by using the soft-
ware CellProfiler [6] is presented. Also, in [1] the best classification results were
obtained by using support vector machines (SVM), random forests (RF), and
linear discriminant analysis (LDA).

In general, as far as we know, not many sources are available that tackle the
problem of phenotype classification based solely on microscopy images, and none
of them face the problem for 3J images.

3 Methodology

For this study, the images used were generated with a Cytation 3 from BioTek,
which is a cell imaging multi-mode microplate reader, combining automated
digital microscopy and conventional microplate detection. All the experiments
were performed on in vitro cell lines acquired from the American Type Culture
Collection and from the NCI-60 from the National Cancer Institute repositories,
United States. Those cell lines were designed for research purposes.

All the images used are brightfield images, even though the majority of stud-
ies reported in the literature make use of fluorescence imaging, and being one of
the most important capabilities of the Cytation 3. The reason for choosing bright-
field, instead of fluorescence responds to the fact that fluorescence staining of
the cells is phototoxic to them, and this will is unacceptable in our live-cell assay
to study the cell proliferation under chemotherapy dose testing. The brightfield
images present a highly reduced contrast in comparison with the fluorescence
images reported in the literature, and therefore it is a harder problem to solve.

The dataset is comprised of 360 brightfield images, in which a number of
261 M-phase cells occurred, and their corresponding phenotypes are described
in Table 1. The phenotypes in this dataset were manually annotated by expert
cell biologists.

Table 1. Number of M-phase cells per phenotype in the dataset

Id Phenotype Number of M-phase instances

P DNA damage proliferation 43

C Cell cycle arrest 13

A Apoptosis 29

R DNA repair 176

Total 261

The feature extraction algorithm has four parts: (1) Preprocessing, (2) M-
phase detection, (3) Find M-start, and (4) Find M-end. The preprocessing is
mostly performed to remove an undesired spotlight effect in the images, caused
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by the microscope’s light source, but it also serves to the increase in the contrast
between the cells and the background. By removing such effect, the contrast
of the image can be normalized, since before the correction the contrast in the
center of the image is different with respect to that in the corners. The correction
consists basically in the subtraction of an illumination model to each of the
images in the dataset.

The M-phase detection was performed with an HCT, as suggested in [14]. A
local spatial variance filter (LSVF) [30,31] was computed in a predefined window,
around the centers found. The LSVF is used as an alternative to edge detection
for a latter morphology transformation that is used to detect the cells and if cell
division occurred (see Fig. 1).

Fig. 1. M-phase detection. Left: HCT circle hit. Center: LSVF applied. Right: Mor-
phology filtering (reproduced from [21]).

In the third part, the aim is to find the start frame of each detected cell in
M-phase. For that, a backward tracking from the detection frame is performed,
and is kept until a circularity measure is below an empirically defined threshold.
That frame is selected as the start frame (M-start).

The final part searches for the end frame of each detected cell in M-phase
(see Fig. 2). A forward tracking from the detection frame is performed, and is
being kept until a circularity measure is below the predefined threshold and
no cell division was detected. In the case a cell division is detected, then the
frame before that is assumed as the frame end of that cell M-phase (M-end).
The cell division is detected by counting the objects after a simple thresholding
technique.

Finally, the required features can be extracted: o number of offspring cells,
i average pixel intensity inside the cell, r radius, a area and c circularity, e
euclidean distance traveled during M-phase, d amount of frames that the cell
spent in M-Phase. The feature vector can be represented as F = (o, i, r, a, c, e, d).

Once the features are obtained from the samples, the aim of the current
paper is to evaluate and compare the results of four different classifiers using the
automatically extracted features with respect to the groundtruth. The classifier
that obtained the best results reported by Abbas et al. in [1] is the Support
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Fig. 2. M-end search. Left: mother cell (top) and two offspring cells (bottom). Right:
Blob count, one blob (top), two blobs (bottom) (reproduced from [21]).

Vector Machine (SVM), with small different performances between the linear and
radial versions, this is why we have considered the linear SVM in the alternatives
to test. Also, the Linear Discriminant Analysis (LDA) is considered as a good
benchmark classifier. Finally, the other two: the k-Nearest Neighbours (kNN),
and the Random Forests (RF) are added to the list of classifiers in order to test
for other simpler algorithms. The hyperparameters of the classifiers are described
in our git repository available on request.

A k-fold approach was used in order to test for different subsets of the avail-
able dataset. Finally, the comparison was carried out using the three common
classification metrics: precision (P ), recall (R) and F1-Score (F1).

With regards to the hyperparameters of the classifiers, for the kNN we have
selected 3 as the number of neighbors. The LDA is followed by a Naive Bayes.
For the Random Classifier the number of estimators was 100, the max depth of
2 and the random state of 0. Finally, for the SVM the gamma values selected
was 1/N, where N was the number of features, with Radial basis function kernel.

4 Results and Analysis

The results of the evaluation of the classifiers are shown in Table 2 for the LDA,
in Table 3 for the kNN, in Table 4 for the SVM, in Table 5 for the RF. Each
of the tables shows the results for the k-folds for each of the metrics, and for
each of the classes. An average F1-score (avg F1) including the average for all
the classes is shown at the end of each table, as well as an averaged weighted
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F1-score (avg wF1), which took into consideration the number of cells in each
class. Finally, the accuracy a is obtained for each of the folds.

Table 2. k-fold classification results for the LDA classifier.

k-fold Metric R C P A

0 p 0.84 0.50 1.00 0.71

r 1.00 0.50 0.55 0.62

f1 0.91 0.50 0.71 0.67

a 0.82

1 p 0.91 0.67 1.00 0.86

r 1.00 0.67 0.70 0.86

f1 0.96 0.67 0.82 0.86

a 0.90

2 p 0.94 0.50 1.00 0.75

r 1.00 0.33 0.80 0.86

f1 0.97 0.40 0.89 0.80

a 0.90

3 p 0.89 0.67 1.00 0.86

r 1.00 0.67 0.60 0.86

f1 0.94 0.67 0.75 0.86

a 0.71

Avg a 0.83

Avg f1 0.77

Avg wf1 0.87

Since the k-fold method generates different results for each run, the averages
for the metrics obtained for each class for every classifier is shown in Table 6.
Also, a summary of the overall average F1 and weighted average F1 scores is
shown in Table 7.

The first thing to notice about the results is that for example, the precision
p for the LDA classifier was 1.00 in all the folds in Table 2. That means that
the likelihood of being of class P for any P-labelled phenotype is 100%. This is
quite important, since P (the DNA damage proliferation phenotype) is the most
relevant class for the current study. The classifier that obtained the second best
result for p is the RF classifier, which averaged a 92% (see Table 6). The other
2 classifiers did not obtain good values for p in the P class. It is also interesting,
that the SVM classifier obtained a 0.0 for precision in all the folds. The SVM
obtained precision and recall values for classes C, P and A of 0.0 in all the folds,
reaching an average F1 score of only 0.19 (see Table 4).
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Table 3. k-fold classification results for the kNN classifier.

k-fold Metric R C P A

0 p 0.79 0.33 0.29 0.43

r 0.94 0.25 0.18 0.38

f1 0.86 0.29 0.22 0.40

a 0.65

1 p 0.81 0.33 0.29 0.80

r 0.94 0.33 0.20 0.57

f1 0.87 0.33 0.24 0.67

a 0.71

2 p 0.84 0.00 0.33 0.60

r 0.84 0.00 0.30 0.43

f1 0.84 0.00 0.32 0.50

a 0.63

3 p 0.86 0.00 0.33 0.60

r 0.97 0.00 0.30 0.43

f1 0.91 0.00 0.32 0.50

a 0.71

Avg a 0.68

Avg f1 0.45

Avg wf1 0.70

Even though, the precision values were high for class P for the LDA and RF
classifiers, the recall values correspond to 0.66 and 0.71 respectively, as shown
in the averages table. The raw values for recall in the folds for the two classifiers
ranges from 0.50 to 0.80, and with such variability, is seems that the algorithm is
still not capable of detecting all the relevant instances of the P class. The average
F1 score for the P class for both classifiers corresponds to 0.79 (see Table 6).

Another thing to notice from the results is that since R (repaired DNA dam-
age) is the most common class in the dataset, the corresponding precision and
recall for the LDA classifier are 0.90 and 1.00 respectively; and 0.89 and 0.98 for
the RF classifier, as shown in the averages table. The average F1 score was 0.95
and 0.93 for the two best classifiers. This means that a good classification was
obtained with any of those classifiers.

Since C (cell cycle arrest) is the least represented class in the dataset, the
corresponding average results of precision and recall for the LDA, and RF clas-
sifiers are correspondingly 0.59, 0.54, and 0.00, 0.00. The RF classifier obtained
0.00 for precision and recall for all folds in Table 5. The ranges for the aver-
age F1 scores for each classifier went from 0.40 to 0.67, and from 0.00 to 0.00
respectively. For this class, the LDA was again the best classifier compared to
the other 3.
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Table 4. k-fold classification results for the SVM classifier.

k-fold Metric R C P A

0 p 0.58 0.00 0.00 0.00

r 1.00 0.00 0.00 0.00

f1 0.74 0.00 0.00 0.00

a 0.58

1 p 0.62 0.00 0.00 0.00

r 1.00 0.00 0.00 0.00

f1 0.76 0.00 0.00 0.00

a 0.62

2 p 0.61 0.00 0.00 0.00

r 1.00 0.00 0.00 0.00

f1 0.76 0.00 0.00 0.00

a 0.61

3 p 0.61 0.00 0.00 0.00

r 1.00 0.00 0.00 0.00

f1 0.76 0.00 0.00 0.00

a 0.61

Avg a 0.61

Avg f1 0.19

Avg wf1 0.51

With respect to the class A (apoptosis), the best two classifiers are again
LDA and RF. The average precision, and recall for that classifiers are 0.80, 0.80,
and 0.69, 0.90 respectively. Again, the LDA classifier was the best.

In order to compensate the results for those classes that were not evenly
represented, an average weighted f1 (wf1) score was obtained for each of the
classifiers. These scores include the results for all the classes. The results are
summarized in the Table 7. From that values, it is clear that the LDA classifier
outperformed the other selected classifiers for this task. The LDA wf1 obtained
was of 0.88, and the average accuracy obtained was of 0.83 and part of our future
work will be to extract better features to increase the overall results. With regard
to accuracy, the best result corresponds to the RF classifier with a value of 0.85,
but the LDA accuracy was 0.83.

In the Fig. 3, a plot from two different perspectives of the LDA classifier data
can be seen. The green triangles correspond to the P class, and it can be seen that
most of them are separated from the remaining points, making them suitable
for a good classification using the LDA classifier. The purple circles correspond
to the R class, the repaired DNA damage, which has some instances where the
mitosis takes longer time, and somehow can be confused by the classifier as DNA
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Table 5. k-fold classification results for the RF classifier.

k-fold Metric R C P A

0 p 0.83 0.00 0.78 0.60

r 0.94 0.00 0.64 0.75

f1 0.88 0.00 0.70 0.67

a 0.78

1 p 0.84 0.00 1.00 0.78

r 1.00 0.00 0.50 1.00

f1 0.91 0.00 0.67 0.88

a 0.85

2 p 0.94 0.00 1.00 0.67

r 1.00 0.00 0.90 0.86

f1 0.97 0.00 0.95 0.75

a 0.90

3 P 0.94 0.00 0.89 0.70

R 0.97 0.00 0.80 1.00

F1 0.95 0.00 0.84 0.82

a 0.88

Avg a 0.85

Avg f1 0.62

Avg wf1 0.84

Table 6. Averages of the metrics per class for the classifiers (in bold the higher results
per metric per class).

Metric R l P A

LDA kNN SVM RF LDA kNN SVM RF LDA kNN SVM RF LDA kNN SVM RF

p 0,90 0,83 0,61 0,89 0,59 0,17 0,00 0,00 1,00 0,31 0,00 0,92 0,80 0,61 0,00 0,69

r 1,00 0,92 1,00 0,98 0,54 0,15 0,00 0,00 0,66 0,25 0,00 0,71 0,80 0,45 0,00 0,90

f1 0,95 0,87 0,75 0,93 0,56 0,16 0,00 0,00 0,79 0,28 0,00 0,79 0,80 0,52 0,00 0,78

damage proliferation behaviour. This is the reason for some of the green triangles
to be mixed with the purple circles in the center of the feature space.

As can be seen in Fig. 3, the red stars and blue squares that correspond to
the cell cycle arrest class (C) and the apoptosis class (A) respectively, share
similarities and therefore are not linearly separable. In particular, both pheno-
types cause the cell to remain in mitosis for longer (than “normal”) periods of
time, produce no offspring, and have darker values for the pixel intensities. Their
differences mainly occurred in their radiuses and circularities.
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Table 7. Summary of F1-Scores (avg F1) and weighted F1-Scores (avg wF1) and
accuracies (avg a).

Metric Classifier

LDA kNN SVM RF

f1 0.77 0.45 0.19 0.62

wf1 0.87 0.70 0.51 0.84

a 0.83 0.68 0.61 0.85

Fig. 3. Plot of the tree-dimensional space obtained after the LDA transformation (two
different perspectives). Purple circles: R, blue squares: C, green triangles: P, red stars:
A (reproduced from [21]) (Color figure online)

5 Conclusions and Future Work

A relatively successful method to automatically extract and classify the
cancer cells’ phenotypes based on M-phase features obtained from bright-
field microscopy was developed and validated against manually annotated
groundtruth.

Four different classifiers were compared in order to find the best one that
produces the best classification metrics given the dataset and the groundtruth.
That classifier was the LDA classifier, that reached the best average f1 scores
(0.95, 0.56, 0.79, and 0.80 respectively) for the R, C, P and A classes. The LDA
classifier also obtained the best overall average f1 and weighted wf1 scores of
0.77 and 0.88 compared to the other classifiers. Those values are comparable
to previous results in the literature, but using fluorescence or contrast phase
microscopy images, and not the more difficult 3J images.

The RF and LDA classifiers have had similar performance for the correct
classification of the DNA damage proliferation class (P), reaching similar metrics.

With respect to future work, several courses of action might be taken, for
example, for the local tracking used in the detection of the M-start and M-end, a
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bipartite graph matching (as described in [31]), or a multipartite graph matching
(as described in [37]) can be used to increase the accuracy.

Also, a more robust preprocessing stage might prove to be useful in order to
increase the contrast and reduce noise in the images, and therefore producing
better features, for example by applying a Deceived Bilateral Filter as described
in [3–5]. Finally, an optimization of the preprocessing for the removal of the
spotlight effect might provide better feature extraction results, and therefore
better classification results.

Finally, the addition of more features to the feature vector to be able to
increase the distance of the data point in the LDA plot (see Fig. 3) might increase
the overall performance of the classifier.
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and Erick Mata-Montero1

1 Escuela de Computación, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
{lsancho,emata}@tec.ac.cr, carlos.gomezsoza@gmail.com
2 paluno, University of Duisburg-Essen, Duisburg, Germany

fabian.beck@paluno.uni-due.de

Abstract. We address the problem of visualizing differences between
two versions of a biological taxonomy. Given the dynamics of the taxo-
nomic work, taxonomists are often faced with alternative versions of a
taxonomy that need to be reconciled. Nevertheless, visual comparison of
hierarchies is an open problem that involves several difficult challenges
in Visual Analytics. First, how to display not one but two possibly large
taxonomies on a fixed-size screen. Second, how to highlight all differ-
ences between the two taxonomies. We present Diaforá, an interactive
tool that infers and visualizes the differences. Automatic inference is
achieved by incorporating taxonomy rules to identify operations such as
merging, splitting, and renaming of taxa, among others. Highlighting of
differences is accomplished by using the edge drawing technique, which
has been enhanced with a number of features suggested by users of a
prototype version. Diaforá has been implemented and tested with real
world taxonomies such as Bryozoa and Annelida as well as with artificial
taxonomies.

Keywords: Biological taxonomies · Information visualization ·
Hierarchy comparison

1 Introduction

Herbaria, museums, and biodiversity conservation initiatives maintain local,
regional or global records of species, which are constantly updated due to taxo-
nomic revisions, the discovery of new species, and the need to complete or correct
the recorded information. Biological taxonomies are structures in which species
are classified hierarchically according to the system proposed by Linnaeus in
the 18th century [15,24], where living organisms are classified into a hierarchical
structure that includes the following taxonomic ranks: domain, kingdom, phy-
lum, class, order, family, genus, and species. Living organisms are classified into
groups, for example, birds. From a computing perspective, each group is repre-
sented by a node in the hierarchy, which in turn corresponds to a taxon (taxa
c© Springer Nature Switzerland AG 2020
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in plural). For instance, the human being has been classified as species Homo
sapiens, which belongs to the genus Homo, to the family Hominidae, and to the
order Primates. In this example, each group designated as Homo sapiens, Homo,
Hominidae, and Primates correspond to a taxon. Taxonomists analyze the phe-
notypic characteristics of species given a set of criteria that they consider valid,
they classify the species and describe them through scientific peer-reviewed pub-
lications. For more than two centuries, taxonomic information was only printed
and scattered around the world. Consequently, before the digital revolution,
integrating taxonomies developed world wide was not even feasible.

Given the dynamic nature of the biological taxonomies, it is common for tax-
onomists to come across different versions, which they can correct by applying
comparisons. Since taxonomies can be large, the comparison becomes challeng-
ing. International initiatives such as Catalogue of Life have recorded approx-
imately 1.8 million species of macro organisms, although many taxonomists
believe that the planet’s biodiversity is approximately six times that amount.1

It is important to mention that in this work we focus on biological taxonomies
and not on phylogenetic trees. The latter are also hierarchical classifications of
living organisms, but show the evolutionary relationships between species that
have a common ancestry, and provide information regarding the evolution of
species.

Visualization and comparison between hierarchies has been a prominent
research topic in information visualization [8,21]. However, despite these efforts,
taxonomists do not yet have visual comparison tools readily available to facilitate
the curation of taxonomies. The visualization of large individual hierarchies on a
screen is in itself a complex problem because of the amount of taxa involved and
limited screen space available. Consequently, comparing two hierarchies is an
even more complex problem due to information overload and cluttering. When
comparing two versions of a taxonomy, T1 and T2, taxonomists must perform
several domain specific tasks [23] such as identification of taxa that in T1 are
shown as a single group and in T2 appear divided (splits), or conversely, taxa that
in T1 appear separately and in T2 are grouped under the same taxonomic concept
(merges), identification of taxa that are located in a different place within the
hierarchy (moved taxa), or that appear with a different name (renamed taxa),
or that are not in a version of the taxonomy (excluded), or that have been added
(added). In our research, we have worked with expert taxonomists from several
countries and realized that some taxonomists work with very large groups of
species whereas others with small groups. Also, when comparing two versions
of a taxonomy, taxonomists might need a global view of the differences before
focusing on a smaller group of species, or they might prefer to inspect directly
a target group. They also value to have statistical information of the changes.

We present Diaforá2, an interactive tool that automatically computes the dif-
ferences between two versions of a taxonomy (see Fig. 1). Diaforá shows changes

1 The exact number of species of macro organisms is unknown because it is estimated
that only about 20% of them have been identified [3].

2 The word diaforá stands for difference in Greek.
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through explicit representations that make the visual recognition more efficient.
It uses the edge drawing method for hierarchy comparison and color codes to
explicitly represent the changes between the two versions of a taxonomy. It intro-
duces the concept of visual target synchronization through which, if a taxon is
the focus of interest of the user, the corresponding taxon in the other version of
the taxonomy will be moved into the user’s visual space so that both taxa can
be visually compared side-by-side. It also allows the reorganization of data by
users’ demand in order to avoid cluttering, and provides visual summaries of the
comparison to quickly get an overall sense of the magnitude of the differences.
Diaforá also supports data cleaning tasks by highlighting, for example, unde-
fined names and other naming errors. It also provides numerical summaries of
the taxonomies and of the comparison. The code and sample data are publicly
available at https://github.com/lsanchoc/Diafora.

Fig. 1. An overview of Diaforá.

For testing, we first used artificial taxonomies in which we introduced rep-
resentative cases of all types of changes in order to analyze alternative design
features. We also tested with real public data from Catalogue of Life with tax-
onomies of up to approximately 15,000 species, which were displayed without
noticeable lags.

This paper is structured as follows. Section 2 presents related work on hierar-
chy comparison and its application in the comparison of biological taxonomies.
Section 3 introduces characteristics of the data. In Sect. 4 we describe the design
requirements based on insights from previous research. Section 5 presents the
interface design. Section 6 explains some considerations of implementation and
testing. In Sect. 7 we discuss results and lessons learned, and finally in Sect. 8 we
present conclusions and future work.

https://github.com/lsanchoc/Diafora.
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2 Related Work

The visual comparison of complex entities, whose complexity is due to multi-
dimensionality and large number of components, is a common need in Visual
Analytics [5]. It involves finding –visually– differences and similarities between
objects of some domain and providing information for analysis. A comparison
evidently involves a set of elements to be compared, which have specific charac-
teristics that impose challenges; for example, the challenge of scalability. It also
considers tasks of interest to the user, the strategies and methods to facilitate the
comparison, and the selected visual design that allows an adequate visualization
of the comparison.

Comparisons between hierarchies seek to find differences and similarities
between information sets structured as trees. Differences can occur in the topolo-
gies and in the data associated with each node. Hierarchies can be represented in
many ways [12]; however, not all of them are suitable for comparison. Hierarchy
visualization can also consider multiple views [25]. Comparisons can take place
between two trees or among multiple trees. Graham and Kennedy [8] exten-
sively studied the visualization of multiple trees and summarized methods for
comparing two hierarchies into five categories: edge drawing, animation, color-
ing, matrix representation, and agglomeration. On the other hand, Gleicher [6],
defines three main types of comparison layouts, namely, juxtaposition, superpo-
sition, and explicit encoding.

The InfoVis 2003 contest focused on the visualization and pairwise compar-
ison of trees [18]. From this contest TreeJuxtaposer [17] compares large phylo-
genetic trees and introduced an accordion-like distortion technique to support
the concept of guaranteed visibility. Zoomology [27] took advantage of zoom
techniques as well as overview and detail techniques to visualize the comparison.
Further hierarchy comparison works have been reported in domains such as soft-
ware evolution [2,11,20] and budget comparison [9]. In Biology, tree comparison
has been directed to both phylogenetic trees [16,17,19] and biological taxonomies
[4,7,14,27]. Tasks for the comparison of biological taxonomies have been char-
acterized [22] and show that taxonomists are interested in the identification of
cases where taxa have been involved in splits, merges, moves or renames, or has
either been added or removed from a version of a taxonomy. A study on methods
for visualizing comparison and performing tasks for biological taxonomies com-
parison [21] indicates that taxonomists prefer the edge drawing representation
method over the other techniques defined by Graham and Kennedy [8].

Edge drawing has been an issue in graph visualization because of cluttering
when graphs are large [1]. Since trees are a special case of the graphs, they share
similar concerns. Hierarchical Edge Bundles (HEB) [10] is a technique that nicely
lays out edges while trying to reduce cluttering; however, it shows limitations
[11] when it is required to distinguish individual relations among nodes.



Diaforá: A Visualization Tool for the Comparison of Biological Taxonomies 427

3 Data

In simple terms, biological taxonomies are lists of taxa organized hierarchically
where each inner taxon represents a category and each lower level taxon in the
hierarchy represents a species. Global initiatives such as the Biodiversity Infor-
mation Standards (TDWG)3 and the Global Biodiversity Information Facility
(GBIF)4 make great efforts to standardize information in the databases and to
promote sharing biodiversity knowledge. However, standardization remains an
ongoing issue, because of the dispersion of information throughout databases in
the world. Catalogue of Life (COL)5 holds a comprehensive list of taxonomic
information. It gathers about 1.8 million of species from about 168 databases,
generates monthly and yearly versions of the lists, and provides open access to
the information through JSON/XML/PHP-based web services.

The JSON format is lightweight and facilitates data exchange; however, since
it uses textual labels, files could end up being heavy, and this can bring up to
memory issues when working with large taxonomies. We reduced the label names
to a one-character label (for instance, n stands for name and s for synonyms)
and the labels are still easy to understand.

We downloaded taxonomies from COL of various sizes and of different years,
so that we could compare different year versions. For each taxon, we obtained
taxon name, taxonomic rank, source or author(s), date of publication, access
date, the list of synonyms, and the list of descendants. Descendants correspond
to a lower-level taxonomic rank; for instance, for the genus Homo, descendants
would be all species that are grouped within that genus (i.e., Homo rudolfensis,
Homo helmei, and Homo sapiens, among others). These data fields are funda-
mental to run the inference algorithms and automatically recognize the differ-
ences between the two versions T1 and T2 of the taxonomy. It is not just enough
to compare the taxa names when looking for differences. We can infer that two
taxa refer to the same concept when the name of a taxon, the authors, and the
year of publication are the same in both versions of the taxonomy. Synonyms
play an indispensable role in the identification of changes because they link a
taxon to its previous version. For example, we can recognize that a species x
in the version T1 of the taxonomy was split into three species p, q, and r, if x
appears in T2 as synonym of those three species. The more complete and accu-
rate are the databases, the more precise would be the automatic inference of
changes.

4 Design Requirements

The problem to be solved is the visualization of differences between two ver-
sions of a biological taxonomy. It is necessary not only to recognize general-type
changes (e.g., difference in size between the two hierarchies) but also what are
3 https://www.tdwg.org/.
4 https://www.gbif.org/.
5 http://www.catalogueoflife.org/.

https://www.tdwg.org/
https://www.gbif.org/
http://www.catalogueoflife.org/
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the types of changes that occurred (e.g., if there were splits) as well as the specific
changes (e.g., taxon x was split into p, q, and r). We consider insights obtained
from previous research [21] as a framework of reference for the design of the tool.
We synthesize the design requirements in terms of six aspects: the representation
of the hierarchies, the comparison layout, the explicit representation of changes,
multiple views, visual and numerical summaries, and efficiency.

• Hierarchy representation. Taxa names legibility is mandatory for tax-
onomists to analyze the taxonomies and to understand their differences. Thus,
taxa names should be readable and visible at all times and the hierarchical
representation should be such as to facilitate the reading of names. Compact
representations of hierarchies, such as matrices, treemaps and icicle plots
make an efficient use of space because nodes can be represented through a
few pixels, so that large hierarchies can be displayed in a small area. They
provide overview information as well as the possibility to identify patterns
in changes. However, the space left to display the labels (that is, the taxa
names) is so small that they are difficult to read or cannot be shown at all.
The requirement of legibility of names lead us to consider indented lists as a
design alternative.

• Comparison layout. Our framework of reference indicates that taxonomists
preferred the edge drawing method over matrix representation, animation
and agglomeration. Therefore, we consider a juxtaposed design that uses
edge drawing as the central method to visualize the comparison. Taxonomies
should be placed separately, side by side, to ease the comparison.
In addition to representation, the role of interaction is key in informa-
tion visualization. Interaction is also key in visual comparison [13] and it
encompasses techniques such as: select, explore, encode, filter, connect and
abstract/elaborate [26]. Given the potential number of relationships that
could be visualized between the two taxonomies, selecting is necessary for
users to study a type of change or a taxon of interest. By exploring, users
should be able to examine a subset of the data (e.g., a family or a genus). Cod-
ing visual information into numerical information can allow users to quantify
changes. Filtering is required to search for information that meets certain
conditions (for instance, to know which species have been published by the
same author). In the case of taxonomy comparison through the edge draw-
ing method, connecting can be naturally implemented by the relationships
among taxa, i.e., edges, which highlight changes between the two versions of
the taxonomy.

• Explicit representation of differences. It is important for taxonomists
to be able to recognize differences quickly and to clearly spot the origin and
destination of changes. The edge drawing method fulfills this requirement,
where edges take the leading role in the explicit representation of changes. In
the main view, changes can be represented explicitly by colored lines that go
from taxa in T1 to taxa in T2. The use of color for the explicit representation
of changes is also very useful. All types of changes and all changes should be
visualized by means of distinctive colors. In our design color is used as fol-
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lowing: pink for splits, orange for merges, brown for moves, blue for renames,
red for exclusions, and green for added taxa.
In spite that edges make relations easy to understand, cluttering might be
a problem. The hierarchical edge bundling technique was introduced to rep-
resent hierarchical graphs and reduce clutter [10], and then applied to the
visual comparison of hierarchies [11]. Hierarchical edge bundling nicely packs
together edges and, at the same time, the resulting visualizations provide
overview information on changes. However, individual edges are hard to dis-
tinguish and, since the visual comparison of biological taxonomies requires
clear recognition of origin and destination, the bundles should be such that
this relationship does not get lost. The solution should reduce edge conges-
tion and crossings but edges should clearly communicate individual relations,
showing origin and destination.

• Multiple views. While the main method we propose for comparing tax-
onomies is edge drawing, in a previous work we found that expert taxonomists
consider that comparison using matrices works better than edge drawing when
it comes to globally overviewing changes and, that by combining several meth-
ods, the disadvantages of one method could be outweighed by the advantages
of another. We propose a design in which global comparison is accomplished
through a matrix representation and, by selecting an area of interest in the
matrix, users can navigate to the edge drawing view where changes are visu-
alized in more detail.

• Visual and numerical summaries. Visually identifying differences
between higher level corresponding taxonomic groups is more complex than
identifying differences at the species level because it requires more mental
effort for users to summarize what happens at lower levels. Through sum-
maries (visual and numerical) users could obtain information on the magni-
tude of changes at each taxonomic level.

• Efficiency. This involves effective and quick identification of differences as
well as good performance in the visualization of large taxonomies. The first
one is transversely addressed by the other five design criteria discussed here;
for example, the more legible are the taxonomies and the more explicit the
changes, the more efficient will be the identification of changes. The second
one refers to how quickly taxonomies area loaded and to the response time
during navigation.

5 Interface Design

Figure 2 illustrates the visual design of Diaforá. The window is divided into three
panes. Pane 1 contains the main menu, pane 2 displays the numerical summaries
of the comparison, and pane 3 is reserved for visualizing the comparison of the
taxonomies.

The main menu (pane 1) is divided into five parts. Part A contains seven
toggle buttons to perform the domain specific tasks for the identification of
similarities and differences; that is, for the identification of congruent taxa, splits,
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Fig. 2. The interface layout of Diaforá.

merges, moves, renames, added taxa, and excluded taxa. The toggle buttons
allow users to visualize either one specific type of change or all changes. Part
B contains buttons to control the hierarchy look; that is, a button to add or
remove the hierarchy lines, a button to expand all sub-trees of a selected node
down to the leaf level, and a button that would display the visual summary
of changes next to each high-level taxon. Part C of the main menu includes
functions to manage edge cluttering. It contains functions designed to reorganize
the taxa within T2, as close as possible to their related taxa in order to reduce
edge cluttering. The menu also considers a reset button to return to the initial
state of the taxonomies when they were first loaded. Another edge-managing
function in this part of the menu is a slider control used to separate the edges
when they appear too close together, making it easier to distinguish individual
relations. Part D of the menu is reserved to navigate to an alternative overview,
implemented through a matrix representation, that will be added to the tool in
future work. Finally, part E for the menu is for exiting the system.

Pane 2 presents numerical summaries. The top part of the pane provides a
summary on the structure of the taxonomies for each taxonomic rank; that is, it
shows the amount of species, genera, families, orders, etc. of the two taxonomies
being compared. The bottom part of the pane provides statistics on the amount
of changes of the selected taxon; that is, it indicates the amount of splits, merges,
renames, etc. that the comparison found.

Visual comparison takes place in pane 3, where hierarchies are placed jux-
taposed, in a mirrored arrangement. Hierarchies are represented by indented
lists where hierarchical relations are highlighted through edges. The edges are
optional to keep the comparison area as clear as possible. The mirrored arrange-
ment is also a strategy to avoid crossings between the lines of the hierarchy
and the edges. A drawback of node-link representations is the limitation on the
number of nodes that can be displayed on the screen. To counteract, we make
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use of collapse/expand and zoom in/out mechanisms, which make it possible to
enlarge and reduce the number of nodes in the visual space through interaction.

We synchronize the user selected taxon with the corresponding taxon in the
alternative taxonomy; the alternative taxonomy moves either up or down, so
that the two compared taxa are placed next to each other, highlighted by a
horizontal grey line, in order to ease comparison (see Fig. 2). Taxonomists might
want to understand what happened to either a specific species or to a group of
species and might require to do visual searches, so navigation throughout the
different levels in the taxonomy should be fluid. Diaforá lets users fully expand
a branch of their interest. As users expand a selected branch, the corresponding
changes of its descendants are refreshed.

The edge drawing method can clearly communicate the changes between the
two versions of the taxonomy. The distinctive colors make it easy to recognize the
different types of changes. Users can interact with the visualization and inspect
changes that call their attention. Changes at the species level can be noticed by
individual links between the involved taxa. Changes between higher-level groups
(for example, between two versions of a genus or between two versions of a
family) are displayed in two ways. One, for a higher level collapsed taxon, the
amount of displayed links depicts the amount of differences detected between the
two groups. The resulting thickness of the accumulated edges between the two
compared taxa provides a cue on the magnitude of the changes for that group;
although it has been limited to the height of the text. Second, changes between
higher-level groups are summarized by bars that indicate the amount of changes
proportional to the size of the group. This satisfies the design requirements on
visual summaries (see Fig. 3). Visual summaries of changes are shown encoded
as colored bars next to each higher level taxon. The assigned colors correspond
to the previously discussed color coding for each type of change. The example
illustrates the summary view when performing a comparison at class-level for
the class Clitellanata. The pink color in the bar on the left refers to the amount
of splitted taxa found in the Clitellanata group in T1, and the green color in the
bar on the right provides the amount of added taxa to the Clitellanata group in
T2. Additionally, the amount of species of each group is displayed next to each
taxon name.

Fig. 3. Visual summary of the comparison between higher-level groups.

Cluttering of the edges is reduced in Diaforá in two ways: by grouping the
edges and also by ordering the taxa. Edges are grouped by using a density-
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based spatial clustering algorithm (DBScan). We calculate a common central
point where nearby edges are grouped. They are not bundled as in hierarchical
edge bundling [10,11] because in taxonomy comparison we always need to have
the notion of origin and destination. The bundling we use can be controlled
through the slider on the main menu. Users can also order the taxa through a
commutation function (i.e, Sort function on the top panel). Commutation does
not alter the hierarchical relationships but makes edges that go to the same
neighborhood to be grouped together in order to provide a cleaner visual space.

Computational efficiency when dealing with large taxonomies is approached
by implementing a paging mechanism that loads into memory only the visible
area of the screen, which contributes to the efficient management of pairs of large
taxonomies.

6 Implementation and Testing

Figure 4 presents the implementation of Diaforá’s main window. It shows the
comparison of versions 2012 and 2018 of the phylum Cnidaria. Notice how the
thickness of edges provides a cue on magnitude of changes. In this case, the
visualization indicates that many taxa were renamed (blue edges), also that new
taxa was added (green names), some taxa were excluded (red names) and few
taxa were merged (orange edge). The tool was implemented in Processing 3.4,
HTML, database MongoDB, server Node.js and data files in JSON format.

Fig. 4. Example containing Diaforá’s main window. (Color figure online)

We tested Diaforá with three pairs of taxonomies: Lycopodiopsida 2012 (158
species) VS Lycopodiopsida 2018 (1,415 species) for a total of 1,573 loaded,
Marchantiophyta 2012 (773 species) VS Marchantiophyta 2018 (7,433 species)
for a total of 8,206 species, and Annelida 2012 (12,635 species) VS Annelida
2019 (15,016 species) for a total of 27,651 species. All sets of taxonomies were
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loaded easily, smoothly visualized, and navigation and interaction were fluid.
Further, we did profiling tests to know Diaforá’s usage of memory and CPU,
and rendering times as taxonomies size increased. Our goal was to find out and
extrapolate the impact of size on the tool’s performance. We used the Google
Chrome profiler tool. Testing results are presented in Fig. 5. Results indicate low
increase on CPU and rendering times as taxonomy size increases. The display-
ing time is almost constant in all three cases; this is explained by the paging
strategy where only the expanded taxa located within the boundaries of the
screen are displayed. RAM presented the highest variation. Notice that, when
comparing the Lycopodiopsida versions (1,573 species total), memory usage was
59.1 MB, for Marchantiophyta (8,206 species total) memory usage was 59.7 MB,
and for Annelida (27,651 species total) memory usage increased to 140 MB. If we
assume that the tool uses a constant amount of RAM for the browser and code,
we can estimate that the increase from Lycopodiopsida to Annelida was 26.078
species and 81 MB, which represents a memory increase of 3.18 KB per specie
approximately. We can use this number to extrapolate to any taxonomy size; for
instance, a pair of taxonomies that sum up 100,000 species would require approx-
imately 370 MB of RAM (that is, 59 MB + 3.1 KB * 100,000), which is a reason-
able number. In other words, testing indicates that Diaforá tool is expected to
perform well as taxonomies size increases.

7 Discussion

Diaforá contributes to taxonomists work in identifying differences and similar-
ities between two versions of a taxonomy. Our work concentrates on the com-
parison of two taxonomies given that it is more likely that taxonomists perform
pairwise comparison when looking for differences between a version that is famil-
iar to them and a reference version. Diaforá was tested with pairs of taxonomies
that together summed up to 27,651 species. It provides visual information for
users to quickly recognize changes and it also provides numerical summaries on
changes, which give information about the magnitude of the differences.

The availability of data is fundamental for testing the tool. We chose COL
data because they provide access to taxonomic lists from several years, which
makes it easier to have data in order to compare two versions of the same tax-
onomy. Through COL web services, we are able to download a complete ver-
sion of the taxonomy or parts of it by selecting a specific taxon. The COL
database is constantly being updated and improved, and it is likely that some
detected changes between two different year versions are due to database clean-
ing instead of taxonomic reasons. Changes due to taxonomic reasons would be
such as the discovery of a new species or the redefinition of the taxonomic con-
cept; for instance, a species of trees that had been considered part of a genus
and recently taxonomists considered that it should be classified under another
genus. Database cleaning usually involves completing missing information, for
example, authors name or synonyms, and correcting misspelling. As a species
is identified by the triplet (name, authors, year) a change in any of these data
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Lycopodiopsida

MarchanƟophyta

Annelida

Fig. 5. Profiling tests.

could be interpreted as a rename, despite what happened was an update of the
data. We notice that the visual comparison is useful not only to identify the dif-
ferences and similarities between two versions of a taxonomy but also to discover
inconsistencies and assist with data cleansing. It is also important to highlight
that the precision of the inference algorithms for the identification of differences
relies on the completeness and accuracy of the data.

Previous works on the comparison of biological taxonomies differ from
Diaforá specially on the types of differences that the tool is capable of visu-
alizing. We base our work on a set of required tasks for the curation of the
taxonomies (i.e., identify splits, identify merges, etc.) whereas other works focus
on the visualization of structural differences between the taxonomies [17], ances-
tor or descendants differences [14] or genus-corresponding species within other
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taxonomies [7]. The design requirements and features of Diaforá come from a
research work where 12 experts provided feedback to a preceding version (func-
tional prototype) of the tool [21] and so our contribution lies on the visual
identification of changes that would support the curation tasks. Besides the spe-
cific identification of splits, merges, taxa moved, renamed, added, or excluded,
Diaforá presents visual cues on the magnitude of changes at higher-level taxa,
as well as numerical summaries of the comparison, which aid in the identifica-
tion of changes at an overview level. Additionally, the strategies implemented
to reduce edge cluttering within the comparison area (i.e, the reorganization of
taxa without losing the hierarchical structure, and the way edges are bundled)
make the visualization cleaner for comparison.

8 Conclusions and Future Work

In this work we described a set of design requirements and proposed a visualiza-
tion tool to solve the problem of visualizing and identifying differences between
two versions of a biological taxonomy. We presented a tool that automatically
infers the differences and highlights them through direct and explicit represen-
tation of changes. Both the visual representation of changes and the numerical
summaries provide quick and valuable information to users.

Future work will be directed to perform several user studies and usability
tests. We would like to test Diaforá with taxonomies that come from different
organizations (different origins) and experiment with the data in order to get
insights for further work. We also expect to add edit functionality to the tool,
so that taxonomists would not only be able to quickly visualize the differences
but also would decide which changes keep and which not, in order to support
the curation process of a taxonomy.
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Abstract. In this paper we describe a novel approach to perform
senescense reversal on photos of leaves based on Conditional Generative
Adversarial Networks, which have been used succesfully to perform simi-
lar tasks on faces of humans and other picture to picture translations. We
show that their use can lead to a valid solution to this problem, as long
as the task of creating a large and comprehensive dataset is surpassed.
Additionally, we present a new dataset that consists of 120 paired photos
of leaves manually collected for this work, in their fresh and senescenced
states. We used the structure similarity index to compare the ground
truth with the generated images and yielded an average of 0.9.

Keywords: Senescence · Herbaria · Conditional-GANs ·
Bioinformatics

1 Introduction

Herbaria around the world have accumulated valuable collections of plant sam-
ples over the course of several centuries. The process of cataloguing and system-
atically storing specimen samples that has been carried out by specialists now
provides a large pool of data that can be used for research purposes. Collected
samples undergo a curation process that involves adding geospatial and taxo-
nomic metadata, drying and carefully placing each dried sample on a separate
sheet of paper, and then placing this herbarium sheet inside a large manila folder
to keep the specimens from getting accidentally harmed in any way [4]. This pro-
cess that dries up plant sample – known in the natural world as senescence –
primarily causes changes in the color, texture and shape of the specimens that
can be significant and lead to problems when relating fresh samples with those
stored in herbaria [17].

Because the majority of professionally tagged images of plants are in datasets
of digitized herbarium sheets, reversing this senescense process can be very useful
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in the field of biodiversity informatics, specially for plant species identification
with machine learning models, where researchers need large datasets of images
of plants to train their models [7,15]. Reversing senescense is further supported
by the work of Carranza-Rojas et al. [4], which shows that the accuracy of deep
learning algorithms that use herbarium sheets to identify fresh samples of plants
is too low. So, a digital process of “aging” the fresh sample to be identified or
“rejuvenating” the dataset of dried herbarium sheets are worth exploring. In our
work we investigate the latter.

Other areas in which these methods can have useful applications are in the
entertainment industry, specially in the film and video games industry, where it
can be applied to generate realistic renderings of non-static scenes, where the
leaves of trees can change over time [6,17]. Most papers discussing the subject of
rendering realistic trees and leaves on videogames discuss the topics of lighting,
wind, shadows, detail and movement, but leave out the topic of senescense [3].

We approach the challenge of reversing senescence on herbarium sheet images
by focusing on leaves only. To our knowledge no previous publication has tackled
the problem of reversing senescence on images of leaves. The opposite problem of
simulating senescence has been studied more deeply. Previous work has proposed
the use of triangulation and Voronoi Diagramas [13], geometry and color maps
[17], models based on physics and geometry [6], and correlating the amount of
chlorophyll on leaves with their color [16]. Although these approaches have had
some level of success, they have important constraints, such as their fixture on
leaf or shape only [17] and their dependence on data that is difficult and expen-
sive to obtain, such as chlorophyll level in leaves [16] and venation maps [17].
Novel approaches used to simulate aging use Generative Adversarial Networks
(GANs), such as in [2] and [19], where they use this kind of networks to sim-
ulate aging while preserving the identity on faces of people. These approaches
have taken advantage of the ability of GANs to generate images of extraordi-
nary visual fidelity [2]. Other papers that have proposed the use of GANs to
apply transformations on images include [11], where they propose a model that
can apply image-to-image translations, such as in day-to-night, cats-to-dogs and
borders-to-images.

In addition to the results presented in this paper we also worked on the
development of a small benchmark dataset that comprises 60 images of leaves
from three different species. For each image we provide a photo of the leaf in its
fresh state and a photo of the leaf after it has been dried in a herbarium setting.
In total, the dataset comprises 120 images. Figure 1 presents one example of a
pair of leaves from the dataset, where the left leaf is fresh and the right one has
been dried.

In this paper we propose the use of the pi2pix model presented in [11] to
reverse senescence on images of leaves. Our use of GANs is based on the success
had by [11] when this approach is applied to other types of translations between
images.

This paper is structured as follows, Sect. 2 explores the state of the art con-
cerning simulation of senescence on images of leaves and other objects of interest.
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Fig. 1. An example of the leaves in the dataset created for the experiments. The left
side image is the young one and the right side one is the senescent one

Section 3 describes the methodology followed to carry out this research, Sect. 4
describes the results obtained in the experiments and in Sect. 5 we present the
conclusions obtained and further work which could be carry on this domain.

2 State of the Art

In this section we describe the approaches employed by other researchers when
they tackle the problem of simulating aging/senescense on images of leaves or
other objects of interest. We also describe approaches used by other researchers
when they address the problem of applying a transformation to an image. Their
works are categorized in the following paragraphs according to the techniques
they employ in their experiments.

One example of approaches to simulate senescence is the work by Silva et al.
[17]. They present a method to simulate the color evolution in leaves or petals
during their growth and senescent phases. They consider each leaf and petal
represented as a geometry color map, which will change the color from its initial
value to a value that would be very similar by natural aging. For the input flow
it uses a venation map, that represents the fluidity at each point in the leaf. Each
pixel in this map represents how easily the fluid flows in that region. White values
represent more flow capacity, and as the pixels get darker it represents less flow
capacity. Then, it uses a diffusion process to simulate the flow in the venation.
For the outward flow it uses a stomata map. It considers the evaporation as a
form of extracting the fluid out of the leaf. Each pixel in this map represents
how easily the fluid flows out of that region. White means more transpiration
and it goes down as the color gets darker. To create the senescent color image,
they use a sample image of a senescent leaf as reference and perform histogram
matching [12]. To mimic the color of a senescent leaf, it helps if the reference
image content is an example of the desired color.

Generative adversarial networks are increasingly used for image-to-image
translation. Many problems in image processing, graphics, and computer vision
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involve translating an input image into a corresponding output image. These
problems are often treated with application-specific algorithms, even though the
setting is always the same: map pixels to pixels. In [2,19] GANs are used to
produce the most plausible and realistic images of aged faces.

Fig. 2. Applications of CGANs taken from [11]

In [11], Isola et al. present conditional generative adversarial networks as
a general-purpose solution that performed adequately on a variety of image-
to-image translations. Their framework generalizes the pixel to pixel mapping,
in spite to prior work. Figure 2 shows some examples of problems tackled with
the proposed framework. It is important to mention that for each case, the
same architecture and objective were used, only training data differs. As seen,
there are diverse tasks represented in Fig. 2; from label to scene generation,
to coloring black and white pictures, generating a map representation from a
given aerial photo, and day to night conversion [11]. Isola et al. conclude that
conditional adversarial networks are a promising approach for many image-to-
image translation tasks. These networks learn a loss adapted to the task and
data at hand, which makes them applicable in a wide variety of settings.

Cycle generative adversarial networks, commonly known as CycleGANs, work
without paired examples of transformations from source to target domain. The
CycleGAN is able to learn such transformations without one-to-one mappings
between training data in the source and target domains. By making a two-step
transformation of the source domain image, the need for a paired image in the
target domain is eliminated. This two-step transformation consists of, first trying
to map it to the target domain and then back to the original image. A generator
network is used to map the image to the target domain. The generated image
quality is improved by launching the generator against a discriminator. In the
work by Zhu et al. [14], they present an approach for learning to translate an
image from a source domain X to a target domain Y , in the absence of paired
examples by using cycle-Consistent Adversarial Networks. The model includes
two mappings G : X → Y and F : Y → X. They use an adversarial loss [9]
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to learn the mapping G : X → Y such that the translated image G(X) cannot
be distinguished from images in the target domain Y . Because this mapping is
highly under-constrained, they couple it with an inverse mapping F : Y → X. To
regularize the model, the authors introduce the constraint of cycle-consistency,
to prevent the learned mappings G and F from contradicting each other. If
we transform from source distribution to target and then back again to source
distribution, we should get samples from our source distribution.

In [19], Wang et al. propose an approach to avoid losing specific subject
identity traits when performing synthethical aging on human faces. To achieve
that, the model is composed of three modules: a CGANs module, an identity-
preserved module and an age classifier. The CGAN takes an input image and
a target age as its input, and generates a face resembling the target age. This
generated face is expected to be indistinguishable from real faces. To maintain
the identity information, they introduce a preceptual loss [1] in the objective of
the CGAN. As the authors state, IPCGANs are not limited to the face aging
problem, it is a general framework. This means that without any modification
it can be applied to other multi-attribute generation tasks.

Fig. 3. Methodology used in the experiments
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3 Proposed Method

The main objective of this paper is to develop a method that can reverse senes-
cence on images of leaves. As a result, it creates new samples that can be used
to train models for plant species identification for a given image of a fresh leaf.
In this section we describe the methodology employed to tackle this problem.
The pipeline of tasks performed can be observed in Fig. 3.

3.1 Dataset

Due to the lack of data in the domain of this problem we created a new dataset
in order to perform the experiments. This dataset is composed of 20 images of
each of the following species: Pachystachys lutea, Lantana camara and Catha-
ranthus roseus, collected in the wild. For each specie the leaves where taken
from 5 different specimens. While the leaves where still fresh their front sides
where photographed with a white background. Following this, they where dried
using a special oven from the School of Forestry of the Costa Rica Institute of
Technology. Finally, the dataset was completed by taking pictures of the front
side of each of the dried leaves. In total we collected 120 images, 40 per species,
and each specie has 20 photos of dry leaves and another 20 photos of fresh
leaves. Each photo of a fresh leaf has its counterpart in the photos of dry leaves.
The dataset can be found in the following repository https://www.github.com/
4a75616e/leavesdryfresh.

Fig. 4. Generated image for Pachystachys lutea

3.2 Senescence Reversion

For the process of reversing senescence we trained a pix2pix model [11] with a
dataset that contains images that belong to two classes. Pix2pix is based in a
conditional generative adversarial network, which is simple to train and receives
the pair of images (fresh and dried leaf).

https://www.github.com/4a75616e/leavesdryfresh
https://www.github.com/4a75616e/leavesdryfresh
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The first class corresponds to images of leaves that have gone trough senes-
cence, the other class consists of the fresh leaves counterpart.

Figure 1 shows an example of a leaf in class A and its counterpart in class
B. The pix2pix model is trained to transform senescenced images into images of
fresh leaves. Figure 3 shows the pipeline followed to perform this training. The
model was trained on the dataset described previously, with 80% of the images
used for training and 20% for validation.

Fig. 5. Generated image for Lantana camara

4 Experiments and Results

The model was trained 10 times (replicas) using the same hyper-parameters
to give it statistical validity. For each run the weights in the generator and
the discriminator where initialized using a normal distribution with mean 0
and standard deviation 0.2 For each of the 10 runs the results are described
in Table 1. After the translation has been performed, an important step is to
measure the quality of the results generated by the model. To quantitatively
compare the output of the model to the ground truth we propose the use of
the structural similarity index [20], a measure of the similarity between two
images. This technique is used due to its advantages over other methods like
mean squared error [18], which are not good indicators of human perception of
image fidelity and quality.

In Figs. 4, 5 and 6 it is possible to observe the generated image for each
specie.
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Table 1. Results for 10 executions of the model

Run Overall
SSIM

SSIM for
Catharanthus roseus b

SSIM for Lantana
camara p

SSIM for
Pachystachys lutea i

1 0.897916 0.901575 0.91325 0.878925

2 0.897141 0.901825 0.9116 0.878

3 0.898225 0.903175 0.913225 0.878275

4 0.897283 0.902274 0.911825 0.87775

5 0.896241 0.900375 0.910525 0.877825

6 0,904283 0,9134 0,915075 0,884375

7 0,9035 0,913475 0,91275 0,884275

8 0,903925 0,912625 0,91365 0,885225

9 0,90383 0,912625 0,91365 0,885225

10 0,903683 0,91175 0,913925 0,885375

Averages
for all runs

0.903845 0.912775 0.91381 0.884895

Fig. 6. Generated image for Catharanthus roseus

5 Conclusions and Future Work

From the results shown in Table 1, we can conclude that the model yielded
stable and moderately high structure similarity indices in the ten executions.
These results, although preliminary, suggest that the use of conditional-GANs
could be a valid solution for reversing leaf senescence, even with a relatively
small dataset.

The source and destination domains are very similar given that both are
photos of the same leaves with several modifications due to the drying process,
primarily in color, shape and size. By observing the resulting images it can
be seen that the most significant changes made by the generative network to
the input correspond to a size increase and a lightening in color. These could
indicate that the model learned the significant features that differentiate dried
leaves from fresh leaves. The SSIM measurement values obtained indicate that
the model had a similar behaviour for leaves of different species, although the
average for Pachystachys lutea is slightly lower than the other two. This might
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be caused by a higher variance between the size of the leaves of this specie in
the dataset; several of the leaves in the dataset are small while the others are
large; there is no such variance for the other species.

The dataset we built can be considered as moderately challenging, as the
species of the dried leafs did not suffer of significant changes, as seen in Fig. 4. In
the near future we plan to make the dataset larger and include more species. Also,
both the front and back side of each leaf should be used, as for different species
it has been shown [5] that one could be more significant the other. Existing
herbarium datasets are not useful for training, Conditional GANs as only images
of the dried specimens are preserved, however if Cycle GANs are used the dataset
built on for the experiments could be used for validation purposes.

Also, in the immediate future we plan to compare other generative adver-
sarial network architectures (like CycleGANS [14]), and explore preprocessing
techniques for image enhancement prior to training the model, as the one pre-
sented in [10]. It is also interesting to explore more specific senescence metrics, as
we used the widely popular structure similarity index. Considering the experts
opinion on the quality of the automatically estimated senescence we could assess
a more proper and specific metric. Another technique for evaluating the model
could be to train the model using only a subset of the species and evaluating
with the unused species.

Finally, it is important to measure the impact of using artificially rejuvenated
images for training plant recognition models as the one developed in [8].
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Abstract. The modern high-throughput techniques of analytical chem-
istry and molecular biology produce a massive amount of data. Omics
sciences cover complex areas as next-generation sequencing for genomics,
systems biology studies of biochemical pathways, or novel bioactive com-
pounds discovery and they can be fostered by the use of high-performance
computing. Nowadays, the effective use of supercomputers plays an
important role in phyloinformatics since most of these applications are
considered as memory or compute-bound and have large number of sim-
ple and regular computations which exhibit potentially massive paral-
lelism. Phyloinformatics analyses cover phylogenomic and computational
evolutionary studies of the life of genomes of organisms. RAxML is a
popular phylogenomic software based on maximum likelihood algorithms
used for the analyses of phylogenetic trees, which require high compu-
tational computing to process large amounts of data. RAxML imple-
ments several phylogenetic likelihood function kernel variants (SSE3,
AVX, AVX2) and offers coarse-grain/fine-grain parallelism via Hybrid
and MPI/PThread versions. The present paper aims at exploring the
performance and scalability of RAxML in the Santos Dumont super-
computer. Machine learning analyses were applied to support the choice
of features which lead to the efficient allocation of resources in Santos
Dumont. Recommending features such as type of clusters, number of
cores, input data size, or RAxML historical performance results were
used for generating the predictive models used for allocating compu-
tational resources. In the experiments, the hybrid version of RAxML
improves the speedup significantly while maintaining efficiency over 75%.
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1 Introduction

During the last decade, phylogenetic experiments [12] have been evolving rapidly
with new-generation high-throughput DNA-sequencing (NGS) techniques and
novel scientific apparatus. Consequently, databases such as Uniprot1 and NCBI2

now contain millions of protein sequences, which must be analyzed to understand
the biological behavior of genes and genomes better. Analyzing this volume of
data is far from trivial. The integration of the novel approaches in biomedical
technology, High Performance Computing (HPC), High Throughput Computing
(HTC), and Database Management Systems (DBMS) can foster the advances in
the fields of healthcare, drug discovery, genome research, computational biology,
system biology, etc.

Molecular phylogeny typically involves not only the retrieval of homologous
sequences but also the generation of sequence alignments and construction of
phylogenetic trees. Several phylogenetics algorithms have been developed to
calculate the tree to which the similarity/inheritance relationships among the
sequences are best-reflected [12]. However, there are many potential biological
problems or incongruence when attempting to infer phylogeny i.e., violations
of the orthology, stochastic, and systematic errors [13]. Recent advances in par-
allel techniques and HPC infrastructures have opened room for new solutions
to manage phylogenetics analyses. Therefore, the progress in the field has been
attained through algorithmic innovations rather than by brute force allocation
of all phylogenetic executions in available computational resources, e.g. large
supercomputers, grids, and clouds [3,16]. In fact, due to significant algorithmic
advances over the last years, HPC-oriented implementation aspects of phyloge-
netic applications are fundamental for scientists’ daily duties [7].

Many state-of-the-art sequential algorithms, which in principle can recon-
struct huge trees of 5,000 taxa and more, face significant technical problems
concerning lack of available memory and CPU. Parallel versions of these appli-
cations that can infer large trees and align sequences such as RAxML, MrBayes,
PHYML, BEAST, BEAST2, GARLI, MAFFT, ExaBayes, DPPDIV, FastTree,
PAUP, ParallelStructure, PartitionFinder, IQ Tree, and Migrate-N can bene-
fit from HPC infrastructure. The open source software RAxML (Randomized
Axelerated Maximum Likelihood) [14] aims at providing Maximum Likelihood
(ML) based on the inference of large phylogenetics trees. There are sequential
and parallel versions of RAxML. RAxML can also be used for post-analyses
of phylogenetics trees, to analyze alignments and, for inferring evolutionary life
and phylogenetics relationships between genomes. RAxML is particularly useful
for performing large-scale tree searches on supercomputers. Phylogenetics exper-
iments require an adequate computational infrastructure that supports the needs
in terms of memory, I/O and CPU. However, for researchers in the biological
field, some difficulties remain to efficiently use such programs in supercomputers

1 https://www.uniprot.org.
2 https://www.ncbi.nlm.nih.gov.

https://www.uniprot.org
https://www.ncbi.nlm.nih.gov
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mainly due to the lack of information on the software execution and management
of large amounts of data, especially for non-computer science experts.

This way, studies that recommend scientists to choose the suitable environ-
ment and features for running their applications are attractive. Provenance data
[4] can play an important role in this recommendation. Provenance refers to
the process of tracing and recording the origin of data. Provenance contains the
derivation process of a specific portion of data and other metrics such as memory
and CPU consuming. It provides valuable documentation required to preserve
the data, to determine their quality and authorship, as well as, to reproduce,
interpret, and validate the results generated by large-scale scientific executions. It
is particularly important in phylogenetics experiments where thousands of inter-
mediate data files are produced. Without provenance, scientists have to analyze
each one of the data files, manually associating their content to performance
metrics, for instance.

The Brazilian Bioinformatics Network (RNBio) aims at strengthening the
bioinformatics research projects in Brazil in a multi-institutional format with the
training of scientists in thematic studies involving bioinformatics and computa-
tional biology. RNBio has scientific collaborations with the Brazilian National
System for High Performance Computing (SINAPAD3), which offers users sev-
eral heterogeneous and geographically distributed resources with high perfor-
mance/throughput computing (HPC/HTC) capabilities and customized security
models, such as the supercomputer Santos Dumont4. In a previous work [9] the
science gateway BioinfoPortal5 was introduced, which brings out the possibil-
ity of reproducible science as this portal integrates programs, data, pipelines,
and HPC resources. BioinfoPortal integrates a suite of bioinformatics applica-
tions which are executed/managed in HPC resources of SINAPAD. However as
researches in science gateways are continually evolving, there are open, yet essen-
tial, problems in designing a multiuser computational platform that efficiently
allocates scientists’ workloads in HPC environments and optimizes the use of
HPC resources depending on the past and current performance of large-scale
bioinformatics executions.

This paper presents a study of performance and scalability of the RAxML
in the supercomputer Santos Dumont. This way, our work aims to provide basis
for the efficient resource allocation to execute software in HPC environments.
BioinfoPortal offers the required provenance data information for analyses based
on prior parallel performance executions, according to input and data file param-
eters. Besides the analysis of past executions performance, we presented predic-
tion models supported by machine learning algorithms for the efficient alloca-
tion/usage of RAxML in Santos Dumont. Results offer important information
required to decide about the amount of cores/nodes that must be allocated to
optimise the rationale use of executions of applications in BioinfoPortal. RAxML
was evaluated using computational speedup, execution time, and efficiency as

3 https://www.lncc.br/sinapad/.
4 https://sdumont.lncc.br/.
5 https://bioinfo.lncc.br/.

https://www.lncc.br/sinapad/
https://sdumont.lncc.br/
https://bioinfo.lncc.br/
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parallel processing metrics that lead to the better configuration that optimise
the use of the supercomputer. Data mining and machine learning algorithms
were executed for constructing model predictions based on provenance data and
using Orange and Scikit-learn tools [4,15].

This paper is organized as follows. Section 2 presents related work. Section 3
shows the methodology, experimental results and discussion and Sect. 4 con-
cludes the paper and points out future work.

2 Related Work

Multiprocessor clusters are the most currently used architecture for large
scale applications. Combining MPI and OpenMP models is regarded as a
suitable programming model for such architectures. However, writing efficient
MPI+OpenMP programs requires expertise and performance analysis to deter-
mine the best number of processes and threads for the optimal execution for a
given application on a given platform. Hamidouche et al. [6] propose a frame-
work for the development of Hybrid MPI+OpenMP programs based on compiler
analyses that estimate the computing time of a sequential function and a sim-
ple analytical parallel performance prediction model to estimate execution time
of the hybrid systems. Our work aims to provide the efficient resource alloca-
tion to execute software from a portal. Analyses are based on the prior parallel
performance information (e.g. input data, software parameters) related to an
existing hybrid MPI+OpenMP application and supported by machine learning
for recommending features on a predicted model.

In a previous work [9], we introduced the science gateway BioinfoPortal,
which was designed as a multiuser computational platform that integrates bioin-
formatics applications (programs, data, pipelines) in HPC resources. BioinfoPor-
tal is managed by the middleware CSGrid at the HPC infrastructure of SINA-
PAD. Machine learning analyses were performed based on result executions and
provenance data information provided by BioinfoPortal that lead to optimize the
use of BioinfoPortal (clusters and computational resources), in particular when
large-scale bioinformatics executions are performed. The present paper aims at
exploring the performance and scalability of the software RAxML coupled to
the supercomputer Santos Dumont and executed via BioinfoPortal to recom-
mend models for an efficient resource allocation, based on the execution using
a set of features (input data and parameters). Machine learning was applied for
recommending features that lead to the efficient resource allocation for software
execution in Santos Dumont based on the previous executions.

Rodrigo et al. [11] present a methodology to characterise workloads and
assess their heterogeneity, at particular time period and evolution over time.
They apply this methodology to the workloads systems at the National Energy
Research Scientific Computing Center (NERSC) in order to understand main
features belonging to the HPC workloads and to enable the efficient scheduling
in HPC systems. The present work explore the behaviour of the performance and
scalability features of the bioinformatics HPC software RAxML in the supercom-
puter Santos Dumont. Machine learning analyses are utilised for building the
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predictive models in order to reach an efficient job allocation for BioinfoPortal
Science Gateway. Features as the type of clusters, quantity of cores, input data
size, and RAxML performance results were used as input data information in
the machine learning analyses.

Pfeiffer and Stamatakis [10] present a performance analysis of the paral-
lel versions implemented in RAxML, supporting the Hybrid version as the most
efficient. Zhou et al. [17] present a comparative analysis between the PhyML, IQ-
TREE and RAxML/ExaML programs, concluding that RAxML, in addition to
being more scalable, generates better-quality tree topologies. This paper explores
the performance of RAxML in the Santos Dumont supercomputer, exploring
environment configurations and RAxML settings (as bootstrap values and data
size features, and the evolutionary models) that influence executions. They are
complementary work since exploring HPC software as RAxML presents sev-
eral challenges as coupling to HPC infrastructures to demonstrate performance
behaviour and scalability for processing parallel and distributed executions.

3 Methodology and Experimental Results

This section presents two main results. The former, experimental performance
analyses of RAxML in the Santos Dumont supercomputer. These analyses con-
sider size of input data and the RAxML parameters (bootstrap replication val-
ues, the evolutionary model). The latter, we present machine learning models
to predict the efficient allocation/usage of the Santos Dumont supercomputer
based on features as the type of clusters, amount of cores, software parameters,
and efficiency.

In Bioinformatics, the evolutionary phylogenomics analysis of genomes is a
traditional problem that demands high memory and CPU time. The software
RAxML (Randomized Axelerated Maximum Likelihood) is an open source based
on Maximum Likelihood (ML) algorithms for statistical calculations that gener-
ates phylogenetics trees for supporting evolutionary inferences and phylogenet-
ics relationships between genomes. RAxML is executed in the Santos Dumont
infrastructure and it is scheduled using the middleware CSGrid6 of SINAPAD.
Santos Dumont consists of 16 TB RAM, storage totalling 1,7 PetaBytes (Seagate
1.5 Buster), 10.692 cores, 1.1 PetaFlops, Intel Xeon E5-2695v2, 30 MB cache, 12
cores – 3.2 GHz.

3.1 Data Input and Experiments Setup

The input files of four amino acid alignments (D1, D2, D3, D4) in format
PHYLIP were used in the performance experiments. Detailed information is
presented in Fig. 1. The simple gene alignment is D1 and the superalignments
(D2, D3, D4) were formed of 31 concatenated universal orthologous (UO) genes
of protozoan genomes. The parameters used for setting RAxML are the evo-
lutionary model (WAG), the rate of model heterogeneity (GAMMA), and the
6 https://jira.tecgraf.puc-rio.br/confluence/display/CN/CSGrid+Home.

https://jira.tecgraf.puc-rio.br/confluence/display/CN/CSGrid+Home
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bootstrap values of replications (100; 1,000; 2,000; 4,000; 6,000). The experiment
was performed, as presented in Fig. 1, fixing the evolutionary model WAG and
varying the bootstrap values. (Those model and bootstrap values are aforemen-
tioned).

Fig. 1. Experiment configuration for the execution of RAxML in Santos Dumont.

3.2 The Software RAxML

RAxML was compiled to be compatible to the Santos Dumont infrastructure.
Depending on the processor features, RAxML supports three instructions which
accelerate the likelihood and parsimony computations: Streaming SIMD Exten-
sions 3 (SSE3), Advanced Vector Extensions (AVX), and AVX2 vector [8]. Since
the architecture of Santos Dumont (CPU Intel Xeon E5-2695v2 Ivy Bridge)
supports AVX, our experiments perform the parallel executions of RAxML with
Hybrid version and the streaming SIMD extension’s AVX. RAxML presents four
options of execution using multi-core shared memory systems, one sequential
(for small datasets) and three parallel versions using MPI, PThreads, or Hybrid
(MPI + PThreads) [5]. The efficiency of the parallel versions depends on the
alignment length and the choice of RAxML parameter values. However parallel
versions work well for long alignments, the performance is extremely hardware-
dependent. The efficiency depends on the number of states of the data; the more
states the data have (4 for DNA, 20 amino acid), the fewer site patterns are
needed for an efficient parallel execution per thread/core. The parallel efficiency
also depends on the rate of heterogeneity of the model; the GAMMA model
entails more computations than the CAT model, which needs approximately
1/4 of the computations than the GAMMA model requires. RAxML Hybrid
version 8.2.12 was used for experiments [14].

3.3 Performance and Scalability of RAxML in Santos Dumont

To evaluate the performance gain according to the number of processing units, we
used the speedup and efficiency metrics. An ideal speedup reduces the sequential
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time dividing this time by the number of processing units used, and it was defined
to evaluate performance gains of parallel computers.

The ideal (linear) efficiency curve is obtained by dividing the parallel speedup
by the number of processors. These metrics were used to evaluate even though
there are gains by adding more nodes from 2 up to 64 for execution may (or not)
bring the expected benefit, mainly if CPU costs are involved.

RAxML Hybrid was executed fixing the evolutionary model WAG and vary-
ing the bootstrap replication values. This experiment aims at evaluating the
performance and scalability (in minutes) of RAxML Hybrid in Santos Dumont
according to the number of nodes. The performance of RAxML was measured on
a single processor node (24 cores per processor node) to analyze the local opti-
mization before scaling up the number of nodes. After that, the performance
and scalability of RAxML were measured using from 2 node (48 cores) to 64
nodes (1,536 cores). Each experimental result presented in this section is the
mean value obtained from 3 executions.

Figure 2 presents the total execution time curve from D1 dataset varying
bootstrap from 100 to 6,000. Figure 3(a) presents the speedup and Fig. 3(b)
presents the efficiency of the execution from D1 dataset experiment. We can
observe that for all bootstrap values, 4 nodes are the minimum number of
nodes that presents an efficiency above 75% and also presents total execution
time belonging to the smallest “quartile” from Fig. 2. For instance, as it can be
observed in Fig. 2 the total execution time (TET) of D1: (1) the best TET case
was obtained with bootstrap 100, where the TET on 1 node is 1.6 min, TET on 4
nodes is 0.5 min and up to the TET stabilises on 0.1 min and (2) the worst TET
case was obtained with bootstrap 6,000, where the TET on 1 node is 1,429 min,
TET on 4 nodes is 385 min and up to the TET stabilises on 22.3 min.

Our results demonstrated that efficiency values reaching over 75% can be
considered in order to determine “the optimal” CPU configuration (i.e. type
of cluster, quantity of node/cores) to execute datasets (in this study: D1, D2,
D3, D4). Thus, an efficiency value of 75% can be fixed as a parameter for taking
decision about the number of nodes for the automatic allocation of tasks executed
at Santos Dumont. For instance, this information was assumed by the science
gateway BionfoPortal and included as a decision parameter in the configuration
script at the resource management layer responsible by the node allocations. This
fact allows that for smaller files (as D1) be allocated just 2 nodes, for medium-
to-large files (as D2, D3) be allocated up to 32 nodes, and for the largest files (as
D4) be allocated up to 64 nodes. Before those results, executions were submitted
by the BionfoPortal users using, in most cases, 1 node (24 cores). However, our
performance and machine learning analyses determined that the configuration
must be adapted depending on features of data and parameters, for reach the
best efficiency, as possible.

RAxML Hybrid Performance Using Small Alignment of Genes (D1).
Figure 3(a) presents the speedup and Fig. 3(b) presents the efficiency of the exe-
cution of RAxML Hybrid in Santos Dumont using the alignment D1. Results
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Fig. 2. D1 - RAxML total execution time

demonstrate that small alignments of single genes do not benefit from the par-
allelism and distribution of tasks of the Santos Dumont clusters. The execution
of RAxML with D1 using 4 nodes led to a speedup of 3.5, 2.98, 3.61, 3.49,
3.30 (for bootstrap values of 100; 1,000; 2,000; 4,000; 6,000, respectively). Even
though there was always a gain by adding more nodes, from 4 up to 64 nodes,
the speedup presented some degradation. The efficiency is less than 0.7 since
the size of the input dataset of small alignments is very low and the CPU time
required is so fast in comparison to the available CPU machine processors.

RAxML Hybrid Performance Using Superalignments (D2, D3, D4).
Figures 4, 5, and 6 present results of speedup (a) and efficiency (b) of the exe-
cution of RAxML Hybrid in Santos Dumont using the superalignments D2,
D3, and D4 (information detailed in Fig. 1). For setting RAxML parameters
were used the evolutionary model WAG and the bootstrap replication values
100; 1,000; 2,000; 4,000; and 6,000. Results demonstrated that superalignments
better benefit from the Santos Dumont HPC infrastructure. Since more com-
plex are the features of data (size) and RAxML (bootstrap, models), the paral-
lelism/distribution of RAxML task executions are better performed using more
amount of CPU machine processors (in this experiment up to 64 nodes i.e. 1,536
cores).

The speedup is near linear for all the superalignments using all bootstrap
values. Superalignments D2 and D3 (size medium) presented a linear speedup
but with also a small degradation between 4 nodes to 64 nodes (also supported by
the efficiency of 75% to 100%). The superalignment D4 (size large) also presented
a linear speedup up to 64 nodes with efficiency values of 100%.

The efficiency for the files D2, D3, and D4 ranged from 80 to 100 (only D1
presented the smallest values). The larger file D4 is the most scalable and ben-
efits from the environment and parallel configurations. According to the bench-
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Fig. 3. (a) D1 - RAxML speedup; (b) D1 - RAxML efficiency

Fig. 4. (a) D2 - RAxML speedup; (b) D2 - RAxML efficiency

mark tests [10], it is expected that as the bootstrap increases with supermatrix
(larger) files, executions become more scalable. It can be concluded from Fig. 3,
that D1 becomes more efficient with 2 nodes and superalignments D2, D3, and
D4 (Figs. 4(b), 5(b), 6(b)), respectively by using 4 nodes (or more). Reinforcing
results, if we extrapolate these execution values to the actual usage in Santos
Dumont, this would allocate files and settings of these types directly to up to
4 nodes. Also for the largest files as D4, based on the performance (efficiency)
obtained from executions, for bootstrap values less than 4,000 the best configu-
ration for executions is presented with 2 to 4 nodes.

3.4 Machine Learning Analyses

An exploratory data analysis using classification trees was performed with the
available data of executions using RAxML Hybrid in Santos Dumont. Machine
learning techniques were used to generate predictive models to set the parame-
ters values that optimize the RAxML executions. For inferring knowledge about
the most adequate computational resource configurations for performing execu-
tions, we applied regression models with decision trees [1] using the Orange and
scikit-learn data mining tools which apply statistical analyses to discover pat-
terns. The Orange Data Mining Tool [2] implements the core algorithm ID3 and
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Fig. 5. (a) D3 - RAxML speedup; (b) D3 - RAxML efficiency

Fig. 6. (a) D4 - RAxML speedup; (b) D4 - RAxML efficiency

employs a top-down, greedy search through the space of possible branches with
no backtracking. scikit-learn is a Python module for machine learning built on
top of SciPy and distributed under the 3-Clause BSD license, scikit-learn also
uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library.
Nevertheless, before generating the decision tree, we had to evaluate the statis-
tics obtained form each attribute used in the model (i.e. threads, data size, node
attributes). The main idea of the attribute analyses is to identify potential prob-
lems with the chosen attributes and decide if an action needs to be taken, i.e.
to fix a type of machine processors or to choose the amount of nodes that may
be required from a particular size of data or bootstrap values of RAxML.

First, we can state that there is no one dominant attribute value and the
distribution is not even, as presented in Fig. 7(a), (b) and (c). Then, these results
indicate that attributes can be used in the predictions. Figure 7(a) presents the
attributes of threads, we can observe that 75% of the number of threads used
was 24, from an interval of 24 (1 node) to 240 (10 nodes). Figure 7(b) shows that
75% of data input presented size of 204 KB, from an interval of 3.2 to 610,000.
Moreover, evaluating the node attribute in Fig. 7(c), we observed that 75% of the
number of nodes used was 1, from an interval of 1 to 10. This information can
assist users to distinguish outlier points to find anomalies or specific biological



458 K. Ocaña et al.

Fig. 7. The attributes of the statistics (value distribution): AtributeStatistics.
(a) Threads (number of threads). (b) Datasize (size of alignments in KB). (c) Node
(number of nodes).

characteristics. By using these attributes to build estimation models, we can
discover, using classification or regression algorithms, the relation of biological
input data size (in KB) and the number of threads which can be determined for
generating maximum values of efficiency.

Inhere, we presented results of machine learning analyses. We considered four
main stages: training, discretization, classification and validation.

Training: Several parameters combinations were evaluated, following the order of
the parameters used to execute RAxML, as presented in Fig. 1. For each parame-
ter combination set evaluated, 3 executions were performed. In the experiments
described in this subsection we evaluated 6 combinations of parameters thus
generating a total of 141 RAxML executions.
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Discretization: The data obtained with the processing of the 141 executions
were submitted to the discretization method and three groups were obtained, as
presented in Fig. 8: Low executions whose efficiency is less than 85, i.e., [0, 85[,
Mid executions whose efficiency is between 85 and 95, i.e., [85, 95[, and High
executions whose efficiency is above 95, i.e., [95, 100].

Fig. 8. The attributes of the statistics: Distribution. (a) Threads (number of threads).
(b) Data size (data size of the alignment in KB). (c) Node (number of nodes).

Classification: Figure 9 shows the decision tree with three levels obtained with
Orange. It is observed that the group in which an execution is based on the
efficiency metric will be classified as medium, and is defined by the parameters
data size of alignments (in KB) and bootstrap. This highlights that the execution
of RAxML on Santos Dumont is mainly impacted by the way input dataset
is organized. Therefore, the decision tree evaluates the importance of using a
data partitioning method and knowledge of the criterion adopted to obtain an
execution classified as medium. For example, the data size medium (D2, D3)
with a bootstrap value of 100 present an efficiency of 58,3%.

Evaluation: The evaluation results of the predictive model using the 5-fold Cross
Validation method showed that the prediction was correct in 97.8% of the cases,
according to F1 metric, considered satisfactory because it is greater than 70%.
Besides, it is a compact predictive model, with rules of good coverage and pro-
duce consistent knowledge of the problem. Precision and Recall also presented
high values.
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Fig. 9. The decision tree with Orange associated with the efficiency of the executions
of RAxML based on data size and bootstrap.

Figure 10 presents the inferred rules for analyzing/predicting the efficiency
of the executions of RAxML based on applications and environment characteris-
tics. In this analysis, we can state that the efficiency of computational resources
is determined by 3 parameters: the number of threads (threads), the size of the
alignment in KB (datasize), and the number of nodes (node) i.e. the combina-
tion of values of these 3 parameters defines the efficiency of the executions. For
example, Fig. 10 shows that the number of threads between 100 and 81 with less
than 36,000 KB of data size will obtain, on average, an efficiency value near to
100%. The machine-learning strategies appoint, for the actual scenario, that the
best machine setup in a heterogeneous environment for executing applications
presented at least 75% of efficiency.

Figure 11 presents the inferred rules for exploring the efficiency of the exe-
cutions of RAxML using scikit-learn. In this analysis, we can state that the
efficiency of computational resources is determined by 2 parameters: the align-
ment size in KB (datasize) and the number of nodes (node) i.e. the combination
of values of these 2 parameters defines the efficiency of the executions.

For example, Fig. 11 at the third level (datasize ≤ 1,0896.0, samples = 48,
value = [24, 2, 22]) presents a class low of efficiency (1%–89%) when RAxML is
executed using 2 nodes. The machine-learning strategies appoint, for the actual
scenario, that the best machine setup in a heterogeneous environment for exe-
cuting applications presented at least 75% of efficiency.
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Fig. 10. The decision tree with Orange associated with the efficiency of the executions
of RAxML based on datasize and nodes.

Fig. 11. The decision tree with scikit-learn associated with the efficiency of the execu-
tions of RAxML based on datasize and bootstrap.

4 Conclusions

The results of RAxML executed in Santos Dumont were analyzed based on
performance and efficiency metrics and supported by machine learning algo-
rithms. The provenance data information were obtained from RAxML executions
provided by CSGrid/SINAPAD, by submitting high level database analytical
queries. These results show that RAxML in Santos Dumont using multithreads
and MPI improved the performance, as more nodes are added as it processed
larger data size and high bootstrap values. First, we analysed the general fea-
tures related to RAxML (input size, setting RAxML by bootstrap, efficiency of
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machines capacity) in order to provide information about the better efficiency
for the allocation of HPC resources. We further explore that features and the
obtained performance results using machine learning analyses. Decision trees
generated with regression models, based on a historic of the dataset, provided a
promissory learning module and proved that choosing the platform configuration
for performing executions is valuable for exploring the better usage of the HPC
infrastructure. Data analytic is essential to support the exploratory nature of sci-
ence. Large-scale experiments can benefit from data analytics facilities to ease
the results, reduce the incidence of errors, decrease the total execution time, and
sometimes reduce the financial cost. The data analytic process needs to explore
statistics of the applications execution, performance issues, and attributes of
data files. RAxML executions may consist of hours or days of processing, thus,
it is unfeasible to perform an analysis without automatic and analytic computa-
tional support. This paper evaluates the performance of RAxML in the Santos
Dumont supercomputer to choose the best configurations for future executions.
We are also concerned of coupling to BioinfoPortal with the best configurations
for the efficient use of the computational resources, especially for the MPI and
multithreading applications RAxML, and other similar as SPAdes, FragGeneS-
can, MAFFT, Ray, Bowtie, and HMMER.
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Abstract. Electron microscopy is a technique used to determine the
structure of bio-molecular machines via three-dimensional images (called
maps). The state-of-the-art is able to determine structures at resolutions
that allow us to identify up to secondary structural features, in some
cases, but it is not widespread. Furthermore, because molecular interac-
tions often require atomic-level details to be understood, it is still nec-
essary to complement current maps with techniques that provide finer-
grain structural details. We applied segmentation techniques to maps in
the Electron Microscopy Data Bank (EMDB), the standard community
repository for these data. We assessed the potential of these algorithms
to match functionally relevant regions in their atomic-resolution image
counterparts by comparing against three protein systems, each with mul-
tiple atomic-detailed domains. We found that at least 80% of amino acid
residues in 7 out of 12 domains were assigned to single segments, suggest-
ing there is potential to match the lower resolution segmented regions
to the atomic counterparts. We also qualitatively analyzed the potential
on other EMDB structures, as well as generating the raw segmentation
information for the complete EMDB, for interested researchers to use.
Results can be accessed online and the library developed is provided as
part of an open-source project.

Keywords: Computational biology · Computational protein
structures · Electron microscopy · 3DEM · Segmentation

1 Introduction

Structural biology has seen enormous progress in the 21st century, particularly
with the rise of open databases that host three-dimensional models of bio-
molecular structures. On one hand, we have the Protein Data Bank (PDB)
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[7] that hosts over 150,000 atomic-detailed structures of proteins, DNA and
RNA. Most of the structures deposited in PDB correspond to relatively small
bio-molecular complexes. A second database, the Electron Microscopy Data
Bank (EMDB) [16], focuses on three-dimensional models created from electron
microscopy (3DEM), which can power the imaging of larger macro-molecular
complexes that have been historically deposited in the PDB. Very significant
structures have been identified thanks to 3DEM [19,20,32].

Because protein interactions actually happen at the atomic level, ideally we
want EM maps to give us atomic details so that we can do functional analy-
sis by just using this type of image. In [24] the authors were able to generate a
reconstruction with a resolution of 3.5 Å that allowed them to create an all-atom
model. Even when there have been steady improvements on attainable resolu-
tions over the years, this level of detail is not widespread. A gamut of computa-
tional techniques are often applied to be able to obtain details that go beyond
the density envelope that EM maps provide. Hybrid approaches have been used
to extract finer-grain details out of EM maps up to 10 Å [18]. Techniques like
these have been applied to shed light into the organization of proteomes, for
instance [6]. The field of Electron Microscopy fitting deals with finding atomic-
level details based on existing high-resolution structures that match EM maps
[8,10,28].

Even if we are not able to identify all atoms in a map, other structural
elements and annotations can also be useful, for functional analysis purposes. For
example, the architecture and helical regions of 26S proteasome were determined
this way in [5]. Annotations directly on density maps have shown previously
unknown interactions in complexes [11]. A significant number of algorithms and
tools have been developed to identify secondary structure elements [2,3,12–14].
More recently, de novo modeling of proteins has also been applied to EM maps
[26].

Segmentation is another technique used to identify structural features in
maps. The basic notion here is to divide EM maps into density regions that
should match individual protein structures, or functionally relevant sections,
like domains. Some automated techniques that assume the knowledge of the
components, or the symmetry of the complexes have been previously developed
[4,27,33]. Atomic models are not always available for the maps under study and
we also need to deal with the added complexity of images in more complex,
environments, that can lead to lower resolution images [21].

In this work, we study the potential to identify functionally-relevant regions
in 3D Electron Microscopy maps by applying automated segmentation. Our goal
is not only to approximate near-atomic features but, more in general, to identify
structural hot-spots within maps that can later be mapped to larger images.
Through the open-source library we have developed for this work, we aim to
provide a way to both visually and analytically study EM maps. We apply these
techniques to all the structures currently in the EMDB and show sample cases
that highlight the potential of this type of method. As noted in [21], trying to



466 M. Zumbado-Corrales et al.

bridge the gap between cellular and molecular structural data is key for the field
to advance.

2 Methods

2.1 Watershed Segmentation

Our segmentation method uses the immersive watershed transform to generate
region labels as a first step, then we perform region grouping with scale-space
filtering as proposed in [22]. This approach is useful to reduce over-segmentation
as reported by authors.

The watershed algorithm can be understood following the same analogy pre-
sented in [31]. Consider EM map densities as a topographic surface as seen in
Fig. 1, where holes are pierced at surface local minima to let water flood basins.
If each voxel located in a catchment basin would merge with water coming from
different local minima, a dam is built to separate water from different regions.
At the end, each resulting flooded region is separated by built dams, also called
watershed lines, which coincide with surface local maxima.

Fig. 1. Representation of watershed process with A as catchment basins, B as water-
shed lines and C as local minima (conceptual illustration inspired by [31]).

We take the additive inverse of an EM map as the topographic surface,
regarding higher densities as surface local minima. Thus we get watershed regions
surrounding higher density locations, separated by lowest surface densities. A
fixed connectivity of 26 voxels is used in each dimension to connect neighbors in
the process of assign adjoin voxels to the same region.

2.2 Scale-Space Grouping

Region grouping is performed by progressively smoothing the EM map using a
Gaussian filter. This concept was introduced in [35] and is called scale-space
filtering. Scale-space representation L(x, y, z;σ) ∈ R

3 × R
+ of an EM map

f(x, y, z) ∈ R
3 is defined scale-space representation L(x, y, z;σ) ∈ R

3× scale-
space representation L(x, y, z;σ) ∈ R

3 × R
+ of an EM map f(x, y, z) ∈ R

3
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is defined as and is called scale-space filtering. The scale-space representation
L(x, y, z;σ) ∈ R

3 × R
+ of an EM maaf(x, y, z) ∈ R

3 is defined as

L(x, y, z;σ) = (f ∗ g)(x, y, z;σ), (1)

where σ ∈ R
+ controls the variance of the Gaussian kernel g(x, y, z;σ) ∈ R

3×R
+,

defined as

g(x, y, z;σ) =
1

σ3(2π)
3
2

exp
(

−x2 + y2 + z2

2σ2

)
. (2)

In order to group regions, an initial local maxima point set is computed from
original EM map. Then, each initial local maxima point is successively moved
up to the local maxima of a subsequent smoothed scale corresponding to the
steepest ascent in terms of density intensity, as shown in Algorithm 1.

The process of Scale-Space filtering produces an EM map for each step
with progressive attenuation of energy on higher density locations. Thus, com-
puted local maxima of a succeeding step in the Scale-Space representation would
replace several local maxima of a current step. After N number of smoothing
steps, resulting local maxima points having the same coordinates in space would
merge into a new region.

Parameters used for segmentation and grouping follow the same approach
presented in [22]. The number of steps N controls how many steps of Scale-Space
grouping are performed. Smoothing step size S regulates how much smoothing is
achieved at each step. A density threshold level defines the structure contour to
be segmented and also affects the isosurface generated by the Marching Cubes
algorithm.

Algorithm 1. Space-scale grouping of watershed regions of segmented EM
map
Input : Watershed segmented map
Input : Collection of successively smoothed maps
Input : Steps
Output: Grouped regions

1 N ← Steps;
2 M ← Watershed segmented EM map;
3 S ← Collection of successively smoothed maps;
4 L ← Collection of local maxima of M ;
5 for i in N :
6 for p in L :
7 B ← Collection of local maxima of S for corresponding i;
8 Replace p with the steepest local maxima in B respect to p;

9 Find duplicates in L and merge corresponding regions into new one;
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2.3 Marching Cubes and Isosurface Generation

Marching cubes is a reference algorithm for isosurface reconstruction from sam-
pling data. Several optimizations have been proposed to extend the basic app-
roach, improve its performance and solve ambiguities. Our method relies on an
efficient implementation of Marching Cubes algorithm proposed in [17]. Isosur-
face visualization of protein structures is essential to later identify segments
enclosed in the three dimensional space of an EM map.

2.4 Library Design

The created library is composed of the following Python modules: processing,
visualizer, reader and molecule. The processing module object contains
watershed and space-scale implementations. Later, the visualizer module
object implements main methods exposed to the user, namely, segmentation,
show and show atom matching. The reader module object implements read
function to read map files from disk and returns created map object.

Our library supports GPU accelerated visualization by using Glumpy [25]
which is a fast and scalable open source library that takes advantage of the
computational power of GPU through OpenGL.

In this work we show the effectiveness of open source scientific Python
libraries such as Scikit-image, Biopandas and Numpy [23,30,34]. At the same
time, we identify potential areas of improvement that will allow us, in the future,
to augment them with custom features to scale up our system.

2.5 Validation Data Set

In order to determine the potential to identify structurally relevant regions
through segmentation, we used three protein systems from a data set previously
identified as suitable for the analysis of algorithms related Electron Microscopy
map fitting [1]. The data set focuses on proteins for which we have both low-
resolution EM maps but also there is an atomic level Protein Data Bank struc-
ture that matches the map. While we are not directly tackling the EM-fitting
problem in this study, the data set is still very much valid for our purposes. In
particular, the fact that the authors have divided each of the protein systems
into regions, using PDB structures, allows us to compare the segments that our
library generates with the annotated domains. Intuitively, if each of the segments
that we generate has a high overlap with the domains identified in that study,
then the structural correspondence that we propose is valid. Table 1 summarizes
the characteristics of the data set.

In addition to testing against these controlled protein systems we have also
run the segmentation over two larger macro molecular structures to illustrate
how promising the methods are at identifying not only structural regions within
isolated proteins, but also in large complexes. For this purpose we have analyzed
EMDB ID: 1048 and EMDB ID:2596.
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Table 1. Validation data set metadata

EMDB ID PDB ID Units Residues Description

1010 1GQE 4 362 Release Factor (RF2)

1364 1FNM 5 655 Elongation Factor G (EFG)

5017 1N0U 3 654 Elongation Factor 2 (EF2)

3 Results

Our method validation is based on the comparison between computational and
biological segments. While the computational ones are obtained applying the
methods described in Sect. 2, the biological segments are more difficult to come
by. As we have described in Sect. 2.5, we have used a previously derived definition
of domains in a protein. In general, domains are regions within a protein that
have been conserved through evolution for a good reason, be that structural,
functional, etc. Our premise is that segmentation algorithms that are able to
closely predict the matching between computational and biological segments
can allow us to better understand the different sections in a macro-molecule.

3.1 Atomic-Detailed Validation

Figure 2 shows the structural baseline for our detailed analysis. The wire-
frame representation shows the density envelope identified using the author-
recommended contour level to create isosurfaces that resemble the true volume
of the protein. In bright green we can see the ribbon representation of the protein
backbone, which is important to determine the rough high density regions that
should be expected to be identified. However, the knowledge of the backbone
does not tell us on its own what biological sections we are supposed to target.
For that, we fitted each of the domains (as found in [1]) using a method devel-
oped by the authors that uses Markov Random Fields to generate candidate
alignments1.

The fitted structures, shown in separate colors for each domain become our
validation targets. We assessed what fraction of the residues were assigned to
different segments, per domain. The theoretical ideal result is for every residue to
be assigned to a single segment. We tackled this problem from both quantitative
and qualitative angles.

Quantitative Results. Table 2 shows our way of quantitatively determining
how well the segments generated for EMDB ID: 1010 matched the domains.
In this particular case, the results mostly meet our expectations. Two of the four

1 This method is based on the combination of physico-chemical, shape and cross cor-
relation features between each of the domains and the EM map. This work is not
part of a stand-alone article as of this writing.
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Fig. 2. EM maps in the data set aligned to the C-α trace (bright green) and a can-
didate fitting of the domains in each protein system (individually colored). Each label
corresponds to the EMDB ID for each map. (Color figure online)

domains, B and D, are matched to a single segment, as well as 94.12% of residues
in A. C has a slightly worse result since 16.48% of residues are not assigned to
a single segment, but it can still be considered promising2. The drawback with
EMDB ID: 1010’s results is that we should have identified 4 segments, as
opposed to 3. That suggests that there is some density noise that we cannot
overcome that yields two regions that should be separate to become a single
one.

Table 2. Segment matches for EMDB ID 1010. The All row summarizes the overall
assignment. The remaining rows show the per-domain assignment

Domain Segment Percentage (within domain) Residues Assigned

All 1 31.22% 113/362

3 46.96% 170/362

2 21.82% 79/362

A 1 94.12% 112/119

3 5.88% 7/119

3 100.00% 99/99

C 3 16.48% 15/91

2 83.52% 76/91

D 3 100.00% 45/45

2 Note that for 1010 there are 8 missing residues, observed in the C-α trace but not
the PDB with all atomic details. They are ommitted for analysis purposes.



Matching of EM Map Segments 471

Similarly, Table 3 summarizes the matches found for EMDB ID: 1364. In
this case we can claim successful results for domains A, D and E, since they
were mostly assigned to a single segment (82.87%, 95.52% and 98.61%, respec-
tively). However, domains B and C are more evenly distributed across multiple
segments, which is not the desirable outcome. As we will see in our qualitative
analysis, there is a region where densities are more difficult to differentiate. We
can also observe that we are identifying one less segment than we should. There
are 5 domains in this protein but we are only generating 4. This can also explain
the difficulty in assigning clear-cut segments.

Table 3. Segment matches for EMDB ID 1364. The All row summarizes the overall
assignment. The remaining rows show the per-domain assignment

Domain Segment Percentage (within domain) Residues Assigned

All 4 11.45% 75/655

3 16.95% 111/655

1 49.92% 327/655

2 21.68% 142/655

A 4 1.20% 3/251

3 15.94% 40/251

1 82.87% 208/251

B 4 60.50% 72/119

3 39.50% 47/119

C 3 30.38% 24/79

1 53.16% 42/79

2 16.46% 13/79

D 1 4.48% 6/134

2 95.52% 128/134

E 1 98.61% 71/72

2 1.39% 1/72

The last case analyzed was EMDB ID: 5017. As Table 4 reflects, this was
the most challenging case from a quantitative point of view. The best match
obtained corresponded to domain C with 64.79%, but A and B are generally
split between two segments. On the flip side, this case correctly identified that 3
segments were needed to have a correct matching of domains. We will discuss in
the qualitative analysis why this protein structure could have behaved this way.

Qualitative Results. The previous section had the purpose of providing a
non-subjective metric that would shed light in terms of whether or not a large
portion of residues were assigned to expected segments. We can argue that just
looking at proportions is not enough to determine how good the assignment was.
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Table 4. Segment matches for EMDB ID 5017. The All row summarizes the overall
assignment. The remaining rows show the per-domain assignment

Domain Segment Percentage (within domain) Residues Assigned

All 2 46.48% 304/654

1 32.42% 212/654

3 21.10% 138/654

A 2 44.35% 204/460

1 40.65% 187/460

3 15.00% 69/460

B 2 43.90% 54/123

3 56.10% 69/123

C 2 64.79% 46/71

1 35.21% 25/71

As we have stated in this work, the actual 3D structure of proteins is crucial
to determine how well they function. Thus, a presumably good match of 80%+
that misses the key 20% of a protein is not necessarily the best result.

To complement the quantitative arguments made before, Fig. 3 shows the
colored assignment of EM map regions to segments, made by our library. We
contrast this against the fitted structures shown in Fig. 2. Based on the results
obtained in the quantitative analysis, we assessed three elements. First, are the
domains with majority single-segment assignments consistent with the expected
structure? Second, are there clues as to why the algorithm identified one fewer
segment for EMDB ID: 1010 and EMDB ID: 1364? Finally, for the domains
with unclear assignments, is there any structural reason that may explain them?

The general 3D structure of EMDB ID: 1010 from Fig. 2 can be summa-
rized as two separate domains on the left (yellow) and right (cyan) and two
others that are tightly coupled between them (purple and orange). From that
point of view, it is not unexpected that the algorithm identified only 3 segments,
assuming that the main difficulty was separating the link domains. If we look at
the segmentation from Fig. 3 we see that the overall left and right domains are
captured by the blue and yellow segments. It appears as if the orange domain (in
Fig. 2) corresponds roughly to the red segment in Fig. 3, which is encouraging.
We do see that all segments over extend, which could be an artifact of the space
scale filtering applied. We need to remember that the surfaces here are based on
contour values that are suitable to convey the actual shape of the proteins, but
the EM maps contain density in surrounding voxels too and there is no guaran-
tee that at the contour level we used there is no noise. The two parts in the red
segment are particularly interesting when compared to the fitted structure. The
EM map, at the recommended contour, shows a gap not filled by the C-α trace
in Fig. 2 which could back the idea that we’re dealing with a noisy region.
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Fig. 3. Segmentation applied to EMDB ID 1010, 1364 and 5017 as detailed in Sect. 2.
Every color represents an individual segment identified. The top row shows only the
segments, for clarity, while the bottom row adds spheres to highlight the C-α atoms.
Those atoms are expected to be slightly shifted due to small adjustments done to
contour thresholds in the segmentation (Color figure online)

For EMDB ID: 1364, Fig. 2 shows a big domain on the top right corner of
the structure that is segmented into multiple ones (as opposed to just a single
one). This particular problem is less troublesome than some of the aspects found
for EMDB ID: 1010. Refinement of segment assignments that are supposed to
be one can be performed as a post-processing step. On a more critical note, there
are 2 red segments in Fig. 3, but it is possible that the top one should have been
colored yellow. Making that change should have mostly captured the structure,
starting from the bottom of a red domain, followed by blue and then yellow
(with some over extension of the red segment, though). Even though this case
shows better metrics than EMDB ID: 5017, discussed below, it is arguably
the most challenging structurally.

Finally, in the case of EMDB ID: 5017 the overall coloring of the lower
segments is not incompatible with the purple and yellow domains, in the fitted
structure. We can argue that the lower left section should indeed have been
colored red, and the lower center section should have been all blue, albeit with
higher precision required to differentiate where the red section finished and the
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blue started. The main issue in this complex though comes from domain A,
which is significantly larger than the other two. As it was the case for EMDB
ID: 1364, the problem here is that a single domain was broken up into multiple
segments. Post-processing could solve this in a later iteration of our algorithm.
For the purposes of this study, we tried multiple thresholds for the parameters
that could be tuned and the results were similar, in every case. Note that, as
it was the case for EMDB ID: 1010, there is a region in the wire frame that
does not correspond to our reference C-α trace, which could also be a factor in
the less accurate segmentation.

There are two key takeaways from our qualitative analysis. First, even though
we applied space scale filtering, that did not solve all the problems related to
integrating multiple segments into one, when that was expected. Second, there
is clear over extension of some segments into small areas that they should not,
and it could be due to noise spreading from one region to the other. Even with
these two areas to improve that we identified, the results are generally good. The
segmentation of these types of density maps could generate a very large number
of segments, which makes it very difficult to then map domains of the size that
we are testing in this study. Furthermore, there are regions in each map where
there is clear correspondence between both fitted structures and segments, which
shows the promise of the approach.

3.2 Large Macro-molecule Segmentation

The three protein systems studied are useful for detailed analysis because there
is atomic-level information throughout the structure. The more complex macro-
molecules do not necessarily have that type of information available in databases,
to serve as a larger scale evaluation target.

Fig. 4. Segmentation applied to EMDB ID 1048, 2596 as detailed in Sect. 2. Every
color represents an individual segment identified. EMDB ID 1048 is an image of bac-
teriophage T4 baseplate while EMDB ID 2596 is a 26S proteasome structure (Color
figure online)
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Fig. 5. Sample segmentation result from alpha release of EM-SURFER (http://
emsurfer.tecdatalab.org/result/0185). The 3D section shows images generated by our
library.

Even though we cannot provide rigorous analysis about the quality of the
segmentation applied to large-scale macro-molecules, we applied the algorithm
to two sample systems that are both interesting biologically but also have much
larger scale. Figure 4 shows the segmentation results for EMDB ID: 1048 and
EMDB ID: 2596. The former is the structure of bateriophage T4 baseplate,
which is a virus that infects Escherichia coli [15]. This structure is in the range
of hundreds of nanometers. The latter structure, a 26S proteasome, is in charge
of breaking down proteins [29].

The results obtained are sensible and resemble some fitted results referenced
in the EM Data Bank. This path towards the validation of segmentation for
larger structures is one that we want to explore further in the future.

3.3 Online Results

We have generated segmentation results for maps in the Electron Microscopy
Data Bank, which can be accessed as part of an alpha release of the latest
version of EM-SURFER [9], an EM map search engine that relies on the fast
comparison of structural features. Figure 5 shows a screen shot of a sample result
generated for EMDB ID: 01853.

4 Conclusions

In this work we have shown the potential to match biological domains to com-
putationally derived segments using watershed segmentation with space-scale

3 The production version of EM-SURFER is hosted at http://kiharalab.org/em-surfer.
An example result from our alpha release of the latest version, that includes seg-
mentation results, can be accessed at is available at http://emsurfer.tecdatalab.org/
result/0185.

http://emsurfer.tecdatalab.org/result/0185
http://emsurfer.tecdatalab.org/result/0185
http://kiharalab.org/em-surfer
http://emsurfer.tecdatalab.org/result/0185
http://emsurfer.tecdatalab.org/result/0185
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grouping. Our methods represent a valid approach to elucidate what regions in
an EM map correspond to relevant regions in proteins. We have first evaluated
this by analyzing three protein systems in detail, where we have both the atomic-
details and the EM maps, which allowed us to do a thorough validation. We have
also evaluated much larger macro-molecular structures to assess the potential to
apply our methods to large scale problems.

As discussed in the Results section, we have identified areas where results
can be refined. Those revolve mainly around the decision to integrate or break
apart density clusters, but not to an extent that diminishes the positive results
obtained.

As part of our work, we offer the community a library that is accessible
as an open source project, which contains both the algorithms and visualization
features to reproduce our results (github.com/tecdatalab/biostructure). Further-
more, we publish our segmentation results online through a new version of EM-
SURFER.

Acknowledgements. Funded by the Vicerrrectoŕıa de Investigación y Extensión at
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9. Esquivel-Rodŕıguez, J., Xiong, Y., Han, X., Guang, S., Christoffer, C., Kihara, D.:
Navigating 3D electron microscopy maps with EM-SURFER. BMC Bioinform. 16,
181 (2015). https://doi.org/10.1186/s12859-015-0580-6

https://github.com/tecdatalab/biostructure
https://doi.org/10.1016/j.jsb.2011.10.002
https://doi.org/10.1002/bip.22065
https://doi.org/10.1016/j.str.2006.11.008
https://doi.org/10.1016/j.str.2006.11.008
https://doi.org/10.1016/j.jsb.2006.05.013
https://doi.org/10.1073/pnas.1213333109
https://doi.org/10.1073/pnas.1213333109
https://doi.org/10.1016/j.jsb.2010.11.011
https://doi.org/10.1016/j.jsb.2010.11.011
https://doi.org/10.1093/nar/gky949
https://doi.org/10.1093/nar/gky949
https://doi.org/10.1016/j.bpj.2017.04.054
https://doi.org/10.1186/s12859-015-0580-6


Matching of EM Map Segments 477

10. Fabiola, F., Chapman, M.S.: Fitting of high-resolution structures into electron
microscopy reconstruction images. Structure 13(3), 389–400 (2005). https://doi.
org/10.1016/j.str.2005.01.007

11. Hryc, C.F., et al.: Accurate model annotation of a near-atomic resolution cryo-EM
map. Proc. Natl. Acad. Sci. 114(12), 3103–3108 (2017). https://doi.org/10.1073/
PNAS.1621152114

12. Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W.: Bridging the information gap:
computational tools for intermediate resolution structure interpretation. J. Mol.
Biol. 308(5), 1033–1044 (2001). https://doi.org/10.1006/jmbi.2001.4633

13. Kong, Y., Ma, J.: A structural-informatics approach for mining beta-sheets: locat-
ing sheets in intermediate-resolution density maps. J. Mol. Biol. 332(2), 399–413
(2003)

14. Kong, Y., Zhang, X., Baker, T.S., Ma, J.: A structural-informatics approach
for tracing beta-sheets: building pseudo-C(alpha) traces for beta-strands in
intermediate-resolution density maps. J. Mol. Biol. 339(1), 117–130 (2004).
https://doi.org/10.1016/j.jmb.2004.03.038

15. Kostyuchenko, V.A., et al.: Three-dimensional structure of bacteriophage T4 base-
plate. Nat. Struct. Biol. 10(9), 688–693 (2003). https://doi.org/10.1038/nsb970

16. Lawson, C.L., et al.: EMDataBank unified data resource for 3DEM. Nucleic Acids
Res. 44(D1), D396–D403 (2016). https://doi.org/10.1093/nar/gkv1126

17. Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of
marching cubes’ cases with topological guarantees. J. Graph.Tools 8(2), 1–15
(2003). https://doi.org/10.1080/10867651.2003.10487582

18. Lindert, S., Stewart, P.L., Meiler, J.: Hybrid approaches: applying computational
methods in cryo-electron microscopy. Curr. Opin. Struct. Biol. 19(2), 218–225
(2009). https://doi.org/10.1016/j.sbi.2009.02.010

19. Ludtke, S.J., Chen, D.H., Song, J.L., Chuang, D.T., Chiu, W.: Seeing GroEL at 6
A resolution by single particle electron cryomicroscopy. Structure 12(7), 1129–1136
(2004). https://doi.org/10.1016/j.str.2004.05.006

20. Mitra, K., et al.: Structure of the E. Coli protein-conducting channel bound to a
translating ribosome. Nature 438(7066), 318–324 (2005). https://doi.org/10.1038/
nature04133

21. Patwardhan, A., et al.: Building bridges between cellular and molecular structural
biology. eLife 6 (2017). https://doi.org/10.7554/eLife.25835

22. Pintilie, G.D., Zhang, J., Goddard, T.D., Chiu, W., Gossard, D.C.: Quantitative
analysis of cryo-EM density map segmentation by watershed and scale-space fil-
tering, and fitting of structures by alignment to regions. J. Struct. Biol. 170(3),
427–438 (2010). https://doi.org/10.1016/j.jsb.2010.03.007

23. Raschka, S.: BioPandas: working with molecular structures in pandas dataframes.
J. Open Source Softw. 2(14) (2017). https://doi.org/10.21105/joss.00279
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