
Secure Key Encapsulation Mechanism
with Compact Ciphertext and Public Key

from Generalized Srivastava Code

Jayashree Dey(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

deyjayashree@iitkgp.ac.in, ratna@maths.iitkgp.ernet.in

Abstract. Code-based public key cryptosystems have been found to be
an interesting option in the area of Post-Quantum Cryptography. In this
work, we present a key encapsulation mechanism (KEM) using a parity
check matrix of the Generalized Srivastava code as the public key matrix.
Generalized Srivastava codes are privileged with the decoding technique
of Alternant codes as they belong to the family of Alternant codes. We
exploit the dyadic structure of the parity check matrix to reduce the stor-
age of the public key. Our encapsulation leads to a shorter ciphertext as
compared to DAGS proposed by Banegas et al. in Journal of Mathe-
matical Cryptology which also uses Generalized Srivastava code. Our
KEM provides IND-CCA security in the random oracle model. Also, our
scheme can be shown to achieve post-quantum security in the quantum
random oracle model.

Keywords: Key encapsulation mechanism · Generalized Srivastava
code · Quasi-dyadic matrix · Alternant decoding

1 Introduction

Cryptography and coding theory are at the core of implementation of telecom-
munication systems, computational systems and secure networks. Cryptography
based on error correcting codes is one of the main approaches to guarantee
secure communication in post-quantum world. The security of current widely
used classical cryptosystems relies on the difficulty of number theory problems
like factorization and the discrete logarithm problem. Shor [21] showed in 1994
that most of these cryptosystems can be broken once sufficiently strong quan-
tum computers become available. Thus, it is necessary to devise alternatives that
can survive quantum attacks while offering reasonable performance with solid
security guarantees.

Code-based cryptosystems are usually very fast and can be implemented on
several platforms, both software and hardware. They do not require special-
purpose hardware, specifically no cryptographic co-processors. The security of
code based cryptography mainly relies on the following two computational
assumptions:
c© Springer Nature Switzerland AG 2020
J. H. Seo (Ed.): ICISC 2019, LNCS 11975, pp. 175–193, 2020.
https://doi.org/10.1007/978-3-030-40921-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40921-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-40921-0_11

176 J. Dey and R. Dutta

(i) the hardness of generic decoding [8] which is NP complete and also believed
to be hard on average even against quantum adversaries

(ii) the pseudorandomness of the underlying code C for the construction which
states that it is hard to distinguish a random matrix from a generator (or
parity check) matrix of C used as a part of the public key of the system.

Designing practical alternative cryptosystems based on difficulty of decoding
unstructured or random codes is currently a major research area. The public key
indistinguishability problem strongly depends on the code family. For instance,
the McEliece encryption scheme [17] uses binary Goppa codes for which this
indistinguishability assumption holds. On the other hand, the assumption does
not hold for other families such as Reed Solomon codes, Concatenated codes,
Low Density Parity Check (LDPC) codes etc. In [12], Faugere et al. devise a
distinguisher for high rate Goppa codes. One of the key challenges in code-based
cryptography is to come up with families of codes for which the indistinguisha-
bility assumption holds.

Constructing efficient and secure code-based cryptographic scheme is a chal-
lenging task. The crucial fact in designing code-based cryptosystems is to use a
linear error-correcting code in such a way that the public key is indistinguishable
from a random key. A codeword is used as ciphertext of a carefully chosen linear
error-correcting code to which random errors are added. The decryptor with the
knowledge of a trapdoor can perform fast polynomial time decoding, remove the
errors and recover the plaintext. Attackers are reduced to a generic decoding
problem and the system remains secure against an adversary equipped with a
quantum computer.

Our Contribution. In this paper, we focus on designing an IND-CCA secure
efficient code-based KEM that relies on the difficulty of generic decoding prob-
lem. Our starting point is the key encapsulation mechanism DAGS [5] that uses
the quasi-dyadic structure of Generalized Srivastava (GS) code. Quasi-dyadic
structure reduces the public key size remarkably in DAGS while the encapsula-
tion procedure increases the size of ciphertext. We aim to design a KEM with
relatively short ciphertext. We deploy the Niederreiter framework to develop
our KEM using a syndrome as ciphertext and achieve IND-CCA security in
the random oracle model. More precisely, we use the parity check matrix of the
Generalized Srivastava code as the public key and utilize its block dyadic struc-
ture to reduce the public key size. We consider the syndrome of a vector as
the ciphertext header where the vector is formed by parsing two vectors – the
first vector is an error vector that is generated by a deterministic error vector
generation algorithm and the second vector is constructed from a hash value of
a randomly chosen message by the encapsulator. This significantly reduces the
ciphertext header size that makes the scheme useful in application with limited
communication bandwidth. Also, the use of the parity check matrix directly in
computing the ciphertext is more fast and efficient. For decapsulation, we form
an equivalent parity check matrix using the secret key to decode the ciphertext
header and then proceed to get the decapsulation key. Note that, Generalized
Srivastava codes belong to the class of Alternant codes which have benefits of

Secure KEM with Compact Ciphertext and Public Key from GS Code 177

an efficient decoding algorithm. The complexity of decoding is O(n log2 n) [20]
which is the same as that of Goppa codes where n is the length of the code.

In Table 1, we provide a theoretical comparison of our KEM with other
recently proposed code-based KEMs. All the schemes in the table are based
on finite fields having characteristic 2. We summarize the following features of
our KEM.

• The closest related work to ours is DAGS [5]. Similar to DAGS, we also
use quasi-dyadic form of Generalized Srivastava code. However, DAGS uses
generator matrix whereas we use parity check matrix. Consequently, in our
construction, the ciphertext size is reduced by k log2 q bits as compared to
DAGS [5] whereas the public key and the secret key sizes remain the same.
Furthermore our encapsulation is faster than DAGS.

• The public key sizes in our approach are better than NTS-KEM [2], Classic
McEliece [9] and BIG QUAKE [6]. Although the BIKE variants are efficient
in terms of key sizes and achieve IND-CCA security, they still suffer from
small decoding failure rate. The erlier BIKE variants proposed in [3] have a
non-negligible decoding failure rate and only attain IND-CPA security.

Table 1. Summary of IND-CCA secure KEMs using random oracles

Scheme pk size

(in bits)

sk size

(in bits)

CT size

(in bits)

Code used Cyclic/Dyadic Correctness

error

NTS-KEM [2] (n − k)k 2(n − k +

r)m + nm + r

(n − k + r) Binary

Goppa code

– No

BIKE-1 [4] n n+w ·�log2k� n MDPC code Quasi-Cyclic Yes

BIKE-2 [4] k n+w ·�log2k� k MDPC code Quasi-Cyclic Yes

BIKE-3 [4] n n+w ·�log2k� n MDPC code Quasi-Cyclic Yes

Classic McEliece [9] k(n − k) n + mt + mn (n − k) + r Binary

Goppa code

– No

BIG QUAKE [6] k
�
(n − k) mt + mn (n − k) + 2r Binary

Goppa code

Quasi-Cyclic No

DAGS [5] k
s
(n −

k) log2 q

2mn log2 q [n + k′]log2q GS code Quasi-Dyadic No

This work k
s
(n −

k) log2 q

2mn log2 q [k′ + (n − k)]log2q GS code Quasi-Dyadic No

pk=Public key, sk=Secret key, CT=Ciphertext, k =dimension of the code, n= length of the code, �= length

of each blocks, t=error correcting capacity, k′ < k, s, r, w, p1, p2 are positive integers (� << s), s =

2p2 , q = 2p1 , m=the degree of field extension, r =the desired key length, GS=Generalized Srivastava,

MDPC=Moderate Density Parity Check

In the comparison table, we mostly highlight the KEMs which rely on the
error correcting codes that belong to the class of Alternant codes except BIKE
variants which use QC (Quasi-Cyclic)-MDPC codes. We exclude the schemes like
LEDAkem, RLCE-KEM, LAKE, Ouroboros-R, LOCKER, QC-MDPC, McNie
etc. In fact, the schemes LAKE, Ouroboros-R, LOCKER use rank metric codes
(Low Rank Parity Check (LRPC) codes) while RLCE-KEM is based on random
linear codes and McNie relies on any error-correcting code, specially QC-LRPC
codes. LEDAkem uses QC-LDPC codes and has a small decoding failure rate.

178 J. Dey and R. Dutta

Moreover, it has risks in case of keypair reuse which may cause a reaction attack
[11] for some particular instances. The schemes proposed in [1] are also kept
out as both HQC and RQC are constructed for any decodable linear code. Also,
HQC has a decryption failure and RQC uses rank metric codes. The protocol
QC-MDPC may have a high decoding failure rate for some particular parameters
which enhances the risk of GJS attack [14]. The scheme CAKE is another impor-
tant KEM which is merged with another independent construction Ouroboros
to obtain BIKE [3].

Organization of the Paper. This rest of the paper is organized as follows. In
Sect. 2, we describe necessary background related to our work. We illustrate our
approach to design a KEM in Sect. 3 and discuss its security in Sect. 4. Finally,
we conclude in Sect. 5.

2 Preliminaries

In this section, we provide mathematical background and preliminaries that are
necessary to follow the discussion in the paper.

Notation. We use the notation x
U←− X for choosing a random element from

a set or distribution, wt(x) to denote the weight of a vector x, (x||y) for the
concatenation of the two vectors x and y. The matrix In is the n × n identity
matrix. We let Z

+ to represent the set {a ∈ Z|a ≥ 0} where Z is the set of
integers. We denote the transpose of a matrix A by AT and concatenation of
the two matrices A and B by [A|B]. The uniform distribution over (n − k) × n
random q-ary matrices is denoted by U(n−k)×n.

2.1 Hardness Assumptions

Definition 1 ((Decision) (q-ary) Syndrome Decoding (SD) Problem [8]). Given a
full-rank matrix H(n−k)×n over GF(q), a vector e ∈ (GF(q))n and a non-negative
integer w, is it possible to distinguish between a random syndrome s and the
syndrome HeT associated to a w-weight vector e?

Suppose D is a probabilistic polynomial time algorithm. For every positive inte-
ger λ, we define the advantage of D in solving the decisional SD problem by

AdvDEC
D,SD(λ) = |Pr[D(H,HeT) = 1 | e ∈ (GF(q))n,H

U←− U(n−k)×n]

− Pr[D(H, s) = 1 | s U←− U(n−k)×1,H
U←− U(n−k)×n]|.

Also, we define AdvDEC
SD (λ) = max

D
[AdvDEC

D,SD(λ)] where the maximum is taken over

all D. The decisional SD problem is said to be hard if AdvDEC
SD (λ) < δ where

δ > 0 is arbitrarily small.
In addition, some code based schemes require the following computational

assumption. Most of the schemes output a public key that is either a generator
matrix or a parity check matrix by running key generation algorithm.

Secure KEM with Compact Ciphertext and Public Key from GS Code 179

Definition 2 (Indistinguishability of public key matrix H [18]). Let D be a prob-
abilistic polynomial time algorithm and PKE = (Setup,KeyGen,Enc,Dec) be a
public key encryption scheme that uses an (n − k) × n matrix H as a pub-
lic key over GF(q). For every positive integer λ, we define the advantage of
D in distinguishing the public key matrix H from a random matrix R as
AdvIND

D,H(λ) = Pr[D(H) = 1|(pk = H, sk) ←− PKE.KeyGen(param), param ←−
PKE.Setup(1λ)] − Pr[D(R) = 1|R U←− U(n−k)×n].

We define AdvIND
H (λ) = max

D
[AdvIND

D,H(λ)] where the maximum is over all D.

The matrix H is said to be indistinguishable if AdvIND
H (λ) < δ where δ > 0 is

arbitrarily small.

2.2 Basic Definitions from Coding Theory

Definition 3 (Dyadic Matrix and Quasi-Dyadic Matrix [7]). Given a ring R and
a vector h = (h0, h1, . . . , hn−1) ∈ Rn, the dyadic matrix Δ(h) ∈ Rn×n is a
symmetric matrix having components Δij = hi⊕j where ⊕ stands for bitwise
exclusive-or. The vector h is called a signature of the dyadic matrix. The sig-
nature of a dyadic matrix forms its first row. A matrix is called quasi-dyadic if
it is a block matrix whose component blocks are s × s dyadic submatrices. An
s × s dyadic matrix block can be generated from its first row.

Generating the dyadic signature [7]: A valid dyadic signature h =
(h0, h1, . . . , hn−1) over R = GF(qm) is derived using Algorithm 1.

Definition 4 (The Generalized Srivastava (GS) Code [16]). Let m,n, s, t ∈ N and
q be a prime power. Let α1, α2, . . . , αn, w1, w2, . . . , ws be n+ s distinct elements
of GF(qm) and z1, z2, . . . , zn be nonzero elements of GF(qm). The Generalized
Srivastava (GS) code of length n is a linear code with st×n parity-check matrix
of the form H =

[
H1 H2 · · · Hs

]T where

Hi =

⎡

⎢
⎢
⎣

z1
α1−wi

z2
α2−wi

· · · zn

αn−wi
z1

(α1−wi)2
z2

(α2−wi)2
· · · zn

(αn−wi)2

· · · · · · · · · · · ·
z1

(α1−wi)t
z2

(α2−wi)t · · · zn

(αn−wi)t

⎤

⎥
⎥
⎦

is a t×n matrix block. The code is of length n ≤ qm −s, dimension k ≥ n−mst

and minimum distance d ≥ st + 1. It can correct at most w =
⌊

d − 1
2

⌋
=

st

2
errors and is an Alternant code. In the parity check matrix

H =

⎡

⎢
⎢
⎢
⎢
⎣

y1g1(α1) y2g1(α2) · · · yng1(αn)
y1g2(α1) y2g2(α2) · · · yng2(αn)
y1g3(α1) y2g3(α2) · · · yng3(αn)

. . . · · · · · · · · ·
y1gr(α1) y2gr(α2) · · · yngr(αn)

⎤

⎥
⎥
⎥
⎥
⎦

180 J. Dey and R. Dutta

Algorithm 1. Constructing a dyadic signature
Input: q, m, s, n.
Output: A dyadic signature h = (h0, h1, . . . , hn−1) over GF(qm).

1: repeat

2: X = GF(qm) \ {0}; ̂h0
U← X; X = X \ {̂h0};

3: for (l = 0 to �log qm�) do

4: i = 2l; ̂hi
U← X; X = X \ {̂hi};

5: for (j = 1 to i − 1) do

6: if (̂hi �= 0 ∧̂hj �= 0 ∧ 1

̂hi

+
1

̂hj

+
1

̂h0
�= 0) then

7: ̂hi+j = 1/(
1

̂hi

+
1

̂hj

+
1

̂h0
);

8: else
9: ̂hi+j = 0; // undefined entry

10: end if
11: X = X \ {̂hi+j};
12: end for
13: end for
14: c = 0;

15: if (0 /∈ {̂h0, ̂h1, . . . , ̂hs−1}) then

16: b0 = 0; c = 1; B0 = {̂h0, ̂h1, . . . , ̂hs−1};
17: for (j = 1 to �qm/s� − 1) do

18: if (0 /∈ {̂hjs, ̂hjs+1, . . . , ̂h(j+1)s−1}) then

19: bc = j; c = c + 1; Bc = {̂hjs, ̂hjs+1, . . . , ̂h(j+1)s−1};
20: end if
21: end for
22: end if
23: until (cs ≥ n)
24: return h = (h0, h1, . . . , hn−1) = (B0, B1, . . . , Bc−1)

where gi(x) = ci1 + ci2x + · · · + cirx
r−1, i = 1, 2, . . . , r is a polynomial of

degree < r over GF(qm) for the Alternant code A(α,y), let r = st. Also set

g(l−1)t+k(x) =
s∏

j=1

(x − wj)t/(x − wl)k, l = 1, 2, . . . , s and k = 1, 2, . . . , t and

yi = zi/
s∏

j=1

(αi − wj)t, i = 1, 2, . . . , n so that yig(l−1)t+k(αi) = zi/(αi − wl)k.

The resulting code will be a Generalized Srivastava code.

3 Our KEM Protocol

We construct a key encapsulation mechanism KEM = (Setup,KeyGen,Encaps,
Decaps) as described below.

• KEM.Setup(1λ) −→ param : Taking security parameter λ as input, a trusted
authority proceeds as follows to generate the global public parameters param.

(i) Sample n0, p1, p2,m ∈ Z
+, set q = 2p1 , s = 2p2 and n = n0s < qm.

(ii) Select t ∈ Z
+ such that mst < n. Set w ≤ st/2 and k = n − mst.

(iii) Sample k′ ∈ Z
+ with k′ < k.

(iv) Select three cryptographically secure hash functions G : (GF(q))k
′ −→

(GF(q))k, H : (GF(q))k
′ −→ (GF(q))k′

and H′ : {0, 1}∗ −→ {0, 1}r where
r ∈ Z

+ denotes the desired key length.

Secure KEM with Compact Ciphertext and Public Key from GS Code 181

(v) Publish the global parameters param = (n, n0, k, k′, w, q, s, t, r,m,G,H,H′).

• KEM.KeyGen(param)−→ (pk, sk) : A user on input param, performs the fol-
lowing steps to generate the public key pk and secret key sk.

(i) Generate dyadic signature h = (h0, h1, . . . , hn−1) using Algorithm 1 where
hi ∈ GF(qm) for i = 0, 1, . . . , n − 1.

(ii) Select ω
U←− GF(qm) with ω �= 1

hj
+ 1

h0
, j = 0, 1, . . . , n − 1 and compute

ui = 1
hi

+ ω, i = 0, 1, . . . , s − 1 and vj = 1
hj

+ 1
h0

+ ω, j = 0, 1, . . . , n − 1.

Set u = (u0, u1, . . . , us−1) and v = (v0, v1, . . . , vn−1).
(iii) Construct st × n quasi-dyadic matrix A =

[
A1 A2 · · · At

]T where

Ai =⎡
⎢⎢⎢⎢⎣

1
(u0−v0)i

1
(u0−v1)i · · · 1

(u0−vn−1)i

1
(u1−v0)i

1
(u1−v1)i · · · 1

(u1−vn−1)i

· · · · · · · · · · · ·
1

(us−1−v0)i
1

(us−1−v1)i · · · 1
(us−1−vn−1)i

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

1
(v0−u0)i

1
(v1−u0)i · · · 1

(vn−1−u0)i

1
(v0−u1)i

1
(v1−u1)i · · · 1

(vn−1−u1)i

· · · · · · · · · · · ·
1

(v0−us−1)i
1

(v1−us−1)i · · · 1
(vn−1−us−1)i

⎤
⎥⎥⎥⎥⎦

is the s × n matrix block that can be written as Ai = [Âi1 |Âi2 | · · · |Âin0
].

Each block Âik
is an s× s dyadic matrix for k = 1, 2, . . . , n0. For instance,

take the first block

Âi1 =

⎡

⎢
⎢
⎢
⎣

1
(u0−v0)i

1
(u0−v1)i · · · 1

(u0−vs−1)i

1
(u1−v0)i

1
(u1−v1)i · · · 1

(u1−vs−1)i

· · · · · · · · · · · ·
1

(us−1−v0)i
1

(us−1−v1)i · · · 1
(us−1−vs−1)i

⎤

⎥
⎥
⎥
⎦

which is symmetric as ui −vj = 1
hi

+ 1
hj

+ 1
h0

= uj −vi and dyadic of order
s as the s × s matrix

⎡
⎢⎢⎢⎣

1
(u0−v0)

1
(u0−v1)

1
(u0−v2)

· · · 1
(u0−vs−1)

1
(u1−v0)

1
(u1−v1)

1
(u1−v2)

· · · 1
(u1−vs−1)

· · · · · · · · · · · · · · ·
1

(us−1−v0)
1

(us−1−v1)i
1

(us−1−v2)i · · · 1
(us−1−vs−1)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

h0 h1 h2 · · · hs−1

h1 h0 h3 · · · hs−2

· · · · · · · · · · · · · · ·
hs−1 hs−2 hs−3 · · · h0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h0⊕0 h0⊕1 h0⊕2 · · · h0⊕(s−1)

h1⊕0 h1⊕1 h1⊕2 · · · h1⊕(s−1)

· · · · · · · · · · · · · · ·
h(s−1)⊕0 h(s−1)⊕1 h(s−1)⊕2 · · · h(s−1)⊕(s−1)

⎤
⎥⎥⎦

can be derived from the first row of the block using the relation 1
hi⊕j

=
1
hi

+ 1
hj

+ 1
h0

. Since the powering process acts on every single element, Âi1

preserves its dyadic structure.

182 J. Dey and R. Dutta

(iv) Choose zis
U←− GF(qm), i = 0, 1, . . . , n0 − 1 and set zis+p = zis, p =

0, 1, . . . , s − 1 where n = n0s. Also set

z = (z0s, z0s+1, . . . , z0s+s−1; z1s, z1s+1, . . . , z1s+s−1; . . . ; z(n0−1)s, z(n0−1)s+1,

. . . , z(n0−1)s+s−1) = (z0, z1, . . . , zn−1) ∈ (GF(qm))n.

(v) Compute yj = zj/
s−1∏

i=0

(ui − vj)t for j = 0, 1, . . . , n − 1 and set y =

(y0, y1, . . . , yn−1) ∈ (GF(qm))n.
(vi) Construct st × n matrix B=

[
B1 B2 · · · Bt

]T where

Bi =

⎡

⎢
⎢
⎢
⎣

z0
(v0−u0)i

z1
(v1−u0)i · · · zn−1

(vn−1−u0)i

z0
(v0−u1)i

z1
(v1−u1)i · · · zn−1

(vn−1−u1)i

· · · · · · · · · · · ·
z0

(v0−us−1)i
z1

(v1−us−1)i · · · zn−1
(vn−1−us−1)i

⎤

⎥
⎥
⎥
⎦

is s × n matrix block. Sample a permutation matrix P of order st and
compute st × n matrix B = PB. The matrix B is a parity-check matrix
of the GS code equivalent to its parity check matrix as in Definition 4,
Subsect. 2.2.

(vii) Project B onto GF(q) using the co-trace function to form a mst×n matrix
C where co-trace function converts an element of GF(qm) to an element
of GF(q) with respect to a basis of GF(qm) over GF(q). For a ∈ GF(qm),
co-trace(a) = (a0, a1, . . . , am−1) ∈ (GF(q))m satisfying < g,a >= a0 +
a1q +a2q

2 + · · ·+am−1q
m−1 where ai ∈ GF(q) and g = (1, q, q2, . . . , qm−1)

is a basis of GF(qm) over GF(q). Thus if B = (bij) where bij ∈ GF(qm),
then C = (cij) is obtained from B by replacing bij by co-trace(bij). Write
the matrix C in the systematic form (M |In−k) where M is (n − k) × k
matrix with k = n − mst. Note that, the zi are chosen to be equally
having s-length block and all the operations during the row reduction are
performed block-wise. Consequently, the dyadic structure is maintained in

C and in particular in M . Let M =

⎡

⎢
⎢
⎣

M0,0 M0,1 · · · M0, k
s −1

M1,0 M1,1 · · · M1, k
s −1

· · · · · · · · · · · ·
Mmt−1,0 Mmt−1,1 · · · Mmt−1, k

s −1

⎤

⎥
⎥
⎦

where each block matrix Mi,j is s× s dyadic matrix with dyadic signature
ψi,j ∈ (GF(q))s which is the first row of Mi,j , i = 0, 1, . . . ,mt − 1, j =
0, 1, . . . , k

s − 1.
(viii) Publish the public key pk = {ψi,j | i = 0, 1, . . . , mt−1, j = 0, 1, . . . , k

s −1}
and keep the secret key sk = (v,y) to itself.

• KEM.Encaps(param, pk)−→ (CT,K) : Given system parameters param and
public key pk, an encapsulator proceeds as follows to generate a ciphertext
header CT ∈ (GF(q))n−k+k′

and an encapsulation key K ∈ {0, 1}r.

Secure KEM with Compact Ciphertext and Public Key from GS Code 183

Algorithm 2. Error vector derivation
Input: q, n, a seed s̄ = (s̄0, s̄1, . . . , s̄k−1) ∈ (GF(q))k, a weight w, a function F : GF(q) −→ Z

+.
Output: An error vector e of length n and weight w.

1: s = (s0, s1, . . . , sn−1)=Expand(s̄); // Expand is an expansion function
2: j = 0; temp = 0; d = 0; e = 0; v = 0;
3: for (i = 0 to n − 1) do
4: if (si mod q �= 0) then
5: if (j = w) then
6: break;

7: end if
8: temp = F(sd) mod n; d = d + 1;
9: for (ν = 0 to j) do
10: if (temp = vν) then
11: goto step 9;

12: end if
13: end for
14: vj = temp; etemp = si mod q; temp = 0; j = j + 1;

15: end if
16: end for
17: return e = (e0, e1, . . . , en−1)

(i) Sample m U←− (GF(q))k′
and compute r = G(m) ∈ (GF(q))k, d = H(m) ∈

(GF(q))k′
where G and H are the hash functions given in param.

(ii) Parse r as r = (ρ||σ) where ρ ∈ (GF(q))k−k′
, σ ∈ (GF(q))k′

. Set μ =
(ρ||m) ∈ (GF(q))k.

(iii) Run Algorithm 2 to generate a error vector e of length n − k and weight
w − wt(μ) using σ as a seed. Note that Algorithm 2 uses an expansion
function1. Set e′ = (e||μ) ∈ (GF(q))n.

(iv) Using the public key pk={ψi,j | i = 0, 1, . . . ,mt − 1, j = 0, 1, . . . , k
s −

1}, compute s × s dyadic matrix Mi,j with signature ψi,j ∈ (GF(q))s and
reconstruct the parity check matrix H = (M |In−k) for the the GS code
where n − k = mst and

M =

⎡

⎢
⎢
⎣

M0,0 M0,1 · · · M0, k
s −1

M1,0 M1,1 · · · M1, k
s −1

· · · · · · · · · · · ·
Mmt−1,0 Mmt−1,1 · · · Mmt−1, k

s −1

⎤

⎥
⎥
⎦

(v) Compute the syndrome c = H(e′)T and the encapsulation key K = H′(m)
where H′ is the hash function given in param.

(vi) Publish the ciphertext header CT = (c,d) and keep K as secret.

• KEM.Decaps(param, sk,CT)−→ K : On receiving a ciphertext header CT =
(c,d), a decapsulator executes the following steps using public parameters
param and its secret key sk = (v,y) where v = (v0, v1, . . . , vn−1) and y =
(y0, y1, . . . , yn−1).

(i) First proceed as follows to decode c and find error vector e′′ of length n
and weight w:

1 For example, kangaroo twelve function [10] can be used as an expansion function.

184 J. Dey and R. Dutta

(a) Use sk = (v,y) to construct st × n matrix H ′ in the form
⎡

⎢
⎢
⎢
⎢
⎣

y0 y1 · · · yn−1

v0y0 v1y1 · · · vn−1yn−1

v2
0y0 v2

1y1 · · · v2
n−1yn−1

· · · · · · · · · · · ·
vst−1
0 y0 vst−1

1 y1 · · · vst−1
n−1 yn−1

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
v0 v1 · · · vn−1

v2
0 v2

1 · · · v2
n−1

· · · · · · · · · · · ·
vst−1
0 vst−1

1 · · · vst−1
n−1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

y0 0 · · · 0
0 y1 · · · 0
0 0 y2 0

· · · · · · · · · · · ·
0 0 · · · yn−1

⎤

⎥
⎥
⎥
⎥
⎦

.

Note that, H ′ is a parity check matrix in alternant form of the GS code
over GF(qm) whereas the matrix H = [M |I(n−k)] constructed during
KEM.KeyGen or KEM.Encaps is a parity check matrix in the systematic
form of the GS code over GF(q).
(b) As the GS code is an Alternant code, the parity check matrix H ′ is
used to decode c by first computing the syndrome S = H ′(c||0)T where 0
represents the vector (0, 0, . . . , 0) of length k and then by running decod-
ing algorithm for the Alternant code to find the error locator polyno-

mial ω(z) =
w∑

ν=1
Yνyiν

w∏

μ=1,μ�=ν

(1 − Xμz) and error evaluator polynomial

σ(z) =
w∏

i=1

(1 − Xiz). Let X1 = vi1 ,X2 = vi2 , . . . , Xw = viw
be the error

locations and Y1 = eX1 , Y2 = eX2 , . . . , Yw = eXw
be the error values.

(c) Set e′′ = (e1, e2, . . . , en) with ej =

{
0 if j �= Xi, 1 ≤ i ≤ w

Yi if j = Xi, 1 ≤ i ≤ w
.

(ii) Let e′′ = (e0||μ′) ∈ (GF(q))n and μ′=(ρ′||m′) ∈ (GF(q))k where e0 ∈
(GF(q))n−k, ρ′ ∈ (GF(q))k−k′

, m′ ∈ (GF(q))k′
.

(iii) Compute r′ = G(m′) ∈ (GF(q))k and d′ = H(m′) ∈ (GF(q))k′
where G and

H are the hash functions given in param.
(iv) Parse r′ as r′ = (ρ′′||σ′) where ρ′′ ∈ (GF(q))k−k′

, σ′ ∈ (GF(q))k′
.

(v) Run Algorithm 2 to generate deterministically an error vector e′
0 of length

n − k and weight w − wt(μ′) using σ′ as seed.
(vi) If (e0 �= e′

0) ∨ (ρ′ �= ρ′′) ∨ (d �= d′), output ⊥ indicating decapsulation
failure. Otherwise, compute the encapsulation key K = H′(m′) where H′

is the hash function given in param.

Correctness: While decoding c, we form an st × n parity check matrix H ′

over GF(qm) using the secret key sk = (v,y) and find the syndrome H ′(c||0)T

to estimate the error vector e′′ ∈ (GF(q))n with wt(e′′) = w. Note that, the
ciphertext component c = H(e′)T is the syndrome of e′ where the matrix H is a
parity check matrix in the systemetic form over GF(q) which is indistinguishable
from a random matrix over GF(q). At the time of decoding c, we need a parity
check matrix in alternant form over GF(qm). The parity check matrix H, a
parity check matrix of GS code in the systemetic form derived from the public
key pk, does not help to decode c as the SD problem is hard over GF(q). The
decoding algorithm in our decapsulation procedure uses the parity check matrix
H ′ (derived from the secret key sk) which is in alternant form over GF(qm).
This procedure can correct upto st/2 errors. In our scheme, the error vector e′

Secure KEM with Compact Ciphertext and Public Key from GS Code 185

used in the procedure KEM.Encaps satisfies wt(e′) = w ≤ st/2. Consequently,
the decoding procedure will recover the correct e′. We regenerate e′

0 and ρ′′

and compare it with e0 and ρ′ obtained after decoding. Since the error vector
generation uses a deterministic function to get a fixed low weight error vector,
e0 = e′

0 and ρ′ = ρ′′ occurs.

4 Security

4.1 Security Notions

Definition 5 (Indistinguishability under Chosen Plaintext Attack (IND-CPA) [13]).
The IND-CPA game between a challenger S and a PPT adversary A for a public
key encryption scheme PKE=(Setup, KeyGen, Enc, Dec) is described below.

1. The challenger S generates param ←− PKE.Setup(1λ), (pk, sk) ←−
PKE.Key-Gen(param) where λ is a security parameter and sends param, pk
to A.

2. The adversary A sends a pair of messages m0,m1 ∈ M of the same length
to S.

3. The challenger S picks a random bit b ∈ {0, 1}, computes a challenge cipher-
text CT ←− PKE.Enc(param, pk,mb; rb) and sends it to A.

4. The adversary outputs a bit b′.

The adversary A wins the game if b′ = b. We define the advantage of A against
the above IND-CPA security game for the PKE scheme as

AdvIND-CPA
PKE (A) = |Pr[b′ = b] − 1/2|.

A PKE scheme is IND-CPA secure if AdvIND-CPA
PKE (A) < ε where ε > 0 is arbitrarily

small.
We also define the following four security notions for PKE scheme that are

(i) One-Wayness under Chosen Plaintext Attacks (OW-CPA), (ii) One-Wayness
under Plaintext Checking Attacks (OW-PCA), (iii) One-Wayness under Validity
Checking Attacks (OW-VA) and (iv) One-Wayness under Plaintext and Validity
Checking Attacks (OW-PCVA).

Definition 6 (OW-ATK [15]). For ATK ∈ {CPA,PCA,VA,PCVA}, the OW-ATK
game between a challenger S and a PPT adversary A for a public key encryption
scheme PKE = (Setup, KeyGen, Enc, Dec) is outlined below where A can make
polynomially many queries to the oracle OATK given by

OATK =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ATK = CPA

PCO(·, ·) ATK = PCA

CVO(·) ATK = VA

PCO(·, ·),CVO(·) ATK = PCVA

where the oracle PCO(·, ·) takes a message m and a ciphertext CT as input and
checks if the message recovered from CT is m or not while the oracle CVO(·)

186 J. Dey and R. Dutta

takes a ciphertext CT as input distinct from the challenge ciphertext CT∗ and
checks whether the message recovered from CT belongs to the message space or
not.

1. The challenger S generates param ←− PKE.Setup(1λ), (pk, sk) ←−
PKE.Key-Gen(param) where λ is a security parameter and sends param, pk
to A.

2. The challenger S chooses a message m∗ ∈ M, computes the challenge cipher-
text CT∗ ←− PKE.Enc(param, pk,m∗; r∗) and sends it to A.

3. The adversary A having access to the oracle OATK, outputs m′.

The adversary A wins the game if m′ = m∗. We define the advantage of A
against the above OW-ATK security game for PKE scheme as AdvOW-ATK

PKE (A) =
Pr[m′ = m∗]. The PKE scheme is said to be OW-ATK secure if AdvOW-ATK

PKE (A) <
ε for arbitrarily small non zero ε.

Definition 7 (Indistinguishability under Chosen Ciphertext Attack (IND-CCA)
[19]). The IND-CCA game between a challenger S and a PPT adversary A
for a key encapsulation mechanism KEM= (Setup, KeyGen, Encaps, Decaps) is
described below.

1. The challenger S generates param ←− KEM.Setup(1λ) and (pk, sk) ←−
KEM.KeyGen(param) where λ is a security parameter and sends param, pk
to A.

2. The PPT adversary A has access to the decapsulation oracle KEM.Decaps to
which A can make polynomially many ciphertext queries CTi and gets the
corresponding key Ki ∈ K from S.

3. The challenger S picks a random bit b from {0, 1}, runs KEM.Encaps(param,
pk) to generate a ciphertext-key pair (CT∗,K∗

0) with CT∗ �= CTi, selects
randomly K∗

1 ∈ K and sends the pair (CT∗,K∗
b) to A.

4. The adversary A having the pair (CT∗,K∗
b) keeps performing polynomially

many decapsulation queries on CTi �= CT∗ and outputs b′.

The adversary succeeds the game if b′ = b. We define the advantage of A against
the above IND-CCA security game for the KEM as

AdvIND-CCA
KEM (A) = |Pr[b′ = b] − 1/2|.

A KEM is IND-CCA secure if AdvIND-CCA
KEM (A) < ε where ε > 0 is arbitrarily small.

4.2 Security Proof

Our KEM provides IND-CCA security in random oracle model by Theorem 1.

Theorem 1. Assuming the hardness of decisional SD problem (Definition 1,
Sect. 2.1) and indistinguishability of the public key matrix H (derived from the
public key pk by running KEM.KeyGen(param) where param ←− KEM.Setup(1λ),
λ being the security parameter), our KEM = (Setup,KeyGen,Encaps,Decaps)
described in Sect. 3 provides IND-CCA security (Definition 7, Sect. 4.1) when the
hash functions H′ and G are modeled as random oracles.

Secure KEM with Compact Ciphertext and Public Key from GS Code 187

• PKE1.Setup(1λ) −→ param : A trusted authority runs KEM.Setup(1λ) to get global parameters
param = (n, n0, k, k′, w, q, s, t, r, m, G, , ′) taking security parameter λ as input.

• PKE1.KeyGen(param) −→ (pk, sk) : A user generates public-secret key pair (pk, sk) by running
KEM.KeyGen(param) where pk = {ψi,j |i = 0, 1, . . . , mt−1, j = 0, 1, . . . , k

s −1}, ψi,j ∈ (GF(q))s

and sk = (v,y).

• PKE1.Enc(param, pk,m; r) −→ CT : An encryptor encrypts a message m ∈ M = (GF(q))k′
and

produces a ciphertext CT as follows.

1. Compute r = G(m) ∈ (GF(q))k, d = (m) ∈ (GF(q))k′
.

2. Parse r = (ρ||σ) where ρ ∈ (GF(q))k−k′
, σ ∈ (GF(q))k′

. Set μ = (ρ||m) ∈ (GF(q))k.
3. Run Algorithm 2 using σ as a seed to obtain an error vector e of length n − k and weight

w − wt(μ) and set e′ = (e||μ) ∈ (GF(q))n.
4. Use the public key pk = {ψi,j |i = 0, 1, . . . , mt − 1, j = 0, 1, . . . , k

s − 1} as in

KEM.Encaps(param,pk) and construct the matrix H(n−k)×n = (M |In−k) where M = (Mi,j),

Mi,j is a s × s dyadic matrix with signature ψi,j , i = 0, 1, . . . , mt − 1, j = 0, 1, . . . , k
s − 1.

5. Compute c = H(e′)T . Return the ciphertext CT = (c, d) ∈ C = (GF(q))n−k+k′
.

• PKE1.Dec(param, sk,CT) −→ m′ : On receiving the ciphertext CT, the decryptor executes the
following steps using public parameters param and its secret key sk = (v,y).
1. Use the secret key sk = (v,y) to form a parity check matrix H′ as in the procedure

KEM.Decaps(param,sk,CT).
2. To decode c (extracted from CT), find error e′′ of weight w and length n by running the

decoding algorithm for Alternant codes with syndrome H′(c||0)T .

3. Parse e′′ = (e0||μ′) ∈ (GF(q))n and μ′=(ρ′||m′) ∈ (GF(q))k where e0 ∈ (GF(q))n−k,

ρ′ ∈ (GF(q))k−k′
, m′ ∈ (GF(q))k′

.

Compute r′ = G(m′) ∈ (GF(q))k and d′ = (m′) ∈ (GF(q))k′
.

4. Parse r′ = (ρ′′||σ′) where ρ′′ ∈ (GF(q))k−k′
, σ′ ∈ (GF(q))k′

.
5. Generate error vector e′

0 of length n−k and weight w −wt(μ′) by running Algorithm 2 with
σ′ as seed.

6. If (e0 �= e′
0) ∨ (ρ′ �= ρ′′) ∨ (d �= d′), output ⊥ indicating decryption failure. Otherwise,

return m′.

Fig. 1. Scheme PKE1 = (Setup,KeyGen,Enc,Dec)

The proof of the above theorem is the immediate consequence of Theorem 2,
Corollary 1 and Theorem 4.

Theorem 2. If the public key encryption scheme PKE1 = (Setup,KeyGen,Enc,
Dec) described in Fig. 1 is OW-VA secure (Definition 6, Sect. 4.1) and there exist
cryptographically secure hash functions, then the key encapsulation mechanism
KEM = (Setup,KeyGen,Encaps,Decaps) as described in Sect. 3 achieves IND-
CCA security (Definition 7, Sect. 4.1) when the hash function H′ is modeled as
a random oracle.

Proof. Let B be a PPT adversary against the IND-CCA security of KEM pro-
viding at most nD queries to KEM.Decaps oracle and at most nH′ queries to
the hash oracle H′. We show that ∃ a PPT adversary A against the OW-VA
security of the scheme PKE1. We start with a sequence of games and the view
of the adversary B is shown to be computationally indistinguishable in any of
the consecutive games. Finally, we end up in a game that statistically hides the
challenge bit as required. All the games are defined in Figs. 2 and 3. Let Ej be
the event that b = b′ in game Gj , j = 0, 1, 2, 3.

188 J. Dey and R. Dutta

• The challenger S generates param ←− KEM.Setup(1λ) and (pk, sk) ←− KEM.KeyGen(param) for
a security parameter λ and sends param, pk to B.

• The PPT adversary B has access to the decapsulation oracle KEM.Decaps to which B can make
polynomially many ciphertext queries CTi and gets the corresponding key Ki ∈ K = {0, 1}r

from S.
• The challenger S picks a random bit b from {0, 1}, runs KEM.Encaps(param, pk) to generate a

ciphertext-key pair (CT∗, K∗
0) with CT∗ �= CTi, selects randomly K∗

1 ∈ K and sends the pair
(CT∗, K∗

b) to B.
• The adversary B having the pair (CT∗, K∗

b) keeps performing polynomially many decapsulation
queries on CTi �= CT∗ and outputs b′.

Fig. 2. Game G0 in the proof of Theorem 2

• The challenger S generates param ←− PKE1.Setup(1λ), (pk, sk) ←− PKE1.KeyGen(param) for a
security parameter λ and sends param, pk to B.

• The PPT adversary B has access to the decapsulation oracle Decaps (see Figure 4) to which B
can make polynomially many ciphertext queries CTi and gets the corresponding key Ki ∈ K
from S.

• The challenger S picks a random bit b from {0, 1}, chooses a message m∗ U←− M, runs
PKE1.Enc(param, pk,m∗; r∗) to generate a ciphertext CT∗, computes K∗

0 = ′(m∗), selects
randomly K∗

1 ∈ K and sends the pair (CT∗, K∗
b) to B.

• The adversary B having the pair (CT∗, K∗
b) keeps performing polynomially many decapsulation

queries on CTi �= CT∗ to Decaps oracle and hash queries on mi to hash oracle ′and outputs
b′ (see Figure 4 for hash oracle ′ and decapsulation oracle Decaps).

Fig. 3. Sequence of games Gj , j = 1, 2, 3 in the proof of Theorem 2

Game G0: As usual, game G0 (Fig. 2) is the standard IND-CCA security game
(Definition 7, Sect. 4.1) for the KEM and we have |Pr[E0]−1/2| = AdvIND-CCA

KEM (B).
Game G1: In game G1, a message m∗ is chosen randomly and the cipher-
text CT∗ is computed by running PKE1.Enc(param, pk,m∗; r∗). The challenger
S maintains a hash list QH′ (initially empty) and records all entries of the form
(m,K) where hash oracle H′ is queried on some message m ∈ M. Note that
both games G0 and G1 proceed identically and we get Pr[E0] = Pr[E1].
Game G2: In game G2, the hash oracle H′ and the decapsulation oracle Decaps
are answered in such a way that they no longer make use of the secret key sk
except for testing whether PKE1.Dec(param, sk,CT) ∈ M for a given ciphertext
CT (line 12 of Decaps oracle in Fig. 4). The hash list QH′ records all entries of the
form (m,K) where hash oracle H′ is queried on some message m ∈ M. Another
list QD stores entries of the form (CT,K) where either Decaps oracle is queried
on some ciphertext CT or the hash oracle H′ is queried on some message m ∈
M satisfying CT ←− PKE1.Enc(param, pk,m; r) with PKE1.Dec(param, sk,CT)
−→ m.

Let X denotes the event that a correctness error has occurred in the
underlying PKE1 scheme. More specifically, X is the event that either the list
QH′ contains an entry (m,K) with the condition PKE1.Dec(param, sk,PKE1.
Enc(param, pk,m; r)) �= m or the list QD contains an entry (CT,K) with the
condition PKE1.Enc(param, pk,PKE1.Dec(param, sk,CT); r) �= CT or both.
Claim: The view of B is identical in games G1 and G2 unless the event X
occurs.

Secure KEM with Compact Ciphertext and Public Key from GS Code 189

′(m)

1. for the game G1,G2,G3 do
2. if ∃K such that (m, K) ∈ Q ′
3. return K;
4. end if
5. CT = (c,d) ←− PKE1.Enc(param, pk,m; r);

6. K
U←− K;

7. end for
8. for the game G3 do
9. if m = m∗ and CT∗ defined
10. Y = true;
11. abort;
12. end if
13. end for
14. for the game G2,G3 do
15. if ∃K′ such that (CT, K′) ∈ QD

16. K = K′;
17. else
18. QD = QD ∪ {(CT, K)};
19. end if
20. end for
21. for the game G1,G2,G3 do
22. Q ′ = Q ′ ∪ {(m, K)};
23. return K;
24. end for

Decaps(CT �= CT∗)

1. for game G1 do
2. m′ ←− PKE1.Dec(param, sk,CT);
3. if m′ = ⊥
4. return ⊥;
5. end if
6. return K = H′(m′);
7. end for
8. for games G2,G3 do
9. if ∃K such that (CT, K) ∈ QD

10. return K;
11. end if
12. if PKE1.Dec(param, sk,CT) /∈ M
13. return ⊥;
14. end if
15. K

U←− K ;
16. QD = QD ∪ {(CT, K)};
17. return K;
18. end for

Fig. 4. The hash oracles H′ and the decapsulation oracle Decaps for games Gj , j =
1, 2, 3 in the proof of Theorem 2

ACVO(·)(param, pk,CT∗)

1. K∗ U←− K;

2. b′ ←− BDecaps(·), ′(·)(param, pk,CT∗, K∗);
3. if ∃(m′, K′) ∈ Q ′ such that

PKE1.Enc(param, pk,m′; r) −→ CT∗

4. return m′;
5. else
6. abort;
7. end if

Decaps(CT �= CT∗)

1. if ∃K such that (CT, K) ∈ QD

2. return K;
3. end if
4. if CVO(CT) = 0
5. return ⊥;
6. end if
7. K

U←− K;
8. QD = QD ∪ {(CT, K)};
9. return K;

Fig. 5. Adversary A against OW-VA security of PKE1

Proof of claim. To prove this, consider a fixed PKE1 ciphertext CT (placed as
a Decaps query) with m ←− PKE1.Dec(param, sk,CT). Note that when m /∈
M, the decapsulation oracle Decaps(CT) returns ⊥ in both games G1 and G2.
Suppose m ∈ M. We now show that in game G2, Decaps(CT) −→ H′(m) for the
PKE1 ciphertext CT of a message m ∈ M with PKE1.Enc(param, pk,m; r) −→
CT. We distinguish two cases – B queries hash oracle H′ on m before making
Decaps oracle on CT, or the other way round.

Case 1: Let the oracle H′ be queried on m first by B before decapsulation query
on PKE1 ciphertext CT. Since Decaps oracle was not yet queried on CT, no entry
of the form (CT,K) exist in the current list QD yet. Therefore, besides adding
(m,K

U←− K) to the list QH′(line 22 of H′ oracle in Fig. 4), the challenger S

190 J. Dey and R. Dutta

also adds (CT,K) to the list QD (line 18 of H′ oracle in Fig. 4), thereby defining
Decaps(CT) −→ K = H′(m).
Case 2: Let the oracle Decaps be queried on PKE1 ciphertext CT before the
hash oracle H′ is queried on m. Then no entry of the form (CT,K) exists in
QD yet. Otherwise, H′ already was queried on a message m′′ �= m (because
Decaps oracle is assumed to be queried first on CT and the oracle H′ was
not yet queried on m) satisfying PKE1.Enc(param, pk,m′′; r′′) −→ CT with
PKE1.Dec(param, sk,CT) −→ m′′. This is a contradiction to the fact that the
same PKE1 ciphertext CT is generated for two different messages m′′,m using
randomness r, r

′′
respectively where r = G(m) �= G(m′′) = r′′ for a cryptograph-

ically secure hash function G. Therefore,Decaps oracle adds (CT,K
U←− K) to

the list QD, thereby defining Decaps(CT) −→ K. When queried on m afterwards
for hash oracle H′, an entry of the form (CT,K) already exists in the list QD

(line 15 of H′ oracle in Fig. 4). By adding (m,K) to the list QH′ and returning
K, the hash oracle H′ defines H′(m) = K ←− Decaps(CT).

Hence, B’s view is identical in games G1 and G2 unless a correctness error
X occurs. � (of Claim)

As Pr[X] = 0 for our KEM, we have Pr[E1] = Pr[E2].
Game G3: In game G3, the challenger S sets a flag Y = true and aborts
(with uniformly random output) immediately on the event when B queries the
hash oracle H′ on m∗. Hence, |Pr[E2] − Pr[E3]| ≤ Pr[Y = true]. In game
G3, H′(m∗) will never be given to B neither through a query on hash ora-
cle H′ nor through a query on decapsulation oracle Decaps, meaning bit b
is independent from B’s view. Thus, Pr[E3] = 1/2. To bound Pr[Y = true],
we construct an adversary A against the OW-VA security of PKE1 simulat-
ing game G3 for B as in Fig. 5. Here B uses Decaps oracle given in Fig. 5
with the same hash oracle H′ for game G2 in Fig. 4. Consequently, the sim-
ulation is perfect until Y = true occurs. Furthermore, Y = true ensures that
B has queried H′(m∗), which implies that (m∗,K ′) ∈ QH′ for some K ′ ∈ K
where the list QH′ is maintained by the adversary A simulating G3 for B. In
this case, we have PKE1.Enc(param, pk,m∗; r∗) −→ CT∗ and hence A returns
m∗. Thus, Pr[Y = true] = AdvOW-VA

PKE1
(A). Combining all the probabilities, we

get AdvIND-CCA
KEM (B) = |Pr[E0] − 1/2| = |Pr[E1] − 1/2| = |Pr[E2] − 1/2| =

|Pr[E2] − Pr[E3]| ≤ Pr[Y = true] = AdvOW-VA
PKE1

(A) which completes our proof. �

Theorem 3. If the public key encryption scheme PKE2 = (Setup,KeyGen,Enc,
Dec) described in Fig. 6 is IND-CPA secure (Definition 5, Sect. 4.1), then the
public key encryption scheme PKE1 = (Setup,KeyGen,Enc,Dec) as described
in Fig. 1 provides OW-PCVA security (Definition 6, Sect. 4.1) when the hash
function G is modeled as a random oracle.

Secure KEM with Compact Ciphertext and Public Key from GS Code 191

• PKE2.Setup(1λ) −→ param : A trusted authority takes security parameter λ as input and runs

PKE1.Setup(1λ) to get public parameters param = (n, n0, k, k′, w, q, s, t, r, m, G, , ′).

• PKE2.KeyGen(param) −→ (pk, sk) : A user generates the key pair (pk, sk) by running
PKE1.KeyGen(param) where the public key pk = {ψi,j | i = 0, 1, . . . , mt−1, j = 0, 1, . . . , k

s −1},
ψi,j ∈ (GF(q))s and the secret key sk = (v,y).

• PKE2.Enc(param, pk,m; r) −→ c : An encryptor encrypts a message m ∈ M = (GF(q))k′
and

produces a ciphertext c as follows.

1. Compute r = G(m) ∈ (GF(q))k, d = (m) ∈ (GF(q))k′
.

2. Parse r = (ρ||σ) where ρ ∈ (GF(q))k−k′
, σ ∈ (GF(q))k′

. Set μ = (ρ||m) ∈ (GF(q))k.
3. Run Algorithm 2 using σ as a seed to obtain an error vector e of length n − k and weight

w − wt(μ) and set e′ = (e||μ) ∈ (GF(q))n.
4. Use the public key pk = {ψi,j |i = 0, 1, . . . , mt − 1, j = 0, 1, . . . , k

s − 1} as in

PKE1.Enc(param, pk,m; r) and construct the matrix H(n−k)×n = (M |In−k) where M =
(Mi,j), Mi,j is a s × s dyadic matrix with signature ψi,j , i = 0, 1, . . . , mt − 1, j =

0, 1, . . . , k
s − 1. Compute c = H(e′)T .

• PKE2.Dec(param, sk, c) −→ m′ : On receiving the ciphertext c, the decryptor performs the
following steps using public parameters param and its secret key sk = (v,y).
1. Use the secret key sk = (v,y) to form a parity check matrix H′ as in the procedure

PKE1.Dec(param, sk,CT)
2. To decode c, find error e′′ of weight w and length n by running the decoding algorithm for

Alternant codes with syndrome H′(c||0)T .

3. Parse e′′ = (e0||μ′) ∈ (GF(q))n and μ′=(ρ′||m′) ∈ (GF(q))k where e0 ∈ (GF(q))n−k,

ρ′ ∈ (GF(q))k−k′
, m′ ∈ (GF(q))k′

. Return m′.

Fig. 6. Scheme PKE2 = (Setup,KeyGen,Enc,Dec)

The OW-PCVA security for a PKE scheme trivially implies the OW-VA secu-
rity of the PKE scheme considering zero queries to the PCO(·, ·) oracle. Therefore,
the following corollary is an immediate consequence of Theorem 3.

Corollary 1. If the public key encryption scheme PKE2 =(Setup,KeyGen,Enc,
Dec) described in Fig. 6 is IND-CPA secure (Definition 5, Sect. 4.1), then the
public key encryption scheme PKE1 = (Setup,KeyGen,Enc,Dec) as described in
Fig. 1 provides OW-VA security (Definition 6, Sect. 4.1) when the hash function
G is modeled as a random oracle.

Theorem 4. If the decisional SD problem (Definition 1, Sect. 2.1) is hard, the
public key matrix H (derived from the public key pk which is generated by run-
ning PKE2.KeyGen(param) where param ←− PKE2.Setup(1λ)) is indistinguish-
able (Definition 2, Sect. 2.1) and the hash function G is modeled as a random
oracle, then the public key encryption scheme PKE2 = (Setup,KeyGen,Enc,Dec)
presented in Fig. 6 is IND-CPA secure (Definition 5, Sect. 4.1).

Due to limited space, proofs of Theorems 3 and 4 will appear in the full
version of the paper.

Remark 1. The KEM protocol also can be shown to provide security in quantum
random oracle model following the work in [15] and thus we can get Theorem 5.

Theorem 5. Assuming the hardness of decisional SD problem (Definition 1,
Sect. 2.1) and indistinguishability of the public key matrix H (derived from the

192 J. Dey and R. Dutta

public key pk by running KEM.KeyGen(param) where param ←− KEM.Setup(1λ),
λ being the security parameter), our KEM = (Setup,KeyGen,Encaps,Decaps)
described in Sect. 3 provides IND-CCA security (Definition 7, Sect. 4.1) when the
hash functions G,H and H′ are modeled as quantum random oracles.

Note that, proof of Theorem 5 follows from Theorems 4, 6 and 7 along with
the fact that IND-CPA security implies OW-CPA security.

Theorem 6. If the public key encryption scheme PKE2 = (Setup,KeyGen,Enc,
Dec) described in Fig. 6 is OW-CPA secure (Definition 6, Sect. 4.1), then the
public key encryption scheme PKE1 = (Setup,KeyGen,Enc,Dec) as described in
Fig. 1 provides OW-PCA security (Definition 6, Sect. 4.1) when the hash function
G is modeled as a quantum random oracle.

Theorem 7. If the public key encryption scheme PKE1 = (Setup,KeyGen,Enc,
Dec) described in Fig. 1 is OW-PCA secure (Definition 6, Sect. 4.1) and there
exist cryptographically secure hash functions, then the key encapsulation mech-
anism KEM = (Setup,KeyGen,Encaps,Decaps) as described in Sect. 3 achieves
IND-CCA security (Definition 7, Sect. 4.1) when the hash functions H and H′

are modeled as quantum random oracles.

5 Conclusion

In this work, we give a proposal to design an IND-CCA secure key encapsu-
lation mechanism based on Generalized Srivastava codes. In terms of storage,
our work seems well as compared to some other code-based KEM protocols as
shown in Table 1. The scheme instantiated with Generalized Srivastava code does
not involve any correctness error like some lattice-based schemes which allows
achieving a simpler and tighter security bound for the IND-CCA security. In
the upcoming days, it would be desirable to devise more efficient and secure
constructions using suitable error-correcting codes.

References

1. Aguilar-Melchor, C., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Efficient
encryption from random quasi-cyclic codes. IEEE Trans. Inf. Theor. 64(5), 3927–
3943 (2018)

2. Albrecht, M., Cid, C., Paterson, K.G., Tjhai, C.J., Tomlinson, M.: NTS-KEM.
NIST Submissions (2019)

3. Aragon, N., et al.: BIKE: bit flipping key encapsulation. NIST Submissions (2017)
4. Aragon, N., et al.: BIKE: bit flipping key encapsulation. NIST Submissions (2019)
5. Banegas, G., et al.: DAGS: key encapsulation using dyadic GS codes. J. Math.

Cryptol. 12(4), 221–239 (2018)
6. Bardet, M., et al.: Big quake. NIST Submissions (2017)
7. Barreto, P.S.L.M., Cayrel, P.-L., Misoczki, R., Niebuhr, R.: Quasi-dyadic CFS

signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp.
336–349. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-
6 23

https://doi.org/10.1007/978-3-642-21518-6_23
https://doi.org/10.1007/978-3-642-21518-6_23

Secure KEM with Compact Ciphertext and Public Key from GS Code 193

8. Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of
certain coding problems (corresp.). IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)

9. Bernstein, D.J., et al.: Classic McEliece: conservative code-based cryptography.
NIST Submissions (2017)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R., Viguier,
B.: KangarooTwelve: fast hashing based on KECCAK-p. In: Preneel, B., Ver-
cauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 400–418. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93387-0 21

11. Fabšič, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A
reaction attack on the QC-LDPC McEliece cryptosystem. In: Lange, T., Takagi,
T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 51–68. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59879-6 4

12. Faugere, J.C., Gauthier-Umana, V., Otmani, A., Perret, L., Tillich, J.P.: A dis-
tinguisher for high-rate McEliece cryptosystems. IEEE Trans. Inf. Theor. 59(10),
6830–6844 (2013)

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

14. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53887-6 29

15. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

16. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, vol. 16.
Elsevier (1977)

17. McEliece, R.J.: A public-key cryptosystem based on algebraic. Coding Thv 4244,
114–116 (1978)

18. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece
cryptosystem without random oracles. Des. Codes Crypt. 49(1–3), 289–305 (2008)

19. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-
1 35

20. Sarwate, D.V.: On the complexity of decoding Goppa codes (corresp.). IEEE Trans.
Inf. Theor. 23(4), 515–516 (1977)

21. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/978-3-319-59879-6_4
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35

	Secure Key Encapsulation Mechanism with Compact Ciphertext and Public Key from Generalized Srivastava Code
	1 Introduction
	2 Preliminaries
	2.1 Hardness Assumptions
	2.2 Basic Definitions from Coding Theory

	3 Our KEM Protocol
	4 Security
	4.1 Security Notions
	4.2 Security Proof

	5 Conclusion
	References

