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Chapter 11
Biochar: A New Environmental Paradigm 
in Management of Agricultural Soils 
and Mitigation of GHG Emission

Palakshi Borah, Nijara Baruah, Lina Gogoi, Bikram Borkotoki, 
Nirmali Gogoi, and Rupam Kataki

Abstract  Biochar, a co-product of the pyrolytic conversion of biomass and bio-
wastes to biofuel is a carbon rich recalcitrant material. It has received much atten-
tion in the recent times for its prospective application in various fields viz. as a soil 
amendment for improving the physical, chemical, and biological qualities of agri-
cultural soils, as an adsorbent for removal of various organic and inorganic contami-
nants in water, for removal of pesticides residues in soil, for correcting soil acidity, 
as a precursor for chemical synthesis, for industrial applications such as superca-
pacitor application, as a support material for fuel cells, for enhancement in biogas 
generation to name a few. In addition to all these, biochar’s green-house gas mitiga-
tion potential, and C-sequestration potential are two most significant attributes that 
has made biochar a suitable component for SDGs. Further, these applications have 
made biochar as one of the most researched topics in recent times. The ease of bio-
char production is also another advantage which can be beneficial for farmers even 
with a marginal land holding. In this chapter, an attempt has been made to discuss 
the role of biochar in management of agricultural soils, as well as its vast environ-
mental application possibilities.
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11.1  �Introduction: Biochar as a Soil Amendment

Biochar is a charred carbon-enriched material intended to be used as a soil amend-
ment to sequester carbon and enhance soil quality. Sustainable biochar is produced 
from waste biomass using modern thermochemical technologies. Addition of sus-
tainable biochar to soil has many environmental and agricultural benefits, including 
waste reduction, energy production, carbon sequestration, water resource protec-
tion, and soil improvement. When used as a soil amendment, biochar has been 
reported to boost soil fertility and improve soil quality by raising soil pH, increasing 
moisture holding capacity, attracting more beneficial fungi and microbes, improv-
ing cation exchange capacity (CEC), and retaining nutrients in soil (Lehmann et al. 
2006; Lehmann 2007a). Another major benefit associated with the use of biochar as 
a soil amendment is its ability to sequester carbon from the atmosphere-biosphere 
pool and transfer it to soil (Winsley 2007; Gaunt and Lehmann 2008; Laird 2008). 
Biochar usually has a greater sorption ability than natural soil organic matter due to 
its greater surface area, negative surface charge, and charge density (Liang et al. 
2006). Biochar can not only efficiently remove many cationic chemicals including 
a variety of metal ions, but also absorb anionic nutrients such as phosphate ions, 
though the removal mechanism for this process is not fully understood (Lehmann 
2007a). Thus, the addition of biochar to soil offers a potential environmental benefit 
by preventing the loss of nutrients and thereby protecting water resources. Biochar 
is considered much more effective than other organic matter in retaining and mak-
ing nutrients available to plants. Its surface area and complex pore structure are 
hospitable to bacteria and fungi that plants need to absorb nutrients from the soil. 
Moreover, biochar is a more stable nutrient source than compost and manure (Chan 
et al. 2007).

11.1.1  �Agronomic and Environmental Benefits of Biochar

Biochars can provide agronomic and environmental benefits in soils through 
increased cation exchange capacity, reduced nutrient leaching, enhanced water 
holding capacity, reduced soil acidity and stimulation of microbial activity (Kookana 
et al. 2011; Lehmann and Joseph 2015).

11.1.1.1  �Crop Disease Management

A positive influence of biochar on reducing plant diseases such as rust in wheat and 
mildew in other crops was first reported some 170 years ago (Allen 1847) and drew 
attention in the last decade where several pathosystems were studied by different 
groups worldwide (Elad et al. 2010; Elmer and Pignatello 2011; Jaiswal et al. 2014; 
Copley et  al. 2015; Jaiswal et  al. 2015). Pathosystems included both foliar 
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pathogens and soil borne pathogens (Elad et al. 2011; Graber et al. 2014a).Biochar 
application can enhance crop response to disease (Elad et  al. 2011), and this 
enhancement can be attributed to an increase in soil pH (Novak et al. 2009), nutrient 
retention (Chan et al. 2007; Steiner et al. 2007), cation exchange capacity in soil 
(Steiner et al. 2007), transformations and turnover of P and S (Lehmann and Joseph 
2009), and neutralization of phytotoxic compounds in soil (Wardle et al. 1998).

Biochar can reduce fungal foliar diseases caused by Botrytis cinerea and 
Oidiopsis sicula in tomato (Solanum lycopersicum L.) and pepper (Capsicum ann-
uum L.) (Elad et al. 2010). Biochar induced defense responses of strawberry are 
functionally similar to induced systemic resistance (Harel et al. 2012). Moreover, 
biochar can reduce soil borne diseases caused by bacteria and fungi (Jaiswal et al. 
2014). Incidence of bacterial wilt (R. solanacearum) in tomato was reduced due to 
biochar application derived from municipal biowaste (Nerome et al. 2005). Biochar 
induced plant disease suppression were attributed to several mechanisms (Hoitink 
and Fahy 1986; Lehmann et al. 2011; Noble and Coventry 2005) such as chemical 
components of biochar that directly inhibit growth of pathogens and the porous 
structure of biochar provide microbial habitats beneficial for bacterial abundance. 
Biochar promotes plant growth by providing nutrients and improving nutrient solu-
bilization and uptake. The sorption property of biochar may change the mobility 
and activity of pathogens or modify signaling between pathogens and plants 
(Lehmann et al. 2011).

Adding biochar to soil and soilless media was found to suppress plant diseases 
caused by both foliar and soilborne pathogens (Elad et al. 2011; Frenkel et al. 2017; 
Graber et al. 2014b; Jaiswal et al. 2014). Biochar-elicited suppression of foliar fun-
gal diseases is related to activation of plant defense system, given that biochar is 
spatially distant from the site of pathogen attack. Mechanisms responsible for 
biochar-related attenuation of soil borne diseases can be much more diverse. This is 
because the biochar and pathogens both reside in the soil, and can have direct and 
indirect interactions with each other (Graber et al. 2014b). Ways in which biochar 
could influence the progress of diseases caused by soil borne pathogens includes (1) 
changes in nutrient supply and availability (Elmer and Pignatello 2011); (2) altera-
tions in soil physiochemical characteristics (Rogovska et al. 2017); (3) induction of 
systematic plant defenses (De Tender et al. 2016; Zwart and Kim 2012); (4) altera-
tion of soil microbial abundance in terms of taxonomic, functional diversity and 
activity (De Tender et al. 2016; Jaiswal et al. 2017, 2018); (5) modification of patho-
gen growth, survival, virulence and activity (Akhter et al. 2016; Copley et al. 2015; 
Jaiswal et al. 2015, 2017, 2018) and (6) adsorption and inactivation of pathogenic 
enzymes and/or toxins. Ad-sorption of toxic metabolites by 3% biochar signifi-
cantly reduced the severity of the disease-like symptoms caused by the toxic metab-
olites as compared to no-biochar control toxic metabolites treatments.

Biochar application at a rate of 3% and 5% by weight under tomato and pepper 
cultivation documented significant reduction in leaf symptoms caused by two com-
mon fungal pathogens i.e. powdery mildew and grey mould. Whole plant peppers 
after 60 days had 59% of powdery mildew infection in plots with biochar and only 
17% infection with 5% biochar application. Grey mould in tomato after 59 days was 
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significantly reduced from 66% infection in untreated plants to 2% under 3% bio-
char application. Biochar addition at a rate of 5% in the pepper crop reduced leaf 
infection from 18% (no biochar) to 6%. The reduced level of residual tars present in 
biochar induced resistance to the diseases and pest (Elad et al. 2010). Jaiswal et al. 
(2018) documented that biochars obtained from eucalyptus wood and pepper plant 
wastes can significantly adsorbed and deactivated enzyme exudates of pathogenic 
fungi Fusarium oxysporum.

Bonanomi et al. (2015) reviewed and summarized the data from 13 pathosystems 
that tested the effect of biochar on plant disease. In their analysis, 85% of the studies 
showed a positive influence of biochar in reducing plant disease severity, 12% had 
no effect, and only 3% showed that biochar additions were conducive to plant dis-
ease. However, their analysis did not consider the dose of the as a crucial factor on 
plant susceptibility/resistance to a disease.

11.1.1.2  �Abiotic Stress Management

Abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and 
heavy metal toxicity is the common adverse environmental conditions that affect 
and limit crop productivity worldwide (Singh 2013, 2014, 2015, 2016; Singh and 
Boudh 2016; Kumar et al. 2017; Kumar and Singh 2017; Tiwari and Singh 2017). 
The abiotic stress conditions that most adversely affect crop yield are associated 
with water deficiency ion imbalance and temperature extremes (Gupta et al. 2014). 
Biochar is known to have a number of positive effects on plant ecophysiology. 
However, limited research has been carried out to date on the effects and mecha-
nisms of biochar on plant ecophysiology under abiotic stresses. A series of experi-
ments on rice seedlings treated with different concentrations of biochar leacheates 
(between 0 and 10% by weight) under cold stress (10 °C) was conducted by Yuan 
et al. 2017. Quantitative real-time PCR (qRT-PCR) and cold-resistant physiological 
indicator analysis at low temperatures revealed that the cold tolerance of rice seed-
lings increased after treatment with high concentrations of biochar leacheates 
(between 3% and 10% by weight). Results also show that the organic molecules in 
biochar leacheates enhance the cold resistance of plants when other interference 
factors are excluded. The positive influence of biochar on plant cold tolerance is 
because of surface organic molecules and their interaction with stress-related pro-
teins (Yuan et al. 2017). As a direct source of plant soil nutrients; presence of bio-
char impact root growth, and plant performance (Prendergast-Miller et al. 2013). 
Thomas et al. 2013 reported that biochar mitigates negative effects on two herba-
ceous plant species via salt sorption and application is known to preserve rice pollen 
under high-temperature stress (Fahad et al. 2015). Biochar addition enhance drought 
tolerance of quinoa crop with improve the growth and higher leaf nitrogen content 
(Kammann et al. 2011).

The beneficial effects of biochar under limited water conditions have been widely 
reported (Akhtar et al. 2015b; Paneque et al. 2016; Ramzani et al. 2017; Rogovska 
et al. 2014). Biochar as soil amendment improved growth and biomass of plants 
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under drought-stress. Use of biochar exhibited the highest vegetative growth and 
seed production of field-grown sunflower under non-irrigated conditions (Paneque 
et al. 2016). Enhanced tomato fruit quality, growth and yield was reported under 
deficit irrigation due to biochar application (Agbna et al. 2017). Similarly, use of 
biochar supports the growth of winter rapeseed under drought conditions 
(Bamminger et al. 2016). Likewise, Basso et al. (2013) found that application of 
hardwood biochar significantly increase soil water holding capacity and might be 
the reason of enhanced available water capacity (AWC – available water between 
field capacity and permanent wilting point) for crops. Tomato seedlings were pro-
tected from wilting due to improved soil moisture content with higher (30% v/v) 
rates of biochar as soil amendment in sandy soils (Mulcahy et al. 2013). Studies 
have shown that biochar may minimize water stress in plants when applied with 
microorganisms (Liu et al. 2017b; Nadeem et al. 2017). Egamberdieva et al. (2017) 
reported inoculation of biochar with Bradyrhizobium sp. enhance the growth, bio-
mass, phosphorus and nitrogen uptake, and nodulation in lupin (Lupinus angustifo-
lius L.) seedlings under drought stress as compared to the only microbial inoculation. 
Nadeem et al. (2017) reported inoculation of biochar with Pseudomonas fluorescens 
reduced the harmful impact of drought stress on cucumber (Cucumis sativus L.). 
Significant improvements were observed in chlorophyll and relative water contents, 
as well as a reduction in leaf electrolyte leakage demonstrating the effectiveness of 
this approach. In another study, Liu et al. (2017b) reported that inoculation of birch 
wood biochar with Rhizophagus irregularis under limited root zone water decreased 
water use efficiency, leaf area, nitrogen and phosphorous in potato and did not 
adversely impacted the root biomass and soil pH as compared to control. However, 
under limited irrigation soil amendment with wood derived biochar (30 mg.ha−1) 
had no significant effect on soil biota groups such as protozoa, bacteria, fungi, nem-
atodes and arthropods (Pressler et al. 2017). Application of biochar with arbuscular 
mycorrhizal (AM) fungi and other beneficial microbes (Vimal et al. 2018; Singh 
2019; Vimal and Singh 2019) can enhance drought and salt tolerance of the host 
plant by physiological mechanisms in nutrient adsorption and biochemical mecha-
nisms, e.g. hormones, osmotic adjustment and antioxidant systems. However, appli-
cation of BC to the agricultural soil with AM fungi stimulated the growth of 
extra-radical hyphae in soil and increased mycorrhizal colonization of roots. As the 
water potential of the soil was the same with and without biochar amendment, it is 
unlikely that the observed effects on plant growth were related to possible benefits 
from the water holding capacity of the biochar (Mickan et al. 2016).

Biochar not only improves crop productivity under normal conditions but also 
improves crop yield under adverse conditions such as salinity and drought (Thomas 
et al. 2013; Haider et al. 2014). For example, biochar enhanced the permanent wilt-
ing point (Abel et al. 2013; Cornelissen et al. 2013a), while the quantity of water 
retained at field capacity improved to a larger extent compared to the water held at 
permanent wilting point, i.e., increased plant available water. Therefore, the increase 
in WHC of biochar amended soils can be used as an indicator of the overall rise in 
plant available water (Liu et al. 2015). Because of its porous nature, biochar can 
improve your soil’s water retention and water holding capacity. This can be 
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attributed to the micropores present in biochar, where a larger volume of pores cor-
relates to better water retention and better water holding capacity. Biochar with a 
fine particle size can also improve these characteristics by packing with the soil to 
create tight pores that will hold the water against gravity (https://char-grow.com/
biochar-impact-nutrient-water-retention).

In another study, biochar addition to a fertile sandy clay loam soil in a boreal 
climate relieved the temporary water deficit leading improvement in harvestable 
yield (Tammeorg et al. 2014). Haider et al. (2014) quoted that biochar induced plant 
growth in a poor sandy soil is due to better soil-plant water relations as observed in 
terms of improved relative water content and leaf osmotic potential) and photosyn-
thesis (due to lowered stomatal resistance and increased electron transport rate of 
photosystem II) under both well-watered and drought conditions. Biochar applica-
tion at higher rates can mitigate adverse effects of salt stress for plant growth (Kim 
et al. 2016; Akhtar et al. 2015a). For instance, topdressing with biochar at 50 t ha−1 
mitigated salt-induced mortality in Abutilon theophrasti and extended the survival 
rate of Prunella vulgaris. Plants of A.theophrasti receiving both biochar and salts 
had growth rates similar to plants devoid of salt addition (Thomas et  al. 2013). 
Recently, Akhtar et al. (2015a) reported enhanced tuber productivity of potato crop 
in salt-affected soils under application of biochar due to enhanced Na+ absorption 
and mainteinance of higher K+ content in xylem. The authors further observed posi-
tive residual effects of biochar application in lowered Na+ uptake in the following 
wheat crop under salinity stress (Akhtar et al. 2015b). Therefore, biochar has the 
potential to mitigate salinity-induced reductions in mineral uptake, and may be a 
novel technique to alleviate the effects of salinization in arable and salt contami-
nated soils (Thomas et al. 2013; Kim et al. 2016).

11.1.1.3  �Crop Productivity

Soil organic carbon (SOC) is known to play an important role in maintaining soil 
fertility and crop productivity (Díaz-Zorita et al. 2002; Lal 2004; Pan et al. 2009). 
Enhancing SOC stocks in croplands with good management practices has the sig-
nificant contribution to climate change mitigation in agriculture (Smith et al. 2007b, 
2008a). Direct incorporation of crop residues as well as organic manure to soils has 
been traditionally performed to maintain soil resilience and carbon (C) stocks. 
However, the residence time of these C sources in soil is relatively short because of 
mineralization, perhaps less than 30 years (Lehmann et al. 2006). Moreover, such an 
incorporation of fresh organic matter would potentially lead to an increase in the 
production of methane (CH4) in rice fields (Yan et al. 2005; Shang et al. 2011). In 
contrast, C from biochar could be stabilized in soil for long periods, potentially 
hundreds of years (Lehmann et al. 2006; Kleber 2010; Schmidt et al. 2011; Woolf 
and Lehmann 2012). Furthermore, biochar soil amendment (BSA) has been shown 
to effectively reduce nitrogen (N) fertilizer-induced nitrous oxide (N2O) emissions 
from agricultural soils (Yanai et al. 2007; Liu et al. 2012; Zhang et al. 2010) with no 
or minimal increase in CO2 and CH4 emissions (Spokas and Reicosky 2009; Karhu 

P. Borah et al.

https://char-grow.com/biochar-impact-nutrient-water-retention
https://char-grow.com/biochar-impact-nutrient-water-retention


229

et al. 2011; Zhang et al. 2012a). Thus, biochar, produced via pyrolysis of biomass, 
has been recommended as an option to enhance SOC sequestration and mitigate 
greenhouse gas (GHG) emissions with the co-benefits of improving soil productiv-
ity and ecosystem functioning in world agriculture (Lehmann et  al. 2006; Sohi 
2012; Sohi et al. 2010; Woolf et al. 2010).

Many earlier studies on biochar focused on the potential of biochar from bio 
wastes to mitigate GHG emissions in agriculture (Lehmann 2007a; Spokas and 
Reicosky 2009; van Zwieten et al. 2009; Knoblauch et al. 2011; Singh et al. 2010a; 
Sohi et al. 2010; Taghizadeh-Toosi et al. 2011; Vaccari et al. 2011; Liu et al. 2012). 
Sohi (2012) addressed co benefits of biochar for soil and environmental quality, 
plant nutrition, and health as well as ecosystem functioning. The significant and 
persistent increase in crop productivity with BSA suggests a major benefit for agri-
cultural production besides its role in mitigating GHG emission. BSA could provide 
a practical option to meet the challenge of food security in a changing climate.

Crop productivity responses to BSA also varied with crop type. Generally, 
greater positive responses were found in experiments with legumes, vegetables and 
grasses. The average increase in crop productivity was 30.3, 28.6, and 13.9% 
respectively for legume crops, vegetables, and grasses and 8.4, 11.3, and 6.6% 
respectively for maize, wheat, and rice. Yield increases with BSA were greater than 
biomass increases for maize. Whereas, the reverse was true for wheat. This indicates 
the differential influence of biochar on crop productivity.

Biochars used in the reported experiments were derived from almost 20 different 
types of biomass and were grouped into six general types of crop residues, wood, 
manure, sludge, municipal waste, and mixtures of wood and sludge. Wood and crop 
residue biochars documented an average (12.1 and 2.6% respectively) increase of 
constant crop productivity while manure biochar showed generally greater (29%) 
productivity with variable responses across the experiments. However, biochar from 
municipal waste significantly decreased crop productivity by 12.8% on average. 
Crop productivity response was also dependent on the pyrolyzing temperature dur-
ing biochar production. Greater increase in crop productivity were seen with bio-
char produced at temperatures of >350 °C from wood, >550 °C for crop residues 
and 350– 550 °C for manure biochar. Meanwhile, crop productivity responses were 
generally negative (−7.9% on average) with non-alkaline (pH <7.0) biochars though 
generally positive with alkaline biochar (pH >7.0). Finally, crop productivity 
changes with BSA were not shown to be proportional to biochar application rate up 
to 20–40  t ha−1 although the increase in crop productivity diminished at biochar 
application rate of >40 t ha−1 (Liu et al. 2013)

The response of crop productivity was shown to vary with biochar type, pyroly-
sis temperature and the feedstock used. It had been well established that both the 
physicochemical properties and nutrient contents of biochars are affected by the 
feedstock type (Spokas and Reicosky 2009; Qin et al. 2012). While biochar from 
wood and crop residues exerted consistent positive yield increase, the greatest mean 
increase was observed with manure biochar. Manure biochars have been generally 
considered very significant for improving soil fertility by promoting soil structure 
development (Joseph et  al. 2010) in addition to their large amounts of plant 
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available nutrients (Hass et  al. 2012). The negative effects with municipal waste 
biochar observed by Rajkovich et al. (2012) reported a great decline in crop produc-
tivity by 80% under application of food waste biochar at a higher (91 t ha−1) rate. 
Presence of higher sodium (ten times) food waste biochar compared to wood and 
straw biochar increased soil salinity and inhibited plant growth. Crop productivity 
was significantly increased with biochar produced at higher pyrolyzing tempera-
tures; presumably as a result of the liming effect as biochar pH generally increases 
with increasing temperature for pyrolysis (Rajkovich et al. 2012). However, there 
was an interaction of feedstock and pyrolysis temperature on crop productivity to 
BSA.  Biochars produced at both low and high pyrolysis temperatures generally 
contained very limited N. Pyrolyzing at temperature more than 450 °C would result 
in losses of N in manure biochar. Higher nutrient contents and crop yields were 
found with the application of manure biochar pyrolyzed at temperatures of <500 °C 
compared to more recalcitrant biochar produced at even higher temperatures (Chan 
et al. 2008).

Along with improved soil health, increased crop yield is generally reported with 
application of biochar to soils. However, many of the published experiments are 
highly variable and dependent on many factors, mainly the initial soil properties and 
biochar characteristics. Positive crop and biomass yield was found for biochars pro-
duced from wood, paper pulp, wood chips and poultry litter. Liu et  al. (2012) 
reviewed published data from 59 pot experiments and 57 field experiments from 21 
countries and found increased crop productivity by 11% on average Benefits at field 
application was noted at a rate below 30 tons/ha. They reported that increases in 
crop productivity varied with crop type with greater increases for legume crops 
(30%), vegetables (29%), and grasses (14%) compared to cereal crops corn (8%), 
wheat (11%), and rice (7%). Biederman and Harpole (2013) analyzed the results of 
371 independent studies. This meta-analysis showed that the addition of biochar to 
soils resulted in increased aboveground productivity, crop yield, soil microbial bio-
mass, rhizobia nodulation, plant tissue content of K, soil phosphorus (P), soil potas-
sium (K), total soil nitrogen (N), and total soil carbon (C) compared with control 
conditions. The yield gains were attributed to the combined effect of increased 
nutrient availability (P and N) and improved soil chemical conditions. However, 
there exists the concern of heavy metal contamination from biochars produced from 
sewage sludge. The inconsistency of sewage sludge might contain differing amounts 
of toxic metals which limit the land application due to the possibility of food chain 
contamination. Several studies have indicated the strong potential of biochar appli-
cation for improving crop yields, particularly on nutrient-poor soils (Van Zwieten 
et al. 2010a; Zhang et al. 2012a) (Table 11.1).

Biochar application may substantially improve soil fertility and crop productiv-
ity (Lehmann and Joseph 2015). For instance, biochar application (68 t ha−1) 
increased rice (Oryza sativa L.) and cowpea (Vigna unguiculata (L.) Walp) biomass 
by 20 and 50% respectively. Increased grain yields in durum wheat (Triticum durum 
L.) by up to 30%, was observed due to biochar application but there was no effect 
was noted on grain N content (Vaccari et al. 2011). Oguntunde et al. (2004) recorded 
increases of 91 and 44% in grain and biomass yield, respectively, in maize (Zea 
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mays L.) on charcoal-amended soils when compared with adjacent field soils in 
Ghana. Likewise, almost double maize yield in degraded soils was obtained from 
application of Eucalyptus-derived biochar in in Kenya (Kimetu et  al. 2008). 
Improvement of rice grain yield (upland) in soils with lower P availability was 

Table 11.1  Influence of biochar application on crop yields based on the literatures

Crops
Bio char 
feed stocks Type of soil Doses Yield response References

Amaranthus Water 
hyacinth, 
domestic 
organic 
waste

Calcareous 
Fluvisols

10 t ha−1 17–64% increase 
in yield

Piash et al. 
(2019)

Lettuce Fecal matter Silty loam and 
sandy loam

0,10,20,30 t 
ha−1

Increased crop 
yield

Woldetsadik 
et al. (2017)

Maize Corncob Alfisols 2% w/w Increased crop 
yield

Mensah and 
Frimpong 
(2018)

Cotton Hardwood Fine, 
kaolinitic, 
thermic 
Rhodic 
Kandiudults

0, 22.4, 44.8, 
89.6, and 
134.4 Mg 
ha−1

No difference in 
yield

Sorensen and 
Lamb (2016)

Corn Hardwood Fine, 
kaolinitic, 
thermic 
Rhodic 
Kandiudults

0, 22.4, 44.8, 
89.6, and 
134.4 Mg 
ha−1

No difference in 
yield

Sorensen and 
Lamb (2016)

Peanut Hardwood Fine, 
kaolinitic, 
thermic 
Rhodic 
Kandiudults

0, 22.4, 44.8, 
89.6, and 
134.4 Mg 
ha−1

No difference in 
yield

Sorensen and 
Lamb (2016)

Cotton Corn straw Inceptisol 0, 5, 10, and 
20 t ha−1

Increased yields by 
8.1–17.1%, 
9.6–13.5%, and 
8.1–18.6% in 2013, 
2014, and 2015, 
respectively

Tian et al. 
(2018)

Maize Acacia wood Clay 50 + 50 Mg 
ha−1

Seasonal yield 
increase was 
average around 
1.2 Mg ha−1

Katterer et al. 
(2019)

Soybean Acacia wood Clay 50 + 50 Mg 
ha−1

Seasonal yield 
increase was 
average around 
0.4 Mg ha−1

Katterer et al. 
(2019)

Corn Pine chips Ultisols 
(loamy sand)

30,000 kg 
ha−1

No significant 
difference in yield

Novak et al. 
(2019)
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found with addition of biochar in Loas. However, at sites with low native N supply, 
biochar application reduced the leaf chlorophyll contents suggesting that biochar 
may reduce grain yield in N-deficient soils if additional N is not applied (Asai et al. 
2009; Nelson et  al. 2011). The effect on crop yields particularly in nutrient-rich 
soils remains uncertain. Several other studies have revealed only small improve-
ments or even reductions in grain yield with biochar application in nutrient-rich 
soils (Deenik et al. 2010; Gaskin et al. 2010; Van Zwieten et al. 2010a). For instance, 
Gaskin et al. (2010) noted a linear decrease in grain yield with increasing rates of 
biochar application. Meta-analysis on biochar application and crop productivity 
(either yield or aboveground biomass) by Jeffery et al. (2011) documented an over-
all small (~10%) but significant improvement in grain yield from biochar applica-
tion, and identified a liming effect and increase in soil WHC as principal reasons for 
biochar-induced yield gain (Jeffery et al. 2011). Among biochar feedstocks, poultry 
litter was the best (28%), while biosolids had a negative effect (−28%) on crop 
productivity (Jeffery et al. 2011). In another study conducted for 3 years by Feng 
et al. (2014) reported that annual yield of either summer maize or winter wheat was 
not enhanced significantly due to biochar application; however, cumulative yield 
over the first 4 growing seasons were significantly higher. Spokas et al. (2012) ana-
lysed 44 published articles on biochar and found that about half of them claimed 
biochars improved crop yield while the others had no or negative effect on crop 
yield. Biochar-induced increases in specific surface area, CEC, soil porosity (Thies 
and Rillig 2009), WHC, nutrient retention (Glaser et al. 2002; Lehmann and Rondon 
2006; Yamato et al. 2006), and liming effect (Rondon et al. 2007; Liu et al. 2013) 
are mainly responsible for improved crop productivity. For example, biochar 
obtained from crop biomass ashes can provide a P source similar to that of com-
mercial P and K fertilizer (Schiemenz and Eichler-Loebermann 2010; Luo et  al. 
2014) or may improve the supply of Ca and Mg (Major et al. 2010).

Biochar amendment has a synergistic effect with fertilizers in improving crop 
yield; for example, maize yield increased with biochar and fertilizer application 
more than fertilizer alone in acidic soil in Indonesia (Yamato et al. 2006). In another 
study, Steiner et al. (2007) harvested 4–12 times more rice and sorghum (Sorghum 
bicolor L.) yield by application of charcoal (11.25 t ha−1) with compost and/or fer-
tilizer than by using fertilizer alone. Similar results on biochar induced doubling of 
rice and sorghum grain yield was reported while applied with NPK fertilizers 
(Christoph et al. 2007). Mau and Utami (2014) also recorded increase in maize yield 
due to increased P availability and uptake under combined application of biochar 
and inoculation of AM fungal spores; however, biochar amendment alone did not 
improve maize growth or P uptake. In a field study conducted on a boreal sandy clay 
loam, biochar as soil amendment (10 t ha−1) improved grain numbers in wheat (dry 
year) probably by alleviating the water deficit (Tammeorg et al. 2014). In crux, bio-
char application has the potential to improve crop productivity on a variety of soils 
under normal and less than optimal environmental conditions if prepared and 
used wisely.
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11.1.2  �Soil Health Management

Soil health is the capacity of a soil to sustain biological productivity, environmental 
quality and promote plant and animal health through self-regulation, stability, resil-
ience and lack of stress symptoms within ecosystem boundaries. Although, another 
terminology ‘Soil Quality’ has often been used simultaneously, they involve two 
different concepts. What constitutes a high-quality soil may depend on the intended 
use or the role of soil management system. For example, a good quality soil for 
engineering construction many not suited for agricultural production (Brady and 
Well 2012).

Let’s have an example of Soil Health of Terra Preta (= Dark in Portuguese) soil 
of Amazon basin. In general, the highly weathered Oxisols and Ultisols of Amazon 
basin are dominated by iron and aluminium oxides clays. Due to high soil acidity 
and low Cation Exchange Capacity (CEC) these soils possess very low level of soil 
fertility, have little capacity to sustain nutrients and therefore poor in health. 
Conversely, soil scientists exploring this area were mystified and surprised when 
they found around twenty hectares of dark coloured, high organic matter containing, 
fertile healthy soils along the Amazon river and some of its tributaries. When they 
conducted 14C isotopic study they found that most of the carbon of these soils were 
accumulated several thousand years ago. Now it is believed that these patches of 
highly fertile healthy soils were created by the ancient dwellers of that vicinity that 
lived in miniature agricultural settlements carved out of the Amazon rainforest. 
These dwellers farmed this soil regularly for many years in such a way that they 
enhanced the soil health rather than degraded by agricultural use. Even today some 
of the Terra Preta soils are dug and sold in  local markets for their high fertility 
value. Soil analysis revealed that Terra Preta soils are rich in calcium and phospho-
rus than that of the surrounding soils of Amazon basin because of the amendments 
with human excrement and bones of animals eaten by the ancient inhabitants. 
However, the unique aspect of these soils is that much of the carbon in them is pres-
ent as Charcoal. The complex aromatic structure makes the charcoal recalcitrant 
because of its resistance to microbial degradation results in very high and stable 
accumulation of organic carbon as well as high nutrient availability for plant growth. 
Again, the small bits of charcoal found in Terra Preta soils are very porous in nature 
that greatly enhances water holding capacity of these soils and capacity to retain 
nutrients in the form of dissolve organic compounds. Thus soil scientists studying 
the effect of this unique anthropogenic activity on soil health reported that adding 
charcoal or biochar to soils may significantly enliven soil health and make the soil 
defiant to degradation in agricultural use. It is also reported that the conversion of 
biomass carbon to biochar leads to sequestration of about 50% of the initial carbon 
compared to the low amounts retained after burning (3%) and biological decompo-
sition (less than 10–20% after 5–10 years) (Lehmann et al. 2006).

Soil Health with application of biochar may be governed by a number of physico- 
chemical and biological attributes and processes and expressed by different quanti-
tative and qualitative measures of these attributes as also by outcomes that are 
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governed by the soil such as productivity, nutrient and water use efficiencies and 
quality of produce. Gaunt and Lehmann, (Gaunt and Lehmann 2008) pointed out 
that the application of biocahr may improve soil health by altering its physical, 
chemical and biological environment principally by improving soil organic carbon 
status. Therefore, apart from soil physical, chemical and biological environment 
organic matter must be kept as distinct indicator of soil health (Fig. 11.1).

11.1.2.1  �Soil Physical, Chemical and Biological Health

Hypothetically, four mechanisms have been proposed to elucidate how application 
of biochar might help in improvement of soil physico-chemical and biological 
health. These are: (1) direct modification of soil chemistry through inherent chemi-
cal composition of biochar. (2) provides chemically active surfaces that alters the 
dynamics of available nutrients or otherwise catalyze important soil reactions and 
(3) modifies physical character of the soil in a way that benefits root growth and/or 
nutrient and water retention and acquisition and (4) modifies soil biological health 
through priming effect.

The first mechanism may result in a momentary shift in crop productivity in posi-
tive direction; the extent and duration of which will be governed by the natural 
phenomenon of biochar weathering and the upshots of crop uptake. This could hap-
pen where the biochar has considerable mineral nutrients content, or equally 
enhance in CEC in due course of time as the weathering progress. The benefits 
provided by the second and third mechanisms depend upon recalcitrant nature of 
biochar. It depends upon the half life of biochar carbon that principally varies 
depending on feed stock and temperature at which biochars are produced and may 
also accordingly be finite, even though over a much longer period of time. This 
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would include the impact of pours biochar on water retention or lowering bulk den-
sity and increasing the total porosity of soil. The fourth mechanism of priming 
effect depicts about raise in soil organic matter decomposition rate after addition of 
fresh organic matter in soil which is often supposed to as a result from escalation of 
microbial activity on account of higher availability of energy released from decay of 
fresh organic matter (Zimmerman et al. 2011). However, both positive and negative 
priming have also been reported by earlier workers (Wardle et al. 2008; Kuzyakov 
et al. 2000; Kuzyakov 2010; Zimmerman et al. 2011). Possible causes of positive 
priming might be the positive co-metabolic effect of labile part of organic matter on 
growth of microorganisms and provision of habitat for microbes that protects them 
from predation and simultaneously supports microbial growth through co-locating 
labile organic matter on surfaces of the biochar. Other mechanisms include altering 
soil reaction, availability of nutrients and/or water holding capacity, which have a 
say in positive priming (Fontaine et al. 2003). Probable reasons of negative priming 
are adsorption of organic matter through encapsulation and absorptive protection 
where encapsulation takes place within biochar pores that exclude biota and their 
extracellular enzymes from access to the organic matter and absorptive protection 
onto external bio-char surfaces. Biochar induced stabilization or protection of com-
paratively labile organic matter in soil within organo-mineral fractions and a tran-
sient shift of microbial communities to exploit relatively more labile C in biochar, a 
phenomenon known as preferential substrate utilization, may also contribute to 
negative priming and predominant in low C soil receiving nutrient application 
(Fontaine et al. 2003).

The magnitude and relative importance of first three mechanisms in a particular 
setting will evolve over time as the slow process of chemical and physical modifica-
tion results in a gradually increasing concentration of smaller, partially oxidized 
particles.

11.1.2.2  �Soil Fertility

Soil fertility is the capacity of the soil to supply nutrients to plants in adequate 
amounts and in suitable proportions to produce crop of economic value and to main-
tain soil health. The addition of biochar to agricultural soil is receiving considerable 
interest because of its positive impact on soil fertility (Quayle 2010). At local scale, 
increase in soil organic carbon levels due to addition of biochar shape agro-
ecosystem function and influence soil fertility by altering soil physical, chemical 
and biological properties (Milne et al. 2007). The ability of soil to retain nutrients 
can be increased using biochar (Sohi et  al. 2010). Biochar application reduces 
leaching loss of soil nutrients, enhances plant nutrient availability, reduces toxicity 
of aluminium to plant roots and micro-biota in acid soils and bio-availability of 
heavy metals like Pb, Cd etc. (Lehmann et al. 2006; Rondon et al. 2005; Yanai et al. 
2007; Mukherjee and Lal 2014). It reduces soil acidity (Zwieten et al. 2010), seques-
ters recalcitrant carbon in soils and thus improves soil fertility and mitigate climate 
change (Fowles 2007; Glaser et al. 2002; Laird 2008; Lehmann 2007a, b; Lehmann 
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et  al. 2006; Marris 2006; Sohi et  al. 2010). This help to uphold the growth of 
microbes specially the bioactivity of beneficial soil microorganisms (Marris 2006), 
improves soil organic matter and consequently plant growth (Sanchez et al. 2009; 
Glaser et al. 2002), soil porosity. Reduces bulk density and improved water holding 
capacity of soil (Rasa et al. 2018). Biochar has the potential to boost up conven-
tional agricultural productivity and augment the capacity of the farmers to play a 
part in carbon markets ahead of the routine approach by directly applying carbon 
into the soil (McHenry 2009). The combined application of biochar along with inor-
ganic fertilizer has the potential to increase crop productivity, therefore providing 
additional income, and reducing quantity of inorganic fertilizer use and importation 
(De Gryze et al. 2010; Quayle 2010).

11.2  �Biochar in Environmental Management

In recent time research interest on use of biochars produced from different feed-
stock as environmental management is increasing prominently. Earlier research 
reports on positive impact of biochar application on seedling growth (Retan 1915) 
and soil chemistry (Tryon 1948) are available. According to Lehmann (2009) and 
Schmidt et al. (2002) biochar contains higher percentage of recalcitrant organic C 
which is more stable (hundreds to thousands of years) in soil than any other com-
monly used amendments and also enhances the availability of nutrients and main-
tain soil quality beyond a fertilizer effect. Biochar can be used for environmental 
management through improving productivity, reduce pollution, climate change 
mitigation, waste management and energy production. In this section we will dis-
cuss the use of biochar in environmental management from the fact of its ability to 
soil carbon sequestration, mitigation of greenhouse gas (GHGs) emission and soil 
and water pollution.

11.2.1  �Soil Carbon Sequestration

Soil carbon sequestration is a process of long term or permanent (100 years) storage 
of CO2 from atmosphere to soil (Stockmann et al. 2013; Shin et al. 2019). Biochar 
is a carbon rich product derived from biomass burning in anaerobic environment, it 
contains high amount of recalcitrant organic carbon and least prone to chemical and 
microbial degradation and remain in soil for hundreds to thousands of years increas-
ing soil carbon storage capacity (Schmidt et al. 2002; Roberts et al. 2010; Wang 
et al. 2014a; Lehmann 2007b), can improve soil physicochemical property, fertility 
and crop productivity. Highly porous, high cation exchange capacity, larger surface 
area and adsorption ability are some significant properties of biochar (Luo et al. 
2016). As soil amendment; biochar is a good carbon sequester and is suggested as 
an effective countermeasure for increasing GHGs emission to atmosphere (Lal 
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1999; Mukherjee et  al. 2014; Deng et  al. 2017). An increase (0.4% per year in 
global scale) of agricultural soil organic carbon due to biochar addition can com-
pensate global emission of GHGs by anthropogenic sources (Minasny et al. 2017). 
Downie et al. (2011) reported significantly elevated soil carbon stocks, compared to 
the adjacent soil in a 650 and 1,609 years old historic charcoal added soil in ancient 
Australian Aboriginal oven mounds. Biochar can be implemented in global scale to 
mitigate climate change by potentially sequester up to 12% of anthropogenic GHGs 
emissions (Woolf et al. 2010) in an ecologically sustainable system. Biomass like 
straw, when converted to biochar through gasification process contain aromatic car-
bon compounds having high stability and potential for carbon sequestration than the 
original feedstock in amended soil (Hansen et al. 2015, 2016; Wiedner et al. 2013). 
Along with reduced soil organic carbon decomposition, biochar can also adsorb 
significant amount of soil- dissolved carbon (Lu et al. 2014). Hailegnaw et al. (2019) 
also reported reduction of nitrate and dissolved organic carbon in soil amended with 
wood chip biochar. In a study by Béghin-Tanneau et al. (2019) documented signifi-
cant ability of anaerobically digested exogenous organic matter (EOM) to sequester 
carbon in soil compared to undigested EOM. It was due to higher stability and nega-
tive priming effect of digested-EOM that reduced native soil organic matter (SOM) 
respiration compared to low stability and positive priming effect of undigested-
EOM that enhanced native SOM respiration. Béghin-Tanneau et  al. (2019) also 
noted a reduction of CO2 emission by 27% along with carbon sequestration com-
pared to maize silage amendment in soil. Huang et al. (2018) found reduction of 
CO2 flux from a rape-maize cropping system with increased net C sequestration 
without reducing crop yield and net primary productivity under sole biochar treat-
ment compared to straw, straw with straw decay bacterium, mixed straw and bio-
char treatment. This may be due to lower labile organic carbon (LOC), especially 
microbial biomass carbon fraction in biochar treated soil. While increase CO2 emis-
sion from crop straw added soil is because of availability of higher C substrate for 
microorganism causing lower carbon sequestration (Dendooven et  al. (2012). 
Chemical property of biochar, such as lower hydrogen to carbon (H/C) and oxygen 
to carbon (O/C) ration makes it highly stable for microbial degradation 
(Schimmelpfennig and Glaser 2012). Similarly, Hansen et  al. (2015) also found 
higher microbial degradation of straw carbon compared to straw gasification bio-
char resulting in 80% of added straw carbon respiring as CO2 compared to 3% of the 
biochar added after 110 days of incubation. This indicates the potentiality of the 
biochar in soil carbon sequestration. Although, some researcher documented nega-
tive response of biochar amendment to crop yield such as lettuce and ryegrass 
(Marks et  al. 2014). While biochar pellet blended with biochar and pig manure 
compost (4:6 ratio) application was found effective for carbon sequestration in rice 
cultivation without decreasing crop yield (Shin et  al. 2019). Thammasom et  al. 
(2016) noted an increase of soil carbon sequestration (1.87 to 13.37 tons ha−1) with 
application of wood biochar, while a reduction (0.92 to 2.56 tons ha−1) of the same 
was noted under rice straw application. Kimetu and Lehmann (2010) documented 
reduced loss of soil CO2–C by 27% under biochar application contrarily Tithionia 
diversifolia green manure increased soil CO2 C loss by 22%, while biochar also 
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increased intra aggregate C per respired C by 6.8 times relative to the Tithionia 
diversifolia green manure additions, indicating more efficient stabilisation capacity 
of biochar. Charcoal produce from sustainable system using biomass on application 
to soil can remove carbon from short term photosynthesis cycle to long term reser-
voir. Thus the energy generated through biochar production can be certified as car-
bon negative and can act as revenue source from both sale and tradable carbon 
credits by virtue of increase forest cover and reduce greenhouse gases emission 
(Mathews 2008). Pyrolysis temperature plays a crucial role on aromaticity of the 
produced biochar (Yip et al. 2010), which in turn affect the recalcitrance property in 
soil and thus the carbon sequestration potential. As an option to carbon sequestra-
tion, reduce or delay nutrient leaching like nitrate is beneficial for both environment 
and plants (Liu et al. 2017a; Ghorbani et al. 2019). Holding nutrients for long and 
improving soil aggregation, biochar application can consequently mitigate CO2 
emission (Xu et al. 2011a). Biochar production method greatly affect the carbon 
sequestration capability. In a study Santín et al. (2017) found lower carbon seques-
tration potential of wildfire charcoal produced at high temperature than the most 
slow-pyrolysed biochars. Their findings challenge the common opinion “natural 
charcoal and biochar are well suited as proxies for each other”.

11.2.2  �Greenhouse Gas Emission

Mitigation of greenhouse gas emission is an area of growing importance and con-
cern due to global warming and increasing rate of GHG emission globally. CO2, 
CH4 and N2O are three main greenhouse gases responsible for 90% of anthropo-
genic climate warming (IPCC 2013). IPCC (2013) also reported an increase of 
global average surface temperature by 0.85 °C during 1880–2012 based on multiple 
independently produce datasets and suggest an increase of 0.3–4.8 °C temperature 
by the end of this century. Environmental management through greenhouse gas 
mitigation include reduction and avoidance of emission along with removal of 
GHGs existing in the atmosphere (Smith et al. 2007a). Choosing biochar as soil 
amendment is an approach to mitigate climate change by reducing greenhouse gas 
emissions from soil. Application of biochar in soil has direct and indirect influence 
on soil physico-chemical properties, soil microbial diversity, abundance and func-
tion of soil microbial diversity that in turn affect production and emission of green-
house gas. However, the potentiality of biochar in reducing GHG emission is 
controversial. Soil GHG significantly decreased or remain unchanged in some stud-
ied (Case et al. 2014; Quin et al. 2015; Liu et al. 2016; Scheer et al. 2011) while 
increased in others (Wang et al. 2012; He et al. 2017; Song et al. 2016). Some of the 
variables that influence the GHGs emission from soil environment under biochar 
treatments are study duration, soil texture and pH, feedstock used for biochar prepa-
ration, pH of the produced biochar and application rate and vegetation (Sohi et al. 
2010; Woolf and Lehmann 2012; Hilscher and Knicker 2011; Lorenz and Lal 2014). 
Jones et al. (2011b), Luo et al. (2017) and Liang et al. (2010) documented the effect 
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of biochar application on soil bulk density, pH, water holding capacity, cation 
exchange capacity, carbon and nitrogen dynamics and plant productivity, which 
have a significant effect on soil CO2 and N2O emissions. According to He et  al. 
(2017); application of fertilizer and experimental condition influence CO2 emission; 
they noted significant increase in CO2 emission when biochar was applied in unfer-
tilized soil, while it decreased when applied in fertilized soil in laboratory condi-
tion, but did not find any significant effect of biochar in field condition. Sun et al. 
(2014) found that biochar application in the at a rate of 30 t ha−1 reduced (31.5%) 
CO2 emission from a pine forest soil. While in a field experiment in paddy soil 
amended with wheat straw biochar enhanced CO2 emissions (12%), but N2O emis-
sions was reduced (41.8%) (Zhang et al. 2012b). However, studies of Wang et al. 
(2014b), Malghani et al. (2013) and Zhou et al. (2017) revealed no significant effect 
of biochar on CO2 emission. Elevated CO2 emission was noted in a temperate forest 
soil under application of sugar maple biochar at a rate of 5, 10 and 20 t ha−1 (Mitchell 
et al. (2015). Hawthorne et al. (2017) also reported significantly greater CO2 fluxes 
from application of 10% biochar compared to 1% biochar in a Douglas-fir forest 
soil. The enhancement of CO2 emission might be the addition of labile C from bio-
char and increased belowground net primary productivity (BNPP) (Zimmerman 
et al. 2011; Yoo and Kang 2012; Mukherjee and Lal 2013). While the cause behind 
suppressed CO2 emission might be the absorption of soil CO2 molecules by the 
large biochar surfaces and reduced enzymatic activity of microbes (Case et al. 2014; 
Liang et al. 2010; Liu et al. 2009).

Widespread use of synthetic nitrogen (N) fertilizer is the primary cause of agri-
cultural soil emission of N2O (Smith et al. 2008b). Rondon et al. (2005) first reported 
reduction in N2O emissions in a greenhouse experiment after biochar amendment in 
soil. They recorded reduction of N2O emissions by 50% under soybean cropping 
and by 80% for grass growing in a low-fertile oxisol. In a meta-analysis of biochar 
effect on N2O emissions both in long and short term studies, Cayuela et al. (2015) 
found that soil N2O emissions was reduced by 54 ± 3% at lab scale and 28 ± 16% at 
the field scale. Sun et al. (2014) also noted a significant decreased of cumulative 
N2O emissions (25.5%) in a pine forest, when biochar was incorporated to the soil 
at 30 t ha−1. Bass et al. (2016) found an interaction of cropping system with biochar 
on N2O emission, they noted a decrease of N2O emission under papaya cultivation 
while no effect was noted under banana cultivation. Fidel et al. (2019) noted a sup-
pressive effect of biochar on N2O emission in a continuous corn cropping system 
while did not found any effect on CO2 emission. They also suggested that both soil 
moisture and temperature play role in CO2 and N2O emission. Contrastingly 
enhanced emission of soil N2O was recorded by Hawthorne et al. (2017) in a forest 
soil when 10% biochar was applied but did not find any significant effect under 1% 
of biochar application. Cayuela et al. (2013) also found direct correlation between 
N2O emission and biochar application rate. While in a study in temperate hardwood 
forest, no significant effect was noted for 5 t ha−1 biochar application on soil N2O 
emission (Sackett et al. 2015). The primary mechanism of reduction of soil N2O 
emission by biochar application might be the increased oxygen in soil due to soil 
aeration, which will inhibit denitrification of soil by microorganisms, that mostly 
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occurs in low oxygen condition (Bateman and Baggs 2005; Taghizadeh-Toosi et al. 
2011; Van Zwieten et al. 2010b; Hale et al. 2012). Another reason is absorption of 
inorganic nitrogen pool (NH4+, NO3− etc) by the biochar (Cornelissen et al. 2013b), 
which in turn will decrease nitrogen availability for nitrifiers and denitrifiers, reduc-
ing N2O emission (Singh et al. 2010a; Clough et al. 2013). While rises in N2O emis-
sions may be due to increased soil water content influenced by biochar addition, that 
helps denitrification, or due to release of biochar embodied-N (Lorenz and Lal 
2014). Soil pH is another important factor which is influenced due to biochar addi-
tion. An optimum rage of pH is preferable for reducing N2O emission from agricul-
tural soil because denitrifies have a wider pH optimum in the range of pH 4–8, while 
for the nitrifiers, the optimum range of pH is slightly acidic to slightly alkaline 
(Mørkved et al. 2007; Liu et al. 2010).

Biochar is also used to reduce the emission of soil methane (CH4). Chicken 
manure biochar (10%, w/w) was found to significantly increase CH4 uptake in forest 
soils (Yu et al. (2013). Xiao (2016) reported significantly higher efficiency of bio-
char in CH4 uptake regardless of the application rate in a chestnut plantation in 
china. While, Sackett et al. (2015) reported no significant difference in CH4 flux in 
biochar-treated and control soils in a temperate hardwood forest. Hawthorne et al. 
(2017) observed contrasting results, where significant reduction in soil CH4 uptake 
under biochar application (1 or 10% w/w) was noted. This increased uptake of CH4 
in soil might be due to increase soil pH under biochar addition, which in turn facili-
tate the growth of methanotrophs (Jeffery et al. 2016; Anders et al. 2013) along with 
biochar induced decrease in soil bulk density and porosity favours aerobic methano-
trophs and CH4 oxidation and uptake by soil microbes (Brassard et al. 2016; Feng 
et al. 2012; Karhu et al. 2011; Van Zwieten et al. 2009). Enhanced CH4 emission 
might be ascribed to the chemicals inhibitory effect of biochar on soil methano-
trophs (Spokas 2013). Thus, the efficacy of biochar for GHGs mitigation is largely 
uncertain due to various factors involved in the reduction and enhancement of soil 
GHG emissions.

11.2.3  �Soil and Water Pollution

Anthropogenic contaminants caused by rapid urbanization and industrialization are 
triggering degradation of water and soil quality in ecological environment. Soil and 
water are two basic needs for survival of lives. Soil serves as the main medium for 
plant growth, support human and animals, sustain plant and animal productivity, 
improve the quality of water and air (Zhou and Song 2004; Zhang et al. 2012c). Soil 
pollution can be remediated through physical, chemical and biological methods 
(Mendez and Maier 2008), but physical and chemical methods are not suitable for 
large scale management of arable soil, due to higher cost and the disadvantages of 
complexity and secondary pollution (Houben et al. 2013). Though biological reme-
diation approaches are cheap and feasible, but its efficiency on improvement of soil 
quality is not constant because of its susceptibility to environment (Arthur et  al. 
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2005) Biochar seized attention as a promising multi-beneficial remediating agent to 
stabilize soil contaminants, such as organic molecules, heavy metals, pesticides, 
herbicide etc. (Kong et  al. 2014; Cheng and Lehmann 2009; Yuan et  al. 2018; 
O’Connor et al. 2018). It acts as a soil conditioner via enhancing cation exchange 
capacity (CEC), pH and water holding capacity. Inorganic nutrients such as potas-
sium, phosphorous, calcium, silica, boron and molybdenum are added to soil, mak-
ing them bioavailable for plants as biochar is rich in inorganic nutrients derived 
from the feedstock (Page-Dumroese et al. 2015; Liu et al. 2014; Xiao et al. 2018; 
Xu et al. 2013). Cao and Harris (2010) confirm increased availability of nutrients (P, 
Mg and Ca) with increase of pyrolysis temperature. Moreover, addition of biochar 
to soil may effectively reduce eutrophication of nearby water bodies, and also 
underground waters pollution due to reduced leaching of nitrogen and phosphorus 
(Laird et al. 2010; Kookana et al. 2011). Soil contaminated with both organic and 
inorganic pollutants can be remediated with addition of biochar by reducing toxin 
bioavailability by both organic and inorganic pollutants (Ajayi and Horn 2017; Yao 
et al. 2012). Among the inorganic pollutants; heavy metals are non-biodegradable 
and persist in soil for very long (Sun et al. 2008). Thus lowering bioavailability of 
heavy metal is crucial to remediate contaminated soil. Biochar have negatively 
charged surfaces and functional groups that can strongly attract (electrostatic 
adsorption, ion exchange) metal ions having small ionic radii and high charges, or 
can stabilized metal via complexation or precipitation due to high soil pH intro-
duced by biochar (Kong et al. 2014; Kumar et al. 2018; Mukherjee et al. 2011; Lu 
et al. 2012; Li et al. 2017). Biochar can transfer soluble metals forms to insoluble 
one by binding it to organic matter, oxides, carbonates and can fixed in soil (Xiao 
et al. 2018). It can also stabilize heavy metals through reduction. Choppala et al. 
(2015) reported efficiency of chicken manure biochar and black carbon for reducing 
Cr(VI) (extremely toxic and highly mobile) to Cr(III) (generally nontoxic) and sub-
sequent immobilization in soils. Pyrolysis temperature of biochar plays an impor-
tant role in removal efficiency of metal by biochar. Wang et  al. (2018) reported 
better removal efficiency of higher temperature pyrolyzed biochar for Hg than bio-
char pyrolized at lower temperature. Contrastingly, Cao et al. (2009) reported dairy 
manure biochar pyrolyzed at 200 °C have better potential to remove Pb from soil 
than the same biochar pyrolyzed at 350 °C. Skjemstad et al. (2002) and Cheng et al. 
(2006) documented effectiveness of bamboo biochar to adsorb Cu, Ni, Hg and Cr 
from both water and soil, and Cd only in contaminated soil. While cotton stalk bio-
char can reduce Cd bioavailability in polluted soil through adsorption or co-
precipitation (Zhou et al. (2008). Salt affected soil can also be remediated to a larger 
extend with addition of biochar, that reduce salt stress and enhanced plant growth 
and improve soil nutrients which in turn will counteract the adverse effect of Na 
(Kim et al. 2016; Wakeel 2013). Cao et al. (2011) and Jones et al. (2011a) reported 
reduction (66–97%) of pesticides such as atrazine, simazine, carbaryl and ethion, 
when biochar was applied to soil. Zhelezova et al. (2017) reported absorption of two 
herbicides, glyphosate (N-(phosphonomethyl)-glycine) and diuron 
(3-(3,4-dichlorophenyl)-1,1-dimethylurea) by biochar. They also noted a decrease 
of adsorption by aged biochar comparison with freshly prepared biochar. Similarly, 
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Martin et al. (2012) also found reduction (47%) of sorption by aged biochars for 
herbicide diuron. However, Trigo et al. (2014) found that, in some cases, biochar 
could serve for at least 2 years as effective sorbent of herbicides (indaziflam and 
fluoroethyldiaminotriazin). Polycyclic aromatic hydrocarbons (PAHs) and poly-
chlorinated biphenyls (PCBs) in water and soils can also be removed by incorpora-
tion of biochar (Wang et  al. 2013a; Beesley et  al. 2010). Apart from persistent 
organic pollutant (POPs) such as PAHs, PCBs, PCDD (polychlorinated dibenzo-p-
dioxins) and DFs (dibenzofurans), some emerging organic pollutants such as phthal-
ate acid esters (dibutyl phthalate and di(2-ethylhexyl) phthalate), pharmaceutical 
and personal care products (PPCPs, trimethoprim and triclosan), naturally released 
estrogenic steroid hormone and its metabolites (estradiol and estrone) are becoming 
threat to the soil quality (WHO 2010; Petrović et al. 2001).

Biochar has been reported to be very effective in the uptake of a variety of organic 
chemicals including fungicides, pesticides, PAHs, and emerging contaminants such 
as steroid hormones (Beesley et al. 2010; Kookana et al. 2011; Song et al. 2012; 
Sarmah et al. 2010). Qin et al. (2013) also found significantly higher removal effi-
ciency of contaminants with rice straw biochar on petroleum-contaminated soil than 
that of the unrestored soils. Molecular diameter of contaminants determines the 
strength of biochar sorption. Small molecules can penetrate to the micro and meso-
pores of biochar, while larger molecules tend to adsorb on the biochar surface, that 
may block pores (Nguyen et al. 2007).

Thus, biochar can improve the physicochemical properties of degraded land and 
immobilize both organic and inorganic pollutants, based on feedstocks, production 
methods, application rates, soil types and age of biochars (Obia et al. 2016). Despite 
the immense benefits of biochar, it can also be harmful if it contains PAHs, chlori-
nated hydrocarbon, dioxin and heavy metals derived from carbonization tempera-
ture and feedstock chosen (Chagger et  al. 1998; Brown et  al. 2006; Singh et  al. 
2010b). Therefore, to remediate polluted soil by applying biochar emphasis should 
be given in selection of proper feedstock and pyrolysis condition.

Removal of contaminants from water is most commonly done by chemical pre-
cipitation employing hydroxide, sulfide, phosphate and carbonate (Sharma and 
Bhattacharya 2017). But it creates problem when the sludge produced during chem-
ical precipitation need to dispose. Biochar is a low cost sorbent for contaminants 
and pathogens, can absorb hydrocarbons, dyes, phenolics, pesticides, PAHs, antibi-
otics, inorganic metal ions. Potentiality of biochar as water purifier has been studied 
by many researchers (Klasson et al. 2013; Tong et al. 2011). Biochars obtained from 
straw and bamboo were reported to remove dyes from wastewater (Xu et al. 2011b; 
Yang et al. 2014), that were stable to light, oxidizing agents and aerobic digestion 
during conventional waste treatment. Xu et al. 2011b also documented efficiency of 
biochar derived from canola straw, peanut straw, soybean straw, and rice hulls to 
remove methyl violet from water.
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11.3  �Factors Influencing the Efficacy of Biochar

A range of process conditions like the feedstock composition, temperature and heat-
ing rate during pyrolysis can be optimized to obtain diverse amounts and properties 
of biochars. The physiochemical properties of biochars contribute to their function 
as a tool for environmental management (Lehmann and Joseph 2009).

Feedstock materials and temperature duringpyrolysis mostly influence the nutri-
ent content in biochar. Screening Electron Micrograph (SEM) images of biochar 
material shows its resemblance with the composition of feedstock materials. Loss of 
nutrient during production is affected by the pyrolytic temperature. The concentra-
tion of nutrients like nitrogen reduces with increasing rate of pyrolytic temperature 
while, the availability of phosphorus increases. This nutrient content finally affects 
pH and electrical conductivity of the produced bichar (Chan and Xu 2009; Singh 
et al. 2010b). Maximum biochar yield obtained from low operational temperatures 
and low heating rate (Kwapinski et al. 2010). With increasing operational tempera-
ture, biochar yield decreases but the concentration of carbon increases. Biochar 
produced at high temperature have a high surface and also highly aromatic in nature 
that results it chemically recalcitrant (Keiluweit et  al. 2010; Chen et  al. 2011). 
Therefore, biochar produced at low temperature are considered to be more reactive 
in soil which have a less condensed carbon structure contributing soil fertility (Singh 
and Cowie 2008; Steinbeiss et al. 2009).

Higher reactivity of the biochar surfaces with soil particles is partly attributed to 
the presence of a range of reactive functional groups. Surface area of biochar 
increases with increasing HTT (High Heating Temperature) until it reaches the tem-
perature at which deformation occurs, resulting subsequent decrease in surface area. 
The fundamental physical changes that occur in biochar are all temperature depen-
dent. Heating rate and pressure affect the physical mass transfer of volatiles evolv-
ing at the given temperature from the reacting particles. Lua et al. (2004) reported 
that with increasing pyrolytic temperature from 250 °C to 500 °C, the Brunauer–
Emmett–Teller (BET) surface area of biochar also found to increase.

11.4  �Constrains of Biochar Application

Research related to biochar and its application has developed with time and impor-
tant key findings were found related to agriculture, forestry, and global environ-
ment. More research in this field is required as the benefits vary from soil to soil and 
various other parameters like feedstocks, production of biochar, etc. Vaccari et al. 
(2015) reported that the effect of biochar on agricultural productivity also depended 
on plant species. Therefore, a synergetic effort is required to understand the limita-
tions in biochar applications and the problems related to its applications. In a study 
carried out by Anyanwu et al. (2018), it was reported that aged biochar has a nega-
tive effect on the growth of both earthwarm and fungi in soil ecosystem. Studies 
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also found that the aged biochar also led to reduction in underground root biomass 
of Oryza sativa and Solanum lycopersicum. Biochars also found to reduce the soil 
thermal diffusivity. In addition, an increase in weed growth was found with higher 
rate of biochar application. Khorram et al. (2018) found 200% increase in weed 
growth with an application rate of 15 t ha−1 of biochar. A delay in flowering of plant 
was also reported in some studies with addition of biochar.

In some cases, biochar also act as a soil contaminant due to the presence of some 
chemical compounds that may be form during the conversion processes. Studies are 
needed to see the presence of heavy metals and the plant-available organic com-
pounds on the biochar surface. According to some researchers, these compounds 
may act as a fungicide or bactericide on the other hand; some others reported that 
they can serve as carbon source for some microbes (Painter 2001; Ogawa 1994). 
Also to understand the long term effect of biochar, a long term field study should be 
done on different soil types using biochars. Lack of long term studies on biochar 
application limits the actual scenario where various natural parameters are active. 
Moreover, the cost related to the feedstock preparation, biochar production, trans-
portation and application is full of uncertainties that need to be clear.

There is also lack of a uniform system for the classification and governance 
regarding the commercialization of biochars for land and other applications. This 
will be helpful to the consumers in using biochar for various applications. The envi-
ronmental agencies of different locations can play an active role regarding this 
issue. No standard biochar rate for application is available for specific type of soil 
regarding specific result. There is also lack of a decision support system for choos-
ing a particular type and rate of biochar to fulfill a particular need. Mechanisms 
related to biochar-soil interaction are very complex and multiples assumptions have 
been made. In recent years, biochar is attracting a huge attention in the research 
field. The research outcome should be updated and make available for the benefit of 
people to apply on practical field.

11.5  �Nano-biochar and Its Prospects

Biochar is gaining a huge attention in recent time from scientists, policymakers, 
farmers, and investors due to its properties that directly or indirectly helps human-
kind. Bulk biochar mostly applied for agronomic and environmental purposes. 
Recent studies found that generation of nano biochar (N-BC) from the physical 
degradation of bulk biochar (B-BC). Nano biochar is characterized by having a size 
smaller than 100 nm than the bulk biochar (Wang et al. 2013b; Chen et al. 2017). 
Due to its size, nano biochar have an excellent mobility both in soils and water and 
can act as a carrier particle for natural solutes and contaminants (Ahmad et al. 2014; 
Lian and Xing 2017). With increasing the application of biochar in soil, the degree 
of formation of nano biochar will increase. However, the knowledge on the forma-
tion of nano biochar particle is much limited. Some mechanisms that results in the 
formation of nano biochar are pore collapse and matrix fracturing during production 
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of biochar and also weathering process in the environment. The carbon matrixes 
that can be easily fragmentized are readily mineralized through various chemical 
and microbial processes (Lin et al. 2012; Warnock et al. 2007). Degradation and 
conversion of nano biochar from the bulk biochar can be against longevity of bio-
char within soil systems. Due to its size particle and mobility, the toxic effects of 
nano biochar is considered more than the bulk biochar (Wang et al. 2016). Exposure 
of nano biochar may also trigger risks to organisms in waters and soils. It is consid-
ered that hetero aggregation formation can prevent the vertical transport of these 
nano biochar in soil ecosystem and therefore weaken its negative effect.
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