
Condensed Graphs: A Generic
Framework for Accelerating Subgraph

Census Computation

Miguel Martins and Pedro Ribeiro(B)

CRACS & INESC-TEC DCC-FCUP, Universidade do Porto, Porto, Portugal
mlmartins@fc.up.pt, pribeiro@dcc.fc.up.pt

Abstract. Determining subgraph frequencies is at the core of several
graph mining methodologies such as discovering network motifs or com-
puting graphlet degree distributions. Current state-of-the-art algorithms
for this task either take advantage of common patterns emerging on the
networks or target a set of specific subgraphs for which analytical calcu-
lations are feasible. Here, we propose a novel network generic framework
revolving around a new data-structure, a Condensed Graph, that com-
bines both the aforementioned approaches, but generalized to support
any subgraph topology and size. Furthermore, our methodology can use
as a baseline any enumeration based census algorithm, speeding up its
computation. We target simple topologies that allow us to skip several
redundant and heavy computational steps using combinatorics. We were
are able to achieve substantial improvements, with evidence of exponen-
tial speedup for our best cases, where these patterns represent up to 97%
of the network, from a broad set of real and synthetic networks.

Keywords: Subgraph frequency · Subgraph census · Condensed graph

1 Introduction

Many complex real world problems can be modelled with networks, from which
we need to extract information. Several graph mining methodologies rely on
understanding the importance of subgraphs as a very rich topological charac-
terization. Two broadly known examples are network motifs [12] and graphlet
degree distributions [15]. At the core of these approaches lies the subgraph cen-
sus problem, that is, computing the frequencies of a set of subgraphs. However,
this is a fundamentally hard computational task that is related so the subgraph
isomorphism problem, which is NP-complete [3].

Current algorithms for counting subgraphs typically rely on one of two dif-
ferent conceptual approaches. Several algorithms, such as G-tries [17], QuateX-
elero [9] or FaSE [13], are based on a subgraph enumeration phase intertwined
with isomorphic testing to discover the topological class of each enumerated
subgraph occurrence. These algorithms are very general and take advantage of
c© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2020
H. Barbosa et al. (Eds.): Complex Networks XI, SPCOM, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-40943-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40943-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-40943-2_1

4 M. Martins and P. Ribeiro

common topologies to speedup the isomorphism computation. Other methods
such as ORCA [6] or Escape [14] do not depend on fully enumerating all sub-
graph occurrences, but at the same time are geared towards more specific and
less general sets of subgraphs, taking advantage of some of their analytical prop-
erties.

In this paper we propose an hybrid methodology that draws inspiration
from both the enumeration and analytical approaches, that we called the
Condensation-Decondensation Framework (CFW). The core motivation is to
take advantage of combinatorial effects that create substantial speedups while
at the same time being able to keep the general applicability of enumeration
based algorithms, not constraining the subgraphs or networks being analyzed.
For this we also introduce a new generic data structure, Condensed Graphs,
that compresses subgraphs in a lossless way, capturing multiple occurrences of
the same subtopology. More specifically, and as a proof of concept, we con-
dense star-like peripheral structures, that commonly emerge in real networks.
Our framework encapsulates existing enumeration based methods, speeding up
their computation by taking advantage of operations enabled through the use of
Condensed Graphs. Here we show how it could be coupled with both ESU [19]
and FaSE [13] algorithms, but in principle it could be applicable with other
enumeration methodologies.

With all of this in place, we achieved very promising results on representative
sets of real world and synthetic networks, showcasing the applicability of our
methodology. In terms of compression, we depend on the existence of star-like
peripheries. Here we show that these are very common on real world networks,
and we are able to reach up to 97% of compression. Regarding speedup, our
experiments show that the gains can be substantial and that when the networks
exhibit this kind of topology we are able to achieve exponential gains. We also try
to quantify the desired structural properties that make networks more amenable
to our proposed approach.

2 Backgroud

2.1 Notation

A graph G = (V,E) is comprised by a set of edges E(G) connecting vertices
V (G). A k-graph is a graph with k vertices. In this paper we will only address
simple undirected graphs, with at most a single edge connecting the same pair
of vertices. Our data structure could however straightforwardly be extended to
support directed graphs, multigraphs or even more complicated graph represen-
tations.

For two graphs G and S such that V (S) ⊆ V (G), then it is said that S is a
subgraph of G. Moreover, if ∀u, v ∈ V (S) : (u, v) ∈ E(G) ⇐⇒ (u, v) ∈ E(S),
then S is an induced subgraph of G. Two graphs, G and G′, are said to be
isomorphic if and only if there is a bijection f : V (G) −→ V (G′), such that
(u, v) ∈ E(G) ⇐⇒ (f(u), f(v)) ∈ E(G′). An automorphism is an isomorphism

Condensed Graphs 5

from a graph on to itself, and the automorphisms of a graph G form a group
called Aut(G). Consider a vertex u ∈ V (G), then the automorphism orbit of u is:

Orb(u) = {v ∈ V (G)|v = g(u), g ∈ Aut(G)} (1)

Simply put, if u and v are in the same orbit, they are topologically equivalent,
which means one could swap their labels without altering the graph topology.

2.2 Problem Definition

In this paper we tackle the following computational problem:

Definition 1 (Subgraph Census Problem). Given some positive integer k
and a graph G, count the exact number of distinct occurrences of each of all
possible connected induced k-subgraphs of G. Two occurences are distinct if there
is at least one vertex that they do not share.

2.3 Related Work

Subgraph census computation has been studied for more then 15 years. In 2002
Milo et al. [12] coined the term network motifs as frequent overrepresented
induced subgraph patterns and offered the mfinder subgraph enumeration algo-
rithm as a first practical approach for computing subgraph frequencies. The first
major breakthrough was introduced by Wernicke [19] with the ESU algorithm,
which avoided graph symmetries and enumerated each subgraph only once. Iso-
morphism tests for each discovered subgraph occurrence are made trough the
third party package nauty [11], a highly efficient isomorphism algorithm. In
order to reduce the number of needed isomorphism tests, approaches such as
QuateXelero [9] or FaSE [13] encapsulate the topology of the current subgraph
match, grouping several occurrences as belonging to the same isomorphic class.
If we know beforehand the set of subgraphs that we are interested on (which can
possibly be smaller than the entire set of all possible k-subgraphs), the g-tries
data structure [17] could be used, allowing for further improvements.

All the aforementioned approaches are general (i.e, are applicable to any
subgraph size and also allow direction) and rely on doing a full subgraph enu-
meration. However, for more specific sets of subgraphs there has been an increas-
ing number of more analytical algorithms that take into account the subgraphs
topology and its combinatorial effects. For example, ORCA [6], which counts orbits
and not directly subgraph occurrences, can tackle up to size 5 undirected sub-
graphs and relies on a derived set of linear equations that relate the orbit counts.
This was also generalized for other small undirected orbits [7]. PGD [1] (up to size
4) and Escape [14] (size 5) are other examples of state-of-the-art analytical algo-
rithms specialized on counting undirected subgraphs.

Our approach differs from these two conceptual approaches, as it tries to com-
bine the general applicability of the enumeration algorithms with combinatorial
improvements. However, instead on focusing on the topology of the subgraphs

6 M. Martins and P. Ribeiro

we are looking for, we focus on how to compress the network we are analyzing,
targeting specific substructures than can be resumed as a combinatorial object.

All the aforementioned algorithms perform exact computations, but it should
be said that there are also methodologies that can trade accuracy for speed, pro-
viding approximate results. Furthermore, some algorithms exploit parallelism.
For the purposes of this paper we pursue exact sequential census computation,
as to improve the baseline algorithm, but our approach could be further extended
on the future towards other directions. For a more detailed survey of the state
of the art on subgraph counting we refer the reader to [16].

3 A Novel Framework for Subgraph Census

3.1 Peripheral Stars

Our methodology revolves around peripheral areas of a network, which are topo-
logically self contained. This allow us to perform combinatorial calculations to
quickly identify a larger number of occurrences of the same subgraph topology,
avoiding the need to explicitly pass trough each single occurrence. As an initial
proof of concept, here we will focus on star subgraphs on undirected networks,
but we envision many other potential extensions to more complex peripheries.

Definition 2 (Peripheral Star Subgraphs). An induced subgraph S of a
graph G is said to be a peripheral star of size m if it is comprised by m
vertices of degree one, called the peripheral vertices, that are connected only
to the same vertex s, called the seed vertex.

The terms peripheral star and star will henceforth be used interchangeably.
An induced star within a peripheral star will be called a substar. Furthermore,
we will use P (G) to denote the set of all peripheral vertices on a graph G.

A peripheral star only has two orbits: the seed vertex orbit, and the peripheral
orbit, This simple topology lies at the core of our speedup. Suppose you have a
star of size m. Then, for all i ∈ [1,m], we know that the number of i-substars is
precisely Cm

i =
(
m
i

)
, all of them with the exact same isomorphic class. A visual

example is given in Fig. 1.

Fig. 1. (Left) A graph containing a peripheral star (seed vertex: gray, peripheral ver-
tices yellow, regular vertices: white). (Middle) All possible 2-substars (Right) The cor-
responding isomorphic class (the same for all subgraphs in the middle)

As the size m of the star, and the size k of the subgraph increase, the number
of combinations

(
m
i

)
increases exponentially, a property that we will exploit.

Condensed Graphs 7

3.2 Condensed Graphs

The first step on our methodology is to compress the original graph, such that all
peripheral star subgraphs are discovered and reduced to identifying its size. This
process is exemplified in Fig. 2. Let SQu be the number of peripheral vertices
connected to a vertex u (which correspond to the numbers inside parenthesis in
the figure). Condensing a graph can be thought as the process of eliminating all
peripheral vertices and adding extra information to all other nodes in the form
of SQu for all vertices u of the condensed graph.

Fig. 2. (Left) A graph. (Right) the resulting Condensed Graph (seed vertices in gray).

We can trivially condense any graph in O(|V |+|E|) time by iterating through
all vertices, reassigning labels to non-peripheral vertices based on the order they
were visited. This is in fact a lossless compression scheme, since we still maintain
all the original topological properties and we can easily decompress back to a
graph isomorphic to the original one in time O(|V | + |E|), an operation we
describe as decondensation.

3.3 Taking Advantage of Condensation

Classical enumeration algorithms try to explicitly traverse all subgraph occur-
rences, effectively increasing the frequency by one each time. The key point of
our work is precisely to account for multiple occurrences at the same time, tak-
ing advantage of the combinatorial effects of self contained peripheries, avoiding
the costly explicit traversal of all topologically equivalent substars.

Our framework is general and can be applied to any enumeration algorithm
that builds subgraphs by adding one vertex at a time. Consider that we are per-
forming a k-subgraph census and that we already have a partially enumerated
vertex set Vsubgraph of size d < k, that we want to extend up to size k. When
we add a seed vertex, we can consider all the possible substars that this new
vertex may induce. Figure 3 exemplifies this concept. Condensed graphs’ prop-
erties allow to proceed with the extension and simultaneously tracking multiple
occurrences.

With all of these concepts in place, we are now ready to explain our
Condensation-Decondensation Framework (CFW), that is able to improve
an existing baseline subgraph census algorithm. An overview of our approach is
given in Algorithm 1, which describes, in a k-census of graph G, how to extend
any partially enumerated set of nodes Vsubgraph, whose current frequency is given
by curfrequency.

8 M. Martins and P. Ribeiro

Fig. 3. Extending a condensed graph to subgraphs up to size 6.

Algorithm 1 Condensation-Decondensation Framework
1: procedure extend subgraph(G, k, Vsubgraph, curfrequency)
2: if |Vsubgraph| = k then
3: Frequency[Vsubgraph] += curfrequency

4: else
5: for all vertex u extending Vsubgraph do � Using baseline enumeration algorithm

6: for all i ∈ {0 . . .min(k − |Vsubgraph| − 1, SQu)} do
7: Vextended Vsubgraph ∪ {u} ∪ {i peripheral nodes attached to u}
8: extend subgraph(G, k, Vextended, curfrequency × SQu

i

To start the process, we should start by calling extend subgraph(G, k, u, 1)
for all nodes u ∈ V (G), that is, we try to create a subgraph starting from every
node. Now, for each node we add (line 5), we take into account all possible sub-
stars that extend up to size k (lines 6 and 7), and we are able to directly identify
how many isomorphic occurrences of that particular substar can be obtained (line
8), as previously explained. Notice how we multiply by the current frequency,
which allows to consider subgraphs that incorporate multiple substars from dif-
ferent seed vertices. The process stops when we reach the desired subgraph size
(line 2), when we can safely increment the frequency by a value reflecting how
many multiple isomorphic occurrences we are considering (line 3), as opposed to
simply incrementing by one in the baseline enumeration algorithm.

3.4 Baseline Enumeration Algorithms

For the purposes of this paper we will be adapting two well known subgraph
counting algorithms that fit into our framework: they explicitly enumerate all
occurrences and they work by extending subgraphs one vertex at a time. Given
the space constraints of this paper, we will only give a very high level description
of the two algorithms, and we refer the reader to the respective original papers
for more in-depth detail.

The first of these algorithms is ESU [19], which uses carefully chosen restric-
tions on the way it extends subgraphs, to guarantee that each set of k connected
nodes is only enumerated once. Each of these occurrences is then run trough
nauty [11], a very efficient third-party isomorphism algorithm, so that we iden-
tify the topological class for which we need to increment the frequency.

Condensed Graphs 9

The second algorithm we adapted was FaSE [13], which improves the previous
approach by avoiding the need of doing one isomorphic test per occurrence. In
order to do that, while still using the same baseline enumeration procedure as
ESU, it uses the G-Trie data structure [17], which can be briefly described as
a trie of graphs. In this way, node sets that induce the exact same adjacency
matrix will give origin to the same path in the g-trie, allowing us to group
many occurrences as belonging to the same topological class. Due to naturally
occurring symmetries in the subgraphs, several different paths on the g-trie may
still correspond to the same topology, and we still need to identify this. However,
we only need one isomorphism test per group of occurrences (a path in the g-
trie), which allows for a substantial speedup when compared to the classical ESU
algorithm.

4 Experimental Results

Our main goal is to compare the baseline algorithms ESU and FaSE, to the adap-
tations using our framework, respectively called Co-ESU and Co-FaSE. All exper-
iments were done on a machine with a 2.4 GHz Intel i5 CPU, 8 GB 1600 MHz
DDR3 RAM running macOS High Sierra 10.13.6. All algorithms were imple-
mented in C++ using clang-902 as the compiler.

4.1 Real World Networks

We will first test the algorithms on a broad set of real networks from different
backgrounds, which are described in Table 1. For the purposes of this paper we
ignored both weights and direction. Thus, we transformed econpoli (directed)
to an undirected network and ignored the weights in rtobama.

Table 1. The set of used real networks, in decreasing order of compression ratio (CR).

Name Type Description |V G)| |E(G)| |P (G)| CR µstar maxstar Source

facebook Social Friendships 2888 2981 2790 97% 279.0 756 [18]

rtobama Social Retweets 9631 9772 9104 93% 69.2 7413 [18]

reality Social Phone calls 6809 7680 6284 92% 77.6 233 [18]

mvcortex Brain Fiber tracts 194 214 160 82% 14.6 23 [18]

econpoli Economic Transactions 15575 17468 12187 74% 10.7 490 [18]

genefusion Biological Gene Interact 291 279 203 56% 3.3 29 [10]

gridworm Biological Gene Interact 3518 6531 1887 45% 6.6 323 [18]

For each network, the previous table reports the number of nodes (|V (G)|)
and edges (|E(G)|), as well as the number of peripheral nodes (|P (G)|). To
indicate the potential for speedups using our framework, we give an idea
of much we are compressing the graph in the form of a compression ratio

10 M. Martins and P. Ribeiro

CR = |P (G)\P1(G)|
|V (G)| , where P1(G) are stars of size 1, which we disregard given that

they are not combinatorially exploitable. Furthermore, we report the average size
of stars larger than size 1 (μstar) and the size of the largest star (maxstar).

Table 2 summarizes the experiments done with real networks, reporting the
execution time (in seconds) of all algorithms, as well as the speedup of our adap-
tations when compared with the respective baseline algorithm. In each network,
we show the results obtained for different subgraph sizes k.

Table 2. Speedup of our adaptations vs baseline algorithms on real networks.

Network k k-census execution time (s) Speedup k-census execution time (s) Speedup

ESU Co-ESU FaSE Co-FaSE

facebook 3 0.23 0.01 23.3x 0.04 0.01 3.8x

4 44.91 0.07 641.6x 4.72 0.01 471.5x

5 9720.98 1.08 9000.91x 1006.70 0.05 20133.9x

6 >5 h 13.11 N/A >5 h 0.31 N/A

rtobama 3 19.96 0.19 105.07x 2.058 0.1 20.6x

4 >5 h 2.98 N/A 8439.36 0.23 36692.9x

5 >5 h 254.79 N/A >5 h 7.62 N/A

reality 3 0.14 0.09 1.54x 0.02 0.05 0.39x

4 7.60 0.58 13.09x 1.00 0.09 11.11x

5 451.61 10.08 44.80x 43.72 0.53 82.5x

6 >5 h 244.19 N/A 2307.81 12.48 184.9x

mvcortex 7 1.69 0.1 16.94x 0.50 0.01 49.6x

8 16.63 0.79 21.06x 6.96 0.05 139.2x

9 120.36 3.67 32.79x 65.80 0.22 299.1x

10 933.74 18.27 51.11x 662.87 0.83 798.6x

11 6340.48 51.91 122.14x 4067.36 3.47 1172.2x

econpoli 3 0.07 0.47 0.16x 0.04 0.34 0.1x

4 2.62 3.2 0.82x 2.23 0.53 4.2x

5 165.15 66.58 2.48x 130.04 2.61 49.8x

genefusion 8 2.67 0.45 5.92x 1.19 0.04 29.7x

9 21.45 1.93 11.11x 6.85 0.16 42.8x

10 81.85 7.72 10.60x 38.60 0.67 57.6x

11 209.43 29.18 7.18x 211.60 1.73 122.3x

gridworm 4 28.63 7.51 3.81x 1.25 0.38 3.3x

5 5307.49 391.71 13.55x 125.64 16.94 7.4x

6 >5 h >5 h N/A >5 h 16726.42 N/A

The first major insight is that our adaptations are always quicker than their
original counterparts for all non-trivial cases (>1 s), confirming we are indeed
improving the baseline algorithms. Furthermore, our speedup tends to increase
superlinearly with the size k in both algorithms, with more gains on the cases
where the computation time is already higher. This is due to the fact that
larger subgraphs will naturally correspond to an (exponentially) larger num-
ber of occurrences that we can combinatorially exploit. We also note that our

Condensed Graphs 11

speedup is typically higher with FaSE, which is already substantially faster than
the ESU algorithm. We suspect this might be caused due to synergies between
our condensation-decondensation operation and the way FaSE operates, which
might result in smaller g-tries and less isomorphic tests needed.

For the two top performing networks facebook and rtobama, we focus on
FaSE and Co-FaSE, since ESU did not perform fast enough in our time constraints
to draw significant conclusions. Although facebook has higher CR, both show
evidence of exponential speedup. However, in rtobama speedup seems to grow
faster, reaching 4 orders of magnitude for k = 2 while facebook only matches
this results for k = 3. Going into further detail, even the precise values of speedup
favor rtobama, (36692.87x versus 20133.9x). Note that the maxstar in facebook
is 756, while in rtobama is 7413, accounting for ≈26% and ≈77% of the total net-
works’ sizes respectively. Moreover,

(
n
k

)
scales exponentially with n with regards

to k. Although μstar is higher for facebook the difference in size of maxstar

completely overshadows the impact of the former metric.
The next pair of networks analysed reality and mvcortex, that have a CR

disparity of 10% between them. Regarding the former, in both comparisons,
speedup seems to increase in a linear fashion, with 1 order of magnitude of
speedup improvement measured for Co-ESU for k = 5, and 2 orders for Co-FaSE
for k = 4. Addressing the latter network, speedup in both cases grows in a linear
fashion with k, but in different orders of magnitude. In the case of Co-ESU, we
measured up to 2 order of magnitude. In Co-FaSE, the results are more dramatic,
reaching 3 orders of magnitude. We suspect that, mvcortex showed considerably
better results than reality, even with less CR, because we were able to measure
values of k that were closer to the optimum value of

(
maxstar

k

)
and by extension,

took full advantage for smaller stars.
Focusing on econpoli and genefusion they differ 18% in CR. For the former

network, due to the size discrepancy among them and our hardware and time
limitations, this led to a smaller number of observations. The consequences in
speedup remain very similar for both adaptations, with a spike for k = 7, that we
once attribute to the order of growth of maxima of

(
n
k

)
. Addressing genefusion,

we were able to draw measure performance up to k = 11. Keep in mind that
argmaxk

(
maxstar

k

)
= 15 and, as theory predicts concerning Co-FaSE, speedup

grows linearly steady up to k = 10, but for k = 11 it almost doubles, since it is
a point of ramp-up for the gradient of

(
n
k

)
. Surprisingly, this was not observed

for ESU, and we do not yet have any credible theory regarding this phenomenon.
Finally, our last and worst performing network, gridworm, that has 11%

less condensation ratio than genefusion. Its maxstar accounts for ≈11% of the
overall network. However, due to its size and complexity, we were only been
able to measure speedup for a small range of k. Surprisingly, it is one of the
few examples (along with econpoli, but much more drastic), that benefits ESU
the most which is improved by one order of magnitude k = 5. For the same k,
Co-FaSE follows behind closely measuring 7.4x speedup.

12 M. Martins and P. Ribeiro

4.2 Synthetic Networks

To gain more insight into the specific properties that benefit our approach, we
follow the same experimentation workflow, but for synthetic networks, generated
using the NetworkX package [5]. We considered the following network models:

Barabási-Albert [2]. This model generates scale-free networks, who emerge in
a plethora of phenomena in the real world, using preferential attachment as its
connection mechanism. We will refer to it as BA(n,m), with n being the number
of nodes and m the number of initial edges on each newly added vertex.

Holmes-Kim [8]. This model extends the BA model to produce networks with
an higher clustering coefficient: after an edge is created between the newly added
vertex v and another vertex w, a random neighbour of w is selected and an edge
between it and v is created with probability p, thus forming a triangle between
these three vertices. The alias for this model will be HK(n,m, p).

Random Power-Law Trees [4]. This model generates trees with a power
law degree distribution. The model is too intricate to summarize, but essen-
tially NetworkX’s implementation takes three parameters, n the size of graph,
γ the exponent of the power-law and tries, the number of tries necessary
to ensure the degree sequence forms a tree. The alias for this model will be
PLTrees(n, γ, tries).

To make comparisons fair, we generated all networks with 1000 vertices.
Table 3 gives an overview of the used synthetic networks, including the model
parameters and the topological characteristics of the generated networks.

Table 3. The set of used synthetic networks generated using NetworkX package.

Model |V G)| |E(G)| |P (G)| CR µstar maxstar

BA(1000, 1) 1000 999 686 53% 4.27 49

HK(1000, 1, 0.9) 1000 999 677 53% 4.05 44

PLTrees(1000, 3, 100000) 1000 1052 526 45% 3.17 54

We purposefully chose an high p parameter in HK, to see how well our frame-
work would work on a scale-free network with high average clustering coefficient.
Note that for both BA and HK the m parameter is 1, since its a necessary condi-
tion for emergence of peripheries. Regarding PLTrees, the γ is set to 3 by default
to result in a scale-free network.

To avoid visual clutter, we will not include the model parameters in Table 4,
and they will be referred simply by BF, HK and PLTrees

Concerning BA, FaSE clearly benefits from our framework, showing evidence
of superlinear speedup, up to 2 orders of magnitude of improval. In the case of
ESU, a slight increase from k = 5 up to k = 7 was measured. In k = 8 the trend
shifts in the opposite direction. We suspect that, for larger values of k, a similar

Condensed Graphs 13

Table 4. Speedup of our adaptations vs baseline algorithms on synthetic networks.

Network k k-census execution time (s) Speedup k-census execution time (s) Speedup

ESU Co-ESU FaSE Co-FaSE

BA 5 2.14 0.36 5.96x 0.17 0.03 5.6x

6 53.68 5.98 8.98x 3.6 0.21 17.2x

7 1084.62 120.31 9.02x 118.87 2.88 41.3x

8 11756.72 1607.72 7.31x 4621.29 31.03 150.0x

HK 5 3.47 0.39 8.91x 0.28 0.02 14.2x

6 44.86 7.76 5.78x 44.86 0.23 195.0x

7 1027.72 232.21 4.43x 106.52 2.86 37.2x

8 8413.58 2821.62 2.98x 2406.00 42.5 56.6x

PLTrees 6 3.25 0.02 162.70x 0.20 <0.01 N/A

7 29.85 0.05 596.98x 2.40 0.01 240.4x

8 264.26 0.16 1651.63x 19.90 0.02 995.2x

9 1569.30 0.51 3077.07x 213.22 0.05 4264.5x

10 11843.88 2.4 4934.95x 2666.02 0.25 10664.1x

pattern would occur, with an average of 1 order of magnitude of improvement
with slight shifts in the trend of speedup. Note that has k → (maxstar

2
 = 500
)

the results can change drastically.
Addressing HK, the measurements are relatively similar to the ones observed

in BA. Once again, FaSE benefits the most from our implementation. In this
case, the trend does not appear to be strictly monotone. We suspect it will
vary between 1 and 2 orders of magnitude of speedup as k grows, and then an
upwards shift improvement when the gradient ramps up as k approaches 500.
Unfortunately, we are limited once again by our hardware and time constraints
to make an concrete comparison.

PLTrees display our best results on synthetic data. ESU shows evidence of
a non-linear relationship regarding speedup, reaching 3 orders of magnitude of
improvement. Although speedup seems to grow more slowly, between k = 6
and 8. Concerning FaSe, it is once again favoured, and shows evidence of super-
linear speedup, reaching 4 orders of magnitude of performance improvement.

5 Conclusion

The goal of this paper was to build a generic framework adaptable to current
subgraph census algorithms, from which we selected and effectively adapted ESU
and FaSE. We have experimentally shown that our adaptations are significantly
faster for a diverse set of networks extracted from different contexts. The frame-
work enhanced significantly both algorithms on our experiment, up to 4 orders
of magnitude speedup for both Co-ESU and Co-Fase, with indications of expo-
nential speedup for our best cases. Note also that Co-ESU does not uses g-tries,
and it still outperformed FaSE in all networks except gridworm, which further
outlines the potential of our approach.

14 M. Martins and P. Ribeiro

The condensation ratio of a network is highly correlated with performance,
but does not fulfill a causal relationship. We refer back to the properties of
the binomial the function that, coupled with the size of the largest star, affect
speedup drastically. Note that maxstar only gives a lower bound insight for
potential speedup, since it does not account for the remaining smaller stars.
From this, it is easy to see why networks with higher condensation ratio like
reality are outperformed by others with less condensation like mvcortex, since
we are able to explore values of k close to the maximum of for its maxstar.

On our set of synthetic networks, we observed that our framework improves
performance on scale-free networks, that are very recurrent on a plethora of real
world phenomena, with the best case being the PLTrees.

The results are very promising and indicate this is a viable path for improving
existing enumeration algorithms without losing generality. For the close future,
we intend to tackle other types peripheries and to extend our approach to more
complex networks, including aspects such as edge direction, temporal informa-
tion and multiple layers of connectivity.

Acknowledgements. This work is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project:
UID/EEA/50014/2019.

References

1. Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N.: Efficient graphlet counting
for large networks. In: International Conference on Data Mining, pp. 1–10. IEEE
(2015)

2. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

3. Cook, S.A.: The complexity of theorem-proving procedures. In: ACM Symposium
on Theory of Computing, STOC 1971, pp. 151–158. ACM (1971)

4. Gao, Y.: The degree distribution of random k-trees. Theor. Comput. Sci. 410,
688–695 (2009)

5. Hagberg, A., Schult, D., Swart, P., Conway, D., Séguin-Charbonneau, L., Ellison,
C., Edwards, B., Torrents, J.: NetworkX. High productivity software for complex
networks. Webová strá nka (2013). https://networkx.lanl.gov/wiki

6. Hočevar, T., Demšar, J.: A combinatorial approach to graphlet counting. Bioinfor-
matics 30(4), 559–565 (2014)

7. Hočevar, T., Demšar, J.: Combinatorial algorithm for counting small induced
graphs and orbits. PloS One 12(2), e0171428 (2017)

8. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys.
Rev. E 65(2), 026107 (2002)

9. Khakabimamaghani, S., Sharafuddin, I., Dichter, N., Koch, I., Masoudi-Nejad, A.:
Quatexelero: an accelerated exact network motif detection algorithm. PloS One
8(7), e68073 (2013)

10. Kunegis, J.: Konect: the Koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web, pp. 1343–1350. ACM (2013)

11. McKay, B.D.: Nauty user’s guide (version 2.2). Technical report, TR-CS-9002,
Australian National University (2003)

https://networkx.lanl.gov/wiki

Condensed Graphs 15

12. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

13. Paredes, P., Ribeiro, P.: Towards a faster network-centric subgraph census. In:
International Conference on Advances in Social Networks Analysis and Mining,
pp. 264–271. IEEE (2013)

14. Pinar, A., Seshadhri, C., Vishal, V.: ESCAPE: efficiently counting all 5-vertex sub-
graphs. In: International Conference on World Wide Web, pp. 1431–1440. Interna-
tional World Wide Web Conferences Steering Committee (2017)

15. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioin-
formatics 23, e177–e183 (2007)

16. Ribeiro, P., Paredes, P., Silva, M.E., Aparicio, D., Silva, F.: A survey on subgraph
counting: concepts, algorithms and applications to network motifs and graphlets.
arXiv preprint arXiv:1910.13011 (2019)

17. Ribeiro, P., Silva, F.: G-tries: a data structure for storing and finding subgraphs.
Data Min. Knowl. Discov. 28, 337–377 (2014)

18. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015). http://networkrepository.com

19. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput.
Biol. Bioinform. 3(4), 347–359 (2006)

http://arxiv.org/abs/1910.13011
http://networkrepository.com

	Condensed Graphs: A Generic Framework for Accelerating Subgraph Census Computation
	1 Introduction
	2 Backgroud
	2.1 Notation
	2.2 Problem Definition
	2.3 Related Work

	3 A Novel Framework for Subgraph Census
	3.1 Peripheral Stars
	3.2 Condensed Graphs
	3.3 Taking Advantage of Condensation
	3.4 Baseline Enumeration Algorithms

	4 Experimental Results
	4.1 Real World Networks
	4.2 Synthetic Networks

	5 Conclusion
	References

