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Chapter 12
Multifarious Benefits of Biochar 
Application in Different Soil Types

Umesh Pankaj

Abstract The extensive use of chemical fertilizers in agriculture have long term 
deleterious impact such as leading salinity, decline fertility of soil with fast growth 
of agricultural production and it is predicted that the fertilizer use to continue 
increase in the coming years. With current scenario, there has been keen interest on 
biochar, produced from various crop residues with multiple environmental applica-
tions such as soil amelioration, pollutants removal and carbon sequestration. Biochar 
has several unique properties like high alkaline pH, fixed carbon content, stability 
against decay, water holding capacity and cation exchange capacity, which makes it 
an efficient, cost-effective and environmentally-friendly material. Many study 
showed the effectiveness of biochar amendments in soil i.e. nutrient status improve-
ment, increases soil porosity, soil pH, soil moisture-holding capacity and boost the 
growth of beneficial plant growth promoting microbial community.

Keywords Biochar · Microbial abundance · Soil physio-chemical property · 
Nutrient improvement

12.1  Introduction

Over the last 30 years, the huge amount of chemical fertilizers use in agriculture 
resulted fast growth of agricultural production, and it is predicted that the fertilizer 
use to continue increase in the coming decades. In country like India and China, the 
excessive use of chemical fertilizers is a common practice to achieve high crop 
yield. Though, continuous use of chemical fertilizers for the intensive cropping not 
only enhance soil nutrients but also decrease the soil organic carbon (C) and other 
negative effects on soils such as leading acidification, deplete soil structure and soil 
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productivity (Ge et al. 2008). Rapid industrial development and increasing adaption 
of agro-chemical based crop production practices since green revolution have 
increased the persistent organic adulterations in the food chain. The uses of agro- 
chemical in soil are considerable costly and also produce a substantial amount of 
chemical residues. The Chinese Ministry of Agriculture has immediate stopped the 
over use of chemical fertilizer and proposed the plan “zero increment in chemical 
fertilizer until 2020” to reduce the consumption of chemical fertilizer. Therefore, 
the high effectiveness of fertilizer and alternate of chemical fertilizer is demanding 
(Singh et al. 2017a, b, 2019a, b; Vimal et al. 2018; Kumar et al. 2018; Singh 2019; 
Singh and Singh 2019; Vimal and Singh 2019). So, we should need to find the 
replacement or substitute of chemical fertilizer, which would be a cost effective, 
sustainable and wide range of applicability.

The actual use and management of agricultural residues, paddy or wheat straw, 
green manure and beneficial microbes have become a key focus of sustainable agri-
culture in recent years (Singh 2013, 2014, 2015, 2016; Singh and  Boudh 2016; 
Kumar et  al. 2017; Kumar and Singh 2017; Tiwari and Singh 2017). Biochar is 
considered as a stable form of organic carbon which improves the soil properties 
and also sequestrates carbon. Biochar considered as a promising solution with vari-
ous valuable properties (Joseph et al. 2010; Uras et al. 2012). Biochar can be formed 
from a numerous of agricultural biomass comprising straw, woody leftovers, ani-
mal manure, and other waste products. Its use can make available resourceful path 
for agricultural waste utilization. Due to its unique structure and composition, 
application of biochar can potentially enhanced the carbon sequestration, improve 
soil health, and lead to sustainable management of organic waste (Lehmann and 
Joseph 2009). Biochar can also improve the soil cation exchange capacity (CEC) 
(Zwieten et al. 2010), nutrient absorption (which prevents subsequent nutrient run-
off), water holding capacity (Laird et al. 2010; Schulz and Glaser 2012; Zhang et al. 
2013), and excessive soil acidification (Karami et al. 2011).

Biochar is a promising carbonaceous material and substitute to the activated car-
bon to remove various organic pollutants such as agrochemicals, polycyclic aro-
matic hydrocarbons (PAHs), volatile organic compounds (VOCs), polychlorinated 
biphenyls (PCBs), aromatic dyes and antibiotics (Beesley et al. 2010; Teixidó et al. 
2011; Xu et al. 2012; Zheng et al. 2010), and also a series of inorganic contaminants 
(e.g., heavy metals, ammonia, nitrate, phosphate, sulfide etc.) from aqueous, gas-
eous and/or solid phases (Ahmad et al. 2014; Jung et al. 2015; Oliveira et al. 2017). 
Biochar application to the soil gives many beneficial effects (Fig.  12.1) such as 
increase microbial respiration, crop yield, improve soil health, water holding capac-
ity etc. (Marjenah 1994; Yamato et al. 2006).
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12.2  Biochar Production from Organic Residue

Generally, biochar was produced in a muffle furnace that was equipped with a digital 
temperature regulator (detection accuracy <5 °C). Biochar was obtained from slow 
and/or fast pyrolysis of organic residue (manure, organic waste, bioenergy crops, crop 
residues) at around 400–600 °C for 8–12 h in oxygen-free or low- oxygen environment. 
After pyrolysis of the biomass, an average the production yield was approximately 
25–50% of the original biomass C remains in the biochar (Lehmann 2007). Under the 
pyrolysis process most of the Ca, Mg, K, P, and plant micronutrients, and about half of 
the N and S in the biomass feedstock are separated into the biochar fraction.

Major thermochemical technologies for biochar production include slow and fast 
pyrolysis, gasification, torrefaction, and hydrothermal carbonization (Kambo and 
Dutta 2015). Biochar yield greatly depends on adaption of pyrolysis type. Slow 
pyrolysis performed at longer residence time and at a moderate temperature 

Fig. 12.1 Multi-benefits of biochar application into poor physico-chemical property soil
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(350–550 °C) in absence of O2 results in higher yield of biochar (30%) than the fast 
pyrolysis (12%) or gasification (10%) (Inyang and Dickenson 2015). The various 
factors affecting the physicochemical properties of biochar during production are 
discussed in the following section.

During pyrolysis the organic agricultural residue (e.g. lignin, cellulose, hemicel-
lulose, fat, and starch) is thermally combusted and yielding three main products (i) 
biochar (solid fraction), (ii) bio-oil (partly condensed volatile matter), and (iii) non- 
condensable gases such as carbon monoxide (Co), carbon dioxide (CO2), methane 
(CH4) and hydrogen (H2) (Suliman et al. 2016). Furthermore, in biochar varying 
ratio of O/C and H/C is achieved by specific elimination of different elements (C, H, 
O) into gases and other volatile compounds (Brewer et  al. 2012). Essentially, in 
biochar the ratio of O/C and H/C is directly correlates with aromaticity, biodegrad-
ability, and polarity, which are extremely necessary properties for the exclusion of 
organic pollutants (Crombie et al. 2013). For example, while a biochar formed at 
higher temperature have lower H/C and O/C ratios as compared to lower tempera-
ture, demonstrating a steady increase in aromaticity and lower in polarity with 
increasing temperature (Suliman et al. 2016; Chen et al. 2016). Van Krevelen dia-
gram is widely used to understand the selective loss of elements (during dehydra-
tion and carbonization reactions) by comparing atomic ratios of H/C and O/C. Most 
of the biochars derived from various sources of feedstock’s have decrease ratios of 
the H/C and O/C due to the removal of H and O atoms during pyrolysis. However, 
the stability of any biochar depends on high aromaticity and carbon content 
(Windeatt et al. 2014). Besides, atomic ratios some other factors like pH and tem-
perature also have a major effect on biochar properties. Some researchers had estab-
lished the relation of biochar high pH with increasing pyrolysis temperature 
(>500 °C) due to the enrichment of ash content (Table 12.1); greater hydrophobicity 
and aromaticity, and higher surface area (Windeatt et  al. 2014; Keiluweit et  al. 
2010). Above mentioned all the properties of biochar make a good candidate for 
highly responsive for removal of organic pollutants. Biochar is act as a zwitterionic 
which comprises of both positively and negatively charged surfaces (Tan et  al. 
2017). The negatively charged surface is attracting the cations and influencing the 
cation exchange capacity (CEC) of soils (Lawrinenko 2014). When pyrolysis was 

Table 12.1 Properties of different biochar from the various organic residues

Biochar type pH
Density 
(g cm−3)

Ash content 
(%)

Fixed carbon 
(%) References

Rice straw 9.0 0.13 23.0 51.8 Li-li et al. (2017)
Bamboo 8.6 0.56 11.9 69.0 Li-li et al. (2017)
Swine manure 8.4 – 32.5 17.7 Cantrell et al. (2012)
Mulberry 
wood

10.2 – 7.5 37.5 Zama et al. (2017)

Maize straw 9.8 0.40 59.1 Luo et al. (2017)
Peanut shell 7.0 – 7.0 32.5 Zama et al. (2017)
Oak biochar 10.2 – 3.49 68.2 Teutscherova et al. 

(2018)
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done below 500 °C temperature aids incomplete carbonization resulted smaller pore 
size biochar formed, lower surface area and greater O-containing functional groups 
(Lu et al. 2014), which make biochar highly responsive for elimination of inorganic 
pollutants due to enlarged ionic interactions through interface with O-containing 
functional groups.

12.3  Effect of Biochar on Soil Microbial Abundance

Microorganisms are present in environment (soil, water, air) and interact with 
human, plant, animal and neighbouring organism. These microbes also regulate the 
soil nutrients mobilization, uptake and plant metabolisms. So, it is essential atten-
tion to truthfully profiling and also compares the composition of the populations 
they form. The one of the most important approach for microbial community profil-
ing is by classification of PCR amplicon sequences from the small subunit ribo-
somal RNA gene (i.e., the 16S rRNA gene of bacteria and archaea). This method is 
also useful to introduce biases in microbial composition estimation due to variations 
in 16S rRNA gene copy numbers per genome. The other most common approach 
for determination of soil microbial abundance and community composition is phos-
pholipid fatty acid (PLFA) analysis (Zhang et al. 2015). The quantitative realtime 
PCR and Illumina MiSeq sequencing method outcomes revealed that the bacterial 
abundances and diversity increased with biochar addition (Chen et al. 2013; Yao 
et al. 2017). A study revealed that the abundance of microbial PLFAs (Gram-positive 
bacteria, Gram-negative bacteria, actinobacteria and fungi) in biochar amended soil 
was higher as compared to un-amended soils. The ratios of bacteria/fungi and 
monounsaturated/branched PLFAs were significantly correlated with the volumet-
ric soil water content, porosity, or computed effective oxygen diffusion coefficients 
under biochar amended soil.

Several reports are available in which the biochar has both positive and nega-
tive impact on microbial community and abundance. Biochar can significantly 
influencing the soil microbial communities and abundance (Grossman et  al. 
2010; Jindo et al. 2012; Lehmann et al. (2011), possibly varying the activity of 
advantageous soil microorganisms and nutrient cycles (Bruun et al. 2014). One 
of the advantageous aspects that biochar pores are provide habitat for microor-
ganisms such as mycorrhizae and bacteria that also obtain their metabolic needs 
from these micro- habitats (Lehmann et al. 2011). Biochar surface contained the 
labile soil organic matters which favours the microbial growth and activity, con-
sequently lead to microbial abundance, microbial activity and mineralization 
(Wardle et al. 2008; Ameloot et al. 2013). Valuable effects of biochar amendment 
on crop yield have been documented (Yamato et al. 2006; Jeffery et al. 2011), 
however broad analysis is needed on soil microbial community and abundance 
because soil microorganisms play a key role in nutrient cycling and provide thus 
an important ecosystem service (Costanza et al. 1987). Due to biochar pore size 
is very small below 5 mm in diameter (Glaser 2007) it protect microorganism 
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from predator such as nematodes, mites, protozoan, collembolans and main-
tained the microbial diversity (Warnock et  al. 2007; Swift et  al. 1979; Wright 
et al. 1995). Contrary to this, some reports are present the negative effect of bio-
char on microorganism (Graber et al. 2010) due to reduction in reproduction rate. 
Arbuscular mycorrhizal fungi (AMF) plays a major role in soil aggregation, pro-
vide essential nutrient phosphorus to the plant, sequestration of soil carbon and 
nitrogen under different stress condition like droughts and saline or sodic soil 
(Wilson et al. 2009). However, some reports are described the AMF abundance 
decreased with the addition of biochar (Warnock et al. 2010; George et al. 2012) 
while, others reports reflects had no significant role of AMF and microbial abun-
dance and biomass (Chan et al. 2008; Durenkamp et al. 2010). Zheng et al. (2016) 
also found that biochar addition increased the bacterial diversity and changes in 
bacterial community composition in drylands, while under paddy soil it did not 
alter the microbial community structure (Tian et al. 2016). However, until now, 
few reports have been available on the changes in the soil microbial community 
with biochar addition. The possible reason behind no changes in microbial abun-
dance and biomass is biochar were not equally spread across different functional 
groups and allow to dominate or diminish soil environment might cause some 
microorganisms to become competitively dominant only specific group of micro-
organisms (Kuppusamy et  al. 2016). Another logic given by Warnock et  al. 
(2010), that organic pyrolytic product (phenolics and polyphenolics) are respon-
sible for the reduction in microbial community and their abundance. Biohar and 
soil type is also responsible for increasing and/or decreasing the microbial com-
munity (Jones et al. 2012; Galvez et al. 2012; Lehmann et al. 2011). One of the 
important property of biochar is explored by Qui et al. (2009), in which harmful 
chemical secreted by plant or other organisms (allelochemicals) are detoxify by 
application of biochar consequently improved the plant growth promoting rhizo-
bacteria (Paenibacillus sp., Rhizobium sp., Bradyrhizobium sp., Pseudomonas 
sp. etc.) and mycorrhizae (mainly arbuscular, ericoid and ectomycorrhiza) 
growth. Biochar have many O-bearing functional groups which involve in sorp-
tion of dissolved organic compounds, simple organic compounds, and ammo-
nium ions, provide favorable microbial habitat (Thies and Rilling 2009; Wardle 
et al. 2008) and responsible for necessary changes in microbial activity.

12.4  Effect of Biochar on Soil Enzyme Activity

Soil enzyme activity is considered as a most important indicator of soil health. 
The biochar application had significant long and short term impact on soil enzyme 
and nutrient cyclic were reported. Biochar is influence the intra and extracellular 
enzymes activity of the organism in the different soil system like normal and 
stressed soil. One of the intracellular enzyme i.e. dehydrogenase in a soil have 
role in respiratory processes and strongly correlated with organic carbon avail-
ability (Teutscherova et al. 2018). Though, biochar had pH enhancing property it 
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affects the activity of soil dehydrogenase enzyme by adding labile carbon for 
neutralizing the acid pH under degraded acid soil. Likewise, β-glucosidase is 
known for the catalyzing cellulose degradation in the final step of glucose release. 
On addition of biochar the β-glucosidase enzyme activity observed higher and/or 
decreased. The other hydrolases enzymes such as β-glucosaminidase, phospha-
tase and urease are involved in soil organic carbon transformation and nutrient 
cycling (Teutscherova et al. 2018). Urease enzyme have role in the transformation 
of soil organic nitrogen into available inorganic nitrogen and had no significant 
relation with biochar application because the feedstock type, pyrolysis condi-
tions, production method, application rate, and soil types are the governing fac-
tors that will influence the nitrogen cycling and urease activity in the soil (Zheng 
et al. 2019). Invertase enzyme also plays crucial role in improving soluble nutri-
ents in the soil, providing sufficient energy for the soil organisms and increased 
the activity with addition of biochar. The possible mechanism is biochar increases 
enzyme activity by enhancing the soil organic matter, microbial activity, and 
microbial biomass or through co-location of enzymes and their interaction with 
biochar surface (Zheng et al. 2019).

12.5  Effect of Biochar on Soil Physico-chemical Properties

Soil physico-chemical properties play an important role in plant and microbial 
growth and development. Biochar amendments can changes soil physico-chemi-
cal and biological properties such as reduce bulk density increased water holding 
capacity (retain plant available water), cation exchange capacity and favour the 
soil microbial activities. The changes in physical properties of soil are also 
depends on feedstock type, rate of application, type of biochar and interaction 
time of biochar with soil (Chaganti et al. 2015). It was well documented that the 
biochar had high porosity, high inner surface area and large number of micro-
pores, which create a better environment for plant root growth, nutrient capture 
and air porosity (Zheng et al. 2019). Biochar application efficiently improves the 
soil fertility and crop productivity and also directly related to improvements in 
soil characteristics due to the high cation exchangeable capacity, surface area, 
and nutrient contents of biochar (Major et  al. 2010). Under sandy loamy soil, 
biochar application considerably reduced clay dispersion and aggregate disinte-
gration and increased in filtration rate (Abrol et al. 2016). Additionally, biochar 
also support the building processes of the soil structure via indirect mechanism, 
such as providing habitat for soil microorganisms and enzyme activities. The 
effects of biochar on the growth, nutrient uptake and soil properties are summa-
rized in Table 12.2. On the other hand, under salt affected soil biochar is reduces 
the Na toxicity to the plant because the accumulation of sodium (Na+) and also 
improved the K+: Na+ ratio through enhancing potassium (K+) availability to plant 
(Saifullah et al. 2018).
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12.6  Biochar for Improvement of Soil Nutrient Status

Nutrient retaining in soil for long time become a great interest of researchers 
because nutrient runoff, erosion and the leaching not only degrade soil quality but 
also adversely impact the quality of water in streams and reservoirs. Biochar have 
unique physical property to retain various nutrients in their pores and returns most 
of nutrients to the soils from which they came. Biochar also have the capability to 
increases the capacity of soils to adsorb essential plant nutrients (Liang et al. 2006; 
Cheng et al. 2008) thus reducing runoff or losses of nutrients. During formulation 
of biochar (pyrolysis) the most of essential plant nutrient such as Ca, Mg, Zn, K, P, 
and about half of the nitrogen and sulphur in the biomass feedstock are partitioned 
into the biochar fraction. Indeed, many reports are presented on biochar amendment 
increased the crop yield simultaneous improve the water holding capacity and nutri-
ent use efficiency (Iswaran et  al. 1980; Kishimoto and Sugiura 1985; Marjenah 
1994; Yamato et al. 2006). The mechanisms of nutrients immobilization by biochars 
include (1) physical trapping of nutrients within pores of biochars, (2) direct elec-
trostatic interactions between cationic nutrients and negatively charged carbon sur-
faces, (3) ionic exchange between nutrients ions and ionisable protons at the surface 
of acidic carbon, (4) specific binding of nutrients by surface ligands (functional 
groups) abundant on biochar surfaces, (5) reaction with mineral impurities (ash) and 
basic nitrogen groups (e.g. pyridine) of carbonaceous materials, (6) forming hydrox-
ides, carbonates and/or various phosphate-involved precipices and (7) redox reac-
tions with biochar along with sportive reactions (Li et al. 2018). In contrast, some 
reports found a decrease in microbial activity after biochar application (Qin et al. 

Table 12.2 Multifarious role of biochar application under different soil type

Type of biochar 
application Soil type Advantage References

Corn stalk Silty clay Reduce the nitrogen contamination of 
ground water.
Changes in microbial community

Sun et al. (2018)

Holm oak Acrisol 
Calcisol

Enhance dehydrogenase & urease activity
Enhance aggregates stability

Teutscherova et al. 
(2018)

Manure compost Salt 
affected 
soil

Increases in nutrient content (especially 
Ca, Mg, K, N & P)

Lashari et al. 
(2015)

Peanut shell Salt 
affected 
soil

Improve soil organic C Bhaduri et al. 
(2016)

Hardwood Sodic soil Reduce sodium uptake by Plants Akhtar et al. 
(2015)

Beech, hazel, oak, 
birch

Saline/
sodic

Reduce Na+ uptake, & leaching of K+ and 
NH4

+

Di Lonardo et al. 
(2017)

Peanut shell Salt 
affected 
soil

Improve soil health
Enhance nutrient availability
Elevated bacterial activities & abundances 
related to nutrient transformations

Zheng et al. 
(2017)
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2010). These contrasting results could be related to changes in soil moisture, pH, 
and nutrient dynamics caused by the chemical components of the different types of 
biochar used (Table 12.3). Biochar had also good impact on soil respiration and soil 
microbial biomass (Zheng et al. 2019).

12.7  Conclusions

The problem of the depletion of agricultural land as a result of the pressure caused 
by the ever-growing population necessitated the sustainable practice of crop pro-
duction. Biochar application is a unique sustainable approach, which has a signifi-
cant potential to address number of environmental issues and good way to reduce 
chemical fertilizer use. Under field condition the biochar is a suitable candidate for 
the improvement of soil physio-chemical properties, microbial abundance and com-
position. However, biochar amendment to agricultural land had various effects on 
soil nutrient composition; changes in soil pH significantly, improving soil fertility, 
input of organic carbon and nitrogen contents. Several reports available on biochar 
application significantly reduced the soil bulk density, increased water holding 
capacity, cation exchange capacity, surface area, and the retention of various essen-
tial nutrients like N, P, K, Mg, Ca and several other plant nutrients.
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