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Chapter 3
The Potential Application of Biochars 
for Dyes with an Emphasis on Azo Dyes: 
Analysis Through an Experimental Case 
Study Utilizing Fruit-Derived Biochar 
for the Abatement of Congo Red 
as the Model Pollutant
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Balendu Shekher Giri, Ki-Hyun Kim, Yui Fai Tsang, and Ram Sharan Singh

Abstract  The unbridled industrialization and unrestrained expansion of modern 
textile facilities combined with a deficiency of adequate treatment provisions have 
escalated the discharge of toxic effluents rich in carcinogenic pollutants such as 
dyes. As a consequence, there is an alarming need for the development of finan-
cially suitable and highly efficient treatment options to protect the immaculate eco-
systems, natural resources, and human health. In this respect, adsorption-based 
treatment options have attracted widespread attention as eco-friendly and cost-
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effective approach. Biochar has propelled itself to the forefront of the scientific 
community as a highly economical sorbent with great adsorption capabilities. 
Notably, biochars provide a win-win strategy by simultaneously utilizing the waste 
biomass during its production and a great adsorbent for pollutant removal. Although 
biochars have been applied for the treatment of various dyes, there have been very 
few reports of its application for Congo red (CR) dye. In this book chapter we ana-
lyze the application of biochar for dyes with particular focus on CR.  We try to 
practically understand the mechanism of interaction between biochar and CR mol-
ecules (a model anionic azo dye) by elucidating an experimental case study. The 
case study will provide valuable insights into the importance of the utilization of 
locally available bio waste for economic biochar production and the mechanism of 
removal of anionic dyes through biochars. In brief, the adsorptive removal of CR 
was investigated using Arjun fruit biochar (AFB) derived from the fruit of locally 
grown Terminalia arjuna. The sorptive removal of CR on AFB was investigated 
under the following operational conditions (pH, 2–12; biochar dosage, 4–14 g/L; 
temperature, 30–60 °C; and contact time, 30–480 min). The sorption behavior of 
CR was well described through the Langmuir monolayer model (R2 = 0.9985) and 
pseudo-second order kinetics (R2 ≥ 0.9977) for all tested CR levels (20–100 mg/L). 
The results of thermodynamic analysis revealed that the sorption of CR onto AFB 
proceeded favorably and spontaneously.

Keywords  Adsorption · Terminalia arjuna · Dye · Biochar · Kinetics · 
Thermodynamics

3.1  �Introduction

Recent years have witnessed prolific rise in endeavors focused towards water qual-
ity management due to the ever rising issues concerned with water pollution 
(Mekonnen Mesfin and Hoekstra Arjen 2017; D’Inverno et al. 2018). The regulation 
and removal of baleful water pollutants such as dyes have been recognized as prime 
task by environmental bodies such as the United States Environmental Protection 
Agency (US EPA) (Vikrant et al. 2018). Hence, extensive investigations have been 
undertaken to analyze the long as well as short term effects of dyes on ecosystems 
and human health (Chung 2016).

Dyes are chemical compounds with intense color and extremely high water solu-
bility. A wide variety of dyes and pigments are utilized in paper, textile, paint, drugs, 
tanning, food, and cosmetic industries (Chen et al. 2018; Vikrant et al. 2018). The 
ubiquitous presence of highly toxic synthetic dye compounds in water bodies poses 
grave health concerns as these chemicals are known to be highly carcinogenic and 
mutagenic (Abu Talha et al. 2018). Dyes impart intense color to water, making it 
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aesthetically displeasing. They also cause an imbalance in the aquatic ecosystems 
by increasing chemical oxygen demand and lowering light penetration (Vikrant 
et al. 2018). Also, very low removal rate is generally observed for dyes during sec-
ondary and primary wastewater treatment owing to their recalcitrant structures 
resulting in there swift carryover into water bodies (Meerbergen et al. 2018). As a 
consequence, toxic dye molecules bioacculmulate in the ecosystem and get trans-
mitted to the potable water supply (Leo et al. 2018). Microbial mediated services 
are also considered as valuable means for water treatments and restoration of 
degraded ecosystems (Singh et al. 2017a, b; Vimal et al. 2018; Kumar et al. 2018; 
Singh 2019; Singh and Singh 2019; Singh et al. 2019a,b; Vimal and Singh 2019).

Azo dyes are the most common variety of dyes in used today and is the oldest 
industrially synthesized compound (Vikrant et  al. 2018). Interestingly, azo dyes 
comprise around 60% of the total dyes being used in the textile industry, thus pos-
ing a significant threat (Munagapati and Kim 2016). Azo dyes attract widespread 
usage in various industries owing to their multiple advantages such as easy usage, 
wide availability of color range, great photostability, low requirement of energy, 
and great covalent adherence with textiles (Brüschweiler and Merlot 2017). The 
chromophoric -N=N- groups in nonionic and anionic dyes undergoes reductive 
breakage to result in the formation of highly virulent aromatic amines (Jayapal 
et al. 2018). Congo red (CR) is a major azo dye utilized extensively in the cellulose 
industries (e.g., pulp, paper, and cotton textiles) (Chen et al. 2018). The recalcitrant 
and toxic nature of CR makes its removal from water bodies decidedly imperative 
(Vikrant et al. 2018).

Due to a synthetic origin and complex structure, the highly recalcitrant tendency 
of azo dyes renders them exceptionally stable towards heat and light. As such, their 
removal via conventional treatment techniques is not simple (Vikrant et al. 2018). A 
wide array of methodologies (e.g., photocatalysis (Zhao et al. 2018), ozone treat-
ment (Mella et al. 2018), ultrasound treatment, oxidation (Nidheesh et al. 2018), 
coagulation-flocculation (Mella et al. 2018), application of membranes (Peydayesh 
et al. 2018), and biological processes (Vikrant et al. 2018) have been applied for the 
abatement of pigments and dyes from water/wastewater. Nevertheless, all these 
techniques suffer from environmental and economic shortcomings in terms of 
excessive operating and capital financial requirement, excessive sludge generation, 
and complex operational procedures (Munagapati and Kim 2016). Adsorption has 
been considered as an environmentally benign and economically advantageous 
alternative for the abatement of pigments/dyes from aqueous solutions (Chen et al. 
2018; Vikrant et  al. 2018). Adsorption is favored primarily because of the costs 
involved in the preparation and procurement of adsorbents and their regeneration 
(Vikrant et al. 2018). In recent years microbial services has been proposed as poten-
tial tool as bioremediation and restoration of polluted soil and environment (Singh 
2013, 2014, 2015, 2016; Singh Boudh 2016; Kumar et al. 2017; Kumar and Singh 
2017; Tiwari and Singh 2017).
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3.2  �Biochar for the Removal of Dyes

Sorptive removal of dyes has attracted extensive interest from the scientific com-
munity owing to its easy operation, environmental benignity, cost-effectiveness, 
and great selectivity (Pham et al. 2017; Pham et al. 2018; Sophia and Lima 2018). 
Selection of a suitable adsorbent both in terms of cost and efficiency is paramount 
towards designing a sorption-based dye treatment system. At present, pristine and 
carbonaceous adsorbents are extracted from various agricultural/biological wastes 
such as coconut shell (Bello and Ahmad 2012), rice husk (Singh and Srivastava 
2001), rice straws (El-Sonbati et al. 2016), almond shell (Doulati Ardejani et al. 
2008), and wood char (Bangash Fazlullah and Manaf 2013) for the abatement of 
organic wastes from water/wastewater. In recent years, biochar (a solid carbona-
ceous substance synthesized through the pyrolysis of biomass under conditions of 
low oxygen) has attracted widespread scientific attention as a novel tool for the 
abatement of aqueous contaminants owing to its large surface area, stable carbon 
matrix, and high porosity (Thines et al. 2017; Vikrant et al. 2018). Biochars pro-
vide a win-win strategy as they utilize potentially unwanted biomass (e.g., agricul-
tural waste) and provide excellent sorptive media for toxic pollutant removal 
(Vikrant et al. 2018).

The Terminalia arjuna belongs to the family of Combretaceae and is indigenous 
to the Indian subcontinent (Amalraj and Gopi 2017). Its bark decoction has been 
traditionally utilized for curing numerous disorders related to the cardiovascular 
system such as dyslipidemia, angina, hypertension, and congestive heart failure 
(Dwivedi and Chopra 2014; Amalraj and Gopi 2017). Moreover, the crude drug 
made from the bark of T. arjuna possesses antioxidant, hypolipidemic, anti-
ischemic, and anti-atherogenic activities (Dwivedi and Chopra 2014). However, the 
fruit of T. arjuna remains unused in the pharmaceutical industry (Amalraj and 
Gopi 2017).

In the presented experimental case study, Arjun fruit biochar (AFB) was synthe-
sized from the fruit of T. arjuna and used as an adsorbent. The aim of the present 
investigation was to determine the feasibility of AFB as a sorbent for the abatement 
of CR from water. The effects of various operating parameters (e.g., pH of the solu-
tion, dose of biochar, contact time, initial concentration of CR, and temperature) on 
the adsorption behavior of CR and treatment performance were investigated. 
Kinetic, isothermal, and thermodynamic fits were utilized to understand the sorp-
tion phenomenon, underlying mechanisms, and equilibrium of the sorption process.

This case study was carried out to explore the possibility for a practical utiliza-
tion of T. arjuna fruits which are commonly produced as waste biomass by the 
pharmaceutical industry (Amalraj and Gopi 2017). It is a known fact that the study 
site (i.e., Varanasi, India) has a dense cluster of local carpet industries that produce 
glut amounts of CR rich effluents (Abu Talha et al. 2018). In light of these environ-
mental conditions, it was proposed that biochar should be produced from indige-
nous T. arjuna fruits and used subsequently in local dye remediation. Thus, based 
on this study, a practical solution was sought for the indigenous utilization of bio-
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waste while at the same time pursuing a treatment for wastewater. Furthermore, the 
performance of the biochar was assessed at the original pH of the textile industry 
effluents. The results of this study were of enough relevance to showcase an eco-
nomical and practical solution for the abatement of dye by biochar derived from 
biowaste. Such experimental studies clearly elucidate the practical application of 
biochar for CR removal.

3.3  �Experimental Case Study – Materials and Methods

3.3.1  �Preparation of Biochar

Arjun fruit were obtained from indigenous T. arjuna trees. A stainless-steel pyroly-
sis reactor (inside diameter, 75 mm; length, 1.10 m) was used for biochar produc-
tion, in which the temperature was controlled by an electric heater. The Arjun fruit 
were cleansed with Milli-Q water and parched naturally for 10 days. The dried fruit 
were subsequently crushed followed by sieving (size of particles: 72 BSS mesh, i.e., 
210 μm) and then 600 g of the fruit was pyrolyzed at 500 °C (heating rate: 5 °C/min) 
for 3 h. The pyrolyzed sample (i.e., biochar) was cleansed with hot Milli-Q water 
and then oven dried at 75 °C for 2 h (Oven Universal NSW-143). The obtained bio-
chars were stored in airtight borosilicate glass vials (70 mL) and used for subse-
quent characterization and adsorption studies.

3.3.2  �Characterization of the Biochar

The porosity and specific surface of AFB were analyzed via nitrogen adsorption/
desorption isotherm at 77 K (the biochar sample was degassed before measurement 
via helium for 3 h at 553 K) through the BET methodology using a micrometer 
(TriStar II 3020 V1.03, USA). Scanning electron microscopy was utilized to survey 
the visual characteristics of the AFB surface (SEM, EVO 18 research SEM, 
Germany). The KBr pellet method was adopted to recognize the functionalities 
existing on the AFB samples through Fourier transform infrared (FTIR) spectros-
copy (Thermo-Fisher FTIR analyzer Nicolet 5700, Japan) in the 400–4000 cm−1 
range. The method of solid addition method was adopted to ascertain the point of 
zero charge (pHZPC) of the biochar sample (Cheng et al. 2015). Essentially, a series 
of solutions (0.1 g AFB dissolved in 100 mL 0.01 M NaCl solution) were prepared 
in 150-mL Erlenmeyer flasks. The initial pH (pHi) of the solutions were regulated in 
the range of 2–12 by the addition of suitable amounts of 0.1 M NaOH and 0.1 M 
HCl. The solution pH was measured via a digital pH meter (Ion/pH meter metrohm 
model-691, USA) in two replicates. A rotary shaker was used to agitate the prepared 
solutions at 200 rpm and 298 K for 24 h. The resulting suspensions were subse-
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quently filtered, and the final solution pH (pHf) of the filtrates was determined upon 
the attainment of equilibrium. A plot between pHf and pHi was drawn to measure the 
pHZPC of AFB.

3.3.3  �Dye Solution

CR (analytical grade, 99% pure) was procured from Sigma-Aldrich, India. The 
stock solution of CR (1000  mg/L) (C32H22N6Na2O6S2, MW: 696.66  g/mol) was 
made with Milli-Q water, whereas the desired concentrations for batch adsorption 
experiments were prepared as per requirement via successive dilutions. The concen-
tration of dye was determined via a spectrophotometer (UV-Vis, HACH DR5000, 
Canada) at the maximum wavelength (λmax) of 497 nm for the adsorption studies. 
The detection limit for CR dye was determined to be 0.049 ppm with a relative 
standard deviation (RSD) of 0.39% (or relative standard error of 0.22%).

3.3.4  �Batch Adsorption Experiments

The sorption behavior of CR on AFB was investigated using batch mode experi-
ments to study the effects of operating conditions (e.g., solution pH, biochar dosage, 
initial CR concentration, temperature, and contact time), implementing a single 
condition at a particular time. The values of these operating conditions were as fol-
lows: pH, 2–1; AFB dosage, 4–14 g/L; initial CR concentration, 20–100 mg/L; con-
tact time, 30–480 min; and temperature, 30–60 °C. CR solutions (100 mL) with a 
predetermined quantity of AFB were added to Erlenmeyer flasks (125 mL). Standard 
experimental conditions of AFB dosage (w  =  12  g/L), CR concentration 
(Co  =  50  mg/L), shaking speed (100  rpm), contact time (t  =  3  h), temperature 
(30 ± 2 °C), and pH (7.0 ± 0.1) were utilized in all the batch experiments unless 
mentioned otherwise.

A constant temperature shaking system was used to equilibrate the AFB and CR 
suspensions. After the experiment was completed, the resultant solution samples 
were decanted and centrifuged for 30 min at 1832 × g. The supernatant collected 
from centrifuged samples were used to analyze the concentration of residual CR via 
a UV-Vis spectrophotometer (HACH DR5000, Canada) at the maximum wave-
length (λmax) of 497 nm. The efficiency of removal (R %) and sorption capacity (q) 
were determined accordingly:
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where Co (mg/L) is the initial concentration of CR, Ce (mg/L) is the equilibrium 
concentration of CR, V (L) is solution volume, and m (g) is the biochar dosage.

3.4  �Experimental Case Study – Results and Discussion

3.4.1  �Biochar Characterization and Dye Interaction

In Fig. 3.1a and b, the surface morphology of AFB was examined before and after 
adsorption, respectively using SEM micrograph images. Figure 3.1a shows that the 
surface morphology of the fresh AFB was relatively porous and irregular with a 
massive surface area for a surface interaction with CR. The SEM micrograph image 
of dye-loaded AFB shown in Fig. 3.1b confirmed that the surface became saturated 
with the dye (i.e., most pores covered with CR molecules) after adsorption. 
According to the characterization results of the biochar, the BET specific surface, 
average pore width, and net pore volume of Arjun fruit were 770.68 m2/g, 2.89 nm, 
and 0.4 cm3/g, respectively.

The FTIR spectra of AFB in Fig. 3.2a and b show various characteristic peaks. 
These peaks represent different functionalities present on the AFB surface. The 
wide band at 3387 cm−1 resembled the hydrogen bonded OH groups of alcohol and 
H-bonded N-H group (Amir et al. 2010). However, the band underwent a shift to 
3385 cm−1 after adsorption of CR onto the AFB surface owing to the interaction of 
the O-H bond of AFB with the –N− bond of CR. The band perceived at 2337 cm−1 
belonged to the stretching vibrations of C=O bond of the CO2 molecule, which was 
shifted to 2348 cm−1 with a simultaneous increase in the intensity of the peak, indi-

Fig. 3.1  Scanning electron microscopy images of Arjun fruit biochar. (a) Before and (b) after 
adsorption of Congo red
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cating a rise in the CO2 concentration after the sorption process (Pachecka et al. 
2017). Another prominent band was perceived at 1441 cm−1 and belonged to the 
O-H of phenol, COO− (Amir et  al. 2010). This band also resulted in a shift to 
1439 cm−1 because of the adsorption of the CR dye. The shift indicates the partici-
pation of the COO− of AFB in the adsorption mechanism. Furthermore, the stretch-
ing band at 1332  cm−1 corresponded to the vibrations of the CO bond, which 
surprisingly shifted to 1081 cm−1 with a wider peak. This was due to an increase in 
the concentration of CO bond vibrations after the adsorption of CR. The absorption 

Fig. 3.2  Fourier-transform infrared spectroscopy spectra of Arjun fruit biochar before and after 
dye adsorption. (a) Before adsorption. (b) After adsorption
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61

peaks at 874 cm−1 showcased the existence of a [CO3] functionality in the AFB, 
which decreased in concentration after adsorption as the peak reduced to 870 cm−1 
(Fleet and Liu 2007). These interactions amongst the functionalities present in AFB 
and CR dye molecule could form weak van der Waals bonds or hydrogen bonds to 
improve the adsorption capacity and performance of AFB.

3.4.2  �Batch Adsorption Experiments

3.4.2.1  �Effects of Solution pH

The solution pH boosts the sorption of dye molecules on the biochar in multiple 
ways such as fluctuation in the biochar surface charge and dye molecule ionization. 
These two phenomena govern the mass transfer between the biochar surface and 
dye molecules. As a result, information on the optimum pH is imperative in pre-
cisely describing the adsorption process (Yu et al. 2018; Zazycki et al. 2018). The 
solution pH was regulated in the range of 2–12 through the addition of 0.1 M NaOH 
and 0.1 M HCl. The maximal efficiency of dye removal (96.3%) and sorption capac-
ity of the sorbent (4.81 mg/g) were obtained at the solution pH of 2 ± 0.1 (Fig. 3.3).

The variation in the pH of aqueous solution was also observed after the sorption 
of CR on AFB (Fig. 3.4). As the initial CR solution pH (pHi) fluctuated from 2 to 8, 
the final pH of CR solution at equilibrium (pHf) was larger than the corresponding 
pHi values. The point of zero charge (pHZPC) of AFB can be utilized to evaluate the 
impact of solution pH on CR sorption. As shown in Fig. 3.4, the pHZPC of AFB was 
8.1. The surface of AFB is positively charged at pH values lower than pHZPC. The 
findings of high efficiency of dye removal and biochar sorption capacity may be 
ascribed to the prospective electrostatic attraction amongst CR anions and the posi-
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Fig. 3.3  Effect of solution pH on the adsorption of Congo red on Arjun fruit biochar (T = 30 ± 2 °C, 
Co = 50 mg/L, w = 10 g/L, t = 3 h, and agitation speed = 100 rpm)
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tively charged AFB surface. The adsorption of CR by orange peel powder was 
observed to be maximum at a pH of 3 (Munagapati and Kim 2016). The adsorbent 
surface acquired a positive charge at the low pH where the elevated adsorption of 
CR anions takes place. The pH of industrial effluents rich in CR is generally reported 
in the range from 7 to 11 (Gharbani et  al. 2008). Moreover, as pH adjustments 
require a significant amount of chemicals, it may render the treatment process 
highly uneconomical (Jiang et  al. 2018; Molinos-Senante and Guzmán 2018). 
Considering all the above-mentioned factors, the subsequent experiments were 
operated at a pH of 7  ±  0.1. As this pH value is lower than pHZPC, a positively 
charged biochar surface is made to provide a practical and economical solution for 
the abatement of dyes from water/wastewater.

3.4.2.2  �Effects of Contact Time and Initial Dye Concentration

The initial concentration of a dye solution and contact time are key parameters for 
designing adsorption-based wastewater treatment systems (Oladoja et  al. 2017). 
The effects of initial dye concentration (20–100 mg/L) and contact time (30–480 min) 
on the sorption behavior and sorbent capacity are shown in Fig. 3.5.

The sorption capacity increassed from 0.8 to 1.72 mg/g when the primary CR 
concentration changed from 20 to 100 mg/L. Two stages of the adsorption were 
observed when CR was uptaken by the AFB. The adsorption capacity of AFB ele-
vated rapidly in the initial 30 min with a subsequent slow sorption period, through-
out which the AFB sorption capacity slowly rises from 30  min to 120  min. No 
substantial enhancement was observed after the increase. This two-stage adsorption 
(rapid adsorption followed by slow adsorption) was also observed for the adsorption 
of brilliant green dye on biochar produced from hydrolyzed rice straw (Saif Ur 
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Rehman et  al. 2016). At low initial concentrations, few CR molecules cover the 
external active sites of the AFB surface through boundary layer adsorption. However, 
most external active sites remain uncovered owing to the low availability of CR 
molecules in the solution. Conversely, at high initial concentrations, a significant 
amount of available external active sites decreased with time, and the CR molecules 
reached the internal sites of the AFB through diffusion. Therefore, a slow adsorption 
process was seen in the second stage until equilibrium was achieved (Oladipo and 
Ifebajo 2018; Yu et al. 2018).

3.4.2.3  �Effects of Biochar Dosage

The effects of the AFB dosage on the adsorption performance are shown in Fig. 3.6. 
The AFB dosage varied from 4 to 14  g/L.  An opposite trend was observed for 
adsorption efficiency and capacity with an increase in the AFB dosage. The removal 
efficiency rose from 32.5% to 40%, while the sorption capacity was observed to 
decrease from 4.07 to 1.29 mg/g. The adsorption capacity of rice straw biochar for 
brilliant green reduced from 277 mg/g to 20 mg/g when the biochar dosage increased 
from 0.05 g/L to 1.25 g/L (Saif Ur Rehman et al. 2016). The removal efficiency of 
kenaf fiber biochar for methylene blue removal significantly increased from 48% to 
76% when the biochar dosage was varied from 0.2 to 0.5  g/L (Mahmoud et  al. 
2012). Equations 3.1 and 3.2 can be used effectively to describe the observed oppo-
site trends. The net amount of CR molecules was fixed (Co = 50 mg/L) against an 
increasing AFB dosage (4–14 g/L). As a consequence, the number of CR molecules 
adsorbed per unit mass of AFB was reduced resulting in a low adsorption capacity; 
hence, a large number of active sites were left uncovered at high AFB dosage (Sadaf 
and Bhatti 2014). An elevation in the AFB dosage gradually increased the CR 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 60 120 180 240 300 360 420 480 540

q t
(m

g/
g)

Time (min)

20 (mg/L) 40 (mg/L) 60 (mg/L) 80 (mg/L) 100 (mg/L)

Fig. 3.5  Effect of contact time on the adsorption of Congo red on Arjun fruit biochar (T = 30 ± 2 °C, 
pH 7.0 ± 0.1, w = 12 g/L, agitation speed = 100 rpm)

3  The Potential Application of Biochars for Dyes with an Emphasis on Azo Dyes…



64

uptake (Co-Ce) and consequently elevated the removal efficiency (Eq. 3.1). However, 
qe was lower than R (%) because the AFB dosage (w) was present in the denomina-
tor of Eq. 3.2, resulting in an inverse relation between q and w (Zazycki et al. 2018). 
Subsequent experiments were conducted using 12 g/L of AFB to achieve the highest 
CR removal.

3.4.2.4  �Effects of Temperature

Temperature plays a detrimental role in adsorption because the adsorption capacity 
at equilibrium is highly dependent on temperature fluctuations (Vikrant et al. 2018). 
The AFB adsorption capacity increased from 1.66 mg/g to 2.16 mg/g when the tem-
perature rose from 30  °C to 60  °C, suggesting the endothermic character of the 
sorption process (Fig. 3.7).

The elevated sorption capacity could be attributed to the temperature-mediated 
increase in the amount of active sites on the AFB surface (Santos et  al. 2017). 
Also, this phenomenon could be attributed to the increased mobility of CR mole-
cules coupled with their heightened affinity toward the binding sites that are avail-
able on the AFB surface (Zhang et al. 2017). A similar endothermic adsorption of 
CR on cationic modified orange peel powder was reported previously (Munagapati 
and Kim 2016); a relatable endothermic character was also perceived for the sorp-
tive removal of methylene blue by acid treated kenaf fiber char (Mahmoud 
et al. 2012).
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3.4.3  �Adsorption Kinetics

Adsorption kinetic investigations supplies into adsorption mechanisms. Commonly 
used models, namely Lagergren pseudo-first order (Eq. 3.3), pseudo-second order 
(Eq. 3.4), and intra-particle diffusion (Eq. 3.5) models, were used to analyze the 
prospective adsorption mechanisms (Vikrant et al. 2018).
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where qt is the sorption capacity (mg/g) at any instant t, k1 (min−1) is the first order 
sorption rate constant, k2 (g.(mg.min)−1) is the second order sorption rate constant, 
h = k2qe

2 depicts the initial sorption rate (mg.(g.min)−1), Ci (mg/g) represents the 
thickness of boundary layer, and Kpi (mg.(g.min)-1/2) denotes the intra-particle diffu-
sion rate constant. Table 3.1A summarizes the kinetic parameters for CR adsorption 
on AFB.  The pseudo-first order kinetics did not fit well for the obtained batch 
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adsorption data because the R2 values ranged between 0.2443 and 0.8045 along 
with a large absolute deviation of the experimental adsorption capacity (qDEV) 
(0.5048–1.5769 mg/g), whereas the pseudo-second order kinetics fits the adsorption 
data exceptionally well (R2 > 0.9977) (Fig. 3.8). The qDEV values were obtained by 
using Eq. 3.6.

	
q q qDEV e e cal= −,exp , 	

(3.6)

Where qe,exp represents the experimental sorption capacity (mg/g) and qe,cal denotes 
the calculated sorption capacity (mg/g). High correlation coefficients (R2) indicate 
that the pseudo-second order model shows a better fit than other models to explain 
the sorption of CR on AFB. Along similar lines, the pseudo-second order model 
fitted the sorption of CR onto cationic modified orange peel powder (Munagapati 
and Kim 2016), ZnO-modified SiO2 nanospheres (Zhang et al. 2018), and chestnut 
husk-like NiCo2O4 hollow microspheres (Chen et al. 2018) with high accuracy.

For a better understanding of sorption kinetics, the intra-particle diffusion model 
was also fitted to the kinetics data (Table 3.1A). The R2 values for the intra-particle 
diffusion kinetic model were in the range of 0.4068–0.6841, indicating its non-
applicability. The Ci values (0.2743–0.9197) indicate the contribution of pore diffu-
sion to a limited extent toward adsorption of CR on AFB. However, these values 
may not be the only rate-determining stage involved in the sorption activity (e.g., 
rapid film adsorption may also be involved) (Mane et  al. 2007; Mane and Babu 
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Fig. 3.8  Pseudo-second order kinetic model of Congo red on Arjun fruit biochar (T = 30 ± 2 °C, 
pH 7.0 ± 0.1, Co = 20–100 mg/L, t = 3 h, w = 12 g/L, agitation speed = 100 rpm)

3  The Potential Application of Biochars for Dyes with an Emphasis on Azo Dyes…



68

2011). Similar observations were also reported for the abatement of brilliant green 
dye by hydrolyzed rice straw (Saif Ur Rehman et al. 2016).

3.4.4  �Adsorption Isotherms

Investigations on sorption equilibrium are necessary to learn how to optimize and 
scale up adsorption-based wastewater treatment systems (Molinos-Senante and 
Guzmán 2018). Langmuir (Eq. 3.7) and Freundlich (see supplementary information 
and Table 3.1B) isotherm models were utilized to analyze the data obtained from 
batch experiments.

	

C

q

C

q K q
e

e

e

m a m

= +
1

	
(3.7)

Where qm represents the maximum monolayer sorption capacity and Ka is the 
Langmuir sorption equilibrium constant (L/mg).

Figure 3.9 and Table 3.1(B) show the Langmuir isotherm profile and associated 
parameters, respectively. The very high R2 value (0.9985) indicates that Langmuir 
model should be more fitting than various other models to analyze the sorption of 
CR at equilibrium condition. A separation factor (RL) value in the range of 0 to 1 
also indicates the feasibility of adsorption of CR onto AFB (Eq.  3.8) (Saif Ur 
Rehman et al. 2016).
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Fig. 3.9  Langmuir isotherm model fitted to the data of Congo red adsorption on Arjun fruit bio-
char (T = 30 ± 2 °C, pH 7.0 ± 0.1, Co = 20–100 mg/L, t = 3 h, w = 12 g/L, agitation speed = 100 rpm)
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The calculated RL values were observed to be in the range of 0.023–0.108 for all 
tested concentrations, thus confirming that CR could be successfully removed by 
adsorption on AFB. The Langmuir isotherm was also a good fit for CR adsorption 
onto cationic modified orange peel powder (Munagapati and Kim 2016) and chest-
nut husk-like NiCo2O4 hollow microspheres (Chen et al. 2018). These findings sug-
gest that a monolayer adsorption was prevalent. The formation of a monolayer can 
be attested by calculating the coverage factor (θ), which is given by Eq. 3.9.

	
θ

σ
=
 

−q N

S

m

BET

10 20

	
(3.9)

The value of θ varies between 0 (no coverage) to 1 (full coverage). The θ value 
was 0.68, which confirms the formation of a monolayer. The partial coverage of the 
AFB surface occurred because CR is a large sized molecule, which can obstruct its 
movement onto the micropores (Al-Degs et al. 2008). A comparison between the 
performance of processes from different studies on the adsorptive removal of CR is 
summarized in Table 3.2.

3.5  �Adsorption Thermodynamics

The following equations were utilized to analyze the thermodynamics of CR sorp-
tion onto AFB (Munagapati and Kim 2016):

	 ∆G RTlnK= − 	 (3.10)

	
lnK

S

R

H

RT
= −
∆ ∆

	
(3.11)

where R is the ideal gas constant (8.314 J mol−1 K−1), T (K) is the absolute tempera-
ture, K = qe/Ce, ΔG is the Gibbs free energy, ΔS is the entropy change, and ΔH is 
the enthalpy change. The values of ΔS and ΔH were calculated from the intercept 

Table 3.2  Comparison between different biomass-based adsorbents for the removal of Congo red 
dye

Order Adsorbent
Max. Adsorption 
efficiency (%)

Max. Adsorption 
capacity (mg/g) pH References

1 Jute stick powder – 35.7 7 Panda et al. (2009)
2 Sugarcane bagasse 89.9 38.2 5 Zhang et al. (2011)
3 Rubber seeds 98.4 9.82 6 Zulfikar et al. 

(2015)
4 Modified orange 

peel powder
– 163 3 Munagapati and 

Kim (2016)
5 Arjun fruit biochar 96.25 4.81 2 This study
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and slope of lnK vs. 1/T (Saif Ur Rehman et al. 2016). ΔG values were calculated 
using Eq.  3.10. The feasibility and spontaneity of CR adsorption on AFB were 
affirmed by the negative values of ΔG at all tested temperatures (30–60  °C) 
(Table 3.1C) (Mane et al. 2007). The ΔG value continuously decreased for a rise in 
the solution temperature, thereby indicating the endothermic tendency of the sorp-
tion process as elucidated in Sect. 3.4.2.4. The values of ΔG were observed to be in 
the −20–0  kJ  mol−1 range, suggesting that CR sorption on AFB is a physically 
driven process (Zhang et al. 2018).

The positive value of ΔH (i.e., +5.886 kJ mol−1) confirms the endothermic char-
acter of the adsorption process. ΔH values can be used to understand the physical 
adsorption of analytes on adsorbents such as 5 kJ mol−1 (hydrophobic bonding), 
4–10  kJ  mol−1 (van der Waals forces), 2–40  kJ  mol−1 (hydrogen bonding), 
2–29 kJ mol−1 (dipole bonding), and 40 kJ mol−1 (coordination exchange) (Saif Ur 
Rehman et al. 2016). Based on this classification, the ΔH value of CR adsorption on 
AFB affirms its physical nature and suggests there is a complex combination of van 
der Waals, hydrophobic, dipole, and hydrogen bonding forces. The positive ΔS 
value (+0.009 kJ mol−1) indicates that a temperature increase should have promoted 
CR adsorption by dislocating the water molecules present on the biochar surface 
(Auta and Hameed 2012). The adsorption of CR on cationic modified orange peel 
powder was also spontaneous and endothermic (Munagapati and Kim 2016). 
However, the thermodynamic analysis of CR adsorption onto ball-milled sugarcane 
bagasse implies that the process is spontaneous and exothermic (Zhang et al. 2011). 
Interestingly, the sorption of CR onto rubber seeds was observed to be endothermic 
and non-spontaneous (Zulfikar et  al. 2015). It can be perceived that the sorption 
thermodynamic results are indispensable toward the detailed understanding of sorp-
tion behavior as well as investigating the spontaneity of the process.

3.5.1  �Desorption and Regeneration Experiments

Desorption studies showcase the regenerative ability of adsorbents and the potential 
of recovering dye molecules. The selection of proper eluents is important for a suc-
cessful desorption operation. The choice of eluents is typically based upon the type 
of adsorption mechanism and the nature of the adsorbent. For the desorption experi-
ment, various eluents were prepared such as 0.1 M NaOH, 0.1 M CH3COOH, deion-
ized water, and 0.1  M HCl. Figure  3.10a presents the results of desorption 
investigations. The superior eluent, when compared to three other eluents, was 
noted to be 0.1 M NaOH, which displayed a CR recovery of 86%.

The regeneration of biochar is favorable from a financial perspective and for the 
recovery of dye molecules. Based on the results of Fig. 3.10a, 0.1 M NaOH was 
utilized as the eluent for regeneration cycle experiments (Fig. 3.10b). A progressive 
reduction in CR sorption capacity was observed for AFB with a rise in the number 
of regeneration cycles. After the subsequent five cycles, the CR desorption capacity 
of AFB decreased from 86% to 79%. The decrease in the sorption capacity was 
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found to be less than 10% which might be a consequence of biochar loss during the 
regeneration process. As a result, AFB can be used for at least five cycles of CR 
adsorption effectively.

3.6  �Adsorption Mechanisms

The adsorption of CR onto the surface of AFB can be mainly explained by three 
forces, namely electrostatic, Van der Waals, and hydrogen bonding. Observed two 
probable mechanisms for adsorption of CR onto coir pith carbon, including (1) 
electrostatic adsorption owing to the interactions amongst the positive charge bear-
ing protonated functionalities of carbon and the negatively charged deprotonated 
acidic dye, and (2) the physical adsorption or chemical reaction amongst the adsor-
bate and adsorbent. Analogous adsorption processes might also occur during the 
adsorption of CR onto AFB.

Figure 3.11 shows the adsorption mechanism of CR onto AFB in solutions of 
different pH (acidic, neutral, and alkaline). In the solution with a pH below pHZPC, 
the surface of the AFB was positively charged. This highly favors the electrostatic 
interactions amongst the AFB surface (bearing positive charge) and the anionic CR 
molecules with SO3

− as a functional group. The FTIR analysis of the AFB discloses 
the presence of acidic functionalities (e.g., hydroxyls and carboxyls), which should 
primarily furnish the electrostatic interactions amongst the SO3

− group of CR and 
the functional groups of AFB at acidic conditions. When the solution pH changed 
from acidic to alkaline, the number of positively charged sites of AFB decreased. 
The shift in solution pH resulted in an increase of negatively charged surface sites. 
This phenomenon resulted in the repulsion of the AFB surface and anionic dye. 
However, Fig. 3.3 shows outstanding removal efficiency and maximum adsorption 
capacity at a high pH. Hence, the adsorption can be physically controlled when the 
solution is alkaline. This physisorption process was also supported by the ΔG val-
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ues obtained in Sect. 3.6. The FTIR data also demonstrate a change in the band from 
3387 cm−1 to 3385 cm−1 after the sorption of CR onto AFB due to the interaction of 
the O-H bond of AFB with the –N− bond of CR. Another band at 1441 cm−1 under-
went a shift to 1439 cm−1, showing the participation of the COO− group of AFB. The 
drastic change in the peak from 1032 cm−1 to 1081 cm−1 clearly explains the adsorp-
tion of CR onto the AFB surface. The shift in the peaks of FTIR data is likely to 
reflect the formation of new bonds for weak van der Waals forces and hydrogen 
bonding between the functional groups of the AFB and CR dye molecule. Also, the 
transfer of the CR molecules from the bulk of aqueous solution to the AFB surface 
might contain these four steps: (1) transport of CR molecule from the bulk aqueous 
solution to the AFB surface, (2) transfer of CR molecules to the AFB surface through 
diffusion across the boundary layer, (3) adsorption at the surface sites of the sorbent, 
and (4) intra-particular diffusion through the surface of the sorbent (Sen et al. 2011).

3.7  �Conclusions

Till date, varied physicochemical treatment options have been designed for the 
removal of dyes. However, the performance of these conventional systems is limited 
due to high cost, large energy and chemical requirements, generation of sludge and 
toxic byproducts. This chapter acknowledges adsorption as an apt option for the 
removal of dyes, due to their advantageous properties such as environmental benig-
nity, economical operation, easy and safe operation, and no sludge generation. The 
experimental case study showcased the applicability of a biochar derived from the 

Fig. 3.11  Proposed adsorption mechanism for Congo red dye on the Arjun fruit biochar surface at 
different pH conditions
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fruit of T. arjuna as an efficacious sorbent for the abatement dyes from water/waste-
water. The maximum removal efficiency and adsorption capacity of CR by AFB 
were 96.25% and 4.81 mg/g, respectively. The kinetic, equilibrium, and thermody-
namic analyses of the adsorption process revealed that CR sorption on AFB is a 
spontaneous and feasible method that is physical in nature. The reusability of bio-
char was reliable with minimal loss of adsorption capacity when tested over five 
regeneration cycles. The experimental observations of the present investigation 
showcased that the fruit of T. arjuna, which remains largely unused by the pharma-
ceutical industry, can be used in treatment facilities for the efficient removal of pig-
ments and dyes from water/wastewater. Such innovative usage of indigenously 
produced waste biomass holds a great potential for sustainable waste management 
as well as a cost-effective pollution control process.
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