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Preface

The 22nd International Conference on Information Security and Cryptology (ICISC
2019) was held in Seoul, South Korea, during December 4–6, 2019. This year’s
conference was hosted by the KIISC (Korea Institute of Information Security and
Cryptology).

The aim of this conference was to provide an international forum for the latest
results of research, development, and applications within the field of information
security and cryptology. This year, we received 43 submissions and were able to accept
19 papers, including 1 merged paper, resulting in 18 presentations at the conference.
The challenging review and selection processes were successfully conducted by
Program Committee (PC) members and external reviewers via the EasyChair review
system. For transparency, it is worth noting that each paper underwent a blind review
by at least three PC members, in most cases, and at least four PC members for cases in
which a PC member co-authored. Furthermore, for resolving conflicts concerning the
reviewer’s decisions, individual review reports were open to all PC members, followed
by detailed interactive discussions on each paper. For the LNCS post-proceedings, the
authors of selected papers had a few weeks to prepare their final versions, based on the
comments received from the reviewers.

The conference featured four invited talks: “Information Security in Quantum Time”
by Lily Chen, “Practical Applications of Homomorphic Encryption” by Miran Kim,
“Lattice-Based Zero-Knowledge Proofs: Shorter and Faster Constructions and Appli-
cations” by Ron Steinfeld, and “Secure and Verifiable Computation” by Huaxiong
Wang. We thank the invited speakers for their kind acceptances and respectable pre-
sentations. We would like to thank all authors who submitted their papers to ICISC
2019, as well as all PC members. It was a truly wonderful experience to work with such
talented and hard-working researchers. We also appreciate the external reviewers for
assisting the PC members.

Finally, we would like to thank all attendees for their active participation and the
organizing members who successfully managed this conference.

December 2019 Jae Hong Seo
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Revised Version of Block Cipher CHAM

Dongyoung Roh(B), Bonwook Koo, Younghoon Jung, Il Woong Jeong,
Dong-Geon Lee, Daesung Kwon, and Woo-Hwan Kim

The Affiliated Institute of ETRI, Daejeon, Republic of Korea
{dyroh,bwkoo,sky1236,iw98jeong,guneez,ds kwon,whkim5}@nsr.re.kr

Abstract. CHAM is a family of lightweight block ciphers published in
2017 [22]. The CHAM family consists of three ciphers, CHAM-64/128,
CHAM-128/128, and CHAM-128/256. CHAM can be implemented with
a remarkably low area in hardware compared to other lightweight block
ciphers, and it also performs well on software. We found new (related-
key) differential characteristics and differentials of CHAM using a SAT
solver. Although attacks using the new characteristics are limited to the
reduced rounds of CHAM, it is preferable to increase the number of
rounds to ensure a sufficient security margin. The numbers of rounds of
CHAM-64/128, CHAM-128/128, and CHAM-128/256 are increased from
80 to 88, 80 to 112, and 96 to 120, respectively. We provide strong evi-
dence that CHAM with these new numbers of rounds is secure enough
against (related-key) differential cryptanalysis. Because increasing the
number of rounds does not affect the area in low-area hardware imple-
mentations, the revised CHAM is still excellent in lightweight hardware
implementations. In software, the revised CHAM is still comparable to
SPECK, one of the top-ranked algorithms in software.

Keywords: Lightweight block cipher · CHAM · (Related-key)
Differential cryptanalysis · SAT solver

1 Introduction

Designing a secure cryptographic algorithm that can operate efficiently on small
computing devices is a very challenging problem in cryptography. In particular,
many block ciphers have been proposed in the area of symmetric-key cryptogra-
phy to solve this problem: PRESENT [10], CLEFIA [30], KATAN/KTANTAN
[12], PRINTCIPHER [21], LED [18], PRINCE [11], SIMON/ SPECK [4], LEA
[20], MIDORI [2], SPARX [15], SKINNY [7], GIFT [3], CHAM [22], etc.

Of these block ciphers, CHAM, a family of lightweight block ciphers designed
in 2017, has realized a remarkably low hardware area implementation. The family
consists of three variants, CHAM-64/128, CHAM-128/128, and CHAM-128/256.
Specifically, CHAM-64/128 can be implemented using 665 GE on the IBM 130 nm
library, which is much lower than the implementation area of SIMON, one of
the lowest area block ciphers in hardware. The family also shows competitive

c© Springer Nature Switzerland AG 2020
J. H. Seo (Ed.): ICISC 2019, LNCS 11975, pp. 1–19, 2020.
https://doi.org/10.1007/978-3-030-40921-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40921-0_1&domain=pdf
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2 D. Roh et al.

efficiency in terms of software implementation. It has performance comparable to
that of SPECK, one of the best-performing lightweight block ciphers in software.

Our Contribution. The contributions of this paper are twofold. First, new
(related-key) differential attacks on the round-reduced CHAM are presented.
Secondly, we propose a revisison of CHAM with new numbers of rounds to ensure
a sufficient security margin and evaluate its performance on both hardware and
software.

First, we find (related-key) differential characteristics using the framework
of Mouha et al. [27]. We convert the problem of finding them into a Boolean
satisfiability problem and then solve this problem using a SAT solver, finding
39- and 62-round differential characteristics of CHAM-64/128 and CHAM-128/k,
respectively. We also found 47-round related-key differential characteristics of
all variants of CHAM. Next, we find differentials using multiple differential char-
acteristics with the same input and output differences. In this case, we found
44- and 67-round differentials of CHAM-64/128 and CHAM-128/k, respectively.
Note that we could not find any related-key differentials longer than 47 rounds.
Finally, (related-key) differential attacks on CHAM using the newly found differ-
entials and (related-key) differential characteristics are presented.1 Specifically,
there are (related-key) differential attacks on 56, 72, and 78 rounds of CHAM-
64/128, CHAM-128/128, and CHAM-128/256, respectively. All of our results are
listed in Tables 1 and 2.

Table 1. (Related-key) Differential characteristics and differentials of CHAM

Variant Class Round Prob. Reference

CHAM-64/128 Differential characteristic 36 2−63 [22]

Differential characteristic 39 2−63 This paper

Differentiala 44 2−62.19 This paper

RK differential characteristic 34 2−61 [22]

RK differential characteristic 47 2−57 This paper

CHAM-128/k Differential characteristic 45 2−125 [22]

Differential characteristic 62 2−126 This paper

Differentiala 67 2−125.54 This paper

CHAM-128/128 RK differential characteristic 33 2−125 [22]

RK differential characteristic 47 2−120 This paper

CHAM-128/256 RK differential characteristic 40 2−127 [22]

RK differential characteristic 47 2−121 This paper
aDifferential that starts from the odd round

1 The detailed description of the attacks are omitted due to the page limit. Note that
the attacks are designed from the designer’s point of view, not from the attacker’s
point of view. Thus there is room for disagreement as to the feasibility of the attacks,
since the situation has been set in favor of the attacker.
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Table 2. (Related-key) Differential cryptanalysis on CHAM

Cipher Attack type Attacked rounds

CHAM-64/128 Related-key differential cryptanalysis 56

CHAM-128/128 Differential cryptanalysis 72

CHAM-128/256 Differential cryptanalysis 78

Next, we provide new numbers of rounds of CHAM considering the newly
found (related-key) differential attacks (see Table 3). We provide strong evidence
that the revised CHAM provides a sufficient security margin against (related-key)
differential attacks.

Table 3. Numbers of rounds of CHAM

Block/key sizes 64/128 128/128 128/256

Original CHAM 80 80 96

Revised CHAM 88 112 120

Finally, the implementation results of the revised CHAM are given. On hard-
ware, the area-optimized implementation results are given in Table 4. There is
almost no change between the area of the original CHAM and the revised CHAM.
Specifically, the revised CHAM-64/128 can be implemented in less than 70% of
the area of SIMON-64/128. Table 5 outlines the software implementation results.
The revised CHAM still outperforms SIMON and is comparable to SPECK.

Table 4. Area-optimized hardware implementation results - GE (IBM 130 nm)

Cipher 64/128 128/128 128/256 Reference

Revised CHAM 665 1,057 1,179 This paper

Original CHAM 665 1,057 1,180 [22]

SIMON 958 1,234 1,782 [4]

SPECK 996 1,280 1,840 [4]

Related Work. To mount a differential cryptanalysis [8] on block ciphers, it is
necessary to find a good differential characteristic. There are two notable meth-
ods by which to find the differential characteristics of ARX ciphers, [9] and [27].
Biryukov and Velichkov extended Matsui’s branch-and-bound algorithm [25],
originally proposed for DES-like ciphers, to the class of ARX ciphers by intro-
ducing the concept of a partial difference distribution table (pDDT) [9]. Their
approach was successfully applied to the block ciphers TEA [33], XTEA [28],
SPECK [4], and RAIDEN [29]. Meanwhile, Mouha and Preneel used a SAT
solver to find the optimal differential characteristics for ARX ciphers [27].
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Table 5. Software efficiency comparison - rank metric [5] (Larger is better)

Scenario Cipher Atmega128 MSP430 Reference

Fixed key [5] Revised CHAM-64/128 25.4 45.1 This paper

Original CHAM-64/128 28.0 49.3 [22]

SPECK-64/128 29.8 50.0 [4]

SIMON-64/128 13.6 20.2 [4]

Revised CHAM-128/128 12.4 18.1 This paper

Original CHAM-128/128 17.1 25.0 [22]

SPECK-128/128 12.7 21.7 [4]

SIMON-128/128 3.5 3.4 [4]

Communication [13,14]
(without decryption)

Revised CHAM-64/128 6.6 10.3 This paper

Original CHAM-64/128 7.2 11.1 [22]

SPECK-64/128 6.3 9.7 FELICS website

SIMON-64/128 3.0 4.7 FELICS website

Once a good differential is found, it becomes necessary to mount a key-
recovery attack using the differential. Traditional key-recovery techniques (called
counting techniques) were introduced with the development of differential crypt-
analysis [8]; these represent the most widely used techniques. Meanwhile, Dinur
improved differential attacks on SPECK using a non-traditional key-recovery
technique [16]. It was based on an enumeration framework that tests suggestions
for the key that are calculated by a sub-cipher attack, generalizing an earlier
algebraic-based framework [1]. Recently, Song et al. [31] demonstrated differen-
tial attacks on SPECK and LEA by combining two earlier techniques [16,27].

Notation. We will denote by x ⊕ y the bit-wise exclusive OR (XOR) of bit
strings x and y. Let x � y denote the addition of a word x and a word y modulo
2w, and let x ≪ i denote the rotation of a w-bit word x to the left by i bits.

Paper Organization. The outline of the paper is as follows. We provide a brief
description of CHAM and present the corresponding new numbers of rounds in
Sect. 2. Section 3 describes the manner by which the (related-key) differential
characteristics and differentials of CHAM are found. In Sect. 4, we analyze the
security of the revised CHAM and show that it provides a sufficient security mar-
gin. Section 5 provides details about the hardware and software implementation
results. Finally, Sect. 6 concludes the paper.

2 Revised Version of CHAM

In this section, we give a short description of CHAM and define the corresponding
new numbers of rounds. CHAM is a family of block ciphers with a 4-branch
generalized Feistel structure. Each cipher is denoted by CHAM-n/k, where n
and k are the block size and key size, respectively. Table 6 shows the list of
ciphers in the family and their parameters. Here, w denotes the bit length of a
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branch (word), and rold and r represent the original number of rounds and the
new number of rounds, respectively.

Table 6. List of CHAM ciphers and their parameters

Cipher n k w rold r

CHAM-64/128 64 128 16 80 88

CHAM-128/128 128 128 32 80 112

CHAM-128/256 128 256 32 96 120

By applying r iterations of the key-dependent round function, CHAM-n/k
encrypts a plaintext of four w-bit words (x0, y0, z0, w0) to a ciphertext of four
w-bit words (xr, yr, zr, wr). For 0 ≤ i < r, the i-th round outputs

(xi+1, yi+1, zi+1, wi+1)

←− (
yi, zi, wi,

(
(xi ⊕ i) �

(
(yi ≪ αi) ⊕ rki mod 2k/w

))
≪ βi

)
,

where αi = 1 and βi = 8 when i is even and αi = 8 and βi = 1 when i is odd
and rki mod 2k/w is the round key.

The key schedule of CHAM-n/k takes a secret key of k/w w-bit words K[0],
K[1], · · · , K[k/w − 1] and generates 2k/w w-bit round keys rk0, rk1, · · · ,
rk2k/w−1. The round keys are generated as follows:

rki ←− K[i] ⊕ (K[i] ≪ 1) ⊕ (K[i] ≪ 8) ,

rk(i+k/w)⊕1 ←− K[i] ⊕ (K[i] ≪ 1) ⊕ (K[i] ≪ 11) ,

where 0 ≤ i < k/w.
The structure of the round function of CHAM is depicted in Fig. 1.

xi yi

1

8

zi wi

xi+1 yi+1 zi+1 wi+1

kimod 2k/wi

8

1

xi+2 yi+2 zi+2 wi+2

ki+1mod 2k/wi+1

Fig. 1. Two consecutive rounds beginning with the even i-th round
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3 Search for (Related-Key) Differential Characteristics
and Differentials

This section presents the method by which we search for the (related-key) dif-
ferential characteristics and differentials of CHAM. We convert the problem of
finding them to Boolean satisfiability problems assuming all the operations in the
cipher are independent, after which we solve the Boolean satisfiability problems
using a SAT solver.

Note that because the SAT problem is NP-complete, only algorithms with
exponential worst-case complexity are known in this case. Nevertheless, efficient
and scalable algorithms solving the SAT problem are developed continuously.
Typical examples are MiniSAT [17], ManySAT [19], and CryptoMiniSat [32].
Among these solvers, we use CryptoMiniSat because multi-threaded operations
are possible, XOR clauses are supported, and multiple solutions to a given SAT
problem can be obtained.

3.1 Search for Differential Characteristics

Here, we describe how to convert the problem of finding differential characteris-
tics for CHAM to a Boolean satisfiability problem.

It is enough to show how to convert the problem of calculating differential
probability of an addition modulo 2w to a Boolean satisfiability problem, since
addition is the only non-linear operations for CHAM. Let xdp+(α, β → γ) be
the XOR-differential probability of addition modulo 2w, with input differences
α and β and an output difference γ. In [24], it is proved that the differential
(α, β → γ) is valid if and only if

eq(α � 1, β � 1, γ � 1) ∧ (α ⊕ β ⊕ γ ⊕ (β � 1)) = 0, (1)

where eq(x, y, z) := (¬x ⊕ y) ∧ (¬x ⊕ z). For every valid differential (α, β → γ),
we define the weight w(α, β → γ) of the differential as follows:

w(α, β → γ) := − log2
(
xdp+(α, β → γ)

)
.

The weight of a valid differential can then be calculated as:

w(α, β → γ) = h∗ (¬eq (α, β, γ)) ,

where h∗(x) denotes the number of non-zero bits in x not containing the most
significant bit.

First, we convert the bitwise conditional equation of (1) into a Boolean sat-
isfiability problem to obtain a valid differential (see [23]). Then we calculate the
probability of the valid differential. We need to count the number of non-zero
bits in a certain word, not containing the most significant bit of it, to calculate
the differential probability of a round. Then, it is necessary to sum the log value
of differential probability of each round to obtain the differential probability of
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a differential characteristic.2 To do this, we have to convert a normal addition
operation to a Boolean satisfiability problem. This can be efficiently achieved
using a full adder, where [s, o] = FullAdder(x, y, i) with

s = x ⊕ y ⊕ i and o = (x ∧ y) ∨ (x ∧ i) ∨ (y ∧ i).

In addition, the following conditions are added to ensure an efficient search for
differential characteristics. Suppose that we want to find an i-round differential
characteristic of CHAM with probability 2−p. Additionally, assume that the best
j-round differential characteristic is 2−pj for every 1 ≤ j < i. This means that
there are no j-round differential characteristics with a probability greater than
2−pj . First, we added CNF formulas such that the sum of the log values of
differential probabilities from the first round to the j-th round is less than or
equal to −pj for every 1 ≤ j < i. And the sum of the log values of differential
probabilities from the first round to the 2j-th round should be greater than or
equal to −p+pi−2j for every 1 < 2j < i due to the repeating structure arising for
every two rounds of CHAM. CNF formulas that represent the conditions above
are also added.

At this point, we can convert an equation to find a differential characteristic
into a CNF similar to an earlier framework [27]. We then invoke a SAT solver,
CryptoMiniSat, to solve the CNF.

Using this framework, we found a 39-round differential characteristic with a
probability of 2−63 of CHAM-64/128 and a 62-round differential characteristic
with a probability of 2−126 of CHAM-128/k. We also found a 47-round related-
key differential characteristic on each case of CHAM-64/128, CHAM-128/128,
and CHAM-128/256. The search results of the differential characteristics and
the related-key differential characteristics of CHAM are summarized in Tables 7
and 8, respectively.

3.2 Search for Differentials

When mounting a differential attack on a block cipher, only the input and output
differences of a differential are needed, meaning that the internal differences after
each round of the differential are not. To compute the differential probability
more accurately, it is necessary to find more characteristics with the same input
and output differences. Once a good differential characteristic is obtained, we fix
the input and output differences and search for characteristics with probabilities
less than or equal to that of the differential characteristic obtained. We then
sum the probabilities of all of these characteristics to obtain the differential
probability of the differential.

For CHAM-64/128, from a 44-round differential characteristic with a proba-
bility of 2−73, we obtain the corresponding differential with a probability greater
than 2−62.19. For CHAM-128/k, from a 67-round differential characteristic with a
2 Since we have assumed that all additions in the block cipher are independent of each

other with regard to the XOR-difference, we multiply the differential probabilities of
all additions to compute the differential probability of a differential characteristic.
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Table 7. Differential characteristics and differentials of the revised CHAM

n/k Type Rounds Input difference

Prob. Output difference

64/128 DCa 39 (0102 0280 0000 0400)

2−63 (0100 0281 0002 0000)

Db,c 44 (4000 8040 00A0 0000)

2−62.19 (0001 8100 0001 0200)

128/k DCa 62 (08000000 04000000 000C0800 00020008)

2−126 (04000002 00040001 00000800 00000400)

Db,c 67 (0001000C 08000000 04000000 000C0800)

2−125.54 (08000004 00180002 00000000 00000010)
a Differential characteristic
b Differential
c Differential that starts from the odd round

Table 8. Related-key differential characteristics of the revised CHAM

n/k
Rounds

Prob.

Key difference

Input difference

Output difference

64/128
47

2−57

(0000 0000 3251 A938 0000 0000 100F A463)

(0000 0000 0000 83E0)

(F8C3 0000 0000 0000)

128/128
47

2−120

(00000000 00000000 24924925 24924925)

(00000000 00000000 00000000 FFFFFF25)

(FFFFF925 00000000 00000000 00000000)

128/256
47

2−121

(00000000 00000000 5BEE1236 00800000)

(00000000 00000000 B5DC246C 6AB848D9)

(00000000 00000000 00000000 81100000)

(3EC7091F 00000000 00000000 00000000)

probability of 2−138, we obtain the corresponding differential with a probability
greater than 2−125.54. The probability calculations of the differentials are shown
in Figs. 2 and 3. The search results of the differentials of CHAM are summarized
in Table 7.

However, for a given related-key differential characteristic, there are few other
related-key differential characteristics that have an identical key difference, input
difference, and output difference. Therefore, it appears to be impossible to find
a related-key differential longer than the related-key differential characteristics
previously found.

4 Security Analysis

In this section, we analyze the security of CHAM and show that the revised
CHAM provides a sufficient security margin. Essentially, we follow an earlier
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Weight # sols log2 Pr log2
∑

acc

73 1 -73.00 -73.00
74 3 -72.42 -71.68
75 14 -71.20 -70.42
76 62 -70.05 -69.22
77 191 -69.43 -68.32
78 666 -68.63 -67.47
79 2,021 -68.02 -66.72
80 5,906 -67.48 -66.05
81 16,754 -66.97 -65.44
82 44,796 -66.55 -64.89
83 118,204 -66.15 -64.39
84 298,296 -65.82 -63.93
85 734,542 -65.52 -63.52
86 1,769,672 -65.25 -63.14
87 4,139,425 -65.02 -62.79
88 9,502,181 -64.83 -62.48
89 21,358,296 -64.66 -62.19

Fig. 2. A 44-round differential of CHAM-64/128 starting from the odd round, (4000
8040 00A0 0000)x −→ (0001 8100 0001 0200)x

analysis [22] except for the attacks related to (related-key) differential charac-
teristics.

Table 9 shows the maximum numbers of rounds of characteristics for each
attack that was found. Only the numbers of rounds of characteristics for some
attacks using (related-key) differential characteristics have changed, while all
the others are identical to those in the aforementioned study [22]. The (related-
key) differential characteristics can be found in Sect. 3 and the features of the
related-key boomerang characteristics and the (related-key) differential-linear
approximations can be found in Appendix B.

Tables 10 and 11 depict the maximum probabilities of the differential char-
acteristics and related-key differential characteristics for various rounds, respec-
tively. For example, the maximum probability of a 39-round differential charac-
teristic of CHAM-64/128 is 2−63. This means that there is a 39-round differential
characteristic with a probability of 2−63, while there are no 39-round differential
characteristics with a probability greater than 2−63 under the assumption that
every operation in CHAM is independent of each other. This is apparent consid-
ering that the CNF formula to find a 39-round differential characteristic with a
probability greater than 2−63 is unsatisfiable.

Table 10 indicates that there are no 40-round differential characteristics of
CHAM-64/128 with a probability greater than 2−64. When we examine the
decreasing trend of the differential probability according to the number of rounds
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Weight # sols log2 Pr log2
∑

acc

138 1 -138.00 -138.00
139 0 - -
140 19 -135.76 -135.48
141 61 -135.07 -134.26
142 182 -134.50 -133.38
143 1,210 -132.76 -132.04
144 3,037 -132.44 -131.22
145 12,248 -131.42 -130.32
146 44,150 -130.57 -129.44
147 122,218 -130.11 -128.74
148 430,277 -129.29 -127.99
149 1,253,869 -128.75 -127.32
150 3,614,881 -128.22 -126.70
151 10,867,791 -127.63 -126.09
152 29,544,379 -127.19 -125.54

Fig. 3. A 67-round differential of CHAM-128/k starting from the odd round, (0001000C
08000000 04000000 000C0800)x −→ (08000004 00180002 00000000 00000010)x

of CHAM-128/k, it can be strongly contended that there are no 34-round differ-
ential characteristics with probabilities greater than 2−64. Hence, there appears
to be no 68-round differential characteristics with a probability greater than
2−128. Furthermore, when we examine the trend of the differential probability
and that of related-key differential probability of CHAM-128/k, it appears that
there are no 68-round related-key differential characteristics with a probability
greater than 2−128.

Considering not only existing attacks but also unknown attacks that may
exist, we set the numbers of rounds of the revised CHAM conservatively, as
follows.

– CHAM-64/128: We know that there are no 40-round differential characteristics
and there is a 47-round related-key differential characteristic. Moreover, it
appears to be impossible to obtain a related-key differential longer than 47
rounds using the probability gathering technique. In the key-recovery phase
of an attack, one can mount at most 16 more rounds than the differential due
to the order of round keys in the key schedule.3 Therefore, it is expected that
one cannot mount an attack on more than 63 rounds of CHAM-64/128. Note
that the best attack found here is a 56-round related-key differential attack.

3 The value 16 is obtained by considering only the structure of the key schedule, but
not the complexity of an attack. However, considering the complexity of the attack,
the 16-round key-recovery attack appears to be impossible.
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Table 9. Numbers of rounds of the best discovered characteristics for each cipher and
cryptanalysis

n/k DC RDC LC BC RBC IDC ZCLC DLC RDLC IC RXDC

64/128 39 47 34 35 41 18 21 35 36 16 16

128/128 62 47 40 47 46 15 18 45 43 16 23

128/256 62 47 40 47 42 15 18 45 45 16 23

- (R)DC: (Related-key) Differential Cryptanalysis
- LC: Linear Cryptanalysis
- (R)BC: (Related-key) Boomerang Cryptanalysis
- IDC: Impossible Differential Cryptanalysis
- ZCLC: Zero-Correlation Linear Cryptanalysis
- (R)DLC: (Related-key) Differential-Linear Cryptanalysis
- IC: Integral Cryptanalysis
- RXDC: Rotational-XOR-Differential Cryptanalysis

Table 10. Maximum probabilities of differential characteristics of CHAM for various
rounds

Rounds 1 2 3 4 5 6 7 8 9 10

CHAM-64/128 1 1 1 1 2−1 2−1 2−2 2−3 2−4 2−5

CHAM-128/k 1 1 1 2−1 2−1 2−2 2−2 2−3 2−4 2−5

Rounds 11 12 13 14 15 16 17 18 19 20

CHAM-64/128 2−6 2−7 2−8 2−9 2−11 2−14 2−15 2−16 2−19 2−21

CHAM-128/k 2−7 2−8 2−9 2−11 2−13 2−15 2−17 2−18 2−21 2−24

Rounds 21 22 23 24 25 26 27 28 29 30

CHAM-64/128 2−23 2−25 2−28 2−30 2−32 2−34 2−38 2−39 2−41 2−43

CHAM-128/k 2−25 2−28 2−30 2−33 2−35 2−39 2−43 2−46 2−48 2−53

Rounds 31 32 33 34 35 36 37 38 39 40

CHAM-64/128 2−46 2−48 2−49 2−51 2−55 2−56 2−58 2−60 2−63 < 2−63

CHAM-128/k 2−57

– CHAM-128/128: We know that there is a 62-round differential characteristic
and a 67-round differential. On the other hand, there appears to be no 68-
round (related-key) differential characteristics, as noted earlier. It appears
that the probability gathering technique results in a longer differential by
approximately five rounds compared to the longest differential characteristic.
In the key-recovery phase of an attack, one can mount at most eight more
rounds than the differential due to the order of round keys in the key schedule.
Therefore, it is likely that one cannot mount an attack on more than 80
rounds of CHAM-128/128. Note that the best attack found here is a 72-round
differential attack.
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Table 11. Maximum probabilities of related-key differential characteristics of CHAM
for various rounds

Rounds 1 2 3 4 5 6 7 8 9 10

CHAM-64/128 1 1 1 1 1 1 1 1 1 1

CHAM-128/128 1 1 1 1 1 1 2−1 2−3 2−4 2−5

CHAM-128/256 1 1 1 1 1 1 1 1 1 1

Rounds 11 12 13 14 15 16 17 18 19 20

CHAM-64/128 2−1 2−1 2−2 2−2 2−4 2−7 2−9 2−11 2−13 2−15

CHAM-128/128 2−6 2−7 2−8 2−9 2−11 2−13 2−14 2−17 2−20 2−23

CHAM-128/256 2−1 2−1 2−2 2−3 2−5 2−9 2−11 2−13 2−17 2−19

Rounds 21 22 23

CHAM-64/128 2−17 2−19 2−23

CHAM-128/128 2−25 2−28 2−31

– CHAM-128/256: The analysis for CHAM-128/256 is very similar to that for
CHAM-128/128. The only difference is that one can mount at most 12 more
rounds than the differential in the key-recovery phase of an attack. Therefore,
it appears that one cannot mount an attack on more than 88 rounds on
CHAM-128/256. Note that the best attack found in this case is a 78-round
differential attack.

Based on the above arguments, the numbers of rounds of the revised CHAM-
64/128, CHAM-128/128, and CHAM-128/256 are set to 88, 112, and 120, respec-
tively, resulting in a security margin of approximately 30%.

5 Hardware and Software Implementations

In this section, we present the hardware and software implementation results of
the revised CHAM.

5.1 Hardware Implementation

We use the same hardware architectures and the same environment used in
the earlier work [22], except for the numbers of rounds. The implementation
results show that the change in the hardware area is negligible and that only
the throughput becomes slightly slower due to the increased numbers of rounds.
Table 12 shows the hardware implementation results of CHAM and several other
ciphers. On average, the revised CHAM can be implemented with an area
amounting to 75% of that of SIMON.
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Table 12. Hardware implementations results

n/k Cipher Bit-serial Round-based Tech. Ref.

Areaa Tput.b Areab Tput.b

64/128 Revised CHAM 665 4.5 852 72.7 IBM130 This paper

Original CHAM 665 5.0 852 80.0 IBM130 [22]

Revised CHAM 728 4.5 985 72.7 UMC90 This paper

Revised CHAM 859 4.5 1,110 72.7 UMC180 This paper

SIMON 944 4.2 1,403 133.3 IBM130c [34]

SIMON 958 4.2 1,417 133.3 IBM130 [4]

SPECK 996 3.4 1,658 206.5 IBM130 [4]

128/128 Revised CHAM 1,057 3.6 1,499 114.3 IBM130 This paper

Original CHAM 1,057 5.0 1,499 160.0 IBM130 [22]

Revised CHAM 1,086 3.6 1,691 114.3 UMC90 This paper

SIMON 1,234 2.9 2,090 182.9 IBM130 [4]

SPECK 1,280 3.0 2,727 376.5 IBM130 [4]

Revised CHAM 1,295 3.6 1,899 114.3 UMC180 This paper

LEA 2,302 4.2 3,826 76.2 UMC130 [20]

AES - - 2,400 57.0 UMC180 [26]

128/256 Revised CHAM 1,179 3.3 1,622 106.7 IBM130 This paper

Original CHAM 1,180 4.2 1,622 133.3 IBM130 [22]

Revised CHAM 1,260 3.3 1,864 106.7 UMC90 This paper

Revised CHAM 1,481 3.3 2,086 106.7 UMC180 This paper

SIMON 1,782 2.6 2,776 168.4 IBM130 [4]

SPECK 1,840 2.8 3,284 336.8 IBM130 [4]
a Area in gate equivalent
b Throughput in Kbps @ 100 KHz
c Not exactly same to the non-marked IBM130

5.2 Software Implementation

We compare the software performance of the revised CHAM and other ciphers
via the same method used in the aforementioned study [22]. The implementation
method is also identical to that in the earlier work [22] except for the numbers
of rounds.

Table 13 presents the results of a performance comparison on the AVR and
MSP platforms using the rank metric for a fixed-key scenario. Table 14 shows the
performances based on the rank metric under a one-way communication scenario.
And Table 15 shows a performance comparison based on the FOM metric under
the communication scenario.4

4 The performance data of SIMON-64/128 and SPECK-64/128 are derived from
the FELICS project [13] website. On the other hand, the performance data of
SIMON-128/128, SIMON-128/256, SPECK-128/128, and SPECK-128/256 are not
yet reported.
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Table 13. Performance comparison using the rank metric on AVR and MSP under
the fixed-key scenario

n/k Cipher AVR MSP

ROM RAM cpb Rank ROM RAM cpb Rank

64/128 SPECK [6] 218 0 154 29.8 204 0 98 50.0

Original CHAM [22] 202 3 172 28.0 156 8 118 49.3

Revised CHAM 202 3 188 25.4 156 8 128 45.1

SIMON [6] 290 0 253 13.6 280 0 177 20.2

128/128 Original CHAM [22] 362 16 148 17.1 280 20 125 25.0

SPECK [6] 460 0 171 12.7 438 0 105 21.7

Revised CHAM 362 16 203 12.4 280 20 172 18.1

AES [6] 970 18 146 6.8 - - - -

LEA 754 17 203 6.3 646 24 147 9.8

SIMON [6] 760 0 379 3.5 754 0 389 3.4

128/256 Original CHAM [22] 396 16 177 13.2 312 20 148 19.2

SPECK [5] 476 0 181 11.6 - - - -

Revised CHAM 396 16 219 10.7 312 20 183 15.4

AES [5] 1,034 18 204 4.7 - - - -

SIMON [5] 792 0 401 3.1 - - - -

Table 14. Performance comparison using the rank metric in the one-way communica-
tion scenario

Platform Cipher ROM RAM Cycles cpb Rank

EKSa Encb Stack Data EKS Enc

AVR Original CHAM-64/128 72 280 11 184 309 23,664 187 7.2

Revised CHAM-64/128 72 280 11 184 309 25,792 203 6.6

SPECK-64/128 178 240 12 260 1,401 19,888 166 6.3

SIMON-64/128 254 328 16 328 2,911 31,024 265 3.0

MSP Original CHAM-64/128 66 210 16 184 275 16,715 132 11.1

Revised CHAM-64/128 66 210 16 194 275 18,123 143 10.3

SPECK-64/128 126 180 16 260 1,242 14,155 120 9.7

SIMON-64/128 174 248 24 328 2,002 22,171 188 4.7

ARM SPECK-64/128 52 164 36 260 516 6,323 53 23.2

Original CHAM-128/128 44 210 48 192 95 8,846 69 19.5

Revised CHAM-128/128 44 210 48 192 95 11,150 87 15.5

SIMON-64/128 112 192 40 328 1,113 10,485 90 10.6

Original CHAM-64/128 64 256 40 184 192 19,485 153 8.5

Revised CHAM-64/128 64 256 40 184 192 21,101 166 7.8
a Key schedule
b Encryption



Revised Version of Block Cipher CHAM 15

Table 15. Performance comparison using the FOM metric in the communication sce-
nario

Cipher AVR MSP ARM

ROM RAM cpb FOM ROM RAM cpb FOM ROM RAM cpb FOM

SPECK-64/128 874 302 350 4.8 572 296 252 4.8 444 308 128 5.8

Original CHAM-128/128 1,230 262 336 4.9 926 258 298 5.6 528 272 144 6.3

Revised CHAM-128/128 1,230 262 449 5.6 926 258 394 6.5 528 272 183 7.2

Original CHAM-64/128 844 225 393 4.6 578 220 290 4.7 640 244 318 10.7

Revised CHAM-64/128 844 225 428 4.8 578 220 312 4.9 640 244 345 11.3

SIMON-64/128 1,122 375 520 6.5 760 372 389 6.7 560 392 186 7.9

Although overall the revised CHAM shows slightly worse software perfor-
mance than the original CHAM due to the increased numbers of rounds, it
nonetheless shows excellent software performance. Specifically, its performance
is similar to that of SPECK, while it outperforms the other ciphers.

6 Conclusion

In this paper, we present new results on a (related-key) differential cryptanalysis
on CHAM and propose a revised version of CHAM with the numbers of rounds
increased in order to ensure a sufficient security margin. First, we presented
new (related-key) differential characteristics and differentials which were found
using a SAT solver. We demonstrated how to convert the problem of finding
a (related-key) differential characteristic and a differential into a CNF formula
to invoke a SAT solver. Considering the new cryptanalytic results, the revised
CHAM is suggested. The numbers of rounds of CHAM-64/128, CHAM-128/128,
and CHAM-128/256 are raised from 80 to 88, 80 to 112, and 96 to 120, respec-
tively. We showed that the revised CHAM provides a sufficient security margin
against newly found attacks. Finally, implementation results on both hardware
and software are presented. The revised CHAM continued to show very good
performance. Specifically, on average CHAM can be implemented using 25% less
area than SIMON on hardware. On software, it is still comparable to SPECK.

Acknowledgement. We are grateful to the anonymous reviewers for their help in
improving the quality of the paper. This work was supported by Institute for Informa-
tion & Communications Technology Planning & Evaluation (IITP) grant funded by
the Korean government (MSIT) (No.2017-0-00267).

A Test Vectors

Test vectors are represented in hexadecimal with the prefix ‘0x’.

CHAM-64/128
secret Key : 0x0100 0x0302 0x0504 0x0706 0x0908 0x0b0a 0x0d0c 0x0f0e

plaintext : 0x1100 0x3322 0x5544 0x7766

ciphertext : 0x6579 0x1204 0x123f 0xe5a9
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CHAM-128/128
secret Key : 0x03020100 0x07060504 0x0b0a0908 0x0f0e0d0c

plaintext : 0x33221100 0x77665544 0xbbaa9988 0xffeeddcc

ciphertext : 0xd05419ee 0x9f118f4c 0x99e36469 0x1c885ec1

CHAM-128/256
secret Key : 0x03020100 0x07060504 0x0b0a0908 0x0f0e0d0c

0xf3f2f1f0 0xf7f6f5f4 0xfbfaf9f8 0xfffefdfc

plaintext : 0x33221100 0x77665544 0xbbaa9988 0xffeeddcc

ciphertext : 0x027377dc 0x120b5651 0x8f839b95 0x5e5ec075

B Other Characteristics

Table 16 shows a 46-round related-key boomerang characteristic of CHAM-
128/128. It is constructed by attaching a 23-round related-key differential char-
acteristic with probability 2−31 twice. Note that prior to this, only a 36-round
related-key boomerang characteristic was known.

Table 16. Related-key boomerang characteristics of CHAM-128/128

Round

Prob.

Key difference

Input difference

Output difference

Reference

23

2−31

(FFFFFFFF FFFFFFFF 00000000 00000000)

(02080001 7FFBFFFE 00000400 00000200)

(08080000 04040400 FFFFFFD9 10000000)

This paper

Table 17 shows the features of (related-key) differential-linear approximations
of CHAM. Note that prior to this, only a 34-round differential-linear approxi-
mation of CHAM-64/128 and a 39-round related-key differential-linear approx-
imation of CHAM-128/128 were known.

Table 17. Features of (related-key) differential-linear approximations

Model n/k (RK) diff.-lin. app. φ ψ Reference

Round pc2 Round p Round c2

Single-key 64/128 35 2−31 21 2−23 14 2−8 This paper

Related-key 128/128 44 2−62 22 2−28 22 2−34 This paper



Revised Version of Block Cipher CHAM 17

References

1. Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. In: Dunkel-
man, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03317-9 12

2. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 411–436. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48800-3 17

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 16

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). https://eprint.iacr.org/2013/404

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
Simon and Speck block ciphers on AVR 8-bit microcontrollers. In: Eisenbarth, T.,
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Abstract. A major open problem in block cipher cryptanalysis is dis-
covery of new invariant properties of complex type. Recent papers show
that this can be achieved for SCREAM, Midori64, MANTIS-4, T-310
or for DES with modified S-boxes. Until now such attacks are hard to
find and seem to happen by some sort of incredible coincidence. In this
paper we abstract the attack from any particular block cipher. We study
these attacks in terms of transformations on multivariate polynomials.
We shall demonstrate how numerous variables including key variables
may sometimes be eliminated and at the end two very complex Boolean
polynomials will become equal. We present a general construction of an
attack where multiply all the polynomials lying on one or several cycles.
Then under suitable conditions the non-linear functions involved will be
eliminated totally. We obtain a periodic invariant property holding for
any number of rounds. A major difficulty with invariant attacks is that
they typically work only for some keys. In T-310 our attack works for
any key and also in spite of the presence of round constants.
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1 Introduction

Block ciphers are widely used and studied since the 1970s. Their periodic struc-
ture is prone to round invariant attacks, for example in Linear Cryptanalysis
(LC). A natural generalisation is Generalised Linear Cryptanalysis (GLC), first
proposed at Eurocrypt’95 [29]. The space for possible attacks grows double-
exponentially, and until 2018 extremely few such attacks [4,17,19,30,37] have
been found. We call a “product attack” an attack, where an invariant, being a
product of simpler polynomials, remains unchanged after some number of k ≥ 1
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rounds. A key point is that in the ring of Boolean polynomials the factorization
is not unique. This has important consequences. Numerous specific events with-
out unique factorisation occur inside many invariant attacks, cf. [11], making the
job of the attacker easier. Then, imagine that a researcher finds a new invariant
attack which works for a block cipher. It could be very difficult to know if this
attack can or not be constructed by multiplying some well chosen polynomials
as in our general “product” attack framework which we introduce in this paper.

An essential question is whether invariant attacks do exist at all for any given
cipher. This question is currently considered very difficult [1,3,4,6]. For many
ciphers we can neither say if it is broken by our attack, nor we can be assured
that it is secure and invariant attacks do not exist. Numerous positive examples
of working attacks are known for the Cold War cipher T-310 [25,35]. There exist
also some basic examples for DES [18,19] which we will revisit here. Then we
have results on SCREAM, iSCREAM, Midori64 and MANTIS-4 cf. [4,37]. Most
previous non-linear attacks exploited polynomials of degree 2 or 3 [17,19,37] and
only sometimes of higher degree [17,18], or the invariants are only correct with a
low probability. In this paper we construct invariants of arbitrarily high degree
and working with probability 1, in a systematic deterministic way.

This paper is organised as follows. In Sect. 2 we explain what are non-linear
invariant attacks and key features of our approach. In Sect. 3 we explain the idea
of “closed loop” connection. In Sect. 4 we describe the main idea of cycles with
transitions between polynomials. In Sect. 5 we discuss the question of attacks
working with strong rather than weak Boolean functions. In Sect. 6 we present a
simple attack at degree 4. In Sect. 7 we present our general framework theorem.
In Sect. 8 we apply it to construct a stronger attack of with a cycle of length 8. In
Sect. 9 we apply our construction to DES with 3 cycles of length 8. In Appendix
A we give two different mathematical proofs that our complex attack on DES
actually works. In Sect. 10 we provide a better attack at degree 5. In AppendixB
we consider DES with original S-boxes.

2 Our Methodology, Scope, Applicability, Features

We call P a polynomial invariant if the value of P is preserved after one round
of encryption, i.e. if P(Inputs) = P(Outputs). This concept can be applied to
any block cipher except that such attacks are quite hard to find, cf. [3].

In this paper we introduce a general method for constructing polynomial
invariants of high degree designed to work on more than just one well chosen
cipher configuration. Moreover our attacks do NOT seem1 to require that a block
cipher has any special property or weakness. We only use properties, which
are very common and which essentially any block cipher ever made has. We
assume that our cipher includes a sequence of applications of non-linear functions
which transforms the state bit by bit, and different polynomials on the state are
constructed step by step, without the necessity of knowing how the whole state
is computed. Moreover we relax these transitions in the strongest possible way:

1 Except maybe some combinatorial or probability questions for certain special events.
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some transitions assume that they actually do not hold at all, or more precisely
their difference is assumed to be an arbitrary non-linear function of the cipher
state (which we will later try to eliminate algebraically).

Many research papers in symmetric cryptanalysis spend a lot of time study-
ing the specification of a given block cipher. In this paper we emphasise the
idea that it is not necessary to know the full specs of a cipher in order to find
an invariant attack. For T-310 we make an essential and deliberate choice of
not providing the full specs which are excessively complex, cf. [23]. For DES
we assume that the reader is familiar with the basic description of DES. The
purpose of this is threefold. First, we want to demonstrate that by their very
nature our attacks represent self-contained mathematical results about polyno-
mials involving very few variables, which are able to eliminate everything else.
Secondly, and as such, our attacks will apply to potentially any cipher, which
after renaming the variables satisfies the same basic set of polynomial relations,
which will be organised in order to form short cycles, as we will see later. Finally,
we want to emphasise the fact, that our attack depends only on a tiny fragment2

of the cipher’s computational circuit. Many traditional attacks depend on prob-
abilistic events on the cipher state. Therefore by their very nature they require
to know the full specs of the cipher, in order to know if they work as expected.
Sometimes they don’t work as predicted, because certain events are biased or not
independent. Here polynomial attacks are different: they are theorems on com-
binations of Boolean polynomials and on relations between different bits holding
always, with probability 1, under the conditions specified, for any cipher input.
There is no need to be able to compute the cipher circuit in its entirety in order
to validate them. For T-310 there are simply no special cases where our attacks
would not work as predicted.

For DES we formulate our results in such a way, that the key bits are included
inside the S-box specification. Our results, such as later Theorem10.1, do not
make an apparent reference to the secret key. Or rather this question needs to
be studied separately3 when our invariant would be applied inside some attack,
cf. Section 9 in [18] and Section 6 in [13]. In general our attacks are meant to be
existential over the secret key: work for a fraction of key space which should be
as large4 as possible.

2.1 Limitations and Vulnerability

Some polynomial invariant attacks work for a fraction of keys, other for all
possible keys. According to [17,18,26], using longer keys in each round could
be a good reason, why many ciphers are likely to be secure against non-linear
2 Involving a handful of bits, and only some of the non-linear function(s), and only

some key bits. Moreover inside the Boolean functions and S-boxes, we aim at con-
structing attacks which require only that a certain a small fraction of entries in the
truth tables of these functions (at suitable positions) are at zero.

3 For DES S-boxes, we require that some Boolean function are annihilated by products
of simple linear polynomials. Such annihilation remain frequently true, when we
transform an S-box by a secret key, added at the input, cf. Remark 2 in page 22.

4 In T-310 (but not with DES) our attacks work for any key and also in presence of
round constants, e.g. in Theorem 6.2 and numerous others examples in [17,18].
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attacks. However even when many key bits are used in each round, cf. [25], it
is hard to be sure that a cipher is not vulnerable to the same type of attack.
The crucial notion here is the diffusion and the combinatorial problem of the
existence of “closed-loop” sub-circuits which was emphasised recently in [38].
This type of property was already studied long time ago, cf. for example Fig. 3–
5 in [22], Section 9 in [14] and Fig. 10 in page 21. The philosophy is that our
attack is facilitated, if some subset of bits depend “mostly” on themselves, and
only “weakly” on other bits inside one round of the cipher. More precisely all
the other bits need to be eliminated by polynomial algebra. In this paper we will
take this idea to a new level, cf. Sect. 3, and allow linear combinations of bits.

2.2 What Is New - On Existence of Cycles on Basic Polynomials

Can we do better than current (heuristic) approaches? This paper introduces a
substantially and strictly more general paradigm, which increases the num-
ber of possibilities for the attacker. This hopefully leads to more (or better)
attacks on block ciphers. Instead of looking at bits, and how they depend on
other bits, we will actually ignore individual bits and considerably restrict the
set of values which we actually need to study. We consider ONLY a certain
(small) set of “basic” polynomials Qi involving these bits. Then we consider
cycles built from such linear/affine [or more generally non-linear] polynomials.
Is this possible? Cipher designers have 50+ years of experience in designing com-
plex ciphers aiming at avoiding such attacks. We expect that in most cases no
cycles whatsoever involving polynomials of “tractable” size will be found.

Fig. 1. Example showing how simple polynomials, e.g. bd, are transformed and maybe
eventually form cycles in T-310, cf. Section 7.4. in [17]. Terms with crosses in blue such
as Fc appear an even number of times and are eliminated mod 2. Terms and transitions
with Z in red work, if certain conditions on the Boolean function Z hold. This paper is
about how such examples can be constructed from scratch in a systematic way. (Color
figure online)

Therefore it is crucial to be able to enhance this basic approach in order to
increase the number of possibilities for the attacker. We make the “impossible”
question of the existence of short cycles eventually possible. In order to achieve
this we cheat in some way and study imperfect transitions, cf. also later Sects. 4
and 3. Certain arbitrary non-linear functions Zi are added on the way. Then
eventually we eliminate these extra functions Zi algebraically [annihilation of
polynomials], which is the main idea which eventually makes our attacks work.
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2.3 Related Research, Product and Multiple Product Attacks

In recent research there are two major types of invariant attacks: linear or affine
sub-space invariants [3,6,31], and more generally, arbitrary non-linear polyno-
mial invariants [17,37]. Several authors [3,4,6,17] study both topics which are
closely related. In some cases both paradigms are simply equivalent. For example
we consider the concept of the so called “product attack” of [18]. It is easy to
see that any affine vector sub-space of {0, 1}n can be also described as a set of
points, where a product of some affine polynomials Qi is at 1. Likewise every set
of points in {0, 1}n where

∏ Qi = 1 is an affine subspace. Then, linear spaces
can be characterised by restricting to the case of linear polynomials Qi.

In this paper we aim at improving and generalizing such “product” attacks.
It is important to see that an attack with a sum of several products will be
more general. A somewhat misleading example can be found in Appendix A.2.
of [18]: it is a sum of two products however a close examination would show it
can also be written as a single product (!). A better example can be found in
Section 10.6 of [17], where the invariant is of type AC + BD where A,B,C,D
are linear polynomials and AC +BD is irreducible. Different attacks are related
to each other, and the exact invariant of type AC + BD in Section 10.6 of [17],
hides the existence of a “product” attack for 2 rounds of type AC → BD → AC.
This demonstrates that the product attack is NOT necessarily the most general
attack. In general it is easy to show that the set of all possible invariants is
a polynomial ring; both addition and multiplication are allowed (!). Then the
construction of this paper, which emphasises the multiplication, is just the first
step. This paper essentially aims at solving the problem of the invariant ring
being not empty [existence of at least one invariant attack]. Then, our experience
shows that frequently the ring of invariants, will contain additional5 lower degree
invariants, not anticipated6 from the initial product attack.

2.4 Are Polynomial Invariant Attacks on Block Ciphers Possible?

We are looking for a polynomial which is preserved when we apply one round of
encryption, i.e. if P(Inputs) = P(Outputs). Now in finite fields any function is a
polynomial and the outputs are also polynomials in the inputs. If we substitute
these inside P, we obtain another polynomial, initially very complex, however
if P is well chosen, it will be simpler than expected. In particular the key bits
can be eliminated and after this, in our you polynomial was an invariant, we
get a situation where, two polynomials7 will be simply equal. We get a formal
equality on two complex polynomials, holding under certain constraints on the
key or/and cipher wiring. Interestingly, if P is a product it is easy to see, that
5 For example, we have generated many concrete examples of S-boxes, for the attack

of degree 8 on DES of Sect. 8. In some cases additional invariants of degree 2,4,6 or 7
are also found, cf. [11,12] and our Sect. 8. Or we constructed an attack of degree 10 in
Sect. 9 and for some S-boxes we will also have an attack of degree 5 in Theorem 10.1.

6 Some of these attacks are obtained by the so called “decimated” attack cf. Sect. 4.3.
7 The original one and the transformed one.
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both polynomials are products of many terms. It appears that when two products
of polynomials are equal, this does not happen by accident. The ring of Boolean
polynomials does not have unique factorisation, and we observe specific types of
events: annihilation events, absorption events, etc, cf. [11]. In this paper, for the
first time ever, we are going to abstract the non-linear invariant attacks from
any block cipher in particular. We are going to formulate our attacks in such a
way, that they do not depend on features of any particular block cipher. What
we do amounts to doing a “clever” polynomial algebraic combination of a few
equations, which are basic facts about how some polynomials are transformed
by our cipher.

2.5 Related Work: Linearization, XL, Algebraic Cryptanalysis

Our new attack could be called “Product Cycling Linearization Attack” on block
ciphers and is vaguely related to other works which use the word “Linearization”
cf. [9,32]. The main idea with linearization (in all cases) is to add new variables
so that everything becomes linear and then try to eliminate these new variables.
In XL and old “Linearization” [9] we multiplied complex non-linear equations by
various variables. In algebraic attacks on stream ciphers [15] we multiply them
by well chosen non-linear polynomials. In this paper we multiply non-linear
functions by well chosen polynomials which are products of linear factors.

3 Closed Loop Configurations Revisited

In recent research [17,18,21,22,38] it turns out that each time an “interesting”
non-linear invariant attack was found, it comes together with a configuration
where some set of bits and S-boxes are primarily connected to each other in a
“closed-loop” cf. [38]. This idea is not new, for instance for T-310 it was studied

Fig. 2. A complex closed loop configuration for T-310 with 16 active bits.
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in Sections 7.4, 8.2, 9.1. and 9.2. and 10.6 and 10.7. in [17]. Such configura-
tions occur in almost every attack previously studied. For example we may look
at Fig. 8 in [17] which is reproduced below as Fig. 2. Likewise Fig. 7 in [17] is
reproduced in page 8 as Fig. 4. We can also mention Fig. 9, 10, 11, 12 in [17].

For GOST this type of configuration was already studied in Fig. 3–5 in [22]
and GOST is known to be a particularly weak cipher in this aspect which is
closely related to vulnerability of GOST to truncated differential attacks cf.
[10,21,22,31].

Closed loop configurations can be of any size. On Fig. 10 page 21 we show
how this works with DES S-boxes 2, 3, 7 and a well chosen set of inputs and
outputs of these bits. A larger configuration with five S-boxes is shown in Fig. 3.

Fig. 3. Closed-loop connection between S-boxes S2,S3,S6,S7,S8 in DES.

This configuration is one of the best possible in DES, it maximises the number
of bits active across all possible subsets of 5 S-boxes. Intuitively, the more bits
depend only on themselves, in terms of a ratio (or probability) of re-entry, the
more we can hope to find an invariant attack.

In this paper we take this idea to a new level: we consider not bits, but rather
their linear [and also non-linear] combinations. Intuitively, it seems unthinkable
that any block cipher can be cryptanalyzed by showing that it acts in a sim-
ple way while acting on some small set of “simple” polynomials and that we
can ever obtain short cycles in this way, cf. also Sect. 2.2. For this reason, our
cycles are going to be imperfect in the following sense: we allow addition of
several arbitrarily complex non-linear functions which are later eliminated. This
is expected to increase the number of possibilities for the attacker.
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4 Constructing Cycles on Polynomials

Only those who attempt the absurd will achieve the impossible.
– Maurits Cornelis Escher

We are now going to imagine a larger enhanced graph, where edges represent
some polynomials Qi, and transitions correspond to how these polynomials might
be transformed by one round of encryption, if certain conditions are true. Let
A,B, . . . be some linear combinations of input bits for one round. By convention
we say that A → B if A(Inputs) = B(Outputs) each time we look at one
encryption round. If this happens for every key and for every input we say that
A → B holds without any condition. More generally in our construction we
will have basic Qi being affine combinations of A,B, . . ., which in turn are well-
chosen polynomials. These basic polynomials Qi and A,B, . . . are usually linear
or affine. For example Q1 = A+C+1, where A and C are two affine expressions8

in cipher state input variables, and addition is done modulo 2. In general they
are meant to form short cycles holding under certain technical conditions.

For example in a hypothetical attack we could have a cycle, such as say
A → B → C → D → A, which does NOT work as such. Initially some transitions
are just impossible, in particular D → A does not work. Interestingly, we can
apply the following idea borrowed from [12] and Section 5 of [17]. Let Zi = 0 be a
transition polynomial. Informally, the transition polynomial Zi = 0 characterises
exactly the cases where this transition actually works9.

Here is another example, where we attempt to construct a cycle of length
4 which is illustrated in Fig. 4. We could for example have D = x32 + x36 and

Fig. 4. Transitions inside one simple invariant attack on T-310, cf. [17].

8 This example occurs in our later attack on DES, and we can rewrite Q1 = A+C+1 =
R05 + R28, where R05 is the 5-th bit in the right branch of a DES plaintext, and
A,C are defined in later Fig. 12 page 28.

9 Informally it is a polynomial such that we actually have D → A when Zi = 0. More-
over we mandate that this polynomial Zi uses the same set of input-side variables
which are also the inputs of D. Then we always have D(Inputs) = A(Outputs) when
Zi(Inputs) = 0. This does not say what happens when Zi = 1, and in this paper the
converse will also hold systematically. More precise statements which make sense in
all cases will be provided later, cf. Theorem 7.1 page 16.
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A = x29 + x33, B = x30 + x34 and C = x31 + x35, where xi are inputs of one
round of encryption, and Z1(x1, . . .) is some specific non-linear function. Then
we imagine that the round constant F is10 eliminated but the output of Z1() is
not eliminated and we have D → A only when Z1(Inputs) = 0. Importantly we
are not going to assume that Z1() will be equal to 0 for every input. We expect
that the Boolean function Z1 is quite strong.

We will denote each such transition polynomial by Zi pertaining to a transi-
tion number i. It generalizes the concept of Fundamental Equation (FE) of [17]
to arbitrary11 transitions12. The main idea in this paper is that following [12] in
many cases this polynomial is not going to be zero. However some multiple of
this polynomial is more likely to be zero.

We aim at constructing a configuration with one or several cycles, which
can be seen as walks in some graph where our block cipher is acting in a non-
deterministic way on a set of our basic polynomials. In addition in some cycles,
non-linear polynomials Zi are added on the way, in the same way as Z1() in
Fig. 4 above, or with Z · g term in earlier Fig. 1. These transition polynomials,
initially seem to be a huge obstacle in constructing our attack. Eventually we
will show that under suitable annihilation events, P =

∏ Qi is an invariant for
our cipher, cf. our Theorem 7.1 page 16.

4.1 Non Deterministic Walks on Cycles

We operate by “walks”, advancing by one position on a given cycle on polyno-
mials Qi. This process is not deterministic and the path is not unique. The same
polynomial Qi could potentially appear on several cycles. This is due to some
freedom13 of choice for the Zi. This greatly increases the number of possibili-
ties for the attacker. In this paper, for the sake of simplicity, all cycle walks are
deterministic.

4.2 Discussion, Success Probability

The attacker works with arbitrary sets of well-chosen cycles. In the basic version
of our attack, we simply multiply all the Qi, and we expect to get a non-zero
polynomial invariant, which can14 then be used in cryptanalysis. Can this be
made to work? One factor which increases the chance of success is the size of
our configuration with all the {Qi;Zi}. The more polynomials we multiply, the
10 In T-310 cipher F is derived from the public IV used in each encryption, cf. [23].
11 This type of equation was previously studied under the name of a Transition Equa-

tion or (TE) in Section 5 of [17].
12 Here transitions are no longer invariants but rather of type P → P ′ with P �= P ′.
13 It is easy to see that there is no reason why transition should be deterministic.

For example we could have Z1 = Z(a, b, c) = abc + ac and Z3 = Z(a, b, c) + b =
abc + ac + b which inevitably lead to two different transitions if starting form the
same polynomial assuming Q1 = Q3, and we have simultaneously Z(b+1)(a+1) = 0
and (Z + b)(b + 1)(a + 1) = 0.

14 We refer to Section 9 in [18] and Section 6 in [13] to see how.
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more likely it happens that all our polynomials Zi are annihilated by some
product of the Qi. It is easy to see that if a [Boolean] polynomial g is a product
then for a Boolean function f to be annihilated by this polynomial, i.e. fg = 0
for every input, we just need to look at values of f at points where g = 1. This
will concern only a fraction of the truth table of f , and therefore is more likely
to happen. Specific examples are provided later. In Sect. 6.3, g is linear, which
makes the attack very weak, cf. later Theorem 6.4. Then in an improved attack
in Theorem 8.1 in Sect. 8 every g has 2 factors. Similarly for DES, in [18] some
g are linear, then in Theorem9.1 in Sect. 9 each of five polynomials g has two
factors. Our attacks work only for as long as P =

∏ Qi remains not zero itself,
which strongly limits what we can achieve.

4.3 Additional Attacks with Decimation and Sub-cycles

Decimated variants based on sub-cycles can also be constructed. The main idea
is that we can advance by more than 1 step in a cycle. This happens for example
in T-310, under certain (more stringent) technical conditions we can have an
attack with period of 2 rounds15 of type AC → BD → AC cf. [12], which uses
the same cycle of period 4, which will also be used in our attack in Fig. 7. For
DES we provide in Sect. 10 an example of type P → P ′ → P, where the degree
of P and P ′ is 5. Then it is easy to see that AC +BD and P +P ′ are invariants
holding for16 1 round.

5 Limitations vs. Vulnerable Boolean Functions

Main limitations of our attacks are that the degree of P in the attack must
increase17 substantially in order to work with some non-trivial (e.g. highly non-
linear) Boolean functions or S-boxes. Then potentially some attacks at lower
degree can be also constructed as shown in Sect. 10. However, typically there
is a price to pay for such improved attacks to work at a lower degree18. For
example, our advanced degree 5 result of Theorem 10.1 has a serious drawback.
It forces the attacker to use some annihilator g, which is linear, making that this
second attack works in extremely few cases, cf. Theorem 6.4. The same problem
occurs in the attack on Section 11.7 in [18].

15 Examples of non-linear invariants with a period of 4 rounds can be found in Appendix
B.2. in [17].

16 In contrast, due to the lack on unique factorisation in product attacks, it is not
clear if or how our attack of degree 5 in Sect. 10 can be obtained, with or without
decimation, from cycles following our general framework.

17 This is related to the question of biases inside the block cipher induced by polynomial
invariants, cf. Section 9 in [18] and Section 6 in [13].

18 Rather than when we simply multiply all the polynomials.
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5.1 On Annihilation Vulnerability and Worst-Case Normality

The primary aim of this paper is to have an even more general attack framework,
leading to annihilation assumptions which are more likely to work also when
Boolean functions are strong. Our long term goal is to find attacks such as in
[18], which operate under weaker and fully realistic assumptions. For example
such that every annihilator g is a product of three affine factors, e.g. with Z(a+
b)c(1 + e) = 0. One question is if there exist non-linear attacks using such
properties at degree 3. For example following [17,18] for DES this is already
quite difficult to achieve19 A second question is how many boolean function are
vulnerable. There are very few examples in real-life encryption systems, where
Boolean functions would have annihilators of degree 2. In contrast properties
with degree 3 annihilators can very hardly be avoided in general, which we are
going to show now.

One recent and surprising result is that the probability that for example
Z(a + b)(c + d)(e + f) = 0 is typically quite high, cf. [18]. Accordingly if this
property does not hold for the original Boolean function of T-310, this is maybe
just accidental rather than deliberate. For example Z(a + b)c(1 + e) = 0 holds
for the original Boolean function designed in the 1970s, cf. Appendix I.19 in [23].
For general cubic annihilators the Thm 6.0.1 in [15] says that for every Boolean
function Z we have either Z or Z +1 which has an annihilator of degree 3. Then
Thm. 6.3. and Thm. 6.4. in [18] deals with special cases which split into some
specific affine factors.

This property is very highly relevant to our general framework and all attacks
studied in this paper. It is not immediately apparent but it turns out, that this
type of events were already studied by Dobbertin at FSE’94 under the name
of normality [28]. A more general notion called k-normality was introduced and
studied by Charpin cf. [8]. Here we discover that a stronger result than Thm
6.0.1 in [15] holds: for every Boolean function on 6 variables either Z or Z + 1
is annihilated by a product of 3 affine functions:

Theorem 5.2 (All Boolean functions in 6 variables are 3-normal).
Given a Boolean function Z in 6 variables chosen uniformly at random the
probability that it is 2-normal i.e. it has an annihilation of type

Z · f · g = 0 or (Z + 1) · f · g = 0

with two arbitrary affine factors f , g is equal to 2−1.66. Furthermore the
probability that it is 3-normal i.e. it has an annihilation of type

Z · f · g · h = 0 or (Z + 1) · f · g · h = 0

with three arbitrary affine factors f , g, h is equal to exactly 1.

Proof. Our property in invariant w.r.t. ordinary affine equivalence of Boolean
functions w.r.t arbitrary invertible affine transformations on the 6 variables. We

19 The best example known to us so far requires P of degree 20.
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have examined all the 150357 classes of Boolean functions with 6 variables cf. [7],
and found that 47446 classes are 2-normal and all 150357 classes are 3-normal.

6 A Simple Impossible Transition Attack of Degree 4

We first show a simple attack, which demonstrates why it is interesting to have
a cycle on four polynomials Qi. We will then show how to annihilate one non-
linear polynomial which will be sufficient to obtain an attack which works. This
attack is designed for T-310 cipher, however we do NOT need to know the full
specs of this block cipher. Our attack is a formal result on Boolean polynomials.
In order to show it all we will need to know are two exact formulas (two Boolean
polynomials) by which just two output bits 21 and 29 are computed in one
round of encryption. In this form, the same attack could be potentially applied
to any block cipher if only after renaming variables it would satisfy the same
four transitions, three of which are trivial and which are shown on Fig. 7 below.

DES is a Feistel cipher operating on two branches of 32 bits each. T-310 has
4 branches with 9 bits each and bits are numbered 1..36, cf. Fig. 5. In one round
of encryption, cf. Fig. 6, all bits numbered 1 ≤ k ≤ 36 with k �= 0 mod 4 are
shifted to position k + 1, and bits of type 4k + 1 are those freshly created. By
convention P (i) = j if round input vi cf. Fig. 6 is connected to bit number j in
the input of the round. Similarly D(5) = j means that wire D5 is connected to
input j, except when j = 0 which would mean that a key bit used instead (left
of Fig. 6).

Fig. 5. T-310: a peculiar sort of compressing unbalanced Feistel scheme.
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6.1 A Basic Nonlinear Invariant Attack of Degree 4

We will now describe an attack where the value ∈ {0, 1} of a certain polynomial
P, involving only 8 bits out of 36 in each round, will be shown to be invariant
after one round of T-310 block cipher.

Theorem 6.2 (Simple Invariant Attack of Degree 4). For each cipher
wiring for T-310 s.t. D(8) = P (6), D(6) = 32 and P (10) = 30, P (11) = 22 and
P (12) = 24, if the Boolean function is such that (Y + f)(d + e) = 0, and for
any short term key of 240 bits, and for any IV , and for any initial state on 36
bits, given the sums of 2 variables A,B,C,D defined in Fig. 7, the non-linear
invariant P = ABCD, holds with probability 1 for any number of rounds.

Proof. We verify on Fig. 6, that the XOR of two output bits y29+y21, is equal to
a sum of 4 bits. This is exactly, following explicit general round ANF formulas
given in [24,35], equal to:

y29 +y21 = F +Z(...)+xD(8) +F +Z(...)+xP (6) +Y
(
xP (7), . . . , xP (12)

)
+xD(6)

Following [23] cipher state variables 1–36 can also be represented as letters
with a backwards numbering convention, for instance a is the same x36, up to
z which denotes bit x11, and bits 1–10 are named by capital letters M through
V . As we study 1-round invariants we need to distinguish between variables
and polynomials on the input and output sides. By convention, if a represents a
variable, we write ai if it is on the input side, and ao on the output side. Then

Fig. 6. The internal structure of one round of T-310 block cipher.
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if D = h + p is a polynomial and sum of two variables, where h is also variable
number 29 and p is the variable number 21, we have by definition:

Di = hi + pi = x21 + x29

where addition is modulo 2 and xi are inputs of one round numbered from 1 to
36. In the same way if yi are outputs of the analyzed round, by definition:

Do = ho + po = y21 + y29

We can now plug-in the only formula (above), which comes from the specs of
the cipher getting:

Do = xD(8) + xP (6) + Y () + xD(6)

Now we use our assumptions D(8) = P (6), and P (12) = 24 and we get:

Do = Y
(
xP (7), . . . , xP (12)

)
+ xD(6)

Now given that D(6) = 32 and Ai = x24 + x32 we have:

Do = Y
(
xP (7), . . . , xP (12)

)
+ x24 + Ai

where x24 is the same as last input f of this Boolean function Y (), which is
due to P (12) = 24. If for simplicity we denote by (Y + f) a modified Boolean
function with addition of the last input, we obtain:

Do = (Y + f)
(
xP (7), . . . , xP (12)

)
+ Ai

In addition we have the trivial transitions

Co = y30 + y22 = x29 + x21 = Di

Fig. 7. A cycle and sequence of 4 polynomial transitions for 4 rounds which leads to a
non-linear invariant attack with P = ABCD, which is an invariant for 1 round. (Color
figure online)
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and similarly Bo = Ci and Ao = Bi, which comes from bit k becoming k + 1 in
the next round for all k not being a multiple of 4, cf. [24,35]. Here we will see
why forming a cycle with A,B,C,D matters.

In order to show that ABCD is an invariant we need to show that:

Po = AoBoCoDo = AiBiCiDi = Pi

and we have several immediate trivial transitions:

Po = AoBoCoDo = BiCiDiDo =

BiCiDi
(
(Y + f)

(
xP (7), . . . , xP (12)

)
+ Ai

) ?= AiBiCiDi = Pi

All we need to do now is to show that:

BiCiDi
(
(Y + f)

(
xP (7), . . . , xP (12)

))
= 0

Finally we also check that (Y +x24)Ci = 0 is the same as (Z + f)(d+ e) = 0
due to Ci = x30 + x22 and P (10) = 30, P (11) = 22 and P (12) = 24. ��

6.3 Why Current Attack Is Unsatisfactory

It is easy to note that in the last example we have NOT used the full power
of the attack. We have requested that (Y + f)C = 0 in order to make sure
that (Y + f)BCD = 0, in other words we must make sure that Y + f is equal
to zero in 25 points, while we would only need Y = f at 23 entries in the
truth table. This is due to the fact, that the wiring of the cipher satisfies an
extremely complex set of technical requirements known under the name of KT1
specification cf. [24,35]. These requirements seems to prevent our attack in some
way. It is clearly meant to prevent attacks where several linear polynomials
B,C,D would simultaneously be composed of too many inputs of the same
Boolean function Y . We discover that the cryptologists in the former Eastern
Bloc have somewhat managed to make our attack harder to apply.

In addition, it is difficult to hope that (Y + f)C = 0 could be true for
any Boolean function resembling those found in real-life ciphers. Extremely few
Boolean functions have linear annihilators. One basic result is as follows:

Theorem 6.4 (Impossibility for Balanced-ness and Non-Linearity). It
is not possible to find a Boolean function Z required by our degree 4 attack of
Theorem 6.2 in such a way, that Y +f is simultaneously balanced and non-linear.

Proof. Let:
g(a,b, c,d, e, f) ∗ Z(a,b, c,d, e, f) = 0

where g() is an affine function. Since g is balanced for some 26−1 inputs we have
g = 1 and for all those we must have Z = 0. Now since Z is balanced it must
be Z = 1 on all the remaining 26−1 inputs and our function is now completely
determined and we have Z = g + 1 for any input. Finally since g is linear Z also
must be linear. This contradiction ends our proof. ��
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Observations. With this result, in theory Y + f would not be balanced but Y
could after all be balanced. However most ciphers not only use balanced Boolean
functions, but also avoid many other correlations carefully, and most modified
functions such as Y + f should be balanced or very close to balanced.

6.5 Discussion and Way Forward

We would like to be able design better invariant attacks which operate under
weaker assumptions, such as for example Z(a + b)c(1 + e) = 0. This sort of
annihilation properties with products of 3 affine functions do happen for real-
life cryptographic Boolean functions and we have already seen cf. Theorem5.2
that annihilations with 3 linear factors are in general totally impossible to avoid.

Until now polynomial invariant attacks seem to occur by some sort of coin-
cidence. For example in one very special setting known in [18] as LZS 265 we
require that our Boolean function satisfies Z(a + b)(c + d)(e + f) = 0, which
was not20 the case for the original Boolean function. We are looking towards
constructing a broader family of attacks, which require a larger variety of anni-
hilation conditions. In this paper we show how to construct such attacks in
general and potentially for any block cipher. We start by stating our general
construction which clearly generalizes the current attack and then we will apply
it to construct a new attack on T-310 of degree 8. Moreover it should be obvious
that more and better attacks can be obtained at higher degrees.

7 Our General Framework Theorem and Construction

Here is our general attack where we multiply polynomials over one or several
cycles. It is possible to distinguish two sorts of transitions in our directed graphs.
Simple transitions, where the difference is zero21 and the input polynomial Qi

will be called a “transformable”22 polynomial. Then we have the “impossible
transitions”, where the difference is a sum of complex non-linear polynomials23.

Theorem 7.1 (General Cycling Product Invariant Attack). We consider
a set of basic polynomials Qj organised in one or several closed loops (directed
cycles). Let π(j) be the next point on any given cycle where π() is an arbitrary
permutation (which acts on a union of one or several directed cycles and advances
one step forward). We assume that for any j we have (due to internal connections
inside the cipher) the following simple transition with a XOR with a non-linear
function:

Qo
π(j) = Qi

j + Zj()

20 However it is sufficient to modify just the last linear term in order to make the attack
work in T-310, cf. Section 7.2. in [18].

21 We have 0 in red which is XORed at three places in Fig. 7.
22 This name means that our block cipher transforms it into another polynomial Qj

included in our set.
23 For example Z1 = Y + f is XORed at one place in Fig. 7 where Y is a polynomial

with 6 inputs.
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where Zj() are some arbitrary non-linear polynomials24 using arbitrary variables
(which represent some bits inside the cipher). Then we assume that at least
one of these polynomials is equal to 0, i.e. we have just one trivial transition
without any extra non-linear terms. Among all these polynomials those Qj inside
“simple” transitions as defined above, i.e. exactly those where Zj() = 0, are
called “transformable” polynomials25. Other polynomials Zi are non-zero26 and
they use the same set of input-side variables as Qi. Moreover we assume that
for every Zj() this Boolean function is annihilated by product of (up to) all
“transformable” polynomials Qk, or more precisely that:

∀j

∏

k
transformable

Qk() · Zj() = 0

for any input. Then
P =

∏

j

Qj

is an invariant for our cipher holding with probability 1, for any secret key,
for any initial state on n bits, and for any number of rounds.

Remark. Our attack is non-trivial, if this final product P �= 0. This needs to
be checked in each case, and when P = 0 our attack fails.

Proof. This theorem is formulated in such a way, that the proof is extremely
simple. We have

Po =
∏

j

Qo
j =

∏

j

Qo
π(j) =

∏

j

(Qi
j + Zj()

)
=

and now the product of all transformable polynomials can be put aside as a
factor:

=
∏

j
transformable

Qi
j() ·

∏

j not
transformable

(Qi
j + Zj()

)
=

and here each and every non-zero Zj() is annihilated because the product
of all transformable polynomials is a factor, and because our theorem assumes
these annihilations. We get:

=
∏

j

Qi
j = Pi

��
24 These polynomials appear in red on our pictures for example (Y + e) where Y is an

arbitrary polynomial and e is an additional variable.
25 Typically about half of all polynomials are “transformable” in all known applications

of this theorem.
26 These polynomials are exactly the same as the notion of Transition Equation or

(TE) which was introduced in Sect. 5 of [17] to extend the concept of Fundamental
Equation (FE) of [17] to arbitrary transitions of type P → Q when P �= Q.
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Observations. This theorem somewhat implicitly assumes quite a few poly-
nomials Zj() are equal to zero, which increases the number of “transformable”
factors and thus in turn increases the chances for different non-zero polynomials
Zj() to be annihilated. It is easy to see that older Theorem 6.2. is a direct applica-
tion of new Theorem 7.1, where all of the B,C,D are transformable polynomials,
one of which was actually used to annihilate Y + f . We claim (and intend to
show) that this theorem can be used to construct a large variety of attacks on
block ciphers and that results compare favourably to other known attacks. This
is due to the fact (as explained in Sect. 4.2) that the more polynomials we mul-
tiply, the easier it is to obtain the annihilations we need. In addition we enjoy a
substantial freedom in the choice of these polynomials for any given block cipher.
The attacker is happy to observe that there exist vast number of possible choices
of the {Qi;Zi} some of which might lead to a working attack.

8 Application to T-310: A Better Cycling Attack

We present an improved attack on T-310 which is of degree 8 and27 is a direct
application of Theorem7.1. The application is shown on Fig. 8 below, the Qi

are 8 polynomials on the edges of our cycle, out of which D,C,B,H,G, F are
“transformable” polynomials which we are allowed to use in our annihilation
attempts and there are two non-zero polynomials to annihilate W () + e and
Y ()+e. Given the fact that both Boolean W () and Y () are by definition identical,
these two polynomials are annihilated in exactly the same way, modulo renaming
their 6 inputs.

Theorem 8.1 (An Invariant Attack of Degree 8). With polynomials A−H
defined as on Fig. 8, for each cipher wiring for T-310 s.t. D(5) = 8, P (13) =
16,D(7) = P (11),D(2) = 20, P (20) = 28,D(4) = P (25), if the Boolean function
(used twice as W and as Y for different sets of inputs) is such that

(Z + e)(a + b)(c + d) = 0

and if the first 4 inputs of W are in order bits 14, 6, 15, 7, and the first 4 inputs
of Y are in order bits 18, 26, 19, 27 also28, then and for any short term key of
240 bits, and for any initial state on 36 bits, we have the non-linear invariant

P = ABCDEFGH

holding with probability 1.0 for any number of rounds.

27 A simpler example of a cycle of length 8 in T-310 is shown on Fig. 4 however the
actual invariant studied was of degree 2, cf. Section 7.4 in [17].

28 These 8 conditions are simply 8 additional conditions on P () e.g. P (22) = 14 etc.
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Fig. 8. An attack using a cycle on 8 with P = ABCDEFGH.

Note: This is for example achieved for the following full cipher wiring:

444: P = 17,1,33,2,10,3,18,26,19,27,36,5,16,32,21,34,8,
25,13,28,14,6,15,7,12,23,30 D=24,20,4,12,8,32,36,16,28

and with a Boolean function being for example:

Z = fedcb + fedca + fedc + fecba + fecb + feca + fec + feba + feb + fea + fe

+fdb + fd + fcb + fc + fb + f + edcb + ed + ec + dcb + dca + da + d + cb + a + 1

Proof. The proof is the same as before and both follow the same principle as in
Theorem 7.1 We compute

Po − Pi =

and obtain the following difference, where B,C,D, F,G,H are all trans-
formable polynomials cf. Fig. 8:

BCDFGH · ((E + a + Y )(A + y + W ) + AE)

A quick analysis discarding factors such as D which have variables not used
as inputs of out Boolean functions W,Y and renaming variables shows that we
need that FG(y + W ) = 0 and BC(Y + a) = 0. Each of 2 terms is cancelled
through two identical annihilation requirements of type exactly:

(Z + e)(a + b)(c + d) = 0

which is exactly our assumption. ��
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Remark. With invariants of degree 8 one can do better than (Z + e)(a + b)(c +
d) = 0. In [18] we discover that it is possible to design a similar attack with
a weaker assumption Z(a + b)(c + d)(e + f) = 0 which makes that the attack
is substantially more likely to work, when the Boolean function is chosen at
random. Equivalently, our attack should require to check or modify only a small
number of values inside the truth table of this Boolean function Z.

9 On Existence of Polynomial Invariants in DES

DES is one of the most widely used cryptographic algorithms of all times and
there exists numerous modified versions of DES [26,33,34]. There are strong
connections between various Feistel ciphers used in government communications
during the Cold War cf. [10,26]. In Eastern Germany DES was implemented
inside a portable electronic cipher machine T-316 [26]. Our methodology and
notations emphasise similarities between different ciphers, and we do not believe
that a cipher must necessarily be special or weak, in order to exhibit a large
variety of polynomial invariants. We will now show that our attack and our
systematic construction applies to DES, and allows one to build invariants true
with probability 1 for a fraction of the key space. This was never done before and
should be seen as improved bi-linear attack on DES of Crypto 2004, cf. [19]. A
key observation is that we have phase transition: if we increase the degree of our
invariant polynomial, the probabilities that our invariant works can be improved
very substantially. Again, we formulate the attack in such a way that the full
description of DES is not needed. We just need to see that DES happens to
satisfy a number of internal wiring conditions (full detailed wiring is shown later
in Fig. 11 28) which after renaming variables could hold for any other cipher.
By convention we assume that the secret key of DES is part of the S-box, or is
added inside each S-box, i.e. we consider each S-box as a function of variables
named abcdef and not those named ABCDEF cf. Fig. 9. This, as we will see
later, allows our invariant attacks to be formulated in a surprisingly simple and
compact way without reference to the secret key, which will be dealt with later,
when we want to apply such results in cryptanalysis, cf. Remark 2 in page 22.
Our specific attack below is not meant to work for real-life DES S-boxes. It will
work only if the S-boxes (including the key) satisfy some specific annihilation
conditions. These are stronger than in any previous non-linear invariant attack
on DES [18,19]. In AppendixB we tentatively consider what happens with real-
life S-boxes.
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Fig. 9. One round of DES with specific notations we use in this paper.

Notation: We denote by (L01, . . . ,L32;R01, . . . ,R32) the inputs of one rounds
of DES. The same notations will be also used for the outputs and when it is
needed to distinguish between different instances of the same variable we will
use exponents, for example L05i will be the 5-th input in one round and L05o

will be the 5-th output bit. Now we define the following polynomials:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A = R05 ∈ {Input bits of S2}
B = R07 ∈ {Input bits of S2}
C = R28 + 1 ∈ {Input bits of S7} ∩ {Input bits of S8}
D = R27 + 1 ∈ {Input bits of S7}
E = R32 ∈ {Input bits of S8.}

Moreover we also define
{

A′ = L05, B′ = L07 C ′ = L28 + 1
D′ = L27 + 1 E′ = L32

We will then write that

(a + e) ∗ (e) ∗ W8 == 0
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Fig. 10. Closed-loop connection between S-boxes S2, S7, S8 in DES.

if and when the polynomial (a + e) ∗ (e) annihilates the 1st output W of
the eighth S-box S8, where a − f are inputs of that same respective S-box. By
annihilation we mean that the product is zero for any input on 6 bits, i.e. == is
formal equality of two polynomials. At other places it there is no ambiguity we
will write simply = instead of ==. We now apply our framework of Theorem7.1
and construct our attack on DES. Our Qi will be some well chosen polynomials
such as C or E defined above , with for example:

W8 ∗ C ∗ E = 0

Theorem 9.1 (A Simple Degree 10 Attack On DES). We assume that:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a + e) ∗ (e) ∗ W8 == 0
(a + e) ∗ (e) ∗ X8 == 0

(d + 1) ∗ (e + 1) ∗ (Z7 + d) == 0
(d + 1) ∗ (e + 1) ∗ (W7 + e) == 0

bd ∗ (X2 + b + d) == 0

We also assume29 the following connections inside the P-Box of DES, cf. Fig. 11:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P (5) = 29 = W8
P (7) = 28 = Z7
P (28) = 6 = X2
P (27) = 30 = X8
P (32) = 25 = W7

29 By convention we work backwards from output to input side, cf. Fig. 11, and P (5) =
29 means that the output 29 of 8 S-boxes connected to round output 5, where
numbering goes from 1 to 32. These connections are true for DES, and our attack
works also for DES with any modified P-box for as long as it satisfies these conditions.
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Then the product P = ABCDEA′B′C ′D′E′ which is equal to

P = R05 ∗ R07 ∗ (R28 + 1) ∗ (R27 + 1) ∗ R32 ∗ L05 ∗ L07 ∗ (L28 + 1) ∗ (L27 + 1) ∗ L32

is a one-round invariant for DES for a fraction of key space.

Proof We provide two proofs of Theorem 9.1 which are given in AppendixA.

Remark 1: Our conditions only concern 1/4 of values in truth table for certain
outputs in three S-boxes S2,S7,S8 and the content of the remaining five S-boxes
can be arbitrary.

Remark 2: This attack works for a fraction of key space which is frequently
larger than it seems. It is easy to see that when we translate the input of any of
our Boolean function by a secret key (by a bitwise XOR), each of our properties
such as (a + e)(e) ∗ W8 == 0, still holds with probability being at least 2−2.
This is because each annihilating product such as (a+ e)(e) is itself not changed
(!), with a large probability, when we modify the secret key inside the S-box.

Remark 3: As the degree of our polynomials increases, we can apply our frame-
work and search for better attacks, such that all annihilations required have 3
affine terms. This increases the success probability that the attack works for
some S-boxes. At the same time the number of active S-boxes increases. The
conclusion is that there exist an optimal size where the attack is the strongest
possible. Interestingly there is also a question of optimal size in truncated dif-
ferential attacks [10] and both questions are related, cf. Sect. 3.

10 An Attack on DES with a Lower Degree of 5

We now show that the degree in our attack of Theorem9.1 can be reduced from
10 to 5. This attack requires a stronger set of annihilations as shown below.

Theorem 10.1 (2-R invariant of degree 5 derived from degree 10
invariant). If we have the following annihilation conditions:

⎧
⎪⎨

⎪⎩

Z7 ∗ (e + 1) = 0, W7 ∗ (e + 1) = 0,
X8 ∗ (a + 1) = 0, W8 ∗ e = 0,

X2 ∗ d = 0

then the polynomial

P = R05 ∗ L07 ∗ (R28 + 1) ∗ (L27 + 1) ∗ L32

is an invariant after two rounds of encryption for DES.
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Proof. All we need to do is to show that Pφ = Pφ−1
. We have:

Pφ = (L05+

W8∗R32=0
︷ ︸︸ ︷�������W8R28−R32,R01) ∗ R07 ∗ (L28+

X2∗R07=0
︷ ︸︸ ︷�����X2R04−R09 +1) ∗ (R27 + 1) ∗ R32

= L05 ∗ R07 ∗ (L28 + 1) ∗ (R27 + 1) ∗ R32

where the annihilations occur in the first round and R32 and R07 are inputs of
the first round. For the second round we have:

Pφ−1
= L05 ∗ (R07+

Z7∗(L28+1)=0
︷ ︸︸ ︷�����Z7L24−L29 ) ∗ (L28 + 1)∗

(R27+

X8∗(L28+1)=0
︷ ︸︸ ︷�������X8L28−L32,L01 +1) ∗ (R32+

W7∗(L28+1)=0
︷ ︸︸ ︷������W7L24−L29 )

= L05 ∗ R07 ∗ (L28 + 1) ∗ (R27 + 1) ∗ R32

Here the annihilations occur in the second round and if R28 is taken at the
output of the second round, this variable is in fact equal to L28, or e, when seen
as input of the second round S-box S7. ��
Remark 1. It may seem that this proves that the invariant attack works also
for 1 round, but it doesn’t. After 1 round the two sides L,R are SWAPPED30.

Remark 2. If we denote by P ′ the symmetric version of P above, then it is
easy to see that P + P ′ is an invariant of degree 5 for 1 round, cf. Sect. 4.3.

Remark 3. It is an open problem if a second proof of Theorem10.1 can at all
be obtained from our general framework construction of Theorem7.1.

11 Conclusion

Non-linear attacks on block ciphers are about two very complex polynomials
being equal and as such so far, they were considered to happen by some extraor-
dinary coincidence. In this paper we introduced a method for constructing non-
linear attacks on block ciphers in a systematic way. It explains why some previ-
ously studied attacks work, and we can construct a large variety of new attacks
of higher degree. We generalize the concept of closed-loop configuration cf. [38],
and extend it to cycles involving arbitrary polynomials Qi which cycles initially
are rather impossible and are made possible by considering addition of some well
chosen non-linear polynomials Zi. Then we eliminate all the Zi algebraically. We
obtain a large family of new attacks, which can now be studied.

Our general attack is formulated in such a way, that after renaming the
variables it could apply to any block cipher; cf. our framework Theorem7.1

30 This is closely related to the question of reflection attacks in GOST, cf. [27].
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and all our application results. The attack is built on premises that the cipher
satisfies a small number of initial assumptions, which concern a tiny fraction of
the specification of the cipher. This should be compared to certain results on
worst-case algebraic attacks on stream ciphers. All these attacks are about how
eliminating a large number of internal variables and many attacks on stream
ciphers are also based on polynomial annihilation events [15]. At ICISC 2004,
[16], we discover that some stream ciphers can be broken no matter what: for
any Boolean function or S-box. Similarly here we observe, that as the number of
polynomials in our cycles increases, our annihilation conditions with more linear
factors become totally impossible to avoid, cf. Theorem5.2. This enables us to
construct attacks which work, provided that an (increasingly small) fraction
of the truth table of our Boolean functions are such as requested. Overall our
attacks become increasingly hard to prevent and are not necessarily avoided by
standard non-linearity requirements studied in cryptography cf. [2]. We claim
that our attacks are not31 in general prevented with traditional block cipher
design methodology [5,20,33,34], cf. Theorem 5.2. A serious limitation however
is that for DES our attack only works for a fraction of the key space and not
quite for the original S-boxes, cf. Appendix B. For T-310 attacks are substantially
stronger and work for 100 % of keys and with arbitrary round constants.

The present work is not exhaustive and does NOT cover all possible invariant
attacks, which in the general case form a polynomial ring with sums and prod-
ucts. The main contribution of this paper is to show how to construct attacks
with one product, where this ring is not trivial and not empty: existence of at
least one invariant attack. Experience shows that then other better attacks with
lower degree and more products may also exist, cf. Sect. 2.3 and [11,12,17]. For
example we found that with a small modification in Theorem 8.1 we can obtain
a larger invariant ring with dimension up to 9, containing further invariants of
degree 2, 4 and 6. We demonstrate this for DES in Sect. 10: we show that the
degree of the invariant property in Theorem9.1 can be reduced from 10 to 5. In
general it is not easy to know if any given non-linear attack can be constructed
using our general framework of Theorem7.1.

A Two Proofs of Theorem 9.1

We provide two proofs of Theorem 9.1. First proof just shows that the attack
works directly step by step without revealing that it might be an application
of Theorem 7.1. Second proof follows our framework based on three cycles, cf.
Figs. 12, 13 and 14. Both proofs are about rewriting everything with input vari-
ables only.

First Proof of Theorem 9.1: We rewrite our annihilation conditions using A,B, . . .
at input side, for every input:

31 Except in more recent works specifically aiming at thwarting invariant attacks [3,6].
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⎧
⎪⎨

⎪⎩

W8 ∗ C ∗ E = X8 ∗ C ∗ E = 0
Z7 ∗ C ∗ D = W7 ∗ C ∗ D = 0
X2 ∗ A ∗ B = 0

Using Fig. 11 we see that on the output side after one round φ of encryption:

Po = Pφ= (L05 + P5) ∗ (L07 + P7) ∗ (L28 + P28 + 1) ∗ (L27 + P27 + 1) ∗ (L32 + P32)

∗R05 ∗ R07 ∗ (R28 + 1) ∗ (R27 + 1) ∗ R32 =(L05 +W8) ∗ (L07 + Z7) ∗ (L28 + X2 + 1)∗
(L27 + X8 + 1) ∗ (L32 +W7)∗R05 ∗ R07 ∗ (R28 + 1) ∗ (R27 + 1) ∗ R32

=(L05+

C∗E∗W8=0
︷︸︸︷

��W8 ) ∗ (L07+

C∗D∗Z7=0
︷︸︸︷

��Z7 ) ∗ (L28+

A∗B∗X2=0
︷︸︸︷

��X2 +1) ∗ (L27+

C∗E∗X8=0
︷︸︸︷

��X8 +1)

∗(L32+
C∗D∗W7=0

︷︸︸︷

��W7 ) ∗ A ∗ B ∗ C ∗ D ∗ E = P i, i.e. exactly our input polynomial.

��
Second Proof of Theorem 9.1: We show how our attack follows from Theorem7.1
and 3 cycles in Figs. 12, 13 and 14. Each output-side polynomial Qj′ is equal to
the sum of the input-side polynomial Qj and the Zj polynomial e.g. (Z7+ d) or
0, added at this step. First we check the cycle on Fig. 12. First transition from
R07 to L07 is trivial. In second transition we check that d for S7 is the same as
R27i and:

(B′)i = (L07)i = (R07)o + (Z7 + d) + (R27)i = (R07 + L27)o + (Z7 + d) = (B +D′ + 1)o

In the same way we carefully check all 24 transitions on all 3 cycles. Each time
an input of a Boolean function a, . . . , f is used we check which input number
R01 . . . R32 it is, cf. Fig. 11. For example d7 denotes 4-th input of S7 which is
R28i. We show how round outputs 5, 7, 27, 28, 32 are transformed in DES:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L05i = R05o + W8(.) due to P (5) = W8
L07i = R05o + Z7(.) due to P (7) = Z7
L28i = R28o + X2(.) due to P (28) = X2
L27i = R27o + X8(.) due to P (27) = X8
L32i = R32o + W7(.) due to P (32) = W7.

We recall that “transformable” polynomials are all Qj which are transformed
into another polynomial Q′

j included, i.e. all those with 0 added, and exactly
those made from A,B,C, . . . only and not any of A′, B′, C ′, . . ., and also those
using R01-R32 and without any of L01-L32, which are:
⎧
⎪⎨

⎪⎩

B = R07 ∈ {Fig. 12} B + C + 1 = R07 + R28 ∈ {Fig. 12}
A + D + 1 = R05 + R27 ∈ {Fig. 13} B + D + 1 = R07 + R27 ∈ {Fig. 13}
E = R32 ∈ {Fig. 14} C + E + 1 = R28 + R32 ∈ {Fig. 14}
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Fig. 11. Full round function of DES showing the DES P-box.

Then we show that the product of 24=8+8+8 polynomials is the same as
our intended invariant P of degree 5 + 5. We multiply all 6 transformable poly-
nomials:

B(B + C + 1)(A + D + 1)(B + D + 1)E(C + E + 1) =
BC(A + D + 1)DE(C + E + 1) = ABCDE(C + E + 1) = ABCDE

Accordingly the identity above proves that the product of exactly all “trans-
formable” polynomials on both cycles is simply equal to ABCDE which fact we
will use below. This product is of degree 5 in cipher state variables. Similarly we
have: B′(B′ + C ′ + 1)(A′ + D′ + 1)(B′ + D′ + 1)E′(C ′ + E′ + 1) = A′B′C ′D′E′.
We have now multiplied 12 polynomials out of 24 on our 3 cycles and the result
is our exact polynomial invariant as expected P = ABCDEA′B′C ′D′E′.
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Fig. 12. First of three cycles leading to our invariant attack on DES in Theorem 9.1.

It remains to show that all the remaining 24-12=12 polynomials on the 3
cycles which were not multiplied yet, will be absorbed by P. In other words
the result P does not change if we multiply by these extra 12 factors. This
is shown in 3 stages for each cycles in order, and the key observation is that
AB(B + A + 1) = AB and ABC(B + A + C) = ABC. Thus we have

ABCDEA′B′C ′D′E′(B + D′ + 1)(B′ + C ′ + D) = ABCDEA′B′C ′D′E′

We observe that all the 24 points at our cycles are such that the parity
is odd, i.e. all 24 terms on 3 cycles will become zero if we assign all the 20
variables to 1. Therefore we can apply the rules AB(B + A + 1) = AB and
ABC(B + A + C) = ABC for each new term.

Now we need to check that all the Zj vanish when multiplied by exactly
ABCDE = product of all “transformable” polynomials. All the Zj will be anni-
hilated if we annihilate the 5 components (W7+e), (X2+b+d), (X8), (W8), (Z7+
d). We will need to check that each is annihilated by the product of all “trans-
formable” polynomials = ABCDE.

For this we rewrite our assumptions with additional derived facts using rules
L1L2W = L1L2(W + L1 + 1) and L1L2W = L1L2(W + L1 + L2). For example
(a + e)e is the same as CE = (R28 + 1)R32 = (R28 + R32)R32. Likewise
(d + 1)(e + 1) = (R27 + 1)(R28 + 1) = CD for W7 and X7, and bd = A ∗ B for
X2. We annihilated all 5 terms (W7 + e), (X2 + b + d), (X8), (W8), (Z7 + d):
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Fig. 13. Second cycle leading to invariant of degree 10 on DES in Theorem 9.1.

Fig. 14. Third cycle which is combined with other inside our proof of Theorem 9.1.
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C ∗ E ∗ W8 = 0 C ∗ E ∗ (W8 + a) = 0
C ∗ E ∗ X8 = 0 C ∗ E ∗ (X8 + a) = 0

C ∗ D ∗ (Z7 + d) = 0 C ∗ D ∗ (Z7 + e) = 0
C ∗ D ∗ (W7 + d) = 0 C ∗ D ∗ (W7 + e) = 0

A ∗ B ∗ (X2 + b + d) = 0 A ∗ B ∗ (X2) = 0

��

B Original DES Boxes: Shamir 1985 Paper Revisited

In 1985 Shamir observed that for every DES S-box, if we fix the second input
variable to 1, the sum of all outputs is very strongly biased [36]. This has impor-
tant consequences for our attacks. For every strongly biased Boolean function
either Z or Z + 1 has unusually many annihilators, cf. Thm. B.2. in [18]. In
particular we have some unusually simple annihilators with only 2 linear factors,
e.g. the following property holds with probability 1 for the DES S-box S5:

R17(R16 + R20) ∗ (W5 + X5 + Y 5 + Z5) = 0.

We are not or not yet using the full power of Theorem7.1 which allows the
additions of affine terms. By doing we have a simpler linear annihilator:

(1 + R16 + R17 + R20) ∗ (W5 + X5 + Y 5 + Z5 + 1 + R17) = 0.

Here we can annihilate a non-linear function with just one transformable poly-
nomial (1 + R16 + R17 + R20) which corresponds to 1-weak-normality in [8]. It
is an open problem to discover a full optimised attack using such annihilations.
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Abstract. Authenticated encryption refers to symmetric cryptography
providing both privacy and authenticity. It is most common to construct
it as a block-cipher mode of operation. Another promising approach is
to construct it based on cryptographic hashing. This paper proposes a
nonce-based authenticated encryption scheme based on the Lesamnta-
LW hashing mode. Lesamnta-LW is a block-cipher-based iterated hash
function, which is specified in the ISO/IEC 29192-5 lightweight hash-
function standard. This paper also shows that the proposed scheme is
secure if the underlying block cipher is a pseudorandom permutation.
Both of the other ISO/IEC 29192-5 mechanisms, PHOTON and SPON-
GENT, are hardware-oriented sponge-based hash functions, and nonce-
based authenticated encryption schemes can also be constructed based
on them. On the other hand, Lesamnta-LW is a software-oriented Merkle-
Damg̊ard hash function. Thus, the proposed scheme is a new option for
authenticated encryption based on lightweight cryptographic hashing.

Keywords: Authenticated encryption · Hash function ·
Lesamnta-LW · Pseudorandom function

1 Introduction

Background. Authenticated encryption (AE) refers to symmetric cryptography
providing both privacy and authenticity at the same time. Informally, privacy
is confidentiality of plaintexts and authenticity is integrity of ciphertexts. AE
schemes often take additional input called associated data which only require
authenticity. Such AE schemes are referred to as authenticated encryption with
associated data (AEAD).

There are some kinds of approaches for AEAD construction. Among them,
one of the most common approaches is to construct it as a mode of operation of
a block cipher such as AES [15]. The other is to construct it based on the sponge
construction [8]. The sponge construction [6] was invented originally for cryp-
tographic hash functions as well as for MAC functions and stream ciphers. The
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sponge-based hash function Keccak [7] was selected for the SHA-3 standard [16].
The sponge construction is also popular for lightweight hashing.

The ISO/IEC 29192-5 lightweight hash function standard [24] was released
in 2016, which specifies three lightweight cryptographic hash functions: PHO-
TON [20], SPONGENT [9], and Lesamnta-LW [21]. PHOTON and SPONGENT
follow the sponge construction, and the sponge-based AEAD mode can be
applied to them. On the other hand, Lesamnta-LW is a Merkle-Damg̊ard [12,27]
hash function using a dedicated block cipher whose key size is half the block
size as a compression function. In addition, Lesamnta-LW is optimized for soft-
ware implementation, while both PHOTON and SPONGENT are optimized for
hardware implementation. In fact, a software result [21] shows that Lesmanta-
LW provides 120-bit collision resistance with 54 bytes of RAM, achieving 20%
faster short-message performance over SHA-256, while hardware results show
that SPONGENT provides 80-bit collision resistance with 1329 GE and PHO-
TON provides the same security level with 1396 GE. Thus, the design and secu-
rity analysis of AEAD based on Lesamnta-LW seems an interesting challenge and
it would be an efficient option for lightweight authenticated encryption on low-
cost 8-bit microcontrollers where RAM requirement is critical for cryptographic
functionality.

Our Contribution. This paper proposes a nonce-based AEAD scheme based
on the Lesamnta-LW hashing mode. The proposed scheme follows the common
syntax of nonce-based AEAD. The encryption function, which is depicted in
Fig. 3, takes as input a secret key K, a nonce N , associated data A, and a
plaintext M and produces a ciphertext C and a tag T . The tag is produced
for integrity of both the ciphertext and the associated data. The length of the
ciphertext is equal to that of the plaintext. The proposed scheme is online, that is,
a given plaintext is encrypted block-by-block, and a new block of the ciphertext
depends only on the blocks of the plaintext so far as well as the nonce and the
associated data.

The proposed scheme is key-evolving: Each call to the underlying block cipher
requires a key-schedule for a new key. It is actually a disadvantage for efficiency.
On the other hand, it is an advantage for resistance to side channel attacks.
An interesting methodology called leveled implementations (implementations in
the leveled leakage setting) [18,31] was proposed against side channel attacks.
Strongly protected implementations to reduce leakages through side channels
need huge overhead costs in general. The methodology aims at trying to min-
imize the use of strongly protected implementations and use weakly protected
implementations for the bulk of computation. In the encryption of the proposed
AEAD scheme, first an ephemeral key is generated with the nonce. Thus, if the
nonce is respected, then the encryption is resistant to side channel attacks by
generating an ephemeral key using a strongly protected implementation. It is
effective for applications which, for example, perform decryption only by central
servers free from side channel attacks.

This paper also shows that the proposed scheme is secure in the standard
model. The security properties, privacy and authenticity, are reduced to the pseu-
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dorandom permutation property of the block cipher underlying the Lesamnta-
LW hashing mode. The proof is based on the all-in-one definition of security
given in [34]. The proof heavily uses the hybrid argument originated from [17].

Finally, this paper discusses the security of the proposed scheme under mis-
uses. It considers the two typical misuses: nonce repetition (NR) and releas-
ing unverified plaintexts (RUP). It confirms that the proposed scheme satisfies
authenticity under the misuses.

The proposed AEAD scheme based on Lesamnta-LW has an advantage over
lightweight AEAD schemes based on PHOTON and SPONGENT in provable
security. The proposed scheme is shown to be secure in the standard model,
while the sponge-based schemes are shown to be secure in the ideal permutation
model which assumes that the underlying permutation is chosen uniformly at
random.

Related Work. Authenticated encryption received the first formal treatments
from Katz and Yung [26] and Bellare and Namprempre [2], which are followed
by Jutla [25].

There are many block-cipher modes of operation for AEAD. Only a few
examples are mentioned here, however, since it is not the main topic of the
paper. OCB [33] is one of the earliest but most efficient modes, and it is inspired
by IAPM [25]. CCM [29] and GCM [30] are specified by NIST and ISO/IEC
19772 [23].

As far as we know, there is only one proposal for AEAD based on cryp-
tographic hashing except for the sponge-based proposals. It is OMD (Offset
Merkle-Damg̊ard) by Cogliani et al. [11], which is a mode of operation of a
compression function for the Merkle-Damg̊ard hashing such as SHA-2 [14].

Nonce-based symmetric encryption was introduced with its formalization by
Rogaway [32]. The generic composition of nonce-based AEAD was discussed by
Namprempre et al. [28].

For misuse resistance of authenticated encryption, security under nonce-
repetition (NR) was formalized by Rogaway and Shrimpton [34]. Security under
releasing unverified plaintexts (RUP) was formalized by Andreeva et al. [1].
Robust authenticated encryption was introduced and formalized by Hoang et
al. [22], which is secure under NR and RUP. Robust authenticated encryption
schemes are inefficient for long plaintexts in terms of memory since the required
amount of memory is at least as much as the given plaintext to save it or inter-
mediate states during encryption.

Pereira et al. presented the idea of leveled implementations and proposed a
leakage-resilient MAC function and a leakage-resilient encryption scheme based
on it [31]. A series of work has been done for leakage-resilient AEAD [3–5,18],
which has proposed schemes using (tweakable) block ciphers and cryptographic
hash functions. Leakage-resilient AEAD schemes have also been proposed based
on sponge construction [13,19].

Organization. Notations and definitions used in the remaining parts are given in
Sect. 2. Syntax and security are formalized for AEAD in Sect. 3. The nonce-based
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AEAD scheme Lae0 is proposed in Sect. 4, which is based on the Lesamnta-LW
hashing mode. The provable security of Lae0 in the standard model is confirmed
in Sect. 5. The authenticity of Lae0 under misuses is also confirmed in the prov-
able security setting in Sect. 6. A brief concluding remark is given in Sect. 7.

2 Preliminaries

2.1 Notations and Definitions

Let Σ = {0, 1}. For any integer l ≥ 0, let Σl be identified with the set of all
Σ-sequences of length l. Σ0 = {ε}, where ε is the empty sequence. Σ1 = Σ. Let
(Σl)∗ =

⋃
i≥0(Σ

l)i and (Σl)+ =
⋃

i≥1(Σ
l)i. For non-negative integers k1 ≤ k2,

let (Σl)[k1,k2] =
⋃k2

i=k1
(Σl)i.

For x ∈ Σ∗, the length of x is denoted by |x|. For x1, x2 ∈ Σ∗, x1‖x2 rep-
resents their concatenation. For x ∈ Σ∗ and an integer 0 ≤ l ≤ |x|, msbl(x)
represents the most significant l bits of x, and lsbl(x) represents the least signif-
icant l bits of x.

Selecting an element s from a set S uniformly at random is denoted by s ←← S.
A function f : K×X → Y can be regarded as a set of functions with a domain

X and a range Y indexed by keys in K. f(K, ·) is often denoted by fK(·).
The set of all functions from X to Y is denoted by F(X ,Y). The set of all

permutations on X is denoted by P(X ). ι represents an identity permutation.
The set of all block ciphers with a key size κ and a block size n is denoted by
B(κ, n). A block cipher in B(κ, n) is called a (κ, n) block cipher.

Let Π ⊂ P(X ). We say that Π is pairwise everywhere distinct if, for every
π, π′ ∈ Π such that π 	= π′, π(x) 	= π′(x) for every x ∈ X .

2.2 Pseudorandom Functions and Permutations

Let f : K × X → Y and let A be an adversary against it. The goal of A is to
distinguish between fK and function ρ, where K and ρ are chosen uniformly at
random from K and F(X ,Y), respectively. A is given either fK or ρ as an oracle
and makes adaptive queries in X to the oracle which returns the corresponding
outputs. Finally, A outputs 0 or 1. The prf-advantage of A against f is defined
as

Advprf
f (A) =

∣
∣Pr

[
AfK = 1

]
− Pr [Aρ = 1]

∣
∣ ,

where K ←← K and ρ ←← F(X ,Y). The prp-advantage of A against f is defined
similarly as

Advprp
f (A) =

∣
∣Pr

[
AfK = 1

]
− Pr [Aρ = 1]

∣
∣ ,

where K ←← K and ρ ←← P(X ). In the definitions above, adversary A is regarded
as a random variable which takes values in {0, 1}.
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Informally, f is called a pseudorandom function (permutation), or PRF
(PRP) in short, if no efficient adversary A can have any significant prf-advantage
(prp-advantage) against f .

The prf-advantage can be extended straightforwardly to adversaries with
multiple oracles. The prf-advantage of adversary A with access to p oracles is
defined as

Advp-prf
f (A) =

∣
∣Pr[AFK1 ,FK2 ,...,FKp = 1] − Pr[Aρ1,ρ2,...,ρp = 1]

∣
∣ ,

where Ki ←← K and ρi ←← F(X ,Y) for i = 1, 2, . . . , p. Advp-prp
f can be

defined similarly. To simplify the notation, the following types of notations are
often used in the remaining parts: For K = (K1,K2, . . . ,Kp), AFK represents
AFK1 ,FK2 ,...,FKp , and, for ρ = (ρ1, ρ2, . . . , ρp), Aρ represents Aρ1,ρ2,...,ρp .

The following lemma is a kind of PRP/PRF switching lemma for the prf-
advantage with multiple oracles.

Lemma 1 (Lemma 3 of [21]). Let A be any adversary with p oracles against
E running in time at most t, and making at most qi queries to its i-th oracle for
1 ≤ i ≤ p. Let q = q1 + · · · + qp. Then, there exists an adversary B against E
such that

Advp-prf
E (A) ≤ p · Advprp

E (B) + q2/2n+1

and B runs in time at most t + O(qTE) and makes at most max{q1, q2, . . . , qp}
queries, where TE represents the time required to compute E.

2.3 Indistinguishability Between Sets of Functions

Let G0 and G1 be finite sets of functions such that Gi ⊂ F(X ,Y) for i = 0, 1.
Suppose that some probability distributions are defined over G0 and G1. Let A be
an adversary against a pair of G0 and G1. The goal of A is to distinguish between
G0 and G1, that is, between g0 and g1, where gi is sampled from Gi according
to the probability distribution over Gi for i = 0, 1. A is given gi as an oracle
and makes adaptive queries in X to the oracle which returns the corresponding
outputs. Finally, A outputs 0 or 1. The ind-advantage of A against (G0,G1) is
defined as

Advind
G0,G1

(A) = |Pr [Ag0 = 1] − Pr [Ag1 = 1]| ,
where g0 and g1 are sampled from G0 and G1, respectively, according to the
corresponding probability distributions.

Informally, it is said that G0 and G1, or g0 and g1, are indistinguishable if
the ind-advantage is negligible for any efficient adversary. The PRF notion of
f : K × X → Y is the indistinguishability between {f(K, ·) |K ∈ K} with the
probability distribution induced by the uniform distribution over K and F(X ,Y)
with the uniform distribution.

Similar to the prf-advantage, the ind-advantage can also be extended to
adversaries with multiple oracles. The ind-advantage of adversary A against
(G0,G1) with access to p oracles is denoted by Advp-ind

G0,G1
(A).
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2.4 The Hashing Mode of Lesamnta-LW

The hashing mode of Lesamnta-LW [21] is the plain Merkle-Damg̊ard iteration
of a block cipher E in B(n/2,n), where n is a positive even integer. E works
as a compression function with domain Σ3n/2 and range Σn . It is depicted in
Fig. 1. IV0‖IV1 ∈ Σn is an initialization vector, where |IV0| = |IV1| = n/2.
M1,M2, . . . ,Mm are message blocks, where Mi ∈ Σn/2 for i = 1, 2, . . . ,m.

E E E E
IV0
IV1

M1 M2 Mm−1 Mm

Fig. 1. The hashing mode of Lesamnta-LW. The input of the block cipher E from the
top is its key input.

3 Authenticated Encryption with Associated Data

Syntax. A nonce-based scheme of authenticated encryption with associated data
(AEAD) consists of a pair of functions for encryption and decryption. The
encryption function is Enc : K × N × A × M → C × T and the decryption
function is Dec : K × N × A × C × T → M ∪ {⊥}, where K is a key space,
N is a nonce space, A is an associated-data space, M is a message space, C
is a ciphertext space, and T is a tag space. M ⊂ Σ∗, ⊥ 	∈ M and A ⊂ Σ∗.
If M ∈ M, then Σ|M | ⊂ M. For any K ∈ K, if (C, T ) ← EncK(N,A,M)
for some (N,A,M) ∈ N × A × M, then M ← DecK(N,A,C, T ). Otherwise,
⊥ ← DecK(N,A,C, T ), which means that (N,A,C, T ) is invalid with respect to
K ∈ K.

Security. The security requirements for AEAD are privacy and authenticity.
Informally, privacy is confidentiality of encrypted messages, and authenticity is
integrity of ciphertexts and associated data. Here, they are formalized in the all-
in-one manner [34]. Let $ be a random function taking (N,A,M) ∈ N ×A×M
as input and returning a binary sequence of length |EncK(N,A,M)|, which is
chosen uniformly at random if (N,A,M) is new. Let ⊥ be a function taking
(N,A,C, T ) as input and always returning ⊥. The security of an AEAD scheme
(Enc,Dec) is defined by the indistinguishability between (EncK ,DecK) and ($,⊥)
and denoted by

Advaead
(Enc,Dec)(A) =

∣
∣Pr

[
AEncK ,DecK = 1

]
− Pr

[
A$,⊥ = 1

]∣
∣,

where K ←← K. Here, adversary A makes encryption queries to either EncK

or $ and decryption queries to either DecK or ⊥. A is not allowed to make



58 S. Hirose et al.

multiple encryption queries with the same nonce. A is not allowed to make
a trivial decryption query, either. Namely, if A gets (C, T ) as an answer to
some encryption query (N,A,M), then it is not allowed to ask (N,A,C, T ) as a
decryption query.

4 The Proposed Scheme: Lae0

Let E be a block cipher in B(n/2,n), where n is an even integer. Hereafter, let
n/2 = w just for simplicity.

The padding function used in the proposed construction is defined as follows:
For any X ∈ Σ∗,

pad(X) =

{
X if |X| > 0 and |X| ≡ 0 (mod w)
X‖10t if |X| = 0 or |X| 	≡ 0 (mod w),

where t is the minimum non-negative integer such that |X|+1+ t ≡ 0 (mod w).
pad is not injective since, for example, pad(ε) = pad(10w−1) = 10w−1. For any
X ∈ Σ∗, |pad(X)| is the minimum positive multiple of w, which is greater than
or equal to |X|.

Let pad(X) = X̄ = X̄1‖X̄2‖ · · · ‖X̄x, where |X̄i| = w for every i such that
1 ≤ i ≤ x. x = 1 if |X| = 0, and x = |X|/w� if |X| > 0. X̄i is called the i-th
block of pad(X).

For E ∈ B(w,n) and π0, π1 ∈ P(Σw), a function JE ,{π0,π1} : Σn × Σ∗ →
(Σw)+ is defined as follows: JE ,{π0,π1}(Y0,X) = Y0,1‖Y1,1‖ · · · ‖Yx−1,1‖Yx such
that X̄ = pad(X),

Yi ← EYi−1,0(X̄i‖Yi−1,1)

for 1 ≤ i ≤ x − 1, and

Yx ←
{
EYx−1,0(X̄x‖π0(Yx−1,1)) if |X| > 0 and |X| ≡ 0 (mod w)
EYx−1,0(X̄x‖π1(Yx−1,1)) if |X| = 0 or |X| 	≡ 0 (mod w),

where Yj = Yj,0‖Yj,1 ∈ Σn and |Yj,0| = |Yj,1| = w for 0 ≤ j ≤ x. It is also
depicted in Fig. 2.

E E E E
Y0,0
Y0,1

X1 X2 Xx−1 Xx

π

Y1,1Y0,1 Y2,1 Yx−1,1

Yx,1

Yx,0

¯ ¯ ¯ ¯

Fig. 2. JE,{π0,π1}(Y0, X), where pad(X) = X̄1‖ · · · ‖X̄x
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To describe the proposed nonce-based AEAD scheme Lae0, two keyed func-
tions aJE ,{π0,π1} and mJE ,{π0,π1} are defined using JE ,{π0,π1}.

aJE ,{π0,π1} : Σn × Σ∗ → Σn is a keyed function with its key space Σn such
that

aJE ,{π0,π1}(S,A) = lsbn(JE ,{π0,π1}(S,A)).

Let parse be a function taking X ∈ Σ∗ as input such that parse(X) =
(X1,X2, . . . , Xx), where x ≥ 1, X = X1‖X2‖ · · · ‖Xx, |Xi| = w for 1 ≤ i ≤ x−1,
0 ≤ |Xx| ≤ w, and |Xx| = 0 only if X = ε.

mJE ,{π0,π1} : Σn × Σ∗ × {e, d} → Σn is a keyed function with its key space
Σn such that

mJE ,{π0,π1}(S,M, e) = JE ,{π0,π1}(S,M)

and mJE ,{π0,π1}(·, ·, d) is given by Algorithm 1.

Algorithm 1. The function mJE ,{π0,π1}(·, ·, d)
function mJE,{π0,π1}(S, C, d)

(C1, C2, . . . , Cm) ← parse(C)
Y0 ← S
for i = 1 to m − 1 do � Yi−1 = Yi−1,0‖Yi−1,1 and |Yi−1,0| = |Yi−1,1|

Mi ← Ci ⊕ Yi−1,1; Yi ← EYi−1,0(Mi‖Yi−1,1)
end for
Mm ← Cm ⊕ msb|Cm|(Ym−1,1)

return JE,{π0,π1}(S, M1‖M2‖ · · · ‖Mm)
end function

The proposed nonce-based AEAD scheme Lae0 is presented by Algorithm 2.
The encryption function E0 of Lae0 is also depicted in Fig. 3. For Lae0, the key
space is Σw, the nonce space is Σn , and the tag space is Στ , where 0 < τ ≤ n.
The associated-data space, the message space and the ciphertext space are Σ∗.
If (C, T ) ← E0K(N,A,M), then the length of C equals the length of M .

Algorithm 2. Encryption E0 and decryption D0 of AEAD Lae0

function E0K(N, A, M)
S ← aJE,{π0,π1}(EK(N), A)
V ← mJE,{π0,π1}(S, M, e)
C ← M ⊕ msb|M|(V )
T ← lsbτ (V )
return C, T

end function

function D0K(N, A, C, T )
S ← aJE,{π0,π1}(EK(N), A)
V ← mJE,{π0,π1}(S, C, d)
if T = lsbτ (V ) then

return C ⊕ msb|C|(V )
else

return ⊥
end if

end function



60 S. Hirose et al.

E

K

N

M1

EE E E

A1 Aa−1 Aa 100

π1

Mm

C1 Cm−1 Cm

E E

Mm−1

π0
T

Fig. 3. The encryption function E0 of the nonce-based AEAD scheme Lae0. (C, T ) ←
E0K(N, A, M), where parse(A) = (A1, A2, . . . , Aa), parse(M) = (M1, M2, . . . , Mm), and
C = C1‖C2‖ · · · ‖Cm. This figure assumes that |Aa| = w − 3, |Mm| = w and τ = n.

5 Security of Lae0

The following theorem states that Lae0 is secure, that is, satisfies both privacy
and authenticity, if the underlying block cipher E is a PRP and the underly-
ing non-cryptographic permutations π0 and π1 are pairwise everywhere distinct
together with the identity permutation.

Theorem 1. For permutations π0 and π1 on Σw used in Lae0, suppose that
{π0, π1, ι} is pairwise everywhere distinct. Let A be any adversary against Lae0
running in time at most t and making at most qe and qd queries to the encryption
and decryption oracles, respectively. Let q = qe + qd. Suppose that the length of
a message or a ciphertext in each query is at most 
mw. Suppose that the length
of associated data in each query is at most 
aw. Let 
 = 
m + 
a. Then, there
exists an adversary B against E such that

Advaead
Lae0 (A) ≤ (
 + 1)q Advprp

E (B) + (
 + 1)q2/2n+1 + qd/2τ ,

and B runs in time at most t + O(
qTE ) and makes at most q queries, where
TE is the time required to compute E.

Remark 1. Let πi(x) = x ⊕ ci for i = 0, 1, where c0 and c1 are non-zero distinct
constants in Σw. Then, {π0, π1, ι} is pairwise everywhere distinct.

To prove Theorem 1, we will show that aJE ,{π0,π1} is a PRF and mJE ,{π0,π1}

is indistinguishable from a random function specified below if E is a PRP and
{π0, π1, ι} is pairwise everywhere distinct.

5.1 The PRF-Property of aJE ,{π0,π1}

aJE ,{π0,π1} is shown to be a PRF if E is a PRP and {π0, π1, ι} is pairwise
everywhere distinct:



Authenticated Encryption Based on Lesamnta-LW Hashing Mode 61

Theorem 2. For permutations π0 and π1 on Σw, suppose that {π0, π1, ι} is
pairwise everywhere distinct. Let A be any adversary with p oracles against
aJE ,{π0,π1} running in time at most t and making at most q queries. Suppose
that the length of the associated data in each query is at most 
w. Then, there
exists an adversary B against E such that

Advp-prf

aJE,{π0,π1}(A) ≤ 
q Advprp
E (B) + 
q2/2n+1

and B runs in time at most t + O(
qTE ) and makes at most q queries, where
TE is the time required to compute E.

The proof of Theorem 2 is omitted since it is similar to and easier than that of
Theorem 3, which is given later.

5.2 The Indistinguishability of mJE ,{π0,π1}

Here, it is shown to be difficult to distinguish between mJ
E ,{π0,π1}
S with S ←← Σn

and a random function from a set of functions Q specified below.
For M ∈ Σ∗, let parse(M) = (M1,M2, . . . ,Mm), where m = |pad(M)|/w ≥

1. For 1 ≤ i1 ≤ i2 ≤ m, let M[i1,i2] = Mi1‖Mi1+1‖ · · · ‖Mi2 . M[1,0] = ε. Let R be
the set of functions below:

{
R R(M) = R0(ε)‖R1(M1)‖R2(M[1,2])‖ · · · ‖Rm−1(M[1,m−1])‖R∗(M),

where Ri ∈ F((Σw)i, Σw) for 0 ≤ i ≤ m − 1 and R∗ ∈ F(Σ∗, Σn)

}

.

Notice that JE ,{π0,π1}(S, ·) ∈ R.
If the input length is assumed to be bounded from above by 
w, then the uni-

form random sampling from R is implemented by the uniform random sampling
from F((Σw)0, Σw) × F((Σw)1, Σw) × · · · × F((Σw)�−1, Σw) × F(Σ[0,�w], Σn).

Let Q be the set of functions defined with R as follows. A function Q ∈ Q
takes as input (Z, h) ∈ Σ∗ × {e, d}. Q(·, e) ∈ R. Let

Q(M, e) = R(M) = R0(ε)‖R1(M1)‖R2(M[1,2])‖ · · · ‖Rm−1(M[1,m−1])‖R∗(M)

for some R ∈ R. Then, Q(·, d) is defined similarly to mJE ,{π0,π1}(S, ·, d) as fol-
lows: For C ∈ Σ∗, Q(C, d) = Q(M1‖M2‖ · · · ‖Mm, e), where (C1, C2, . . . , Cm) ←
parse(C), Mi ← Ci ⊕ Ri−1(M[1,i−1]) for 1 ≤ i ≤ m − 1, and Mm ← Cm ⊕
msb|Cm|(Rm−1(M[1,m−1])).

The uniform random sampling from Q is defined naturally by the uniform
random sampling from R if the input length is bounded from above.

The following theorem states that the function mJ
E ,{π0,π1}
S with S chosen

uniformly at random from Σn is indistinguishable from a function chosen uni-
formly at random from Q if E is a PRP and {π0, π1, ι} is pairwise everywhere
distinct.

Theorem 3. For permutations π0 and π1 on Σw, suppose that {π0, π1, ι} is
pairwise everywhere distinct. Let A be any adversary with p oracles against
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mJE ,{π0,π1} running in time at most t and making at most q queries in total. Sup-
pose that the length of each query is at most 
w. Then, there exists an adversary
B against E such that

Advp-ind

mJE,{π0,π1},Q(A) ≤ 
q · Advprp
E (B) + 
q2/2n+1

and B runs in time at most t + O(
qTE ), and makes at most q queries, where
TE is the time required to compute E.

Theorem 3 immediately follows from Lemma 1 and the following lemma.

Lemma 2. For permutations π0 and π1 on Σw, suppose that {π0, π1, ι} is pair-
wise everywhere distinct. Let A be any adversary with access to p oracles against
mJE ,{π0,π1} running in time at most t and making at most q queries in total. Sup-
pose that the length of each query is at most 
w. Then, there exists an adversary
B against E with access to q oracles such that

Advp-ind

mJE,{π0,π1},Q(A) ≤ 
 · Advq-prf
E (B)

and B runs in time at most t + O(
qTE ), and makes at most q queries, where
TE is the time required to compute E.

Proof. Let Π = {π0, π1}. First, suppose that p = 1.
For l ∈ {0, 1, . . . , 
} and functions μi : (Σw)i → Σw for 0 ≤ i ≤ l, ν :

Σ[0,lw] → Σn and ξ : (Σw)l → Σw, let Q[l]E ,Π
μ,ν,ξ : Σ∗ × {e, d} → Σn be a

function defined as follows. For M such that parse(M) = (M1,M2, . . . ,Mm),

Q[l]E ,Π
μ,ν,ξ(M, e) =
{

μ(M[1,m−1])‖ν(M) if m ≤ l,

μ(M[1,l−1])‖JE ,Π(ξ(M[1,l])‖μl(M[1,l]), lsb|M |−lw(M)) if m ≥ l + 1,

where μ(M[1,j]) = μ0(ε)‖μ1(M1)‖μ2(M[1,2])‖ · · · ‖μj(M[1,j]) and μ(M[1,−1]) = ε.
For C such that parse(C) = (C1, C2, . . . , Cm),

Q[l]E ,Π
μ,ν,ξ(C, d) = Q[l]E ,Π

μ,ν,ξ(M1‖M2‖ · · · ‖Mm, e),

where

– for 1 ≤ i ≤ l, Mi ← Ci ⊕ msb|Ci|(μi−1(M[1,i−1])), and
– for i ≥ l + 1, Mi ← Ci ⊕ msb|Ci|(Yi−1,1), where Yl,0 = ξ(M[1,l]), Yl,1 =

μl(M[1,l]), and Yi ← EYi−1,0(Mi‖Yi−1,1).

Let Pl = Pr
[
AQ[l]E,Π

μ,ν,ξ = 1
]
, where μi ←← F((Σw)i, Σw) for 0 ≤ i ≤ l,

ν ←← F(Σ[0,lw], Σn) and ξ ←← F((Σw)l, Σw). Then, the advantage of A is

Advind
mJE,Π ,Q(A) = |P0 − P�|.

Let B be an adversary against E with access to q oracles (g1, g2, . . . , gq),
which are either (EK1 ,EK2 , . . . ,EKq

) or (ρ1, ρ2, . . . , ρq), where Ki ←← Σw and
ρi ←← F(Σn , Σn) for 1 ≤ i ≤ q. B works as follows:



Authenticated Encryption Based on Lesamnta-LW Hashing Mode 63

1. B selects r from {1, . . . , 
} uniformly at random.
2. For 0 ≤ i ≤ r − 1, B selects μi from F((Σw)i, Σw) uniformly at random. If

r ≥ 2, then B also selects ν̃ from F(Σ[0,(r−1)w], Σn) uniformly at random.
Actually, B simulates μ0, . . . , μr−1 and ν̃ with lazy evaluation.

3. B runs A and outputs the same value as A.

For 1 ≤ k ≤ q, let (Z, h) be the k-th query made by A, which is either (M, e)
or (C, d). Let parse(Z) = (Z1, Z2, . . . , Zz) and

P(Z) =

{
0 if |Z| > 0 and |Z| ≡ 0 (mod w),
1 if |Z| = 0 or |Z| 	≡ 0 (mod w).

If z ≥ r, then B makes a query to the d(k)-th oracle gd(k), where d : {1, . . . , q} →
{1, . . . , q} is a function defined as follows:

– Suppose that (Z, h) = (C, d). Then, let Mi ← Ci ⊕ msb|Ci|(μi−1(M[1,i−1]))
for 1 ≤ i ≤ r.

– If r = 1, then d(k) ← 1 for 1 ≤ k ≤ q.
– If r ≥ 2, then

• d(k) ← d(k′) if there exists a previous k′-th query (k′ < k) with the
corresponding M ′ such that |pad(M ′)|/w ≥ r and M ′

[1,r−1] = M[1,r−1],
and

• d(k) ← k otherwise.

If z = r, then the query made by B is Mr‖πP(Z)(μr−1(M[1,r−1])). If z ≥ r+1,
then it is Mr‖μr−1(M[1,r−1]). The answer of B to (Z, h) is
⎧
⎪⎨

⎪⎩

μ(M[1,z−1])‖ν̃(M) if z ≤ r − 1,

μ(M[1,r−1])‖gd(k)(Mr‖πP(Z)(μr−1(M[1,r−1]))) if z = r,

μ(M[1,r−1])‖mJE ,Π(gd(k)(Mr‖μr−1(M[1,r−1])), lsb|Z|−rw(Z), h) if z ≥ r + 1.

Now, suppose that B is given (EK1 , . . . ,EKq
) as oracles, that is, gd(k) =

EKd(k) . From the description of d, Kd(k) can be regarded as an output of a
function chosen uniformly at random from F((Σw)r−1, Σw). Thus, B provides
A with the oracle Q[r − 1]E ,Π

μ,ν,ξ, and

Pr
[
BEK1 ,...,EKq = 1

]
=

�∑

u=1

Pr
[
r = u ∧ BEK1 ,...,EKq = 1

]

=
1



�∑

u=1

Pr
[
BEK1 ,...,EKq = 1

∣
∣ r = u

]
=

1



�∑

u=1

Pr
[
AQ[u−1]E,Π

μ,ν,ξ = 1
]

=
1



�∑

u=1

Pu−1.

On the other hand, suppose that B is given oracles (ρ1, . . . , ρq), that is,
gd(k) = ρd(k). Since {π0, π1, ι} is pairwise everywhere distinct, μr−1(M[1,r−1]),
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π0(μr−1(M[1,r−1])) and π1(μr−1(M[1,r−1])) are not equal to each other. Thus, B
provides A with the oracle Q[r]E ,Π

μ,ν,ξ, and

Pr[Bρ1,...,ρq = 1] =
1



�∑

i=1

Pi.

Thus,

Advq-prf
E (B) =

∣
∣Pr

[
BEK1 ,...,EKq = 1

]
− Pr

[
Bρ1,...,ρq = 1

]∣
∣

=

∣
∣
∣
∣
∣

1



�∑

i=1

Pi−1 − 1



�∑

i=1

Pi

∣
∣
∣
∣
∣
=

|P0 − P�|



=
1



Advind
mJE,Π ,Q(A).

There may exist an adversary with the same amounts of resources as B and
larger advantage. Let us call it B again. This completes the proof for p = 1.

For p ≥ 2, prepare p instances of Q[l]E ,Π
μ,ν,ξ and modify the function d :

{1, 2, . . . , q} → {1, 2, . . . , q} accordingly. ��

5.3 The Proof of Theorem1

Let B0 be an adversary against E with oracle access to a function f ∈
F(Σn , Σn), which is either EK with K ←← Σw or  ←← F(Σn , Σn). Let E0f and
D0f be functions obtained from E0K and D0K in Algorithm 2 simply by replac-
ing the calls to EK(N) with f(N), respectively. B0 runs A. For each encryption
query (N,A,M) made by A, B0 computes E0f (N,A,M) with oracle access to
f and returns it to A. For each decryption query (N,A,C, T ) made by A, B0

computes D0f (N,A,C, T ) with oracle access to f and returns it to A. Finally,
B0 produces the same output as A. Then,

Advprf
E (B0) =

∣
∣
∣Pr

[
AE0EK ,D0EK = 1

]
− Pr

[
AE0�,D0�

= 1
]∣∣
∣,

where E0EK and D0EK are identical to E0K and D0K , respectively. B0 makes at
most q queries to its oracle. The run time of B0 is at most t + O(
qTE ).

Let Π = {π0, π1}. Let B1 be an adversary against aJE ,Π with oracle access
to q functions f = (f1, . . . , fq), which are either

(
aJE ,Π

K1
, . . . , aJE ,Π

Kq

)
with K =

(K1, . . . ,Kq) ←← (Σn)q or ρ = (ρ1, . . . , ρq) ←← (F(Σ∗, Σn))q. B1 runs A. For the
k-th query involving (N,A) made by A with 1 ≤ k ≤ q, B1 simulates E0K or
D0K using S̃ ← fda(k)(A) instead of S in Algorithm 2, where da : {1, . . . , q} →
{1, . . . , q} is a function defined as follows: da(k) ← da(k′) if there exists a previous
k′-th query involving (N ′, A′) such that N = N ′, and da(k) ← k otherwise.
Finally, B1 produces the same output as A. Let E0f and D0f be the oracles of
A simulated by B1 as described above. Then,

Advq-prf

aJE,Π (B1) =
∣
∣
∣Pr

[
AE0aJ

E,Π
K ,D0aJ

E,Π
K = 1

]
− Pr

[
AE0ρ ,D0ρ

= 1
]∣∣
∣,
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where E0aJ
E,Π
K and D0aJ

E,Π
K are identical to E0	 and D0	, respectively. B1 runs

in time at most t + O(
qTE ) and makes at most q queries in total. The length
of each query is at most 
aw.

Let B2 be an adversary against mJE ,Π with oracle access to q functions
g = (g1, . . . , gq), which are either

(
mJE ,Π

S1
, . . . ,mJE ,Π

Sq

)
with S = (S1, . . . , Sq)

←← (Σw)q or Q = (Q1, Q2, . . . , Qq) ←← Qq. B2 runs A. For the k-th query
involving (N,A) made by A with 1 ≤ k ≤ q, B2 simulates E0K or D0K using
Ṽ ← gdm(k)(M, e) or Ṽ ← gdm(k)(C, d), respectively, where dm : {1, . . . , q} →
{1, . . . , q} is a function defined as follows: dm(k) ← dm(k′) if there exists a
previous k′-th query involving (N ′, A′) such that (N,A) = (N ′, A′), and dm(k) ←
k otherwise. Finally, B2 produces the same output as A. Let E0g and D0g be
the oracles of A simulated by B2 as described above. Then,

Advq-ind

mJE,Π ,Q(B2) =
∣
∣
∣Pr

[
AE0mJ

E,Π
S ,D0mJ

E,Π
S = 1

]
− Pr

[
AE0Q ,D0Q

= 1
]∣∣
∣,

where E0mJE,Π
S and D0mJE,Π

S are identical to E0ρ and D0ρ , respectively. B2 runs
in time at most t + O(
w) and makes at most q queries in total. The length of
each query is at most 
mw.

Now, let us consider BQ
2 . For a decryption query (N,A,C, T ) made by A, if

(N,A) is new, then lsbn(Ṽ ) is chosen uniformly at random. On the other hand,
suppose that (N,A) is not new and C is new. Let (N,A,C ′, T ′) be a quadruple
corresponding to a previous query. Since C 	= C ′, M corresponding to C is
not equal to M ′ corresponding to C ′. Thus, lsbn(Ṽ ) is also chosen uniformly at
random. Let B3 be an adversary identical to B2 except that, for every decryption
query, B3 does nothing but returns ⊥. Then, Pr

[
BQ

2 = 1
]

≤ Pr
[
BQ

3 = 1
]
+qd/2τ .

Since A is nonce-respecting with respect to encryption, an answer (C, T )
returned by BQ

3 for every encryption query made by A are a pair of sequences
chosen uniformly at random. Thus, Pr

[
BQ

3 = 1
]

= Pr
[
A$,⊥ = 1

]
.

Consequently,

Advaead
Lae0 (A) =

∣
∣
∣Pr

[
AE0K ,D0K = 1

]
− Pr

[
A$,⊥ = 1

]∣∣
∣

≤ Advprf
E (B0) + Advq -prf

aJE,Π (B1) + Advq-ind

mJE,Π ,Q(B2) + qd/2τ .

This completes the proof with Theorems 2 and 3.

6 Authenticity of Lae0 Under Misuses

The security of Lae0 under misuses is discussed. The misuses considered here are
nonce repetition (NR) and releasing unverified plaintexts (RUP). For NR, adver-
saries are not assumed to be nonce-respecting with respect to encryption. For
RUP, the decrypt-anyway function D̃0 presented in Algorithm 3 is used instead
of D0 in Algorithm 2. For given (N,A,C, T ), D̃0K returns a message M̃ recovered
anyway as well as whether the input is valid (�) or invalid (⊥).
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Algorithm 3. Decryption of Lae0 under RUP

function ˜D0K(N, A, C, T )
S ← aJE,{π0,π1}(EK(N), A)
V ← mJE,{π0,π1}(S, C, d)
M̃ ← C ⊕ msb|C|(V )
if T = lsbτ (V ) then

return M̃, �
else

return M̃, ⊥
end if

end function

To confirm the authenticity of Lae0 under the misuses, it is shown that

(E0K , D̃0K) is indistinguishable from (Ê0
Q

, D̂0
Q

), which is presented in Algo-
rithm4, where Q = (Q1, Q2, . . . , Qq). For 1 ≤ i ≤ q, Qi is sampled from
Q according to the specified probability distribution. q is the total number
of the encryption or decryption queries. For the k-th query, Ê0 or D̂0 use
Qdm(k), which depends on the value of the pair (N,A). Namely, the function
dm : {1, 2, . . . , q} → {1, 2, . . . , q} is defined as follows. For the k-th query
(N,A,M) or (N,A,C, T ), if there exists some previous k′-th query with the
same value of (N,A), then dm(k) ← dm(k′). Otherwise, dm(k) ← k. Different
from D̃0, D̂0 always returns ⊥ together with a message recovered anyway.

Algorithm 4. Ideal encryption Ê0 and decryption D̂0 under NR and RUP

function ̂E0
Q1,Q2,...,Qq

(N, A, M)
� Let (N, A, M) be the k-th query

V ← Qdm(k)(M, e)
C ← M ⊕ msb|M|(V )
T ← lsbτ (V )
return C, T

end function

function ̂D0
Q1,Q2,...,Qq

(N, A, C, T )
� Let (N, A, C, T ) be the k-th query
V ← Qdm(k)(C, d)

M̃ ← C ⊕ msb|C|(V )

return M̃, ⊥
end function

The following theorem states that (E0K , D̃0K) and (Ê0
Q

, D̂0
Q

) are indistin-
guishable if the underlying block cipher E is a PRP and {π0, π1, ι} is pairwise
everywhere distinct. The proof is similar to that of Theorem 1 and omitted due
to the page limit. The theorem implies that Lae0 satisfies authenticity under the

misuses. Actually, the indistinguishability between (E0K , D̃0K) and (Ê0
Q

, D̂0
Q

)
implies INT-RUP [1] of Lae0.

Theorem 4. For permutations π0 and π1 on Σw used in Lae0, suppose that
{π0, π1, ι} is pairwise everywhere distinct. Let A be any adversary against Lae0
under misuses running in time at most t and making at most qe and qd queries to
the encryption and decryption oracles, respectively. Let q = qe +qd. Suppose that
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the length of a message or a ciphertext in each query is at most 
mw. Suppose
that the length of associated data in each query is at most 
aw. Let 
 = 
m + 
a.
Then, there exists an adversary B against E such that

Advind
(E0,˜D0),(̂E0,̂D0)

(A) ≤ (
 + 1)q Advprp
E (B) + (
 + 1)q2/2n+1 + qd/2τ

and B runs in time at most t + O(
qTE ) and makes at most q queries, where
TE is the time required to compute E.

7 Conclusion

A nonce-based AEAD scheme Lae0 has been proposed in this paper. It is based
on the hashing mode of Lesamnta-LW, which is specified by the ISO/IEC 29192-
5 standard. It is shown to be secure in the standard model. It is also shown to
satisfy authenticity under the misuses of nonce repetition and releasing unverified
plaintexts. Future work is to improve the efficiency of Lae0.
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9. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23951-9 21

10. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0

11. Cogliani, S., et al.: OMD: a compression function mode of operation for authenti-
cated encryption. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp.
112–128. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 7

12. Damg̊ard, I.: A design principle for hash functions. In: Brassard [10], pp. 416–427
13. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP

- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017). https://doi.org/10.13154/tosc.v2017.i1.80-105

14. FIPS PUB 180–4: Secure hash standard (SHS), August 2015
15. FIPS PUB 197: Advanced encryption standard (AES) (2001)
16. FIPS PUB 202: SHA-3 standard: Permutation-based hash and extendable-output

functions (2015)
17. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),

270–299 (1984)
18. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Authenticated encryption with

nonce misuse and physical leakages: definitions, separation results, and leveled
constructions. Cryptology ePrint Archive, Report 2018/484 (2018). https://eprint.
iacr.org/2018/484

19. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Towards low-energy leakage-
resistant authenticated encryption from the duplex sponge construction. Cryptol-
ogy ePrint Archive, Report 2019/193 (2019). https://eprint.iacr.org/2019/193

20. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 13

21. Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.:
An AES based 256-bit hash function for lightweight applications: Lesamnta-LW.
IEICE Trans. Fundam. E95–A(1), 89–99 (2012)

22. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

23. ISO/IEC 19772: Information technology – security techniques – authenticated
encryption (2009)

24. ISO/IEC 29192-5: Information technology – security techniques – lightweight cryp-
tography – part 5: Hash-functions (2016)

25. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6 32

26. Katz, J., Yung, M.: Complete characterization of security notions for probabilistic
private-key encryption. In: Proceedings of the Thirty-Second Annual ACM Sym-
posium on Theory of Computing, pp. 245–254 (2000)

27. Merkle, R.C.: One way hash functions and DES. In: Brassard [10], pp. 428–446
28. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.

In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/0-387-34805-0
https://doi.org/10.1007/978-3-319-13051-4_7
https://doi.org/10.13154/tosc.v2017.i1.80-105
https://eprint.iacr.org/2018/484
https://eprint.iacr.org/2018/484
https://eprint.iacr.org/2019/193
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/3-540-44987-6_32
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15


Authenticated Encryption Based on Lesamnta-LW Hashing Mode 69

29. NIST Special Publication 800-38C: Recommendation for block cipher modes of
operation: The CCM mode for authentication and confidentiality (2004)

30. NIST Special Publication 800-38D: Recommendation for block cipher modes of
operation: Galois/counter mode (GCM) and GMAC (2007)

31. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryp-
tion from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel, C. (eds.)
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, 12–16 October 2015, pp. 96–108. ACM (2015).
https://doi.org/10.1145/2810103.2813626

32. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-25937-4 22

33. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM Conference on Computer
and Communications Security, pp. 196–205 (2001)

34. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

https://doi.org/10.1145/2810103.2813626
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/11761679_23


All the HIGHT You Need on Cortex–M4

Hwajeong Seo1(B) and Zhe Liu2

1 Division of IT Convergence Engineering, Hansung University, Seoul, South Korea
hwajeong84@gmail.com

2 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing, China

sduliuzhe@gmail.com

Abstract. In this paper, we present high-speed and secure implementa-
tions of HIGHT block cipher on 32-bit ARM Cortex-M4 microcontrollers.
We utilized both data parallelism and task parallelism to reduce the exe-
cution timing. In particular, we used the 32-bit wise ARM–SIMD instruc-
tion sets to perform the parallel computations in efficient way. Since the
HIGHT block cipher is constructed upon 8-bit word, four 8-bit opera-
tions are performed in the 32-bit wise ARM–SIMD instruction of ARM
Cortex-M4 microcontrollers. We also presented a novel countermeasure
against fault attack on target microcontrollers. The method achieved
the fault attack resistance with intra-instruction redundancy feature
with reasonable performance. Finally, the proposed HIGHT implementa-
tion achieved much better performance and security level than previous
works.

Keywords: HIGHT block cipher · ARM Cortex-M4 · Parallel
implementation · Software implementation · Fault attack resistance

1 Introduction

Internet of Things (IoT) applications become feasible services as the technol-
ogy of embedded processors are developed. In order to provide fully customized
services, the IoT applications need to analyze and process big data and the
data should be securely encrypted before packet transmission. However, the
data encryption is high computation overheads for the low-end IoT devices with
limited computation frequency, energy, and storage. For this reason, lightweight
block cipher algorithms should be implemented in efficient manner to fit into the
certain requirements of applications. In order to evaluate the efficiency of block
cipher algorithms in objective manner, Fair Evaluation of Lightweight Crypto-
graphic Systems (FELICS) evaluated the implementations of block ciphers on
low-end IoT devices [3]. FELICS framework fairly evaluated the all block ciphers,
including Addition, Rotation, and bitwise eXclusive-or (ARX) and Substitution-
Permutation Network (SPN) based block ciphers, on low-end IoT devices, includ-
ing 8-bit AVR, 16-bit MSP, and 32-bit ARM Cortex-M3 microcontrollers. The
evaluation metric is execution time, code size, and RAM. However, they didn’t
consider the recent ARM microcontroller, namely Cortex-M4.
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In this paper, we introduce the optimization techniques for HIGHT block
cipher on 32-bit ARM Cortex-M4 microcontrollers. We utilized both data par-
allelism and task parallelism to reduce the execution timing. In particular, we
used the ARM–SIMD instruction sets to perform the parallel computations in
efficient way. Since the HIGHT block cipher has 8-bit word, four 8-bit operations
can be efficiently performed in a ARM–SIMD instruction of ARM Cortex-M4
microcontrollers. To get compact results, we used platform-specific assembly-
level optimizations for HIGHT block ciphers since the features of IoT platforms
vary (e.g. word size, number of registers, and instruction set). We also pre-
sented a novel countermeasure against fault attack on target microcontrollers.
The method achieved the fault attack resistance with intra-instruction redun-
dancy feature. Finally, high-speed and secure HIGHT implementation achieved
much better performance and security than previous works. The proposed imple-
mentation methods for HIGHT block cipher can be used for other ARX based
block ciphers, such as SPECK and SIMON, straightforwardly.

Summary of Research Contributions

The contributions of our work are summarized as follows.

1. Optimized task and data parallel implementation of HIGHT. A modern 32-
bit ARM processor provides a byte-wise SIMD feature, which performs four
bytes addition or subtraction operation without overflow or underflow prob-
lem. This SIMD instruction is used to perform the parallel computations
for HIGHT block cipher. The specialized rotation routines are also used to
optimize the F0 and F1 functions of HIGHT block cipher.

2. Fault attack resistance techniques for HIGHT. We introduced the new app-
roach to resist the fault attack for HIGHT block cipher on the 32-bit ARM
Cortex-M4 microcontrollers. We used intra-instruction redundant implemen-
tation and randomly shuffle the data to increase the randomness of data
location. All routines are finely optimized on the target microcontrollers.

3. HIGHT implementations on 32-bit ARM Cortex-M4 in open source. We share
all HIGHT implementations for reproduction of results. The following link
provides the source codes: https://bit.ly/2ZogBRI.

The remainder of this paper is organized as follows. In Sect. 2, we overview
HIGHT block cipher, FELICS framework and previous block cipher implemen-
tations on the 32-bit ARM Cortex-M microcontrollers. In Sect. 3, we introduce
compact and secure implementations of HIGHT block cipher for the 32-bit ARM
Cortex-M4 microcontrollers. In Sect. 4, we summarize our experimental results
and compare the results with the state-of-the-art works. In Sect. 5, we conclude
the paper.

2 Related Works

2.1 HIGHT Block Cipher

In CHES’06, lightweight block cipher HIGHT, was introduced by Korea, and it
was enacted as ISO/IEC 18033-3 international block cryptographic algorithm

https://bit.ly/2ZogBRI
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standard [9]. Since the HIGHT has lightweight features, this is suitable for the
low-end IoT applications. The block size is 64-bit and key size is 128-bit. HIGHT
block cipher performs 8-bit wise ARX operations. The encryption or decryption
operation requires 32 round functions. In each round function, a 64-bit round
key is required. In total, 2,048-bit of round keys are needed to process a 64-bit
plaintext during the encryption routine (Fig. 1).

Xi[7]

Xi+1[7]

F0

Xi[6] Xi[5]

Xi+1[5]

F1

Xi[4] Xi[3]

Xi+1[3]

F0

Xi[2] Xi[1]

Xi+1[1]

F1

Xi[0]

Xi+1[6] Xi+1[4] Xi+1[2] Xi+1[0]

F0(X) = X<<<1  X<<<2  X<<<7

F1(X) = X<<<3  X<<<4  X<<<6

SK4iSK4i+1SK4i+2SK4i+3

Fig. 1. One round of HIGHT encryption; X and SK represent input data and session
key

2.2 FELICS

In 2015, a benchmarking framework of software based block cipher implementa-
tions named Fair Evaluation of Lightweight Cryptographic Systems (FELICS)
was held by Luxembourg University. The FELICS benchmarking framework only
targets the low-end embedded devices, including 8-bit AVR ATmega128, 16-bit
MSP430, and 32-bit ARM Cortex-M3. The FELICS framework provides unified
methods for measuring the performance of block ciphers in terms of code size,
RAM, and execution timing under the same compiler specifications and tar-
get platform. The implementations were evaluated in three scenarios, including
cipher operation, communication protocol, and challenge-handshake authentica-
tion protocol. By using the framework, the lightweight block cipher competition
(i.e. FELICS Triathlon) was held by Luxembourg University. In the competition,
more than one hundred block cipher implementations on low-end IoT devices
were submitted by world-wide cryptographic engineers. After competition, they
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reported the most optimized results and HIGHT implementation won the sec-
ond round. This result shows that HIGHT block cipher has the one of the most
reasonable lightweight block cipher. For this reason, we decide to investigate
the optimized HIGHT implementations in modern low-end microcontrollers (i.e.
32-bit ARM Cortex-M4 microcontrollers) in this paper.

2.3 Previous Block Cipher Implementations on IoT Devices

Several works have investigated the implementation of block ciphers on IoT
embedded processors. In the past, 8-bit AVR and 16-bit MSP microcontrollers
were representative low-end target processors. Many works reported the opti-
mized block cipher implementations on 8-bit AVR and 16-bit MSP microcon-
trollers [2,4,6,7,12]. In recent works, they consider the advanced 32-bit ARM
microcontrollers as the reasonable low-end microcontrollers in terms of computa-
tion power and energy consumption. In order to fully utilize the 32-bit word size
of ARM processors, LEA block cipher selected the 32-bit wise Addition, Rota-
tion, and eXclusive-or (ARX) operations. For this reason, LEA implementation
on ARM microcontroller (i.e. ARM926EJ-S) shows higher performance than
previous AES implementations [8]. In [15], the LEA implementations through
on-the-fly method over ARM Cortex-M3 processors were proposed. They utilized
the available registers to retain many parameters as possible and optimized the
rotation operation with the barrel-shifter techniques. In [10], the lightweight
block cipher CHAM was implemented on ARM Cortex-M3 microcontrollers.
Compared with the SPECK block cipher, the CHAM block cipher shows better
performance. In [14], highly-optimized AES-CTR assembly implementations for
the ARM Cortex-M3 and M4 microcontrollers were introduced. The implemen-
tations are about twice as fast as existing implementations. The implementations
include an architecture-specific instruction scheduler and register allocator. In
[16], LEA and HIGHT block ciphers are evaluated on ARM Cortex-M3 microcon-
trollers. In particular, pseudo-SIMD technique is used for HIGHT implementa-
tion on ARM Cortex-M3. This technique can perform two encryption operations
at once on a 32-bit ARM processor. In this paper, we further improve the per-
formance of HIGHT block cipher on ARM Cortex-M4 microcontrollers by using
SIMD instruction and parallelism. Furthermore, the secure design against fault
attack is also introduced.

2.4 ARM Cortex-M Microcontrollers

The ARM Cortex-M is a family of 32-bit processors for use in embedded micro-
controllers. The microcontrollers are designed to be energy efficient, while being
fast enough to provide high performance in applications.

ARM Cortex-M4. ARM Cortex-M4 is a 32-bit microcontroller based on
ARMv7-M architecture developed by ARM Holdings. ARM Cortex-M4 was
announced in 2010. Cortex-M4 has 32-bit registers and a Thumb/Thumb-2
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instruction set that supports both 16-bit and 32-bit operations. Arithmetic
instructions take one cycle but memory access instructions take more cycles.
The microcontrollers supports barrel-shifter, which performs rotated or shifted
registers without additional costs. In particular, the Cortex-M4 supports addi-
tional instructions for digital signal processing than Cortex-M3. In this paper,
We used the MK20DX256VLH7 development board. This equips 256 KB of flash
memory, 64 KB of RAM, and 2 KB of EEPROM. In can run at up-to 72 MHz.
The detailed instructions for ARM Cortex-M4 are given in Table 1. In partic-
ular, UADD8 and USUB8 instructions perform four byte-wise SIMD operations.
This is very efficient to handle carry-less addition and borrow-less subtraction
operations.

Table 1. Instruction set summary for 32-bit ARM Cortex-M4

Mnemonics Operands Description Operation #Clock

ADD C, A, B Add word without Carry C ← A+B 1

EOR C, A, B Exclusive OR C ← A⊕B 1

AND C, A, B Bitwise-AND C ← A&B 1

ORR C, A, B Bitwise-OR C ← A|B 1

LSL C, A, B Shift Left C ← A<<B 1

ROR C, A, B Rotate Right C ← A>>>B 1

MOV C, A Move C ← A 1

PUSH A Push word STACK ← A 2

POP A Pop word STACK → A 2

UADD8 C, A, B Add bytes without Carry C ← A+B 1

USUB8 C, A, B Sub bytes without Carry C ← A-B 1

3 Proposed Methods

The block cipher encryption usually performed in either sequential or parallel
way. The sequential implementation can only compute single block at once, while
the parallel implementation utilizes the multiple computing units (e.g. multiple
cores) or SIMD instruction sets (e.g. ARM-SIMD, NEON, and AVX2) to perform
multiple blocks at once. The parallel computations ideally result in a speed-up of
n over sequential execution, where n is the number of parallel computation units.
For this reason, the parallel implementation is usually considered to achieve the
fast and efficient computations than serial implementations. In this paper, we
focused on the parallel computation of lightweight block cipher (i.e. HIGHT) on
low-end microcontrollers (i.e. 32-bit ARM Cortex-M4). Furthermore, we improve
the security against the fault attack by using parallel implementation.
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There are largely two ways of parallelism techniques, including data par-
allelism and task parallelism. First, the data parallelism is running the same
task on different components of data. Second, the task parallelism, also known
as function parallelism or control parallelism, runs many different tasks at the
same time on the same data. In this paper, we target both task and data parallel
HIGHT implementations on 32-bit ARM Cortex-M4 microcontrollers.

3.1 Key Scheduling

Round key generation requires byte-wise addition operations and byte-wise rota-
tion operations. The byte-wise rotation operations are performed with barrel-
shifter and masked approach. The four byte-wise addition is easily performed
with UADD8 instruction at once. Among 14 general purpose registers (R0∼R12,
R14), we utilized 13 registers for key scheduling of HIGHT block cipher as
described in Table 2. For the task parallel encryption, only one round key is
stored in the word by two bytes. The round key format is {??, SK4i+2, ??,
SK4i+0} or {??, SK4i+3, ??, SK4i+1}, where SK and ?? represent the round
keys and byte padding, respectively.

For the data parallel encryption, the same round key is duplicated to remain-
ing part (i.e. two bytes out of four bytes) of registers and the word is fully
used (i.e. {SK4i+2, SK4i+2, SK4i+0, SK4i+0} or {SK4i+3, SK4i+3, SK4i+1,
SK4i+1}).

Table 2. Register utilization for key scheduling on ARM Cortex-M4.

Register Utilization

R0 Master key pointer → delta pointer

R1 Round key pointer

R2∼R5 Delta variables

R6 Loop counter

R7∼R8 Temporal variables

R9∼R12 Round keys

3.2 Encryption and Decryption

In this section, we introduce two encryption modes, including task parallelism
and data parallelism, for HIGHT block cipher. The task parallel implementation
performs one encryption block in parallel way, while the data parallel implemen-
tation performs two or more encryption blocks at once. The detailed register
utilization is available in Table 3. The decryption can be implemented with same
techniques used for encryption.
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Table 3. Register utilization for task-parallel, data-parallel and fault-resistance encryp-
tion on ARM Cortex-M4.

Register Task-parallel Data-parallel Fault resistance

R0 Plaintext pointer Plaintext pointer Plaintext pointer →
random number

R1 Round key pointer Round key pointer Round key pointer

R2∼R5 Plaintext Plaintext Plaintext

R6 Mask Mask Mask

R7 Loop counter Temporal variable Temporal variable

R8∼R9 Round key Round key Round key

R10∼R12 Temporal variables Temporal variables Temporal variables

R14 – Loop counter Loop counter

Task Parallelism. In order to perform task parallel HIGHT computation, two
bytes are paired (i.e. {??, Xi[4], ??, Xi[0]}, {??, Xi[5], ??, Xi[1]}, {??, Xi[6], ??,
Xi[2]}, and {??, Xi[7], ??, Xi[3]}, where X and ?? represent the plaintext and
byte padding, respectively.). The F0 and F1 functions are performed with masked
rotation and exclusive-or, which is proposed in [16]. For the two computations
(i.e. XOR after ADD and ADD after XOR), the computations are getting much
simpler with UADD8 (SIMD) instruction than previous masked approach. The
comparison between with and without SIMD instruction sets is given in Table 4.

Table 4. Comparison between w/o and w/SIMD instruction sets for HIGHT compu-
tations.

Computations w/o SIMD w/SIMD

XOR after ADD ADD → EOR → AND UADD8 → EOR

ADD after XOR EOR → ADD → AND EOR → UADD8

Data Parallelism. The data parallel HIGHT implementation performs two
encryption blocks at once. Each encryption is performed in task parallel and
two task parallel blocks are combined and performed in data parallel approach.
For the data parallel implementation, four bytes are paired and two bytes are
duplicated (i.e. {Xi[4], Xi[4], Xi[0], Xi[0]}, {Xi[5], Xi[5], Xi[1], Xi[1]}, {Xi[6],
Xi[6], Xi[2], Xi[2]}, and {Xi[7], Xi[7], Xi[3], Xi[3]}, where X represents the
plaintext.). The XOR after ADD and ADD after XOR operations are performed
with the technique described in Table 4.

The both F0 and F1 functions require rotation operation. In the task parallel
implementation, the data is stored with padding blocks. This prevents the data
overflow between bytes. However, the data parallel implementation fully utilizes
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Algorithm 1. F0 function for data parallel implementation.

Input: R2, temporal variables (R10 and
R11)

Output: R6

1: AND R11,R2, #0x00FF00FF

2: LSL R10, R11,#1

3: EOR R10, R10, R11, LSR #7

4: EOR R10, R10, R11, LSL #2

5: EOR R10, R10, R11, LSR #6

6: EOR R10, R10, R11, LSL #7

7: EOR R10, R10, R11, LSR #1

8: AND R6, R10, #0x00FF00FF

9: AND R11,R2, #0xFF00FF00

10: LSL R10, R11, #1

11: EOR R10, R10, R11, LSR #7

12: EOR R10, R10, R11, LSL #2

13: EOR R10, R10, R11, LSR #6

14: EOR R10, R10, R11, LSL #7

15: EOR R10, R10, R11, LSR #1

16: AND R10, R10, #0xFF00FF00

17: ORR R6, R6, R10

the block, which means no padding or margin. In order to prevent the data
overflow, the format is converted to the padded version, whenever the rotation
operation is performed. The detailed descriptions are given in Algorithm1. In
Step 1–8, the half word is extracted from the word (R2) and F0 function is
performed with half word. From Step 9 to 16, the remaining half word of R2 is
performed. Finally, the Step 17 merges the two results.

Fault Attack Resistance. The high-speed implementation is not enough for
real world cryptography implementations. For this reason, we need to provide
the sufficient security against physical attack (e.g. fault attack). In this section,
we cover the new HIGHT design to prevent the fault attack.

The fault model performs the fault injection on a cryptography implemen-
tation and manipulates the instruction opcodes (i.e. instruction faults) or data
(i.e. computation faults). The fault attack is under very strong assumption but
it is possible by a certain attacker with sophisticated equipment and sufficient
funding (e.g. government agency). In this paper, we used the identical fault mod-
els used in previous works to evaluate our secure implementations [13,17]. The
detailed descriptions of four computational fault models are as follows.

– Random Word: The adversary can target a specific word in a program and
change its value into a random value unknown to the adversary.

– Random Byte: The adversary can target a specific word in a program and
change a single byte of it into a random value unknown to the adversary.

– Random Bit: The adversary can target a specific word in a program and
change a single bit of it into a random value unknown to the adversary.

– Chosen Bit Pair: The adversary can target a chosen bit pair of a spe-
cific word in a program, and change it into a random value unknown to the
adversary.

Second, the instruction faults can change the program flow (the opcode of an
instruction) by fault injection. The well-known approach is replace the operation
into no-operation (nop) instruction.
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Fault attack detection in software is proposed in [1]. They perform the dupli-
cate encryption, which is based on the time redundancy of encryption. When
the instruction duplication and triplication are performed, the performance is
degraded by a factor of 3.4 and 10.6, respectively. Furthermore, the sophisticated
fault injection may break the duplicate encryption. Second approach is an infor-
mation redundancy based encryption. This approach evaluates the additional
check variables or parity bits for fault detection. However, this approach also
cannot figure out the instruction set level fault attack.

In SAC’16, the intra-instruction redundancy based fault attack countermea-
sure is suggested [13]. The method implemented the redundant bit-slicing and
provides the ability to detect both instruction faults and computation faults.
However, the bit-slicing implementation is only efficient over certain comput-
ers with a number of general purpose registers for block ciphers without linear
operations. In [11], they evaluated the block cipher PRIDE and TRIVIUM on
the Cortex-M3/M4 microcontrollers. They utilized the intra-instruction redun-
dancy. Based on previous intra-instruction redundancy technique, in FDSC’17,
they introduce the automatic vectorization compiler to mitigate the fault attack
[5]. In WISA’17, the intra-instruction redundancy based fault attack countermea-
sure on NEON instruction (i.e. SIMD instruction set of 32-bit ARM Cortex-A)
is introduced [17]. The implementation shuffles the variables each time to make
attack difficult. The shuffling is based on random numbers and the random num-
bers are also generated in each encryption, simultaneously. Finally, they applied
to the LEA encryption to achieve high security against fault attacks. However,
there is no practical fault detection on low-end devices with random shuffling
method.

In this paper, we utilized the intra-instruction redundancy based fault attack
countermeasure for HIGHT block cipher on the low-end Cortex-M4 microcon-
trollers. In order to mitigate the fault attack, the data is formatted in intra-
instruction redundancy and shuffled in each round. In order to efficiently handle
the random shuffling, we suggested the novel shuffling technique. Proposed model
is based on the combination of data and task parallelism. The overall procedures
of secure HIGHT implementation are as follows:

Message Loading → Message Duplication →
Message / Round Key Shuffling #1 → Round Function #1 →
· · ·
Message / Round Key Shuffling #32 → Round Function #32 →
Last Message Shuffling → Last Round Function →
Fault Attack Check → Message Storing

The message duplication is easily implemented with barrel-shifter and bit-
wise or operations. When the registers (R2, R3, R4, R5) are formatted in paired
two bytes (i.e. {??, Xi[4], ??, Xi[0]}, {??, Xi[5], ??, Xi[1]}, {??, Xi[6], ??, Xi[2]},
and {??, Xi[7], ??, Xi[3]}), the duplication is performed as follows:
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Algorithm 2. Message and Round Key Shuffling.

Input: message variables (R2∼R5), round
key variables (R8 and R9), temporal
variables (R10 and R11) random num-
ber (R0)

Output: shuffled message variables
(R2∼R5), shuffled round key variables
(R8 and R9)

1: AND R10, R0, #1

2: LSL R10, R10, #4

3: ROR R0, R0, #1

4: ROR R2, R2, R10

5: ROR R3, R3, R10

6: ROR R4, R4, R10

7: ROR R5, R5, R10

8: POP {R11}
9: EOR R10, R10, R11

10: PUSH {R10}

11: ROR R8, R8, R10

12: ROR R9, R9, R10

ORR R2, R2, R2, LSL#8 → ORR R3, R3, R3, LSL#8 →
ORR R4, R4, R4, LSL#8 → ORR R5, R5, R5, LSL#8

Afterward, in each round, we perform 16-bit wise swap shuffling, which
exchanges lower 16-bit and higher 16-bit, when the random bit is set to 1. The
HIGHT block cipher consists of 32 rounds. For the full round shuffling, we need
32-bit random numbers. The Cortex-M4 microcontroller has 32-bit wise word
and one random word can retain 32-bit random numbers. Another considera-
tion is shuffling condition. The shuffling on the message is accumulated but the
new round key is shuffled in each time per round. For this reason, we maintain
the accumulated shuffling conditions. Due to lack of register, the accumulated
shuffling condition is stored in the STACK. The detailed descriptions are given in
Algorithm 2. In Step 1–3, 1-bit random is extracted from R0. When the random
bit is set, the offset register (R10) is set to 16. Otherwise, the offset register is
set to 0. From Step 4–7, the message variables are shuffled depending on the
offset register. From Step 8–10, the accumulated offset is loaded from STACK and
the current offset is accumulated and stored again into the STACK. Finally, the
accumulated shuffling offset is used for round key shuffling in Step 11–12.

After full round functions, we need to check the fault attack by comparing the
duplicated data. The detailed descriptions are given in Algorithm3. In Step 1–8,
the four bytes pair is divided into two groups. In Step 9–12, we check whether
both results output identical or not. In Step 13–15, we accumulated all different
bits. Finally, we return the check word (R0).

4 Evaluation

In this section, we evaluate the proposed implementation on 32-bit ARM Cortex-
M4 microcontrollers. The detailed comparison is available in Table 5. Since this
is the first HIGHT implementation on 32-bit ARM Cortex-M4, we only report
the previous works on 32-bit ARM Cortex-M3 as a reference. The comparison
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Algorithm 3. Fault Attack Check.

Input: message variables (R2∼R5),
temporal variables (R6∼R12 and R14),

Output: check word (R0)
1: AND R6, R2, #0xFF00FF00

2: AND R7, R3, #0xFF00FF00

3: AND R8, R4, #0xFF00FF00

4: AND R9, R5, #0xFF00FF00

5: AND R2, R2, #0x00FF00FF

6: AND R3, R3, #0x00FF00FF

7: AND R4, R4, #0x00FF00FF

8: AND R5, R5, #0x00FF00FF

9: EOR R10, R6, R2, LSL #8

10: EOR R11, R7, R3, LSL #8

11: EOR R12, R8, R4, LSL #8

12: EOR R14, R9, R5, LSL #8

13: ORR R10, R10, R11

14: ORR R12, R12, R14

15: ORR R0, R10, R12

between task parallel and data parallel implementations shows that the data
parallel is faster than task parallel in key scheduling by 62%, because data par-
allel needs to perform key duplication for two block encryption. The encryption
and decryption operations of data parallel shows better performance than task
parallel by 25% and 22%, respectively. The data parallel performs two plaintext
at once while the task parallel only performs a plaintext. The code size of data
parallel is almost twice larger than task since data parallel needs to perform
two plaintext, which requires additional routines. The fault resistance version is
similar size of data parallel implementation. The execution time is slower than
others since the fault resistance version only perform one encryption and the
shuffling operation consumes additional clock cycles. One nice property is that
the proposed fault approach is only 2x slower than task parallel implementation.

In terms of security model, we tested several different fault attack scenario
studied in previous works as follows [13].

Table 5. Comparison of HIGHT block cipher results on 32-bit ARM in terms of code
size (byte), RAM (byte), and execution time (clock cycle)

Impl. Code size (bytes) RAM (bytes) Execution time
(cycles per byte)

EKS ENC DEC SUM EKS ENC DEC EKS ENC DEC

32-bit ARM Cortex-M3

w/ LUT [16] 316 860 896 1,560 324 704 704 34 269 298

w/o LUT [16] 316 344 384 1,044 324 180 180 37 258 287

32-bit ARM Cortex-M4

Task parallel 116 348 332 796 316 180 180 18 76 71

Task/Data parallel 160 592 544 1,296 316 188 188 49 56 55

Fault resistance 160 536 520 1,216 316 188 188 49 143 143
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– Random Word: The adversary has no control on the number of faulty bits.
The adversary can only create random faults in the target word (32-bit).

– Random Byte: The adversary can tune the fault injection to randomly
affect a single byte of the 32-bit data.

– Random Bit: The fault injection can be tuned to affect single bit of the
target word.

– Chosen Bit Pair: The adversary can inject faults into two chosen, adjacent
bits of the target word.

The security comparison of proposed method is given in Table 6. In the unpro-
tected HIGHT implementation, any computation or instruction fault injection
attacks are easily exploited by the adversaries because the unprotected imple-
mentation doesn’t include fault detection mechanism. The bitslicing approach
by [13] is not working for HIGHT since HIGHT consists of some non-linear oper-
ations such as addition and subtraction. The previous SIMD implementation by
[17] is efficient and secure but it is only working on the high-end processors.
Unlike previous work, we targeted low-end processors. We used the data paral-
lel implementation and random shuffling feature. This design efficient prevents
several fault attack models based on random byte, random bit, and chosen bit
pair. However, we can partly prevent the random word attack. Since the ARM
word contains original data and duplicated data, the random word can influence
both original data and duplicated data. When the same bit position is selected,
the attack succeeds but it is very low possibility. The instruction skip attack is
trade-off with other security. If we use the known answer data for fault attack
detection, we can check the skip attack but we cannot figure out other attacks.
This is limitation of low-end microcontroller. We will extend this method to
high-end processors to cover all attack surfaces.

Table 6. Security comparison of proposed method for HIGHT block cipher on 32-bit
ARM Cortex-M4, where Rand: Random shuffling, RW: random word, RB: random
byte, Rb: random bit, CbP: chosen bit pair, IS: instruction skip.

Method Instruction Rand RW RB Rb CbP IS

Seo et al. [16] ARM – – – – – –

Proposed Method SIMD
√ √ √ √ √

–

5 Conclusion

In this paper, we presented new compact and secure fault attack countermeasures
for HIGHT block cipher algorithm on representative low-end microcontrollers,
namely 32-bit ARM Cortex-M4. We firstly optimize the HIGHT block cipher, in
terms of task parallelism and data parallelism. For the secure implementation,
we proposed the intra-instruction redundancy by using optimized data parallel
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implementation. This new technique successfully prevent several fault attack
models that is infeasible in previous HIGHT implementations on low-end devices.

The proposed methods improved the performance and security of HIGHT
implementations. For this reason, there are many future works remained. First,
we can directly apply the fault attack countermeasures to the other ARX block
ciphers, such as SPECK and SIMON. Recent works on 32-bit ARM Cortex-M do
not consider the any secure measures proposed in this paper. We can enhance
the security by applying the proposed method, straightforwardly. Second, we
only explore the 32-bit ARM Cortex-M4 platform in this paper. However, there
are many low-end microcontrollers, such as 8-bit AVR and 16-bit MSP micro-
controllers. We will explore the new block cipher implementation techniques for
these low-end devices.

Acknowledgement. This work was supported as part of Military Crypto Research
Center (UD170109ED) funded by Defense Acquisition Program Administration
(DAPA) and Agency for Defense Development (ADD).
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Abstract. While the ARMv8-A ISA allows for hardware accelerated
cryptographic instructions, such extension is not available for every
device, being added at the discretion of the CPU manufacturer. Prime
examples of ARMv8 devices without this support are the low cost Rasp-
berry Pi 3B/3B+/4 single board computers. This work presents an
optimized AES implementation targeting CPUs without Cryptography
Extension instructions, relying only on ASIMD operations. We show a
new implementation that processes four blocks at the same time, which
requires block permutations and modified versions of the main layers.
In particular, we provide a new efficient formula for computing the
MixColumns layer. The time performance our AES implementation out-
performs the current ASIMD implementation found in the Linux Kernel
by about 5%.

Keywords: AES · ARMv8 · ASIMD · Linux cryptography API

1 Introduction

The introduction of the ARMv8 architecture brought, in addition to the native
AArch64 instruction set operating on 64-bit registers, the optional Cryptography
Extension instructions. Those instructions provide hardware-accelerated opera-
tions used in the Advanced Encryption Standard (AES) in both encryption and
decryption operations and some hashing algorithms in the Secure Hash Algo-
rithm (SHA) family, such as SHA-1, SHA-224 and SHA-256 hash functions.
Although specified in the ARMv8.2 revision, the Cryptography Extension is
optionally added into a CPU core at the sole discretion of its manufacturer.
More recent mobile devices are usually equipped with both 64-bit support and
cryptographic instructions, but devices in other categories, such as televisions
and set-up boxes, may not support the latter causing market fragmentation. The
need of supporting multiple hardware capabilities makes software development
convoluted, as more code has to be (re)written for different hardware.
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The Raspberry Pi single board computers, designed to encourage Computer
Science teaching in schools1, costing USD 35, is a prominent example of hard-
ware lacking cryptographic hardware support. The 3A/3B/3B+ models are all
equipped with a quad-core Cortex-A53 implementing the ARMv8.2 ISA without
the Cryptography Extension. On the newer Raspberry Pi 4 model, a quad-core
Cortex-A72 CPU is employed, yet without the hardware cryptographic exten-
sion. However, as specified in the ARMv8.2-A architecture, the CPUs used in
the Raspberry Pi models 3A onwards are equipped with the Advanced Single
Instruction-Multiple Data (ASIMD) units, allowing 128-bit processing capabili-
ties. On the earlier ARMv7 ISA, ASIMD was commonly referred as the NEON
instruction set. This allows faster and efficient implementations in compari-
son to native, 64-bit, AArch64 implementations. Other examples of ARMv8
CPUs without the Cryptography Extension are the Qualcomm’s Snapdragon
410, which powers various low-end mobile devices, and the Amlogic S905, equip-
ping the Odroid C2 single board computer, among various set-up TV boxes.

The Linux Kernel Cryptography API implements multiple cryptographic
algorithms, ranging from the CRC32 hash algorithm to modern stream ciphers
such as Salsa20 proposal [1]. As part of the operating system, multiple hard-
ware platform support is a major goal. In the ARMv8 scenario, we find several
implementations of the AES algorithm, such as a generic (portable) code, and
hardware-backed (using Cryptography Extension instructions) versions, in which
availability is defined by the underlying platform.

Related Work. Hamburg [10] discusses AES implementations using vector per-
mute instructions using x86 SIMD and in PowerPC AltiVec instructions. The
usage of those is inspired by the need of computing on-the-fly the S-box substitu-
tions, as the usage of lookup tables may expose timing data, making side-channel
attacks practical [15].

There are AES implementations for ARM processors protected against cache-
timing side-channel attacks without relying on hardware cryptographic instruc-
tions with an acceptable level of performance [2]. Bit slicing initiatives for the
AES block cipher, also inspired by the need of eliminating table lookups and thus
safeguarding against timing attacks, were implemented on Intel platforms [11],
being further ported to ARM hardware and merged into the Linux Kernel Cryp-
tography API [3].

Various ciphers employ a multiplication step to provide diffusion on the state.
One example is the θ transformation present on the SPNbox family of ciphers [5].
In this sense, Rodrigues et al. [16] presents an optimized implementation of such
operation, similar to the formulation presented in this work.

Authenticated encryption modes of operation were also implemented on
the ARM scenario [12]. Relying on the Cryptography Extension and the
carry-less multiplication instructions, Gouvêa and López [9] implemented the
Galois/Counter Mode (GCM) mode of operation using the 32-bit processing
capabilities of the ARMv8 architecture, dubbed AArch32, presenting timings
for an AES implementation with hardware support.
1 See: https://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/05/a 15 com

puter to inspire young.html.

https://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/05/a_15_computer_to_inspire_young.html
https://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/05/a_15_computer_to_inspire_young.html
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Efficient ciphers not relying on cryptographic hardware support are now
widely used on entry-level Android devices, particularly for storage encryption.
In this sense, the Adiantum proposal [7] fills this gap, being 75% faster than
AES in these kinds of devices.

Contributions. This work presents a modified implementation of AES algo-
rithm using ASIMD instructions. We explore a modification on how the AES
state is organized, impacting on each AES layer. Specifically, we propose an
optimized algorithm for processing four blocks, which involves an improved for-
mula for the MixColumns step and an algorithm for the key expansion using
ASIMD instructions. The timing results of our AES implementation shows an
improvement of about 5% compared to the ASIMD based Linux Kernel imple-
mentation.

Paper Organization. In Sect. 2, we introduce the AES block cipher algorithm,
and its composing layers. We detail the implementation aspects in Sect. 3, briefly
presenting some of the relevant instructions in the ARMv8 architecture, and
describing different implementation strategies for each step of the AES algo-
rithm. The experimental performance results are presented in Sect. 4, followed
by a comparison with other implementations. Our final remarks are shown in
Sect. 5.

2 The Advanced Encryption Standard

The Advanced Encryption Standard (AES) [14] is the current standard for
encryption of digital data established by the U.S. National Institute of Standards
and Technology (NIST). It supports three security levels (key sizes): 128-bits,
192-bits and 256-bits, and, for each level, the corresponding cipher uses 10, 12
or 14 rounds, respectively. For each round, a subkey is specified from the secret
key. Each round modifies a 16-byte state, represented by the array of bytes
state = [statei,j ]0≤i,j≤3. We may also refer the bytes of state as [ai,j ]0≤i,j≤3.
When the encryption process starts, the state is initialized with a 128-bit block
of plaintext; by the last round, the state contains the ciphertext.

Each AES round has the following operations:

SubBytes: applies the AES S-box, a non-linear bijective mapping from 8 bits
to 8 bits, to every byte in the state. The mapping relies on the inversion
operation in the finite field GF(28) with irreducible polynomial P (x) = x8 +
x4+x3+x+1. This operation was designed to add confusion to the encryption
process [8].

ShiftRows: applies a rotation to the left by i byte positions to each row i of the
state array:

⎡
⎢⎢⎣

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

⎤
⎥⎥⎦

ShiftRows−−−−−−→

⎡
⎢⎢⎣

a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2

⎤
⎥⎥⎦ ,

where 0 ≤ i ≤ 3. Note that the row i = 0 remains unchanged.
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MixColumns: is a linear operation in which the state is updated by interpreting
each column j as a 4 × 1 vector over GF (28) multiplied by the polynomial
c(x) = 3x3 + x2 + x + 2 and reduced by the polynomial l(x) = x4 + 1. This
operation can be interpreted as the multiplication of the column j of the
AES state by the MC matrix, both defined in GF (28):

A′ =

⎡
⎢⎢⎣

a′
0,j

a′
1,j

a′
2,j

a′
3,j

⎤
⎥⎥⎦ = MC ×

⎡
⎢⎢⎣

a0,j
a1,j
a2,j
a3,j

⎤
⎥⎥⎦ with MC =

⎡
⎢⎢⎣
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ , (1)

for j = 0, 1, 2, 3. Diffusion is added to the state through the combination of
the ShiftRows and the MixColumns operations.

AddRoundKey: adds the round’s key k(r), (1 ≤ r ≤ R + 1) bitwise modulo two
(i. e., a XOR operation) to the AES state.

A description of a full AES-128 encryption is presented in Algorithm1; refer
to FIPS 197 [14] for more details.

2.1 The AES Key Expansion

The AES Key Expansion takes the cipher key to generate the key sched-
ule. When used on the AES128 cipher, this algorithm generates a total of
eleven 128-bit subkeys, in which the first subkey is the cipher key. Each
subsequent key i is calculated in a serial manner, as shown in Algorithm 2.

Algorithm 1. AES128 Encryption
Input: A 128-bit block of plaintext, 128-

bit cipher key k(0), and 128-bit round
keys k(r), r ∈ {1, . . . , 10}

Output: The 128-bit encrypted block
(ciphertext).

state ← plaintext
state ← AddRoundKey(state, k(0))
for r = 1 to 9 do

state ← SubBytes(state)
state ← ShiftRows(state)
state ← MixColumns(state)
state ← AddRoundKey(state, k(r))

end for
state ← SubBytes(state)
state ← ShiftRows(state)
state ← AddRoundKey(state, k(10))
return state

Algorithm 2.AES128 Key Expansion
Input: 128-bit cipher key

K0 = {k0,0, k0,1, k0,2, k0,3}
Output: Ten 128-bit round keys

Ki = {ki,0, ki,1, ki,2, ki,3}, i ∈
{1, . . . , 10}

for i = 1 to 10 do
ki,0 ← k(i−1),3

ki,0 ← SubBytes(ki,0)
ki,0 ← RotLeft(ki,0)
ki,0 ← ki0 ⊕ rcon(i−1)

ki0 ← ki0 ⊕ k(i−1),0

for j = 1 to 3 do
kij ← ki,(j−1) ⊕ k(i−1),j

end for
Ki = {ki,0, ki,1, ki,2, ki,3}

end for
return Ki, i = 1 to 10
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The RotLeft permutation is defined as RotLeft(X) = (x1, x2, x3, x0) where
X = (x0, x1, x2, x3) is a vector composed of bytes xn, 0 ≤ n ≤ 3. Note that,
throughout this paper, we use the notation F 2(x) as the composition F (F (x)).

3 Implementation

In this section, we present a quick overview of the ARMv8 architecture and some
of its instructions, followed by a description of the AES implementation present
on the Linux Kernel geared towards the ARMv8 architecture without support
of hardware-assisted cryptographic acceleration, but with ASIMD capabilities.
We show our “transposed” AES implementation proposal, alongside the required
modifications for each layer. Finally, we note how the AES key expansion may
be implemented without relying on the last 32-bit word of each computed key
every time.

3.1 ARMv8-A Architecture

The ARMv8 architecture is a reduced instruction set computer (RISC) employ-
ing a load-store architecture. Specifically, the ARMv8-A architecture profile is
targeted towards complex computer application areas such as servers, mobile
and infotainment devices.

The ARMv8-A profile introduces, in comparison to the older ARMv7-A archi-
tecture profile, 64-bit processing capabilities. CPUs based on this profile are
equipped with a bank of 31 general purpose registers (x0 to x30) in addition to
the dedicated stack pointer (sp) and zero (zr) registers, while all of those are 64-
bit wide. In addition, the ARMv8-A profile also specifies that the Advanced Sin-
gle Instruction-Multiple Data (ASIMD) unit, also commonly known as NEON,
must be present, providing scalar/vector instructions and registers. This engine
is designed towards multimedia applications but also useful in scientific and
high performance computing. In this unit, a separate set of 32 registers, each
one 128-bit wide, can be used.

The NEON unit has special instructions to support permutations and byte
substitutions, common operations in a block cipher:

Table Lookup and Table Lookup Extended (tbl/tbx). This instruction
builds a new vector based on an index vector, looking up a table residing in one
up to four registers, effectively being a bytewise table lookup. The tbl instruction
can be repurposed to work as an arbitrary byte permutation if a single source
vector is used as a table, at the cost of setting up the permutation index.

Vector Extract (ext). Extracts bytes from a pair of source vectors. The result-
ing vector combines the most significant bytes from the first operand and least
significant bytes of the second. This instruction can also be used to compute byte
rotations on a 128-bit vector, as well as to execute left and right byte shifts, by
using the same input vectors on the first case or using a zero-filled vector on the
second.
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Interleaved Load (ldn). The memory load unit of the ASIMD pipeline can
fill different registers with memory values in an interleaved fashion depending
on the n argument. For example, the ld2 instruction can fill a vn register with
bytes at even addresses, while the vm register is filled with bytes located at odd
addresses.

Cryptography Extension. CPU manufacturers may also include a Cryp-
tograpy Extension directly on the CPU cores, without relying to proprietary
external engines usually employed as a co-processor. This extension adds new
instructions to the ASIMD unit, making it capable of hardware-accelerated oper-
ations such as one used in the AES algorithm (both encryption and decryption
operations) and the hash functions SHA-1, SHA-224 and SHA-256. Of interest,
we note that the instructions aese and aesmc can be used together to perform
a full round of the AES cipher.

The table lookup instructions (tbl and tbx) are powerful since they allow the
computation of arbitrary byte permutations, but are quite expensive in terms
of CPU cycles in comparison to special instructions such as Reverse (rev) or
Vector Extract (ext). The latency of both tbl and tbx is 3×n+3 cycles, where
n is the number of registers required to store the lookup table input. In addition,
two instructions per clock can be issued.

3.2 Linux Kernel Implementation

The Linux Kernel provides a range of implementations of cryptographic algo-
rithms to support various uses, such as to secure wireless connections and remote
access. This subsection focus on detailing the AES implementation present
within the Cryptography API (shortned to CryptoAPI).

SubBytes and ShiftRows. The AES implementation in the Linux Kernel (since
version 4.11) uses the tbl/tbx instructions to execute the SubBytes layers.

In order to compute the substitution, we first use the tbl instruction with
a 16-byte input block as a lookup index and the first quarter of the AES S-box
lookup table stored in four 128-bit registers, since the instruction accepts up to
four 128-bit registers for this operand. This first operation effectively substitutes
bytes in the 0x00 to 0x3F range of the 16-byte input; if a byte is outside of this
span, its respective output is set to 0x00. To substitute bytes outside of the first
quarter, it is necessary to subtract every input byte by 64 (0x40), then use it as
a lookup index for the tbx instruction, in addition of using the second quarter
of the S-box as the lookup table. This operation substitutes the original input
bytes in the 0x40 to 0x7F range without changing the execution of the earlier
tbl instruction; differently from tbl, the tbx instruction does not clear bytes of
the output if the lookup index is out of range.

To complete the substitution process, two more iterations of the subtraction
and the substitution process must be done, covering the third and fourth quarters
of the S-box in each iteration. Listing 1 shows a code for implementing the AES
S-box using tbl/tbx instructions.
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By setting a permutation vector in a setup phase, the ShiftRows step is also
done using a single tbl instruction, as explained in Sect. 3.1.

MixColumns Formulation. To compute the MixColumns step on each 32-bit
column from a single AES state, Biesheuvel [3] reorganizes Eq. (1) as follows:

A′ =

⎡
⎢⎢⎣

a′
0,j

a′
1,j

a′
2,j

a′
3,j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a0,j
a1,j
a2,j
a3,j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0,j a3,j a2,j a1,j
a1,j a0,j a3,j a2,j
a2,j a1,j a0,j a3,j
a3,j a2,j a1,j a0,j

⎤
⎥⎥⎦

⎡
⎢⎢⎣
02
01
01
03

⎤
⎥⎥⎦ =

= 2

⎡
⎢⎢⎣

a0,j
a1,j
a2,j
a3,j

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

a3,j
a0,j
a1,j
a2,j

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

a2,j
a3,j
a0,j
a1,j

⎤
⎥⎥⎦ + 3

⎡
⎢⎢⎣

a1,j
a2,j
a3,j
a0,j .

⎤
⎥⎥⎦ .

(2)

Hence, the MixColumns step can be calculated by

A′ = (2A + RotLeft2(A)) + RotLeft((2A + RotLeft2(A)) + A), (3)

where A =

⎡
⎢⎢⎣

a0,j
a1,j
a2,j
a3,j

⎤
⎥⎥⎦ and RotLeft(A) =

⎡
⎢⎢⎣

a1,j
a2,j
a3,j
a0,j

⎤
⎥⎥⎦ .

In terms of 32-bit operations, two rotations, one multiplication by x in
GF (28) and three bitwise exclusive or (XORs) are needed to compute the
MixColumns step for each of the j columns of the AES state; considering byte
operations, 16 XORs and 8 multiplications by x are required.

128-bit MixColumns Implementation. Equation (2) shows how to compute
partial results of the MixColumns operation. This formulation reveals that byte
permutations on every 32 bits word X composed of 4 bytes xi, 0 ≤ i ≤ 3 must
be performed before multiplying by x or x + 1 in GF (28). Given a 32-bit word
A = (a0, a1, a2, a3), we use the notation:

RotLeft(A) = (a1, a2, a3, a0), Rev32(A) = (a2, a3, a0, a1),
RotRight(A) = (a3, a0, a1, a2).
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Note that RotLeft2(X) = Rev32(X) and RotRight(X) = Rev32(RotLeft(X)).
The AES state can be seen as a composition of four 32-bit words [A,B,C,D].

In order to compute MixColumns for this composition, we replicate Eq. (3) for
each of the 32-bit words:

A′ = (2A + RotLeft2(A)) + RotLeft((2A + RotLeft2(A)) + A)

B′ = (2B + RotLeft2(B)) + RotLeft((2B + RotLeft2(B)) + B)

C ′ = (2C + RotLeft2(C)) + RotLeft((2C + RotLeft2(C)) + C)

D′ = (2D + RotLeft2(D)) + RotLeft((2D + RotLeft2(D)) + D)

. (4)

Given S = [A,B,C,D], a 128-bit value, we use the notation:

RotLeft 128(S) = [RotLeft(A), RotLeft(B), RotLeft(C), RotLeft(D)],
Rev32 128(S) = [Rev32(A), Rev32(B), Rev32(C), Rev32(D)],

RotRight 128(S) = [RotRight(A), RotRight(B), RotRight(C), RotRight(D)],
2S = [2A, 2B, 2C, 2D].

If S = [A,B,C,D] represents an AES state stored in a 128-bit register, we
can compute the MixColumns step on S using the following formula:

MixColumns(S) = (2S + RotLeft 1282(S))

+ RotLeft 128((2S + RotLeft 1282(S)) + S).
(5)

To implement Eq. (5), 128-bit ASIMD instructions can be used, affecting the
four 32-bit words composing the AES state. For example, Rev32 128 can be
implemented using a single rev32 (vrev32q u16) instruction:

S = [ a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3 a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3 ]
↓ S′ = vrev32q u16(A)

S′ = [ a0,2 a0,3 a0,0 a0,1 a1,2 a1,3 a1,2 a1,1 a2,2 a2,3 a2,0 a2,1 a3,2 a3,3 a3,0 a3,1 ] .

Analogously, the RotLeft 128 permutation affecting four 32-bit words can be
computed using two ASIMD instructions:

S = [ a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3 a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3 ]⏐⏐⏐	
T = vrev32q u8(S)
S′ = vtrn2q u8(S, T)

S′ = [ a0,1 a0,2 a0,3 a0,0 a1,1 a1,2 a1,3 a1,0 a2,1 a2,2 a2,3 a2,0 a3,1 a3,2 a3,3 a3,0 ] .

To multiply each byte of a 16-byte register by x in GF (28), each byte is
shifted left by 1 bit and reduced modulo P (x). Given a 16-byte register v0,
Listing 2 shows how to multiply each byte of v0 by x in GF (28) using ASIMD
instructions.
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Performance Notes. The biggest performance cost comes from the usage of
tbl and tbx instructions. While in 32-bit execution mode, the Cortex-A53 cores
can issue two of these instructions in a parallel way to the execution pipeline.
Then, the output is written by the third cycle after the issue. However, due to
architectural changes, execution of both instructions in 64-bit mode are more
expensive, depending on the number of the input registers representing the sub-
stitution values. This effect is further exacerbated in Cortex-A57 based CPUs,
as the changes led to the need of more microoperations emitted per tbl/tbx
instruction [4].

Processing Multiple Blocks. As shown before, the Kernel Linux implemen-
tation strategy uses ASIMD instructions to apply transformations over a single
AES state stored in a 128-bit register. Same treatment can be applied to multi-
ple blocks stored over various ASIMD registers, as implemented for processing
2 or 4 blocks in an interleaved way [3].

Applying the algorithm in a single block can cause data dependencies between
adjacent instructions dealing with the same arguments, causing degraded per-
formance. When multiple blocks are being processed, this penalty is mitigated
as dependencies are diminished, and similar and adjacent instructions may be
executed in a pipelined fashion.

3.3 A MixColumns Formulation for an AES Block

Breaking down Eq. (2), for each j column of a single AES state, the MixColumns
multiplication can be rewritten by joining up common terms and, using the fact
that a subtraction is the same as a addition in GF (28):

A′ =

⎡
⎢⎢⎣

a′
0,j

a′
1,j

a′
2,j

a′
3,j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
02 03 01 01
01 02 03 01
01 03 02 03
03 01 01 02

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a0,j
a1,j
a2,j
a3,j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2(a0,j + a1,j) + a1,j + (a2,j + a3,j)
2(a1,j + a2,j) + a0,j + (a2,j + a3,j)
2(a2,j + a3,j) + a3,j + (a0,j + a1,j)
2(a3,j + a0,j) + a2,j + (a0,j + a1,j)

⎤
⎥⎥⎦ .

(6)
Equation (6), in terms of 8-bit operations, requires 13 XORs and four multi-

plications by 2 (multiplication by x in GF (28)). From there, one can derive the
following properties:
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a0,j + a1,j + a2,j + a3,j = a′
0,j + a′

1,j + a′
2,j + a′

3,j

a′
0,j + a′

1,j = 2(a0,j + a2,j) + a0,j + a1,j
a′
2,j + a′

3,j = 2(a0,j + a2,j) + a2,j + a3,j .

Based on these properties, a more compact representation of Eq. (6) can be
written with a computational cost of 11 XORs and 3 multiplications by x:

a′
0,j = 2(a0,j + a1,j) + a1,j + (a2,j + a3,j)

a′
1,j = 2(a0,j + a2,j) + a′

0,j + (a0,j + a1,j)

a′
2,j = 2(a2,j + a3,j) + a3,j + (a0,j + a1,j)

a′
3,j = 2(a0,j + a2,j) + a′

2,j + (a2,j + a3,j)

. (7)

Maximov [13] reports that a circuit to compute MixColumns takes 92 gates,
based on the fact that a multiplication by x in GF (28) can be implemented using
three 2-input XOR gates. Analogously, a hardware implementation of Eq. (7)
takes 8 × 11 XORs, as well as three multiplications by x, each one taking 3
XORs, summing up to 97 gates.

3.4 Transposed AES Implementation for Four Blocks

In this section we describe an implementation of AES that processes four blocks
in each iteration and uses Eq. (6) for the MixColumns step. This method does
not require permutations on the inputs.

A “transposition” operation simply rearranges bytes in the AES state A:

A =

⎡
⎢⎢⎣

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

⎤
⎥⎥⎦

Transposition−−−−−−−−→ A′ =

⎡
⎢⎢⎣

a0,0 a1,0 a2,0 a3,0
a0,1 a1,1 a2,1 a3,1
a0,2 a1,2 a2,2 a3,2
a0,3 a1,3 a2,3 a3,3

⎤
⎥⎥⎦ .

Let X = [X0,X1,X2,X3] be four consecutive 128-bit AES states Xi, 0 ≤ i ≤
3, i. e., If X is saved in four registers, transposing X groups bytes from each
column j of each of the four states in each j register:

X =

⎡
⎢⎢⎣

X0

X1

X2

X3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3 a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3
b0,0 b0,1 b0,2 b0,3 b1,0 b1,1 b1,2 b1,3 b2,0 b2,1 b2,2 b2,3 b3,0 b3,1 b3,2 b3,3

c0,0 c0,1 c0,2 c0,3 c1,0 c1,1 c1,2 c1,3 c2,0 c2,1 c2,2 c2,3 c3,0 c3,1 c3,2 c3,3
d0,0 d0,1 d0,2 d0,3 d1,0 d1,1 d1,2 d1,3 d2,0 d2,1 d2,2 d2,3 d3,0 d3,1 d3,2 d3,3

⎤
⎥⎥⎦

↓ Transposition

XP =

⎡
⎢⎢⎣

X ′
0

X ′
1

X ′
2

X ′
3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0,0 a1,0 a2,0 a3,0 b0,0 b1,0 b2,0 b3,0 c0,0 c1,0 c2,0 c3,0 d0,0 d1,0 d2,0 d3,0

a0,1 a1,1 a2,1 a3,1 b0,1 b1,1 b2,1 b3,1 c0,1 c1,1 c2,1 c3,1 d0,1 d1,1 d2,1 d3,1

a0,2 a1,2 a2,2 a3,2 b0,2 b1,2 b2,2 b3,2 c0,2 c1,2 c2,2 c3,2 d0,2 d1,2 d2,2 d3,2

a0,3 a1,3 a2,3 a3,3 b0,3 b1,3 b2,3 b3,3 c0,3 c1,3 c2,3 c3,3 d0,3 d1,3 d2,3 d3,3

⎤
⎥⎥⎦ .
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Implementing the Transposition. When input bytes are already in 128-bit
ARMv8 ASIMD registers, the transposition operation can be implemented using
a sequence of 16 trn1/trn2 instructions. As an alternative, those 64 bytes may
be saved back to memory and reread using a single ld4 instruction, in which
transposition is already done by it. Note that, on ARMv8 CPUs, issuing four 128-
bit stores then reading 64 bytes back using the interleaved load is usually faster
then issuing 16 transposition instructions. To reverse the interleave pattern, the
st4 instruction can be used over those four registers, saving them into memory
in a contiguous fashion.

Transposed MixColumns. The non-transposed 128-bit implementation of
Eq. (3) as in the Linux Kernel can be applied to each state Xi ∈ X as in Algo-
rithm3.

While RotLeft(Xi) applies a bytewise rotation over four 32-bit words Xi, its
512-bit analogous RotLeftP (XP ) is a rearrangement of 128-bit vectors: given
XP = [X ′

0,X
′
1,X

′
2,X

′
3], then RotLeftP (XP ) = [X ′

1,X
′
2,X

′
3,X

′
0]. Note that byte

rotations (or permutation) are not required to compute RotLeftP (XP ), since it
simply is an rearrange of the its representation.

Based on Eq. (3), the MixColumns step can be computed for four blocks
XP = [X ′

0,X
′
1,X

′
2,X

′
3] as follows:

X ′
P = MixColumns(XP ) = T0 + T1

T0 = 2XP + RotLeft2P (XP )
= [2X ′

0, 2X ′
1, 2X ′

2, 2X ′
3] + [X ′

2,X
′
3,X

′
0,X

′
1]

= [2X ′
0 + X ′

2, 2X ′
1 + X ′

3, 2X ′
2 + X ′

0, 2X ′
3 + X ′

1]
T1 = RotLeftP (T0 + XP )

= RotLeftP ([2X ′
0 + X ′

2, 2X ′
1 + X ′

3, 2X ′
2 + X ′

0, 2X ′
3 + X ′

1]
+[X ′

0,X
′
1,X

′
2,X

′
3])

= RotLeftP ([3X ′
0 + X ′

2, 3X ′
1 + X ′

3, 3X ′
2 + X ′

0, 3X ′
3 + X ′

1])
= [3X ′

1 + X ′
3, 3X ′

2 + X ′
0, 3X ′

3 + X ′
1, 3X ′

0 + X ′
2]

X ′
P = [2X ′

0 + X ′
2, 2X ′

1 + X ′
3, 2X ′

2 + X ′
0, 2X ′

3 + X ′
1]

+[3X ′
1 + X ′

3, 3X ′
2 + X ′

0, 3X ′
3 + X ′

1, 3X ′
0 + X ′

2]
X ′

P = [2X ′
0 + 3X ′

1 + X ′
2 + X ′

3,X
′
0 + 2X ′

1 + 3X ′
2 + X ′

3,
X ′

0 + X ′
1 + 2X ′

2 + 3X ′
3, 3X ′

0 + X ′
1 + X ′

2 + 2X ′
3]

= [2(X ′
0 + X ′

1) + X ′
1 + (X ′

2 + X ′
3) , 2(X ′

1 + X ′
2) + X ′

0 + (X ′
2 + X ′

3),
2(X ′

2 + X ′
3) + X ′

3 + (X ′
0 + X ′

1) , 2(X ′
3 + X ′

0) + X ′
2 + (X ′

0 + X ′
1)].

(8)

Algorithm 3. 4-way MixColumns
Input: 128-bit AES states Xi, 0 ≤ i ≤ 3.
Output: 128-bit AES states processed with MixColumns X ′

i, 0 ≤ i ≤ 3.
1: for i = 0 to 3 do
2: T ← 2Xi + RotLeft2(Xi)
3: X ′

i ← T + RotLeft(T + Xi)
4: end for
5: return X ′

i, 0 ≤ i ≤ 3
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Now, by using Eq. (7), Algorithm 4 shows how to compute X ′
P in terms of

128-bits operations.

Algorithm 4. 4-way Transposed MixColumns

Input: 128-bit transposed AES states X ′
i, 0 ≤ i ≤ 3.

Output: 128-bit transposed AES states processed with MixColumns X ′′
i , 0 ≤ i ≤ 3.

1: T0 ← X ′
0 ⊕ X ′

1

2: T1 ← X ′
2 ⊕ X ′

3

3: T2 ← X ′
0 ⊕ X ′

2

4: T3 ← 2 · T0 {a multiplication by x in GF (28)}
5: T4 ← 2 · T1
6: T5 ← 2 · T2
7: X ′′

0 ← T1 ⊕ (X ′
1 ⊕ T3)

8: X ′′
1 ← T0 ⊕ (X ′′

0 ⊕ T5)
9: X ′′

2 ← T0 ⊕ (X ′
3 ⊕ T4)

10: X ′′
3 ← T1 ⊕ (X ′′

2 ⊕ T5)
11: return X ′′

i , 0 ≤ i ≤ 3

Transposed AddRoundKey and Modified Key Expansion. To process four
transposed AES states in parallel, the round key addition must be done on each
input block, and, for each one, also in a transposed way. To that, the key expan-
sion has to be slightly modified to store four copies of each key in a transposed
way. Each in-register round key is saved four times into main memory. Then,
leveraging the ld4 instruction, four registers are filled with the key duplicates in
an already transposed fashion. Finally, a single store instruction writes out the
replicates, ready to be used by the transposed cipher.

Note that, instead of the usual output of 10 round keys totaling 160 bytes,
a total of 11 × 16 × 4 bytes are written as result, as the first key must be
processed to fit the proposed format. For each key, three more 128 bits saves
to main memory, one transposed load of 64 bytes and a final 64-byte writeout
to memory are needed. Those operations make the transposed key expansion to
use about 758 CPU cycles on a Raspberry Pi 3B.

Transposed ShiftRows. As in Sect. 2, the original ShiftRows operation rotates
the i-th row of the AES state i bytes to the left. For a single AES state rep-
resented in a 128-bit register in a column-after-column style, this operation is
effectively a permutation. In a AArch64 scenario, implementing this permutation
requires the usage of the tbl instruction to reorder the bytes.

On the transposed situation, the ShiftRows operation must now operate over
columns, instead of lines. In addition, as result of the reorganization, bytes of a
line are grouped in a single register, transforming the ShiftRows operation into
a sequence of byte rotations over 32-bit words for each register :
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⎡
⎢⎢⎣
X0

X1

X2

X3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0,0 a1,0 a2,0 a3,0 b0,0 b1,0 b2,0 b3,0 c0,0 c1,0 c2,0 c3,0 d0,0 d1,0 d2,0 d3,0

a0,1 a1,1 a2,1 a3,1 b0,1 b1,1 b2,1 b3,1 c0,1 c1,1 c2,1 c3,1 d0,1 d1,1 d2,1 d3,1

a0,2 a1,2 a2,2 a3,2 b0,2 b1,2 b2,2 b3,2 c0,2 c1,2 c2,2 c3,2 d0,2 d1,2 d2,2 d3,2

a0,3 a1,3 a2,3 a3,3 b0,3 b1,3 b2,3 b3,3 c0,3 c1,3 c2,3 c3,3 d0,3 d1,3 d2,3 d3,3

⎤
⎥⎥⎦

⏐⏐⏐⏐⏐⏐⏐	

X ′
0 = X0

X ′
1 = RotLeft 128(X1)

X ′
2 = Rev32 128(X2)

X ′
3 = RotRight 128(X3)⎡

⎢⎢⎣
X ′

0

X ′
1

X ′
2

X ′
3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0,0 a1,0 a2,0 a3,0 b0,0 b1,0 b2,0 b3,0 c0,0 c1,0 c2,0 c3,0 d0,0 d1,0 d2,0 d3,0

a1,1 a2,1 a3,1 a0,1 b1,1 b2,1 b3,1 b0,1 c1,1 c2,1 c3,1 c0,1 d1,1 d2,1 d3,1 d0,1

a2,2 a3,2 a0,2 a1,2 b2,2 b3,2 b0,2 b1,2 c2,2 c3,2 c0,2 c1,2 d2,2 d3,2 d0,2 d1,2

a3,3 a0,3 a1,3 a2,3 b3,3 b0,3 b1,3 b2,3 c3,3 c0,3 c1,3 c2,3 d3,3 d0,3 d1,3 d2,3

⎤
⎥⎥⎦ .

All those operations can be implemented using one or two ASIMD instruc-
tions, as in Sect. 3.2.

3.5 A New AES Key Schedule Implementation

As shown in Sect. 2.1, the key expansion is mostly a serial algorithm, depending
on 32-bit words of each key. This dependency can be eliminated by computing
the entire subkey using ASIMD instructions, rather by computing each 32-bit
parts of the subsequent key.

Rotate

XOR
Rcon

SubBytes

32 bits

Replicate

Fig. 1. One round of the proposed AES key expansion using 128-bit words.

Instead of extracting the last 32-bit word of the last key, we start by replicat-
ing the last 32-bit word four times, resulting in a 128-bit value. Then, instead of
operating over a single 32-bit word, the SubBytes, RotLeft 128 and the round
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constant addition steps operate on the 128-bit register. The SubBytes transfor-
mation and the RotLeft 128 permutation are done in the same way as the Linux
Kernel AES implementation shown in Sect. 3.2.

To eliminate the 32-bit word dependency, the series of additions over GF (28)
are done while shifting by 32-bit the entire previous key using the vext instruc-
tion, as illustrated in Fig. 1.

4 Experimental Results

In this section, we present the performance measurements of our AES imple-
mentations, compared to the widely used implementation present in the Linux
Kernel2.

4.1 Setup

Performance measurements of the proposed AES implementations were taken
using hardware cycle counters present on the Performance Monitoring Unit
(PMU) of each CPU, as an integral part of an ARMv8-A compliant CPU.

Hardware wise, a Raspberry Pi 3B was used, running Linux Kernel 5.2.
This board is equipped with a Broadcom BCM2837 CPU, with four Cortex-
A53 cores without the Cryptography Extension. For reproducibility purposes,
frequency scaling and CPU shutdown features were disabled. CPU was clocked
at their maximum supported frequency (1.2GHz), by setting the scaling gover-
nor to performance. For completude, the aarch64-linux-gnu-gcc version 8.3
was choosen as toolchain, but since assembly language was used to implement
our versions, no compiler influence is expected.

4.2 Performance Comparison

The performance test was done using ECB and CTR modes of operation to
encrypt messages of size 4KiB for 215 iterations, in which each test takes as
input the output of the previous one; the first message was sampled from
/dev/urandom. Results are shown in Fig. 2.

Our implementations are pipelined-optimized versions (n-way), in which
n = 4 blocks are processed in an interleaved fashion. This eliminates data haz-
ards between adjacent instructions, thus avoiding pineline stalls and lowering
the instruction per cycle count. The “transposed” experiments follows the pro-
posal as in Sect. 3.4. In addition, the “PreGen” experiment refers to a version in
which the input counter is incremented and written on a temporary buffer, then
encrypted four blocks at the same time. This implementation frees up scratch
registers, thus avoiding slower memory usage.

For comparison purposes, performance of AES implementations of the Cryp-
tography API (“CryptoAPI”) within the Linux Kernel were also evaluated. The
2 See: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/

arm64/crypto/aes-neon.S.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/crypto/aes-neon.S
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/crypto/aes-neon.S
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16 18 20 22 24 26 28

AES128 ECB 4way, Transposed
(this work)

AES128 CTR 4way, Transposed+PreGen
(this work)

AES128 CTR 4way, Transposed
(this work)

CryptoAPI ctr-aes-neon
(adapted to userspace)

CryptoAPI ctr-aes-neon [3] (kernel)
with overhead

CryptoAPI ctr-aes-neonbs (kernel)
with overhead
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500 600 700 800
Performance (cpb)

AES128 Key Expansion ASIMD
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Transposed
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758.2

Fig. 2. Comparison of different AES implementations in cycles per byte (cpb) for
messages of 4 KiB on a Raspberry Pi 3B. Experiments using Kernel calls are subject to
overhead: for example, CryptoAPI ctr-aes-neon (kernel) call has a 3.11 cpb overhead.

ctr-aes-neon experiment uses the AES implementation of Cryptography API
relying only on ASIMD instructions, while ctr-aes-neonbs experiment does
the same but using a bitsliced strategy [3,11]. On these experiments, some call
overhead may be expected, since the Cryptography API must be called through
a Netlink interface. The libkcapi library, used in these experiments, allows
userspace calls from that interface. To provide a more direct comparison of our
implementation and the one used in the Linux Kernel, a userspace version of
ctr-aes-neon was also implemented, replacing all macro calls present in the
Kernel code and compiled in the same manner as with our own implementations.
The usage of this version avoids delays associated to inter-process communica-
tion between kernel and userspace, revealing a 3.11 cycles per byte call overhead
for the experimented parameters.

Performance results of the AES Key Expansion (as in Sect. 3.5) are also
shown in Fig. 2. While the Linux Kernel also implements this algorithm, this is
done in a generic way, compliant to the cryptographic framework, to support
other AES variants and ciphers. Therefore, no direct comparison can be drawn,
as this setup operation takes more than 4000 cycles to complete.

Discussion. As expected, the usage of implementations embedded within the
Linux Kernel has a significant overhead if compared when a similar userspace
implementation is used. Within the first scope, the bitsliced version in the Cryp-
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toAPI outperforms the ASIMD CryptoAPI implementation, considering that
both are subject to call overheads. To properly explore the speed up of our
proposal, further experiments were run in which each AES layer was disabled,
turning them into “partial” ciphers. These numbers are shown in Fig. 3.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Performance (cpb)

CryptoAPI ctr-aes-neon [3]
(adapted to userspace)

AES128 CTR 4way
Transposed+PreGen

(this work)

5.63 0.63 13.76 1.10

3.24 0.78 13.76 2.10

MixColumns
ShiftRows
SubBytes
AddRoundKey

Fig. 3. Breakdown of cycles per byte (cpb) cost of each AES step in a standard and
transposed implementations. The cpb sum of each implementation does not represent
the totality of the cipher, as reading the input, output writeout and other necessary
operations costs are not included.

Due to the heavy use of the tbl/tbx instructions, added to their inefficiency
on processing 128-bit data, almost 66% of the AES computation is spent on the
SubBytes parts. Removing the need of the permutation steps and the use of a
faster formula in the MixColumns step impacted in a 42.47% speedup on this
layer, compared to the same one in the Cryptography API’s implementation.
However, the need of loading the replicated and transposed round keys brings
a 90% slowdown on each AddRoundKey step. As for the ShiftRows changes, the
usage of the rev and trn instead of the tbl instructions brought in a 25% slow-
down locally. It should be noted that this step amounts for less than 5% of AES
computation of either implementation, lowering the impact of the performance
prejudice.

Replicating and transposing keys on the Key Expansion procedure amounts
in a 31.98% slowdown in comparison to a key scheduling implementation out-
putting 10 × 16 bytes. Some of the key preprocessing could be done on-the-fly
during the ciphering data, making the AddRoundKey step to be more expensive
in terms of CPU cycles. We choose to implement this setup in the expansion
phase since this cost is amortized over large messages.

5 Final Remarks

In this work we presented an optimized AES implementation in which four blocks
are processed at the same time. In particular, we show a new formulation for the
MixColumn layer, reducing the number of operations required to process it. While
the representation of the four AES blocks is changed, requiring modifications of
other AES layers, no negative impacts can be seen overall; in fact, a 5% speed
up is shown in our experiments.
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As a final note, modern ARMv8-A processors, specially those tailored for
use in mobile phones at different price points, are being designed with the Cryp-
tography Extension in mind, given the relevance of the AES cipher. Due to the
fact that further new ciphers proposals (such as the WEM algorithm [6], tai-
lored towards white-box cryptography) use parts (or the entire) AES algorithm,
we also imagine that the performance impact of not having in-hardware AES
support on cheaper devices should be diminished on implementations of new
ciphers.

Appendix A: Illustrations of ARMv8 ASIMD
Instructions

Figures 4 and 5 in this appendix presents illustrations of some ARMv8 ASIMD
instructions summarized in Sect. 3.1.

65 7 13 9 13 10 9 4 4 1 11 20 12 15 13 7

0 0

0

ou
t o

f b
ou

nd
s

0123456789101112131415

15 11 7 3 14 10 6 2 13 9 1 12 8 4 05

Fig. 4. Usage of the tbl instruction to substitute or permute the input vector vn.
Results written on register vd.

Fig. 5. Usage of the ext instruction to extract words or execute rotations a 128-bit
word.
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Abstract. In this paper, we revisited the previous Fast AES–CTR mode
Encryption (FACE) method for high-end processors and tailored the
method to the microcontrollers, namely FACE–LIGHT. We targeted
the 32-bit counter mode of operation for AES in constant timing. This
optimized technique pre-computes the 2 Add-RoundKey, 2 Sub-Bytes, 2
Shift-Rows and 1 Mix-Columns operations. The FACE–LIGHT is imple-
mented on the representative low-end microcontrollers (e.g. 8-bit AVR).
The execution timing of AES–CTR algorithm for 128-bit and 256-bit
security levels achieved the 2,218 and 3,184 clock cycles, respectively.
This is faster than previous works by 22 % for 128-bit security level. The
FACE–LIGHT can be used to extend the FACE to round 3. The AES
is also implemented to be secure against the CPA (Correlation Power
Analysis).

Keywords: AES · Software implementation · Counter mode ·
Microcontroller · Correlation Power Analysis

1 Introduction

Low-end IoT (Internet of Things) platforms are resource constrained devices,
which have limited memory size and low computing power. In order to apply the
cryptography protocols, the research on lightweight cryptography, which is rela-
tively simple and has short computation time, has been actively conducted. Typ-
ical lightweight encryption algorithms include LEA, HIGHT, SIMON, SPECK,
and CHAM [1–4]. However, most of these lightweight cipher algorithms adopt
the ARX (Addition, Rotation, and XOR) structure, which has the disadvan-
tage that it takes much additional time when applying the masking operation
to prevent the side channel attack [5].

Even though the AES encryption algorithm is not considered as a lightweight
encryption due to its relatively long computation time than other lightweight
block ciphers, AES has been the world’s most used encryption algorithm for a
c© Springer Nature Switzerland AG 2020
J. H. Seo (Ed.): ICISC 2019, LNCS 11975, pp. 102–114, 2020.
https://doi.org/10.1007/978-3-030-40921-0_6
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long period of time, and is an international standard encryption algorithm with
high security and generality [6]. In addition, AES adopts the SPN (Substitution-
Permutation-Network) structure, which requires relatively less time for masking
computation than the ARX structure. If the AES can be optimized and imple-
mented on a low-end processor, it can be used as a lightweight cipher with high
security and generality. In contrast to most of previous AES-CTR implemen-
tations, which focused mostly on the high-end processors, this paper concretes
on low-end microcontrollers. We revisited the previous works and tailored the
method to fit into the low-end environments.

This paper is organized as follows. Section 2 discusses the previous AES
implementations and Fast AES CTR mode Encryption (FACE) technique, which
is the fastest AES-CTR implementation method. In Sect. 3, we introduce FACE–
LIGHT method for microcontrollers. In Sect. 4, we evaluate the performance of
the proposed implementation. Section 5 concludes this paper.

2 FACE: Fast AES CTR Mode Encryption

In CHES’18, the efficient AES-CTR implementation (i.e. FACE) for high-end
processor was suggested [7]. The FACE method utilizes the value of IV depending
only on the change of counter values. Since the IV value, except for the counter
value, remains the same as the following blocks, an identical pattern is repeated
in specific part of the encrypted value until the Round 2 of AES. By utilizing
this feature, repeated values can be stored in the cache table and used, which
minimizes the encryption operation of subsequent blocks during the encryption
operation, thereby effectively reducing the encryption operation time.

The first step is the FACErd0. In this step the FACE utilizes the fact that in
Round 0, only the Add-RoundKey operation is performed. In the case of Add-
RoundKey operation, a byte calculation is not affected by other bytes since it
is a XOR operation which only deals with single bytes independently. The only
byte difference between the first IV block and the second IV block is the last
byte that is used as a counter. The Add-RoundKey operation can be minimized
by storing the previous 12 bytes out of 16 bytes in the precomputed table. The
table is only replaced after a 232−1 block operation where all unused 4 bytes
are 0xFFFFFFFF. This approach requires only one cache update while processing
65.5 GB of plaintext. The description of the step is shown in Fig. 1 and the Add-
RoundKey result values, the State, can be seen stored in the cache. The cache
consists of 4×4 bytes in total. Among the cache, only the values in the 0, 1, and
2 columns are reused. The values in the third column are not reused to minimize
the cache update.

The second step is FACErd1. The State value from Round 0 is used as the
input value of Round 1, where FACErd1 reuses some of the values stored in the
cache. In Fig. 2, it is shown that after the Round 1, the value of S[15], which
was the only different byte from previous block, affects the whole first column
through the Mix-Columns operation. The remaining columns except the first
can be reused since they are not affected by S[15]. The reusable column values
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Fig. 1. Initial whitening of the first and the second block in CTR mode

can be used until the value of S[15] exceeds 0xFF and affects S[14], which can
be used up to 256 times.

The third step is FACErd1+. In this step, it is suggested that the value of
the first column, which gets changed in the step FACErd1, be created as a cache
table through a precomputation. The value in the first column consists of S[0],
S[5], S[10] and S[15], which get affected by S[15] in the Mix-Columns operation.
Therefore, 1 KB (256 × 4) of cache can be generated through a pre-calculation
based on the S[15] value that changes according to the counter value. The cache
table can be created beforehand based on S[15] since the value of S[10], the high
byte of S[15], is not affected until a total of 0xFFFFFFFFFF blocks are initialized
from S[15] to S[11], the 1,099,511,627,776-th block (16 TB), is calculated.

The forth step is FACErd2. This step deals with Round 2 which utilizes the
output of the Round 1. Through Round 1 operation, the value of the first column
of Round 2 is affected by the changes of the counter value. Figure 3 shows the
Round 2 process of the first and second blocks. S[0], S[1], S[2] and S[3], which
are affected by the counter value, are spread to other columns by the Sub-Bytes
operation. The values affect all 16 Bytes through Mix-Columns operation. In
conclusion, the whole byte is affected by the counter value. However, during
the Mix-Columns operation, some of the values can be reused. Shown in Fig. 3,
operation values except S[0] can be reused such as S[5], S[10], S[15] and round
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Fig. 2. Round 1 and the difference between the first and the second block

Fig. 3. Round 2 and the difference between the first and the second block
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Fig. 4. Overview of FACE

key. These values will not change and repeat until the IV S[14] is not affected
by the counter increment. Therefore, making these 16 Bytes of unaffected values
into cache table, can be used during operation up to the 256th block.

In the final step, FACErd2+, it is suggested to create and store 4 KBytes
(16 × 256) table which contains the changing operation values which were
excluded from FACErd2 and involves around S[0], S[1], S[2] and S[3]. As in the
case of FACErd1+, while calculating the 1,099,511,627,776-th block (16 TB), a
previously calculated table can be used. The use of these lookup tables can pro-
vide significant advantages in cryptographic computation time, since it minimize
Round 0, Round 1 and Round 2 encryption operations in repeated blocks and
uses the same pre-computed values. The detailed descriptions of FACE are given
in Fig. 4.

However, this work is only efficient for 8-bit counter mode. In Fig. 4, if the last
8-bit counter value is 0 to 0xFF, it can be used as a table except for the different
parts painted in black. However, after 256 blocks, more values are affected as
the value of S[14] is changed as shown below. In this case, since we can not use
pre-stored table, we need to update the cache table in each 256 times encryption.
Since this frequent updates can be abused by attacker as an attack point (i.e.
fault attack), we need to implement the FACE in regular form. In this paper,
we revisit the FACE and optimize the method for low-end microcontrollers. The
proposed FACE–LIGHT is regular fashion and we don’t need to update the
cache table throughout the whole AES-CTR life-cycle.
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Fig. 5. Overview of FACE–LIGHT

3 FACE-LIGHT

In this section, we introduce the new implementation techniques for AES-CTR
mode. Compared with previous work (i.e. FACE), we optimized the method for
low-end microcontrollers and evaluated the masked implementation as well. The
CTR mode consists of nonce and counter values. For the general setting, nonce
and counter are set to 96-bit and 32-bit, respectively. The nonce is not changed
throughout the whole sessions but the counter is changed in each transaction.
Previous work focused on the low 8-bit and this needs to update the cache table
in 256-times of encryption. In proposed work, we consider the 32-bit counter.
We only need to set the pre-computed table in the initialization stage and it is
not changed during the whole sessions. The detailed descriptions are given in
Fig. 5. The above figure indicates first block and the below figure indicates n-th
block. Each square contains 8-bit data and the white and black colors represent
identical and different parts, respectively.

Round 0. In Round 0, the only computation is Add-RoundKey. The plaintext
and round key is xored. The only difference between two blocks is 4 bytes.

Round 1. In Round 1, Sub-Bytes, Shift-Rows, Mix-Columns, and Add-
RoundKey operations are performed in order. The Sub-Bytes operation only
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changes the 8-bit input into the 8-bit output. This does not spread the values
to the adjacent squares. The Shift-Rows tries to shift the square by certain off-
sets. In the Mix-Columns, the 8-bit data is mixed with 32-bit column. Finally,
the Add-RoundKey adds the round keys to each square. Between first and N -th
blocks, there is no common values. However, the both results are originated from
IV. In particular, the low 32-bit value, namely counter value (i.e. S[0], S[1], S[2],
and S[3]), mainly contributes to the differences. In the Mix-Columns, S[0] square
influences to the first column (i.e. S[5], S[10], and S[15]). For this reason, each
column (i.e. 32-bit) depends on the 8-bit square. Similarly, other columns are
also based on the squares (i.e. S[1], S[2], and S[3]). This means each 32-bit col-
umn has only 256 cases. The following Add-RoundKey only applied to the each
square so the pre-computation complexity is not changed. For this stage, the
FACE performs in round 2 since they concern the 8-bit counter case with table
update, while FACE–LIGHT is 32-bit counter case without table update.

Round 2. In the previous stage, each column is based on the 8-bit square value.
This is still maintained in Sub-Bytes operation which is only based on the each
square value and the value is determined by 8-bit square of previous round.
Since the Shift-Rows operation does not perform any mixing and changing on
the value, the pre-computation is still working. For pre-computation, we need to
keep 4 look-up tables. The input values are S[0], S[1], S[2], and S[3] in 8-bit wise.
The length of output value is 32-bit wise. The total size for look-up table is 4 KB.
In Fig. 6, pre-computed table for FACE–LIGHT is described. In each table, we
only receive the 8-bit input value and the value goes through the Mix-Columns,
Add-RoundKey, and Sub-Bytes in this order. The Shift-Rows operation is not
combined in the pre-computed table. It is optimized away by directly assigning
the results to the specific squares.

Extended Round for FACE. The FACE–LIGHT is applied to the Round
2. This can be utilized for the FACE Round 3 since the different value is same
with Round 2 of FACE–LIGHT. By using this technique, the Sub-Bytes and
Add-RoundKey of Round 3 can be also cached. The detailed extended round for
FACE are given in Fig. 7. We used FACE Round 1 method for AES Round 1.
From Round 2 to 3, we used the FACE-LIGHT strategy to extend the 1 round
more than FACE method.

Optimized Implementation. The pre-computed table is stored before encryp-
tion operation. The 8-bit AVR microcontroller has very limited SRAM. For storing
huge pre-computed table, we used the PROGRAM MEMORY. In each look-up table
access, 32-bit results are extracted. For this reason, 8-bit input offset is extended
to the 32-bit input offset by using quadrupling on the offset. Afterward, the input
offset is added to the based address of each look-up table.
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Fig. 6. Pre-computation for FACE–LIGHT

Fig. 7. Extended round for FACE round 3

In AES algorithm, a substitution operation is performed during Sub-Bytes
operation. During the operation, value of 256 Bytes to be substituted is stored in
memory as a table called SBOX in advance to shorten the computation time. In
Sub-Bytes operation, the values which to be substituted are loaded based on the
input ciphertext. Therefore, when the value stored in the SBOX is loaded using
the Z pointer (R30, R31), the lower memory address and the upper memory
address of the SBOX are loaded in R30 and R31, respectively, and the ciphertext
value to be used as the index value should be added to R30 to match the index.
In this process, a carry might occur at the lower address of the SBOX memory
loaded in R30, so that the value of R31 might needs to be increased by one.
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Therefore, if the ciphertext value is added to R30, the lower address of SBOX
memory, to refer to the SBOX memory, the ADC operation which performs carry
operation, must be performed on R31, which stores the upper address of SBOX
memory.

However, if the carry does not occur, the ADC is not only a meaningless oper-
ation, but it cause a big overhead since two operations (ADD, ADC) is performed
for each Sub-Bytes operation for the index operation. To solve this problem, we
utilize the memory size of the SBOX, 256 Bytes. If the lower address of memory
is set to 0x00, the carry value does not occur when indexing for memory access
with the last index value of 0xFF. Therefore, the ADC operation on R31, including
the carry value can be omitted and the ciphertext can be loaded directly without
performing the ADD operation on R30. In the same way, the computation time
when storing or loading values in the Masked–SBOX table, a table created for
masking, can also be reduced using the same address sorting method.

LD and ST instructions are used to load or store the key and the round key
values stored in consecutive memory. In the case of the AVR, 16-bit addresses
are accessed using the X(R26, R27), Y(R28, R29) and Z(R30, R31) pointers.
Therefore, when accessing the repetitive memory or the peripheral memory, the
memory address to be accessed should be set by using the ADD and ADC operators
in the register that constitutes the pointer. In this case, carry value operation
should be included as described above which causes a large overhead. Therefore,
the address access without additional operator was performed by using LDD and
STD or memory address post incremental instruction provided by AVR.

Optimization for Masking Operation. Masking operations aim to prevent
the attacker from accurately measuring power usage by adding useless oper-
ations without affecting the encryption operations themselves. Therefore, the
clock cycle is inevitably longer than the conventional encryption operation. In
this paper, in order to minimize this disadvantage, we propose two methods.

The first method is as follows. Before performing encryption operation, 10
sets of round keys, from Round 0 to Round 9, pre-computed by fixed key encryp-
tion, should perform XOR operation with the value M0. Then carry out XOR oper-
ation on the first row with M6, the second row with M7, the third row with M8
and the last row with M9. In the case of Round 10, the last round, does not
include M6, M7, M8 and M9 operations, but XORs the M1 value to all of the key
values. If the corresponding operation is performed in advance, the XOR opera-
tion repeated in each round is minimized, and the memory in which the masking
value is stored does not have to be loaded in each round. It can be observed in
Algorithm 1 that M0 is XORed with M6, M7, M8, M9 in line 4. At label 1, M6,
M7, M8 and M9 are XORed row by row for a total of 10 key sets from Round
0 to Round 9. By XORing M0 value to each mask value in advance, 160 XOR
operations can be reduced. It is also shown in label 2, M1 XORs with the last
round key.

The second method is as follows. Sub-Bytes operation is a relatively clock
cycle consuming since it needs to access SBOX memory stored as a table. In
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Algorithm 1. Masking operation optimization

1: mov HI, ROUND

2: lsl HI

3: lsl HI

4: eor MASK6, MASK0

5: eor MASK7, MASK0

6: eor MASK8, MASK0

7: eor MASK9, MASK0

8: 1:

9: ld r0, Z

10: eor r0, MASK6

11: st Z+, r0

12: ld r0, Z

13: eor r0, MASK7

14: st Z+, r0

15: ld r0, Z

16: eor r0, MASK8

17: st Z+, r0

18: ld r0, Z

19: eor r0, MASK9

20: st Z+, r0

21: dec HI

22: brne 1b

23: ldi HI, 4

24: 2:

25: ld r0, Z

26: eor r0, MASK1

27: st Z+, r0

28: ld r0, Z

29: eor r0, MASK1

30: st Z+, r0

31: ld r0, Z

32: eor r0, MASK1

33: st Z+, r0

34: ld r0, Z

35: eor r0, MASK1

36: st Z+, r0

37: dec HI

38: brne 2b

Algorithm 2. Generating Masked SBOX

1: ldi r31, hi8(MSBOX)

2: ldi r29, hi8(SBOX)

3: ldi xREDUCER, 0x1b

4: 1:

5: mov r28, r0

6: ld r26, Y

7: eor r26, T1

8: mov r30, r0

9: eor r30, T0

10: st Z, r26

11: inc r0

12: brne 1b

addition, after performing Sub-Bytes operation, the masked value, M0, needs to
be replaced with M1. Therefore, overhead occurs when executing the memory load
operation and XOR operation every round. In order to minimize the overhead,
Masked-SBOX table should have been precomputed and be referenced in the
Sub-Bytes operation. The detailed descriptions of the implementation are given
in Algorithm 2.

4 Evaluation

In this paper, we utilized the 8-bit AVR microcontroller. In particular, we used
the Arduino UNO platform, which equips the ATmega328 processor. The hard-
ware follows the Harvard architecture and the working frequency is 16 MHz. It
contains 32 8-bit general purpose registers and has a total of 131 instruction sets.
Flash memory is 32 KB in size, with 1 KB of EEPROM and 2 KB of internal SRAM.
We compile the code in -OS option and the performance is compared in terms
of clock cycles. For performance measurement, the software was developed with
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Table 1. Comparison of AES implementations on 8-bit AVR, in terms of clock cycles.

Security level Dinu et al. [8] Otte et al. [9] FACE–LIGHT (this work) Extended FACE (this work)

AES-128 2,835 2,507 2,218 1,967

AES-192 N/A 2,991 2,702 2,449

AES-256 N/A 3,473 3,184 2,931

Table 2. Comparison of FACE and FACE–LIGHT.

FACE [7] FACE–LIGHT (This work)

Table update
√

–
Constant timing –

√
Target processor 32-bit or above 8-bit or above

Expandable Round Round 2 Round 3

Arduino IDE and Atmel Studio 7 on an Arduino UNO board with Atmega328p.
All the functions in the program were implemented in Assembly except the loop
function. The Arduino UNO board’s frequency was 16 MHz and the results were
obtained using the Arduino IDE and Atmel Studio 7 for accurate performance
measurements. In addition, in order to confirm that the proposed AES is safe
against power analysis attack, the power consumption during encryption oper-
ation is measured by Chipwhisperer-Lite (CW1173). In addition, CPA was per-
formed by collecting 5,000 waveforms in the third round with the output value
of the Sub-Bytes operation as the middle value.

Table 1 shows the comparison of the clock cycles of four AES. Previous AES
implementations are under ECB mode. The proposed method is CTR mode
by using FACE–LIGHT method and extended FACE which FACE–LIGHT is
applied. The main differences are mode of operation and their input values. For
more details, Dinu et al. [8] is the result of code size software optimization and
Otte et al. [9] is the result of clock cycle software optimization. In our setting, we
used some special cases as mentioned in Chap. 3. For this reason, FACE–LIGHT
is faster than previous state-of-art by 617 clock cycles and Extended FACE is
faster by 868 clock cycles. The proposed method efficiently passes the certain
routines with pre-computed tables.

In Table 2, the comparison results between FACE and FACE–LIGHT are
given. The FACE–LIGHT does not require table update during computations.
This means the encryption timing is always regular fashion. The timing informa-
tion indicates the order of messages. By measuring the timing, we can get these
information and this can be linked to the privacy issue. The target processor
varies in each method. The FACE is for 32-bit processor while the FACE–LIGHT
is for 8-bit microcontrollers. In addition, the FACE can be expanded till Round
2 while our work, FACE–LIGHT, can be expanded to the Round 3.

Existing lightweight ciphers have also been studied for the implementation
of additional masking techniques to cope with side channel attacks. However,
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Table 3. Comparison of LEA and optimized masked AES implementations on 8-bit
AVR microcontroller, in terms of clock cycles.

LEA-128 [10] Masked LEA-128 [11] Masked AES-128 (this work)

2,688 36,589 6,219

Fig. 8. Comparison of non-masked AES and masked FACE–LIGHT on CPA attack
(top left) table of analyzed key value via CPA attack on non-masking AES (top right)
correlation graph of key values through CPA attack on non-masking AES (bottom left)
table of analyzed key value via CPA attack on masking AES (bottom right) correlation
graph of key values through CPA attack on masking AES

most lightweight ciphers with ARX structures have significant overhead since the
ciphers must undergo Arithmetic-to-Boolean operation during masking opera-
tions. On the other hand, the SPN structure, AES, has a relatively short oper-
ation time. Therefore it has an advantage over other lightweight ciphers in the
masking operation, which is a side channel countermeasure.

Table 3 shows the clock cycles of none masked LEA, masked LEA and AES
encryption algorithm with masking operation. In the case of masked LEA–128,
the encryption operation time increases rapidly when masking is applied to LEA.
However, it can be observed that the proposed AES has robustness against power
consumption analysis attack while having less computation time.

Figure 8 shows a graph of key value and correlation coefficient estimated by
performing CPA on AES without mask and AES presented in this paper. In
case of the AES without masking operation, the correlation coefficient of all key
values is significantly higher than other values. However, in the case of the AES
proposed in this paper, the attacker cannot guess the key value since all of the
key values have equal correlation coefficients.
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5 Conclusion

In this paper, we demonstrate the implementation of AES–CTR encryption on
8-bit AVR microcontrollers. The proposed FACE–LIGHT efficiently improves
the performance. Furthermore, we investigated the extended round method and
masked AES implementations. For future works, We will apply this method to
the AES–GCM, which consists of CTR and polynomial multiplication and other
block ciphers/mode of operations.
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Abstract. In many situations, clients (e.g., researchers, companies, hos-
pitals) need to outsource joint computations based on joint inputs to
external cloud servers in order to provide useful results. Often clients
want to guarantee that the results are correct and thus, an output that
can be publicly verified is required. However, important security and pri-
vacy challenges are raised, since clients may hold sensitive information
and the cloud servers can be untrusted. Our goal is to allow the clients to
protect their secret data, while providing public verifiability i.e., every-
one should be able to verify the correctness of the computed result.

In this paper, we propose three concrete constructions of verifiable
additive homomorphic secret sharing (VAHSS) to solve this problem. Our
instantiations combine an additive homomorphic secret sharing (HSS)
scheme, which relies on Shamir’s secret sharing scheme over a finite field
F, for computing the sum of the clients’ secret inputs, and three different
methods for achieving public verifiability. More precisely, we employ: (i)
homomorphic collision-resistant hash functions; (ii) linear homomorphic
signatures; as well as (iii) a threshold RSA signature scheme. In all three
cases we provide a detailed correctness, security and verifiability analysis
and discuss their efficiency.

Keywords: Function secret sharing · Homomorphic secret sharing ·
Verifiable computation · Public verifiability

1 Introduction

The emergence of communication technologies is changing the way data are
stored, processed and used. Data collected from multiple, often resource-
constrained devices are stored and processed by remote, untrusted (cloud)
servers and subsequently, used by third parties (e.g., electricity companies, doc-
tors, researchers). Furthermore, many applications involve joint computations
on data collected from multiple clients (e.g., compute statistics on electricity
consumption via smart metering, measure emissions via environmental sensors
or even e-voting systems). To avoid single points of failure, multiple servers
can be recruited to perform joint computations for multiple clients. Although
this distributed cloud-assisted environment is very attractive and has tremen-
dous advantages, it is accompanied by serious security and privacy challenges.
c© Springer Nature Switzerland AG 2020
J. H. Seo (Ed.): ICISC 2019, LNCS 11975, pp. 115–132, 2020.
https://doi.org/10.1007/978-3-030-40921-0_7
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In such settings, it is often desirable to solve the cloud-assisted computing prob-
lem described by the following constraints: (i) n clients want to outsource their
joint computations on their joint inputs to multiple servers; (ii) the clients want
to keep their individual values secret; (iii) the servers are untrusted; (iv) the
clients cannot communicate with each other; and (v) everyone should be able
to verify the correctness of the computed result (i.e., public verifiability). Let us
consider that n clients (as depicted in Fig. 1), with n individual secret inputs
x1, x2, . . . xn, want to outsource the joint computation of a function on their joint
inputs f(x1, x2, . . . , xn). Tsaloli et al. [16] addressed the problem of computing
the joint multiplications of n inputs corresponding to n clients and introduced
the concept of verifiable homomorphic secret sharing (VHSS). More precisely,
VHSS allows to split n secret inputs into m shares and perform the joint compu-
tation of a function f(x1, x2, . . . , xn) = y, without any communication between
the clients; while also providing a proof π that allows the public verification
of the computed result, i.e., having access to the pair (y, π) anyone can verify
that the computed result is correct. However, the possibility to achieve verifiable
homomorphic secret sharing for other functions has been left open.

x1

x2

xn

...

π proof of correctness for y

...

Server 1

Server 2

Server m

Client 1

Client 2

Client n

Verifiers

y1

y2

ym

...

Compute y, π
f(x1, . . . , xn)=f(y1, . . . , ym)=y

Fig. 1. n clients outsourcing the joint computation of their joint inputs to m servers.

In this paper, we revisit the concept of verifiable homomorphic secret sharing
(VHSS) and we investigate whether it is possible to achieve verifiable additive
homomorphic secret sharing. The answer is affirmative and we introduce three
constructions that can be employed in order to compute securely and privately
the joint addition of n inputs from n clients by employing m servers, while also
providing public verifiability. These constructions can be useful, for instance,
when statistics need to be computed about electricity consumption with data
collected from multiple users, or when collecting data for remote monitoring
and diagnosis from multiple patients, as well as when data from environmental
sensors (e.g., temperature, humidity) are collected from multiple sensors.

Our Contributions. We focus on the problem of outsourcing joint additions,
while providing strong security and privacy guarantees when: (i) multiple clients
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outsource joint additions on their joint secret inputs; (ii) multiple untrusted
servers are employed for the computation; and (iii) anyone can verify that the
output of the computation is correct. We propose for the first time three different
instantiations of verifiable additive homomorphic secret sharing (VAHSS).

We discriminate three different cases of VAHSS depending on the employed
primitive (homomorphic hash functions, linearly homomorphic signatures and
threshold signatures) as well as whether the partial proofs (used in order to
check the correctness of the computed result) are computed by either the clients
or the servers. Furthermore, we have modified the original VHSS definition in
order to capture the different cases regarding the generation of the proofs; thus,
allowing the employment of VHSS in multiple application settings.

Our constructions rely on casting Shamir’s secret sharing scheme over a finite
field F as an n-client, m-server, t-perfectly secure additive homomorphic secret
sharing (HSS) for the function that sums n field elements. Such an additive HSS
exists, if and only if m > n·t. By employing the additive HSS in combination with
homomorphic collision-resistant hash functions [13,17], we provide an instanti-
ation, where the partial proofs are computed by the servers. Subsequently, we
combine the additive HSS with a linearly homomorphic signature scheme [10],
or a threshold RSA signature scheme [8] to obtain two different instantiations
of VAHSS depending on whether the partial proofs are computed by the clients
or by a subset of the servers correspondingly. In all three cases, we provide a
detailed correctness, security and verifiability analysis.

1.1 Related Work

Homomorphic Secret Sharing. In threshold secret sharing schemes [15] a
secret x is split into multiple shares (e.g., x1, x2, . . . , xm) in such a way that by
combining some subsets of the shares, it is possible to reconstruct the secret,
while from smaller subsets of the shares, it is not possible to recover any infor-
mation related to the secret. Homomorphic secret sharing (HSS) [7] can be seen
as the secret sharing analogue of homomorphic encryption. More precisely, HSS
allows the local evaluation of functions on shares on one or more secret inputs
by relying on local computations on the shares of the secrets; while at the same
time guaranteeing that the shares of the output are short. The first instance of
additive HSS considered in the literature [3] is computed in some finite Abelian
group. However, HSS does not provide any verifiability guarantees about the
computed result.

Verifiable Function Secret Sharing. Function secret sharing (FSS) [5] can
be seen as a natural generalization of distributed point functions (DPF) and
provides a method for additively secret sharing a function f from a given
function family F . In FSS a function f is split into m functions f1, . . . , fm,
described by the corresponding keys k1, . . . , km such that for any input x it holds
f(x) = f1(x)+ . . .+ fm(x). Boyle et al. introduced the concept of verifiable FSS
(VFSS) [6], which provides interactive protocols to verify that keys (k∗

1 , . . . , k
∗
m),
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obtained from a potentially malicious user, are consistent with some f ∈ F . How-
ever, Boyle et al.’s VFSS applies in the setting of one client and multiple servers.
On the contrary, VHSS can be applied when multiple clients (multi-input) out-
source the joint computation to multiple servers. In addition, VFSS focuses on
verifying that the shares f1, . . . , fm are consistent with f ; while VHSS generates
a proof that guarantees that the final result is correct.

Publicly Auditable Secure Multi-party Computation. Outsourcing com-
putations is inherently connected to secure multi-party computation (MPC) pro-
tocols. In MPC [4,11,12], the public verifiability is traditionally achieved by
employing non-interactive zero-knowledge (NIZK) proofs. Baum et al. [1] intro-
duced the notion of publicly auditable MPC protocols that are suitable for the
multi-client and multi-server setting. Publicly auditable MPC can be seen as an
extension of the classic formalization of secure function evaluation; it relies on
the SPDZ protocol [11,12] and NIZK proofs, while it enhances each shared input
x with a Pedersen commitment. Baum et al. [1] require correctness and privacy,
when there is at least one honest party, while everyone having access to the tran-
script of the protocol (published in a bulletin board) can verify the correctness of
the computed result. We should note that publicly auditable MPC protocols are
very expressive regarding the class of functions being computed, but often require
heavy computations. To formalize auditable MPC an extra non-corruptible party
is introduced in the standard MPC model, namely the auditor. On the contrary,
in VAHSS, no additional non-corruptible party is required, while we avoid the
employment of expensive cryptographic operations and primitives such as NIZK.

Organization. The paper is organized as follows. In Sect. 2, we provide the
modified definition of verifiable homomorphic secret sharing (VHSS). In Sect. 3,
we introduce three verifiable additive homomorphic secret sharing (VAHSS) con-
structions using homomorphic hash functions, linearly homomorphic signatures
and a threshold signature scheme respectively. In all three proposed instantia-
tions, we provide the corresponding correctness, security and verifiability proofs.
Finally, Sect. 4 summarizes the paper.

2 Preliminaries

Our concrete instantiations for the additive VHSS problem are based on the
VHSS definition proposed in [16]. However, we propose a slightly modified ver-
sion of the VHSS definition to capture cases when partial proofs (used to verify
the correctness of the final result) are computed either from the clients or the
servers. We added the Setup algorithm to allow the generation of keys and we
modified the PartialProof algorithm accordingly to allow the different scenar-
ios.

Definition 1 (Verifiable Homomorphic Secret Sharing (VHSS)). An n-
client, m-server, t-secure verifiable homomorphic secret sharing scheme for a
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function f : X �→ Y, is a 7-tuple of PPT algorithms (Setup, ShareSecret, Par-
tialEval, PartialProof, FinalEval, FinalProof, Verify) which are defined
as follows:

– (pp, sk) ← Setup(1λ): On input 1λ, where λ is the security parameter, the
algorithm outputs a secret key sk and some public parameters pp.

– (sharei1, . . . , shareim, τi) ← ShareSecret(1λ, i,xi): The algorithm takes as
input 1λ, i ∈ {1, . . . , n} which is the index for the client ci and xi which
denotes a vector of one (i.e., xi ∈ X ) or more secret values that belong to
each client and should be split into shares. The algorithm outputs m shares
shareij (denoted also by xij ∈ X when xi = xi) for each server sj, as well as,
if necessary, a publicly available value τi

1 related to the secret xi.
– yj ← PartialEval(j, (x1j , x2j , . . . , xnj)): On input j ∈ {1, . . . ,m} which

denotes the index of the server sj, and x1j , x2j , . . . , xnj which are the shares
of the n secret inputs x1, . . . , xn that the server sj has, the algorithm Par-
tialEval outputs yj ∈ Y.

– σk ←PartialProof(sk, pp, secretvalues, k): On input the secret key sk, public
parameters pp, secret values (based on which the partial proofs are generated),
denoted by secretvalues; and the corresponding index k (where k is either i or
j), a partial proof σk is computed.

– y ←FinalEval(y1, y2, . . . , ym): On input y1, y2, . . . , ym which are the shares
of f(x1, x2, . . . , xn) that the m servers compute, the algorithm FinalEval
outputs y, the final result for f(x1, x2, . . . , xn).

– σ ←FinalProof(pp, σ1, . . . , σ|k|): On input public parameters pp and the par-
tial proofs σ1, σ2, . . . , σ|k|, the algorithm FinalProof outputs σ which is the
proof that y is the correct value.

– 0/1 ←Verify(pp, σ, y): On input the final result y, the proof σ, and, when
needed, public parameters pp, the algorithm Verify outputs either 0 or 1.

Correctness, Security, Verifiability. The algorithms (Setup, ShareSecret,
PartialEval, PartialProof, FinalEval, FinalProof, Verify) should satisfy
the following correctness, verifiability and security requirements:

• Correctness: For any secret input x1, . . . , xn, for all m-tuples in the set
{(sharei1, . . . , shareim), τi}n

i=1 coming from ShareSecret, for all y1, . . . , ym

computed by PartialEval, σ1, . . . , σ|k| computed from PartialProof, and
for y and σ generated by FinalEval and FinalProof respectively, the scheme
should satisfy the following correctness requirement:

Pr
[
Verify(pp, σ, y) = 1

]
= 1.

• Verifiability: Let T be the set of corrupted servers with |T | � m. Den-
ote by A any PPT adversary and consider n secret inputs x1, . . . , xn ∈
F. Any PPT adversary A who controls the shares of the secret inputs
for any j such that sj ∈ T , can cause a wrong value to be accepted
as f(x1, x2, . . . , xn) with negligible probability. We define the following
experiment ExpVerif.

VHSS(x1, . . . , xn, T,A) :
1 τi, when computed, can be included in the list of public parameters pp.
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1. For all i ∈ {1, . . . , n}, generate (sharei1, . . . , shareim, τi) ← ShareSe-
cret(1λ, i,xi) and publish τi.

2. For all j such that sj ∈ T , give

⎛

⎜
⎜
⎜
⎝

share1j

share2j

...
sharenj

⎞

⎟
⎟
⎟
⎠

to the adversary.

3. For the corrupted servers sj ∈ T , the adversary A outputs modified
shares yj

′ and σk
′. Then, for j such that sj /∈ T , we set yj

′ = Partial-
Eval(j, (x1j , . . . , xnj)) and σk

′ = PartialProof(sk, pp, secretvalues, k).
Note that we consider modified σk

′ only when computed by the servers.
4. Compute the modified final value y′ = FinalEval(y1′, y2′, . . . , ym

′) and
the modified final proof σ′ = FinalProof(pp, σ′

1, . . . , σ
′
|k|).

5. If y′ �= f(x1, x2, . . . , xn) and Verify(pp, σ′, y′) = 1, then output 1 else 0.
We require that for any n secret inputs x1, x2, . . . , xn ∈ F, any set T of
corrupted servers and any PPT adversary A it holds:

Pr[ExpVerif.
VHSS(x1, x2, . . . , xn, T,A) = 1] ≤ ε, for some negligible ε.

• Security: Let T be the set of the corrupted servers with |T | < m. Consider
the following semantic security challenge experiment:
1. The adversary A1 gives (i, xi, x

′
i) ← A1(1λ) to the challenger, where

i ∈ [n], xi �= x′
i and |xi| = |x′

i|.
2. The challenger picks a bit b ∈ {0, 1} uniformly at random and computes

(ŝharei1, . . . , ŝhareim, τ̂i) ← ShareSecret(1λ, i, x̂i) where the secret input

x̂i =
{xi, if b = 0

x′
i, otherwise .

3. Given the shares from the corrupted servers T and τ̂i, the adversary
distinguisher outputs a guess b′ ← D((ŝhareij)j|sj∈T , τ̂i).

Let Adv(1λ,A, T ) := Pr[b = b′] − 1/2 be the advantage of A = {A1,D} in
guessing b in the above experiment, where the probability is taken over the
randomness of the challenger and of A. A VHSS scheme is t-secure if for all
T ⊂ {s1, . . . , sm} with |T | ≤ t, and all PPT adversaries A, it holds that
Adv(1λ,A, T ) ≤ ε(λ) for some negligible ε(λ).

In our solution, we employ a simple variant of the (Strong) RSA based sig-
nature introduced by Catalano et al. [9], which can be seen as a linearly homo-
morphic signature scheme on ZN .

Definition 2 (Linearly Homomorphic Signature [10]). A linearly homo-
morphic signature scheme is a tuple of PPT algorithms (HKeyGen, HSign,
HVerify, HEval) defined as follows:

– HKeyGen(1λ, k) takes as input the security parameter λ and an upper bound
k for the number of messages that can be signed in each dataset. It outputs a
secret signing key sk and a public key vk. The public key defines a message
space M, a signature space S, and a set F of admissible linear functions such
that any f : Mn �→ M is linear.
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– HSign(sk, fid,mi, i) algorithm takes as input the secret key sk, a dataset
identifier fid, and the i-th message mi to be signed, and outputs a signature
σi.

– HVerify(vk, fid,m, σ, f) algorithm takes as input the verification key vk, a
dataset identifier fid, a message m, a signature σ and a function f . It outputs
either 1 if the signature corresponds to the message m or 0 otherwise.

– HEval(vk, fid, f, σ1, . . . , σn) algorithm takes as input the verification key vk,
a dataset identifier fid, a function f ∈ F , and a tuple of signatures σ1, . . . , σn.
It outputs a new signature σ.

We use homomorphic hash functions in order to achieve verifiability. Below,
we provide the definition of such a function. More precisely, we employ a homo-
morphic hash function satisfying additive homomorphism [13].

Definition 3 (Homomorphic Hash Function [17]). A homomorphic hash
function h : FN �→ Gq, where F is a finite field and G is a multiplicative group
of prime order q, is defined as a collision-resistant hash function satisfying the
homomorphism in addition to the properties of a universal hash function uh :
(0, 1)∗ �→ (0, 1)l.

1. One-way: It is computationally hard to compute h−1(x).
2. Collision-free: It is computationally hard to find x, y ∈ F

N (x �= y) such that
h(x) = h(y).

3. Homomorphism: For any x, y ∈ F
N , it holds h(x ◦ y) = h(x) ◦h(y) where “◦”

is either “+” or “·”.
For completeness, we also provide the definition of a secure pseudorandom

function PRF.

Definition 4 (Pseudorandom Function (PRF)). Let S be a distribution
over {0, 1}� and Fs : {0, 1}m → {0, 1}n be a family of functions indexed by
strings s in the support of S. We say {Fs} is a pseudorandom function family if
for every PPT adversary D, there exists a negligible function ε such that:

|Pr[DFs(·) = 1] − Pr[DR(·) = 1]| ≤ ε,

where s is distributed according to S, and R is a function sampled uniformly at
random from the set of all functions from {0, 1}m to {0, 1}n.

3 Verifiable Additive Homomorphic Secret Sharing

In this section, we present three different instantiations to achieve verifiable
additive homomorphic secret sharing (VAHSS). More precisely, we consider n
clients with their secret values x1, . . . , xn respectively, and m servers s1, . . . , sm

that perform computations on shares of these secret values. Firstly, the clients
split their secret values into shares, that reveal nothing about the secret value
itself and then, they distribute the shares to each of the m servers. Each server
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performs some calculations in order to publish a value, which is related to the
final result f(x1, . . . , xn) = x1 + . . . + xn. Then, depending on the instantiation
proposed, partial proofs are generated in a different way. The partial proofs are
values such that their combination results in a final proof, which confirms the
correctness of the final computed value f(x1, . . . , xn).

3.1 Construction of VAHSS Using Homomorphic Hash Functions

In this section, we aim to compute the function value y, which corresponds to
f(x1, . . . , xn) = x1 + . . . + xn as well as a proof σ that y is correct. We combine
an additive HSS for the algorithms related to the value y and hash functions for
the generation of the proof σ. Let c1, . . . , cn denote n clients and x1, . . . , xn their
corresponding secret inputs. Let, for any {i}i=1,...,n, θi1, . . . , θim be distinct non-
zero field elements and λi1, . . . , λim be field elements (“Lagrange coefficients”)
such that for any univariate polynomial pi of degree t over a finite field F = FN

we have:

pi(0) =
m∑

j=1

λijpi(θij) (1)

Each client ci generates shares of the secret xi, denoted by xi1, . . . , xim respec-
tively, and gives the share xij to each server sj . The servers, in turn, com-
pute a partial sum, denoted by yj , and publish it. Anyone can then compute
y = y1 + . . . + ym, which corresponds to the function value y = f(x1, . . . , xn) =
x1 + . . . + xn. We suggest that every client ci uses a homomorphic collision-
resistant function H : x �→ gx proposed by Krohn et al. [13] to generate a public
value τi which reveals nothing about xi (under the discrete logarithm assump-
tion). Then, the servers compute values σ1, . . . , σm which will be appropriately
combined so that they give the proof σ that we are interested in. The value y
comes from the combination of partial values yj , which are computed by the m
servers. More precisely, our solution is composed of the following algorithms:

1. ShareSecret(1λ, i, xi, filei): For elements {ai}i∈{1,...,t} ∈ F selected uni-
formly at random, pick a t-degree polynomial pi of the form pi(X) =
xi+a1X+a2X

2+. . .+atX
t with t·n < m. Notice that the free coefficient of pi

is the secret input xi. Let H : x �→ gx (with g a generator of the multiplicative
group of F) be a collision-resistant homomorphic hash function [17]. Let Ri

be the output of a pseudorandom function (PRF) F : {0, 1}l1 × {0, 1}l2 �→ F

where Ri = Fk(i, filei) for a key k ∈ {0, 1}l1 given to the clients and
an input filei associated with client i such that (i, filei) ∈ {0, 1}l2 . For

i = n we require F 
 Rn = φ(N)�
∑n−1

i=1 Ri

φ(N) � − ∑n−1
i=1 Ri. Then, compute

τi = H(xi + Ri), define xij = λijpi(θij) (given thanks to the Eq. (1)) and
output (xi1, xi2, . . . , xim, τi) = (λi1 · pi(θi1), . . . , λim · pi(θim),H(xi + Ri)).

2. PartialEval(j, (x1j , x2j , . . . , xnj)): Given the j-th shares of the secret inputs,
compute the sum of all xij = λij · pi(θij) for the given j and i ∈ [n]. Output
yj with yj = λ1j · p1(θ1j) + . . . + λnj · pn(θnj) =

∑n
i=1 λij · pi(θij).
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3. PartialProof(j, (x1j , x2j , . . . , xnj)): Given the j-th shares of the secret
inputs, compute and output the partial proof σj = g

∑n
i=1 xij = gyj = H(yj).

4. FinalEval(y1, y2, . . . , ym): Add the partial sums y1, . . . , ym together and out-
put y (where y = y1 + . . . + ym).

5. FinalProof(σ1, . . . , σm): Given the partial proofs σ1, σ2, . . . , σm, compute
the final proof σ =

∏m
j=1 σj . Output σ.

6. Verify(τ1, . . . , τn, σ, y): Check whether σ =
∏n

i=1 τi ∧ ∏n
i=1 τi = H(y) holds.

Output 1 if the check is satisfied or 0 otherwise.

Each client runs the ShareSecret algorithm to compute and distribute the
shares of xi to each of the m servers and a public value τi, which is needed for
the verification. Then, each server sj has the shares given from the n clients and
runs the PartialEval algorithm to output the public values yj related to the final
function value. Furthermore, each server runs the PartialProof algorithm and
produces the value σj . Finally, any user or verifier is able to run the FinalEval
algorithm to get y and the FinalProof algorithm to get the proof σ. Lastly,
Verify algorithm ensures that y and σ match and thus, y = f(x1, . . . , xn) is
correct. Our construction is illustrated in the Table 1.

Table 1. VAHSS using homomorphic hash functions

Secret inputs (held
by the clients)

Servers Public values

s1 s2 · · · sm

x1 x11 x12 · · · x1m τ1

x2 x21 x22 · · · x2m τ2
...

...
...

...
...

...

xn xn1 xn2 · · · xnm τn

Partial sums y1 y2 · · · ym Total Sum: y

Partial proofs σ1 σ2 · · · σm Final Proof: σ

• Correctness: To prove the correctness of this construction, we need to prove
that Pr

[
Verify(τ1, . . . , τn, σ, y) = 1

]
= 1. By construction it holds that:

y =
m∑

j=1

yj =
m∑

j=1

n∑

i=1

λij · pi(θij) =
n∑

i=1

m∑

j=1

λij · pi(θij) =
n∑

i=1

pi(0) =
n∑

i=1

xi

(2)
Additionally, by construction, we have:

σ =
m∏

j=1

σj =
m∏

j=1

H(yj) =
m∏

j=1

gyj = g
∑m

j=1 yj = gy = H(y)
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and
n∏

i=1

τi =
n∏

i=1

gxi+Ri = g
∑n

i=1 xig
∑n

i=1 Ri = g
∑n

i=1 xig
∑n−1

i=1 Ri+Rn

= g
∑n

i=1 xig
φ(N)�

∑n−1
i=1 Ri

φ(N) �
= g

∑n
i=1 xi = gx1+...+xn

see eq.(2)
= gy = H(y)

(3)

Combining the last two results we get that σ =
∏n

i=1 τi ∧ ∏n
i=1 τi = H(y)

holds. Therefore, the algorithm Verify outputs 1 with probability 1.
• Security: See [2] for a proof that the selected hash function H of our con-

struction is a secure collision-resistant hash function under the discrete loga-
rithm assumption.
We will now prove that Adv(1λ,A, T ) ≤ ε(λ) for some negligible ε(λ).

Proof. Game 0: Consider m−1 corrupted servers. Then, |T | = m−1. Without
loss of generality, let the first m−1 servers be the corrupted ones. Therefore, the
adversary A has (m − 1)n shares from the corrupted servers and no additional
information.

For any fixed i with i ∈ {1, . . . , n}, it holds that
∑m

j=1 ŝhareij = x̂i and hence:

m−1∑

j=1

ŝhareij + ŝhareim = x̂i ⇐⇒ ŝhareim = x̂i −
m−1∑

j=1

ŝhareij

The adversary holds
∑m−1

j=1 ŝhareij . Furthermore, the adversary holds the public
value τ̂i = gx̂i+Ri . Since Ri is the output of a PRF then τ̂i is also a pseudorandom
value.
Game 1: Consider that the adversary holds the same shares

∑m−1
j=1 ŝhareij and

τ̂i is now a truly random value.
Firstly, ŝhareim ∈ Y is just a value, which implies nothing to the adversary
regarding whether it is related to xi or xi

′. Moreover, Game 0 and Game 1
are computationally indistinguishable due to the security of the PRF. Thus, any
PPT adversary has probability 1/2 to decide whether x̂i is xi or xi

′ and so,
Adv(1λ,A, T ) ≤ ε(λ) for some negligible ε(λ).

• Verifiability: In this construction, for y = x1 + x2 + . . . + xn, if y′ �= x1 +
. . . + xn and Verify(τ1, . . . , τn, σ′, y′) = 1, then the verifiability follows:

Verify(τ1, . . . , τn, σ′, y′) = 1 ⇒ σ′ =
n∏

i=1

τi ∧
n∏

i=1

τi = H(y′)

⇒
n∏

i=1

τi = H(y′) (see Eq. 3) ⇒ H(y) = H(y′)

which is a contradiction since y �= y′ and H is collision-resistant. Therefore,

Pr[ExpVerif.
VHSS(x1, . . . , xn, T,A) = 1] ≤ ε, as desired.
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3.2 Construction of VAHSS with Linear Homomorphic Signatures

Our goal is always to compute f(x1, . . . , xn) = x1+. . .+xn = y as well as a proof
σ that y is correct. We compute y using additive HSS and we employ a linearly
homomorphic signature scheme, presented in [10] as a simple variant of Catalano
et al.’s [9] signature scheme, for the generation of the proof. All clients hold the
same signing and verification key. This could be the case if the clients are sensors
of a company collecting information (e.g., temperature, humidity) useful for some
calculations. Since the sensors/clients belong to the same company, sharing the
same key might be necessary to facilitate configuration. In applications scenarios
where clients should be set up with different keys, a multi-key scheme [14] could
be used. However, in our construction, the clients can use the same signing key to
sign their own secret value. In fact, they sign xi,R where xi,R = xi + Ri with Ri

chosen from each client as described in the Sect. 3.1. The signatures, denoted by
σ1, . . . , σn are public and combined they form a final signature σ, which verifies
the correctness of y. Our instantiation constitutes of the following algorithms:

1. Setup(1k, N): Let N be the product of two safe primes each one of length
k′/2. This algorithm chooses two random (safe) primes p̂, q̂ each one of length
k/2 such that gcd(N,φ(N̂)) = 1 with N̂ = p̂ · q̂. Subsequently, the algorithm
chooses g, g1, h1, . . . , hn in Z

∗
N̂

at random. Then, it chooses some (efficiently
computable) injective function H : {0, 1}∗ �→ {0, 1}l with l < k′/2. It outputs
the public key vk = (N,H, N̂ , g, g1, h1, . . . , hn) to be used by any verifier; and
the secret key sk = (p̂, q̂) to be used for signing the secret values.

2. ShareSecret(1λ, i, xi): For elements {ai}i∈{1,...,t} ∈ F selected uniformly at
random, pick a t-degree polynomial pi of the form pi(X) = xi+a1X +a2X

2+
. . . + atX

t with t · n < m. Notice that the free coefficient of pi is the secret
input xi. Then, define xij = λijpi(θij) (given using the equation (1)) and
output (xi1, xi2, . . . , xim) = λi1 · pi(θi1), λi2 · pi(θi2), . . . , λim · pi(θim)).

3. PartialEval(j, (x1j , x2j , . . . , xnj)): Given the j-th shares of the secret inputs,
compute the sum of all xij = λij · pi(θij) for the given j and i ∈ [n]. Output
yj with yj = λ1j · p1(θ1j) + . . . + λnj · pn(θnj) =

∑n
i=1 λij · pi(θij).

4. PartialProof(sk, vk, fid, xi,R, i): Parse the verification key vk to get N,H,

N̂ , g, g1 and h1, . . . , hn. For the (efficiently computable) injective function
H that is chosen from Setup, map fid to a prime: H(fid) �→ e. We
denote the i-th vector of the canonical basis on Z

n by ei. Choose ran-
dom elements si and solve, using the knowledge for p̂ and q̂, the equation:
xeN = gsi

∏n
j=1 hj

fj
(i)

g
xi,R

1 mod N̂ where fj
(i) denotes the j-th coordinate

of the vector f (i). Notice that for our function ei, the equation becomes
xeN = gsihig

xi,R

1 mod N̂ . Set x̃i = x. Output σi, where σi = (e, si, fid, x̃i)
is the signature for xi w.r.t. the function f (i) = ei.

5. FinalEval(y1, y2, . . . , ym): Add the partial sums y1, . . . , ym together and out-
put y (where y = y1 + . . . + ym).

6. FinalProof(vk, f̂ , σ1, σ2, . . . , σn): Given the public verification key vk, the
signatures σ1, . . . , σn, let f̂ = (α1, . . . , αn). Define f ′ = (

∑n
i=1 αif

(i) −
f)/eN where f =

∑n
i=1 αif

(i) mod eN . Set s =
∑n

i=1 αisi mod eN ,
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s′ = (
∑n

i=1 αisi − s)/eN and x̃ =
∏n

i=1 x̃i
αi

gs′ ∏n
j=1 hj

f′
j

mod N̂ . For f̂ = (1, . . . , 1),

compute x̃ =
∏n

i=1 x̃i

gs′ ∏n
j=1 hj

f′
j

mod N̂ . Output σ where σ = (e, s, fid, x̃).

7. Verify(vk, f, σ, y): Compute e = H(fid). Check that y, s ∈ ZeN and x̃eN =
gs

∏n
j=1 hj

fj gy
1 holds. Output: 1 if all checks are satisfied or 0 otherwise.

All n clients get the secret key sk from Setup and hold their secret value
x1, . . . , xn respectively. Each client runs ShareSecret to split its secret value xi

into m shares and PartialProof to produce the partial signature (for the secret
xi) σi. The values σi’s are not generated by the servers; since in that case, mali-
cious compromised servers would not be detected. Then, each client distributes
the shares to each of the m servers and publishes σi. Each server sj computes
and publishes the partial function value yj by running PartialEval. Any verifier
is able to get the function value y = f(x1, . . . , xn) from the FinalEval and the
proof σ from the FinalProof. The Verify algorithm outputs 1 if and only if
y = x1 + . . . + xn. An illustration of our solution is reported in the Table 2.

Table 2. VAHSS using linear homomorphic signatures

Secret inputs (held
by the clients)

Servers Public values

s1 s2 · · · sm vk

x1, sk x11 x12 · · · x1m σ1

x2, sk x21 x22 · · · x2m σ2

...
...

...
...

...
...

xn, sk xn1 xn2 · · · xnm σn

Partial sums (public) y1 y2 · · · ym Final proof (public)

Total sum (public) y σ

• Correctness: To prove the correctness of our construction we need to prove
that Pr

[
Verify(vk, f, σ, y) = 1

]
= 1. It holds that:

x̃eN = (
∏n

i=1 x̃i

gs′ ∏n
i=1 hj

f′
j
)
eN

=
∏n

i=1 x̃i
eN

gs′eN
∏n

i=1 hj
f′

j
eN

=
∏n

i=1 (gsi
∏n

j=1 hj
fj

(i)
g

xi,R
1 )

gs′eN
∏n

i=1 hj
f′

j
eN

= g
∑n

i=1 si

gs′eN ·
∏n

i=1
∏n

j=1 hj
fj

(i)

∏n
i=1 hj

f′
j

eN
· g1

∑n
i=1 xi,R

= g
∑n

i=1 si

gs′eN ·
∏n

i=1
∏n

j=1 hj
fj

(i)

∏n
i=1 hj

f′
j

eN
· g1

∑n
i=1 xi · g1

∑n
i=1 Ri

see eq.(3)
= g

∑n
i=1 si−s′eN

n∏

j=1

hj

∑n
i=1 fj

(i)−f ′
jeNg1

∑n
i=1 xi = gs

n∏

j=1

hj
fj g1

∑n
i=1 xi

(4)
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Thanks to the equation (2), it also holds that y =
∑n

i=1 xi. Then x̃eN =
gs · ∏n

j=1 hj
fj · g1

y and thus, Verify(vk, σ, y, f) = 1 with probability 1.
• Security: The security of the signatures results easily from the original signa-

ture scheme proposed by Catalano et al. [9]. Moreover, Adv(1λ,A, T ) ≤ ε(λ)
for some negligible ε(λ) as we have proven in the Sect. 3.1. We should note
that, since in this construction no τi values are incorporated, the arguments
related to the pseudorandomness of τi are not necessary.

• Verifiability: Verifiability is by construction straightforward since the final
signature σ ← FinalProof(vk, f̂ , σ1, . . . , σn) is obtained using the correctly
computed (by the clients) σ1, . . . , σn and thus, σ′ = σ in this case. Therefore,
if y′ �= x1 + . . . + xn while y = x1 + . . . + xn and Verify(vk, σ′, y′, f) = 1
then:

Verify(vk, σ′, y′, f) = 1 ⇒ Verify(vk, σ, y′, f) = 1

⇒x̃eN = gs
n∏

j=1

hj
fj gy′

1 (see equation (4))

⇒gs
n∏

j=1

hj
fj g

∑n
i=1 xi

1 = gs
n∏

j=1

hj
fj gy′

1 ⇒
n∑

i=1

xi = y′

which is a contradiction!
Therefore, Pr[ExpVerif.

VHSS(x1, . . . , xn, T,A) = 1] ≤ ε.

3.3 Construction of VAHSS with Threshold Signature Sharing

We propose a scheme where the clients generate and distribute shares of their
secret values to the m servers and the servers mutually produce shares of the
final value y similarly to the previous constructions. However, in order to gen-
erate the proof σ that confirms the correctness of y, our scheme employs the
(t, n)-threshold RSA signature scheme proposed in [8] so that a signature σ is
successfully generated even if t − 1 servers are corrupted. Our proposed scheme
(illustrated in the Table 3) acts in accordance with the following algorithms:

1. Setup (1k, N): Let N = p · q be the RSA modulus such that p = 2p′ + 1
and q = q′ + 1, where p′, q′ are large primes. Choose the public RSA key ei

such that ei � (
n
t

)
and then, pick the private RSA key di so that eidi ≡ 1

mod (p′q′). Output the public key ei and the private key di.
2. ShareSecret(1λ, i, xi, di, filei): For elements {ai}i∈{1,...,t} ∈ F selected uni-

formly at random, pick a t-degree polynomial pi of the form pi(X) =
xi + a1X + a2X

2 + . . . + atX
t with t · n < m. Notice that the free coeffi-

cient of pi is the secret input xi. Then, define xij = λijpi(θij) (given thanks
to the Eq. (1)). Let Ai be an m× t full-rank public matrix with elements from
F = Zr

∗ for a prime r. Let d = (di, r2, . . . , rt)ᵀ be a secret vector from F
t,

where di is the private RSA key and r2, . . . , rt ∈ F are randomly chosen. Let
aij be the entry at the i-th row and j-th column of the matrix Ai. For all
j ∈ [m], set ωij = aj1di+aj2r2+. . .+ajtrt ∈ F to be the share generated from
the client ci for the server sj . It is now formed an m × t system Aid = ωi .
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Let H : xi �→ gxi (with g a generator of the multiplicative group of F) be
a collision-resistant homomorphic hash function [17]. Let Ri be randomly
selected values as described in the Sect. 3.1. Output the public matrix Ai, the
(xi’s) shares (xi1, xi2, . . . , xim) = λi1 · pi(θi1), λi2 · pi(θi2), . . . , λim · pi(θim)),
the shares of the private key ωi = (ωi1, . . . , ωim) and H(xi + Ri).

3. PartialEval(j, (x1j , x2j , . . . , xnj)): Given the j-th shares of the secret inputs,
compute the sum of all xij = λij · pi(θij) for the given j and i ∈ [n]. Output
yj with yj = λ1j · p1(θ1j) + . . . + λnj · pn(θnj) =

∑n
i=1 λij · pi(θij).

4. PartialProof(ω1, . . . ,ωn ,H(x1 + R1), . . . , H(xn + Rn),A1, . . . ,An, N):
For all i ∈ [n] run the algorithm PartialProofi(ωi ,H(xi + Ri),Ai, i, N)
where:

PartialProofi(ωi ,H(xi + Ri),Ai, i, N): Let S = {s1, s2, . . . , st} be
the coalition of t servers (t < m) (w.l.o.g. take the first t), forming
the system AiSd = ωiS . Let the t × t adjugate matrix of AiS be:

CiS =

⎡

⎢
⎣

c11 c21 . . . ct1
...

...
. . .

...
c1t c2t . . . ctt

⎤

⎥
⎦

Denote the determinant of AiS by ΔiS . It holds that:

AiSCiS = CiSAiS = ΔiSIt (5)

where It stands for the t × t identity matrix. Compute the par-
tial signature of xi: σij = H(xi + Ri)2cj1ωij mod N . Output σi =
(σi1, . . . , σit).

PartialProof outputs σ1, . . . ,σn .
5. FinalEval(y1, y2, . . . , ym): Add the partial sums y1, . . . , ym together and out-

put y (where y = y1 + . . . + ym).
6. FinalProof(e1, . . . , en,H(x1 + R1), . . . , H(xn + Rn),σ1, . . . ,σn , N): For

all i ∈ {1, . . . , n} run the algorithm FinalProofi(ei,H(xi + Ri),σi , N)
where:

FinalProofi(ei,H(xi + Ri),σi , N): Combine the partial signatures
by computing σi =

∏
j∈S σij mod N. Compute σi = σi

αiH(xi +
Ri)βi mod N with αi, βi integers such that

2ΔiSαi + eiβi = 1. (6)

Output σi, i.e., the signature that corresponds to the secret xi.
FinalProof outputs σ =

∏n
i=1 σi

ei .
7. Verify(H(x1 + R1), . . . , H(xn + Rn), σ, y): Check if σ =

∏n
i=1 H(xi + Ri) ∧

H(y) =
∏n

i=1 H(xi + Ri) holds. Output 1 if the check is satisfied or 0 other-
wise.

After the initialization with the Setup, each client ci gets its public and private
RSA keys, ei and di respectively. Then, each ci runs ShareSecret to compute
and distribute the shares of xi to each of the m servers, and form a public matrix
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Ai, shares of the private key (ωi1, . . . , ωim) and the hash of the secret input and
a randomly chosen value, H(xi + Ri), to be used for the signatures’ genera-
tion. H(xi + Ri) is a publicly available value. Subsequently, each server runs
PartialEval to generate public values yj related to the final function value. A
set of a coalition of the servers runs PartialProof and get the partial signatures.
For instance, σ1 is the vector that contains the partial signatures of x1, σ2 is
the vector that contains the partial signatures of x2 and so on. Anyone is able to
run FinalEval to get y and FinalProof to get σ, which is the final signature
that corresponds to the secret inputs x1, . . . , xn. Finally, the Verify algorithm
succeeds if and only if the final value y is correct.

Table 3. VAHSS with threshold signature sharing

Secret inputs (held by the

clients)

Public values Servers

s1 s2 · · · sm {sj1 , . . . , sjt
}

x1, d1 H(x1 + R1), e1, A1 x11, ω11 x12, ω12 · · · x1m, ω1m σ1

x2, d2 H(x2 + R2), e2, A2 x21, ω21 x22, ω22 · · · x2m, ω2m σ2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xn, dn H(xn + Rn), en, An xn1, ωn1 xn2, ωn2 · · · xnm, ωnm σn

Partial sums (public) y1 y2 · · · ym Final proof (public)

Total sum (public) y σ

• Correctness: To prove the correctness of our construction we need to
prove that Pr

[
Verify(H(x1 + R1), . . . , H(xn + Rn), σ, y) = 1

]
= 1. For con-

venience, here, denote H(xi + Ri) by Hi. By construction:

σ =
n∏

i=1

σi
ei =

n∏

i=1

(σi
αiHβi

i )
ei

=
n∏

i=1

(
∏

j∈S

σij
αiHβi

i )
ei

=
n∏

i=1

(Hβi

i

∏

j∈S

H
2cj1ωijαi

i )
ei

=
n∏

i=1

Hβiei

i H
∑

j∈S 2cj1ωijαiei

i

see eq.(5)
=

n∏

i=1

Hβiei

i H2ΔiSdiαiei
i =

n∏

i=1

H2ΔiSαi+βiei

i ( mod N)

see eq.(6)
=

n∏

i=1

Hi =
n∏

i=1

H(xi + Ri) and also,

n∏

i=1

H(xi + Ri) =
n∏

i=1

gxi+Ri
see eq.(3)

= H(y) (7)

Therefore, Verify(H(x1 + R1), . . . , H(xn + Rn), σ, y) = 1 with probability 1,
as desired.
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• Security: The security of the signatures follows from the fact that the
threshold signature scheme, which is employed in our construction, is secure,
for |T | ≤ t − 1, under the static adversary model given that the stan-
dard RSA signature scheme is secure [8]. Additionally, for |T | ≤ m − 1,
Adv(1λ,A, T ) ≤ ε(λ) for some negligible ε(λ) as we have proven in the
Sect. 3.1. Therefore, our construction is secure for |T | ≤ min{t − 1,m − 1}.

• Verifiability: For Verify(H(x1+R1), . . . , H(xn+Rn), σ′, y′) = 1 and y′ �= y
we have:

Verify(H(x1 + R1), . . . , H(xn + Rn)), σ′, y′) = 1

⇒ σ′ =
n∏

i=1

H(xi + Ri) ∧ H(y′) =
n∏

i=1

H(xi + Ri)

⇒H(y′) =
n∏

i=1

H(xi + Ri)(see equation (7)) ⇒ H(y′) = H(y)

which is a contradiction! Thus,

Pr[ExpVerif.
VHSS(x1, . . . , xn, T,A) = 1] ≤ ε.

Table 4. Summary and comparison between the VAHSS proposed constructions.

Proposed construction Cooperation between

servers

Computations on client∗

VAHSS with homomorphic No (+)∗∗ : 2m2 + 3m + 1, (×) : 2m2 + 2m

hash functions (Exp.): 1

VAHSS with linear No (+)∗∗ : 2m2 + 3m + 1, (×) : 2m2 + 2m + 2

homomorphic signatures (Exp.): 3

VAHSS with threshold Yes (+)∗∗ : 2m2 + 2m + mt + 1, (×) : 2m2 + 2m + mt

signature sharing (Exp.): 1
∗(+), (×), (Exp.) denote the number of additions, multiplications and exponentiations corresp.
∗∗client n needs to perform n − 1 additional additions

4 Conclusion

In this paper, we addressed the problem of outsourcing joint additions, such that
multiple clients give shares of their secret inputs to multiple untrusted servers.
The latter perform the computations and then, anyone is able to ensure that the
final output is correct (i.e., public verifiability). We instantiated three concrete
constructions for the verifiable additive homomorphic secret sharing (VAHSS)
problem by employing different cryptographic primitives and allowing the gen-
eration of the partial proofs by either the clients or the servers. In all three
constructions, we achieved the property of public verifiability i.e., anyone is able
to confirm that the final result y is indeed the sum of the n secret inputs. In
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Table 4, we provide a comparison of the proposed VAHSS constructions in terms
of the employed primitives, the need for collaboration between the servers as
well as the computation requirements on the client side. In all cases the compu-
tational cost required on the client side is rather similar i.e., the computational
complexity in all cases is O(m2) (where m denotes the number of servers) sim-
ilarly to the complexity of a simple secret sharing scheme, while the one based
on homomorphic hash functions seems to be slightly more lightweight. Our work
is complementary to the multiplicative VHSS solution proposed by Tsaloli et
al. [16]. The technique introduced in our constructions in order to randomize
the τi values can also be incorporated in the multiplicative VHSS construction
and, thus, provide better security guarantees.
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Abstract. Private Function Evaluation (PFE) enables two parties to
jointly execute a computation such that one of them provides the input
while the other chooses the function to compute. According to the tradi-
tional security requirements, a PFE protocol should leak no more infor-
mation, neither about the function nor the input, than what is revealed
by the output of the computation. Existing PFE protocols inherently
restrict the scope of computable functions to a certain function class with
given output size, thus ruling out the direct evaluation of such problem-
atic functions as the identity map, which would entirely undermine the
input privacy requirement. We observe that when not only the input x
is confidential but certain partial information g(x) of it as well, standard
PFE fails to provide meaningful input privacy if g and the function f to
be computed fall into the same function class.

Our work investigates the question whether it is possible to achieve a
reasonable level of input and function privacy simultaneously even in the
above cases. We propose the notion of Controlled PFE (CPFE) with dif-
ferent flavours of security and answer the question affirmatively by show-
ing simple, generic realizations of the new notions. Our main construc-
tion, based on functional encryption (FE), also enjoys strong reusability
properties enabling, e.g. fast computation of the same function on differ-
ent inputs. To demonstrate the applicability of our approach, we show a
concrete instantiation of the FE-based protocol for inner product com-
putation that enables secure statistical analysis (and more) under the
standard Decisional Diffie–Hellman assumption.
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Functional encryption · Oblivious transfer · Secure data markets
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1 Introduction

Secure two-party computation (2PC) a.k.a. secure function evaluation (SFE)
protocols enable two parties, Alice and Bob, to compute a function of their
choice on their private inputs without disclosing their secrets to each other or
anyone else (see Fig. 1a). In real life, however, the participants not necessarily
have interchangeable roles. We call private function evaluation (PFE) a protocol
if one party can alone choose the function to evaluate, while the other provides
the input to it (see Fig. 1b) while both of them intends to hide their contribution.
PFE can be realized by invoking 2PC after the function was turned into data.
A universal function [23] is a “programmable function” that can implement any
computation up to a given complexity. It takes two inputs, the description of the
function to be computed and the input to it. By evaluating a public universal
function using 2PC, all feasibility results extend from 2PC to PFE. Improving
efficiency turns out to be more challenging. Indeed, universal functions cause
significant – for complex computations even prohibitive – overhead, and the
elimination of this limitation was the primary focus of PFE research [16,18].

In this work, we initiate the study of a security issue that – to the best of
our knowledge – received no attention earlier. More concretely, we focus on the
opportunities of the input provider to control the information leakage of her
input. As PFE guarantees Bob that his function is hidden from Alice, he can
learn some information about the input of Alice such that it remains hidden
what was exactly revealed. Disclosing the entire input by evaluating the identity
function is typically ruled out by the restriction that the computable function
class has shorter output length than input length. At the same time, the following
question arises: is it really possible to determine the computable function class
so that no function is included which could reveal sensitive information about
the input? We argue that most often exceptions occur in every function class,
so measures are required to also protect such partial information besides the
protection of the input as a whole. As intentional partial information recovery
does not cause anomalies when only the function provider, Bob receives the
function’s output, later on we consider this scenario.

For a simple and illustrative example, let us recall one of the most popular
motivating applications for PFE. In privacy-preserving credit checking [20, §7],
Alice feeds her private data to a Boolean function of her bank (or another ser-
vice provider) that decides whether she is eligible for credit or not. Using PFE
for such computation allows Alice to keep her data secret and the bank to hide
its crediting policy. Notice that the function provider can extract any binary
information about the input and use it, e.g. to discriminate clients. The leaked
partial information can be, e.g. gender or the actual value of any indicator vari-
able about the data that should not be necessary to reveal for credit checking.
Our goal is to enable Alice to rule out the leakage of specific sensitive information
in PFE without exposing what partial information she wants to hide.
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Fig. 1. Comparison of the ideal functionality of different concepts for secure function
evaluation, realized with the help of a trusted third party (TTP). The key difference
lies in which information Alice and Bob can or cannot have access to.

1.1 Our Contributions

Our contributions can be summarized as follows.

– We initiate the study of partial information protection in the context of
private function evaluation.

– To take the first step, we put forward the notion of Controlled PFE (CPFE)
and formally define its security (see Fig. 1c for its ideal functionality). We
also devise a relaxed definition, called rCPFE (see Fig. 1d) that guarantees
weaker (but still reasonable) k-anonymity style function privacy leading to
a trade-off between security and efficiency.

– Then we show conceptually simple, generic realizations of both CPFE and
rCPFE. In the latter case, we utilize the modified function privacy guaran-
tee (through using functional encryption) to enable the reusability of the
protocol messages in case of multiple function evaluations. As a result, in
our rCPFE when evaluating the same function(s) on multiple, say d inputs,
the communication and online computation overhead only increases with
an additive factor proportional to d instead of a multiplicative factor as in
ordinary PFE.

– To demonstrate the practicality of the rCPFE approach, we instantiate
our generic protocol for the inner product functionality enabling secure
statistical analysis in a controlled manner under the standard Decisional
Diffie–Hellman (DDH) assumption. Our proof of concept implementation
shows that the reusability property indeed results in a significant perfor-
mance improvement over the state of the art secure inner product evaluation
method [8].

1.2 Applications

We believe that in most PFE applications, the evaluated function class also
permits the leakage of potentially sensitive partial information about the input as
our above example demonstrates this even for very restricted Boolean functions.
To motivate our inner product rCPFE, we mention two of its possible application
scenarios.
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Logistic Regression Evaluation. The linear part of logistic regression compu-
tation is an inner product of the input and weight vectors. Our inner product
rCPFE can help to rule out weight vectors that are unlikely to belong to a
model but are base vectors that could reveal a sensitive input vector element.

Location Privacy. Let us assume that a “data broker” (DB) periodically col-
lects location-based information in vector form, where vector elements corre-
spond to information related to specific positions. Such data can be important
for service providers (SP), offering location-based services, without the proper
infrastructure to collect the necessary data. During their interaction that can
be an inner product computation,1 the SP should hide the location of its
users, while the DB may want to protect the exact information in specific
locations or to adjust higher price if specific measurements are used. These
can be achieved by having control over the possible queries of SP.

1.3 Related Work

Some PFE variants share ideas with our concepts. Semi-private function evalu-
ation (semi-PFE) [15,20] for instance, also relaxes the function privacy require-
ment of PFE by revealing the topology of the function being evaluated. While
this relaxation also leads to a useful trade-off between function privacy and effi-
ciency, unfortunately, the available extra information about the function does not
necessarily allow Alice to rule out the evaluation of functions that are against
her interest.

Selective private function evaluation (SPFE) [6] deals with a problem that
is orthogonal to the one considered in this paper. Namely, SPFE also aims to
conceal information that is leaked in PFE. However, instead of protecting Alice
(the data owner), it intends to increase the security of Bob by hiding from Alice
the location of the function’s input in her database via using private information
retrieval (PIR).

Leaving the field of PFE and comparing our work to related problems in
secure computation, we find that hiding the computed function raises similar
issues in other contexts. [4] put forth the notion of verifiable obfuscation that
is motivated by the natural fear for executing unknown programs. The goal
here is similar than in our setting: some assurance is required that the hidden
functionality cannot be arbitrary. However, the fundamental difference between
our CPFE and the verifiable obfuscation and verifiable FE of [4] is that while the
latter ones enforce correctness when an obfuscator or authority may be dishonest,
CPFE tries to disable semi-honest parties to evaluate specific functions (i.e. to
handle exceptions in PFE).

Our rCPFE is built upon functional encryption (FE) in a black-box manner.
This generalization of traditional encryption was first formalized by [5]. While
general-purpose FE candidates [10,11] currently rely on untested assumptions

1 E.g. multiplying the data vector with a position vector (that is non-zero in all posi-
tions representing locations close to the user – possibly containing weights depending
on the distance – and zero otherwise) can give useful information.
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The functionality is parametrized by two integers k < n, and two parties: a sender S
and a receiver R.

Functionality:
On input m1, . . . , mn messages from S and an index set {i1, . . . , ik} ⊂ [n] from R
– S obtains no output,
– R receives mi1 , . . . , mik but nothing else.

Fig. 2. Ideal functionality FOTn
k

of k out of n OT.

like the existence of indistinguishability obfuscation or multilinear maps, our
application does not require such heavy hammers of cryptography (see details
in Sect. 2.2). In the context of FE, [19] raised the question of controllability of
function evaluation. The essential difference, compared to our goals, is that they
want to limit repeated evaluations of the same function2 that they solve with
the involvement of a third party.

Finally, we sum up the state of the art of private inner product evaluation.
The provably secure solutions are built either on partially homomorphic encryp-
tion schemes [9,12] or 2PC protocols [8] but public-key inner product FE [1]
is also capable of the same task. At the same time, several ad-hoc protocols
achieve better performance in exchange for some information leakage (see, e.g.
[24] and the references therein), but these constructions lack any formal security
argument.

2 Preliminaries

In this section, we briefly summarize the relevant background for the rest of the
paper. We will always assume that the participants of the considered protocols
are semi-honest, i.e. while following the protocol honestly, they try to recover as
much information from the interactions as they can. We also use the OT-hybrid
model that assumes that the parties have access to an ideal process that securely
realizes oblivious transfer, which we discuss in more detail in Sect. 2.1.

2.1 Oblivious Transfer

Oblivious transfer (OT) is one of the most fundamental primitives in cryp-
tography and a cornerstone of secure computation. It enables transferring data
between two parties, the sender (S) and the receiver (R, a.k.a. chooser), in a
way that protects both of them. S can be sure that R only obtains a subset
of the sent messages, while R is assured that S does not know which messages
he selected to reveal. In Fig. 2 the ideal functionality of k out of n OT [7] is
represented that we are also going to rely on.
2 In FE schemes, the control over the computable functions is in the hand of the

master secret key holder, so this is not an issue unlike in PFE.
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While being a public-key primitive, so-called OT-extension protocols enable
rather efficient OT evaluation. To do so, the participants first pre-compute a lim-
ited number of “base-OTs” with certain inputs that are independent of their real
inputs. Then using the obtained values, they can evaluate a much larger number
of OTs by executing more efficient symmetric-key operations only. This kind of
efficiency improvement automatically applies to our protocols after substituting
plain OT, with OT-extension with the same functionality [17,21].

2.2 Functional Encryption

As we already introduced, FE is a generalized encryption scheme that enables
certain computations on hidden data for authorized parties. Both public- and
secret-key variants are known, but here we limit ourselves to the secret-key
setting that suffices for our purposes. An sk-FE scheme consists of the following
four algorithms.

FE.Setup(λ) → (mskFE, ppFE) Upon receiving a security parameter λ it produces
the public system parameters ppFE and the master secret key mskFE.

FE.Enc(mskFE, x) → ct The encryption algorithm takes the master secret key
mskFE and a message x and outputs a ciphertext ct.

FE.KeyGen(mskFE, f) → fskf The key generation algorithm can be used to gen-
erate a functional secret key fskf for a function f with the help of the mskFE.

FE.Dec(ct, fskf) → y Having a functional secret key fskf (for function f) and a
ciphertext ct (corresponding to x), the decryption outputs the value y.

The correctness of FE requires that if fskf and ct were indeed generated with
the corresponding algorithms using inputs f and x respectively, then y = f(x)
must hold. Regarding security, in this work we are going to use the non-adaptive
simulation-based security definition of FE [13], which we recall in Appendix A.
We note that while the SIM security of FE is impossible to realize in general [5],
for several restricted – yet important – cases it is still achievable, e.g. when the
number of functional keys are a priori bounded [13], or when the computable
function class is restricted [2]. As our applications also use these restrictions,
known FE impossibility results do not affect the way we use FE.

3 General Approaches for Securing Partial Input
Information in PFE

In this part, we introduce the notion of controlled PFE and in Sect. 3.1 formally
define its security in different flavours. Next, in Sects. 3.2 and 3.3, we propose
two general protocols satisfying these security requirements.
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Fig. 3. Ideal functionalities for FCPFE and FrCPFE (see the extensions in brackets)
formulated generally for multiple inputs and multiple functions.

3.1 Definitional Framework

Our first security definition for controlled PFE captures the intuitive goal of
extending the PFE functionality with a blind function verification step by P1 to
prevent unwanted information leakage. See the corresponding ideal functionality
FCPFE in Fig. 3 that we call controlled PFE, and the security definition below.
For the ease of exposition, later on we denote the inputs of the participants as
inp = ({xi}i∈[d],FA, {fj}j∈[k]) with the corresponding parameters.

Definition 1 (SIM Security of CPFE wrt. Semi-honest Adversaries).
Let Π denote a Controlled PFE (CPFE) protocol for a function class F with
functionality FCPFE (according to Fig. 3). We say that Π achieves SIM security
against semi-honest adversaries, if the following criteria hold.

– Correctness: the output computed by Π is the required output, i.e.

Pr[outputΠ(1λ, inp) �= FCPFE(inp)] ≤ negl(λ).

– Function Privacy: there exists a probabilistic polynomial time (PPT) simu-
lator SP1 , s.t.

{SP1(1
λ, {xi}i∈[d],FA)}λ,xi,FA

c≈ {viewΠ
P1

(1λ, inp)}λ,xi,fj ,FA
.

– Data Privacy: there exists a PPT simulator SP2 , s.t.

{SP2(1
λ, {fj}j∈[k], {y′

i,j}i∈[d],j∈[k]}λ,fj

c≈ {viewΠ
P2

(1λ, inp)}λ,xi,fj ,FA

where inp = ({xi}i∈[d],FA, {fj}j∈[k]), fj ∈ F ,FA ⊂ F , xi ∈ X , y′
i,j ∈ Y ∪ {⊥},

and λ ∈ N.

We also propose a relaxation of Definition 1, which on the one hand gives up
perfect function privacy but on the other, allows us to construct efficient proto-
cols while still maintaining a k-anonymity style guarantee for function privacy.
As SIM security alone cannot measure how much information is leaked by a set
of functions, we formulate an additional requirement to precisely characterise
function privacy.



140 M. Horváth et al.

Definition 2 (SIM Security of Relaxed CPFE wrt. Semi-honest Adver-
saries). Let Π denote a relaxed CPFE (rCPFE) protocol for a function class
F with functionality FrCPFE (according to Fig. 3). We say that Π achieves SIM
security against semi-honest adversaries, if the following criteria hold.

– Correctness: the output computed by Π is the required output, i.e.

Pr[outputΠ(λ, κ, inp) �= FrCPFE(κ, inp)] ≤ negl(λ).

– Function Privacy: is defined in two flavours:
• κ-relaxed function privacy holds, if ∃ SP1 , a PPT simulator, s.t.

{SP1(1
λ, κ, {xi}i∈[d],FA)}λ,κ,xi,FA

c≈ {viewΠ
P1

(1λ, κ, inp)}λ,κ,xi,fj ,FA
.

• Strong κ-relaxed function privacy holds if besides the existence of the
above SP1 , it also holds that for any PPT A:

∣
∣
∣
∣
Pr[A(aux,FR) ∈ FB ] − k

κ

∣
∣
∣
∣
≤ negl(λ)

where aux ∈ {0, 1}∗ denotes some a priori known auxiliary information
about FB.

– Data Privacy: there exists a PPT simulator SP2 , s.t.

{SP2(λ, κ, {fj}j∈[k], {y′
i,j}i∈[d],j∈[k]}λ,κ,fj

c≈ {viewΠ
P2

(λ, κ, inp)}λ,κ,xi,fj ,FA

where inp = ({xi}i∈[d],FA, {fj}j∈[k]), fj ∈ F ,FA ⊂ F , xi ∈ X , y′
i,j ∈ Y ∪ {⊥},

and λ, κ ∈ N.

3.2 Universal Circuit-Based CPFE

The natural approach for realizing CPFE comes from the traditional way of
combining universal circuits and SFE to obtain PFE. Figure 4 shows how the
same idea with conditional evaluation leads to CPFE in the single input, single
function setting. The following theorem is a straightforward consequence of the
security of SFE.

Theorem 1. The CPFE protocol of Fig. 4 is secure according to Definition 1, if
the used SFE protocol is SIM secure in the semi-honest model.

The main drawback of this approach is that when extending the protocol to
handle multiple inputs or functions, its complexity will multiplicatively depend
on the number of inputs or functions because of the single-use nature of 2PC.
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Fig. 4. General 2PC-based CPFE

3.3 Reusable Relaxed CPFE from FE

We observe that the notion of rCPFE not only allows the input provider to verify
the functions to be evaluated but also opens the door for making parts of the
protocol messages reusable multiple times, thus leading to significant efficiency
improvements.

A naive first attempt to realize rCPFE is to execute the computation on the
side of P1. Upon receiving a κ function descriptions (including both the intended
and dummy functions) P1 can easily verify the request and evaluate the allowed
ones on her input. The results then can be shared with P2, using an OT scheme
achieving both the required data and function privacy level. Unfortunately, the
κ function evaluations lead to scalability issues. The subsequent natural idea
is to shift the task of function evaluation to P2, to eliminate the unnecessary
computations and to hide the output from P1 entirely. Since at this point P1

has both the inputs and the functions to evaluate, the task resembles secure
outsourcing of computation where function evaluation must be under the strict
control of P1. These observations lead us to the usage of FE and the protocol
in Fig. 5 in which both ciphertext and functional keys can be reused in multiple
computations. When instantiated with the FE scheme of [13], ΠrCPFE

F can be
used for all polynomial sized functions in theory (in practice verifying the circuits
would be a bottleneck).

Theorem 2. The protocol of Fig. 5 is SIM secure according to Definition 2
achieving κ-relaxed function privacy for k function queries by P2, if the under-
lying FE scheme is k-query non-adaptive SIM secure (k-NA-SIM) for a single
message and the used OT protocol is SIM secure against semi-honest adversaries.

The proof of the theorem is postponed to Appendix B.
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Fig. 5. General rCPFE construction.

Corollary 1. The protocol of Fig. 53 also achieves strong κ-relaxed function
privacy if in (1) of Step I., all fi are sampled from the same distribution as the
elements of FB and aux = ⊥.

4 Concrete Instantiation for Inner Products

To demonstrate the practicality of our approach, we instantiate our generic
rCPFE protocol (Fig. 5) using the k-NA-SIM secure FE scheme of [2] for the
inner product functionality and the semi-honest 1 out of κ OT protocol of [22].
Theorem 2 and the assumptions of [2,22] directly imply the following theorem.

3 Depending on F and the sampling of the dummy functions, communication cost
of transferring the function descriptions can be reduced. In [14] we describe such
optimizations for the inner product function class.
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Theorem 3. There is a SIM secure rCPFE protocol (according to Definition 2)
for inner product computation, achieving κ-relaxed function privacy, if the DDH
assumption holds.

Corollary 2. The inner product rCPFE protocol derived from ΠrCPFE
F (on

Fig. 5) also achieves strong κ-relaxed function privacy (as defined in Defini-
tion 2) if aux = ⊥ and the dummy function vectors are chosen from the same
distribution as the real ones.

For the detailed description of the inner product rCPFE (or IP-rCPFE for short)
we refer to the full version of this paper [14].

4.1 Performance and Possible Optimizations

For our IP-CPFE protocol, we prepared a proof of concept implementation using
the Charm framework [3]. To evaluate its performance in two scenarios, we com-
pared its running times and communication costs with that of the state of the
art secure arithmetic inner product computation method of the ABY framework
[8]. For our experiments we used a commodity laptop with a 2.60GHz Intel R©

CoreTM i7-6700HQ CPU and 4GB of RAM.

Simulating Regression Model Evaluation. In the first use-case, we do not assume
that the vectors have a special structure. The vectors to be multiplied can corre-
spond to data and weight vectors of a binary regression model, in which case it
is likely that the same model (weight vector) is evaluated over multiple inputs.
Figure 6a and 6d depict running times and overall communication costs respec-
tively depending on the number of inputs to the same model. Figure 6c and 6f
show the cost of the dummy queries. In the same setting, our experiments show
that without optimizations4 IP-rCPFE reaches the running time of ABY for
κ ≈ 6200. For this scenario, we also propose a method (denoted as rCPFE opt)
to pre-compute the dummy function queries of Step I. thus reducing both the
online communication and computation costs. The key insight of this is that
sending a value together with dummy values is essentially the same as hiding
the value with a one time pad (OTP) and attaching the OTP key together with
dummy keys. The gain comes from the fact that the OTP keys can be computed
and sent beforehand, moreover it is enough to transmit the used seeds for a
pseudo-random generator instead of the entire keys (see details in [14]). Security
is not affected as long as aux = ⊥.

Sparse Vector Products For Location Privacy. The location privacy scenario of
§1.2 implies the usage of sparse query vectors. Figure 6b and 6e show how the
number of queries (k) affects running time and message sizes respectively, when
roughly 5% of the vector elements are non-zero. We note that as queries are
related to real-time user requests, batching these requests, as done in Step I.
4 We note that while our implementation is only a proof of concept without any code

level optimization, ABY has a very efficient and parallelizable implementation.
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(a) �=100, k=1, κ=1000 (b) �=1000, d=10, κ=100 (c) �=1000, d=100, k=1

(d) �=100, k=1, κ=1000 (e) �=1000, d=10, κ=100 (f) �=1000, d=100, k=1

Fig. 6. Comparisons of the overall running times (6a–c) and communication costs
(6d–f) of our rCPFE protocols with the ABY framework [8] and the naive OT-based
approach for inner product computation (� denotes vector dimension, d and k are the
number of input and “function” vectors, while κ is the number of dummy vectors).

of the protocol, can be unrealistic when data vectors are not changing in real
time but, e.g. periodically. Because of this, in our implementation, we allowed
P2 to repeat Step I. for a single function and P1 to answer the queries indepen-
dently of encrypting the data.5 While sparsity disables the above optimization,
after masking the places of non-zero elements, the above idea can be extended
for sparse vectors as long as other structural properties are not known about
the vector in form of auxiliary information. For more details on the optimized
variants, we refer to [14].

5 Conclusion and Open Directions

In this work, we attempted to draw attention to the problem of possibly sen-
sitive partial information leakage in the context of private function evaluation.
We proposed a definitional framework for protocols that aim to prevent such
leakage and showed both generic and concrete protocols to solve the problem.

5 It means that (3)–(4) of Step II., and Step III. are repeated until the input data
changes at the end of the period.
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The main advantage of our FE-based protocol is that it turns the privacy sac-
rifice required by controllability into performance improvement whenever more
function evaluations are necessary.

Our work also leaves open several problems for future work. For instance, it
would be important to investigate the effects of having different types of auxil-
iary information about the evaluated functions. Transmission and verification of
dummy functions can be serious bottlenecks in our rCPFE in case of complex
functions, making further efficiency improvements desirable. A first step towards
this could be to find a way for restricting the set of forbidden functions – as most
often very simple functions are the only undesired ones. Finally, looking for dif-
ferent trade-offs between function privacy and efficiency can also be interesting
direction for future work.

Appendix

A Simulation Security of Functional Encryption

For completeness we recall the simulation security of FE as defined in [13].

Definition 3 (q-NA-SIM and q-AD-SIM Security of FE). Let FE be a
functional encryption scheme for a circuit family C = {Cν : Xν → Yν}ν∈N. For
every PPT adversary A = (A1,A2) and a PPT simulator S = (S1,S2) consider
the following two experiments:

ExprealFE,A(λ)

1 : (ppFE,mskFE) ←$FE.Setup(λ)

2 : (x, st) ←$ AFE.KeyGen(mskFE,·)
1 (ppFE)

3 : ct ←$FE.Enc(ppFE, x)

4 : β ←$ AO(mskFE,·)
2 (ppFE, ct, st)

5 : output(β, x)

ExpidealFE,S(λ)

1 : (ppFE,mskFE) ←$FE.Setup(λ)

2 : (x, st) ←$ AFE.KeyGen(mskFE,·)
1 (ppFE)

− Let (C1, . . . , Cq) be A1’s oracle queries

− Let fskfi be the oracle reply to Ci

− Let V := {yi = Ci(x), Ci, fskfi}.

3 : (ct, st′) ←$ S1(ppFE, V, λ)

4 : β ←$ AO′(mskFE,st
′,·)

2 (ppFE, ct, st)

5 : output(β, x)

We distinguish between two cases of the above experiment:

1. The adaptive case, where:
– the oracle O(mskFE, ·) = FE.KeyGen(mskFE, ·) and
– the oracle O′(mskFE, st

′, ·) is the second stage of the simulator, namely
SUx(·)
2 (mskFE, st

′, ·) where Ux(C) = C(x) for any C ∈ Cν .
The simulator algorithm S2 is stateful in that after each invocation, it updates
the state st′ which is carried over to its next invocation. We call a simulator
algorithm S = (S1,S2) admissible if, on each input C, S2 just makes a single
query to its oracle Ux(·) on C itself.
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The functional encryption scheme FE is then said to be q-query-simulation-
secure for one message against adaptive adversaries (q-AD-SIM secure for
short) if there is an admissible PPT simulator S = (S1,S2) such that for
every PPT adversary A = (A1,A2) that makes at most q queries, the follow-
ing two distributions are computationally indistinguishable:

{

ExprealFE,A(λ)
}

ν∈N

c≈
{

ExpidealFE,S(λ)
}

ν∈N

2. The non-adaptive case, where the oracles O(mskFE, ·) and O′(mskFE, st, ·)
are both the “empty oracles” that return nothing: the functional encryp-
tion scheme FE is then said to be q-query-simulation-secure for one message
against non-adaptive adversaries (q-NA-SIM secure, for short) if there is a
PPT simulator S = (S1,⊥) such that for every PPT adversary A = (A1,A2)
that makes at most q queries, the two distributions above are computationally
indistinguishable.

As shown by [13, Theorem A.1.], in the non-adaptive setting (that we also
use), q-NA-SIM security for one message is equivalent to q-NA-SIM security for
many messages.

B Proof of Theorem 2

We prove Theorem 2, by showing that the protocol of Fig. 5 fulfils the require-
ments of Definition 2 with the assumption that the underlying FE and OT are
SIM secure against semi-honest adversaries. As correctness directly follows from
the correctness of the underlying FE and OT, we turn our attention towards
the security requirements. We argue input and weak relaxed function privacy by
showing that the view of both parties can be simulated (without having access
to the inputs of the other party) using the simulators guaranteed by the SIM
security of FE and OT.

Corrupted P1: Weak Relaxed Function Privacy. Besides its input and output,
the view of P1 consists of the received OT messages and the function query
FR. Simulation becomes trivial because of the fact that the output of P1 also
contains FR. Thus SP1((x1, . . . , xd),FR) can return FR and the output of the
sender’s simulator SS

OT guaranteed by the SIM security of OT. The simulated
view is clearly indistinguishable from the real one.

Corrupted P2: Input Privacy. The following simulator SP2 simulates the view of a
corrupt P2, that consists of its input (f1, . . . , fk), output {y′∗

i,j = f ′
i(xj)}i∈[k],j∈[d],

the used randomness and the incoming messages. SP2 first determines the
index set I∗ = {i | ∃j : y′

i,j �= ⊥} ⊆ [k]. Next, it sets up the param-
eters of the ideal experiment according to Definition 3. To do so, it sam-
ples (mskFE

∗, ppFE∗) ←$FE.Setup(λ) and then for all i ∈ I∗ generates keys
fsk∗

fi
←$FE.KeyGen(ppFE∗,mskFE

∗, fi). For the simulation of the FE ciphertexts
(corresponding to unknown messages), we can use the FE simulator SFE

for many messages (implied by one-message q-NA-SIM security [13]). Thus
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SFE(ppFE∗, {yi,j = fi(xj), fi, fsk
∗
fi

}i∈I∗,j∈[d], λ) = (ct∗1, . . . , ct
∗
d) can be appended

to the simulated view together with ppFE
∗. The incoming messages of Step III.

are simulated using the OT simulator SR
OT for the receiver. Finally the output

of SR
OT (λ, {fsk∗

fi
}i∈I∗ ∪ {⊥i}i∈[k]\I∗) is appended to the simulated view.

Now we show the indistinguishability of the real and simulated views. As
the inputs and outputs are the same in both cases, we have to compare the
randomness and the incoming messages. First notice that ppFE and ppFE

∗ are
generated with different random choices. At the same time, these cannot be told
apart as otherwise the choices were not random. The rest of the incoming mes-
sages depend on these parameters. Observe that I∗ = I ∩ [k]. The security of the
used FE scheme guarantees that (ct∗1, . . . , ct

∗
d) even together with functional keys

{fsk∗
fi

}i∈I∗ are indistinguishable from (ct1, . . . , ctd) with {fskfi
}i∈I∩[k]. Finally,

the security of the OT simulation guarantees that (msgOT
1 , . . . ,msgOT

κ ) and
(msgOT

1
∗
, . . . ,msgOT

κ
∗) are indistinguishable. This also implies that functional

keys for the same functions (with respect to either ppFE or ppFE∗) can be obtained
both from the real and simulated OT messages. In other words, FE ciphertexts
and functional keys are consistent in both cases (i.e. they allow one to obtain
the same decryption outputs) due to the correctness of the FE simulation, which
concludes our proof. ��
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1 Introduction

The growth of the cloud computing as a powerful and affordable context for
users has caused many business and commerce migrate to this on-demand, scal-
able, and cost-effective paradigm. The organizations outsource their network
infrastructures, computing needs, software and services into the cloud in order
to benefit from the cloud’s utilities such as economical benefits (cutting off phys-
ical resources and damages). However, many organizations and enterprises find
this migration undesirable due to cloud security issues [21,23].

Many security mechanisms and defensive strategies have been proposed by
researchers both theoretically and practically. In order to improve the security
of cloud computing, it is important to evaluate the security posture of cloud.
Graphical Security Models (GSMs) (such as Attack Graphs (AGs) [8], Attack
Trees (ATs) [15], Attack-defense threes (ADTrees) [16], Hierarchical Attack Rep-
resentation Model (HARM) [11]) are the widely adopted methods to analyze the
security of enterprise networks [14,22]; a GSM can be used to define attack sur-
faces and summarize the attack scenarios, and compute security metrics to show
the cloud security posture. GSMs can also be used to evaluate the effectiveness
of defensive techniques such as Moving Target Defense (MTD). MTD techniques
are proactive defensive techniques and the primary idea is mainly changing the
attack surface in order to introduce confusions to attackers carrying out cyber
attackers. Only a few researches have been proposed for the uses of GSM in
evaluating MTD techniques for cloud computing. However, most of the previous
researches are theoretical and use simulation only [2–5,12] to show the feasibility
of their approaches.

To the best of our knowledge, the incorporation of GSMs and MTD tech-
niques together for security analysis and deployment of MTD techniques in
the infrastructures of the real clouds has not been proposed. In this paper,
we tackle the aforementioned shortcomings by designing and development of
a cloud security assessment framework. We focus on the practical side rather
theoretical appraisal. We demonstrate the practicality of implementation, feasi-
bility of automation, usability of the project using a real cloud platform named
UniteCloud [1]. The main contributions of this paper are as follows:

• Cloud monitoring : We developed a cloud security framework which can auto-
mate the process of cloud vulnerability scanning to collect the information of
the cloud’s components and the vulnerabilities of each component.

• Cloud security evaluation: Cloud security framework can create the HARM
based on the collected information for security analysis and MTD evaluation.

• MTD Deployment : Cloud security framework automated the deployment of
MTD techniques on the real cloud platform.

• Automation evaluation: We investigated on a private cloud platform and
uses of OpenStack Application Programming Interfaces (APIs) to analyze
the automation process for implementation steps.

• MTD visualization: We developed a graphical user interface (GUI) as a web
application for interaction between cloud security framework and security
experts including both cloud provider view and HARM [12] visualization.
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Fig. 1. (a) Running Example and cloud model for two enterprises migrated into the
cloud named EP1 and EP2, (b) Two-layer HARM of the EP1 in the Cloud.

• Security analysis: We evaluate MTD techniques on the real cloud based on
three security metrics: system risk, attack cost, and return on attack.

The rest of the paper is organized as follows. Section 2 defines the proposed
approach including a brief explanation on preliminaries, concepts, and defini-
tions. Section 3 presents the design and implementation of our proposed frame-
work. Discussion and limitations of this work are given in Sect. 4. Section 5 sum-
marizes the related work. Finally, we conclude the paper in Sect. 6.

2 Proposed Approach

We design and implement a cloud security assessment framework which is able
to monitor the cloud, analyze and deploy the three MTD techniques including
Shuffle, Diversity, and Redundancy on the real cloud platform. The main part
of this paper is the automation of the cloud assessment framework in the real
cloud. The uses of APIs in the implementation and automation of the project
are nontrivial. This work includes four main phases elucidated as follows. (1)
Information Collection, (2) Cloud Security Modeling using HARM, (3) Security
Analysis Engine, (4) Deployment Phase.

2.1 System and Attack Models

Figure 1a shows a running example for the migrations of two independent orga-
nizations entitled Enterprise-1 (EP1) and Enterprise-2 (EP2) to a private cloud.
Those companies decide to cut off the physical equipment and use a private cloud
for accommodating their computing needs. Each organization has launched 8
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Virtual Machines (VMs) on the cloud together with a Database (DB) creating
a virtual network. We assume that the first four VMs use Windows10 and the
rest use Linux Ubuntu. Moreover, the VMs vm0 and vm1 for both organizations
are connected to the Internet. Later on, we deploy the running example shown
in Fig. 1a in a realistic cloud. System constraints are usually defined based on
both cloud provider and security experts. For instance, the cloud provider can
determine which physical hosts are available for the customers. Moreover, the
cloud provider can set the limitations on the physical hosts such as defining the
maximum VMs that can be located on each host and so forth. However, the secu-
rity experts of enterprises migrated into the cloud may have their own security
policies like defining firewalls rules and Access Control Lists (ACL). We assume
that an attacker can launch the attacks from outside of the cloud using exploit-
ing the software vulnerabilities of the VMs connected to the Internet. Then, the
attacker can launch a series of other attacks in order to access the DB along the
identified attack paths.

2.2 Security Model for Cloud

In this paper, we use HARM [11,12] for graphical security modeling, analysis
and evaluation. HARM consists of two hierarchical layers which use an Attack
Graph (AG) in the upper layer and an Attack Tree (AT) in the lower layer.
Since multiple independent organizations can reside in the same cloud, we define
HARM based on sub-clouds for each independent organization migrated to the
cloud as follows. HARM can be modeled as a 3-tuple Hsc = (Usc, Lsc,Msc)
where Usc refers to an AG corresponding to a sub-cloud scx, and Lsc denotes
an AT corresponding to a sub-cloud scx, and Msc is a one-to-one mapping link
from the AG to the corresponding AT, Msc = Usc → Lsc (the dashed lines in
Fig. 1b). The upper layer of HARM captures the connectivities of VMs, and the
lower layer captures the vulnerabilities of each VMs Vvmi

= {ν1, ν2, . . . , νm},
such that the vulnerabilities make the leaves of three and the root is a logical
gate.

Figure 1b represents the two-layered HARM for EP1. Constructing the secu-
rity model, we can leverage HARM to compute the security metrics and quantify
the cloud security. In this paper, we use three security metrics, which are Cloud
Risk (Risk), Attack Cost (AC), and Return on Attack (RoA), to evaluate the
cloud security posture before and after deploying MTD techniques to find out
the most effective defensive strategy. The uses of those metrics for evaluation of
cloud are theoretically investigated through simulation in [3]. HARM uses the
vulnerability information which can be obtained from National Vulnerability
Database (NVD) [19] and generate the lower layer using the vulnerability values
such as Impact, Exploitability, Base Score.
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Fig. 2. Security modeling, analysis, and deployment phases

3 Design and Implementation

We investigate the feasibility and practical requirements such as Software tools,
packages, programming interfaces, libraries in order to implement and automate
the security analysis tool and MTD techniques in the real-world cloud deploy-
ment. We develop a framework which can perform security modeling, evalua-
tion, MTD deployment for enterprises migrated to the cloud. The cloud security
framework is able to automate information collection: cloud scanning, vulnera-
bility scanning, HARM creation, security evaluation, and MTD deployment on a
real cloud infrastructure. To implement the framework we utilize a private cloud
named UniteCloud and develop our framework on UniteCloud platform.

3.1 Case Study: UniteCloud Analysis

The UniteCloud uses the OpenStack cloud platform. We set up the project by
creating the VMs with different flavors and OS, assigning internal and floating
IP addresses, defining firewall rules and ACL, etc. However, we first create the
cloud example VMs shown in Fig. 1a on the UniteCloud platform. The cloud
consisting of 16 physical Hosts (Compute Hosts) is distributed over three avail-
ability zones: IBMZone, HPZone, and Nova. We also used four hosts each of
which includes different VMs with various flavors. We assign two flavors for
the VMs: m1.medium and m1.generic. The specification of the former VM is 2
VCPUs, 4 GB RAM, and 80 GB Disk, and that of the latter is 1 VCPUs, 1 GB
RAM, and 20 GB Disk. We assign two floating IP addresses for both VMs vm0

and vm1 of two enterprises which are connected to the Internet. Moreover, VMs
vm6 and vm7 of both enterprises EP1 and EP2 are connected to their own DB.
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Fig. 3. A Cloud system: (a) Security framework and communication overview. (b)
OpenStack API Calls for information collection phase.

3.2 Cloud Security Framework

The security framework consists of a backend engine and user interface (UI). The
backend engine is responsible for information collection, security modeling, anal-
ysis, and deployment phases which are demonstrated in Fig. 2. The UI is used
for interactions between security experts of enterprises and the backend engine
for configuration and visualization purposes. The generated graphical security
model can be visualized in the UI. Figure 3a shows an overview of the security
framework prototype and related tools and communication. The cloud security
framework utilizes the following programming languages, tools, and concepts:
.NET Core, JSON, JavaScript, jQuery Ajax, Python, Nessus [6], and Data-
Driven Documents JavaScript (D3.js). Security modeling is the first phase of
the implementation of cloud security framework and consists of two phases: (1)
information collection, (2) HARM creation, which are shown as steps 1 and 2 in
Fig. 2. Creating the model, we can evaluate the cloud security posture alongside
the effectiveness of deployed MTD techniques which are steps 3 and 4 in Fig. 2.

Information Collection Automation. First, the cloud infrastructure should
be scanned in order to obtain Hosts, VMs, and reachability information. Then,
the vulnerabilities existing on each VM should be obtained using the vulner-
ability scanning tools such as Nessus [6]. Cloud security framework needs to
automatically fetch two information: (1) cloud information such as the number
of VMs, the number of physical hosts, the host of each VM, the reachability
between the VMs and (2) vulnerability information existing on each VM. We
use .NET Core as the backend engine programming language and call APIs in
order to access both OpenStack and Nessus automatically and fetch informa-
tion. Accessing to the UniteCloud OpenStack consists of two parts: OpenStack
authentication and fetching information. OpenStack uses Keystone feature for
user authentication. Moreover, it uses nove-computes, neutron-networks, Glance-
images features for different purposes such as accessing to compute nodes (VMs,
Hosts, Zones, etc). In order to access to the OpenStack and retrieve the informa-
tion, we first need to access keystone using APIs for authentication. We utilize
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JSON API call for authentication process. Then, OpenStack sends a response
including the authentication token (X-Subject-Token), other OpenStack Con-
trollers’ address including nova, neutron, glance, cinder, etc. which can be used
for further API calls. The received message should be first parsed to receive the
authentication token together with the nova controller address. Then, the back-
end engine sends another API call using the authentication token and the nova
controller to gather the list of VMs and Hosts. The received message contains
unnecessary information including VM status, availability zone, created, etc.. It
should be parsed to fetch only the required information. Similarly, another API
including the authentication token and neutron controller should be called to get
network-related information. The received information should be again parsed to
obtain VMs’ IP addresses and the reachability of VMs. Figure 3b demonstrates
the API calls and related responses between the cloud security framework and
OpenStack to gain the information. Moreover, cloud security framework needs
vulnerability information for each VM on the cloud. We use Nessus to scan the
cloud and obtain vulnerabilities. Then, cloud security framework uses a back-
end engine to access to Nessus and retrieve the vulnerabilities’ information. The
first API called is used for authentication. Having obtained the response mes-
sage, the backend engine sends other API calls using the authentication token in
order to get the vulnerability information. The extracted information contains
useful information related to Vulnerability, possible threats, Base Score [19], and
CVE identifier (CVE-ID). However, cloud security framework only need CVE-ID
for selected vulnerabilities so that it can obtain the other information such as
vulnerability impact and exploitability through National Vulnerability Database
(NVD) [19]. Note that cloud scanning using Nessus is a time-consuming process
and can be utilized once a while to keep the vulnerabilities updated, or run once
a change catches on the VMs such as adding new VM, or changing OS, etc.

HARM Creation. The upper layer of HARM can be generated using the VMs
and reachability information obtained from the previous step. This information
is saved as a key and value dictionary representing the VMs’ links as a graph.
Thus, the backend engine can generate the AG based on the dictionary. The
second part of the information obtained from Nessus scanning is a dictionary
of VMs and related vulnerabilities on each VM which can be used to generate
the lower layer of HARM. The lower layer of HARM uses the ATs. The backend
Engine uses Python programming language to generate HARM. However, other
software and tools can also be used like Gephi which is a network analysis and
visualization software package. Moreover, we use Python as the security analysis
engine to compute security metrics and evaluate MTD techniques.

Security Analysis Engine. Security analysis engine has two main phases:
general security evaluation and MTD evaluation. HARM can be adopted to com-
pute the security metrics in the pool. Security analysis engine is implemented
on the backend engine using Python. It consists of security evaluation and MTD
evaluation subroutine. Security analysis engine uses the generated HARM and
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the security metrics. In fact, security experts can choose or prioritize various
security metrics and add them to the metric pools based on the security require-
ments such as System Risk, Attack Cost, Return on Attack and so forth. Once
the security metrics are selected, security analysis engine uses HARM for secu-
rity evaluation and computing the selected security metrics. Security analysis
framework uses MTD techniques as the main defensive strategies for security
the organizations on the cloud. However, deploying MTD techniques could be
limited based on system constraints. For instance, VM-LM (Shuffle) might be
restricted from one host to another one due to lack of space on the target host,
or OS Diversification (Diversity) could be limited to only a few OS instances
due to the cost of the license for the cloud provider. Thus, the MTD techniques
should be chosen based on the defined system constraints.

MTD Deployment Implementation. The final phase of the cloud security
framework is the deployment of selected MTD techniques on the cloud infras-
tructure. It uses .NET Core and OpenStack APIs to deploy MTD techniques, it
utilizes glance for creating and retrieving OS instance images, nova, and network
controllers for accessing and manipulating VMs and Network purposes.

Fig. 4. MTD Techniques for (a) OS Diversification: Ubuntu14.04 replaces with Cen-
tOS7 for vm6-EP2, (b) OS Replication: Create 2 replicas for vm6-EP2.

Diversity: Security analysis framework uses OS diversification technique for
deploying Diversity. To deploy Diversity, backend engine uses nova to access the
desired VM and update the VM instances with another OS image. Then, the user
credential information should be sent to the Keystone controller using JSON API
call for authentication. Backend engine omits this phase as the authentication
token is already received in information collection phase. Moreover, both nova
and glance controllers are fetched from the response message. Before calling API
to change the VM instance, we need to fetch the ImageRef by sending an API to
glance. Then, the ImageRef associated to the desired VM image can be obtained.
Finally, an API is called to pass the authentication token, VM ID, ImageRef to
the nova to change the OS variant. Figure 4a shows the results of calling APIs
for replacing Ubuntu14.04 with CentOS7 for vm6-EP2 on the cloud.



158 H. Alavizadeh et al.

Redundancy: Redundancy technique creates different replicas of a VM should
so that each replica has the same feature as the main VM. Backend engine
is responsible for deploying redundancy. However, the number of replicas for
deploying redundancy is chosen by either MTD evaluation part or expert entry
using UI. There is no feature on OpenStack to create replication for each VM.
Thus, deploying redundancy on OpenStack needs creation r new VMs based
on the similar existing instance or copied snapshot. Backend engine can use
the same authentication token already obtained from the information collection
phase and use nova controller. Thus, the backend engine sends an API to nova
controller including the authentication token, ImageRef, FlavorRef, NetworkID
together with a max count which is the number of required replicas (r). Figure 4b
demonstrates the results of calling APIs for the creation of two new replicas of
vm6-EP2 with the same OS, links, hosts, flavors.

Shuffle: We utilize VM-LM to deploy Shuffle technique. VM-LM can be deployed
on the OpenStack using nova controller. Similar to other MTD techniques, the
backend engine omits the authentication API call because the authentication
token and nove controllers have already been fetched in the information collection
section. The target host can be selected either by MTD evaluation results or
security experts. In order to deploy VM-LM, an API including authentication
token together with the VM ID and Target Host ID is called.

3.3 User Interface (UI) Implementation

Cloud security framework uses a UI in order to interact between the security
experts of enterprises and backend engine. Security experts can add update the
security metrics pool, choose MTD techniques, analyze and monitor the cloud
security using visualization panel. UI is implemented as a web application using
JavaScript, JSON, jQuery Ajax, and D3.js interacting with the backend engine.
UI web application includes two different perspectives for visualization. Cloud
provider and security model previews. Cloud provider preview illustrates the
internal connection of the VMs, routers, subnets, and etc. in the cloud, and
security model preview visualizes the generated upper layer of HARM which
captures the reachability of VMs based on the firewall rules and possible attack
scenarios. UI also shows the vulnerabilities captured for each VM. UI uses inter-
nal APIs to communicate with backend engine and update and gain information.
Figure 6 demonstrates the UI panel showing two different previous based on the
UniteCloud network and HARM view.

4 Results and Discussion

We evaluated the usability of the cloud security framework engine by consid-
ering the API calls passing through the backend and two other parties: Nessus
vulnerability scanning tool, and OpenStack controllers. The details of API calls
like the type of APIs and elapsed times are elucidated in this section.
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Cloud security framework uses two types of APIs which can be categorized as
informative calls (ICs) and operational calls (OCs). The first group can be only
used to get the information like getting authentication tokens, list of hosts, VMs,
etc., these APIs will not make any changes on the cloud. Unlike the first group,
operational calls can perform an operation and make the changes on the cloud
such as migrating a VM from one host to another one, or changing the VM’s
instance, etc. We measure the informative calls with the response time (TR).
Particularly, TR is the total time needed for sending a request to the cloud and
receiving the required information. For instance, the TR of a keystone authen-
tication call is the time elapsed between calling API and receiving the response
from keystone showing accepted status 202 together with the required informa-
tion in the body of message. However, operational calls consist of: (1) Reaction
Time (Tγ) which is the time between calling API and the start time of an oper-
ation. Note that the response for an API call may include some acknowledge
such as denied, abort, unauthorized, etc. which means the operational call was
unsuccessful. In this case Tγ includes the response time. (2) Operational Time
(To) which means the difference between the start of an operation using API
calls and the time in which the task is fully done. (3) Completion Time (TC)
which is the total time for completion of an operational call: Tγ+To; for instance,
the total time between sending a request for VM-LM process and the end of the
process.

Table 1. Benchmark Analysis for MTD API calls.

API calls VM

status

Request numbers (time in Second) Ave. Std.

MTD Time type 1 2 3 4 5 6 7 8 9 10

S Tγ Up 0.65 0.77 0.42 0.43 0.42 0.55 0.45 0.45 0.71 0.43 0.53 0.13

To Down 10.00 11.00 13.00 12.00 9.00 18.00 11.00 13.00 17.00 11.00 12.50 2.77

TC N/A 10.65 11.77 13.42 12.43 9.42 18.55 11.45 13.45 17.71 11.43 13.03 2.80

D Tγ Up 0.56 0.72 0.66 0.44 0.42 0.42 0.70 0.81 0.44 0.68 0.58 0.14

To Down 18.00 17.00 18.00 20.00 17.00 19.00 16.00 19.00 18.00 18.00 18.00 1.10

TC N/A 18.56 17.72 18.66 20.44 17.42 19.42 16.70 19.81 18.44 18.68 18.58 1.06

R (3-R) Tγ Up 0.73 0.73 0.76 0.74 1.08 0.76 0.82 0.75 0.91 1.06 0.83 0.13

To Up 10.00 10.00 11.00 11.00 12.00 12.00 11.00 12.00 11.00 11.00 11.10 0.70

TC Up 10.73 10.73 11.76 11.74 13.08 12.76 11.82 12.75 11.91 12.06 11.93 0.75

MTD Deployment Measures: We developed the experiments by performing a
Benchmark analysis for deploying three Shuffle (S), Diversity (D), and Redun-
dancy (R) MTD techniques on the OpenStack. We evaluated the operational API
calls by measuring the Tγ , To, and TC obtained based on a sequence of 10 API
requests. We sent these request to the cloud for deploying MTD techniques on
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(a) Shuffle (b) Diversity (c) Redundancy

Fig. 5. The historgams showing the TC distributions for MTD deployments.

the VM-6-EP2 which uses Ubuntu14.04 and m1.generic flavor size. For analyzing
Shuffle, we send operational API calls to the cloud for randomly migrating vm6-
EP2 to other Hosts and measured the operational times for each request. For
Diversity, we repeated the experiments by changing the vm6-EP2 OS to CentOS
and vice versa and measured the time. Finally, we analyze Redundancy by creat-
ing three replicas (3-R) for vm6-EP2 named as vm6-EP2-R-1, vm6-EP2-R-2, and
vm6-EP2-R-3. We tabulated the measurements of operational times for all MTD
techniques on each request together with the average, and standard deviation
values in Table 1. The results show that the average TC for S, D, and R (3-R) are
13.03, 18.58, and 11.93 s, respectively. Moreover, the results show that the VM
is active (Up) during Tγ , while the VM is not accessible (Down) during To for
both S and D. The VM status is N/A during TC if there Tγ be in Up and To be
in Down states. However, the VM status for R is always UP as there are always
at least one replication of a VM which can work without the interruption or
downtime. We extended our analysis by conducting experiments for a sequence
of 20 API requests to measure the operational time for MTD techniques with

Table 2. The results of three security metrics: Risk, AC, and RoA on the cloud result-
ing from deploying MTD techniques on EP1 and EP2.

VM Shuffle (EP1) Diversity (EP1) Shuffle (EP2) Diversity (EP2)

R AC RoA R AC RoA R AC RoA R AC RoA

vm0 34.2 50.5 18.9 48.7 79.2 26.6 47.9 70.9 26.9 65.0 117.9 35.2

vm1 31.1 45.7 16.9 47.3 87.9 25.1 53.5 79.2 30.3 65.5 115.1 35.8

vm2 32.1 47.3 17.6 47.8 85.0 25.6 44.7 66.1 24.9 65.0 117.9 35.2

vm3 45.4 67 25.1 47.8 85.0 25.6 53.3 78.8 29.7 63.7 126.6 33.6

vm4 34.5 51.2 19.5 47.6 81.2 26.1 56.6 84 32.3 66.4 105.7 37.3

vm5 30.7 45.5 17.5 45.5 89.0 24.4 63.9 94.8 36.4 65.7 108.3 36.8

vm6 31.9 47.4 18.2 46.9 83.8 25.5 49.9 74.1 28.3 62.2 121.3 34.0

vm7 25.4 37.5 14.2 45.5 89.0 24.4 41.4 61.4 23.6 62.9 118.7 34.6
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more accuracy. We divided the TC into different intervals and counted the num-
ber of occurrence for each group. Figure 5 demonstrates the histograms for MTD
techniques based on the measured times for 20 requests (N = 20). We observe
that most Shuffle technique requests can be completed between 11.7 and 12.8 s.
Moreover, Diversity can be fully deployed between 18.16 and 20.08 s in most of
the cases. Finally, Redundancy API requests for creation of three replicas (3-R)
can be fully served between 11.73 and 12.73 s in most of the cases.

Security Metrics Evaluation: We also evaluated the effectiveness of the MTD
techniques in terms of system security. We adopted three security metrics Risk,
AC, and RoA into the metrics pool and evaluate each MTD technique. Those
metrics are useful for evaluation of Shuffle and Diversity and have already been
investigated for evaluation of MTD techniques on cloud through simulation [3].
However, more security metrics can be similarly used to evaluate other secu-
rity aspects of the cloud [22]. Table 2 shows the security metrics resulting from
deploying MTD techniques on each VM on the cloud for both EP1 and EP2.
Those results can be used by MTD Evaluation phase in the Security Analysis
Engine 3a to find and deploy the most effective deployment. Comparing the
results for deploying MTD techniques for EP1, we can observe that deploying
Shuffle on vm7 can lead to better result in terms of Risk and RoA metrics
which yield 25.4 and 14.2, respectively. Similarly, deploying Diversity on vm7

yields 45.5, 89, and 24.4 for Risk, AC, and RoA, respectively. Likewise, deploy-
ing Shuffle on vm7 for EP2 cause lower Risk and RoA values and deploying
Diversity on vm6 provides the better results in terms of Risk and RoA which
yields 62.9 and 34.6, respectively. However, the best results for AC is deploy-
ing Diversity on vm6 yields 121.3. Ultimately, the results shows that deploying
Shuffle yields better results that Diversity in terms of Risk and RoA metrics.
Deploying Diversity yields a gentle decrements for Risk and RoA in the best
case while those metrics are almost halved after deploying best Shuffle scenario.
However, Diversity yields better results for AC and increases AC.

Limitations: The update phase has not been implemented in cloud security
framework. This includes running of Nessus scanning and recreation of HARM
based on any changes captured in the cloud, such as updating VMs or vulnera-
bilities. We will further consider the update phase in our future work. The main
aim of Redundancy technique is to enhance the service availability in the cloud.
Redundancy can be measured with the concepts of system dependability (e.g.
reliability and availability) which is out of scope of this paper. We will further
consider dependability metrics for evaluating Redundancy on real cloud in our
future work.
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5 Related Work

The theoretical investigation and evaluation of the security modeling and anal-
ysis adopting based on the MTD techniques for cloud computing have been
proposed in the work [4,12]. However, most of the proposed frameworks have
focused on the implementations of GSMs on the networks [9,10,14,17]. The secu-
rity modeling and analysis tools on the literature can be categorized based on the
context of implementation test-bed such as cloud computing [7], networks and
enterprises [18], or based on GSMs [11], ATs [9], AGs [13], etc., the automation
approaches and levels [20], or based on the effectiveness of solution like response
time and the probability of success [20]. The work [10] proposed a prototype
for 3D graphical visualization of the system, attack, and countermeasure model.
In [18], the authors proposed and implemented a fast network security assess-
ment prototype based on the real scenario. However, the work [7] developed a
framework named NICE in the virtual network systems which is able to detect
possible attacks against the cloud infrastructure. To the best of our knowledge,
there is no prior work developing the MTD techniques incorporated with the
automated GSMs in a cloud environment. In this paper, we developed an auto-
mated cloud security framework able to monitor and detect a private cloud and
deploy MTD techniques on the infrastructures of the cloud.

6 Conclusions

In this paper, we have investigated on practicability and usability of incorpo-
rating MTD techniques into GSMs as a framework on the real cloud. We have
developed a cloud security framework which is able to run on a private cloud
platform named UniteCloud. The developed framework can (1) automatically
monitor the cloud and collect the information such as hosts, VMs, network, and
vulnerabilities existing on each VM using OpenStack APIs, (2) model and eval-
uate the cloud’s security and adopt defensive MTD techniques, (3) automate
the deployment of three MTD techniques OS Diversification as the Diversity
technique, VM replication as the Redundancy technique, and VM-LM as the
shuffle technique on the infrastructures of the UniteCloud using API calls, and
(4) use a web application UI for interaction between the security experts and
the backend engine of the framework and also visualize the generated security
model. Finally, we have evaluated MTD techniques based on real measurements
and security metrics and showed that MTD techniques can be adopted in the
real cloud infrastructure.
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Appendix A

Fig. 6. Cloud security framework UI panel: UniteCloud Graph view and HARM visu-
alization.
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10. Gonzalez Granadillo, G., Débar, H., Jacob, G., Gaber, C., Achemlal, M.: Individual
countermeasure selection based on the return on response investment index. In:
Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531, pp. 156–170.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33704-8 14

11. Hong, J., Kim, D.S.: Harms: Hierarchical attack representation models for network
security analysis (2012)

12. Hong, J.B., Kim, D.S.: Assessing the effectiveness of moving target defenses using
security models. IEEE Trans. Dependable Secure Comput. 13(2), 163–177 (2016)

13. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern net-
work attacks and countermeasures using attack graphs. In: Proceedings of the 25th
Annual Computer Security Applications Conference (ACSAC 2009), pp. 117–126
(2009). https://doi.org/10.1109/ACSAC.2009.21

14. Jia, F., Hong, J.B., Kim, D.S.: Towards automated generation and visualization of
hierarchical attack representation models. In: 2015 IEEE International Conference
on Computer and Information Technology; Ubiquitous Computing and Commu-
nications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence
and Computing, pp. 1689–1696. IEEE (2015)

15. Kordy, B., Pietre-Cambacedes, L., Schweitzer, P.: DAG-Based Attack and Defense
Modeling: Don’t Miss the Forest for the Attack Trees. CoRR abs/1303.7397 (2013)

16. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. 24(1), 55–87 (2014)

17. Kotenko, I., Chechulin, A.: Computer attack modeling and security evaluation
based on attack graphs. In: 2013 IEEE 7th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems (IDAACS), vol. 2, pp. 614–
619. IEEE (2013)

18. Kotenko, I.V., Doynikova, E.: Evaluation of computer network security based on
attack graphs and security event processing. JoWUA 5(3), 14–29 (2014)

19. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE
Secur. Priv. 4(6), 85–89 (2006)
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Abstract. In this paper, we consider the security of a problem called
Group Action Inverse Problem with Auxiliary Inputs (GAIPwAI). The
Group Action Inverse Problem (GAIP) plays an important role in the
security of several isogeny-based cryptosystems, such as CSIDH, SeaSign
and CSI-FiSh.

Briefly speaking, given two isogenous supersingular curves E and E′

over Fp, where E′ is defined by an ideal a in the Fp-endomorphism ring
of E and denoted by E′ = [a] ∗E, GAIP requires finding a ⊂ EndFp(E).
Its best classical algorithm is based on the baby-step-giant-step method
and it runs in time O(p1/4).

In this paper, we show that if E and E′ are given together with [ad]∗E
for a positive divisor d that divides the order of the class group of Z[

√−p],
then a can be computed in O

(
(p1/2/d)1/2 + d1/2

)
time complexity. In

particular, when d ≈ p1/4, it can be solved in time O(p1/8) which is
significantly less than O(p1/4).

Applying the idea to CSIDH-512 parameters, we show that, if an
additional isogenous curve [ad] ∗ E is given, the security level of this
cryptosystem reduces to 68-bit security instead of 128-bit security as
originally believed.

Keywords: Isogeny-based cryptography · Cryptanalysis ·
Post-quantum cryptography · CSIDH · Cheon’s algorithm

1 Introduction

In the first proposal, Couveignes [12] and independently Robstovtsev and Stol-
bunov [18] described a non-interactive key exchange protocol based on the group
action of the ideal class group Cl(O) on the set of Fq-isomorphism classes of ordi-
nary elliptic curves over Fq, where O is an order in imaginary quadratic field
and is isomorphic to the endomorphism ring of the ordinary curve. Since Cl(O)
is commutative, it naturally allows one to construct Diffie-Hellman type key
exchange protocol.

Later, however, this commutativity allowed Childs, Jao and Soukharev [11]
to obtain a quantum algorithm to break the Couveignes-Robstovtsev-Stolbunov
c© Springer Nature Switzerland AG 2020
J. H. Seo (Ed.): ICISC 2019, LNCS 11975, pp. 165–174, 2020.
https://doi.org/10.1007/978-3-030-40921-0_10
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scheme in subexponential time complexity Lq[1/2]. Since then, cryptographic
research mainly concentrated on isogeny problems related to supersingular ellip-
tic curves, where the class group action is not used. A popular scheme in this
line of research is SIDH (Supersingular Isogeny Diffie-Hellman).

A rehabilitation of Couveignes-Robstovtsev-Stolbunov scheme is recently car-
ried out by Castryck et al. [6], where they restricted their consideration to the
group action on the set of Fp-isomorphism classes of supersingular elliptic curves
defined over Fp. In such cases, the Fp-rational endomorphism ring of the super-
singular curve is again isomorphic to an order O in an imaginary quadratic field,
thus Cl(O) becomes commutative. There still remains the issue that this com-
mutativity allows subexponential quantum algorithms for the base problem, but
since it is very practical compared to previous schemes, it is considered to be
secure although it suffers from a subexponential quantum attack. This proposal
is called CSIDH and it is our main concern in this paper. Since the proposal
of CSIDH, there have been several attempts to achieve practical isogeny-based
signature schemes based on the class group actions. This includes schemes such
as SeaSign [13] and CSI-FiSh [1].

An important computational problem in the class group action based cryp-
tosystems is to compute an explicit isogeny between two supersingular curves
E and E′ over Fp, where E′ is a curve isogenous to E defined by an ideal a in
the Fp-rational endomorphism ring of E, denoted by O ∼= EndFp

(E). We denote
this action of a on E by a ∗ E, i.e. E′ = a ∗ E. This action can be shown to be
free and transitive, and it only depends on the class of a in Cl(O), where Cl(O)
denotes the class group of O. Finding an explicit isogeny between E and a∗E is
equivalent to finding the secret ideal a. This problem is called the Group Action
Inverse Problem (GAIP). The GAIP can be considered as a generalization of
the notion of the discrete logarithm problem (DLP): given g and h := ga in a
cyclic group G, find a ∈ Z#G. As with DLP, a best classical algorithm of solving
GAIP is based on the meet-in-the-middle approach, where the time complexity
is O

(√
#Cl(O)

)
.

In the setting of DLP-based cryptography, there have been lots of attempts to
use variants of DLP to construct cryptosystems that achieve fruitful function-
alities. For instance, many pairing-based cryptography base their security on
problems called, to name a few, strong-DH problem, bilinear DH inversion prob-
lem, and so on. In general, these variant problems can be considered as particular
instances of the problem called DLP with Auxiliary Inputs (DLPwAI), where
the problem asks to find the discrete logarithm a for given g, ga, ga

2
, . . . , ga

d

.
There are several algorithms [8–10,16] that tackle this problem which started
from Cheon’s algorithm [7,8]. Cheon proposed an efficient algorithm better than
the usual baby-step-giant-step algorithm, when d is a divisor of p ± 1 where p is
a prime order of the group G.

Recalling the similarities of GAIP and DLP, our motivation in this paper is
to answer the following question: if we are given E and a∗E together with some
more informations on the secret a ⊂ O, will there be any efficient algorithm to
solve a better than time complexity of O(

√
#Cl(O))? To answer this question,
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we generalize the notion of DLPwAI to the setting of GAIP. Then it is not hard
to see Cheon’s algorithm also applies to our setting.

2 Preliminaries

2.1 Elliptic Curves and Isogenies

Let E be an elliptic curve over a finite field Fp with p a large prime. The curve
E is called supersingular if and only if #E(Fp) = p + 1, and ordinary otherwise.

Given two elliptic curves E and E′, an isogeny φ : E → E′ is a non-constant
rational map which is also a group homomorphism from E to E′ over the alge-
braic closure of Fp. A separable isogeny φ is uniquely determined by a subgroup
S ⊂ E(Fpk) with kerφ = S, i.e. E′ = E/S. Vélu’s algorithm [19] computes an
equation for E′ and thus enables one to compute the isogeny φ. Its computation
requires O(#S(k log p)2) operations in Fpk .

For an elliptic curve E over a prime field Fp, we define End(E) to be the ring
of endomorphisms (isogenies from E to itself) of E defined over the algebraic
closure of Fp, and EndFp

(E) to be the ring of endomorphisms of E defined over
Fp. Let O be an order in the imaginary quadratic field Q(

√−p). For an ordinary
curve E, we have End(E) ∼= O, whereas EndFp

(E) ∼= O for a supersingular
curve E.

The ideal class group of O, denoted by Cl(O), is the quotient of the group of
fractional invertible ideals in O by the principal fractional invertible ideals. Given
an ideal a ⊂ O, one can consider the subgroup E[a] = {P ∈ E(Fp) : α(P ) =
0,∀α ∈ a} and this uniquely determines the isogenous curve E′ = E/E[a] under
the isogeny φ : E → E′ with kerφ = E[a]. This defines the action of O on E and
we denote E′ by a ∗ E. Since a ∗ E only depends on the class of a in Cl(O), it
again defines an action of Cl(O) on the set E of Fp-isomorphism classes of elliptic
curves with Fp-rational endomorphism ring O. One can show Cl(O)-action on E
is free and transitive, i.e. E is a principal homogenous space for Cl(O) in terms
of Couveigne [12].

2.2 CSIDH

For an arbitrary ideal a ⊂ O, the subgroup E[a] could be defined over Fpk

for arbitrarily large k. In such a case, the group action a ∗ E is unlikely to be
computed efficiently. For the Cl(O)-action on E to be efficiently computable,
Castryck et al. [6] suggested using a supersingular curve E/Fp with a special
form of p so that #E(Fp) is smooth, i.e. only contains small prime factors. More
precisely, let p be a prime of the form 4 · �1 · · · �n − 1 with �i small distinct odd
primes. Then we have #E(Fp) = p + 1 = 4 · �1 · · · �n. Furthermore, all �i are
Elkies primes, i.e. the principal ideal (�i) splits as (�i) = 〈�i, π − 1〉〈�i, π + 1〉 in
O ∼= EndFp

(E), where π =
√−p represents the Fp-Frobenius endomorphism. As

the subgroup E[li] corresponding to the prime ideal li = 〈�i, π − 1〉 is defined
over Fp, Vélu’s formula can efficiently compute the action of li which requires
O(�i(log p)2) operations.
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CSIDH [6] performs the Diffie-Hellman key exchange protocol by acting on
ideals of the form

∏n
i=1 l

ei
i , where the exponents are chosen uniformly from

an interval, say, [−B,B]. This group action can be computed efficiently as the
composition of actions by small prime ideals. In CSIDH, we assume that the ideal∏n

i=1 l
ei
i is uniformly distributed over Cl(O). This deliberate choice of ideals is

due to the fact that the structure of the class group is unknown, and it seems
difficult to represent any random ideal a as a factorisation of small prime ideals.
As a remark, the class group computation requires subexponential time in log(p)
using classical algorithms [15].

Recently, Beullens et al. [1] succeed in the computing the structure of the
class group of an imaginary quadratic field of 154-digit discriminant which is
central to the CSIDH-512 cryptosystem. They exploit the structure of this class
group to propose an efficient isogeny-based signature scheme called CSI-FiSh.

2.3 Computational Problems

Several isogeny-based cryptosystems based on the class group action, such as
CSIDH [6], SeaSign [13] and CSI-FiSh [1], base their security on the hardness
of inverting the group action problem. Stolbunov called it Group Action Inverse
Problem (GAIP) and Couveignes called it Hard Homogenous Spaces. Throughout
this paper, we shall use Stolbunov’s term.

Definition 1 (Group Action Inverse Problem (GAIP)). Let G be a finite
abelian group and X be a set. Denote G-action on X by ∗ : G × X → X.
Assume that ∗ is free and transitive. Given x and x′ in X, the group action
inverse problem (GAIP) is a problem of recovering a ∈ G such that x′ = a ∗ x.

In class group-based cryptosystems, it translates to finding an ideal a ⊂ O
such that E′ = a ∗ E, given two isogenous curves E and E′ with End(E) =
End(E′) = O.

The discrete logarithm problem (DLP) can also be seen as an instance of
GAIP with G = ZN and X a cyclic group generated by x of order N . In this
case, G-action on X is defined as the exponentiation of x ∈ X by a ∈ G, i.e. xa,
and the DLP is to find a ∈ ZN given x and xa.

The best classical algorithm to solve the GAIP problem is the baby-step-
giant-step approach where its time complexity is O(

√
#G).

2.4 Discrete Logarithm Problem with Auxiliary Inputs

Several pairing-based cryptosystems [2–4] base their security on variants of DLP
such as the strong Diffie-Hellman problem. Cheon [7,8] generalized these variant
problems and called it the discrete logarithm problem with auxiliary inputs which
is stated as follows:

Definition 2 (DLP with Auxiliary Inputs (DLPwAI)). Let X be a cyclic
group generated by x of prime order q. Define G = Z

×
q , a multiplicative group of

integers modulo q. Given x, xa, . . . , xad

for an integer d and a ∈ G, the discrete
logarithm problem with auxiliary inputs is solved by finding a.
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Cheon also proposed an efficient algorithm when d is a divisor of q − 1. This
runs in time complexity O(

√
p/d+

√
d) which is faster than the baby-step-giant-

step algorithm. Essentially, the key observation used by his algorithm is that G
has a subgroup H of order d when d | (q − 1).

3 Group Action Inverse Problem with Auxiliary Inputs

In this section, we define the group action inverse problem with auxiliary
inputs (GAIPwAI). Roughly speaking, it is a problem to find the secret group
element a ∈ G, given x and x′ = a ∗ x in X together with several elements in
X that contain some information on a. It can be seen as a generalization of the
notion of DLPwAI. And we show that Cheon’s algorithm can easily be adapted
to solve this problem.

In the following, we assume that the group G is always a finite abelian group.
By the structure theorem for finite abelian groups, we can write G as

G ∼= 〈g1〉 × · · · × 〈gn〉,

where gi has the order Ni and denote #G by N =
∏n

i=1 Ni.
We state the definition of GAIPwAI as follows.

Definition 3 (GAIP with Auxiliary Inputs (GAIPwAI)). Consider a free
and transitive G-action on a set X with an operation ∗. For a ∈ G, we write
a =

∏n
i=1 grii , where 0 ≤ ri < Ni. Let d := (d1, . . . , dn) be n-tuple of positive

integers. Define ad = a(d1,...,dn) :=
∏n

i=1(g
ri
i )di . Given x, x1 := a ∗ x and xd :=

(ad) ∗ x, GAIP with auxiliary inputs is the problem of finding a ∈ G.

We show the following theorem of which the proof can be seen as a simple
generalization of Cheon’s algorithm. This algorithm is deterministic, but rela-
tively large storage is required. We shall also describe the low-memory version
of this algorithm later which is based on Pollard’s lambda approach.

Theorem 1. Use the same notation as above. Assume that di is a divisor of Ni

for all i = 1, . . . , n. Given x, x1 and xd, one can find a ∈ G deterministically
in time complexity O

(∏n
i=1

√
Ni/di +

∏n
i=1

√
di

)
using the same amount of

storage.

Proof. First, observe that b := ad is an element in a subgroup H ⊂ G, where

H ∼= 〈gd1
1 〉 × · · · × 〈gdn

n 〉 := 〈h1〉 × · · · × 〈hn〉

and hi is of order Ni/di. As a first step, we would like to find out li ∈ ZNi/di

satisfying b = hl1
1 · · · hln

n . Write li as li =
⌈√

Ni/di

⌉
ui + vi, where ui and vi

are integers less than
√

Ni/di. Given xd, one computes the group actions by∏n
i=1 h−vi

i on xd for all integers vi less than
√

Ni/di and stores them. It requires
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O(
∏n

i=1

√
Ni/di) group actions and the same amount of storage. Then one com-

putes
( ∏n

i=1 h
�
√

Ni/di�·ui

i

) ∗ x using O(
∏n

i=1

√
Ni/di) group actions. If we have

a tuple (u1, . . . , un, v1, . . . , vn) such that
(

n∏

i=1

h−vi
i

)

∗ xd =

(
n∏

i=1

h
�
√

Ni/di�·ui

i

)

∗ x,

we recover (l1, . . . , ln) such that b = hl1
1 · · · hln

n .
Once we have found such li’s, then it remains to recover ki ∈ Zdi

such that
ri = (Ni/di)ki + li, where a =

∏n
i=1 grii . In other words, it satisfies that

(
n∏

i=1

g−li
i ) · a =

n∏

i=1

g
(Ni/di)ki

i .

To find such ki’s, similarly as before we first write ki = �√disi + ti, where si
and ti are less than

√
di. By finding a collision such that

( n∏

i=1

g
−(Ni/di)ti
i

) ∗
(

(
n∏

i=1

g−li
i ) ∗ x1

)

=
( n∏

i=1

g
(Ni/di)�

√
di�si

i

) ∗ x,

we deduce the desired value for ki’s. This second step costs O(
∏n

i=1

√
di) time

complexity and the same amount of memory. ��
From the above proof, one might observe that solving GAIPwAI splits into

the following problems: (1) one is to find (l1, . . . , ln) ∈ ZN1/d1 × · · · × ZNn/dn

given x, b ∗ x = (hl1
1 · · · hln

n ) ∗ x ∈ X and h = (h1, . . . , hn) ∈ G, and (2) the other
is to find (k1, . . . , kn) ∈ Zd1 × · · · × Zdn

given x, b̃ ∗ x := (h̃k1
1 · · · h̃kn

n ) ∗ x ∈ X

and h̃ = (h̃1, . . . , h̃n) ∈ G, where we define h̃i := gNi/di and b̃ ∗ x is computed
as (g−l1

1 · · · g−ln
n ) ∗ x1.

As mentioned above, GAIP can be considered as a generalization of DLP. In
the case of DLP, the G-action on a cyclic group X is given by the exponentiation,
i.e. a ∗ x = xa for a ∈ G and x ∈ X. Note particularly that G is a cyclic group.
Therefore we might consider DLP as a particular instance of GAIP where G is
a cyclic group, i.e. n = 1, and the group action is defined by the exponentiation.
Similarly, our definition of GAIPwAI can be considered as a generalization of
DLPwAI. In [17, Section 3.1], Kim called the problem of finding l ∈ ZL for given
x, (gl) ∗ x ∈ X and g ∈ G in DLP setting DLPX (DLP in the exponent) and
showed DLPwAI reduces to solving two instances of DLPX.

On the other hand, the problem of solving (l1, . . . , ln) ∈ ZL1 ×· · ·×ZLn
given

g1, . . . , gn and h = gl11 · · · glnn is called multi-dimensional DLP (the term might
be found, for instance, in [14]). Combining the above terminology, one might
define multi-dimensional DLP in the group action as follows.

Definition 4 (Multi-dimensional DLP in the Group Action). Let G ∼=
〈g1〉 × · · · × 〈gn〉 be a finite abelian group where gi is of order Ni. Consider a G-
action ∗ on a set X. Given (g1, . . . , gn) ∈ G and x, h ∗ x := (gl11 · · · glnn ) ∗ x ∈ X,



Security Analysis of Group Action Inverse Problem with Auxiliary Inputs 171

the problem is to find (l1, . . . , ln) ∈ ZN1 × · · · × ZNn
. In particular, we say that

this problem is defined over ZN1 × · · · × ZNn
.

With the above definition, the problem of solving GAIPwAI reduces to
solving two multi-dimensional DLP in the group action, one is defined over
ZN1/d1 × · · · × ZNn/dn

and the other is defined over Zd1 × · · · × Zdn
.

As mentioned in [8,17], Pollard’s lambda approach gives us a memory-
efficient probabilistic algorithm to solve DLPX. Similarly, it is not hard to gen-
eralize this algorithm to solve multi-dimensional DLP in the group action with
small amount of storage. Thus we can show there exists a probabilistic algorithm
for GAIPwAI with constant storage. The technique is rather straightforward, so
we omit the proof in this paper.

4 Cryptographic Considerations

4.1 Class Group Action on Supersingular Curves

A main interest of GAIP in cryptographic applications arises from sev-
eral isogeny-based cryptosystems. Let E/Fp a supersingular curve with p =
4�1 · · · �n − 1 for small distinct odd primes �i. Consider the endomorphism ring
EndFp

(E) defined over p which is isomorphic to an order O in an imaginary
quadratic field Q(

√−p). As briefly mentioned in Sect. 2, for an ideal a ⊂ O,
the class group action of Cl(O) on the set E of Fp-isomorphism classes of
supersingular curves over Fp is a well-defined group action and denoted by
E′ := [a] ∗ E = E/E[a]. The hardness of GAIP with G = Cl(O) and X = E is
at the core of the security of such cryptosystems.

Consider Cl(O) ∼= 〈g1〉 × · · · × 〈gn〉 and a = ga1
1 · · · gan

n . For d = (d1, . . . , dn),
GAIPwAI translates to solve the ideal a ⊂ O given E,E1 := [a] ∗ E and
Ed := [ad] ∗ E. However, we note the structure of Cl(O) is unknown in general,
one should compute Cl(O) in subexponential time using the Hafner-McCurley
algorithm before applying the proposed algorithm. The Hafner-McCurley algo-
rithm starts from a generating set {p1, . . . , pk} ⊂ Cl(O) which consists of small
prime ideals and this generating set might not coincide with the generators
{gi : i = 1, . . . , n}. For Cl(O)-group action to be efficiently computable, it might
be desirable to represent gi with small prime ideals. As mentioned in [5], it can
be done by computing a basis of the lattice

L = {(e1, . . . , ek) ∈ Z
k :

k∏

i=1

peii = 1}

and subsequently computing the Smith normal form of the basis. Since it only
takes subexponential time in log(p), the overall complexity of solving GAIPwAI
is dominated by O

( ∏
i

√
Ni/di+

∏
i

√
di

)
. The best complexity is attained when

Ni has a divisor di satisfying
√∏n

i=1 Ni ≈ ∏n
i=1 di.
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4.2 CSIDH-512 Parameter

Recently, Beullens et al. [1] computed the class group of an imaginary quadratic
field having 154-digit discriminant. Based on this computation an efficient
isogeny-based signature scheme called CSI-FiSh was proposed, using the CSIDH-
512 parameter. As a result, the structure of the class group corresponding to the
CSIDH-512 parameters is known: The prime parameter p in CSIDH-512 is cho-
sen to be p = 4 · �1 · · · �73 · 587 − 1, where �1 through �73 are the smallest 73 odd
primes. The ideal class group G = Cl

(
Z[

√−p]
)

defines an efficient group action
on E , where G is cyclic with a generator g = 〈3,

√−p − 1〉 of order

N = #G = 3 · 37 · 1407181 · 51593604295295867744293584889 · d,

where d is 135-bit prime.
Assume that we are given E, E1 = [a]∗E and Ed = [ad]∗E for a secret ideal

a ⊂ G. Using our proposed algorithm, a can be computed in time complexity
O(

√
N/d +

√
d) ≈ O(268). In other words, if we are additionally given Ed,

then the security of the GAIP problem in the CSIDH-512 parameter, which was
originally believed to be 128-bit secure, decreases to 68-bit security level.

5 Discussions and Open Research

Recently, the GAIP problem has been of particular interest since it supports
the security of several isogeny-based cryptosystems. In this paper, we discussed
on the security of GAIP problem when some information on the secret value is
additionally provided: Let E/Fp be a supersingular curve with Fp-endomorphism
ring O = Z[

√−p]. Note that #O ≈ p1/2. Given E, [a]∗E and [ad]∗E for a ⊂ O,
the cost of finding the secret ideal a becomes O(p1/8) when d ≈ p1/4 is a divisor
of #O ≈ p1/2. It would be comparable to O(p1/4), the time complexity of solving
GAIP problem without additional informations.

A main motivation of this study is from the DLPwAI problem where a num-
ber of pairing-based cryptosystems base their security on DLPwAI. However, in
the case of GAIP for class group, it is unknown whether there exist cryptosys-
tems for which the security relies on GAIPwAI problem. We recommend that
cryptographers are more careful when they want to construct any cryptosys-
tems based on some variants of GAIP problem because the problems might be
instances of the GAIPwAI problem that might yield a security loss compared to
the original GAIP problem.

Another intriguing problem is to consider when the class group of Z[
√−p]

has an order with a sufficiently large divisor d. If we assume the order of Z[
√−p]

behaves as a random integer of size ≈ p1/2 and d is an integer close to p1/4, then
the number of integers less than ≈ p1/2 divisible by d is approximately p1/4.
However, currently many isogeny-based cryptosystems use a prime p of special
form, so the structure of the class group corresponding to such primes p might
be far from behaving randomly. Thus, it would be interesting to consider how
many families of such special primes exist (or not) such that the corresponding
class group has an order divisible by a sufficiently large integer.
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Abstract. Code-based public key cryptosystems have been found to be
an interesting option in the area of Post-Quantum Cryptography. In this
work, we present a key encapsulation mechanism (KEM) using a parity
check matrix of the Generalized Srivastava code as the public key matrix.
Generalized Srivastava codes are privileged with the decoding technique
of Alternant codes as they belong to the family of Alternant codes. We
exploit the dyadic structure of the parity check matrix to reduce the stor-
age of the public key. Our encapsulation leads to a shorter ciphertext as
compared to DAGS proposed by Banegas et al. in Journal of Mathe-
matical Cryptology which also uses Generalized Srivastava code. Our
KEM provides IND-CCA security in the random oracle model. Also, our
scheme can be shown to achieve post-quantum security in the quantum
random oracle model.

Keywords: Key encapsulation mechanism · Generalized Srivastava
code · Quasi-dyadic matrix · Alternant decoding

1 Introduction

Cryptography and coding theory are at the core of implementation of telecom-
munication systems, computational systems and secure networks. Cryptography
based on error correcting codes is one of the main approaches to guarantee
secure communication in post-quantum world. The security of current widely
used classical cryptosystems relies on the difficulty of number theory problems
like factorization and the discrete logarithm problem. Shor [21] showed in 1994
that most of these cryptosystems can be broken once sufficiently strong quan-
tum computers become available. Thus, it is necessary to devise alternatives that
can survive quantum attacks while offering reasonable performance with solid
security guarantees.

Code-based cryptosystems are usually very fast and can be implemented on
several platforms, both software and hardware. They do not require special-
purpose hardware, specifically no cryptographic co-processors. The security of
code based cryptography mainly relies on the following two computational
assumptions:
c© Springer Nature Switzerland AG 2020
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(i) the hardness of generic decoding [8] which is NP complete and also believed
to be hard on average even against quantum adversaries

(ii) the pseudorandomness of the underlying code C for the construction which
states that it is hard to distinguish a random matrix from a generator (or
parity check) matrix of C used as a part of the public key of the system.

Designing practical alternative cryptosystems based on difficulty of decoding
unstructured or random codes is currently a major research area. The public key
indistinguishability problem strongly depends on the code family. For instance,
the McEliece encryption scheme [17] uses binary Goppa codes for which this
indistinguishability assumption holds. On the other hand, the assumption does
not hold for other families such as Reed Solomon codes, Concatenated codes,
Low Density Parity Check (LDPC) codes etc. In [12], Faugere et al. devise a
distinguisher for high rate Goppa codes. One of the key challenges in code-based
cryptography is to come up with families of codes for which the indistinguisha-
bility assumption holds.

Constructing efficient and secure code-based cryptographic scheme is a chal-
lenging task. The crucial fact in designing code-based cryptosystems is to use a
linear error-correcting code in such a way that the public key is indistinguishable
from a random key. A codeword is used as ciphertext of a carefully chosen linear
error-correcting code to which random errors are added. The decryptor with the
knowledge of a trapdoor can perform fast polynomial time decoding, remove the
errors and recover the plaintext. Attackers are reduced to a generic decoding
problem and the system remains secure against an adversary equipped with a
quantum computer.

Our Contribution. In this paper, we focus on designing an IND-CCA secure
efficient code-based KEM that relies on the difficulty of generic decoding prob-
lem. Our starting point is the key encapsulation mechanism DAGS [5] that uses
the quasi-dyadic structure of Generalized Srivastava (GS) code. Quasi-dyadic
structure reduces the public key size remarkably in DAGS while the encapsula-
tion procedure increases the size of ciphertext. We aim to design a KEM with
relatively short ciphertext. We deploy the Niederreiter framework to develop
our KEM using a syndrome as ciphertext and achieve IND-CCA security in
the random oracle model. More precisely, we use the parity check matrix of the
Generalized Srivastava code as the public key and utilize its block dyadic struc-
ture to reduce the public key size. We consider the syndrome of a vector as
the ciphertext header where the vector is formed by parsing two vectors – the
first vector is an error vector that is generated by a deterministic error vector
generation algorithm and the second vector is constructed from a hash value of
a randomly chosen message by the encapsulator. This significantly reduces the
ciphertext header size that makes the scheme useful in application with limited
communication bandwidth. Also, the use of the parity check matrix directly in
computing the ciphertext is more fast and efficient. For decapsulation, we form
an equivalent parity check matrix using the secret key to decode the ciphertext
header and then proceed to get the decapsulation key. Note that, Generalized
Srivastava codes belong to the class of Alternant codes which have benefits of
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an efficient decoding algorithm. The complexity of decoding is O(n log2 n) [20]
which is the same as that of Goppa codes where n is the length of the code.

In Table 1, we provide a theoretical comparison of our KEM with other
recently proposed code-based KEMs. All the schemes in the table are based
on finite fields having characteristic 2. We summarize the following features of
our KEM.

• The closest related work to ours is DAGS [5]. Similar to DAGS, we also
use quasi-dyadic form of Generalized Srivastava code. However, DAGS uses
generator matrix whereas we use parity check matrix. Consequently, in our
construction, the ciphertext size is reduced by k log2 q bits as compared to
DAGS [5] whereas the public key and the secret key sizes remain the same.
Furthermore our encapsulation is faster than DAGS.

• The public key sizes in our approach are better than NTS-KEM [2], Classic
McEliece [9] and BIG QUAKE [6]. Although the BIKE variants are efficient
in terms of key sizes and achieve IND-CCA security, they still suffer from
small decoding failure rate. The erlier BIKE variants proposed in [3] have a
non-negligible decoding failure rate and only attain IND-CPA security.

Table 1. Summary of IND-CCA secure KEMs using random oracles

Scheme pk size

(in bits)

sk size

(in bits)

CT size

(in bits)

Code used Cyclic/Dyadic Correctness

error

NTS-KEM [2] (n − k)k 2(n − k +

r)m + nm + r

(n − k + r) Binary

Goppa code

– No

BIKE-1 [4] n n+w ·�log2k� n MDPC code Quasi-Cyclic Yes

BIKE-2 [4] k n+w ·�log2k� k MDPC code Quasi-Cyclic Yes

BIKE-3 [4] n n+w ·�log2k� n MDPC code Quasi-Cyclic Yes

Classic McEliece [9] k(n − k) n + mt + mn (n − k) + r Binary

Goppa code

– No

BIG QUAKE [6] k
�
(n − k) mt + mn (n − k) + 2r Binary

Goppa code

Quasi-Cyclic No

DAGS [5] k
s
(n −

k) log2 q

2mn log2 q [n + k′]log2q GS code Quasi-Dyadic No

This work k
s
(n −

k) log2 q

2mn log2 q [k′ + (n − k)]log2q GS code Quasi-Dyadic No

pk=Public key, sk=Secret key, CT=Ciphertext, k =dimension of the code, n= length of the code, �= length

of each blocks, t=error correcting capacity, k′ < k, s, r, w, p1, p2 are positive integers (� << s), s =

2p2 , q = 2p1 , m=the degree of field extension, r =the desired key length, GS=Generalized Srivastava,

MDPC=Moderate Density Parity Check

In the comparison table, we mostly highlight the KEMs which rely on the
error correcting codes that belong to the class of Alternant codes except BIKE
variants which use QC (Quasi-Cyclic)-MDPC codes. We exclude the schemes like
LEDAkem, RLCE-KEM, LAKE, Ouroboros-R, LOCKER, QC-MDPC, McNie
etc. In fact, the schemes LAKE, Ouroboros-R, LOCKER use rank metric codes
(Low Rank Parity Check (LRPC) codes) while RLCE-KEM is based on random
linear codes and McNie relies on any error-correcting code, specially QC-LRPC
codes. LEDAkem uses QC-LDPC codes and has a small decoding failure rate.
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Moreover, it has risks in case of keypair reuse which may cause a reaction attack
[11] for some particular instances. The schemes proposed in [1] are also kept
out as both HQC and RQC are constructed for any decodable linear code. Also,
HQC has a decryption failure and RQC uses rank metric codes. The protocol
QC-MDPC may have a high decoding failure rate for some particular parameters
which enhances the risk of GJS attack [14]. The scheme CAKE is another impor-
tant KEM which is merged with another independent construction Ouroboros
to obtain BIKE [3].

Organization of the Paper. This rest of the paper is organized as follows. In
Sect. 2, we describe necessary background related to our work. We illustrate our
approach to design a KEM in Sect. 3 and discuss its security in Sect. 4. Finally,
we conclude in Sect. 5.

2 Preliminaries

In this section, we provide mathematical background and preliminaries that are
necessary to follow the discussion in the paper.

Notation. We use the notation x
U←− X for choosing a random element from

a set or distribution, wt(x) to denote the weight of a vector x, (x||y) for the
concatenation of the two vectors x and y. The matrix In is the n × n identity
matrix. We let Z

+ to represent the set {a ∈ Z|a ≥ 0} where Z is the set of
integers. We denote the transpose of a matrix A by AT and concatenation of
the two matrices A and B by [A|B]. The uniform distribution over (n − k) × n
random q-ary matrices is denoted by U(n−k)×n.

2.1 Hardness Assumptions

Definition 1 ((Decision) (q-ary) Syndrome Decoding (SD) Problem [8]). Given a
full-rank matrix H(n−k)×n over GF(q), a vector e ∈ (GF(q))n and a non-negative
integer w, is it possible to distinguish between a random syndrome s and the
syndrome HeT associated to a w-weight vector e?

Suppose D is a probabilistic polynomial time algorithm. For every positive inte-
ger λ, we define the advantage of D in solving the decisional SD problem by

AdvDEC
D,SD(λ) = |Pr[D(H,HeT ) = 1 | e ∈ (GF(q))n,H

U←− U(n−k)×n]

− Pr[D(H, s) = 1 | s U←− U(n−k)×1,H
U←− U(n−k)×n]|.

Also, we define AdvDEC
SD (λ) = max

D
[AdvDEC

D,SD(λ)] where the maximum is taken over

all D. The decisional SD problem is said to be hard if AdvDEC
SD (λ) < δ where

δ > 0 is arbitrarily small.
In addition, some code based schemes require the following computational

assumption. Most of the schemes output a public key that is either a generator
matrix or a parity check matrix by running key generation algorithm.
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Definition 2 (Indistinguishability of public key matrix H [18]). Let D be a prob-
abilistic polynomial time algorithm and PKE = (Setup,KeyGen,Enc,Dec) be a
public key encryption scheme that uses an (n − k) × n matrix H as a pub-
lic key over GF(q). For every positive integer λ, we define the advantage of
D in distinguishing the public key matrix H from a random matrix R as
AdvIND

D,H(λ) = Pr[D(H) = 1|(pk = H, sk) ←− PKE.KeyGen(param), param ←−
PKE.Setup(1λ)] − Pr[D(R) = 1|R U←− U(n−k)×n].

We define AdvIND
H (λ) = max

D
[AdvIND

D,H(λ)] where the maximum is over all D.

The matrix H is said to be indistinguishable if AdvIND
H (λ) < δ where δ > 0 is

arbitrarily small.

2.2 Basic Definitions from Coding Theory

Definition 3 (Dyadic Matrix and Quasi-Dyadic Matrix [7]). Given a ring R and
a vector h = (h0, h1, . . . , hn−1) ∈ Rn, the dyadic matrix Δ(h) ∈ Rn×n is a
symmetric matrix having components Δij = hi⊕j where ⊕ stands for bitwise
exclusive-or. The vector h is called a signature of the dyadic matrix. The sig-
nature of a dyadic matrix forms its first row. A matrix is called quasi-dyadic if
it is a block matrix whose component blocks are s × s dyadic submatrices. An
s × s dyadic matrix block can be generated from its first row.

Generating the dyadic signature [7]: A valid dyadic signature h =
(h0, h1, . . . , hn−1) over R = GF(qm) is derived using Algorithm 1.

Definition 4 (The Generalized Srivastava (GS) Code [16]). Let m,n, s, t ∈ N and
q be a prime power. Let α1, α2, . . . , αn, w1, w2, . . . , ws be n+ s distinct elements
of GF(qm) and z1, z2, . . . , zn be nonzero elements of GF(qm). The Generalized
Srivastava (GS) code of length n is a linear code with st×n parity-check matrix
of the form H =

[
H1 H2 · · · Hs

]T where

Hi =

⎡

⎢
⎢
⎣

z1
α1−wi

z2
α2−wi

· · · zn

αn−wi
z1

(α1−wi)2
z2

(α2−wi)2
· · · zn

(αn−wi)2

· · · · · · · · · · · ·
z1

(α1−wi)t
z2

(α2−wi)t · · · zn

(αn−wi)t

⎤

⎥
⎥
⎦

is a t×n matrix block. The code is of length n ≤ qm −s, dimension k ≥ n−mst

and minimum distance d ≥ st + 1. It can correct at most w =
⌊

d − 1
2

⌋
=

st

2
errors and is an Alternant code. In the parity check matrix

H =

⎡

⎢
⎢
⎢
⎢
⎣

y1g1(α1) y2g1(α2) · · · yng1(αn)
y1g2(α1) y2g2(α2) · · · yng2(αn)
y1g3(α1) y2g3(α2) · · · yng3(αn)

. . . · · · · · · · · ·
y1gr(α1) y2gr(α2) · · · yngr(αn)

⎤

⎥
⎥
⎥
⎥
⎦
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Algorithm 1. Constructing a dyadic signature
Input: q, m, s, n.
Output: A dyadic signature h = (h0, h1, . . . , hn−1) over GF(qm).

1: repeat

2: X = GF(qm) \ {0}; ̂h0
U← X; X = X \ {̂h0};

3: for (l = 0 to �log qm�) do

4: i = 2l; ̂hi
U← X; X = X \ {̂hi};

5: for (j = 1 to i − 1) do

6: if (̂hi �= 0 ∧̂hj �= 0 ∧ 1

̂hi

+
1

̂hj

+
1

̂h0
�= 0) then

7: ̂hi+j = 1/(
1

̂hi

+
1

̂hj

+
1

̂h0
);

8: else
9: ̂hi+j = 0; // undefined entry

10: end if
11: X = X \ {̂hi+j};
12: end for
13: end for
14: c = 0;

15: if (0 /∈ {̂h0, ̂h1, . . . , ̂hs−1}) then

16: b0 = 0; c = 1; B0 = {̂h0, ̂h1, . . . , ̂hs−1};
17: for (j = 1 to �qm/s� − 1) do

18: if (0 /∈ {̂hjs, ̂hjs+1, . . . , ̂h(j+1)s−1}) then

19: bc = j; c = c + 1; Bc = {̂hjs, ̂hjs+1, . . . , ̂h(j+1)s−1};
20: end if
21: end for
22: end if
23: until (cs ≥ n)
24: return h = (h0, h1, . . . , hn−1) = (B0, B1, . . . , Bc−1)

where gi(x) = ci1 + ci2x + · · · + cirx
r−1, i = 1, 2, . . . , r is a polynomial of

degree < r over GF(qm) for the Alternant code A(α,y), let r = st. Also set

g(l−1)t+k(x) =
s∏

j=1

(x − wj)t/(x − wl)k, l = 1, 2, . . . , s and k = 1, 2, . . . , t and

yi = zi/
s∏

j=1

(αi − wj)t, i = 1, 2, . . . , n so that yig(l−1)t+k(αi) = zi/(αi − wl)k.

The resulting code will be a Generalized Srivastava code.

3 Our KEM Protocol

We construct a key encapsulation mechanism KEM = (Setup,KeyGen,Encaps,
Decaps) as described below.

• KEM.Setup(1λ) −→ param : Taking security parameter λ as input, a trusted
authority proceeds as follows to generate the global public parameters param.

(i) Sample n0, p1, p2,m ∈ Z
+, set q = 2p1 , s = 2p2 and n = n0s < qm.

(ii) Select t ∈ Z
+ such that mst < n. Set w ≤ st/2 and k = n − mst.

(iii) Sample k′ ∈ Z
+ with k′ < k.

(iv) Select three cryptographically secure hash functions G : (GF(q))k
′ −→

(GF(q))k, H : (GF(q))k
′ −→ (GF(q))k′

and H′ : {0, 1}∗ −→ {0, 1}r where
r ∈ Z

+ denotes the desired key length.
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(v) Publish the global parameters param = (n, n0, k, k′, w, q, s, t, r,m,G,H,H′).

• KEM.KeyGen(param)−→ (pk, sk) : A user on input param, performs the fol-
lowing steps to generate the public key pk and secret key sk.

(i) Generate dyadic signature h = (h0, h1, . . . , hn−1) using Algorithm 1 where
hi ∈ GF(qm) for i = 0, 1, . . . , n − 1.

(ii) Select ω
U←− GF(qm) with ω �= 1

hj
+ 1

h0
, j = 0, 1, . . . , n − 1 and compute

ui = 1
hi

+ ω, i = 0, 1, . . . , s − 1 and vj = 1
hj

+ 1
h0

+ ω, j = 0, 1, . . . , n − 1.

Set u = (u0, u1, . . . , us−1) and v = (v0, v1, . . . , vn−1).
(iii) Construct st × n quasi-dyadic matrix A =

[
A1 A2 · · · At

]T where

Ai =⎡
⎢⎢⎢⎢⎣

1
(u0−v0)i

1
(u0−v1)i · · · 1

(u0−vn−1)i

1
(u1−v0)i

1
(u1−v1)i · · · 1

(u1−vn−1)i

· · · · · · · · · · · ·
1

(us−1−v0)i
1

(us−1−v1)i · · · 1
(us−1−vn−1)i

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

1
(v0−u0)i

1
(v1−u0)i · · · 1

(vn−1−u0)i

1
(v0−u1)i

1
(v1−u1)i · · · 1

(vn−1−u1)i

· · · · · · · · · · · ·
1

(v0−us−1)i
1

(v1−us−1)i · · · 1
(vn−1−us−1)i

⎤
⎥⎥⎥⎥⎦

is the s × n matrix block that can be written as Ai = [Âi1 |Âi2 | · · · |Âin0
].

Each block Âik
is an s× s dyadic matrix for k = 1, 2, . . . , n0. For instance,

take the first block

Âi1 =

⎡

⎢
⎢
⎢
⎣

1
(u0−v0)i

1
(u0−v1)i · · · 1

(u0−vs−1)i

1
(u1−v0)i

1
(u1−v1)i · · · 1

(u1−vs−1)i

· · · · · · · · · · · ·
1

(us−1−v0)i
1

(us−1−v1)i · · · 1
(us−1−vs−1)i

⎤

⎥
⎥
⎥
⎦

which is symmetric as ui −vj = 1
hi

+ 1
hj

+ 1
h0

= uj −vi and dyadic of order
s as the s × s matrix

⎡
⎢⎢⎢⎣

1
(u0−v0)

1
(u0−v1)

1
(u0−v2)

· · · 1
(u0−vs−1)

1
(u1−v0)

1
(u1−v1)

1
(u1−v2)

· · · 1
(u1−vs−1)

· · · · · · · · · · · · · · ·
1

(us−1−v0)
1

(us−1−v1)i
1

(us−1−v2)i · · · 1
(us−1−vs−1)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

h0 h1 h2 · · · hs−1

h1 h0 h3 · · · hs−2

· · · · · · · · · · · · · · ·
hs−1 hs−2 hs−3 · · · h0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h0⊕0 h0⊕1 h0⊕2 · · · h0⊕(s−1)

h1⊕0 h1⊕1 h1⊕2 · · · h1⊕(s−1)

· · · · · · · · · · · · · · ·
h(s−1)⊕0 h(s−1)⊕1 h(s−1)⊕2 · · · h(s−1)⊕(s−1)

⎤
⎥⎥⎦

can be derived from the first row of the block using the relation 1
hi⊕j

=
1
hi

+ 1
hj

+ 1
h0

. Since the powering process acts on every single element, Âi1

preserves its dyadic structure.
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(iv) Choose zis
U←− GF(qm), i = 0, 1, . . . , n0 − 1 and set zis+p = zis, p =

0, 1, . . . , s − 1 where n = n0s. Also set

z = (z0s, z0s+1, . . . , z0s+s−1; z1s, z1s+1, . . . , z1s+s−1; . . . ; z(n0−1)s, z(n0−1)s+1,

. . . , z(n0−1)s+s−1) = (z0, z1, . . . , zn−1) ∈ (GF(qm))n.

(v) Compute yj = zj/
s−1∏

i=0

(ui − vj)t for j = 0, 1, . . . , n − 1 and set y =

(y0, y1, . . . , yn−1) ∈ (GF(qm))n.
(vi) Construct st × n matrix B=

[
B1 B2 · · · Bt

]T where

Bi =

⎡

⎢
⎢
⎢
⎣

z0
(v0−u0)i

z1
(v1−u0)i · · · zn−1

(vn−1−u0)i

z0
(v0−u1)i

z1
(v1−u1)i · · · zn−1

(vn−1−u1)i

· · · · · · · · · · · ·
z0

(v0−us−1)i
z1

(v1−us−1)i · · · zn−1
(vn−1−us−1)i

⎤

⎥
⎥
⎥
⎦

is s × n matrix block. Sample a permutation matrix P of order st and
compute st × n matrix B = PB. The matrix B is a parity-check matrix
of the GS code equivalent to its parity check matrix as in Definition 4,
Subsect. 2.2.

(vii) Project B onto GF(q) using the co-trace function to form a mst×n matrix
C where co-trace function converts an element of GF(qm) to an element
of GF(q) with respect to a basis of GF(qm) over GF(q). For a ∈ GF(qm),
co-trace(a) = (a0, a1, . . . , am−1) ∈ (GF(q))m satisfying < g,a >= a0 +
a1q +a2q

2 + · · ·+am−1q
m−1 where ai ∈ GF(q) and g = (1, q, q2, . . . , qm−1)

is a basis of GF(qm) over GF(q). Thus if B = (bij) where bij ∈ GF(qm),
then C = (cij) is obtained from B by replacing bij by co-trace(bij). Write
the matrix C in the systematic form (M |In−k) where M is (n − k) × k
matrix with k = n − mst. Note that, the zi are chosen to be equally
having s-length block and all the operations during the row reduction are
performed block-wise. Consequently, the dyadic structure is maintained in

C and in particular in M . Let M =

⎡

⎢
⎢
⎣

M0,0 M0,1 · · · M0, k
s −1

M1,0 M1,1 · · · M1, k
s −1

· · · · · · · · · · · ·
Mmt−1,0 Mmt−1,1 · · · Mmt−1, k

s −1

⎤

⎥
⎥
⎦

where each block matrix Mi,j is s× s dyadic matrix with dyadic signature
ψi,j ∈ (GF(q))s which is the first row of Mi,j , i = 0, 1, . . . ,mt − 1, j =
0, 1, . . . , k

s − 1.
(viii) Publish the public key pk = {ψi,j | i = 0, 1, . . . , mt−1, j = 0, 1, . . . , k

s −1}
and keep the secret key sk = (v,y) to itself.

• KEM.Encaps(param, pk)−→ (CT,K) : Given system parameters param and
public key pk, an encapsulator proceeds as follows to generate a ciphertext
header CT ∈ (GF(q))n−k+k′

and an encapsulation key K ∈ {0, 1}r.
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Algorithm 2. Error vector derivation
Input: q, n, a seed s̄ = (s̄0, s̄1, . . . , s̄k−1) ∈ (GF(q))k, a weight w, a function F : GF(q) −→ Z

+.
Output: An error vector e of length n and weight w.

1: s = (s0, s1, . . . , sn−1)=Expand(s̄); // Expand is an expansion function
2: j = 0; temp = 0; d = 0; e = 0; v = 0;
3: for (i = 0 to n − 1) do
4: if (si mod q �= 0) then
5: if (j = w) then
6: break;

7: end if
8: temp = F(sd) mod n; d = d + 1;
9: for (ν = 0 to j) do
10: if (temp = vν) then
11: goto step 9;

12: end if
13: end for
14: vj = temp; etemp = si mod q; temp = 0; j = j + 1;

15: end if
16: end for
17: return e = (e0, e1, . . . , en−1)

(i) Sample m U←− (GF(q))k′
and compute r = G(m) ∈ (GF(q))k, d = H(m) ∈

(GF(q))k′
where G and H are the hash functions given in param.

(ii) Parse r as r = (ρ||σ) where ρ ∈ (GF(q))k−k′
, σ ∈ (GF(q))k′

. Set μ =
(ρ||m) ∈ (GF(q))k.

(iii) Run Algorithm 2 to generate a error vector e of length n − k and weight
w − wt(μ) using σ as a seed. Note that Algorithm 2 uses an expansion
function1. Set e′ = (e||μ) ∈ (GF(q))n.

(iv) Using the public key pk={ψi,j | i = 0, 1, . . . ,mt − 1, j = 0, 1, . . . , k
s −

1}, compute s × s dyadic matrix Mi,j with signature ψi,j ∈ (GF(q))s and
reconstruct the parity check matrix H = (M |In−k) for the the GS code
where n − k = mst and

M =

⎡

⎢
⎢
⎣

M0,0 M0,1 · · · M0, k
s −1

M1,0 M1,1 · · · M1, k
s −1

· · · · · · · · · · · ·
Mmt−1,0 Mmt−1,1 · · · Mmt−1, k

s −1

⎤

⎥
⎥
⎦

(v) Compute the syndrome c = H(e′)T and the encapsulation key K = H′(m)
where H′ is the hash function given in param.

(vi) Publish the ciphertext header CT = (c,d) and keep K as secret.

• KEM.Decaps(param, sk,CT)−→ K : On receiving a ciphertext header CT =
(c,d), a decapsulator executes the following steps using public parameters
param and its secret key sk = (v,y) where v = (v0, v1, . . . , vn−1) and y =
(y0, y1, . . . , yn−1).

(i) First proceed as follows to decode c and find error vector e′′ of length n
and weight w:

1 For example, kangaroo twelve function [10] can be used as an expansion function.
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(a) Use sk = (v,y) to construct st × n matrix H ′ in the form
⎡

⎢
⎢
⎢
⎢
⎣

y0 y1 · · · yn−1

v0y0 v1y1 · · · vn−1yn−1

v2
0y0 v2

1y1 · · · v2
n−1yn−1

· · · · · · · · · · · ·
vst−1
0 y0 vst−1

1 y1 · · · vst−1
n−1 yn−1

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
v0 v1 · · · vn−1

v2
0 v2

1 · · · v2
n−1

· · · · · · · · · · · ·
vst−1
0 vst−1

1 · · · vst−1
n−1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

y0 0 · · · 0
0 y1 · · · 0
0 0 y2 0

· · · · · · · · · · · ·
0 0 · · · yn−1

⎤

⎥
⎥
⎥
⎥
⎦

.

Note that, H ′ is a parity check matrix in alternant form of the GS code
over GF(qm) whereas the matrix H = [M |I(n−k)] constructed during
KEM.KeyGen or KEM.Encaps is a parity check matrix in the systematic
form of the GS code over GF(q).
(b) As the GS code is an Alternant code, the parity check matrix H ′ is
used to decode c by first computing the syndrome S = H ′(c||0)T where 0
represents the vector (0, 0, . . . , 0) of length k and then by running decod-
ing algorithm for the Alternant code to find the error locator polyno-

mial ω(z) =
w∑

ν=1
Yνyiν

w∏

μ=1,μ�=ν

(1 − Xμz) and error evaluator polynomial

σ(z) =
w∏

i=1

(1 − Xiz). Let X1 = vi1 ,X2 = vi2 , . . . , Xw = viw
be the error

locations and Y1 = eX1 , Y2 = eX2 , . . . , Yw = eXw
be the error values.

(c) Set e′′ = (e1, e2, . . . , en) with ej =

{
0 if j �= Xi, 1 ≤ i ≤ w

Yi if j = Xi, 1 ≤ i ≤ w
.

(ii) Let e′′ = (e0||μ′) ∈ (GF(q))n and μ′=(ρ′||m′) ∈ (GF(q))k where e0 ∈
(GF(q))n−k, ρ′ ∈ (GF(q))k−k′

, m′ ∈ (GF(q))k′
.

(iii) Compute r′ = G(m′) ∈ (GF(q))k and d′ = H(m′) ∈ (GF(q))k′
where G and

H are the hash functions given in param.
(iv) Parse r′ as r′ = (ρ′′||σ′) where ρ′′ ∈ (GF(q))k−k′

, σ′ ∈ (GF(q))k′
.

(v) Run Algorithm 2 to generate deterministically an error vector e′
0 of length

n − k and weight w − wt(μ′) using σ′ as seed.
(vi) If (e0 �= e′

0) ∨ (ρ′ �= ρ′′) ∨ (d �= d′), output ⊥ indicating decapsulation
failure. Otherwise, compute the encapsulation key K = H′(m′) where H′

is the hash function given in param.

Correctness: While decoding c, we form an st × n parity check matrix H ′

over GF(qm) using the secret key sk = (v,y) and find the syndrome H ′(c||0)T

to estimate the error vector e′′ ∈ (GF(q))n with wt(e′′) = w. Note that, the
ciphertext component c = H(e′)T is the syndrome of e′ where the matrix H is a
parity check matrix in the systemetic form over GF(q) which is indistinguishable
from a random matrix over GF(q). At the time of decoding c, we need a parity
check matrix in alternant form over GF(qm). The parity check matrix H, a
parity check matrix of GS code in the systemetic form derived from the public
key pk, does not help to decode c as the SD problem is hard over GF(q). The
decoding algorithm in our decapsulation procedure uses the parity check matrix
H ′ (derived from the secret key sk) which is in alternant form over GF(qm).
This procedure can correct upto st/2 errors. In our scheme, the error vector e′
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used in the procedure KEM.Encaps satisfies wt(e′) = w ≤ st/2. Consequently,
the decoding procedure will recover the correct e′. We regenerate e′

0 and ρ′′

and compare it with e0 and ρ′ obtained after decoding. Since the error vector
generation uses a deterministic function to get a fixed low weight error vector,
e0 = e′

0 and ρ′ = ρ′′ occurs.

4 Security

4.1 Security Notions

Definition 5 (Indistinguishability under Chosen Plaintext Attack (IND-CPA) [13]).
The IND-CPA game between a challenger S and a PPT adversary A for a public
key encryption scheme PKE=(Setup, KeyGen, Enc, Dec) is described below.

1. The challenger S generates param ←− PKE.Setup(1λ), (pk, sk) ←−
PKE.Key-Gen(param) where λ is a security parameter and sends param, pk
to A.

2. The adversary A sends a pair of messages m0,m1 ∈ M of the same length
to S.

3. The challenger S picks a random bit b ∈ {0, 1}, computes a challenge cipher-
text CT ←− PKE.Enc(param, pk,mb; rb) and sends it to A.

4. The adversary outputs a bit b′.

The adversary A wins the game if b′ = b. We define the advantage of A against
the above IND-CPA security game for the PKE scheme as

AdvIND-CPA
PKE (A) = |Pr[b′ = b] − 1/2|.

A PKE scheme is IND-CPA secure if AdvIND-CPA
PKE (A) < ε where ε > 0 is arbitrarily

small.
We also define the following four security notions for PKE scheme that are

(i) One-Wayness under Chosen Plaintext Attacks (OW-CPA), (ii) One-Wayness
under Plaintext Checking Attacks (OW-PCA), (iii) One-Wayness under Validity
Checking Attacks (OW-VA) and (iv) One-Wayness under Plaintext and Validity
Checking Attacks (OW-PCVA).

Definition 6 (OW-ATK [15]). For ATK ∈ {CPA,PCA,VA,PCVA}, the OW-ATK
game between a challenger S and a PPT adversary A for a public key encryption
scheme PKE = (Setup, KeyGen, Enc, Dec) is outlined below where A can make
polynomially many queries to the oracle OATK given by

OATK =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ATK = CPA

PCO(·, ·) ATK = PCA

CVO(·) ATK = VA

PCO(·, ·),CVO(·) ATK = PCVA

where the oracle PCO(·, ·) takes a message m and a ciphertext CT as input and
checks if the message recovered from CT is m or not while the oracle CVO(·)
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takes a ciphertext CT as input distinct from the challenge ciphertext CT∗ and
checks whether the message recovered from CT belongs to the message space or
not.

1. The challenger S generates param ←− PKE.Setup(1λ), (pk, sk) ←−
PKE.Key-Gen(param) where λ is a security parameter and sends param, pk
to A.

2. The challenger S chooses a message m∗ ∈ M, computes the challenge cipher-
text CT∗ ←− PKE.Enc(param, pk,m∗; r∗) and sends it to A.

3. The adversary A having access to the oracle OATK, outputs m′.

The adversary A wins the game if m′ = m∗. We define the advantage of A
against the above OW-ATK security game for PKE scheme as AdvOW-ATK

PKE (A) =
Pr[m′ = m∗]. The PKE scheme is said to be OW-ATK secure if AdvOW-ATK

PKE (A) <
ε for arbitrarily small non zero ε.

Definition 7 (Indistinguishability under Chosen Ciphertext Attack (IND-CCA)
[19]). The IND-CCA game between a challenger S and a PPT adversary A
for a key encapsulation mechanism KEM= (Setup, KeyGen, Encaps, Decaps) is
described below.

1. The challenger S generates param ←− KEM.Setup(1λ) and (pk, sk) ←−
KEM.KeyGen(param) where λ is a security parameter and sends param, pk
to A.

2. The PPT adversary A has access to the decapsulation oracle KEM.Decaps to
which A can make polynomially many ciphertext queries CTi and gets the
corresponding key Ki ∈ K from S.

3. The challenger S picks a random bit b from {0, 1}, runs KEM.Encaps(param,
pk) to generate a ciphertext-key pair (CT∗,K∗

0 ) with CT∗ �= CTi, selects
randomly K∗

1 ∈ K and sends the pair (CT∗,K∗
b ) to A.

4. The adversary A having the pair (CT∗,K∗
b ) keeps performing polynomially

many decapsulation queries on CTi �= CT∗ and outputs b′.

The adversary succeeds the game if b′ = b. We define the advantage of A against
the above IND-CCA security game for the KEM as

AdvIND-CCA
KEM (A) = |Pr[b′ = b] − 1/2|.

A KEM is IND-CCA secure if AdvIND-CCA
KEM (A) < ε where ε > 0 is arbitrarily small.

4.2 Security Proof

Our KEM provides IND-CCA security in random oracle model by Theorem 1.

Theorem 1. Assuming the hardness of decisional SD problem (Definition 1,
Sect. 2.1) and indistinguishability of the public key matrix H (derived from the
public key pk by running KEM.KeyGen(param) where param ←− KEM.Setup(1λ),
λ being the security parameter), our KEM = (Setup,KeyGen,Encaps,Decaps)
described in Sect. 3 provides IND-CCA security (Definition 7, Sect. 4.1) when the
hash functions H′ and G are modeled as random oracles.
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• PKE1.Setup(1λ) −→ param : A trusted authority runs KEM.Setup(1λ) to get global parameters
param = (n, n0, k, k′, w, q, s, t, r, m, G, , ′) taking security parameter λ as input.

• PKE1.KeyGen(param) −→ (pk, sk) : A user generates public-secret key pair (pk, sk) by running
KEM.KeyGen(param) where pk = {ψi,j |i = 0, 1, . . . , mt−1, j = 0, 1, . . . , k

s −1}, ψi,j ∈ (GF(q))s

and sk = (v,y).

• PKE1.Enc(param, pk,m; r) −→ CT : An encryptor encrypts a message m ∈ M = (GF(q))k′
and

produces a ciphertext CT as follows.

1. Compute r = G(m) ∈ (GF(q))k, d = (m) ∈ (GF(q))k′
.

2. Parse r = (ρ||σ) where ρ ∈ (GF(q))k−k′
, σ ∈ (GF(q))k′

. Set μ = (ρ||m) ∈ (GF(q))k.
3. Run Algorithm 2 using σ as a seed to obtain an error vector e of length n − k and weight

w − wt(μ) and set e′ = (e||μ) ∈ (GF(q))n.
4. Use the public key pk = {ψi,j |i = 0, 1, . . . , mt − 1, j = 0, 1, . . . , k

s − 1} as in

KEM.Encaps(param,pk) and construct the matrix H(n−k)×n = (M |In−k) where M = (Mi,j),

Mi,j is a s × s dyadic matrix with signature ψi,j , i = 0, 1, . . . , mt − 1, j = 0, 1, . . . , k
s − 1.

5. Compute c = H(e′)T . Return the ciphertext CT = (c, d) ∈ C = (GF(q))n−k+k′
.

• PKE1.Dec(param, sk,CT) −→ m′ : On receiving the ciphertext CT, the decryptor executes the
following steps using public parameters param and its secret key sk = (v,y).
1. Use the secret key sk = (v,y) to form a parity check matrix H′ as in the procedure

KEM.Decaps(param,sk,CT).
2. To decode c (extracted from CT), find error e′′ of weight w and length n by running the

decoding algorithm for Alternant codes with syndrome H′(c||0)T .

3. Parse e′′ = (e0||μ′) ∈ (GF(q))n and μ′=(ρ′||m′) ∈ (GF(q))k where e0 ∈ (GF(q))n−k,

ρ′ ∈ (GF(q))k−k′
, m′ ∈ (GF(q))k′

.

Compute r′ = G(m′) ∈ (GF(q))k and d′ = (m′) ∈ (GF(q))k′
.

4. Parse r′ = (ρ′′||σ′) where ρ′′ ∈ (GF(q))k−k′
, σ′ ∈ (GF(q))k′

.
5. Generate error vector e′

0 of length n−k and weight w −wt(μ′) by running Algorithm 2 with
σ′ as seed.

6. If (e0 �= e′
0) ∨ (ρ′ �= ρ′′) ∨ (d �= d′), output ⊥ indicating decryption failure. Otherwise,

return m′.

Fig. 1. Scheme PKE1 = (Setup,KeyGen,Enc,Dec)

The proof of the above theorem is the immediate consequence of Theorem 2,
Corollary 1 and Theorem 4.

Theorem 2. If the public key encryption scheme PKE1 = (Setup,KeyGen,Enc,
Dec) described in Fig. 1 is OW-VA secure (Definition 6, Sect. 4.1) and there exist
cryptographically secure hash functions, then the key encapsulation mechanism
KEM = (Setup,KeyGen,Encaps,Decaps) as described in Sect. 3 achieves IND-
CCA security (Definition 7, Sect. 4.1) when the hash function H′ is modeled as
a random oracle.

Proof. Let B be a PPT adversary against the IND-CCA security of KEM pro-
viding at most nD queries to KEM.Decaps oracle and at most nH′ queries to
the hash oracle H′. We show that ∃ a PPT adversary A against the OW-VA
security of the scheme PKE1. We start with a sequence of games and the view
of the adversary B is shown to be computationally indistinguishable in any of
the consecutive games. Finally, we end up in a game that statistically hides the
challenge bit as required. All the games are defined in Figs. 2 and 3. Let Ej be
the event that b = b′ in game Gj , j = 0, 1, 2, 3.



188 J. Dey and R. Dutta

• The challenger S generates param ←− KEM.Setup(1λ) and (pk, sk) ←− KEM.KeyGen(param) for
a security parameter λ and sends param, pk to B.

• The PPT adversary B has access to the decapsulation oracle KEM.Decaps to which B can make
polynomially many ciphertext queries CTi and gets the corresponding key Ki ∈ K = {0, 1}r

from S.
• The challenger S picks a random bit b from {0, 1}, runs KEM.Encaps(param, pk) to generate a

ciphertext-key pair (CT∗, K∗
0 ) with CT∗ �= CTi, selects randomly K∗

1 ∈ K and sends the pair
(CT∗, K∗

b ) to B.
• The adversary B having the pair (CT∗, K∗

b ) keeps performing polynomially many decapsulation
queries on CTi �= CT∗ and outputs b′.

Fig. 2. Game G0 in the proof of Theorem 2

• The challenger S generates param ←− PKE1.Setup(1λ), (pk, sk) ←− PKE1.KeyGen(param) for a
security parameter λ and sends param, pk to B.

• The PPT adversary B has access to the decapsulation oracle Decaps (see Figure 4) to which B
can make polynomially many ciphertext queries CTi and gets the corresponding key Ki ∈ K
from S.

• The challenger S picks a random bit b from {0, 1}, chooses a message m∗ U←− M, runs
PKE1.Enc(param, pk,m∗; r∗) to generate a ciphertext CT∗, computes K∗

0 = ′(m∗), selects
randomly K∗

1 ∈ K and sends the pair (CT∗, K∗
b ) to B.

• The adversary B having the pair (CT∗, K∗
b ) keeps performing polynomially many decapsulation

queries on CTi �= CT∗ to Decaps oracle and hash queries on mi to hash oracle ′and outputs
b′ (see Figure 4 for hash oracle ′ and decapsulation oracle Decaps).

Fig. 3. Sequence of games Gj , j = 1, 2, 3 in the proof of Theorem 2

Game G0: As usual, game G0 (Fig. 2) is the standard IND-CCA security game
(Definition 7, Sect. 4.1) for the KEM and we have |Pr[E0]−1/2| = AdvIND-CCA

KEM (B).
Game G1: In game G1, a message m∗ is chosen randomly and the cipher-
text CT∗ is computed by running PKE1.Enc(param, pk,m∗; r∗). The challenger
S maintains a hash list QH′ (initially empty) and records all entries of the form
(m,K) where hash oracle H′ is queried on some message m ∈ M. Note that
both games G0 and G1 proceed identically and we get Pr[E0] = Pr[E1].
Game G2: In game G2, the hash oracle H′ and the decapsulation oracle Decaps
are answered in such a way that they no longer make use of the secret key sk
except for testing whether PKE1.Dec(param, sk,CT) ∈ M for a given ciphertext
CT (line 12 of Decaps oracle in Fig. 4). The hash list QH′ records all entries of the
form (m,K) where hash oracle H′ is queried on some message m ∈ M. Another
list QD stores entries of the form (CT,K) where either Decaps oracle is queried
on some ciphertext CT or the hash oracle H′ is queried on some message m ∈
M satisfying CT ←− PKE1.Enc(param, pk,m; r) with PKE1.Dec(param, sk,CT)
−→ m.

Let X denotes the event that a correctness error has occurred in the
underlying PKE1 scheme. More specifically, X is the event that either the list
QH′ contains an entry (m,K) with the condition PKE1.Dec(param, sk,PKE1.
Enc(param, pk,m; r)) �= m or the list QD contains an entry (CT,K) with the
condition PKE1.Enc(param, pk,PKE1.Dec(param, sk,CT); r) �= CT or both.
Claim: The view of B is identical in games G1 and G2 unless the event X
occurs.



Secure KEM with Compact Ciphertext and Public Key from GS Code 189

′(m)

1. for the game G1,G2,G3 do
2. if ∃K such that (m, K) ∈ Q ′
3. return K;
4. end if
5. CT = (c,d) ←− PKE1.Enc(param, pk,m; r);

6. K
U←− K;

7. end for
8. for the game G3 do
9. if m = m∗ and CT∗ defined
10. Y = true;
11. abort;
12. end if
13. end for
14. for the game G2,G3 do
15. if ∃K′ such that (CT, K′) ∈ QD

16. K = K′;
17. else
18. QD = QD ∪ {(CT, K)};
19. end if
20. end for
21. for the game G1,G2,G3 do
22. Q ′ = Q ′ ∪ {(m, K)};
23. return K;
24. end for

Decaps(CT �= CT∗)

1. for game G1 do
2. m′ ←− PKE1.Dec(param, sk,CT);
3. if m′ = ⊥
4. return ⊥;
5. end if
6. return K = H′(m′);
7. end for
8. for games G2,G3 do
9. if ∃K such that (CT, K) ∈ QD

10. return K;
11. end if
12. if PKE1.Dec(param, sk,CT) /∈ M
13. return ⊥;
14. end if
15. K

U←− K ;
16. QD = QD ∪ {(CT, K)};
17. return K;
18. end for

Fig. 4. The hash oracles H′ and the decapsulation oracle Decaps for games Gj , j =
1, 2, 3 in the proof of Theorem 2

ACVO(·)(param, pk,CT∗)

1. K∗ U←− K;

2. b′ ←− BDecaps(·), ′(·)(param, pk,CT∗, K∗);
3. if ∃(m′, K′) ∈ Q ′ such that

PKE1.Enc(param, pk,m′; r) −→ CT∗

4. return m′;
5. else
6. abort;
7. end if

Decaps(CT �= CT∗)

1. if ∃K such that (CT, K) ∈ QD

2. return K;
3. end if
4. if CVO(CT) = 0
5. return ⊥;
6. end if
7. K

U←− K;
8. QD = QD ∪ {(CT, K)};
9. return K;

Fig. 5. Adversary A against OW-VA security of PKE1

Proof of claim. To prove this, consider a fixed PKE1 ciphertext CT (placed as
a Decaps query) with m ←− PKE1.Dec(param, sk,CT). Note that when m /∈
M, the decapsulation oracle Decaps(CT) returns ⊥ in both games G1 and G2.
Suppose m ∈ M. We now show that in game G2, Decaps(CT) −→ H′(m) for the
PKE1 ciphertext CT of a message m ∈ M with PKE1.Enc(param, pk,m; r) −→
CT. We distinguish two cases – B queries hash oracle H′ on m before making
Decaps oracle on CT, or the other way round.

Case 1: Let the oracle H′ be queried on m first by B before decapsulation query
on PKE1 ciphertext CT. Since Decaps oracle was not yet queried on CT, no entry
of the form (CT,K) exist in the current list QD yet. Therefore, besides adding
(m,K

U←− K) to the list QH′(line 22 of H′ oracle in Fig. 4), the challenger S
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also adds (CT,K) to the list QD (line 18 of H′ oracle in Fig. 4), thereby defining
Decaps(CT) −→ K = H′(m).
Case 2: Let the oracle Decaps be queried on PKE1 ciphertext CT before the
hash oracle H′ is queried on m. Then no entry of the form (CT,K) exists in
QD yet. Otherwise, H′ already was queried on a message m′′ �= m (because
Decaps oracle is assumed to be queried first on CT and the oracle H′ was
not yet queried on m) satisfying PKE1.Enc(param, pk,m′′; r′′) −→ CT with
PKE1.Dec(param, sk,CT) −→ m′′. This is a contradiction to the fact that the
same PKE1 ciphertext CT is generated for two different messages m′′,m using
randomness r, r

′′
respectively where r = G(m) �= G(m′′) = r′′ for a cryptograph-

ically secure hash function G. Therefore,Decaps oracle adds (CT,K
U←− K) to

the list QD, thereby defining Decaps(CT) −→ K. When queried on m afterwards
for hash oracle H′, an entry of the form (CT,K) already exists in the list QD

(line 15 of H′ oracle in Fig. 4). By adding (m,K) to the list QH′ and returning
K, the hash oracle H′ defines H′(m) = K ←− Decaps(CT).

Hence, B’s view is identical in games G1 and G2 unless a correctness error
X occurs. � (of Claim)

As Pr[X] = 0 for our KEM, we have Pr[E1] = Pr[E2].
Game G3: In game G3, the challenger S sets a flag Y = true and aborts
(with uniformly random output) immediately on the event when B queries the
hash oracle H′ on m∗. Hence, |Pr[E2] − Pr[E3]| ≤ Pr[Y = true]. In game
G3, H′(m∗) will never be given to B neither through a query on hash ora-
cle H′ nor through a query on decapsulation oracle Decaps, meaning bit b
is independent from B’s view. Thus, Pr[E3] = 1/2. To bound Pr[Y = true],
we construct an adversary A against the OW-VA security of PKE1 simulat-
ing game G3 for B as in Fig. 5. Here B uses Decaps oracle given in Fig. 5
with the same hash oracle H′ for game G2 in Fig. 4. Consequently, the sim-
ulation is perfect until Y = true occurs. Furthermore, Y = true ensures that
B has queried H′(m∗), which implies that (m∗,K ′) ∈ QH′ for some K ′ ∈ K
where the list QH′ is maintained by the adversary A simulating G3 for B. In
this case, we have PKE1.Enc(param, pk,m∗; r∗) −→ CT∗ and hence A returns
m∗. Thus, Pr[Y = true] = AdvOW-VA

PKE1
(A). Combining all the probabilities, we

get AdvIND-CCA
KEM (B) = |Pr[E0] − 1/2| = |Pr[E1] − 1/2| = |Pr[E2] − 1/2| =

|Pr[E2] − Pr[E3]| ≤ Pr[Y = true] = AdvOW-VA
PKE1

(A) which completes our proof. �

Theorem 3. If the public key encryption scheme PKE2 = (Setup,KeyGen,Enc,
Dec) described in Fig. 6 is IND-CPA secure (Definition 5, Sect. 4.1), then the
public key encryption scheme PKE1 = (Setup,KeyGen,Enc,Dec) as described
in Fig. 1 provides OW-PCVA security (Definition 6, Sect. 4.1) when the hash
function G is modeled as a random oracle.
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• PKE2.Setup(1λ) −→ param : A trusted authority takes security parameter λ as input and runs

PKE1.Setup(1λ) to get public parameters param = (n, n0, k, k′, w, q, s, t, r, m, G, , ′).

• PKE2.KeyGen(param) −→ (pk, sk) : A user generates the key pair (pk, sk) by running
PKE1.KeyGen(param) where the public key pk = {ψi,j | i = 0, 1, . . . , mt−1, j = 0, 1, . . . , k

s −1},
ψi,j ∈ (GF(q))s and the secret key sk = (v,y).

• PKE2.Enc(param, pk,m; r) −→ c : An encryptor encrypts a message m ∈ M = (GF(q))k′
and

produces a ciphertext c as follows.

1. Compute r = G(m) ∈ (GF(q))k, d = (m) ∈ (GF(q))k′
.

2. Parse r = (ρ||σ) where ρ ∈ (GF(q))k−k′
, σ ∈ (GF(q))k′

. Set μ = (ρ||m) ∈ (GF(q))k.
3. Run Algorithm 2 using σ as a seed to obtain an error vector e of length n − k and weight

w − wt(μ) and set e′ = (e||μ) ∈ (GF(q))n.
4. Use the public key pk = {ψi,j |i = 0, 1, . . . , mt − 1, j = 0, 1, . . . , k

s − 1} as in

PKE1.Enc(param, pk,m; r) and construct the matrix H(n−k)×n = (M |In−k) where M =
(Mi,j), Mi,j is a s × s dyadic matrix with signature ψi,j , i = 0, 1, . . . , mt − 1, j =

0, 1, . . . , k
s − 1. Compute c = H(e′)T .

• PKE2.Dec(param, sk, c) −→ m′ : On receiving the ciphertext c, the decryptor performs the
following steps using public parameters param and its secret key sk = (v,y).
1. Use the secret key sk = (v,y) to form a parity check matrix H′ as in the procedure

PKE1.Dec(param, sk,CT)
2. To decode c, find error e′′ of weight w and length n by running the decoding algorithm for

Alternant codes with syndrome H′(c||0)T .

3. Parse e′′ = (e0||μ′) ∈ (GF(q))n and μ′=(ρ′||m′) ∈ (GF(q))k where e0 ∈ (GF(q))n−k,

ρ′ ∈ (GF(q))k−k′
, m′ ∈ (GF(q))k′

. Return m′.

Fig. 6. Scheme PKE2 = (Setup,KeyGen,Enc,Dec)

The OW-PCVA security for a PKE scheme trivially implies the OW-VA secu-
rity of the PKE scheme considering zero queries to the PCO(·, ·) oracle. Therefore,
the following corollary is an immediate consequence of Theorem 3.

Corollary 1. If the public key encryption scheme PKE2 =(Setup,KeyGen,Enc,
Dec) described in Fig. 6 is IND-CPA secure (Definition 5, Sect. 4.1), then the
public key encryption scheme PKE1 = (Setup,KeyGen,Enc,Dec) as described in
Fig. 1 provides OW-VA security (Definition 6, Sect. 4.1) when the hash function
G is modeled as a random oracle.

Theorem 4. If the decisional SD problem (Definition 1, Sect. 2.1) is hard, the
public key matrix H (derived from the public key pk which is generated by run-
ning PKE2.KeyGen(param) where param ←− PKE2.Setup(1λ)) is indistinguish-
able (Definition 2, Sect. 2.1) and the hash function G is modeled as a random
oracle, then the public key encryption scheme PKE2 = (Setup,KeyGen,Enc,Dec)
presented in Fig. 6 is IND-CPA secure (Definition 5, Sect. 4.1).

Due to limited space, proofs of Theorems 3 and 4 will appear in the full
version of the paper.

Remark 1. The KEM protocol also can be shown to provide security in quantum
random oracle model following the work in [15] and thus we can get Theorem 5.

Theorem 5. Assuming the hardness of decisional SD problem (Definition 1,
Sect. 2.1) and indistinguishability of the public key matrix H (derived from the
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public key pk by running KEM.KeyGen(param) where param ←− KEM.Setup(1λ),
λ being the security parameter), our KEM = (Setup,KeyGen,Encaps,Decaps)
described in Sect. 3 provides IND-CCA security (Definition 7, Sect. 4.1) when the
hash functions G,H and H′ are modeled as quantum random oracles.

Note that, proof of Theorem 5 follows from Theorems 4, 6 and 7 along with
the fact that IND-CPA security implies OW-CPA security.

Theorem 6. If the public key encryption scheme PKE2 = (Setup,KeyGen,Enc,
Dec) described in Fig. 6 is OW-CPA secure (Definition 6, Sect. 4.1), then the
public key encryption scheme PKE1 = (Setup,KeyGen,Enc,Dec) as described in
Fig. 1 provides OW-PCA security (Definition 6, Sect. 4.1) when the hash function
G is modeled as a quantum random oracle.

Theorem 7. If the public key encryption scheme PKE1 = (Setup,KeyGen,Enc,
Dec) described in Fig. 1 is OW-PCA secure (Definition 6, Sect. 4.1) and there
exist cryptographically secure hash functions, then the key encapsulation mech-
anism KEM = (Setup,KeyGen,Encaps,Decaps) as described in Sect. 3 achieves
IND-CCA security (Definition 7, Sect. 4.1) when the hash functions H and H′

are modeled as quantum random oracles.

5 Conclusion

In this work, we give a proposal to design an IND-CCA secure key encapsu-
lation mechanism based on Generalized Srivastava codes. In terms of storage,
our work seems well as compared to some other code-based KEM protocols as
shown in Table 1. The scheme instantiated with Generalized Srivastava code does
not involve any correctness error like some lattice-based schemes which allows
achieving a simpler and tighter security bound for the IND-CCA security. In
the upcoming days, it would be desirable to devise more efficient and secure
constructions using suitable error-correcting codes.
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Abstract. The security of McEliece’s cryptosystem relies heavily on
the hardness of decoding a random linear code. The best known generic
decoding algorithms are derived from the Information-Set Decoding
(ISD) algorithm. This was first proposed in 1962 by Prange and subse-
quently improved in 1989 by Stern and later in 1991 by Dumer. In 2001
Al Jabri introduced a new decoding algorithm for general linear block
codes which does not belong to this family, called Statistical Decoding
(SD). Since then, like for the Information Set Decoding algorithm, there
have been numerous work done to improve and generalize the SD algo-
rithm. In this paper, we improve the SD algorithm using the notion of
bases lists in binary case. Then, we give a non binary version of this
improvement. Finally, we have computed complexity analysis and have
made a complexity comparison of our results with that of recent results
on SD algorithm and complexity of classic ISD algorithm.

Keywords: Code-based cryptography · Statistical decoding ·
McEliece system · Linear block code · Base list · MO-fusion

1 Introduction

Code-based cryptography, introduced by McEliece [9] in 1978, is one of the
most promising solutions for designing cryptosystems that are secure against
quantum attacks. The McEliece public-key encryption scheme using binary
Goppa codes, has so far successfully resisted all cryptanalysis efforts. Its secu-
rity relies on the fact that the public key does not have any known structure.
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Therefore, an attacker is faced with the problem of decoding a random code.
The primary method to achieve this is by using generic decoding algorithm like
Information-Set Decoding (ISD), introduced by Prange in 1962 [14]. Since then,
there have been numerous improvements in ISD: among others, we mention
Peters in 2010 [13], May, Meurer and Thomae in 2011 [7], Becker, Joux, May
and Meurer in 2012 [1], May and Ozerov in 2015 [8], Hirose in 2016 [5] and
recently Gueye et al. in 2017 [4].

In 2001, Al Jabri [6] introduced a new decoding algorithm called Statistical
Decoding (SD) for general linear block codes. The SD algorithm generates a
direct estimate of the error locations based on exploiting the statistical infor-
mation embedded in the classical syndrome decoding. This new algorithm is
not efficient as the ISD for codes having large cardinal. Nevertheless, it remains
effective for the codes of small cardinal. Overbeck [12] in 2006 made the first
improvement of the SD algorithm introduced by Al Jabri. He showed how to
compute parity-check equations using Stern’s algorithm [15]. In his improve-
ment he used iterative algorithm to produce a few parity-check equations of
small weight.

In 2007, Fossorier et al. [3] proposed a new variant of the SD algorithm. Their
version is iterative. It is a two-stage algorithm : during the first step they compute
an exponentially large number of parity-check equations of the smallest possible
weight w, and then from these parity-check equations they are able to recover
the error by some kind of majority voting based on these parity-check equations.
In 2011, Niebuhr [11] gave the first generalization of the SD algorithm. He found
that the biases in the binary case is not same to the q-ary case. In his paper, he
gives an application of the SD algorithm and an instance of SD algorithm using
the automorphism group of the code. In 2017, ten years after Overbeck, Debris-
Alazard and Tillich [2] introduced a new improvement of the SD algorithm for
the binary case. In their paper they used the technique used to improve ISD
algorithm. They calculated a lower bound of complexity of SD algorithm and
compared their improvement with the ISD algorithm.

In this paper our main contributions are to improve Statistical Decoding
algorithm for the binary case. In addition we also generalize this new improve-
ment over a finite field Fq, where q is an arbitrary prime power. The paper is
organized as follows: we start in Sect. 2 by providing some definitions and nota-
tion on coding theory. In Sect. 3, we present our new algorithm. In Sect. 4 we
give a generalization of our improvement. Finally, in Sect. 5 we give a complexity
analysis and provide a numerical complexity table, then in Sect. 6 we compare
our algorithm with the previous generalization. Section 7 consists of conclusion.

2 Coding Theory Background

2.1 Notations

We use the following notation conventions:

• wt(x) = | {i s.t xi �= 0} | the Hamming weight of x.
• Sw :=

{
x ∈ F

n
q : wt(x) = w

}
is the set of all q-ary words of weight w.
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• Sw,i := {x ∈ Sw : xi �= 0} is the set of words whose i-th position is not zero.
• Hw := Sw ∩ C⊥ is the set of all codewords of weight w in the dual of C.
• Hw,i := Sw,i ∩ C⊥ is the set of all codewords in the dual of C whose i-th

position is not zero.
• h ∼ Sw,i means we pick h uniformly at random in Sw,i.
• ck = R = k

n• ct = t
n• cw = w
n

• cd = d
n

2.2 Definitions

Let Fq be a finite field (q = pm, p is prime). A q-ary linear code C of length n and
dimension k over Fq is a vector subspace of dimension k of the full vector space
F

n
q . The code can be specified by a full rank matrix G ∈ F

k×n
q called generator

matrix of C whose rows span the code. Namely, C =
{
xG : x ∈ F

k
q

}
. A linear

code can be also defined by the right kernel of matrix H called parity-check
matrix of C as follows:

C =
{
x ∈ F

k
q : HxT = 0

}

The Hamming distance between two codewords x and y denoted by
dH(x,y) = t is the number of positions (coordinates) where they differ. The
minimal distance of a code is the minimum distance between any two code-
words. The Hamming weight of a codeword x ∈ F

n
q , denote by wt(x), is the

number of its nonzero positions. Then the minimal weight of a code C is the
minimum of the weights of all codewords. If a code C is linear, the minimal
distance is equal to the minimal weight of the code.

Let C be a q-ary linear code of length n, dimension k and generator matrix
G =

(
g0,g1, · · · ,gn−1

)
with gi ∈ F

k
q for all i ∈ {0, 1, · · · , n − 1}. Let I ⊂

{0, 1, · · · , n − 1} with |I| = k. We call I an Information Set if and only if the
matrix GI = (gi)i∈I is invertible.

For the rest of this paper, we denote the redundancy set by J =
{0, 1, . . . , n − 1} \ I with I an information set.

For all integers n, let [n] = {1, 2, . . . , n}. If I is a subset of [n], for all vector
x = (x1, x2, . . . , xn) ∈ F

n
q , let xI = (xi)i∈I .

We denote θ, as a mapping defined by

θ : Fq −→ F2

x �−→
{
0 if x = 0
1 if x �= 1

For all x = (x1, ..., xn), y = (y1, ..., yn) ∈ F
n
q we set 〈x,y〉 = xyT =

n∑

i=1

xiyi.
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Finally, we recall here the usual definition of the q-ary entropy function [10] :

Hq(x) = x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x).

Also in the binary case, we use the notation :

H(x) = −x log2(x) − (1 − x) log2(1 − x).

3 Improvement of Statistical Decoding Algorithm

3.1 Statistical Decoding Algorithm

Before talking about the improvement of SD it is necessary to recall and analyze
the basic idea underlying the algorithm.

The main idea of statistical decoding consists of two parts. First, one com-
putes a large set S ⊂ Hw of parity-check equations of weight w. Second, com-
putes all scalar product for h ∈ S. Let us denote the number of equations
(optimal parity-check equations) necessary for the SD success by Pw. Below we
present the original SD algorithm [2]:

Algorithm 1. Statistical Decoding Algorithm
Input: A generator matrix G ∈ F

k×n
2 of a linear code C of length n and dimension k,

a nonzero integer w and a noisy codeword y = mG + e ∈ F
n
2 .

Output: The error vector e ∈ F
n
2 such that wt(e) ≤ w

1. Procedure: SD(G, y, w)
2. For i = 1 to n do:
3. Si ←− ParityCheckComputationw(G, i)
4. Vi ←− 0
5. For h ∈ Si do:
6. Vi ←− Vi + 〈y,h〉
7. If Vi < s · Pw

1+ε1+ε0
2

then:
8. ei ←− 1
9. Else

10. ei ←− 0
11. Return e
12. End Procedure

# Parity Check Computationw is an auxilary algorithm see Appendix

In Algorithm 1, ε0 and ε1 are biases and s is defined as signum function in [2].
We see that the complexity of the SD algorithm depends on the complexity of the
parity-check computation. Thus, improvement of the parity-check computation
will improve the SD algorithm.

By definition of statistical decoding, its complexity is always greater than
∼
O (Pw). To the expected weight distribution w = Rn

2 of random code [n,Rn],
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which is the binomial distribution, we have the following inequality (upper bound
of Pw) [2,12]

Pw ≤
(

n
w

)

2Rn

We have the following remark:

Remark 1.

– When parity-check equations are already computed and stored, the asymp-
totic complexity of the SD algorithm is given by:

∼
O(Pw)

– When parity-check equations have to be computed, the asymptotic complex-
ity of the SD algorithm is given by:

∼
O(Pw + Cw)

where Cw is the complexity of the parity-check computation algorithm.

According to this remark, let us denote:

• cw � w
n ; ct � t

n ;
• π(cw, ct) = lim

n−→+∞
1
n log2 Pw (the lower bound of SD)

• π(cw, ct)complete = max
(

lim
n−→+∞

1
n log2 Pw, lim

n−→+∞
1
n log2 Cw

)

We have the following result from [2].

Theorem 1. Asymptotic complexity of statistical decoding
π(cw, ct) is equal to

1. 2H(cw) + 2cw log2(r) − 2ct log2(1 − r) − 2(1 − ct) log2(1 + r) if ct ∈[
0, 1

2 − √
cw − c2w

]
where r is the smallest root of (1−cw)X2−(1−2ct)X+cw

2. H(cw) + H(ct) − 1 if ct ∈
[
1
2 − √

cw − c2w, 1
2

]

3.2 Improvement

In this section we present our new algorithm named MO-Fusionw. This algorithm
allows us to improve the parity-check computation step of the SD algorithm.
Like the algorithm DumerFusionw introduced in [2], the algorithm MO-Fusionw

contributes to the improvement of the SD complexity. In this algorithm we use
two auxiliary algorithms 2B_Lists and MO-NN (see the Appendix for more
details).

We use 2B_Lists to compute the sets L and R of vectors e ∈ {0}k−�×F
n−k+�
2

using Base Lists such that wt (e) = ρ
2 + ε1 verifying for all (e1,e2) ∈ L × R

wt(e1 − e2) = ρ.
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Algorithm 2. MO-Fusionw

Parameters: Integers ρ, �, �2, ε1 and ε2 such that 0 ≤ ρ ≤ min {n − k + �, w}, 0 <
�2 < � ≤ min {k − w + ρ, k}
Input: A integer w and a binary matrix G ∈ F

k×n
2 .

Output: S ⊂ Hw where Hw = {x ∈ F
n
2 s.t wt(x) = w and xG = 0}

1. Procedure: MO-Fusionw(n, k, w, G)
2. Choose parameters ρ, ε1, ε2, 0 < �2 < �.
3. P ←− A random n × n permutation matrix

4. G′ ←− UGP =

(
IRn−� G1

0 G2

)
with U ∈ F

Rn×Rn
2 a non singular matrix

5. (L, R) ←− 2B_Lists(G′, n, k, �, ρ, �2, ε1, ε2)
6. We keep in L and R only vectors x such that wt(x) = ρ

2
+ ε1

7. V ←− MO-NN (L, R, w−p
k−�

)

8. S ←−
{
((u|0) + (a − b))P−1 s.t u∈V ∩ (L × R) ,

(
G′(a − b)T

)
[k−�]

= u
}

9. Return S.
10. End Procedure

# 2B_Lists is an auxiliary algorithm see Appendix Alg. 4
# MO-NN is an auxiliary algorithm

The complexity of the MO-Fusionw algorithm is given below.

Proposition 1. Let w be an integer and C be a binary code with generator
matrix G ∈ F

k×n
2 . For all ε > 0 the complexity of the MO-Fusionw algorithm is

given by

C1 = Õ
(
2nτ + 22nτ2−�2 + 24nτ−�2−� + 2μn + 2(y+ε)(k−�)

)

with

τ =
n − k + �

2n
H

( ρ
4 + ε1

2 + ε2

n − k + �

)
, � = ρ + (n − k + � − ρ)H

(
ε1

n − k + � − ρ

)

γ =
w − ρ

k − �
, 0 < �2 < � ≤ min {n − k − w + ρ, k}

μ =
n − k + �

2n
H

(
ρ
2
+ ε1

n − k + �

)
and y = (1 − γ)

⎛
⎝1 − H

⎛
⎝H−1

(
1 − μn

k−�

)
− γ

2

1 − γ

⎞
⎠

⎞
⎠

Proof. In Algorithm 2, we start by executing the algorithm 2B_Lists; the com-
plexity of this auxiliary algorithm is given by

Õ (
2nτ + 22nτ−�2 + 24nτ−�2−�

)

(see Appendix).
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Step 6 of the algorithm gives us the following upper bound on |L| and |R|.

Õ
((

k+�
p
2+ε1

)

2�

)

= Õ
(

2
n

(
k+�

n H

( ρ
2 +ε1
k+�

)
− �

n

))

= Õ (2μn) .

Finally, we make a last filtering using May-Ozerov’s Nearest Neighbor algorithm
[8]. We have |L| = |R| = 2μn. In this paper, the Nearest Neighbor algorithm is
given for the instance of (m, γ, λ)-Nearest Neighbor problem with

m = k − �, γ =
ω − ρ

k − �
and λ =

μn

k − �
.

The cost of this filtering is given by:

Õ
(
2(y+ε)(k−�)

)
.

For more details and the proof see [8] Sect. 4. Therefore

C1 = Õ
(
2nτ + 22nτ2−�2 + 24nτ−�2−� + 2μn + 2(y+ε)(k−�)

)

4 Non Binary Version of the New Improvement of SD

In the SD algorithm there are two steps and in this paper the main idea is to
use the base lists used in the paper by Gueye et al. [4] to improve the first step
of the algorithm. We call the algorithm q-BaseList-fusionw.

Algorithm 3. q-MO-Fusionw

Parameters: Integers ρ, �, �2, ε1 and ε2 such that 0 ≤ ρ ≤ min {k + �, w}, 0 < �2 < � ≤
min {n − k − w + ρ, n − k}
Input: A integer w and a binary matrix G ∈ F

k×n
q .

Output: S ⊂ Hw where Hw =
{
x ∈ F

n
q s.t wt(x) = w and xG

}
1. Procedure: MO-Fusionw(n, k, w, G)
2. Choose parameters p, ε1, ε2, 0 < �2 < � < n − k.
3. P ←− A random n × n permutation matrix

4. G′ ←− UGP =

(
IRn−� G1

0 G2

)
with U ∈ F

Rn×Rn
q a non-singular matrix

5. (L, R) ←− qB_Lists(G′, n, k, �, ρ, �2, ε1, ε2)
6. We keep in L and R only vectors x such that wt(x) = ρ

2
+ ε1

7. V ←− qMO-NN (L, R, w−p
k−�

)

8. S ←−
{
((u|0) + (a − b))P−1 s.t u ∈ V ∩ (L × R) with

(
G′(a − b)T

)
[k−�]

= u
}

9. Return S.
10. End Procedure

The complexity of the q-MO-Fusionw algorithm is given by the following
proposition(see [4]):
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Proposition 2. Let w be an integer and C be a binary code of generator matrix
G ∈ F

k×n
q over a finite field Fq. The complexity of the q-MO-Fusionw algorithm

is given by

Compq = Õ
(
qnτ + q2nτ−�2 + q4nτ−�2−� + qμn + q(y+ε)(k−�)

)

where

τ =
n − k + �

2n
Hq

( ρ
4 + ε1

2 + ε2

n − k + �

)
and μ =

n − k + �

n
Hq

( ρ
2 + ε1

n − k + �

)
− �

n

with

y = (1 − γ)
(

Hq (β) − 1
q
Hq

(
qhx − γ

1 − γ
β

))
, γ =

w − ρ

k − �
, 0 < β < 1,

max {0, w + k + � − n} ≤ ρ ≤ min {k + �) ,
∑

x∈Fq

hx = 1

γ

q
< hx <

γ

q
+

1 − γ

qβ
for each x ∈ Fq

� = ρ logq 2 + (n − k + � − ρ)Hq

(
ε1

n − k + � − ρ

)
and � ≤ min {k − � − w + ρ, n − k}

�2 =
(ρ

2
− ε1

)
logq 2 +

(
n − k + � − ρ

2
− ε1

)
Hq

(
ε2

n − k + � − ρ
2 − ε1

)

λ =
nμ

k − �
≤ Hq (β) − 1

q

∑

x∈Fq

Hq (qhxβ) .

Proof. In Algorithm 4 we start by executing the algorithm qB_Lists: the com-
plexity of this auxiliary algorithm is given by

Õ (
qnτ + q2nτ−�2 + q4nτ−�2−�

)

Line 6 only gives the upper bound on |L| = |R|.

Õ
((

k+�
ρ
2+ε1

)
(q − 1)

ρ
2+ε1

q�

)

= Õ
(

q
n

(
k+�

n Hq

( ρ
2 +ε1
k+�

)
− �

n

))

= Õ (qμn) .

Finally, we make a last filtering using the q-ary May-Ozerov Nearest Neighbor
algorithm: the cost of this filtering is given by

Õ
(
q(y+ε)(k−�)

)
.

We have |L| = |R| = qμn. Thus qMO-NN is given an instance of (m, γ, λ)-NN
with:

m = k − �, γ =
ω − ρ

k − �
and λ =

μn

k − �
.
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Proposition 3. The complexity of SD algorithm generalized using MO-Fusionw

over an arbitrary finite fiels Fq is given by

Compq = Õ
(

q
n

(
2Hq(ω)−2(1−ζ)Hq

(
ω

1−ζ

))
+ qnτ + q2nτ−�2 + q4nτ−�2−� + qμn + q(y+ε)(k−�)

)

5 Complexity Comparison of Binary SD

In this section we present a comparison of the complexity of the SD algorithm
obtained by using the MO-Fusionw algorithm as opposed to the DumerFusion
algorithm of [2]. For ease of notation, we denote with ck, c�, c�2 , cd, ce1 , ce2 , cρ and
cw the values k

n , �
n , �2

n , d
n , e1

n , e2
n , ρ

n and w
n respectively. In the following table we

consider cd = H−1(1 − ck), ce1 = 0.001759 and cw = ck

2 .

Table 1. Exponent complexity of the New improvement of the SD algorithm.

New SD algorithm
ck c� c�2 cw cρ ce2 Exp. Complexity

0.1 0.02583 0.00235 0.05000 0.00350 0.007850 0.12699
0.2 0.04291 0.00390 0.10000 0.00989 0.012985 0.18576
0.3 0.02647 0.00132 0.15000 0.01598 0.013450 0.21528
0.4 0.04988 0.00278 0.20000 0.02518 0.014950 0.22586
0.5 0.07691 0.01923 0.25000 0.05774 0.01625 0.22952
0.6 0.12234 0.03058 0.30000 0.06950 0.017050 0.21989
0.7 0.13141 0.03285 0.03500 0.07150 0.018250 0.20003
0.8 0.17470 0.03882 0.40000 0.08350 0.01895 0.15801
0.9 0.17825 0.08913 0.45000 0.0935 0.01905 0.08678

According to the following figure we see that the SD algorithm with MO-
Fusionw is faster than the SD algorithm with Dumer Fusion (Fig. 1 and Table 1).

Fig. 1. Complexity comparison of SD algorithm
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6 Complexity Comparison of Generalized SD

For the generalized version of the SD algorithm, it is important to note that
in [11], the author mentions how generalized SD is more efficient than the gen-
eralized ISD algorithm introduced by Peters when the cardinality of the finite
field satisfies q ≥ 233. For the case q = 3, for a code of parameters (64, 40) the
author claims that the generalized SD algorithm needs 220.2 operations, versus
the 213.2 operations required by generalized ISD. For a code with parameters
(128, 72) he obtained an estimate of 222.2 operations versus 218.3 operations for
generalized ISD.

In this paper, when q = 3 we have cd = H−1(1 − ck), cw = ck

2 , therefor we can
see that

1. For a code of parameters (128, 72) with c� = 0.01422 and cρ = 0.02813 and
for the SD algorithm using MO-Fusionw we have 219.71 operations, where
ce1 = 0.00402, ce2 = 0.00254, c�2 = 0.00129, beta = 0.21450 and h = 0.1881

2. For a code of parameters (64, 40) with c� = 0.01582 and cρ = 0.06250 and
for the SD algorithm using MO-Fusionw we have 216.49 operations, where
ce1 = 0.00702, ce2 = 0.00254, c�2 = 0.00144, beta = 0.21450 and h = 0.28810

In the above, we chose the parameter hx such that only one x ∈ Fq has a
value of hx such that hx = h and the others have the same value of hx.

7 Conclusion

In this paper we presented an improvement of the SD algorithm using the MO-
Fusionw algorithm based on the idea introduced by May and Ozerov [8] for
improving the ISD algorithm. We then generalized this new version of the SD
algorithm to the case of generic finite fields Fq. We have shown that the SD algo-
rithm using MO-Fusionw algorithm is more efficient than the previous version.
This new SD version is closer to the lower bound given by the authors in [2].
Finally, it is possible to see that the generalization of the SD algorithm using
MO-Fusionw and the version of SD algorithm using DumerFusion are faster than
the generalization of the SD algorithm proposed by Niebuhr [11].
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Appendix

qB_Lists algorithm

The auxilary algorithm named qB_Lists is given below.

Algorithm 4. qB_Lists
Input: A matrix G ∈ F

k×n
q , five nonzero and positive integers n, k, �2, �, ε1 and ε2.

Output: Two lists L and R
1. Procedure:
2. Choose randomly t1, t2 ∈ F

�
q and tL0 , tR0 ∈ F

�2
q

3. Compute tL = t1 − (t
[�−�2]
2 |0), tL = t2 − (t

[�−�2]
1 |0), tL1 = tL0 + (t1)[�2] and

tR1 = tR0 + (t2)[�2].
4. Compute base lists BLi

i,1, BLi
i,2, BRi

i,1 and BRi
i,1 , with i = 0, 1

5. Li ←−
{
u = a − b s.t a ∈ BLi

i,1, b ∈ BLi
i,2, wt (u) = p

4
+ ε1

2
+ ε2,

and
(
GuT

)[�2] = tLi

}

6. Ri ←−
{
u = a − b s.t a ∈ BRi

i,1 , b ∈ BRi
i,2 , wt (u) = p

4
+ ε1

2
+ ε2,

and
(
GuT

)[�2] = tRi

}

7. L ←−
{(

GzT
)
[k−�]

s.t z = u − v and (u, v) ∈ L0 × L1

with
(
G̃zT

)[�]

= tL

}

8. R ←−
{(

G̃zT
)
[k−�]

s.t z = u − v and (u, v) ∈ R0 × R1

with
(
G̃zT

)[�]

= tR

}

9. Return (L, R)
10. End Procedure:

In the qB_Lists we use base lists like in [1,7,8] but the construction and
weight distribution vector in our construction is few different. The construction
of Base Lists in the algorithm qB_Lists is over an arbitrary finite field Fq.

For all j = 0, 1 we denote the base lists by BLj

j,1, BLj

j,2, BRj

j,1 and BRj

j,2 . We
define BLj

j,1 as follows:
Let PLj

j,1 and PLj

j,2 be be a partition of [n − k + �] = {n − k − �, 1, ..., n} such

that
∣
∣
∣PLj

j,1

∣
∣
∣ =

∣
∣
∣PLj

j,2

∣
∣
∣ =

n − k + �

2
then

BLj

j,1 =

{
x ∈

{
0k−�

}
× F

n−k+�
q s.t wt (x) =

ρ

8
+

ε1
4

+
ε2
2

with x
P

Lj
j,2

= (0, 0, ..., 0)

}

Where p, ε1 and ε2 are the parameters of the algorithm such that 0 ≤ ρ <

n − k + �, 0 < ε1 < n − k + � − ρ, 0 < ε2 < n − k + � − ρ

2
− ε1. The construction

of BLj

j,2, BRj

j,1 and BRj

j,2 is similar.
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We use these base lists to compute a vector e ∈ {
0k−�

} × F
n−k+�
q such

that wt
(
e[n−k+�]

)
= ρ and e = e1 − e2 with e1, e2 ∈ {

0k−�
} × F

n−k+�
q and

wt (e1) = wt(e2) =
ρ

2
+ ε1.

For all arbitrary finite field Fq, the complexity of the algorithm qB_Lists is
given by the following Proposition:

Proposition 4. The complexity of qB_Lists is given by:

Compq = Õ (
qnτ + q2nτ−�2 + q4nτ−�2−�

)

with

τ =
n − k + �

2n
Hq

( ρ
4 + ε1

2 + ε2

n − k + �

)

� = ρ logq 2 + (n − k + � − ρ)Hq

(
ε1

n − k + � − ρ

)
and � ≤ min {k − � − w + ρ, n − k}

�2 =
(ρ

2
− ε1

)
logq 2 +

(
n − k + � − ρ

2
− ε1

)
Hq

(
ε2

n − k + � − ρ
2 − ε1

)

Proof. At line 4, we construct base lists and the cardinality of each Base List is
given for all i, j ∈ {1, 2} by:

|BLj

j,i | = |BRj

j,i | =
( n−k+�

2
ρ
8 + ε1

4 + ε2
2

)
(q − 1)

ρ
8+

ε1
4 +

ε2
2 .

Then by using the identity
(

n

k

)
(q − 1)k = Õ

(
qnHq(

k
n )

)
,

the complexity to compute base lists is given by

Õ
(

q
n

(
n−k+�

2n Hq

( ρ
4 +

ε1
2 +ε2

n−k+�

)))

= Õ (qnτ ) .

We use base lists to make a filtering to compute Li and Ri for each i = 1, 2
and the cost of this filtering is given by:

Õ
(

|BLi
i,1||BLi

i,2|
q�1

)

= Õ (
q2nτ−�1

)
.

Third we compute the lists L and R with a filtering and the cost of this
filtering is given by

Õ
( |L1||L2|

q�−r1

)
= Õ (

q4nτ−�1−�
)
.
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7.1 q-ParityCheckComputationw

Following we give the generalization of the algorithm ParityCheckComputationw

given in [2]. We call it q-ParityCheckComputationw

Algorithm 5. q-ParityCheckComputationw

Input: A generator matrix G ∈ F
k×n
q of a linear code C of length n and dimension k,

an integer i.
Output: Si

1. Procedure: q-ParityCheckComputationw(G, i)
2. Si ←− [ ]
3. While |Si| < w do:
4. P ←− a random n × n permutation matrix
5. [G′|Ik] ←− GaussElim(GP )
6. H ←− [In−k|G′T ]
7. For j = 1 to n(1 − R) do:
8. If Lj(H)i 	= 0 and wt(Lj(H)) = w then:
9. Si ←− Si ∪ {

Lj(H)P T
}

10. Return Si

11. End Procedure
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Abstract. The RLWE family algorithms submitted to the NIST post-
quantum cryptography standardization process have each merit in terms
of security, correctness, performance, and bandwidth. However, there
is no splendid algorithm in all respects. Besides, various recent studies
have been published that affect security and correctness, such as side-
channel attacks and error dependencies. To date, though, no algorithm
has fully considered all the aspects. We propose a novel Key Encapsu-
lation Mechanism scheme called LizarMong, which is based on RLizard.
LizarMong combines the merit of each algorithm and state-of-the-art
studies. As a result, it achieves up to 85% smaller bandwidth and 3.3
times faster performance compared to RLizard. Compared to the NIST’s
candidate algorithms with a similar security, the bandwidth is about 5–
42% smaller, and the performance is about 1.2-4.1 times faster. Also, our
scheme resists the known side-channel attacks.

Keywords: Lattice-based cryptography · Ring-LWE · Ring-LWR

1 Introduction

Among candidates for the National Institute of Standards and Technology (NIST)
post-quantum cryptography standardization process [12], the Ring Learning With
Error (RLWE) family1 is the spotlight in Key Encapsulation Mechanism (KEM)
because of its proven hardness, small bandwidth, and good performance.
1 Ring-LWE (RLWE), Ring-Learning With Rounding (RLWR), Module-LWE

(MLWE), Module-LWR (MLWR), Integer-MLWE (I-MLWE).
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The design factors of the RLWE family algorithms consist of the underlying
problems, the choice of ring, the dimensions of the lattice, the modulus, and
the error rate determined by the ratio between the standard deviation of the
error distribution and the modulus. These factors have trade-offs and determine
security, correctness, performance, and bandwidth. Looking at NIST’s candidate
algorithms from a trade-off perspective, we can see some notable characteristics.

First, the choice of the underlying problems and the ring determines the
innate temperament of the algorithm. The underlying problems are classified as
RLWE, Ring Learning With Rounding (RLWR), Module-LWE (MLWE), and
MLWR. RLWE has good performance and bandwidth. Also, RLWE has been
well-studied for the most prolonged time among the underlying problems of lat-
tice from algebraic structures and is used for other schemes such as homomorphic
encryption. Thus, RLWE can claim that it is more conservative security than
other underlying problems of the lattice from algebraic structures. MLWE can
reduce bandwidth because they are small and flexible in dimension choice, but
require more computation if into dimension the same as RLWE. RLWR and
MLWR discard some Least Significant Bits (LSBs) instead of error sampling,
resulting in better performance and bandwidth compare to RLWE and MLWE.
The ring is commonly chosen as the cyclotomic polynomial Xn + 1 due to per-
formance and security, where n is a power of two. Exceptionally, Round5 [8] uses
the Xn+1 −1 cyclotomic polynomial. Since n+1 is prime, this polynomial is less
constrictive in n choosing. So, it can choose an optimized n for each security level.
The required bandwidth can be reduced. However, Xn+1 − 1 is more expensive
computation to polynomial modular reduction operation than common polyno-
mial. The algorithm with the smallest bandwidth among NIST’s candidates is
Round5, which based on RLWR and does not use Xn + 1 polynomial. Thus, it
is important to choose the underlying problem and the ring.

Another notable characteristic is the modulus size. Modulus size is the main
factor that affects the correctness, bandwidth, and performance of RLWE family
schemes. Large modulus (212−14) like Newhope [5] reach security-level by adding
relatively large error, but can maintain correctness because of a small error rate.
Large modulus, however, increases computation and bandwidth. Thus, they use
fast multiplication algorithms (e.g., NTT), public-key compression, and cipher-
text compression to solve this problem. Conversely, small modulus (28−12) like
LAC [24] can have relatively low bandwidth and good performance. However,
if a large error such as the large modulus is used, the correctness decreases as
the error rate increases. Thus, these are using tiny error and secret, and error
correction code to improve correctness.

Meanwhile, NIST’s standardization process has recently been making impres-
sive results by promoting a study on the RLWE family. In particular, the study
that disproves the independent assumptions about the failure of individual bits
to calculate the overall failure rate [16], as well as various side-channel attack
studies, is meaningful because of affecting most RLWE family algorithms. To
date, however, many algorithms do not include most of those studies.
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As mentioned above, each algorithm complements the trade-off with bril-
liant techniques. Unfortunately, however, choosing one excellent algorithm in all
aspects (security, performance, bandwidth, and correctness) is a hard decision.
Furthermore, considering the recent studies, it is almost infeasible to choose one.

In this paper, we propose a novel key encapsulation mechanism scheme called
LizarMong that is excellent in all aspects. It combines each merit of NIST’s
candidate algorithms with state-of-the-art studies.
Contributions. The contributions of this study can be summarized as follow:

• To improve bandwidth and performance, we set small dimensions and mod-
ulus, and apply ciphertext and public-key compression.

• We adopt the error correction code called XE5 [8] to compensate for the
reduced correctness due to small modulus.

• Resistance to known side-channel attacks, we devise a sparse polynomial mul-
tiplication with hiding. Also, we do not use the Cumulative Distribution Table
(CDT) technique as the error sampler.

• We estimate the correctness more conservatively by calculating the decryption
failure rate considering the dependency of each bit error.

2 Preliminaries

2.1 Notation

The log indicates the logarithm with base 2. For a positive integer q, we use
Z

⋂
(−q/2, q/2] as a representative of Zq. We denote by Rq the ring Zq[X]/(Xn+

1). Bold lower-case letters represent polynomials with coefficients in Rq. For a
polynomial a, we write a(i) to denote it’s the coefficient of order i. Multiplication
in Rq is represented by ∗. �r� is the rounding to the nearest integer to real
r, and �a� is the rounding to the nearest integer for each coefficient in the
polynomial a. ‖x‖ means the l2 norm. x ‖ y is the concatenation of x and y.
There are two distributions used in this paper, HWTn (h) and ψcb. HWTn (h)
is the uniform distribution over the subset of {−1, 0, 1}n whose elements contain
n − h number of zeros. ψcb is the centered binomial distribution with mean
zero and standard deviation

√
cb/2. SHAKE256(m, len) is a hash function that

receives m and outputs a byte-string of the length len. eccENC and eccDEC are
functions for encoding and decoding using the error correction code.

2.2 RLizard

RLizard is the KEM and PKE based on RLWE and RLWR submitted to the
NIST standardization process 1round. RLizard uses RLWE for key-generation,
considering relatively conservative security, and RLWR for encryption and
decryption to improve bandwidth and performance. Another effort to ensure
robust security in key-generation is the adoption of CDT from Gaussian distri-
bution as an error sampler. It is a high precision sampler that does not damage
the original RLWE. The ring is chosen as the common form Xn + 1. RLizard
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uses a small modulus and sparse ternary secret, which improved correctness and
performance. Moreover, for providing IND-CCA2 PKE and KEM, they use a
variant of Fujisaki-Okamoto transformation [18]. As a result, RLizard supports
IND-CCA2 PKE and KEM and enjoys fast encryption and decryption, robust
security, and high correctness. However, the bandwidth is relatively large.

3 LizarMong

In this section, we detail our KEM scheme called LizarMong. Our goal is to
satisfy both security and correctness while making excellent performance and
bandwidth. To achieve the goal, LizarMong was designed by adequately com-
bining the design elements of NIST’s candidate algorithms and their superior
techniques that are used to compensate for the trade-off. Our scheme also con-
sidered recent studies such as side-channel attacks and dependency error issues.

3.1 Design Element Selection

Choice of the Ring. We use f(X) = Xn + 1 in Rq := Zq[X]/(f(X)), where n
is the power of two. It is the common choice used by most of NIST’s candidate
algorithms and RLizard. The common ring has the advantage in that the poly-
nomial modular reduction operation is straightforward, and there have been no
known attacks exploit it [23].

Modulus Selection. We select q = 256, which is small and to the power of two.
Intuitively, this choice enjoys a small bandwidth and improved performance. It
also provides very efficient modulo operation and memory usage and is suitable
for single instruction multiple data (SIMD) implementations such as AVX2 and
NEON. Even though the modulus is small, it can not affect the security since
we maintain the error rate by selecting proper error distribution [24,27]. The
modulus p used for RLWR and the modulus k used for ciphertext compression
are also to the power of two. It improve performance by replacing �(p/q) · x�
with ADD and AND operations [13].

Distribution. The RLWE family can sample secret polynomial s and error
polynomial e using different Seed in the same distribution for efficient imple-
mentation. Also, this variant has proven to be equivalent to the original RLWE
problem [6]. For the above reason, most of NIST’s candidate algorithms use the
same distribution for error and secret sampling. Recently, however, a fault-attack
[29] attempted to analyze by manipulating the Seed to make s and e the same
value. Therefore, we sample e and s from each distribution, like the original
RLWE, to remove the fault-attack point [29].

• Error Distribution. We use the centered binomial distribution with the
standard deviation 1/

√
2, i.e. the range of the distribution is {−1, 0, 1}.

Although the original RLWE is defined as a Gaussian distribution, switching
to the centered binomial distribution is known to have a negligible impact on
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security [5]. Also, the best-known attacks against RLWE depend not on the
type of the distribution but the standard deviation [5,9].

• Secret Distribution. We use a sparse ternary secret with a Hamming
weight, such as RLizard. [13] and [8] proved the hardness of the sparse ternary
secret variants LWE and LWR. Multiplication of sparse ternary secret polyno-
mials can be replaced with addition (subtraction) to improve performance [1].
It also maintains correctness by preventing decryption errors from increasing.

Adopt Error Correction Code. Our analysis in Sect. 4.3 shows that 4–5
bits error correction capability is needed. Therefore, we adopted XE5 [8] that
is specialized in the RLWE family. Since XE5 avoids table look-up and branch
conditions, it resists timing attacks [8]. XE5 has a block size of 490 bits, of
which 256 bits is the message, and 234 bits is parity check. Our scheme differs
in message length from HILA5 [32] and Round5, which previously used XE5. δ,
used in place of PKE messages in the IND-CCA2 KEM, has a significant impact
on the security of the scheme. Thus, we match the length of the δ (messages)
to the overall security level. The 512-bit δ (messages) in the Strong parameter
seems to constrain the use of XE5, but we can solve it very simply. Divide the
512-bit δ (messages) in half, encode it with XE5, and concatenate it. Decoding is
in reverse order. This process does not affect security and makes our calculation
of correctness more conservative in our Strong parameters.

Compress Public-Key and Ciphertext. NIST’s candidate algorithms com-
monly use compression techniques. RLizard can also use these techniques [23],
although it does not include in the version submitted to NIST. Public-key com-
pression means sending only the Seed instead of a in Rq, and the receiver recov-
ers a using the hash function. This reduces the public-key size from 2n log q to
size-of-Seed + n log q. Ciphertext compression is similar to the RLWR idea of
discarding a few LSBs in c2. IND-CCA2 KEM also can do the same.

3.2 Algorithm Specifications

3.2.1 IND-CPA PKE

Algorithm 1. IND-CPA.KeyGen
Input: The set of public parameters
Output: Public key pk = (Seeda ‖ b), Private Key sk = (s)

1: Seeda
$←− {0, 1}256

2: a ← SHAKE256(Seeda, n/8)

3: s
$←− HWTn(hs) and e

$←− ψn
cb

4: b ← −a ∗ s + e
5: pk ← (Seeda ‖ b) and sk ← s
6: return pk, sk
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Algorithm 2. IND-CPA.Encryption
Input: pk, Message M ∈ {0, 1}d

Output: Ciphertext c = (c1 ‖ c2)

1: r
$←− HWTn(hr) and M′ ← eccENC(M)

2: Seeda,b ← Parsing(pk)
3: a ← SHAKE256(Seeda, n/8)
4: c1 ← �(p/q) · a ∗ r� and c2 ← �(k/q) · ((q/2) · M′ + b ∗ r)�
5: c ← (c1 ‖ c2)
6: return c

Algorithm 3. IND-CPA.Decryption
Input: sk, Ciphertext c = (c1 ‖ c2)
Output: Message M̂
1: c1, c2 ← Parsing(c)
2: M̂′ ← �(2/p) · ((p/k) · c2 + c1 ∗ s)�
3: return M̂ ← eccDEC(M̂′)

3.2.2 IND-CCA2 KEM
We design IND-CCA KEM using the transformation technique by Jiang et al.
[21]. We use a hash function H : R2 → HWTn(h), and a hash function G :
{0, 1}∗ → {0, 1}n for Jiang’s transformation technique.

Algorithm 4. IND-CCA2-KEM.KeyGen
Input: The set of public parameters
Output: Public Key pk = (Seeda ‖ b), Private Key sk = (skcpa ‖ u)
1: pk, skcpa := IND-CPA.KeyGen (Algorithm 1)

2: u
$←− R2

3: return pk, sk ← (skcpa ‖ u)

Algorithm 5. IND-CCA2-KEM.Encapsulation
Input: pk
Output: Ciphertext c = (c1 ‖ c2), Shared Key K

1: δ
$←− {0, 1}sd

2: r ← H(δ)
3: δ′ ← eccENC(δ)
4: c1 ← �(p/q) · a ∗ r�
5: c2 ← �(k/q) · ((q/2) · δ′ + b ∗ r)�
6: c ← (c1 ‖ c2)
7: K ← G(c, δ′)
8: return c,K
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Algorithm 6. IND-CCA2-KEM.Decapsulation
Input: pk, sk, Ciphertext c
Output: Shared Key K
1: c1, c2 ← Parsing(c)
2: skcpa,u ← Parsing(sk)
3: δ̂′ ← �(2/p) · ((p/k) · c2 + c1 ∗ skcpa)�
4: δ̂ ← eccDEC(δ̂′)
5: r̂ ← H(δ̂)
6: δ̂′′ ← eccENC(δ̂)
7: ĉ ← �(p/q) · a ∗ r̂� ‖ �(k/q) · ((q/2) · δ̂′′ + b ∗ r̂)�
8: if c �= ĉ then K ← G(c,u) else K ← G(c, δ̂′′)
9: return K

3.3 Parameter Selection

We construct a Comfort version that satisfies category1 security level (128-
bit) and a Strong version that satisfies category5 security level (256-bit) as
required by the NIST standardization process. The assessment of the security
level reflected the computational complexity of all known attacks described in
Sect. 4.2. Table 1 shows the detailed parameters of each security level and the
bandwidth according to each security level is summarized in Table 2.

n is the dimension of the lattice, q is the modulus of RLWE, p is the modulus
of RLWR, k is the modulus used for ciphertext compression, hs is the Hamming
weight of the secret key, hr is the Hamming weight of the ephemeral secret used
to encapsulation. d is the length of the message, and sd is the length of δ used
in the IND-CCA2 conversion. cb is a variable used for the centered binomial
distribution.

Table 1. The detail parameters for each security level

Parameters n q p k hs hr d sd cb

Comfort (128-bit) 512 256 64 16 128 128 256 256 1

Strong (256-bit) 1024 256 64 16 128 128 512 512 1

Table 2. Size of pk, sk, and ciphertext of LizarMong in bytes

Security level Ciphertext Public key Secret key

Comfort 640 544 544(210)∗

Strong 1280 1056 1088(290)∗
∗skcpa can be encoded by storing only non-zero
indexes. Thus, optionally, sk can be compressed with
encoding(skcpa), a flag of −1, and u (for IND-CCA2
KEM).



LizarMong: Excellent KEM based on RLWE and RLWR 215

4 Security Analysis

4.1 Security Proofs of IND-CPA and IND-CCA2

We proved the IND-CPA security of the IND-CPA PKE version of LizarMong
under the assumption of the IND-CPA security of RLizard.CPA [13].

Theorem 1. The IND-CPA PKE version of LizarMong is IND-CPA secure
under the hardness assumption of RLWE and RLWR problem for a given param-
eter, and the assumption that SHAKE256 is a random oracle model.

Proof. Note that in this proof, we call the IND-CPA PKE version of LizarMong
as LizarMong. An encryption of m can be generated from an encryption of zero
by the homomorphic property of LizarMong. Hence, it is enough to show that
the pair of public information pk and the encryption of zero is computationally
indistinguishable from the uniform distribution. Let LizarMong′ be an algo-
rithm that is the same as LizarMong except for the ciphertext compression.

Algorithm 7. KeyGen’
Input: The set of public parameters
Output: Public key pk′ = (a,b)
1: pk = (Seeda,b) ← LizarMong.KeyGen
2: a ← SHAKE256(Seeda, n)
3: pk′ ← (a,b)
4: return pk′

First, we show that LizarMong′ is IND-CPA secure. Define KeyGen′ as
Algorithm 7. Define distribution D0, D1, and D2 as followings:

D0 = {(pk′, C) :pk′ ← KeyGen′(params),
C = (c1, c2) ← LizarMong.Encpk(0)}

D1 = {(pk,C) : pk ← RLizard.KeyGen(params),
C = (c1, c2) ← RLizard.Encpk(ecc(0))}

D2 = {(pk,C) : pk ← Ring,
C = (c1, c2) ← Ring}

Since SHAKE is a random oracle model, distribution of pk′ and pk are
computationally indistinguishable. CLizarMong′ ← LizarMong′.Encpk(0) for
pk = (Seeda, b) and CRLizard ← RLizard.Encpk

′(ecc(0)) for pk′ =
(SHAKE256(Seeda, n), b) are same by the definition of RLizard and LizarMong′

(i.e. CLizarMong = CRLizard). Thus, D0 and D1 are computationally indistin-
guishable.

Lemma 1 (See [13]). RLizard.CPA is IND-CPA secure under the hardness
assumption of RLWE and RLWR problem for a given parameter.
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By Lemma 1, D1 and D2 are computationally indistinguishable. Therefore,
D0 and D2 are computationally indistinguishable. In conclusion, LizarMong′

IND-CPA secure. Since ciphertext compression does not affect the security of
LWE and LWR based public-key cryptography [24], LizarMong is IND-CPA
secure. 	


By Theorem 1, IND-CPA PKE version of LizarMong is IND-CPA secure
PKE. We make IND-CCA2 KEM version of LizarMong by using Jiang et al.
transformation [21]. Thus IND-CCA2 KEM version of LizarMong is IND-CCA2
secure.

4.2 Security Analysis Against Known Attacks

Our security analysis is based on the pessimistic approach of the BKZ lattice
basis reduction algorithm [5]. Also, we use the attack complexity calculation and
the online LWE estimator by Albrecht et al. [3,4]. Those are common methods
used by most RLWE family algorithms. The BKZ algorithm proceeds by reduc-
ing a lattice basis using the SVP oracle repeatedly. There are several discus-
sions about measuring the number of iterations. The core SVP method ignores
repeated calls for SVP oracle, which is a pessimistic estimation from the defender
point of view. We use the quantum sieve as the SVP oracle, which is also a pes-
simistic approach [5]. The computational complexity of the BKZ lattice basis
reduction algorithm is 2cn, where n is a dimension of lattice, and c is a constant
value such that c = 0.292 in the classical environment and c = 0.265 in the
quantum environment.

Table 3. Computational complexity of best RLWE and RLWR attacks

Parameters Claim security Attacks Classical Quantum

Comfort NIST Category 1 (AES 128-bit) Primal RLWE 133 121

RLWR 144 131

Dual RLWE 165 154

RLWR 180 170

Strong NIST Category 5 (AES 256-bit) Primal RLWE 256 236

RLWR 269 249

Dual RLWE 304 275

RLWR 328 301

We considered the attack on the RLWE family studied in [3] and the spe-
cific attack on the sparse ternary secret in [2]. The computational complexity
for RLWR attacks is the same as RLWE attacks with the same dimensions,
same RLWE modulus q, and error rates p−1

√
π/6 [13]. Hence, the computa-

tional complexities for RLWR attacks are calculated similarly to the RLWE
attacks. The online LWE estimator helped the complexity calculation for these
attacks. The Python code for calculating computational complexity can be found
at https://github.com/LizarMong.

https://github.com/LizarMong
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We concluded that the primal attack [2] that uses the BKZ algorithm is the
best. Table 3 shows the computational complexities of the best attacks. In sum-
mary, LizarMong.Comfort satisfies NIST’s category1 security level (AES128),
and Strong satisfies category5 security level (AES256).

In the Comfort parameters, our security is overshoots with the requirements
of the security level. It is a security margin that we knowingly made. Attacks
against RLWE and RLWR have not been enough studied yet, so the security
margin prepares for unknown and vital attacks. In Strong parameters, on the
other hand, it has no security margin. Since the 256-bit security level is very
high, the NIST standardization process focuses on up to the 192-bit security
level. So, the Strong parameter is robust in itself.

4.3 Correctness Analysis

The failure probability calculations of the RLWE family designed so far have
been analyzed on the assumption that errors in each bit occur independently.
However, D′Anvers et al. proved [16] theoretically and experimentally that the
error between each bit does not occur independently. According to D′Anvers
et al. [16], even if the probability of error occurrence between each bit is not
independent, the calculation based on the independence assumption is valid when
the error correction code is not used. However, it is inappropriate when the error
correction code is used.

Since LizarMong uses the error correction code, we calculate the probability
of failure under the assumption that the error of each bit occurs dependently
[16]. Cheon et al. showed that RLizard decryption fails when |e ∗ r + s ∗ f | ≥
q
4 − q

2p where f = a ∗ r − (q/p) · c1 in [14]. Because of ciphertext compression,
LizarMong has more errors than RLizard. That is the difference between c2 :=
�(k/q) · ((q/2) · M′ + b ∗ r� and ĉ2 := (p/k) · c2. Hence, decryption failure of
LizarMong occurs when |e ∗ r+ s ∗ f +g| ≥ q

4 − q
2p where g = c2 − ĉ2. We define

S = (s, e)T , C = (f , r)T to calculate the probability of decryption failure. On
the assumption that the error of each bit occurs dependently, the probability of
decryption failure is calculated according to the Eq. (1). Note that Pr[Fail] is the
probability of decryption failure, Pr[Fi] is the probability that an error occurs
in the ith bit, Binom(k, n, p) =

∑k
i=0

(
n
i

)
pi(1 − p)n−i, pb = Pr[F0 | ‖S‖, ‖C‖],

lm is the length of encoded message, and d is error correcting capability. Since
we use XE5 as an error correction code, d = 5.

Pr[Fail] ≈
∑

‖S‖,‖C‖
(1 − Binom(d, lm, pb)) · Pr[‖S‖] · Pr[‖C‖] (1)

We can calculate pb = Pr[F0 | ‖S‖, ‖C‖] as Eq. (2) by [15].

pb =
∑

l

∑

g0

( Pr[|CTS + g|0 > q/4 − q/2p | |CTSs|0 = l,g0]·

Pr[|CTS|0 = l | ‖S‖, ‖C‖] · Pr[g0]) (2)
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The above calculation process is implemented in Python and can be found
at https://github.com/LizarMong. According to our calculation, the decryption
failure probability of LizarMong is 2−179 in the Comfort and 2−302 in the Strong.

4.4 Side-Channel Attacks

The strategy for making LizarMong resistant to known side-channel attacks is as
follows. First, we ruled out the operations targeted by the known attacks at the
design element selection stage, Sect. 3.1. Second, for unavoidable vulnerabilities,
we added a strategy that internalizes efficient countermeasures.

Table 4. Known side-channel attacks and countermeasures of LizarMong

Attack methods Attacks Attack points Countermeasures

Differential Attacks [7] Multiplication hiding scheme

[20]

Template Attacks [10]

Fault Attacks [17] Error sampling Loop index check

According to the first strategy, LizarMong resists known cache and timing
attacks, as well as some differential and fault attacks. The timing attack of
[26] performs the attack by using the time difference depending on whether the
modulus is operating or not. This attack does not apply to LizarMong, however,
because LizarMong uses all of the moduli to the power of two to replace the
modulo operation with ADD and AND operations. Moreover, LizarMong does
not use the CDT technique in order to resist the timing attack by Kim et al.
[22] and the cache attack of [11], which exploits the CDT technique used by
RLizard. The fault attack of [29], which attacks the situation of sampling s and
e within the same distribution, does not apply to LizarMong, which is designed
to sample s and e within each distribution. Also, the differential attack of [28]
targeting NTT does not apply to LizarMong, which does not use NTT. Despite
efforts to minimize attack points at the design element selection stage, some
differential attacks and fault attacks are still applicable, as shown in Table 4.
Therefore, according to the second strategy, we added countermeasures against
the remaining attacks in our scheme.

Differential Attacks. [7] and [20] used polynomial multiplication between pub-
lic and secret keys as the point of attack. Since the polynomial multiplication is
necessary for the RLWE family algorithms, it is necessary to design additional
countermeasures. Known countermeasures include masking [25,30,31] and hid-
ing schemes [10]. Masking schemes include a general method of construction
using random values and a decoder and a unique method of using a homomor-
phism under the addition of the RLWE family. Hiding schemes include shuffling
the order of multiplication operations or adding dummy operations between real

https://github.com/LizarMong
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Algorithm 8. Sparse Polynomial Multiplication with Hiding Countermeasure
Input: a =

∑n−1
i=0 a(i) · xi ∈ Rq, r =

∑n−1
i=0 r(i) · xi ∈ HWTn (h),

d = [i0, . . . , ig−1, ig, . . . , ih−1] with d [k] = ik such that r(ik) = 1 for k ∈ [0, g) and
r(ik) = −1 for k ∈ [g, h)

Output: v = a ∗ r =
∑n−1

i=0 v(i) · xi ∈ Rq

1: initialize v to zero polynomial � size of v = 2n

2: m
$←− {0, 1, . . . , h − 1} � random starting index

3: for i ∈ {0, . . . , h − 1}, j ∈ {0, . . . , n − 1} do
4: if m + i (mod h) < g then
5: v(d [m + i (mod h)] + j) = v(d [m + i (mod h)] + j) + a(j)
6: else
7: v(d [m + i (mod h)] + j) = v(d [m + i (mod h)] + j) − a(j)
8: for i ∈ {0, . . . , n − 1} do
9: v(i) = v(i) − v(n + i)

10: return v

operations. In the RLWE family, masking methods such as masked decoders
or additively homomorphic masking are relatively expensive. Thus, we devised
the sparse polynomial multiplication with the hiding scheme, like Algorithm 8.
It combines the fast sparse polynomial multiplication algorithm of [1] with the
hiding scheme of [10]. This method has fewer overheads than shuffling tasks since
that it uses only one random value.

Fault Attacks. Known fault attacks targeting the RLWE family exploit the
process of generating s and e. s and e are generated by loops after extracting
random values. [17] frustrates the loop by injecting a fault and makes s and e the
initial values of zero. LizarMong is vulnerable to this attack because it generates
s and e using the above method. Therefore, our scheme resists the fault attack
of [17] by applying statistical tests of [19]. The statistical test we use consists
of a straightforward operation that compares the expected index with the final
index after the loop statement is done, so there is negligible overhead.

5 Evaluation

We evaluate security (computational complexity), correctness (failure probabil-
ity of decryption), bandwidth (size of ciphertext and public-key), and perfor-
mance (CPU cycle of encryption, decryption, and key-generation) in comparison
with NIST’s candidate algorithms and RLizard.

Our comparison is based on the NIST official documents. The result of eval-
uation is shown in Table 5 and Fig. 1. In Table 5, the three rows for each algo-
rithm correspond to 128, 192, and 256-bit security levels. (i.e., our scheme and
NewHope do not support the 192-bit security level.)

Note that the performance evaluation used each optimization code, and the
evaluation environment is Intel i7-9700K@3.2 GHz CPU, ubuntu 16.04.11, GCC
5.4.0 with option −O3, and the value is the average for 1000 iterations. Also,
our implementation codes are available to https://github.com/LizarMong.

https://github.com/LizarMong/LizarMong
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Fig. 1. Comparison of bandwidth and performance based on IND-CCA2 KEM. (left)
128-bit security level (right) 256-bit security level (Note: • are algorithms with security
and correctness similar to each security level, and × are not.)

Security. The security of some algorithms seems to be slightly lacking to each
security level (see Table 5). However, LizarMong.Comfort reaches 128-bit secu-
rity level and LizarMong.Strong reaches 256-bit security level. In the Comfort,
the security overshoots the requirements of the security level. It is a security mar-
gin that we knowingly made from a conservative perspective. Strong has no secu-
rity margin because the 256-bit security level is regarded as very highly. Unfor-
tunately, our scheme does not support the 192-bit security level, but Strong has
a competitive bandwidth and performance compared with the 192-bit security
level of other algorithms. Therefore, Strong can sufficiently replace the 192-bit
security level of other algorithms.

Correctness. KYBER, SABER, LAC, and Round5 have smaller failure proba-
bility of decryption compared to the mapped security level. However, LizarMong
has negligible failure probability such as 2−179 in Comfort and 2−302 in Strong.
Also, our estimation is accurate than others because we consider dependency.

Bandwidth. Bandwidth is one of the significant determinants of algorithm prac-
ticality in resource-constrained devices and poor communication environments.
In general, because the bandwidth of the RLWE family has a larger bandwidth
than the current public-key cryptography such as RSA and ECC, the evaluation
of bandwidth is a critical evaluation criterion. LizarMong is the best among the
key encapsulation mechanisms supporting IND-CCA2. Comfort and Strong are
smaller about 5% compared with LAC (which is ranked second in bandwidth).

Performance. LizarMong has the best performance among NIST’s candidate
algorithms and RLizard. Comfort and Strong faster 1.25 times and 1.65 times
than ThreeBears that is ranked second in performance. The crucial point is
that the recorded performance of LizarMong includes all countermeasures of the
known side-channel attacks in Sect. 4.4.



LizarMong: Excellent KEM based on RLWE and RLWR 221

Table 5. Comparison KEM with NIST candidate algorithms and RLizard

Algorithms Security (log)Correctness (log)Bandwidth (Bytes)Performance (K cycles)

Enc+DecKeyGen

LizarMong 133 −179 1184 137.5 42.4

256 −302 2336 272.7 61.8

RLizard 147 −188 6176 217.8 165.3

195 −246 8240 416.9 232.7

318 −306 16448 737.3 382.7

NewHope 112 −213 2048 329.6 103.6

257 −216 4032 673.5 209.2

KYBER 111 −178 1536 278.2 97.5

181 −164 2272 463.6 174.3

254 −174 3136 656.0 263.1

SABER 125 −120 1408 316.9 106.1

203 −136 2080 587.6 213.6

283 −165 2784 934.8 359.2

LAC 147 −116 1256 341.2 90.0

286 −143 2244 840.1 235.6

320 −122 2480 1101.6 266.6

Round5 (IND-CPA)128 −88 994 384.4 114.6

193 −117 1639 857.2 311.3

256 −64 2035 1794.9 643.4

Threebears 154 −156 1721 167.8 52.1

235 −206 2501 271.4 91.9

314 −256 3281 402.5 148.2

6 Conclusion

Our scheme, called LizarMong, is the best of the RLWE family of key encap-
sulation algorithms to date. Our scheme achieves security levels 1 (128-bit) and
5 (256-bit), and compared with NIST’s candidate algorithms, the bandwidth is
about 5–42% smaller, and the performance is about 1.2–4.1 times faster. Also,
it resists known side-channel attacks.

We need to recall the goal of the NIST post-quantum cryptography stan-
dardization process. The purpose of this process is to design cryptography that
is compatible with current networks and protocols. Thus, there is a need for
algorithms that are excellent in all respects, such as RSA and ECC. The RLWE
family algorithms submitted to the NIST post-quantum cryptography standard-
ization process have each merit in terms of security, correctness, performance,
and bandwidth. Thus, choosing one optimal algorithm satisfying all aspects is
challenging. Besides, various recent studies have been published that affect secu-
rity and correctness, such as side-channel attacks and error dependencies. These
studies are meaningful because it affects most RLWE family algorithms. To date,
however, many algorithms do not include most of those studies.

We consider to break down the barriers between candidate algorithms, merg-
ing unique strengths, and quickly reflecting the state-of-the-art studies, for excel-
lent algorithm in all respects. LizarMong, based on the RLizard that was sub-
mitted to NIST 1round, muses each of the merit of NIST’s candidate algorithms.
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Specifically, we have inspired by a small modulus of LAC, the error correction
code of Round5, and the centered binomial distribution of NewHope. We also
included recent studies such as side-channel attacks and error dependencies.

In conclusion, our scheme is an excellent key encapsulation mechanism that
combines each merit of NISTs candidate algorithms with state-of-the-art studies.
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Abstract. The Learning with Rounding (LWR) problem is a determin-
istic variant of the classical Learning with Errors (LWE) problem, for
which sampling an instance does not involve discrete Gaussian sampling.
We propose the first probabilistic Identity-Based Encryption (IBE) from
the LWR problem which is secure in the standard model. The encryp-
tion of our IBE scheme does not require discrete Gaussian sampling as
it is based on the LWR problem, and hence it is simpler and faster
than that of LWE-based IBEs such as ABB scheme. We also present
an efficient instantiation employing algebraic ring structure and MP12
trapdoor sampling algorithms with an implementation result. With our
proposed parameter sets, the ciphertext sizes can be reduced in a large
extent compared to the ABB scheme with the same security level.

Keywords: Lattice · Identity-Based Encryption · Learning with
Rounding

1 Introduction

Identity-Based Encryption. In 1985, Shamir [Sha85] first introduced the con-
cept of Identity-Based Encryption (IBE). The underlying idea is to use an arbi-
trary string, e.g., e-mail address, as a public key for an encryption scheme, for
easier certification of users. Since Boneh and Franklin [BF01] proposed a first
practical IBE scheme using groups with bilinear pairings, various attempts have
been made to construct an efficient IBE scheme. Gentry et al. [GPV08] marked
the beginning of lattice-based, thus possibly quantum secure IBE scheme. The
security of their scheme is proved in the random oracle model, and is based on
the hardness of the Small Integer Solution (SIS) problem and Learning with
Errors (LWE) problem. Agrawal et al. [ABB10], say ABB scheme, constructed
an IBE from SIS and LWE in the standard model of which performance is com-
parable to the previous one secure in the random oracle model. Until recently,
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the ABB scheme is the state-of-the-art of the IBE structure based on the lattice
problems. Recently, some works suggested ring-based efficient instantiations for
the ABB scheme [AFL16,BFRLS18].

Learning with Rounding. Learning with Rounding (LWR) [BPR12] is a
modified version of Learning with Errors (LWE) [Reg05] with deterministic
errors. It is a definite advantage of LWR and RLWR (ring-LWR) that select-
ing random errors in a certain distribution (e.g. discrete Gaussian distribu-
tion) is unnecessary. [BPR12] showed the reduction from LWE and RLWE
to LWR and RLWR, so that LWR is at least as hard as LWE where q/p is
superpolynomial. In 2016, Bogdanov et al. [BGM+16] proved that LWR with
small modulus but bounded number of samples is still hard under the LWE
assumption. Due to its efficiency and deterministic flavor, the LWR problem has
been exploited in some of the lattice-based cryptosystems: Psuedorandom func-
tions [BPR12]; deterministic encryption, lossy trapdoor function, and reusable
extractor [AKPW13]; key encapsulation mechanism and public key encryp-
tion [CKLS18,LKL+18,BBF+19]; deterministic hierarchical IBE [FLL+16];
somewhat homomorphic encryption [CS17].

Our Contribution. We propose the first IBE scheme based on SIS and LWR.
The main difference with existing IBE schemes based on SIS and LWE is that
we replace Gaussian errors with rounding errors in the encryption algorithm. In
particular, our encryption algorithm does not require discrete Gaussian sampling
step, which leads to a simpler and faster encryption algorithm. Moreover, the
modulus of the ciphertext space of our scheme is the rounding modulus prime p
instead of the large modulus prime q as other LWE based IBE schemes. In this
sense, our scheme enjoys small ciphertext sizes. For example, compared to an
LWE based IBE scheme of a recent paper [BFRLS18], our IBE scheme reduces
ciphertext size about 73% (resp. 72%) for 190-bit (resp. 80-bit) security.

We also present an efficient instantiation with a proof-of-concept implemen-
tation result of the ring variant of our scheme with efficient trapdoor sampling
algorithms [MP12] and working parameters for moderate security.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
summarize some notations used in this paper, and introduce lattice related con-
cepts and cryptographic primitives including IBE, LWR, and lattice trapdoor.
We describe our LWR based IBE scheme with correctness and security proofs
in Sect. 3. We also provide its efficient ring variant and extensions to adaptive
security version and HIBE. In Sect. 4, we suggest an efficient instantiation of our
scheme with efficient trapdoor proposed in [MP12] and working parameters. We
also present a proof-of-concept implementation results.

2 Preliminaries

2.1 Notation

All logarithms are base 2 unless otherwise indicated. For a positive integer q, we
use Z ∩ (−q/2, q/2] as a representative of Zq. For a real number r, �r� denotes
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the nearest integer to r, rounding upwards in case of a tie. Also, �r�, and �r� are
rounding down and up to the nearest integers, respectively. We denote vectors
in bold, e.g. a, and every vector in this paper is a column vector. The norm ‖·‖
is always 2-norm in this paper. We denote by 〈·, ·〉 the usual dot product of two
vectors. We use x ← D to denote the sampling x according to the distribution D.
It denotes the uniform sampling when D is a finite set. For an integer n ≥ 1,
Dn denotes the product of i.i.d. random variables Di ∼ D. We let λ denote the
security parameter throughout the paper: all known valid attacks against the
cryptographic scheme under scope should take Ω(2λ) bit operations. A function
negl : N → R

+ is negligible if for every positive polynomial p(λ) there exists
λ0 ∈ N such that negl(λ) < 1/p(λ) for all λ > λ0. For two matrices A and
B with the same number of rows, (A‖B) denotes their row concatenation, i.e.,
for A ∈ Z

m×n1 and B ∈ Z
m×n2 , the m × (n1 + n2) matrix C = (A ‖ B)

is defined as cij =

{
ai,j 1 ≤ j ≤ n1

bi,(j−n1) n1 < j ≤ n1 + n2

. The Gadget matrix G which

will be used in the construction of functional encryptions is defined by G =
(1, 2, 4, · · · , 2�log q�−1)t ⊗ In ∈ Z

n×n�
q . For an ordered set A = {a1,a2, · · · am} ∈

R
n, Gram-Schmidt norm of A is defined by ‖Ã‖ = max

1≤i≤m
‖ãi‖, where Ã =

{ã1, ã2, · · · ãm} is the Gram-Schmidt orthogonalization of A. We denote R the
cyclotomic polynomial ring R = Z[x]/(xn + 1) for n with a power of 2; for any
integer modulus q, define the quotient ring Rq = R/qR.

2.2 Lattice

Let B = {b1,b2, · · ·bm} be a subset of Rn with m linearly independent vectors.
The m dimensional lattice generated by the basis B is the set,

Λ = L(B) = {y ∈ R
n : ∃x = (x1, · · · , xm) ∈ Z

m s.t. y = Bx =
m∑

i=1

xibi}

The determinant of Λ = L(B) is defined as det(Λ) =
√

det(BT B). Throughout
this paper, we consider certain families of integer lattices in [Ajt96]:

Definition 1 ([Ajt96]). Let q be a prime, A = {a1,a2, · · · am} ∈ Z
n×m, and

u ∈ Z
n
q .

– Λq(A) := {y ∈ Z
m : ∃x ∈ Z

n
q s.t. ATx = y} ⊆ Z

m

– Λ⊥
q (A) := {y ∈ Z

m : Ay =
m∑

i=1

yiai = 0 ∈ Z
n
q } ⊆ Z

m

– Λu
q (A) := {y ∈ Z

m : Ay =
m∑

i=1

yiai = u} ⊆ Z
m

Given a basis of m dimensional lattice Λ, a lattice reduction algorithm outputs
a short and nearly orthogonal basis. We define the root Hermite factor δ of the
lattice reduction algorithm as ‖b1‖/det(Λ)1/m, where b1 is the shortest vector
in the output basis. In the aspect of cryptanalysis, the root Hermite factor is
usually regarded as the dominant parameter for the runtime of the lattice basis
reduction algorithms and quality of the reduced bases.
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2.3 Discrete Gaussian Distribution

For c ∈ R
m and σ > 0, the Gaussian distribution on R

m is defined as ρσ,c(x) =

exp
(

−π
‖x − c‖2

σ2

)
.

Definition 2. For a countable set S ⊂ Z
m, define ρσ,c(S) =

∑
x∈S ρσ,c(x).

Then, the discrete Gaussian distribution over S is defined as follows:

∀x ∈ S,DS,σ,c(x) =
ρσ,c(x)
ρσ,c(S)

When c = 0, we may use the notation ρσ and DS,σ. Also, we may write Dσ

for a discrete Gaussian distribution over Z.

2.4 Lattice Trapdoor

We review the algorithms related to lattice trapdoors in [GPV08,ABB10,MP12].

TrapGen. TrapGen(q, n) is an algorithm that outputs a full-rank pseudorandom
matrix A ∈ Z

n×m
q and short orthogonal basis (trapdoor) TA ∈ Z

m×m for Λ⊥
q (A),

where m = Θ(n log q). The output A is negl(n) close to uniform and the Gram-
Schmidt norm

∥∥∥T̃A

∥∥∥ = O(
√

n log q) with all but negl(λ) probability.
[Ajt99] proposed how to generate a lattice with a short basis, and [AP11]

and [MP12] refine the algorithm. [MP12] proposed two types of TrapGen. The
first type outputs statistically near-uniform A. The second type outputs compu-
tationally pseudorandom A with m = 2n, based on LWE assumption.

[ABB10] suggested LWE-based IBE, using the TrapGen algorithm in [AP11].
As [MP12] suggested a more efficient algorithm than that in [AP11], and briefly
explained the concept of its extension to ring setting, [EBB13] presented an
implementation of [MP12] in both matrix and ring version. [GPR+18] imple-
mented the result of [MP12] and [EBB13] in PALISADE library. [BFRLS18]
also made a ring version implementation of [ABB10] and [MP12].

SampleLeft. SampleLeft(A,B, TA,u, σ) is an algorithm that takes input A ∈
Z

n×m
q , B ∈ Z

n×m1
q , trapdoor TA of Λ⊥

q (A), a vector u ∈ Z
n
q , and a Gaussian

parameter σ >
∥∥∥T̃A

∥∥∥ · ω(
√

log n), then outputs a “short” vector e from a distri-
bution statistically close to DΛu

q (F ),σ where F = [A|B].
SampleLeft requires another algorithm called SamplePre as its building

block, and [MP12] described SamplePre algorithm in Zq. [ABB10] constructed
SampleLeft algorithm in Zq, and [BFRLS18] and [GPR+18] clearly expressed
ring version of SampleLeft. In particular, [GPR+18] use the result of [GM18]
which improved [MP12].

SampleRight. SampleRight(A,H,R,u, σ) is an algorithm that inputs matrices
A ∈ Z

n×m
q and H ∈ Z

n×n
q , a uniform random matrix R ∈ {0, 1}m×m, a vector

u ∈ Z
n
q , and a parameter σ, outputs a vector e ∈ Z

2m
q sampled from a distri-

bution statistically close to DΛu
q (F ),σ, where F = [A|AR + HG] ∈ Z

n×2m
q . We

recommend to see [ABB10,MP12] for details.
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2.5 LWE, LWR, and RLWR

The learning with errors (LWE) problem was first introduced by Regev [Reg05],
and its ring variant version, ring-LWE (RLWE), was introduced in [LPR10]. For
positive integers n and q and a distribution χ over Zq, the (decision) LWEn,q,χ(s)
problem for s ← Z

n
q aims to distinguish the distribution of (a, 〈a, s〉+e) ∈ Z

n
q ×Zq

where a ← Z
n
q are uniformly chosen and e is sampled from a certain error

distribution χ (e.g., discrete Gaussian distribution) from the uniform distribution
over Z

n
q × Zq. It was proved that for certain choice of parameter, a solution for

LWE implies a quantum solution to worst-case lattice problems in [Reg09].
More recently, a “derandomized” variant of LWE is proposed [BPR12] to

construct a lattice-based pseudorandom function, called learning with rounding
(LWR). They use a rounding function �·�p : Zq → Zp that is defined by �x�p =
�(p/q) · x� ∈ Zp to generate deterministic errors in the LWR instance. The LWR
and its ring variant ring-LWR (RLWR) problems are defined as follows:

Definition 3. (Decision version, Definition 3.1 in [BPR12]). Let n ≥ 1 be the
main security parameter and moduli q ≥ p ≥ 2 be integers.

– For a vector s ∈ Z
n
q , define the LWR distribution Ls to be the distribution

over Z
n
q × Zp obtained by choosing a vector a ← Z

n
q uniformly at random,

and outputting (a, b = �〈a, s〉�p).
– For s ∈ Rq, define the RLWR distribution Ls to be the distribution over

Rq × Rp obtained by choosing a ← Rq uniformly at random and outputting
(a, b = �a · s�p).

– For a given distribution over s ∈ Z
n
q , the LWR problem is to distinguish (with

advantage non-negligible in n) between any desired number of independent
samples (ai, bi) ← Ls, and the same number of samples drawn uniformly and
independently from Z

n
q ×Zp. The RLWR problem is defined analogously. These

two problems with previously explained parameter are denoted by LWRn,q,p and
RLWRn,q,p.

We defer the explanation for cryptanalytic hardness of the LWR problem to
Appendix A.

2.6 Identity-Based Encryption

Identity-Based Encryption (IBE) was firstly introduced by Shamir [Sha85] and
constructed in [BF01], which allows to manage certificates in traditional public-
key encryption in a simple and intuitive way. Recall that IBE consists of four
algorithms: Π = {Setup, Extract, Encrypt, Decrypt}.

– Setup(λ) → (PP,MK): receives a security parameter λ as input. It outputs
public parameters PP and master secret key MK.

– Extract(PP,MK, id) → SKid: receives PP,MK, and an identity id. It outputs
a secret key SKid corresponding to id.

– Encrypt(PP, id, μ) → CT: receives PP, id and a message μ. It outputs the
ciphetext CT, the encryption of μ.
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– Decrypt(PP,SKid,CT) → μ: receives PP,SKid,CT and outputs the mes-
sage μ.

Correctness. An IBE scheme Π is correct if Decrypt(PP,SKid,CT) =μ
where Setup(λ) → (PP,MK), Extract(PP,MK, id) → SKid, and CT=
Encrypt(PP, id, μ) with an overwhelming probability in the security param-
eter λ.

Security. We define the selective security of IBE by the following game.

– Init: The adversary A outputs a target identity id∗.
– Setup: The challenger C runs Setup(1λ) → (PP,MK) and sends the public

parameters PP to A. C keeps the master secret key MK.
– Phase 1: A sends queries id1, · · · , idQ1 where idi is not id∗ for i = 1, · · · , Q1.

C runs Extract(MK, idi) → ski and sends ski back to A.
– Challenge: A outputs a plaintext challenge μ ∈ M. C choose b ← {0, 1},

and a random ciphertext c ∈ CT . If b = 0, C sets the challenge ciphertext
as c∗ ←Encrypt(PP, id∗, μ). Otherwise, it sets the challenge ciphertext to
c∗ ← c. It sends c∗ to A.

– Phase 2: A issues queries idQ1+1, · · · , idQ2 , where idi �= id∗. C does the same
as in the Phase 1.

– Guess: A outputs a bit b′ ∈ {0, 1}.

We refer to an adversary A defined above as an INDr–sID-CPA adversary.

Definition 4. An IBE system Π is INDr-sID-CPA secure if, for all INDr-sID-
CPA PPT adversaries A,

AdvIBEA = |Pr[b = b′] − 1/2| < negl(λ),

where the probability is over the random bits used by A and the challenger.

3 Our Identity-Based Encryption Scheme

In this section, we present our IBE scheme from LWR which has a similar struc-
ture with the LWE-based IBE in [ABB10] equipped with the trapdoor in [MP12].
To encode identities which are binary strings, we use a hash function satisfying
certain conditions defined in [ABB10] which is referred as an FRD hash function
in this section. The definition of FRD hash function is the following:

Definition 5. (Encoding with Full-Rank Differences (FRD) [ABB10]). Let q
and n be positive integers. A hash function H : Zn → Z

n×n
q is an encoding with

full-rank differences (FRD) if

1. for all distinct x and y, H(x) − H(y) in Z
n×n
q is of full rank, and

2. H is efficiently computable, i.e., H is computable in polynomial time in
(n log q).
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3.1 Construction

– IBE.Setup(λ): On input a security parameter λ, set the parameters q, p, n,
m, s as specified in Sect. 4.1. Next do:

• Use TrapGen(q, n) to generate a uniformly random n × m-matrix A ∈
Z

n×m
q with a basis TA for Λ⊥

q (A) of which entries are independently sam-
pled from a discrete Gaussian distribution Dσ.

• Generate a uniformly random n × m matrix B ∈ Z
n×m
q .

• Select a uniformly random n-vector u ∈ Z
n
q .

• Output the public parameters and master secret key,

PP = (A,B,u), MK = (TA)

– IBE.Extract(PP,MK, id): On input public parameters PP, a master secret key
MK, and an identity id, do:

• Sample e ∈ Z
2m as e ← SampleLeft(A,B + H(id)G,TA,u, s) where H is

an FRD hash function in Definition 5.
• Output SKid := e.

– IBE.Encrypt(PP, id, b): On input public parameter PP, an identity id, and a
message b ∈ {0, 1}, do:

• Sample a uniform random vector s ← Z
n
q .

• cout ←
⌊

p

q
· uT · s

⌉
+ b ·

⌊p

2

⌋
.

• cin ←
⌊

p

q
(AT · s)

⌉
∈ Z

m
p , and let fA := AT · s − q

p

⌊
p

q
(AT · s)

⌉
.

• R ← {−1, 1}m×m, and let fB ← RT · fA.

• cid ←
⌊

p

q
·
(
(B + H(id)G)T · s − fB

)⌉
.

• Output the ciphertext CT := (cin, cid, cout) ∈ Z
m
p × Z

m
p × Zp.

– IBE.Decrypt(PP,SKid,CT): On input public parameters PP, a private key
SKid := e ∈ Z

2m, and a ciphertext CT := (cin, cid, cout), do:
• Compute w ← cout − eT · (cT

in|cT
id)

T .
• Compare w and �p/2� treating them as integers in Z. If |w − �p/2� | <

�p/4� in Z, output 1, otherwise, output 0.

Remark 1. We remark that

cid =
⌊

p

q
·
(
(B + H(id)G)T · s − fB

)⌉

=
⌊

p

q
·
(

(B + H(id)G)T · s − RT AT · s +
q

p
RT

⌊
p

q
(AT · s)

⌉)⌉

=
⌊

p

q
·
(
(B + H(id)G)T · s − (AR)T · s

)⌉
+ RT

⌊
p

q
(AT · s)

⌉
,

so that cid is alternatively defined as
⌊

p

q
·
(
(B + H(id)G)T · s − (AR)T · s

)⌉
+

RT

⌊
p

q
(AT · s)

⌉
when appropriate (for example, to a certain parameter set that

p does not divide q).
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3.2 Correctness

In this section, we present a correctness condition of the presented IBE scheme.

Lemma 1 (Correctness). The IBE scheme works correctly as long as the fol-
lowing inequality holds for the security parameter λ:

Pr[
∣∣〈eA, fA〉 + 〈eB , fB − RT fA〉

∣∣ ≥ q

4
− q

2p
:

eA, eB ← Dm
σ , fA, fB ← Z

m
q/p, R ← {−1, 1}m×m] < negl(λ).

Proof. Let e = (eT
A|eT

B)T , for eA, eB ∈ Z
m
q , and f ← uT · s − q

p

⌊
p

q
uT · s

⌉
.

Setting

fA ← AT · s − q

p

⌊
p

q
AT · s

⌉
, and

fB ← (B + H(id)G)T · s − RT fA − q

p

⌊
p

q
·
(
(B + H(id)G)T · s − RT fA

)⌉
,

It holds that

cout − eT · (cT
in|cT

id)
T = �p/2� · b + (p/q) · (〈eA, fA〉 + 〈eB , fB + RT fA〉 − f).

Hence, the scheme works correctly if

(p/q) · |(〈eA, fA〉 + 〈eB , fB + RT fA〉)| + (p/q) · |f | ≤ p/4

The correctness condition follows directly because |f | ≤ q/2p.

3.3 Security

Theorem 1. The IBE system with parameters (q, p, n, m, σ) is INDr–sID-CPA
secure provided that the LWRn,q,p assumption holds.

Proof. Let Game 0 denote the original INDr-sID-CPA game from Definition 4
against our scheme between an adversary A and a challenger C.

Game 1. Recall that, in Game 0, the challenger C runs IBE.Setup algorithm to
generate random (A,B,u) ∈ Z

n×m
q × Z

n×m
q × Z

n
q as public parameters with a

master secret key TA, a short orthogonal basis for A. In Game 1, C sets B ←
AR∗ − H(id∗)G instead, where R∗ ← {−1, 1}m×m and id∗ is committed by the
adversary A at the beginning. In the challenge phase, C sets R∗ ∈ {−1, 1}m×m as
a random matrix generated in the encryption phase. By the generalized leftover
hash lemma, (A,AR∗, fB = (R∗)T · fA) is statistically close to (A,B, fB) where
B ← Z

n×m
q is uniform random so that Game 0 and Game 1 are indistinguishable

for A.

Game 2. The only change in Game 2 compared to Game 1 is that C responds a
key extraction query for id with e ← SampleRight(A, (H(id) − H(id∗)), R∗,u, s),
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where (A|AR∗ + (H(id) − H(id∗))G)e = u. The distribution of answers for the
key extraction queries is statistically close to that in Game 1.

Game 3. The challenge ciphertext is chosen as a random independent element
in Z

m
q × Z

m
q × Zq.

Indistinguishability Between Game 2 and Game 3. Suppose there exists
a polynomial time adversary A who distinguishes Game 2 and Game 3 with
non-negligible advantage. We construct an LWR adversary B using A.

Let O be a sampling oracle for the LWR problem which is either a truly
random O$ or a rounded pseudo-random Os for some fixed s. B requests from
O and receives (m + 1) samples {(ai, vi)}m

i=0. After A announce id∗, B does the
following:

– Construct a matrix A ∈ Z
n×m
q as a matrix of which i-th column is ai for

i = 1, · · · ,m.
– Set u = a0.
– Set B ∈ Z

n×m
q as in the Game 2 using R∗ and id∗.

– Send PP = (A,B,u) to A.

Receiving private-key queries from A, B answers them as in Game 2. For the
challenge phase, upon receiving a message bit b∗ from A, B does the following.

– c∗
out ← v0 + b∗ �p/2�.

– Set v∗ = (v1, v2, · · · , vm) ∈ Z
m
q .

– Let c∗
in = v∗, and c∗

id = (R∗)Tv∗.
– Set CT∗ = (cin, cid, cout) and send it to A.

Claim 1: If O = Os, then the distribution of CT∗ is the same as in Game 2.
It suffices to show that, for a challenge ciphertext CT = (cin, cid, cout) in

Game 2, cid = (R∗)T cin. In Game 2,

cin =
⌊
(p/q) · AT s

⌉
and cid =

⌊
(p/q) · ((AR∗)T s − (R∗)T fA)

⌉
,

where fA = AT s − (q/p) ·
⌊
(p/q) · AT s

⌉
. It follows that

cid =
⌊
(p/q) · ((AR∗)T s − (R∗)T fA)

⌉
=

⌊
(p/q) · ((AR∗)T s + (R∗)T ((q/p) ·

⌊
(p/q) · AT s

⌉
− AT s))

⌉
= (R∗)T

⌊
(p/q) · AT s

⌉
= (R∗)T cin.

Claim 2: If O = O$, then the distribution of CT∗ is the same as in Game 3.
It suffices to show that CT∗ is uniform as in Game 3. By the left over hash

lemma where the hash function is defined by (AT |v∗), (AR∗, (R∗)Tv∗) is uni-
formly random in Z

n×m
q × Z

m
p . Hence, CT∗ is uniform in Z

m
p × Z

m
p × Zp.
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3.4 Ring Version

In the ring version, we consider the gadget vector g = (1, 2, · · · , 2
log q�−1, 0, 0) ∈
Rm

q of which entries are in Rq, and the FRD hash function H : Zn → Rq which
satisfies that for any distinct u and v in Z

n, the difference H(u) − H(v) ∈ Rq

is invertible and is computable in polynomial time in (n log q).

– IBE.Ring.Setup(λ): On input a security parameter λ, set the parameters q,
p, n, σ as specified in Sect. 4.1. Let k = �log q� and m = k + 2. Next do:

• Use TrapGen(q, n) to generate a vector a ∈ Rm
q together with a basis

Ta ∈ R(m−k)×k
q for Λ⊥

q (a) of which entries are independently sampled
from discrete Gaussian distribution Dσ.

• Generate a uniformly random vector b ∈ Rm
q .

• Select a uniformly random u ∈ Rq.
• Output the public parameters and master secret key,

PP = (a,b, u), MK = (Ta)

– IBE.Ring.Extract(PP,MK, id): On input public parameters PP, a master
secret key MK, and an identity id, do:

• Sample e ∈ R2m as e ← SampleLeft(a,b + H(id) · g, Ta, u, σ).
• Output SKid := e.

– IBE.Ring.Encrypt(PP, id, μ): On input public parameter PP, an identity id,
and a message μ ∈ R2, do:

• Sample a uniform random element s ← Rq.

• cout ←
⌊

p

q
· u · s

⌉
+ μ ·

⌊p

2

⌋
.

• cin ←
⌊

p

q
(a · s)

⌉
∈ Rm

p , and let fA := a · s − q

p

⌊
p

q
(a · s)

⌉
.

• R ← {−1, 1}m×m, and let fB ← R · fA.

• cid ←
⌊

p

q
· ((b + H(id) · g) · s − fB)

⌉
.

• Output the ciphertext CT := (cin, cid, cout) ∈ Rm
p × Rm

p × Rp.
– IBE.Ring.Decrypt(PP,SKid,CT): On input public parameters PP, a private

key SKid := e ∈ R2m, and a ciphertext CT := (cin, cid, cout), do:

• Output μ′ ←
⌊

2
p

· (cout − eT · (cT
in|cT

id)
T )

⌉
.

Correctness. The correctness lemma as below shows when the ring version of
our IBE scheme is correct.

Lemma 2 (Correctness). The ring version IBE scheme works correctly as
long as the following inequality holds for the security parameter λ:

Pr[
∣∣〈eA, fA〉 + 〈eB , fB − RT fA〉

∣∣ ≥ q

4
− q

2p
:

eA, eB ← Dm
σ , fA, fB ← Rm

q/p, R ← {−1, 1}m×m] < negl(λ).
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Proof. The proof is the same as in Lemma 2.

Security. The ring version of our IBE scheme is secure under the hardness
assumption of ring-LWR in the standard model.

Theorem 2. The ring version IBE system with parameters (q, p, n, σ) is INDr–
sID-CPA secure provided that the ring-LWRn,q,p assumption holds.

Proof. The security proof is the same with that of Theorem 1.

3.5 Extensions

Our IBE construction is an analogue of the LWE-based IBE scheme in [ABB10]
alternating the discrete Gaussian errors generated in the encryption phase with
deterministic rounding errors. The ideas and security proofs in [ABB10] to con-
vert a selectively-secure IBE scheme into an adaptively-secure scheme or Hier-
archical IBE (HIBE) scheme can be easily adapted to our scheme.

– Adaptively-Secure IBE: Let id is a -bit string id = (d1, · · · , d�) ∈ {0, 1}�.
Public key contains uniform random matrices A0, · · · , A� instead of A in
the selectively-secure scheme, and for an encryption procedure, the matrix
(A‖B + H(id)G) is replaced with(

A0

∥∥∥∥B +
�∑

i=1

di · Ai

)

to calculate the ciphertext. The resulting scheme is adaptively-secure.
– HIBE: For d, a maximum depth, public key contains uniform random matri-

ces A0, · · · , Ad instead of A. Let id = (id1, · · · , id�) be an identity sequence
of length  < d. To encrypt, instead of the matrix (A‖B + H(id)G),

(A0‖B + H(id1)A1‖ · · · ‖B + H(id�)A�)

is used.

4 Efficient Instantiation

We present efficient instantiation for the proposed ring-LWR based IBE scheme,
using the trapdoor proposed in [MP12].

4.1 Proposed Parameters

– σ for the trapdoor sampling is σ >
√

(ln(2n/(1 + 1/ε)))/π [MP12], where ε
is the bound on the statistical error introduced by each randomized-rounding
operation. For n ≤ 214 and ε ≥ 2−80, σ > 4.554.
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– The spectral norm (trapdoor quality) s is s > Cσ2(
√

m +
√

2n + t′) except
for the probability 2 · exp(−π(t′)2), where C is experimentally chosen as C ≈
1.8 [GPR+18].

– By the central limit theorem, to satisfy the correctness condition, the modulus
q and p are required to satisfy

q

4
− q

2p
>

√
mnΔe(Δfunc + Δp),

where
• Δe and Δp are the upper bounds for the infinite norm of e and the

coefficient-wise rounding error induced by the operation
⌊

p
q ·

⌉
, respec-

tively. Δe ≈ ω(
√

λ) · s and Δp = ω(
√

λ) · q/
√

12p.
• Δfunc is an upper bound for the summation of the (m + 1) inde-

pendent random variables in [�−q/2p� , �q/2p�] ∩ Z. Hence, Δfunc ≈
ω(

√
λ)

√
m + 1 · (q/

√
12p).

– n is the LWR dimension, and is set to satisfy that LWRn,q,p is secure against
the attacks in Sect. A.

– m in the non-ring version of our scheme is set to either n(1 + log q) to make
A of public key statistically close to uniform, or 2 log q to sample a computa-
tionally pseudorandom A as mentioned in [MP12].

Based on the analyses as above, we can set the parameters for the ring
versions of our IBE as follows (Table 1):

Table 1. Suggested parameter set for IBE; δ = 1.0075 for Parameter I and δ = 1.005
for Parameter II which provide 80-bit and 190-bit of security according to Albrecht’s
LWE estimator [APS15], respectively.

Parameter n log q log p log s

I 512 29 24 10.61

II 1024 35 30 12.80

4.2 Proof-of-Concept Implementation

As a proof of concept, we implemented ring version of our LWR-based IBE
scheme using lattice cryptography library PALISADE [PRR] with its NativePoly
class. All experiments were tested on Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10 GHz processor (Table 2).

Although our code use TrapGen, SamplePre, and ring operations as black-
boxes, we carried out some high-level optimizations like minimizing NTT and
iNTT operations. For example, we replaced the matrix-vector multiplication
R · fA in the encryption algorithm as a linear sum of elements. This can be done
since R is a random matrix from {−1, 1}m×m which is not needed after this step.
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This can speed up the step remarkably: we can keep m × m polynomial multi-
plications. We note that the performance can be largely improved by applying
further optimization methods. For example, the performance can be improved
by multi-threading, precomputing NTT (Number-Theoretic Transform)-related
variables for faster polynomial multiplications, or using primes of special form
to speed up modular multiplications by replacing some integer multiplications
with shift operators.

Table 2. Proof of concept implementation timing results

Parameter Setup Extract Encrypt Decrypt

I 6.9 ms 29.6 ms 8.0 ms 0.5 ms

II 17 ms 65 ms 19ms 1ms

Our scheme has strength in ciphertext size since our ciphertext size depends
on log p instead of log q. Recent paper [BFRLS18] implemented a ring version
of ABB IBE scheme and suggested concrete parameters. Among their param-
eter sets, the set of n = 1024 and n = 2048 correspond to δ = 1.0079 and
δ = 1.005 (about 80-bit and 190-bit of security according to Albrecht’s LWE
estimator [APS15]), respectively. Compared to their scheme, our IBE scheme
reduces ciphertext size about 72–73% for the same security. For 190-bit security
(resp. 80-bit security), their ciphertext size is about 1 MB (resp. 0.35 MB), while
our ciphertext size is about 0.27 MB (resp. 0.1 MB).

A Cryptanalytic Hardness of the LWR Problem

In this section, we analyze the attack complexity for an LWR instance using
lattice basis reduction algorithms, e.g., the BKZ algorithm [CN11,SE94]. We
remark that the attack strategy to analyze the LWR problem shares the essence
of the LWE attacks which has been studied in the recent papers [Alb17,CHK+16,
AGVW17]. Actually, we surveyed all the LWE attacks and concluded that the
primal and dual attack strategies are the most powerful in our usage. We focus
on how to apply the primal attack strategy to analyze LWR, and for dual attack
strategy applied to LWR, we recommend to see the analysis in [CKKS17].

The conclusion of this section is as follows.

Remark 2. the attack complexity of the LWR problem of dimension n, modulus
q, and the rounding modulus p is equal to that of the LWE problem of the same
dimension n, the same modulus q, and an error rate α = p−1 ·

√
π/6.

This agrees with the view that an LWR sample (a, b = �(p/q) · 〈a, r〉�) ∈
Z

n
q × Zp can be naturally seen as a kind of an LWE sample by sending back

the value b to an element of Zq, i.e., b′ = (q/p) · b ∈ Zq satisfies b′ = 〈a, r〉 + f
(mod q) for a small error f = −〈a, r〉 (mod q/p). Note that, in this view, the
inserted error is deterministically chosen by random part a and secret r, but it
does not affect on the attack complexity.
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A.1 Primal Attack for LWR

The key idea of the primal attack is the reduction from LWR to unique-SVP
over a special lattice generated by an LWR instance. As described in [ADPS16]
and [AGVW17], we use geometric series assumption (GSA) on the BKZ-reduced
basis, and detect the shortest vector in the projected lattice.

Let Λ be a d-dimensional lattice. GSA asserts that the norms of Gram-
Schmidt vectors of the lattice basis after lattice reduction forms a geometric
series as follows.

Definition 6 (Geometric Series Assumption [Sch03]). For a lattice Λ =
Z · b1 + · · ·Z · bd of dimension d, the norm of the Gram-Schmidt vectors after
lattice reduction satisfy

‖b∗
i ‖ = αi−1 · ‖b1‖,

for some 0 < α < 1.

Since ‖b1‖ = δd · V ol(Λ) where δ is a root Hermite factor and V ol(Λ) =∏d
i=1‖b∗

i ‖ by definition, α ≈ δ−2.
Suppose there exists a vector v ∈ Λ of small norm such that√

b/d · ‖v‖ ≤ δ2b−dV ol(Λ)1/d. (1)

Then, running the BKZ algorithm, when the SVP oracle is called on the last
full projected block of size b, the projection πd−b+1(v) of v is contained in the
lattice

Λd−b+1 := Z · πd−b+1(bd−b+1) + · · · + Z · πd−b+1(bd).

Note that, based on the following analysis, πd−b+1(v) is unusually short so that
SVP oracle finds πd−b+1(v) in Λd−b+1.

– ‖πd−b+1(v)‖ ≈
√

b/d‖v‖ ≤ δ2b−dV ol(Λ)1/d.
– We remark that b∗

d−b+1 ≤ λ1(Λd−b+1). By GSA, b∗
d−b+1 = (δ−2)d−b ·λ1(Λ) =

δ−2(d−b)+d · V ol(Λ)1/d.

Hence, we can conclude that if there exists v of norm δ2b−dV ol(Λ)1/d, then
an attacker can detect it running BKZ algorithm. Now we describe the lattices
induced from an LWR instance in which an unusually short vector exists using
the two embedding strategies in [Kan87,BG14].

Kannan’s Embedding for LWR. Let
(
A, b =

⌊
p
q · Ar

⌉)
∈ Z

m×n
q × Z

m
p be

a given LWRn,m,q,p(Dr) instance. For a reduced row echelon form [In|A′] for A,
consider the (m + 1) dimensional lattice

Λ = Z
m+1 ·

⎛
⎝ In A′ 0

0 qIm−n 0
(q/p) · bT 1

⎞
⎠ ,
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which is an LWR version of the Kannan’s embedding [Kan87] when the embed-
ding factor is 1. The lattice contains a vector of norm ‖(fT |1)‖, where f =
(q/p) �(p/q) · Ar� − Ar. The lattice Λ has dimension (m + 1) and volume qm−n.

Hence, the attack is successful if
√

b · (q/p ·
√

π/6) ≤ δ2b−m−1q(m−n)/m+1,

by (1).

Bai-Galbraith’s Embedding for LWR. For a given LWRn,m,q,p(Dr) instance(
A, b =

⌊
p
q · Ar

⌉)
∈ Z

m×n
q × Z

m
p , construct the lattice

Λ = {v ∈ Z
n+m+1 : (A‖Im‖ − (q/p) · b)v = 0 (mod q)}.

with the unique shortest vector (r, f , 1). Similarly to the case of dual attack, we
consider the weighted lattice

Λ′ = {(x,y, z) ∈ Z
n × (w−1

Z)m × Z : (x, w · y, z) ∈ Λ}.

for the constant w = (q/
√

12p) · σ−1
r where σ2

r is the variance of component
of secret vector r. which contains the short vector v = (r, w−1 · f , 1). Let q̂ =
q/w =

√
12p/σr, then the dimension and the volume of Λ′ are (n + m + 1) and

q̂m respectively.
Therefore, the attack is successful if√

b/(m + n + 1)‖(r, w−1 · f , 1)‖ ≈
√

b · σr ≤ δ2b−m−n−1q̂m/(m+n+1),

by (1). In other words,
√

b · σ(n+1)/(m+n+1)
r ≤ δ2b−m−n−1(

√
12p)m/(m+n+1).
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Abstract. In FHE over the integers, decryption function is simplified
by sparse subset subset sum problem (SSSP) assumption, which is intro-
duced by Dijk et al. (Eurocrypt 2010), so that bootstrapping can be
achieved successfully. Later, Nuida and Kurowasa (Eurocrypt 2015) pro-
posed an advanced method of which the degree is very low and the mes-
sage space is non-binary. These previous methods require low degree but
more than O(λ4) homomorphic multiplications which make them very
slow. For a general bootstrapping method in FHE over the integers, the
number of homomorphic multiplications and the degree of decryption
function are important factors for the efficiency of bootstrapping proce-
dure.

In this paper, we propose a new bootstrapping method for FHE over
the integers requiring only O(log2 λ) homomorphic multiplications which
is significantly lower than previous methods. Implementing our boot-
strapping method on the scale-invariant FHE over the integers called
CLT scheme, it takes 6 s for 500-bit message space and 80-bit security on
a desktop. We also apply our bootstrapping method to the homomorphic
evaluation of AES-128 circuit: It takes about 8 s per 128-bit block and is
faster than the previous results of homomorphic AES evaluation using
FHEs over the integers without bootstrapping.

Keywords: Bootstrapping · Fully Homomorphic Encryption ·
Squashing technique · Approximate GCD

1 Introduction

Following Gentry’s blueprint [9], the essential step from Somewhat Homomor-
phic Encryption (SHE) to Fully Homomorphic Encryption (FHE) is a homo-
morphic evaluation of decryption circuit, which is called bootstrapping. After
Gentry proposed the first FHE, various FHEs have been proposed and they can
be classified into two categories: lattice-based FHEs and integer-based FHEs. In
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case of integer-based FHEs, it is harder to construct bootstrapping method than
lattice-based FHEs since they need additional assumption to simplify a decryp-
tion circuit. Until Nuida and Kurosawa [13] suggested improved bootstrapping
method, similar methods to [14] had been used in integer-based FHEs. In [13],
they proposed new bootstrapping method which can be applied for integer-based
FHEs supporting non-binary message space, and lower the degree of squashed
decryption circuit. However, their method needs too many homomorphic multi-
plications while bootstrapping and this yields slow speed of bootstrapping pro-
cedure.

In this paper, we propose new bootstrapping method for integer-based FHEs
[5,6,14], which is more efficient than previous works [13,14]. In [13], they adapted
their method only to the scheme of [14] (ciphertext with the form pq + 2r + m),
but actually their method can be adapted to all integers-based FHEs because
their method works well regardless of which homomorphic encryption schemes
the method is applied for. Our new bootstrapping method also contains such
generality of the method in [13] so that it can be applied to all integer-based
FHEs. The main advantages of our method are following:

• First, our bootstrapping method is significantly more efficient (and faster)
than previous methods [13,14]. The number of homomorphic multiplications
in our bootstrapping method is much smaller than previous methods ; reduced
from O(λ4 log6 λ) to O(log2 λ).

• Second, we apply our method to scale-invariant FHE over the integers (CLT
scheme [6]) with non-binary message space. Error growth while bootstrapping
in this scheme is O(n log Θ) and the bootstrapping procedure takes about 6 s
for depth 8 and 80-bit security.

• Third, homomorphic Advanced Encryption Standard (AES) evaluation in low
depth using our efficient bootstrapping method with CLT scheme is faster
than previous AES evaluation in large depth without bootstrapping [6].

1.1 Previous Work and Problems

There were two kinds of bootstrapping methods in FHE over the integers, which
were proposed in [14] and [13]. In [13,14], the decryption circuit was simplified
into following equation with sparse subset sum problem (SSSP) assumption for
given ciphertext c:

m =

⌊
Θ∑

i=1

si · wi

tn

⌉
mod t or c −

⌊
Θ∑

i=1

si · wi

tn

⌉
mod t.

Here si is a secret chosen from {0, 1}, wi = �c · ui/tκ−n� mod tn+1 for public
rational number ui and prime t, where n ≈ logt λ and κ ≈ log |c| + λ. In [14],
they achieved bootstrapping by homomorphically evaluating this circuit, and
this method was generalized to non-binary message space in [13]. The method
use a bit-wise approach: namely, each si is encrypted as a ciphertext of message
space Z2 (Zt in [13]). By using bit-wise approach, output of addition part is
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ciphertext of each bit of
∑

siwi so that the rounding part becomes just one
XOR circuit. The complexity of addition part depends on Θ and n. Also Θ is
larger than O(λ4), so it becomes bottleneck in efficiency of bootstrapping for
FHE over the integers.

1.2 Our Contribution

Efficient Bootstrapping Method. To overcome the bottleneck, we propose
new bootstrapping method whose addition part is much simpler than [13] and
rounding part is more complicated than that. The important point is that com-
plexity of rounding part depends only on small parameter n, and this point
makes our method reasonable. Contrary to [13], we expand the message space to
Ztn+1 so that the addition part exactly consists of homomorphic additions. As
the message space becomes larger, rounding part can be regarded as an extract-
ing significant bit of (

∑
sizi). In [10] (resp. [12]), homomorphic bit (resp. digit)

extraction is proposed, and we apply it to the integer-based FHE [6] successfully
(Table 1).

Table 1. Comparison with [NK15] method.

[13] Our method

Degree O(λ) O(λ1+ε)

The number of Hommult O(λ4 log6 λ) O(log2 λ)

Even though the degree of rounding part increases exponentially in n, param-
eter n is as small as log λ and only n2 number of multiplications are needed in
the part. The small constant ε part above is due to using large message space
Ztn+1 .

Applying Our Bootstrapping Method on CLT Scheme. We apply our
method on scale-invariant FHE over the integers, CLT scheme introduced by
Coron, Lepoint, and Tibushi [6]. The ciphertext form of CLT scheme is appro-
priate to apply our method since the form allows trivial transition of various
message spaces. Also, the noise growth during homomorphic multiplication in
CLT scheme is linear. Applying our method on CLT scheme, we produce precise
noise analysis of the bootstrapping procedure and its implementation result, 6 s
for 500-bit message space. This result is far superior comparing with previous
result in [4], 13 min for 500-bit message space.

We also implement a homomorphic evaluation of AES-128 encryption cir-
cuit. In our implementation, the evaluation takes 8 s per block and this result
is better than 26 s per block [6], which is the result under large depth without
bootstrapping.



Faster Bootstrapping of FHE over the Integers 245

1.3 Notation

• [n] = {0, 1, · · · , n − 1}, and Zn is treated as [n] in this paper.
• a mod p for a ∈ R is an unique number ∈ [0, p) such that a − (a mod p) is an

integer and a multiple of p.
• [a]p is an unique integer in (−p/2, p/2] such that a − [a]p is a multiple of p.
• a〈k〉t := ak for a non-negative integer a =

∑
ait

i and ai ∈ [t]. When t = 2,
we omit the subscript t.

2 Preliminaries

In this section, we introduce squashing technique of FHEs over the integers and
digit extraction techniques in detail, which will be applied for our bootstrapping
method.

2.1 Squashed Decryption Circuit

The original decryption functions of integer-based FHE schemes [5,6,14] have
form of �tc/p� mod t or c − �c/p� mod t for secret integer p, and these func-
tions should be homomorphically evaluated for bootstrapping. Since division is
not suitable for homomorphic evaluation, decryption functions of integer-based
FHEs are squashed for efficient bootstrapping. Squashing is the procedure of
expressing secret value 1/p as the subset sum of public numbers within very
small error, which enable to bootstrap efficiently.

Squashed scheme was first introduced in [14], and generalized in [13]. Let
κ′, Θ′, and θ′ be additional parameters satisfying κ′ > (γ + λ)/ log t. The con-
crete parameter settings of Θ′ and θ′ are discussed in Sect. 4.5. The method of
squashing is identical to that in [13].

• KeyGen. Generate sk∗ = p and pk as before. Set xp = �tκ′+1/p�, choose a
random Θ′-bit vector s with Hamming weight θ′, and let S = {i : si = 1}.
Choose random integer ui ∈ [0, tκ

′+1) such that
∑

i∈S ui = xp. Output secret
key sk = s and pk = (pk∗,u).

• Encrypt. c∗ is a ciphertext of given integer-based FHE. For 1 ≤ i ≤ Θ′, let wi

given by an integer nearest to the value of c∗ ·ui/tκ
′−n where n = 	logt θ′�+3.

Output both c∗ and w.
• Decrypt. Output m′ ← �∑ siwi/tn� mod t.

Remark 1. The squashing technique can be applied not only to the original
scheme in [6], but also to the batch version of the scheme by squashing for each
pj as in [13].
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2.2 Extraction Technique

In [10], Gentry et al. introduced a method of homomorphically evaluating decryp-
tion circuit through bit extraction. For an integer x, we can easily check the
following equation holds inductively:

x2k

mod 2k+1 = x mod 2 ∀k ∈ N.

With this property, we can extract x〈r〉 for any non-negative integer x and r as a
polynomial. Namely, when we define xr = [x0 − ∑r−1

j=0 2jx2r−j

j ]2r+1/2r, then the
equality xr = x〈r〉 holds. With similar manner, this algorithm can be extended
to non-binary case.

Digit Extraction Technique (t > 2). Let F k(X) = F (F (· · · (F (X)))), a
k-time evaluation of the function F . In general, F (X) = Xt does not satisfy
following property when t > 2:

F k(x) mod tk+1 = x mod t ∀k ∈ N.

In [12], for prime t and positive integer e, they constructed the polynomial
Ft,e(X) satisfying the above equation for any k ≤ e. With this polynomial,
we can extract a〈e′〉t for 1 ≤ e′ ≤ e using similar method in [10]. Following
lemmas are about existence and construction of the polynomial Ft,e(X), which
is introduced in [12].

Lemma 1. (Corollary 5.4 in [12]) For every prime t, there exists a sequence of
integer polynomial f1, f2, · · · , all of degree ≤ t − 1, such that for every exponent
e ≥ 1 and every integer z = z0 + tez1 (z0 ∈ [t], z1 ∈ Z), we have

zt ≡ z0 +
e∑

i=1

fi(z0)ti (mod te+1).

Lemma 2. (Corollary 5.5 in [12]) For every prime t and every e ≥ 1, there
exists a polynomial Ft,e of degree p such that the equality Ft,e(z0 + te

′
z1) ≡ z0

(mod te
′+1) holds for every integer z0, z1 with z0 ∈ [t] and every 1 ≤ e′ ≤ e .

Using a special polynomial Ft,r, we can extract x〈r〉t from x, through a
polynomial circuit for any non-negative integer x and r, by Algorithm 1. Note
that the equality in Lemma 2 implies that recursively defined xis are integers.

Remark 2. Instead of using Algorithm1, we can apply lower digit extraction
algorithm [2] for extract digit. The method gives algorithm with lower depth
and complexity, but the difference in our parameter setting is not big.

3 Our Bootstrapping Method

The rounding function in the squashed decryption circuit can be expressed as
following :

�a� mod t = �a + 0.5� mod t = (a · tn + �tn/2�)〈n〉t.
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Algorithm 1. Digit Extraction Algorithm
Require: x, r ∈ N

Ensure: xr such that xr (mod t) = x〈r〉t

1: x0 ← x
2: for i ← 1 to r do

3: xi ← [x − F i
t,r(x) − ∑i−1

j=1 tjF i−j
t,r (xj)]tr+1

ti
∈ Ztr−i+1

4: end for
5: return xr

Thus, squashed decryption could be expressed as addition and digit-extraction.
The problem is how to homomorphically evaluate the circuit (

∑
siwi +

�tn/2�)〈n〉t where wis are defined in Sect. 2.
Let t be a prime integer, n be a positive integer less than log λ, and M be

a message space. For a given homomorphic encryption scheme, we can define
Ek(m) as a set of ciphertext with message m ∈ M = Ztk . We follow notations
in Sect. 2.1 about squashing. In this section, we suggest a new bootstrapping
method. It works on homomorphic encryption (HE) scheme which satisfies fol-
lowing conditions:

1. Form of decrypt function is �∑ siwi/tn� mod t or c − �∑ siwi/tn� mod t
where wi can be computed by public values c and ui.

2. It supports homomorphic operations with M = Zti for 1 ≤ i ≤ n + 1.
3. There exists polynomial time algorithm HomExt, a function from En+1(m) to

E1(m〈n〉t), which is a homomorphic evaluation of digit-extraction algorithm
in Fig. 1.

Supposing the given homomorphic encryption scheme satisfies conditions above,
the overview of our bootstrapping method is in Fig. 1. New parameters s0 = 1
and w0 = �tn/2� are included in the summation.

c En+1(
∑

siwi mod tn+1)

E1(m)

En+1(si), ui

HomExtBootstrap

Fig. 1. Overview of our bootstrapping.

Actually, all integer-based schemes satisfy above conditions, which means
our method can be applied to all integers-based HEs. In the diagram, our boot-
strapping method consists of two steps: addition and extraction. Since wi can
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be computed by public values and the set {En+1(si)} is given as bootstrapping
key, addition step in this diagram is composed of homomorphic additions on
M = Ztn+1 and modulus operation. Note that modulus operation mod tn+1 is
actually very trivial step since message space is given by M = Ztn+1 .

As a result, HomExt is the most important part and this part takes the
most of running time in bootstrapping procedure. HomExt is a homomorphic
evaluation of digit-extraction algorithm. The algorithm consists of operations on
Zti , multiplication & division by t, and modulus operation mod ti for 1 ≤ i ≤ n.
In (j +1)−th stage of Compute in digit extraction algorithm (in Algorithm1),
operations on Ztk become operations on Ztk−j after divided by tj since the
numerator is multiple of tj . Furthermore, operations on Ztk can be regarded as
operations on Ztk+j after multiplied by tj . Therefore, we can absolutely evaluate
digit-extraction with following message space switching functions: MsgExpand :
Ek(m) → Ek+1(tm) and MsgReduce : Ek(tm) → Ek−1(m). Those functions can
be constructed easily or trivially in all integer-based HE schemes.

As mentioned in Sect. 2.2, the algorithm can be seen as a polynomial of degree
tn with n(n + 1)/2 times evaluation of Fn,t. Since n is an integer less than logt λ,
the number of homomorphic multiplications in HomExt is O(log2λ). Actually the
degree of the algorithm is tn ≈ λ; however, we use large message space Ztn+1

in the procedure. Therefore, we write the degree as O(λ1+ε) and ε depends
on which scheme is used for our bootstrapping method. We will analyze the
degree and error growth of our method applying to integer-based scale-invariant
homomorphic encryption scheme, CLT scheme [6], in Sect. 4.

4 Our Method on Scale-Invariant Homomorphic
Encryption Scheme

We apply our method on scale-invariant homomorphic encryption scheme in [6],
CLT scheme, since error growth during homomorphic evaluation is linear so that
it is suitable to choose low depth parameter for implementation. Furthermore, as
mentioned in Example 1, since MsgExpand and MsgReduce are trivial mapping,
description of HomExt is very simple.

As mentioned above, we need three conditions: squashed decryption circuit
with M = Zt, homomorphic operations on message spaces Zta , and homomor-
phic digit extraction technique. The scheme below is almost same with scale-
invariant homomorphic encryption scheme in [6], we just extend it to message
space Zt for prime t.

4.1 Scale-Invariant Homomorphic Encryption Scheme with M = Zt

In this section, we follow the notation in [6]. The scheme below is on the message
space Zt for prime t. For an η-bit odd integer p and integer q0 in [0, 2γ/p2), we
define the set

Dρ
p,q0 = {p2 · q + r : Choose q ← [0, q0), r ← (−2ρ, 2ρ)}.
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• SIDGHV.KeyGent(1λ). Generate an odd η-bit integer p and a γ-bit integer
x0 = q0 · p2 + r0 with r0 ← (−2ρ, 2ρ) ∩ Z and q0 ← [0, 2γ/p2) ∩ Z. Let
xi ← Dρ

p,q0 for 1 ≤ i ≤ τ , y′ ← Dρ
p,q0 , and y = y′ + �p/t�, which is the

encryption of 1. Let z be a vector of length Θ, the components of which have
κ = 2γ + 2 bits of precision following the binary point. Let s ∈ {0, 1}Θ such
that

t · 2η

p2
= 〈s,z〉 + ε mod (t · 2η),

with |ε| ≤ 2−κ. Now define

σ = q · p2 + r +
⌊
PowersofTwoη(s) · p

2η+1

⌉
,

where the components of q are randomly chosen from [0, q0) ∩ Z and those
of r from (−2ρ, 2ρ) ∩ Z. The secret key is sk = {p} and the public key is
pk = {x0, x1, · · · , xτ , y,σ,z}.

• SIDGHV.Encryptt(pk,m ∈ [t]). Choose a random subset S ⊂ {1, · · · , τ} and
output

c ← [m · y +
∑
i∈S

xi]x0 .

• SIDGHV.Decryptt(sk, c). Output m ←
⌊
t · c

p

⌉
mod t.

• SIDGHV.Addt(pk, c1, c2). Output c′ ← c1 + c2 mod x0.
• SIDGHV.Convertt(pk, c). Output c′ ← 2 · 〈σ,BitDecompη(c)〉, where c = (�c ·

zi� mod 2η)1≤i≤Θ.

– SIDGHV.Multt(pk, c1, c2). Output c′ ← [SIDGHV.Convert(pk, c1 · c2)]x0 .

Remark 3. In the original SIDGHV.Mult procedure need message space parame-
ter t and this makes simultaneous multiplication impossible when the message
space is ZM where M =

∏
tki
i . So we described the variant form of original

SIDGHV.Convert algorithm in [6].

Semantic Security. Security for this scheme is from same problem introduced
in [6]. The only difference is change of message space from Z2 to Zt, so we omit
this part.

Conditions on the Parameters. The parameters must satisfy the following
conditions for security parameter λ and message space Zt:

• ρ = Ω(λ) to avoid brute force attacks on noise [3,8],
• η ≥ ρ + O(L(log λ + log t)), where L is the depth of multiplication of the

circuits to be evaluated,
• γ ≥ ω((2η − ρ)2 · log λ) to avoid lattice-based attacks [7,14],
• Θ2 ≥ γ · ω(log λ) to avoid lattice attacks on the subset sum problem [7],
• τ ≥ γ + 2λ to apply the leftover hash lemma.
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4.2 Homomorphic Operations with M = Zta

During bootstrapping, we use homomorphic addition and multiplication between
ciphertexts on the message space M = Zta for 1 ≤ a ≤ logt λ. Homomorphic
addition and multiplication are described below. Note that x0 is defined in the
same manner as in the previous section, and the definition of SIDGHV.Eval is
heuristic because method of evaluation depend on formation of given polynomial.

• SIDGHV.Adda
t (pk, c1, c2) Output c1 + c2 mod x0.

• SIDGHV.Multa
t (pk, c1, c2). Output SIDGHV.Convert(pk, ta−1 · c1 · c2)

• SIDGHV.Evala
t (pk, f, c). Output homomorphic evaluation of ciphertext c with

polynomial f by operations defined as above.

A ciphertext c = q · p2 + (tar∗ + m) · �p/ta� + r has two kinds of errors, r and
r∗. We call c a ciphertext with noise (ρ, ρ∗) if |r| < 2ρ and |r∗| < 2ρ∗

. Lemma 3
shows the correctness of SIDGHV.Adda

t and SIDGHV.Multa
t as well as analysis on

noise growth during the homomorphic operations.

Lemma 3 (Noise growth analysis). Let c1 and c2 be ciphertexts with noise
(ρ1, ρ∗

1) and (ρ2, ρ∗
2), respectively. Then,

– SIDGHV.Adda
t (pk, c1, c2) is a ciphertext with noise (ρ + 2, ρ∗ + 1)

– SIDGHV.Multa
t (pk, c1, c2) is a ciphertext with noise (ρ+ρ∗ +a log t+8, log Θ)

Here, ρ = max(ρ1, ρ2) and ρ∗ = max(ρ∗
1, ρ

∗
2).

Proof. In Appendix. ��

4.3 Homomorphic Digit Extraction for Scale-Invariant SHE over
the Integers

During homomorphic digit extraction, we use various message spaces from Zt

to Ztn+1 . Let Ek(m) be a ciphertext of m with message space Ztk in the form
of q · p2 +

⌊
p/tk

⌋ · (m + tk · r∗) + r. The polynomial Ft,n is from Sect. 2.2. The
following algorithm represents homomorphic digit extraction with scale-invariant
FHE over the integers:

• HomExt(c). Input ciphertext c of message space Ztn+1 .
Let c0,0 ← c.

ci,j+1 ← SIDGHV.Evaln−i+1
t (pk, Ft,n, ci,j) for 0 ≤ i < n, 0 ≤ j < n − i,

ci,0 ← c0,0 − c0,i − c1,i−1 − · · · − ci−1,1 for 1 ≤ i ≤ n,

and output cn,0.
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To understand the above algorithm, we need to check when we can change the
message space for a fixed ciphertext. In scale invarient FHE over the integer,
Ek(m) can be treated as Ek′(tk

′−km) for k < k′. Conversely, if m is a multiple of
tk

′−k, Ek′(m) can be treated as Ek(m/tk
′−k).

The following lemma shows the correctness of the proposed homomorphic
digit extraction algorithm.

Lemma 4 (Correctness of HomExt). For given m = b0,0, define bi,j:

bi,0 = (b0,0 −
i−1∑
j=0

tj · bj,i−j mod tn+1)/ti for 1 ≤ i ≤ n,

bi,j+1 = Ft,n(bi,j) for 0 ≤ i < n, 0 ≤ j ≤ n − i.

If c0 = En+1(b0,0), and

ci,0 = c0,0 −
i−1∑
j=0

cj,i−j for 1 ≤ i ≤ n,

ci,j+1 = SIDGHV.Evaln−i+1
t (pk, Ft,n, ci,j) for 0 ≤ i < n, 0 ≤ j ≤ n − i.

Then, ci,0 = En−i+1(bi,0) = E1(m〈n〉t) for 0 ≤ i ≤ n.

Proof. In Appendix. ��
Now we can homomorphically evaluate digit-extraction, and this scheme satisfies
all conditions in Sect. 3. Our method can be adapted to this scheme.

4.4 Our Method on CLT Scheme

For an η-bit odd integer p and integer q0 in [0, 2γ/p2), we define the set

Dρ
p,q0 = {Choose q ← [0, q0), r ← (−2ρ, 2ρ) : Output p2 · q + r}.

• KeyGen(1λ). Generate pk = {x0, x1, · · · , xτ ,σ,z} as in Sect. 4.1. Set xp =
�tκ+1/p�, choose a random a Θ′-bit vector s′ with Hamming weight θ′, and
let S′ = {i : s′

i = 1}. Choose a random integer ui ∈ [0, tκ+1) such that∑
i∈S′ ui = xp. For n = 	logt θ′� + 3, generate

vi = qi · p2 +
⌊ p

tn+1

⌋
· s′

i + ri

and v0 = q · p2 +
⌊ p

tn+1

⌋
· tn

2
+ r, with q, qi ∈ [0, q0) and r, ri ∈ (−2ρ, 2ρ) for

1 ≤ i ≤ Θ′. The secret key is sk = {p} and the public key is pk∗ = {pk,u,v}.
• HomSum(c,u,v). Generate w0 = 1, wi = �c · ui/tκ−n� mod tn+1 for n =

	logt θ′� + 3, and output

c′ ←
Θ′∑
i=0

vi · wi mod x0.
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• HomExt(c). Let c0,0 ← c.

ci,j+1 ← SIDGHV.Evaln−i+1
t (pk, Ft,n, ci,j) for j = 0 to j = n − i,

ci,0 ← c0,0 − c0,i − c1,i−1 − · · · − ci−1,1,

for i = 0 to i = n and output cn,0.
• Bootstrap(c,u,v). Output c∗ ← HomExt(HomSum(c,u,v)).

Remark 4. If the scheme in Sect. 4.1 becomes batch version, bootstrapping pro-
cedure above also becomes batch version.

4.5 Conditions on the Parameters

The security of the squashed scheme has been studied in [7,8,14]. Here, λ is a
security parameter, and γ is as in the previous section.

• n = 	logt θ� + 3 for the correctness of squashed decryption circuit,
• κ′ > (γ + λ)/ log t for the correctness of squashed decryption circuit,
• Θ′2 ≥ γ · ω(log λ) to avoid a lattice-based attack on the subset sum problem

[7,8],
• (

Θ′

θ′/2

) ≥ 2λ to avoid an attack on the sparse subset sum problem [1].

Remark 5. n can be a bit smaller than 	logt θ� + 3. For example, with security
parameter λ = 72, we set t = 2, n = 4, Θ′ = 8000, and θ′ = 15.

5 Analysis of Proposed Bootstrapping Method

Our analysis can be more tight for binary message space, but various form
of polynomial Ft,n(X) makes it very hard. In this section, we first check the
correctness of our bootstrapping method and analyze the noise growth during
bootstrapping procedure. Also, we compute the number of homomorphic multi-
plications in our method, which directly implies the efficiency of our method.

Theorem 1 (Correctness and Noise analysis). c∗ ← Bootstrap(pk, c),
then c∗ is ciphertext with noise: (ρ2, ρ∗

2) = (ρ + (n + 1) log t +
log(Θ′ + 1) +n log t(log t + log Θ + 8) · (1 + ε), log Θ + n) for ε =(

n+1
2 · log t + t + n+2

log t

)
/(log t + log Θ + 8) and two ciphertext c, c∗ with same

messages.

Proof. In Appendix. ��
Since the first noise grows approximately (log t + log Θ + 8) per each multi-

plication, we can think of the degree of Bootstrap circuit is

2n log t(1+ε)+ε1 = O(λ1+ε+
ε1

n log t ) = O(λ1+ε2)

where ε1 = {(n + 1) log t + log(Θ′ + 1)}/(log t + log Θ + 8).
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Theorem 2. The number of multiplication operations in our bootstrapping algo-
rithm is O(n(n + 1)/2) = O(log2 λ).

Proof. We will treat t as a constant, so the number of multiplication while eval-
uating polynomial Ft,n is constant. The number of evaluation k is equal to
1 + 2 + · · · + n = n(n + 1)/2; thus, the number of multiplication operations is
O(n(n + 1)/2). ��
As a result, in our bootstrapping method, the number of homomorphic multi-
plications is O(log2 λ) and multiplicative degree is O(λ1+ε). Comparing to the
previous methods including the result in [13], O(λ4 log6 λ) multiplications, our
method shows significantly improved result within the framework of efficiency.
In addition to theoretical analysis, we will explain the implementation result of
our bootstrapping method applying to CLT scheme in next section.

6 Implementation

While implementing our bootstrapping method, we used word decomposition
and the powers of word instead of BitDecomp and PowersofTwo with word size
w = 32. Moreover, in order to use a public key of reasonable size, we compressed
the ciphertext using the same method as in [7]. We implemented our bootstrap-
ping method and checked the running time of Bootstrap. Furthermore, for pre-
cise comparison with other FHE, we implemented the homomorphic evaluation
of the AES-128 circuit, which has emerged lately as a standard homomorphic
evaluation circuit.

Parameters (  = 500, λ = 72)

AGCD parameters: η = 192, γ = 3.8 × 105, ρ = 52
Convert parameters: Θ = 1500, θ = 100
Bootstrap parameters: Θ′ = 8000, θ′ = 15

Efficiency

The number of Add: 8000 + 10
The number of Mult: 8
Error size after bootstrapping: 122

AES evaluation

Bootstrap Time: 6.7 × 128 s (for 128 number of ciphertexts)
SubByte Time: 128 s
Total AES Time: 4020 s
Relative Time: 8 s

Remark 6. Implementations of our bootstrapping method and homomorphic
AES evaluation on a desktop with eight core Intel(R) Core(TM) i7-2600 CPU
@ 3.40 GHz processors and 16 GB RAM using C++ and GMP 6.0.0 [11].
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Our bootstrapping procedure for one ciphertext takes about 6 s. This result is
faster than results in FHE over the integers [4,7,14], and also compatable with
the result in [12], 320 s for 16000-bit message space. Comparing to the results
of homomorphic AES evaluation in [4,6], 13 min and 23 s per block at security
level λ = 72, homomorphic AES evaluation applying our bootstrapping method
takes 8 s per block on a 8-core machine at 3.4 GHz for same security level.
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NRF-2016H1A2A1906584. We would like to thank Jinsu Kim and Jiseung Kim for
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A Proof of Theorem and Lemmas

Lemma 3 (Noise growth analysis). Let c1, c2 are ciphertext with noise
(ρ1, ρ∗

1) and (ρ2, ρ∗
2), then

• SIDGHV.Adda
t (pk, c1, c2) is ciphertext with noise (ρ + 2, ρ∗ + 1)

• SIDGHV.Multa
t (pk, c1, c2) is ciphertext with noise (ρ + ρ∗ + a log t + 8, log Θ)

Here ρ = max(ρ1, ρ2) and ρ∗ = max(ρ∗
1, ρ

∗
2).

Proof. First, lets prove about SIDGHV.Add part. Let c1, c2 as below.

c1 = q1 · p2 + �p/ta� · (m1 + tar∗
1) + r1,

c2 = q2 · p2 + �p/ta� · (m2 + tar∗
2) + r2.

Then addition of c1 and c2 is

c1 + c2 = (q1 + q2) · p2 + �p/ta� · ([m1 + m2]ta + ta(r∗
1 + r∗

2 + 1/0)) + r1 + r2

= q3 · p2 + �p/ta� · (m3 + tar∗
3) + r3

for r∗
3 < 2ρ∗

1 + 2ρ∗
2 + 1 and r3 < 2ρ1 + 2ρ2 . The ciphertext of [m1 + m2]2a is

c3 = [c1 + c2]x0 = c1 + c2 − k · x0 for k ∈ {0, 1} since c1, c2 < x0. Therefore,
c3 ← SIDGHV.Adda(pk, c1, c2) is a ciphertext c3 = q · p2 + �p/ta� (m + tar∗) + r
satisfying r∗ < 2ρ∗

1 + 2ρ∗
2 + 1 and r < 2ρ1 + 2ρ2 + 2ρ0 .

Second part is about SIDGHV.Mult algorithm. Let c1, c2 as defined above,
and k,l be integers such that �p/ta� = (p − k)/ta and

⌊
p2/ta

⌋
= (p2 − l)/ta.

Then following equation holds,

c3 = ta · c1 · c2 = q3 · p2 + ((p − k)2/ta) · (m1 + tar∗
1)(m2 + tar∗

2) + R

= q3 · p2 + ((p2 − l)/ta) · (m1m2 mod ta) + R + R′

= q3 · p2 +
⌊
p2/ta

⌋ · (m1m2 mod ta) + r3

where |R| < 3 · 2η · ta · 2ρ∗+ρ and |R′| < 2 · 2η · t2a · 22ρ∗
+ t2a · 22ρ∗

< 3 · 2η ·
t2a · 22ρ∗

. Therefore, the inequality |r3| < 6 · 2η+a log t+ρ+ρ∗
holds when assuming

a log t + ρ∗ < ρ.
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Now we will analyze the error of ciphertext after processing Convert proce-
dure. We followed the proof of lemma 1 in [6]. Let 	log r3� = ρ3 < η + 2a log t +
ρ + ρ∗ + 3 and c ← Convert(c3/t), then from the following equation:

σ = p2 · q + r + �s′ · p

2η+1
�.

Let c′ = BitDecompη(c), then we have:

c = 2〈σ, c′〉 = 2p2 · 〈q, c′〉 + 2〈r, c′〉 + 2〈�s′ · p

2η+1
�, c′〉.

Since the components of c′ are bits,

2〈�s′ · p

2η+1
�, c′〉 = 〈 p

2η
· s′, c′〉 + ν2 =

p

2η
〈s′, c′〉 + ν2,

where |ν2| < Θ · η. From the definition of BitDecomp and PowersofTwo, we have
〈s′, c′〉 = 〈s, c〉 mod 2η = 〈s, c〉 + q2 · 2η. Moreover

〈s, c〉 =
∑

si

⌊c3
t

· zi

⌉
+Δ·2η =

∑ si · c3 · zi

t
+δ1+Δ·2η =

c3
t

·〈s,z〉+δ1+Δ·2η,

for some Δ ∈ Z and |δ1| ≤ Θ/2. Using 〈s,z〉 = 2η · t/p2 − ε − μ · 2η · t for some
μ ∈ Z, and c3 = r3 +

⌊
p2/ta

⌋ · m + q3 · p2, this gives following equation:

〈s, c〉 = q3 · 2η +
2η

ta
· m − 2η · 

p2ta
· m + r3 · 2η

p2
− c3

t
· ε + δ1 + (Δ − c3 · μ) · 2η.

Therefore we can write

〈s, c〉 = q1 · 2η + m · 2η

ta
+ r∗

for some r∗ ∈ Z, with |r∗| ≤ 2ρ3−η+3. Now we get an equation below:

2
〈⌊ p

2η+1
· s′

⌉
, c′

〉
= q4 · p + m · p

ta
+ r∗ · p

2η
+ ν2

with |q4| ≤ Θ; namely the components of (p/2η+1) · s′ are smaller than p and c′

is a binary vector. This gives

2
〈⌊ p

2η+1
· s′

⌉
, c′

〉
= (taq4 + m) ·

⌊ p

ta

⌋
+ r∗

2

with |r∗
2 | ≤ 2ρ3−η+4. Then we obtain:

c = 2p2 · 〈q, c′〉 + 2〈r, c′〉 + (taq4 + m) ·
⌊ p

ta

⌋
+ r∗

2

c = 2q′′ · p2 + (taq4 + m) ·
⌊ p

ta

⌋
+ r′

where |r′| ≤ |r∗
2 |+η ·Θ ·2ρ+1 ≤ 2ρ3−η+4+η ·Θ ·2ρ+1 < 2a log t+ρ+ρ∗+7+η ·Θ ·2λ+1.

Therefore, the return ciphertext c has following noise:

(ρ + ρ∗ + a log t + 8, log Θ) if a log t + ρ + ρ∗ + 5 > log η + log Θ + λ.

Above equation prove the second part of this lemman. ��



256 J. H. Cheon et al.

Lemma 4 (Correctness of HomMsb). For given m = b0,0, define bi,j:

bi,0 = (b0,0 −
i−1∑
j=0

tj · bj,i−j mod tn+1)/ti for 1 ≤ i ≤ n

and bi,j+1 = Ft,n(bi,j) for 0 ≤ i < n, 0 ≤ j ≤ n − i.

If c0 = En+1(b0,0), and

ci,0 = c0,0 −
i−1∑
j=0

cj,i−j for 1 ≤ i ≤ n

& ci,j+1 = SIDGHV.Evaln−i+1
t (pk, Ft,n, ci,j) for 0 ≤ i < n, 0 ≤ j ≤ n − i.

Then, ci,0 = En−i+1(bi,0) for 0 ≤ i ≤ n.

Proof. We use induction on i. The statement is clear when i = 0. Suppose the
proposition is true for i < m. Then we have

cm,0 = c0,0 −
m−1∑
j=0

cj,m−j

= c0 −
m−1∑
j=0

En−j+1

(
Fm−j

t,n (bj,0)
)

= c0 −
m−1∑
j=0

En+1

(
tjFm−j

t,n (bj,0)
)

= En+1

⎛
⎝b0,0 −

m−1∑
j=0

tjFm−j
t,n (bj,0)

⎞
⎠

= En+1

⎛
⎝b0,0 −

m−1∑
j=0

tjbj,m−j mod tn+1

⎞
⎠ .

= En+1 (tmbm,0) = En+1−m(bm,0).

Then we can see that this lemma holds for any positive i ≤ n. And this means
cn,0 = E1(bn,0) = E1(m〈n〉t), so this lemma shows the correctness of our boot-
strapping procedure. ��
Theorem 1 (Correctness and Noise analysis of Bootstrap). c∗ ←
Bootstrap(pk, c), then c∗ is ciphertext with noise

(ρ2, ρ∗
2) =

(
ρ + (n + 1) log t + log(Θ′ + 1) + n log t(log t + logΘ + 8) · (1 + ε), logΘ + n

)

for ε =
(

n+1
2 · log t + t + n+2

log t

)
/(log t + log Θ + 8) and two ciphertext c, c∗ with

same messages.
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Proof.

1. Expand

vi = qi ·p2+
⌊ p

tn+1

⌋
·si+ri and v0 = q·p2+

⌊ p

tn+1

⌋
·
⌊

tn

2

⌋
+r with q, qi ∈ [0, q0)

and r, ri ∈ (−2ρ, 2ρ) for 1 ≤ i ≤ Θ′. So if c0,0 ← Expand(c,y), then

c0,0 = q′ · p2 +
⌊ p

tn+1

⌋
·
((∑

siwi +
⌊

tn

2

⌋)
mod tn+1 + r∗tn+1

)
+ r′

for |r′| = |∑Θ′

i=1 wiri + r| < (Θ′ + 1)2ρ+(n+1) log t and |r∗| ≤ Θ′. Therefore,
c0,0 is a ciphertext with noise (ρ1, ρ∗

1) = (ρ+(n+1) log t+log(Θ′+1), log Θ′)
whose message space is Ztn+1 .

2. HomMsb
Let ci,j is a ciphertext with noise (ρi,j , ρ

∗
i,j), then the equations ρ0,0 = ρ +

(n + 1) log t + log(Θ′ + 1) and ρ∗
0,0 = log Θ′ holds by above Expand procedure.

By applying Lemma3, we can set

ρi,0 = max{ρ0,i, · · · , ρi−1,1} + 2i, ρ∗
i,0 = log Θ + i log t

for 1 ≤ i ≤ n.

First, we will show the equality

max{ρ0,i+1, · · · , ρi,1} = ρi,1

holds for 0 ≤ i ≤ n − 1. Since cj,i−j+1 = SIDGHV.Evaln−j+1
t (pk, Ft,n, cj,i−j)

for 0 ≤ j ≤ i, it is sufficient to compare noise increase of cj,i−j after
SIDGHV.Multat . For 1 ≤ j ≤ i − 1, the increase of first noise of cj,i−j is
less than or equal to log Θ + (n + 1) log t + 8, and the increase of noise of ci,0

is ρ∗
i,0 + (n − i + 1) log t + 8 = log Θ + (n + 1) log t + 8. Therefore, the equality

max{ρ0,i+1, · · · , ρi,1} = ρi,1 holds and we can get

ρi,0 = ρi−1,1 + 2i.

Second, we will analyze the noise increase in while evaluating Ft,n. Ft,n is a
polynomial of degree t and its coefficients are bounded by tn+1. Then, we can
regard each term of Ft,n is contained by at most t times of multiplications, so
we get ρi−1,1 = ρi−1,0 + 	log t� · (log t · (n− i+2)+ log Θ +8)+ t	log t�. Now,
we obtain a recursion formula :

ρi,0 = ρi−1,0 + 	log t� · (log t · (n − i + 2) + log Θ + 8) + t	log t� + 2i.

The consequence of the recursion formula is

ρn,0 = ρ0,0 + log2 t · n2 + 3n

2
+ n log t(log Θ + 8) + nt log t + n2 + 2n

= ρ0,0 + n log t(log t + log Θ + 8)(1 + ε)

for ε =
(

n+1
2 · log t + t + n+2

log t

)
/(log t + log Θ + 8).
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3. Correctness

CTXρ,log Θ
t (m, 1)

Bootstrap

Expand
CTX

ρ1,ρ∗
1

t (
∑

siwi + �tn/2� mod tn+1, n+ 1)

HomMsb

CTX
ρ2,ρ∗

2
t (m, 1) CTX

ρ2,ρ∗
2

t (( siwi + �tn/2� mod tn+1)〈n〉t, 1)

Top side of the diagram was proved in 1. Expand. Also, Lemma 4 and 2.
HomMsb exactly signify the right side of the diagram, and the discussion in
Sect. 4.3 shows the equality m = (

∑
siwi+�tn/2� mod tn+1)〈n〉t holds so that

bottom side of the diagram is proved. ��
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Abstract. Montgomery curves allow efficient and side-channel resistant
computation of ECDH using the Montgomery ladder. But the addition
law of a Montgomery curve derived from the chord-tangent method is
less efficient than other curve models such as a short Weierstrass curve
and an Edwards curve. So, the usage of a Montgomery curve is strictly
limited to ECDH only, such as X25519 and X448 functions in IETF RFC
7748. For other operations including fixed-base and multiple scalar mul-
tiplications, their birationally-equivalent (twisted) Edwards curves are
recommended for use since the conversions between Montgomery curves
and their Edwards equivalents are simple. This conversion enables the
use of the efficient complete addition law of the Edwards curve that
works for all pairs of input points with no exceptional cases. As a result,
the combination allows secure and exception-free implementations, but
at the expense of additional storage for the two curve parameters and
for the conversion between them. However, smart devices in IoT envi-
ronments that mainly operate ECDH (for example, RawPublicKey mode
of IETF RFC 7250) do not need to implement such a conversion if a
complete addition law does exist for the Montgomery curves.

To make such implementations possible, we provide a complete addi-
tion law on Montgomery curves. The explicit formulas for the complete
addition law are not as efficient as those of Edwards curves, but they
can make the Montgomery curve addition operation more efficient com-
pared to using the conversion to the (twisted) Edwards equivalent. We
also confirmed the validity of the comparison by implementing such two
methods of realizing the addition operation on Curve25519.

Keywords: Elliptic curves · Montgomery curve · Complete addition
law

1 Introduction

In [16], Montgomery considered an elliptic curve model over a non-binary field,
which is now generally referred to as a Montgomery curve. Montgomery curves
support optimal efficiency for computing scalar multiples of points through an
c© Springer Nature Switzerland AG 2020
J. H. Seo (Ed.): ICISC 2019, LNCS 11975, pp. 260–277, 2020.
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algorithm called the Montgomery ladder [16]. In particular, the Montgomery
ladder is considered one of the best scalar multiplication techniques to cope
with side-channel attacks due to the inherent constant-time behavior. We refer
the reader to [9] for brief history of the developments of Montgomery curve
arithmetic.

Recently, IKEv2 and TLS have added two Montgomery curve parameters,
Curve25519 [2] and Curve448 [13] for ephemeral key agreement [17,18,20]. Both
protocols adopted the Montgomery ladder-based scalar multiplication functions
X25519 and X448 described in RFC 7748 [15] to enhance efficiency as well as the
prevention of side-channel attacks. However, the usage of Montgomery curves
is limited to ephemeral DH key agreement. Either directly or indirectly, other
models of elliptic curves, especially birationally-equivalent (twisted) Edwards
curves are recommended to be used for other operations such as fixed-base and
multiple scalar multiplications [7,15]. One of the reasons is that Edwards curves
have an efficient complete addition law. An elliptic curve addition law is said to be
complete if it correctly computes the sum of any two points in the elliptic curve
group. Note that, although complete addition laws are typically less efficient
compared to the traditional chord-tangent addition laws, it allows much simpler
and exception-free code.

Though IKEv2 and TLS are general-purpose security protocols for the Inter-
net domain, the range of their usage has been extended to Internet-of-Thing
(IoT) environments [12]. For example, CoAP (Constrained Application Proto-
col) [21] which is a communication protocol for resource-constrained networks
of smart devices is protected by DTLS. To bind DTLS for CoAP, RawPublicKey
mode [21,23], where smart devices have public/private key pairs but no certifi-
cates to verify the ownership is recommended. In this case, the simplest approach
for lightweight, easy and secure elliptic curve implementations is to only use the
Montgomery curve with the ladder technique. However, the addition operation
is required if other elliptic curve arithmetic is less frequent but may be necessary.
To avoid implementing arithmetic for (twisted) Edwards equivalent in consid-
eration of the storage of smart devices running RawPublicKey mode of CoAP,
a complete addition law on the Montgomery curves is required, but not known
yet.

To solve this problem, we present a complete addition law for Montgomery
curves. Similar to the case of short Weierstrass curves [19], the complete addition
law we provide in this paper is derived from the formulas given by Bosma and
Lenstra for the elliptic curve with Weierstrass form [8]. We optimize the explicit
computation of the formulas for Montgomery curves and compare it with those
for other curve models. The cost of our complete addition law is 15M + 2Mc +
(3s + 17)A, where s is the positive integer such that X3 + AX2 + X − s2 is
irreducible over k and A is the Montgomery curve coefficient. For example, the
smallest s for Curve25519 and Curve448 are 1 and 3, respectively. Here M, Mc

and A are multiplication, constant multiplication and addition operations, all in
the base field. Unlike other curve models, the computational cost of evaluating
Montgomery curve complete addition law varies with s; the lower the value of
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Table 1. Montgomery curves that have k-complete addition law

Curve A p s† Ref.

Curve25519 486,662 2255 − 19 1 [2]

Curve448 156,326 2448 − 2224 − 1 3 [13]

Curve383187 229,969 2383 − 187 6 [1]

M-221 117,050 2221 − 3 6

M-383 2,065,150 2383 − 187 3

M-511 530,438 2511 − 187 5

ed-256-mont −54, 314 2240(216 − 88) − 1 5 [7]

ed-254-mont −55, 790 2240(214 − 127) − 1 5

ed-256-mers −61, 370 2256 − 189 1

ed-255-mers −240, 222 2255 − 765 2

ed-384-mont −113, 758 2376(28 − 79) − 1 1

ed-382-mont −2, 870, 790 2368(214 − 5) − 1 1

ed-384-mers −1, 332, 778 2384 − 317 4

ed-383-mers −2, 095, 962 2383 − 421 1

ed-512-mont −305, 778 2496(216 − 491) − 1 2

ed-510-mont −2, 320, 506 2496(214 − 290) − 1 8

ed-512-mers −2, 550, 434 2512 − 569 6

ed-512-mers −4, 390, 390 2511 − 481 2
†s is the smallest integers such that Eq. (3) is irreducible over k.

s, the better. Table 1 shows some known Montgomery curve parameters and the
corresponding smallest s. We also derive formulas for mixed complete addition
and doubling operations from our complete addition formulas.

The complete addition law presented in this paper itself is less efficient
than those of other curve models. Previous studies have shown that the
costs of complete addition laws of Edwards and short Weierstrass curves are
10M + 1S + 1Mc + 7A and 12M + 2Mc + 29A, respectively [5,19]. Here S is
squaring in the base field. But it may not significantly increase overall com-
plexity considering the proportion of general addition operations used in several
protocols. In particular, the case of smart devices mainly running RawPublicKey
mode of CoAP, implementing only specific Montgomery curve parameter such
as Curve25519 may not be a bad choice. Note that, to use the complete addi-
tion law of the (twisted) Edwards equivalent for a given Montgomery curve, we
should consider the conversions between both curves.

P,Q
conv.−−−→ P ′, Q′ −→ R′(← P ′ + Q′) conv.−−−→ R

Montgomery (twisted) Edwards (twisted) Edwards Montgomery
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The forward and backward conversions [3,9] which requires 3M for each (see
Sect. 4), are simple and efficient in terms of scalar multiplications, but have a
weight that cannot be ignored when only considering the addition operation
itself of Montgomery curves. By comparing the number of base field operations
and confirming the implementation results, we can see that using the complete
addition law proposed in this paper is more efficient than the case based on the
addition operation of (twisted) Edwards equivalent via conversions.

This paper is organized as follows. Section 2 gives preliminaries for the defi-
nitions and theories used throughout this paper. Section 3 introduces complete
addition formulas for Montgomery curves and Sect. 4 gives an implementation
result of the addition operation with the complete addition law on Curve25519
and shows the performance comparison with the case using the conversion to
the (twisted) Edwards equivalent.

2 Preliminaries and Related Works

In this section, we provide the required background that will be used throughout
the paper and a brief introduction to previous results for other curve models.
Note that we follow the notations and definitions of Bosma and Lenstra [8] and
Renes et al. [19] with some modifications.

2.1 Elliptic Curves and the Group Law

Let k be a field of characteristic not 2 or 3 and let P
2(k) be the homogeneous

projective plane of dimension 2. In P
2(k), two points (x1 : y1 : z1) and (x2 : y2 :

z2) are equal if there exists λ ∈ k \ {0} such that (x1, y1, z1) = (λx2, λy2, λz2).
An elliptic curve E/k is a smooth algebraic curve with genus 1 defined in

projective plane P
2(k). In general, an elliptic curve can be expressed by the

Weierstrass equation

E : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

where coefficients aj ∈ k (j ∈ {1, 2, 3, 4, 6}). The set E(k) of all k-rational points
of E is an additive abelian group with the identity O = (0 : 1 : 0). For any two
points P and Q in E(k), the addition P + Q is defined by the chord-tangent
method [22]. The inverse −P of P = (x : y : z) ∈ E(k) is (x : −y − a1x − a3z :
z).

Note that the case P = Q and the other case P �= Q have different addi-
tion formulas under the chord-tangent method. Therefore, the case P = Q is
called doubling, and it is usual to distinguish it from the case of P �= Q. When
implementing the elliptic curve addition simply and intuitively, however, it is
necessary to divide the branches into even more cases as follows:

(1) If P = O (i.e., x1 = z1 = 0), return Q.
(2) If Q = O (i.e., x2 = z2 = 0), return P .
(3) If Q = −P (i.e., x1z2 = x2z1 and (−y1 − a1x1 − a3z1)z2 = y2z1), return O.
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(4) If P = Q (i.e., x1z2 = x2z1 and y1z2 = y2z1), return doubling(P ).
(5) Otherwise, return addition(P,Q).

This shows that for the exception-free addition on elliptic curves using tradi-
tional doubling and addition formulas, five addition laws corresponding to each
case should be reflected. However, a code with these conditional branches can
cause performance overhead because the case-check routine must run whenever
points are given. In addition, the difference of the number of base field operations
between traditional doubling and addition formulas can be a factor that allows
side-channel attacks. Therefore, a lot of research on how to unify such condi-
tions has been considered in terms of implementation. One approach is to design
unified addition formulas that can be used for doubling. Such unified addition
formulas eliminate the need to check for equal inputs, but do not eliminate other
exceptional cases.

Theoretically, it was shown by Bosma and Lenstra [8] that an elliptic curve
has a complete system with only two addition laws in E(k) where k is the
algebraic closure of a field k. This means that, over the algebraic closure of k,
at least two elliptic curve addition laws are required to work any pair of points.
But, Edwards [10] proposed the first normal form for elliptic curves

X2Z2 + Y 2Z2 = Z4 + dX2Y 2 (d ∈ k \ {0, 1} is not square), (1)

that has a complete addition law that working on all pairs of k-rational points,
referred as k-complete addition law. This work is generalized and optimized by
Bernstein et al. [3,5,6]. In 2010, Farashahi and Joy [11] introduced a k-complete
addition law of the Hessian form of elliptic curves

X3 + Y 3 + Z3 = dXY Z (d ∈ k and d3 �= 27),

and in 2016, Renes et al. [19] presented a k-complete addition law of short
Weierstrass curves

Y 2Z = X3 − 3XZ2 + bZ3 (b ∈ k). (2)

2.2 Montgomery Curve

A Montgomery curve over k is an elliptic curve in P
2(k) defined by the equation

E : BY 2Z = X3 + AX2Z + XZ2,

where A,B ∈ k satisfy B(A2 − 4) �= 0. For any P = (x1 : y1 : z1) and Q = (x2 :
y2 : z2) over E such that both are not O, the point P + Q = (x3 : y3 : z3) is
computed as follows:

x3 = Bu2vz1z2 − (Az1z2 + x1z2 + x2z1)v3,

y3 = −Bu3z1z2 + (Az1z2 + 2x1z2 + x2z1)uv2 − y1z2v
3,

z3 = v3z1z2,
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where (u, v) := (y2z1−y1z2, x2z1−x1z2) if P �= Q, and (u, v) := (3x2
1+2Ax1z1+

z21 , 2By1z1) if P = Q. When B = 1, the computational costs of traditional chord-
tangent addition and doubling are 13M+2S+Mc +7A and 11M+3S+2Mc +
11A, respectively. See AppendixA for more details.

2.3 Other Views of the Group Law

Let f(X,Y,Z) be the homogeneous polynomial Y 2Z +a1XY Z +a3Y Z2 −X3 −
a2X

2Z − a4XZ2 − a6Z
3 representing a Weierstrass elliptic curve E defined in

P
2(k). For two points P = (x1 : y1 : z1) and Q = (x2 : y2 : z2) in E(k), the

addition law for the pair (P,Q) is a triple (X ,Y,Z) of polynomials

X ,Y,Z ∈ k[X1, Y1, Z1,X2, Y2, Z2]/(f(X1, Y1, Z1), f(X2, Y2, Z2))

such that the evaluation of X ,Y and Z at P and Q equals the group addition
P + Q = (x3 : y3 : z3) ∈ E(k), i.e.,

x3 = X (x1, y1, z1, x2, y2, z2),
y3 = Y(x1, y1, z1, x2, y2, z2),
z3 = Z(x1, y1, z1, x2, y2, z2).

We define the equivalence classes (X : Y : Z) := (X ,Y,Z)/ ∼ by (X ,Y,Z) ∼
(X ′,Y ′,Z ′) if there exists λ ∈ k \ {0} such that (X ,Y,Z) = (λX ′, λY ′, λZ ′).
From now on, we consider an addition law as an equivalence class (X : Y : Z).

The above addition law (X : Y : Z) is for the pair (P,Q) and all evaluations
of X ,Y, and Z at some P ′ and Q′ could be zero. Such a pair (P ′, Q′) is called
exceptional of (X : Y : Z). The set of all addition laws for any two k-rational
points, S = {(X : Y : Z)P,Q : P,Q ∈ E(k)}, is called a k-complete system. If
an addition law (X : Y : Z) does not have any exceptional points, i.e., |S| = 1,
then we call (X : Y : Z) k-complete. The minimum number of addition laws
for K-complete system equals 2, and the two addition laws forming K-complete
systems have bidegree (2, 2) such that X ,Y and Z are homogeneous of degree 2
in X1, Y1 and Z1, and are homogeneous of degree 2 in X2, Y2 and Z2 [8, Thm. 1].

Bosma and Lenstra also showed that there exists a one-to-one correspondence
between (a : b : c) ∈ P

2(k) and addition laws (X : Y : Z) of bidegree (2, 2) on E.
Let K be some extension field of k. The pair (P,Q) ∈ (E ×E)(K) is exceptional
for the addition law corresponding to (a : b : c) if and only if P − Q lies on the
line aX + bY + cZ = 0 in P

2(K) [8, Thm. 2]. They presented three addition
laws (X (1) : Y(1) : Z(1)), (X (2) : Y(2) : Z(2)) and (X (3) : Y(3) : Z(3)) which
corresponds to (0 : 0 : 1), (0 : 1 : 0) and (1 : 0 : 0), respectively. The bijection
in [8, Thm. 2] sends (a : b : c) ∈ P

2(K) to the addition law corresponding to
(aX (3) + bX (2) + cX (1) : aY(3) + bY(2) + cY(1) : aZ(3) + bZ(2) + cZ(1)).

3 Complete Addition Law of Montgomery Curves

Let p be a prime greater than 3. Let k be a finite field that has p elements,
i.e., k = Fp, and K be some extension field of k. In this section, we present a
k-complete addition law for the Montgomery curves with B = 1.
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3.1 Our Complete Addition Law

To use the bijection of Bosma-Lenstra, we first simplifies the addition laws (X (1) :
Y(1) : Z(1)), (X (2) : Y(2) : Z(2)) and (X (3) : Y(3) : Z(3)) for Montgomery
curves. These formulas are obtained by negating all terms in [8] and following
the revision summarized in [6, Fig. 1.2].

X (1) = (X1Z2 − X2Z1)((X1Z2 + X2Z1) + AX1X2 − Y1Y2)
− (X1Y2 − X2Y1)(Y1Z2 + Y2Z1),

Y(1) = (3X1X2 + Z1Z2)(X1Y2 − X2Y1) + A(X1Y2 + X2Y1)(X1Z2 − X2Z1)
− ((X1Z2 + X2Z1) + 3AX1X2 − Y1Y2)(Y1Z2 − Y2Z1),

Z(1) = (Y1Z2 − Y2Z1)(Y1Z2 + Y2Z1)
− (X1Z2 − X2Z1)(A(X1Z2 + X2Z1) + 3X1X2 + Z1Z2),

X (2) = (X1X2 − Z1Z2)(Y1Z2 + Y2Z1)
+ (X1Y2 + X2Y1)((X1Z2 + X2Z1) + AX1X2 − Y1Y2),

Y(2) = X1Z2(X1Z2 + 2X2Z1) + X2Z1(2X1Z2 + X2Z1) + (Z1Z2)2 − (Y1Y2)2

+ A(X1X2 + Z1Z2)(X1Z2 + X2Z1) + (A2 − 3)(X1X2)2,

Z(2) = − ((X1Z2 + X2Z1) + AX1X2 + Y1Y2)(Y1Z2 + Y2Z1)
− (X1Y2 + X2Y1)(A(X1Z2 + X2Z1) + 3X1X2 + Z1Z2),

X (3) = (X1Y2 + X2Y1)(X1Y2 − X2Y1) + X1X2(X1Z2 − X2Z1),

Y(3) = (AX1X2 + Y1Y2)(X1Y2 − X2Y1) − (3X1X2 − Z1Z2)(Y1Z2 − Y2Z1)
+ (X1Y2 + X2Y1)(X1Z2 − X2Z1),

Z(3) = − (X1Y2 + X2Y1)(Y1Z2 − Y2Z1) − (X1Z2 − X2Z1)(AX1X2 + Y1Y2)
− (X1Z2 + X2Z1)(X1Z2 − X2Z1).

Now we try to find a line aX + bY + cZ = 0 (a, b, c ∈ k) which does not
intersect with E(K). The lines X = 0, Y = 0, Z = 0 and any lines of the form
aX + bY = 0 or aX + cZ = 0 in P

2(K) have an intersection with E(K), which
means the addition laws corresponding to (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1),
(a : b : 0) and (a : 0 : c) are not K-complete. Therefore, we can narrow it down
to two cases (0 : b : c) and (a : b : c). However, in order to get a good K-
complete addition law in terms of field operation performance, we only consider
the addition laws corresponding to (0 : b : c). If a, b, c ∈ k \ {0}, it is difficult
to simplify the addition formulas by canceling terms. After all, even if there is
a k-complete addition law corresponding to (a : b : c), it is difficult to expect
practical use.

Let s := −cb−1. Since (0, b, c) ∼ (0, 1,−s), we check the intersection between
Y − sZ = 0 and Y 2Z = X3 + AX2Z + XZ2. By substituting Y = sZ to E, we
obtain s2Z3 = X3 + AX2Z + XZ2. If Z = 0, then X = Y = 0, so Z should not
be zero. If we set Z = 1 we obtain Eq. (3).

X3 + AX2 + X − s2 = 0. (3)
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If Eq. (3) is irreducible over k, then there exists no intersection between the
line and the curve E over k. It means that the addition law corresponding to
(0 : 1 : −s) is k-complete. The bijection in [8, Thm. 2] sends (0 : 1 : −s) to the
addition law

(X (2) − sX (1) : Y(2) − sY(1) : Z(2) − sZ(1)). (4)

From the above, we have the following theorem.

Theorem 1. Let X3 + AX2 + X − s2 be irreducible over k where s ∈ k \ {0}.
Then the following addition law (X : Y : Z) is k-complete.

X = RS − T U , Y = T W − VS, Z = VU − RW,

where

R := Y1Z2 + Y2Z1,

S := s(X1Y2 − X2Y1) + X1X2 − Z1Z2,

T := (X1Z2 + X2Z1) + AX1X2 − Y1Y2,

U := s(X1Z2 − X2Z1) − (X1Y2 + X2Y1),
W := s(Y1Z2 − Y2Z1) + (X1Z2 + X2Z1) + AX1X2 + Y1Y2,

V := A(X1Z2 + X2Z1) + 3X1X2 + Z1Z2.

Proof. As stated above, the addition law (X : Y : Z) corresponding to (0 : 1 :
−s) ∈ P

2(K) can be obtained by Eq. (4), i.e.,

X = X (2) − sX (1), Y = Y(2) − sY(1), Z = Z(2) − sZ(1).

First, X and Z can be obtained easily:

X =X (2) − sX (1)

= (Y1Z2 + Y2Z1)(s(X1Y2 − X2Y1) + X1X2 − Z1Z2)

− ((X1Z2 + X2Z1) + AX1X2 − Y1Y2)(s(X1Z2 − X2Z1) − (X1Y2 + X2Y1)),

Z =Z(2) − sZ(1)

= (A(X1Z2 + X2Z1) + 3X1X2 + Z1Z2)(s(X1Z2 − X2Z1) − (X1Y2 + X2Y1))

− (Y1Z2 + Y2Z1)((X1Z2 + X2Z1) + s(Y1Z2 − Y2Z1) + AX1X2 + Y1Y2).

Prior to computing Y, we obtain new formulas of Y(1) and Y(2) as follows:

Y(1) = (A(X1Z2 + X2Z1) + 3X1X2 + Z1Z2)(X1Y2 − X2Y1),
− ((X1Z2 + X2Z1) + AX1X2 − Y1Y2)(Y1Z2 − Y2Z1)

Y(2) = ((X1Z2 + X2Z1) + AX1X2 − Y1Y2)((X1Z2 + X2Z1) + AX1X2 + Y1Y2)
− (A(X1Z2 + X2Z1) + 3X1X2 + Z1Z2)(X1X2 − Z1Z2).
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Here Y(2) is transformed as follows.

Y(2) = (X1X2 + Z1Z2)(X1Z2 + X2Z1) + (X1Z2 + X2Z1)(X1Z2 + X2Z1)

− Y 2
1 Y 2

2 + A2X2
1X2

2 − 3X2
1X2

2 + 2X1X2Z1Z2 + Z2
1Z2

2

= A(X1X2 + Z1Z2)(X1Z2 + X2Z1)
+ (X1Z2 + X2Z1 + Y1Y2)(X1Z2 + X2Z1 − Y1Y2)

+ A2X2
1X2

2 − (3X1X2 + Z1Z2)(X1X2 − Z1Z2)
= − A(X1X2 − Z1Z2)(X1Z2 + X2Z1) + 2AX1X2(X1Z2 + X2Z1)

− (3X1X2 + Z1Z2)(X1X2 − Z1Z2)

+ A2X2
1X2

2 + (X1Z2 + X2Z1 + Y1Y2)(X1Z2 + X2Z1 − Y1Y2)
= − (3X1X2 + Z1Z2 + A(X1Z2 + X2Z1))(X1X2 − Z1Z2)

+ AX1X2(X1Z2 + X2Z1) + AX1X2(AX1X2 − Y1Y2)
+ (X1Z2 + X2Z1 + Y1Y2)(X1Z2 + X2Z1 + AX1X2 − Y1Y2)

= − (3X1X2 + Z1Z2 + A(X1Z2 + X2Z1))(X1X2 − Z1Z2)
+ AX1X2(X1Z2 + X2Z1 + AX1X2 − Y1Y2)
+ (X1Z2 + X2Z1 + Y1Y2)(X1Z2 + X2Z1 + AX1X2 − Y1Y2)

= − (3X1X2 + Z1Z2 + A(X1Z2 + X2Z1))(X1X2 − Z1Z2)
+ (X1Z2 + X2Z1 + AX1X2 − Y1Y2)(X1Z2 + X2Z1 + AX1X2 + Y1Y2).

Using the new forms Y(1) and Y(2), we obtain Y:

Y = Y(2) − sY(1)

= ((X1Z2 + X2Z1) + AX1X2 − Y1Y2)
((X1Z2 + X2Z1) + s(Y1Z2 − Y2Z1) + AX1X2 + Y1Y2)

− (A(X1Z2 + X2Z1) + 3X1X2 + Z1Z2)(s(X1Y2 − X2Y1) + X1X2 − Z1Z2).

��

3.2 Counting Field Operations

For performance comparison of complete addition laws for several curve models,
we use the field operation counts in the base field k. Multiplication, squaring,
multiplication by a constant A, and addition in k are expressed by M, S, Mc,
and A, respectively.

General Counting. In Theorem 1, the s is an element of a prime field k, but
we can consider the s to be a non-negative integer less than p. If s is very small
(as Table 1), multiplication by s can be done by (s − 1)A. For example, 3X1X2

can be computed by X1X2 + X1X2 + X1X2, just 2A that may be faster than
Mc. In this paper, we count the number of field operations using this approach.
Note, however, that this calculation can be faster if s has a special form such as
power of 2.
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Algorithm 1 shows the computation of (X : Y : Z). This k-complete addition
law can be computed using 15M + 2Mc + (3s + 17)A. (We compute the mul-
tiplication by 3 as 2A.) For example, the computational cost of evaluating the
addition of Curve25519 using the complete addition law is 15M + 2Mc + 20A.
The sage verification code of Algorithm 1 is given in AppendixB.

Algorithm 1. k-complete addition for Montgomery curves
Input: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) on E
Output: P + Q ← (X : Y : Z)

1: T0 ← X1X2 // M
2: T1 ← Y1Y2 // M
3: T2 ← Z1Z2 // M
4: T3 ← X1Y2 // M
5: T4 ← X2Y1 // M
6: T5 ← Y1Z2 // M
7: T6 ← Y2Z1 // M
8: T7 ← X1Z2 // M
9: T8 ← X2Z1 // M

10: T9 ← T7 + T8 // A

11: T10 ← T9 + AT0 // A + Mc

12: R ← T5 + T6 // A
13: T ← T10 − T1 // A
14: V ← AT9 + 3T0 + T2 // 4A + Mc

15: S ← s(T3 − T4) + T0 − T2 // (s + 2)A
16: U ← s(T7 − T8) − T3 − T4 // (s + 2)A
17: W ← s(T5 − T6) + T10 + T1 // (s + 2)A
18: X ← RS − T U // A + 2M
19: Y ← T W − VS // A + 2M
20: Z ← VU − RW // A + 2M

Trade-Off Technique. The cost for computing R,S, T ,U ,W and V in Theo-
rem 1 is 9M + 2Mc + (3s + 14)A. Consider the final steps for getting X ,Y,Z
using R,S, T ,U ,W and V. Since char(k) �= 2 and (X : Y : Z) = (2X : 2Y : 2Z),
those steps can be done by 5M+17A using the technique presented in [4, Sec.6]
as follows:

X = C + D, Y = E + F , Z = 2(U − W)(R + V) + C − D + E − F ,

where
C := (R + T )(S − U), D := (R − T )(S + U),
E := (T + V)(W − S), F := (T − V)(W + S).

Therefore, in this case, addition needs 14M + 2Mc + (3s + 31)A.

Mixed Addition. Mixed addition means the addition of a projective coordi-
nated point P = (x1 : y1 : z1) and an affine coordinated point Q = (x2, y2). This
can be considered as the addition of P = (x1 : y1 : z1) and Q = (x2 : y2 : 1).
Algorithm 2 shows the complete mixed addition of Montgomery curves. It costs
12M + 2Mc + (3s + 17)A and can be computed with 11M + 2Mc + (3s + 31)A
when applying the trade-off technique.
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Algorithm 2. k-complete mixed addition for Montgomery curves
Input: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : 1) on E
Output: P + Q ← (X : Y : Z)

1: T0 ← X1X2 // M
2: T1 ← Y1Y2 // M
3: T2 ← Z1

4: T3 ← X1Y2 // M
5: T4 ← X2Y1 // M
6: T5 ← Y1Z2 // M
7: T6 ← Y2

8: T7 ← X1Z2 // M
9: T8 ← X2

10: T9 ← T7 + T8 // A

11: T10 ← T9 + AT0 // A + Mc

12: R ← T5 + T6 // A
13: T ← T10 − T1 // A
14: V ← AT9 + 3T0 + T2 // 4A + Mc

15: S ← s(T3 − T4) + T0 − T2 // (s + 2)A
16: U ← s(T7 − T8) − T3 − T4 // (s + 2)A
17: W ← s(T5 − T6) + T10 + T1 // (s + 2)A
18: X ← RS − T U // A + 2M
19: Y ← T W − VS // A + 2M
20: Z ← VU − RW // A + 2M

Doubling. If two inputs are same, the cost of exception-free doubling is unaf-
fected by the s because of X1Y2 − X2Y1 = X1Z2 − X2Z1 = Y1Z2 − Y2Z1 = 0.
In the case of point doubling, we can save several multiplications by rewriting
2XY = (X + Y )2 − X2 − Y 2 and by exploiting common subexpressions.

S := X2 − Z2, R := 2Y Z = (Y + Z)2 − (Y 2 + Z2),

U := −2XY = (X2 + Y 2) − (X + Y )2,

V := 2AXZ + 3X2 + Z2 = A((X + Z)2 − (X2 + Z2)) + (X2 + Z2) + 2X2,

T := 2XZ + AX2 − Y 2 = ((X + Z)2 − (X2 + Z2) + AX2) − Y 2,

W := 2XZ + AX2 + Y 2 = ((X + Z)2 − (X2 + Z2) + AX2) + Y 2.

This simple approach costs 6M + 6S + 2Mc + 19A. If we use the trade-off
technique, the total cost is 5M+6S+2Mc +34A. However, we can directly use
the technique in [4] to save two field additions as follows:

S − U = (X + Y )2 − (Y 2 + Z2), S + U = −(S − U) + 2(X2 − Z2)

R − T = (Y + Z)2 − (X + Z)2 − (A − 1)X2

R + T = (Y + Z)2 − 2(Y 2 + Z2) + (X + Z)2 + (A − 1)X2

W − S = (X + Z)2 + (A − 1)X2 − (X2 − Y 2)

W + S = (W − S) + 2(X2 − Z2)

T − V = (X + Z)2 + (A − 1)X2 − (A((X + Z)2 − Z2) + (X2 − Y 2) + X2)

+ (A − 1)X2 − 2(Y 2 + Z2)

T + V = (X + Z)2 + (A((X + Z)2 − Z2) + (X2 − Y 2) + X2)
U − W = (S + U) − (W + S), R + V = (R − T ) + (T + V)

This can be computed using 5M + 6S + 2Mc + 32A. Algorithm 3 shows the
computation.
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Algorithm 3. Exception-free doubling for Montgomery curves
Input: P = (X : Y : Z) on E
Output: [2]P ← (X : Y : Z)

1: T0 ← X2, T1 ← Y 2, T2 ← Z2 // 3S
2: T3 ← (X + Y )2 // A + S
3: T4 ← (Y + Z)2 // A + S
4: T5 ← (X + Z)2 // A + S
5: T6 ← T1 + T2 // A
6: T7 ← 2(T0 − T2) // 2A
7: T8 ← (A − 1)T0 // A + Mc

8: T9 ← T0 − T1 // A
9: T10 ← A(T5 − T2) + T0 + T9 // 3A + Mc

10: T11 ← T5 + T8 // A
11: T12 ← T10 − 2T6 // 2A
12: SU− ← T3 − T6 // A
13: SU+ ← −SU− + T7 // A
14: RT − ← T4 − T11 // A
15: RT + ← T4 + T12 // A

16: WS− ← T11 − T9 // A
17: WS+ ← WS− + T7 // A
18: T V− ← T12 − T10 + T8 // 2A
19: T V+ ← T5 + T10 // A
20: UW− ← SU+ − WS+ // A
21: RV+ ← RT − + T V+ // A
22: C ← RT +SU− // M
23: D ← RT −SU+ // M
24: E ← T V+WS− // M
25: F ← T V−WS+ // M
26: X ← C + D // A
27: Y ← E + F // A
28: Z ← 2UW−RV+ +C −D+E −F

// 5A + M

4 Performance

First, Table 2 shows the number of base field operations of complete addition
laws among three models of elliptic curves: short Weierstrass, Edwards, and
Montgomery.

Table 2. Performance comparison of complete addition of several curves

Curve Type M S Mc A Ref.

Edwards Compl. Add. 10 1 1 7 [5]

(Eq. (1)) Doubling 3 4 3 6 [5]

Short Compl. Add. 12 0 2 29 [19]

Weierstrass Compl. Add. 11 0 2 43 Appendix C

(Eq. (2)) Doubling 8 3 2 21 [19]

Montgomery Compl. Add. 15 0 2 (3s + 17) Section 3

with B = 1 14 0 2 (3s + 31)

Compl. Mixed Add. 12 0 2 (3s + 17)

11 0 2 (3s + 31)

Doubling 5 6 2 32
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As a remark, we applied the technique in [4] to the complete addition
law on the short Weierstrass curves [19] and saved 1M at the cost of 17A.
See AppendixC for detail.

Next, we compare two implementation methods of Montgomery curve addi-
tion. One is to use the complete addition law provided in this paper and the
other is to use the addition of the corresponding (twisted) Edwards equivalent.
The explicit transformation from a Montgomery curve to a twisted Edwards
curve is defined as follows.

BY 2Z = X3 + AX2Z + XZ2 =⇒(
A + 2

B

)
X2Z2 + Y 2Z2 = Z4 +

(
A − 2

B

)
X2Y 2,

(x : y : z) 
−→ (x(x + z) : y(x − z) : y(x + z)),
(0 : 0 : 1) 
−→ (0 : −1 : 1),
(0 : 1 : 0) 
−→ (0 : 1 : 1).

Since this transformation is an isomorphism, we can use the following inverse
relation:

aX2Z2 + Y 2Z2 = Z4 + dX2Y 2 =⇒(
4

a − d

)
Y 2Z = X3 +

(
2(a + d)
a − d

)
X2Z + XZ2,

(x : y : z) 
−→ (x(z + y) : z(z + y) : x(z − y)),
(0 : 1 : 1) 
−→ (0 : 1 : 0),

(0 : −1 : 1) 
−→ (0 : 0 : 1).

Such forward and backward conversions require 6M for each, and so in total
16M are needed in the latter case. Considering the difference of one multiplica-
tion and other base field operations, we can expect that the proposed complete
addition law will be more efficient. Note that the efficiency of conversions may
be lower than the formulas stated above, in order to use the optimized complete
addition of the Edwards equivalent.

We confirmed this expectation through implementation of Curve25519. We
wrote code in C with FLINT library [14] and complied with GCC 4.2.1. All our
experiments were performed on a MacBook Pro with a single Intel Core i5 2 GHz
CPU, 8 GB RAM running Mac OS (Mojave, ver. 10.14.6) (Table 3).

Table 3. Algorithm 1 vs. Conversion to twisted Edwards for Curve25519

Algorithm Cycles Millisecond

Algorithm 1 6.844 0.007

Conversion to twisted Edwards 7.295 0.007

For comparison with the case using the addition operation of the Edwards
equivalent, we chose a complete addition law without applying the trade-off
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technique (See Algorithm 1). As a remark, the complete addition law reflecting
the trade-off technique was performed in 8.306 cycles, slower than Algorithm 1.

Acknowledgement. We are grateful to the anonymous reviewers for their help in
improving the quality of the paper. This work was supported by Institute for Informa-
tion & Communications Technology Planning & Evaluation (IITP) grant funded by
the Korean government (MSIT) (No.2017-0-00267).

A Addition and doubling in Montgomery curve (when
B = 1)

For P = (x1 : y1 : z1) and Q = (x2 : y2 : z2) such that both are not O,
Algorithm 4 shows that the addition P + Q = (x3 : y3 : z3) can be computed
using 13M+2S+Mc +7A. For P = (x : y : z) �= O, Algorithm 5 shows that the
doubling [2]P = (x3 : y3 : z3) can be computed using 11M + 3S + 2Mc + 11A.

B Sage code for verification (Algorithm1)

Algorithm 4. Addition for Montgomery curves E : Y 2Z = X3 +AX2Z +XZ2

Input: P = (x1 : y1 : z1), Q = (x2 : y2 : z2) on E (P,Q �= O, P + Q �= O)
Output: P + Q ← (x3 : y3 : z3)

1: T1 ← x1z2 // M
2: T2 ← x2z1 // M
3: T3 ← y1z2 // M
4: T4 ← y2z1 // M
5: T5 ← z1z2 // M
6: T6 ← x1y2 // M
7: T7 ← x2y1 // M
8: u ← T4 − T3 // A

9: v ← T2 − T1 // A
10: T8 ← u2 // S
11: T9 ← v2 // S
12: T ← T8 − (AT5 + T1 + T2)T9 // M + Mc + 3A
13: T8 ← T5T9 // M
14: x3 ← vT // M
15: y3 ← T8(T6 − T7) − uT // 2M + 2A
16: z3 ← vT8 // M

Algorithm 5. Doubling for Montgomery curves E : Y 2Z = X3 +AX2Z +XZ2

Input: P = (x : y : z) �= O on E
Output: [2]P ← (x3 : y3 : z3)

1: T1 ← xz // M
2: T2 ← yz // M
3: T3 ← x2 // S
4: T4 ← z2 // S
5: u ← 3T3 +2AT1 +T4 // Mc +5A
6: v ← 2T2 // A
7: T5 ← u2 // S

8: T6 ← zv // M
9: T7 ← vT6 // M

10: T ← T5−(AT4+2x)T7 // M+Mc+3A
11: x3 ← vT // M
12: y3 ← (xu − yv)T7 − uT // 4M + 2A
13: z3 ← T6T7 // M
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Sage code
CURVE25519 = [

2^(255) - 19, # p mod 4 = 1

0x76d06,

1,

9,

0x20ae19a1b8a086b4e01edd2c7748d14c923d4d7e6d7c61b229e9c5a27eced3d9,

0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed,

8,

1

]

E = CURVE25519

p, A, B, Px, Py, n, h, s = E[0], E[1], E[2], E[3], E[4], E[5], E[6], E[7]

F = GF(p)

PS.<X,Y,Z> = ProjectiveSpace(F, 2)

R.<X> = PolynomialRing(F)

A, B, Px, Py = F(A), F(B), F(Px), F(Py)

E = EllipticCurve([0,A,0,F(1),0]) # assume B = 1

def CompleteADD(P1, P2):

x1, y1, z1 = P1[0], P1[1], P1[2]

x2, y2, z2 = P2[0], P2[1], P2[2]

t0, t1, t2 = x1*x2, y1*y2, z1*z2 # 3M

t3, t4 = x1*y2, x2*y1 # 2M

t5, t6 = y1*z2, y2*z1 # 2M

t7, t8 = x1*z2, x2*z1 # 2M

t9 = t7 + t8 # 1A

t10 = t9 + A*t0 # 1A + Mc

R = t5 + t6 # 1A

T = t10 - t1 # 1A

V = A*t9 + F(3)*t0 + t2 # 4A + Mc

S = s*(t3 - t4) + t0 - t2 # (s+2)A

U = s*(t7 - t8) - t3 - t4 # (s+2)A

W = s*(t5 - t6) + t10 + t1 # (s+2)A

x3 = R*S - T*U # 1A + 2M

y3 = T*W - V*S # 1A + 2M

z3 = V*U - R*W # 1A + 2M

return PS([x3, y3, z3])

P1, P2 = E(PS([0,1,0])), E(PS([0,1,0]))

P3 = P1 + P2

P4 = CompleteADD(P1, P2)

print PS(P3) == PS(P4)

P1, P2 = E.random_point(), E(PS([0,1,0]))

P3 = P1 + P2

P4 = CompleteADD(P1, P2)



Complete Addition Law for Montgomery Curves 275

print PS(P3) == PS(P4)

P1, P2 = E(PS([0,1,0])), E.random_point()

P3 = P1 + P2

P4 = CompleteADD(P1, P2)

print PS(P3) == PS(P4)

P1 = E.random_point()

P2 = -P1

P3 = P1 + P2

P4 = CompleteADD(P1, P2)

print PS(P3) == PS(P4)

P1 = E.random_point()

P2 = P1

P3 = P1 + P2

P4 = CompleteADD(P1, P2)

print PS(P3) == PS(P4)

P1, P2 = E.random_point(), E.random_point()

P3 = P1 + P2

P4 = CompleteADD(P1, P2)

print PS(P3) == PS(P4)

C Complete addition law of short Weierstrass curves
applying the trade-off technique

Let E be an elliptic curve in P
2(k) as a short Weierstrass equation

E : Y 2Z = X3 − 3XZ2 + bZ3, (b ∈ k).

Using the same notation, the complete addition law in [19] can be written as

X = RS − T U , Y = UV − SW, Z = T W − RV,

where

R = X1Y1 + X2Y2, S = Y1Y2 + 3(X1Z2 + X2Z1 − bZ1Z2),
T = Y1Z2 + Y2Z1, U = 3(b(X1Z2 + X2Z1) − X1X2 − 3Z1Z2),
V = 3X1X2 − 3Z1Z2, W = Y1Y2 − 3(X1Z2 + X2Z1 − bZ1Z2).

Then we can rewrite the above formulas as

X = C + D, Y = E + F , Z = 2(T − V)(V − S) + C − D + E − F ,

where

C = (R + U)(S − T ), D = (R − U)(S + T ),
E = (U + W)(V − S), F = (U − W)(V + S).

Since R,S, T ,U ,V,W can be computed using 6M + 2Mc + 26A [19, Algorithm
4], total computational cost is 11M + 2Mc + 43A.
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Abstract. In this paper, we discuss side-channel attacks on the CRT-
RSA scheme (RSA scheme with Chinese Remainder Theorem) imple-
mented by the left-to-right sliding window method. This method cal-
culates exponentiations by repeating squaring and multiplication. In
CHES 2017, Bernstein et al. proposed side-channel attacks on the CRT-
RSA signature scheme implemented by the left-to-right sliding window
method. We can obtain square-and-multiply sequences by their side-
channel attacks, but cannot calculate CRT-RSA secret keys because
there are multiple candidates of multiplications. Then, Bernstein et
al. calculated CRT-RSA secret keys by using two methods. First, they
recovered CRT-RSA secret keys partially and calculated all secret key
bits by using the Heninger–Shacham method. Second, they applied the
Heninger–Shacham method to square-and-multiply sequences directly.
They showed that we can calculate CRT-RSA secret keys more effi-
ciently when we use square-and-multiply sequences directly. They also
showed that we can recover CRT-RSA secret keys in polynomial time
when w ≤ 4. Moreover, they experimentally showed that we can recover
secret keys of 2048-bit CRT-RSA scheme when w = 5. However, their
latter method is simple and has room for improvement. Here, we study
bit recovery more profoundly to improve their method. First, we calcu-
late the exact rate of all knowable bits. Next, we propose a new method
for calculating the proportion of each bit 0 or 1 in each nonrecovery
bit. Finally, we propose a new method for calculating CRT-RSA secret
key using this bit information. In our proposed algorithm, we extend
Bernstein et al.’s method in combination with Kunihiro et al.’s method.
We calculate more secret keys when w = 5 by our proposed method
compared to Bernstein et al.’s method.
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1 Introduction

1.1 Background

Side-channel attacks [8] are major threats when using cryptography in systems.
For example, when we decrypt messages, secret keys can be obtained from dif-
ferent types of physical information such as decryption time [8], power [6,9],
sound [3], accessing cache [1,7,14,18,19], and so on. Even if we prove the secu-
rity of cryptography strictly, we can somehow extract the full or partial secret
information by observing this physical information. In this paper, we focus on
the CRT-RSA (RSA scheme [15] with Chinese Remainder Theorem) encryp-
tion or signature scheme [12] implemented using the left-to-right sliding window
method.

In side-channel attacks on the CRT-RSA scheme, there are two directions:
reading all secret key bits from DRAM data remanence (cold boot attack [4]) or
attacking two modular exponentiations using secret keys. In the former attack,
we read DRAM data remanence on the target device, so we need the target
device. However, this situation is not realistic, and therefore, we focus on the
latter, side-channel attacks on two modular exponentiations.

Modular exponentiations in the CRT-RSA scheme are implemented using the
binary method, fixed window method, or sliding window method. These methods
are implemented by repeating squaring and multiplication. In the binary method,
we use only one multiplier. In the other methods, we use many multipliers,
which are defined by window size w. When we use a larger w, we can calculate
exponentiations faster by reducing the number of multiplications, instead of
using more memory, because of saving more multipliers.

When we conduct side-channel attacks on modular exponentiation, we obtain
a square-and-multiply sequence from the physical information. If we obtain the
multiplier of each multiplication [2,6,7], we can calculate CRT-RSA secret keys
immediately. However, if we fail to do so, we cannot calculate CRT-RSA secret
keys immediately because there are many candidates in each multiplication.
To address this issue, Bernstein et al. [1] discussed how to calculate CRT-RSA
secret keys from square-and-multiply sequences without a multiplier on sliding
window method. They calculated CRT-RSA secret keys by using two methods.
First, they recovered CRT-RSA secret keys partially, and thereafter, recovered
all secret key bits. Second, they calculated CRT-RSA secret keys from square-
and-multiply sequences directly. Both these methods use the Heninger–Shacham
method [5] to calculate the CRT-RSA secret keys.

First, Bernstein et al. [1] researched how to recover CRT-RSA secret keys
partially from square-and-multiply sequences. They proposed the method of
recovering bits of partial CRT-RSA secret keys, especially in the left-to-right
sliding window method. Based on this method, they showed that we can recover
more bits in the left-to-right sliding window method than in the right-to-left
sliding window method. Moreover, they succeeded in calculating secret keys of
1024-bit CRT-RSA scheme when w = 4, by applying the Heninger–Shacham
method [5] to the recovered bits.
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Next, Bernstein et al. [1] calculated the CRT-RSA secret keys directly from
square-and-multiply sequences in the left-to-right sliding window method. They
proved that their algorithm works in polynomial time when w ≤ 4. Moreover,
they succeeded in calculating secret keys of 2048-bit CRT-RSA scheme when
w = 5. Their result indicated that it is better to calculate CRT-RSA secret keys
directly from square-and-multiply sequences.

However, their method of calculating CRT-RSA secret keys directly from
square-and-multiply sequences is simple. Therefore, there is an opportunity of
calculating more CRT-RSA secret keys by extending their method.

To improve their algorithm, we should research why we can calculate more
CRT-RSA secret keys directly from square-and-multiply sequences than par-
tially recovering bits. Especially, we need to conduct more research on bit infor-
mation of a square-and-multiply sequence. However, this requires more in-depth
research [1]. First, Bernstein et al. did not analyze the exact behavior of the
method of recovering bits of partial CRT-RSA secret keys. Although they showed
that they can recover more bits when applying the method repeatedly, they dis-
carded this situation because of a rare occurrence. Second, they did not com-
pletely discuss the difference between the two methods.

Van Vredendaal [17] addressed these problems. First, he proposed the opti-
mal bit recovery method, which can recover all knowable bits. According to
his rules, we can recover all knowable bits that are common in all candidates
corresponding to a given square-and-multiply sequence. Second, he proposed a
method to calculate the number of input candidates corresponding to a given
square-and-multiply sequence. Using these two results, he researched more about
the bit recovery method. However, this result also needs to be further researched
to connect with improving Bernstein et al.’s method.

1.2 Our Contribution

In this paper, we obtain three results. First, we calculate the exact rate of all
knowable bits. For this purpose, we use the renewal reward theorem (RRT) [16].
Bernstein et al. [1] also tried to calculate the bit recovery rate by using RRT.
However, they only calculate the upper bound and the lower bound of the rate
of recovering bits using their bit recovery rules. We revisit their analysis and
calculate the exact rate of all knowable bits.

Second, we extract embedding information from the nonrecovery bits by
proposing a new method of calculating the proportion of each bit value 0 or 1 in
each nonrecovery bit. To calculate this proportion, we develop a random sam-
pling method of bit sequences not to contradict a square-and-multiply sequence.
We develop our method based on Vredendaal’s method [17] to calculate the num-
ber of input candidates corresponding to a given square-and-multiply sequence.
The result of this calculation indicates that there is a difference between the
proportion of each bit value in each nonrecovery bit.

Finally, we propose a new CRT-RSA secret key recovery algorithm using the
proportion of each bit value as additional information. In our proposed method,
we apply Kunihiro et al.’s algorithm [10] on the obtained proportion of each
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bit value. We extend Bernstein et al.’s method based on square-and-multiply
sequences directly in combination with Kunihiro et al.’s algorithm. Using our
new algorithm, we can calculate 21% CRT-RSA secret keys when w = 5. This
is a significant improvement compared to 13% in the original Bernstein et al.’s
method.

2 Preliminary

In this section, we introduce CRT-RSA scheme [12], and the left-to-right sliding
window method [11]. In addition, we introduce the method of recovering CRT-
RSA secret keys partially [1], and the method of recovering all knowable bits from
square-and-multiply sequences [17]. Moreover, we introduce previous methods of
calculating CRT-RSA secret keys [1,5,10].

2.1 CRT-RSA Scheme

Before introducing the CRT-RSA encryption and signature scheme, we introduce
the standard RSA scheme [15]. This scheme comprises public keys (N, e) and a
secret key (p, q, d). p and q are n/2 bit prime numbers; public keys (N, e) and a
secret key d satisfy N = pq and ed ≡ 1 mod (p − 1)(q − 1). In the standard RSA
encryption scheme, we encrypt a plaintext m by calculating C = me mod N ,
and decrypt ciphertext C by calculating m = Cd mod N . In the standard RSA
signature scheme, we generate a signature on m by calculating σ = h(m)d mod
N , and verify the signature σ by checking h(m) = σe mod N . In this signature
scheme, h is a secure hash function. These two RSA schemes are composed of
two modular exponentiations: xe mod N , using a public key e, and xd mod N ,
using a secret key d. While we use a small public key e, such as 216 +1 = 65537,
we use a larger key d. Therefore, the implementation time may be longer in
decryption or signature generation than in encryption or verification.

The CRT-RSA scheme realizes faster decryption and signature generation by
applying the Chinese remainder theorem (CRT) decomposition on a secret key
d. We add secret keys dp := d mod p−1, dq := d mod q−1 and qp := q−1 mod p.
Encryption is the same as that of the standard RSA scheme. In decryption or
signature generation, we calculate two modular exponentiations, xdp mod p and
xdq mod q, using secret keys, and calculate xd mod N by applying CRT on these
two values. Calculating xd mod N is about four times faster in the CRT-RSA
scheme compared to the standard RSA scheme because we deal with half bits in
modular exponentiations.

2.2 Left-to-Right Sliding Window Method

Exponentiation using left-to-right sliding window method is calculated using
Algorithm 1. During the calculation, we read bits from the MSB side to the LSB
side. We calculate the left-to-right sliding window method by repeating squaring
(S) and multiplication (M), as in Algorithm 1. Multiplication is conducted in



282 K. Oonishi et al.

Algorithm 1. Left-to-Right Sliding Window Method [11]
Input: c, d = (dt, dt−1, · · · , d0)2, the window size w ≥ 1
Output: cd

Precomputation
c1 = c, c2 = c2

for i = 1 to 2w−1 − 1
c2i+1 = c2i−1 · c2

end for
Exponentiation

A = 1, i = t
while i ≥ 0

if di = 0
1: A = A2 (Squaring)
2: i = i − 1

else
1: Find the longest bit-string didi−1 · · · dl such that i − l + 1 ≤ w and

dl = 1.
2: A = A2(i−l+1) · c(didi−1···dl)2

(Squaring and Multiplication)

3: i = l − 1
end if

end while
return A

w-bits with leading one. In this paper, we call the w-bits led by one as a window.
Note that when we use a larger w, we can calculate exponentiations faster by
reducing the number of multiplications, instead of using more memory.

2.3 Extract CRT-RSA Secret Key Bits from Side-Channel
Information

As mentioned in the previous subsection, we calculate exponentiations by repeat-
ing squaring (S) and multiplication (M) in the sliding window method. In the
CRT-RSA scheme, we can obtain square-and-multiply sequences of two exponen-
tiations, xdp mod p and xdq mod q, by side-channel attacks [1]. However, because
there are many candidates in each multiplication (M), we cannot determine
CRT-RSA secret keys from square-and-multiply sequences immediately.

Bernstein et al. [1] proposed the method of recovering bits of partial CRT-
RSA secret keys. Their method comprised four rules, Rule 0–3. We explain these
rules by using an example for w = 4, as follows.

SSSMSSSSSSMSSSMSSSSSMSMSSSSSSMSSSSSSM

Before applying the optimal bit recovery rules, we convert square-and-multiply
sequences into x and x sequences by converting SM into x and the remaining
S into x. This x and x sequence is a bit sequence with a value of 0 or 1. By
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applying this conversion, our example is converted to the following.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

They apply following Rule 0–3 to the given sequences:

– Rule 0: x → 1.
– Rule 1: 1xi1xw−1−i → 1xi10w−1−i for 0 ≤ i ≤ w − 2.
– Rule 2: xw−111 → 1xw−211.
– Rule 3: 1xixw−11 → 10ixw−11 for i > 0.

In each rules, they recover multiplication bits in Rule 0, trailing zeros in Rule 1,
leading one in Rule 2, and, leading zeros in Rule 3. Note that they actually
recovered more bits by applying more extended situation in Rule 1 [1]. In their
widen Rule 1, they search 1 from the MSB to the LSB. In the highest-order 1,
if 1 satisfies xi1xw−1−i for 0 ≤ i ≤ w − 2, they recover x after 1 as 0, namely,

xi1xw−1−i → xi10w−1−i.

In other 1s, if 1 satisfies (0 or 1)xi1xw−1−i for 0 ≤ i ≤ w − 2, they recover x
after the latter 1 as 0, namely,

(0 or 1)xi1xw−1−i → (0 or 1)xi10w−1−i.

By applying these Rule 0–3 in this order, the recovery bits are given as

Applying Rule 0: xx1xxxxx1xx1xxxx11xxxxx1xxxxx1,

Applying Rule 1: xx10xxxx1xx10xxx11000xx10xxxx1,

Applying Rule 2: xx10xxxx1xx101xx11000xx10xxxx1,

Applying Rule 3: xx100xxx1xx101xx11000xx100xxx1.

They remarked that they recover more bits by repeating their rules. For
example, if we apply their bit recovery rules on our example twice, the recovery
bits are given as

Applying once: xx100xxx11x101xx11000xx100xxx1,

Applying twice: xx1001xx11x101xx11000xx100xxx1.

In above example, they recover the leading one by extending their Rule 2. If
there is 1 satisfies xw−1−i10i (1 or 1) for 0 ≤ i ≤ w − 2 and 0s are recovered in
Rule 1, they recover as

xw−1−i10j(1 or 1) → 1xw−2−i10j(1 or 1).

They discarded this situation because of a rare occurrence and they did not
study more about additional recovery bits. Therefore, their method does not
recover all bits we can recover.



284 K. Oonishi et al.

Van Vredendaal [17] tackled this problem more rigorously, and he proposed
the new method recovering all knowable bits. From now on, we explain all know-
able bits by the toy example. We consider SSMSSM in w = 2. Bit sequences
0101, 1101, and 1111 do not contradict with SSMSSM. Common bits are
the second one and fourth one; thus, all knowable bits are x1x1. In this sense,
Vredendaal’s bit recovery method has optimality in bit recovery.

From now on, we explain Vredendaal’s method briefly. In Van Vredendaal’s
method, he indexes the original number b converted into square-and-multiply
sequence as bn−1bn−2 . . . b0. After that, he defines the set of indexes of multiplica-
tion bits as M = {k0, k1, . . . , kl} with k0 > k1 > · · · > kl. In each multiplication
bits kj , he defines the multiplier width mkj

as the number of bits used in deter-
mining multiplier. For, example if multiplier is 5 = 1012, the multiplier width
is 3. Next, he calculates m+

kj
:= max mkj

in each window from MSB sides, by
greedy algorithm determining each window as near as MSB sides. As similarly,
he calculates m−

kj
:= min mkj

in each window from LSB sides. For example, we
consider our example,

xx1xxxxx1xx1xxxx11xxxxx1xxxxx1.

We calculate m+
kj

by dividing as

xx1x x xxx1 xx1x xxx1 1xxx xx1x x xxx1,

and m+
k0

= 3,m+
k1

= 4,m+
k2

= 3,m+
k3

= 4,m+
k4

= 1,m+
k5

= 3,m+
k6

= 4. Similarly,
we calculate m−

kj
by dividing as

x x1xx xxx1 xx1x xxx1 1xxx xx 1xxx xx 1.

and m−
k0

= 2,m−
k1

= 4,m−
k2

= 3,m−
k3

= 4,m−
k4

= 1,m−
k5

= 1,m−
k6

= 1.
After calculating m+

kj
and m−

kj
, he recovers bits as

bi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i ∈ M

1 else if j + m−
kj

− 1 = i = j + m+
kj

− 1 for some j ∈ M

x else if j + m−
kj

− 1 ≤ i ≤ j + m+
kj

− 1 for some j ∈ M

0 otherwise

and all knowable bits by Van Vredendaal’s method are given as

xx1001xx11x101xx11000xx100xxx1.

He remarked that the second 1 corresponds to Rule 2 in [1] and last 0 corresponds
to Rule 1 and 3 in [1].

By considering Vredendaal’s method more detail, the same bit recovery can
be realized by a small modification of Bernstein et al.’s method [1]. Especially, we
can recover some bits when we calculate m+

kj
and m−

kj
. First, the calculation of

m+
kj

corresponds to Rule 1 in the extending Bernstein et al.’s rules. Second, the
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calculation of m−
kj

corresponds to Rule 2 in the extending Bernstein et al.’s rules.
After calculating m+

kj
and m−

kj
, we can recover 0 in the original Bernstein et al.’s

rules. Therefore, all knowable bits can be recovered by a small modification of
Bernstein et al.’s method [1]. Hereinafter, we refer to this method as the optimal
bit recovery rules.

From now on, we explain the optimal bit recovery rules. Rule 0 and Rule 1
are the same as [1]. In Rule 2, we search 1 from the LSB to the MSB. If 1
satisfies xw−1−i10i(1 or 1) for 0 ≤ i ≤ w − 2, we recover as

xw−1−i10i(1 or 1) → 1xw−2−i10i(1 or 1)

Note that Bernstrin et al. only dealt with i = 0 because another event rarely
occurred [1]. Because Rule 2 is modified, we modify Rule 3 corresponding to
Rule 2. In Rule 3, where we search 1 from the MSB to the LSB. In the highest-
order 1, if 1 satisfies xi1xk1 or xixw−11 for i ≥ 0, we recover as following.

xi1xk1 or xixw−11 → 0i1xk1 or 0ixw−11.

In other 1s, if 1 satisfies (0 or 1)xj1xk1 or (0 or 1)xjxw−11, we recover as

(0 or 1)xj1xk1 → (0 or 1)0j1xk1,

(0 or 1)xjxw−11 → (0 or 1)0jxw−11.

Note that there is no overlap in recovered bit in each Rule in the optimal bit
recovery rules, while there are overlaps in Rule 1 and 3 in the original Bernstein
et al.’s rules. By applying modified Rule 2 and 3, our example is recovered as

Applying Rule 1: xx10xxxx1xx10xxx11000xx10xxxx1,

Applying Modified Rule 2: xx10x1xx11x101xx11000xx10xxxx1,

Applying Modified Rule 3: xx1001xx11x101xx11000xx100xxx1.

2.4 Previous Method of Calculating CRT-RSA Secret Keys

In this subsection, we explain previous methods of calculating CRT-RSA secret
keys used in our new proposed algorithm. First, we explain Heninger–Shacham
method [5], the basis of calculating CRT-RSA secret keys. Next, we explain
Bernstein et al.’s method [1] and Kunihiro et al.’s method [10].

Heninger–Shacham Method [5]. Heninger and Shacham proposed the
method constructing the CRT-RSA key candidate tree. They construct the CRT-
RSA key candidate tree when the public keys (N, e) and parameters (kp, kq) ∈ Z

2

satisfying edp = 1 + kp(p − 1) and edq = 1 + kq(q − 1) are given. (kp, kq) are
initially unknown. However, these value satisfies 0 < kp, kq < e. Moreover, kp

and kq satisfy (kp − 1) (kq − 1) ≡ kpkqN mod e [7,19]. Therefore, the number of
candidates of (kp, kq) is at most e − 1.
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They define τ(x) = maxm∈Z2m|x in order to explain the CRT-RSA key
candidate tree. At i-th depth of the CRT-RSA key candidate tree, they have
leaves containing (i + 1)-bit number p′, q′, (i + 1 + τ (kp))-bit number d′

p, and
(i + 1 + τ (kq))-bit number d′

q satisfying

p′q′ ≡ N mod 2i+1,

ed′
p ≡ 1 + kp (p′ − 1) mod 2i+1+τ(kp),

ed′
q ≡ 1 + kq (q′ − 1) mod 2i+1+τ(kq).

From the root, they adopt branch and bound algorithm by saving leaves satis-
fying above. Then, CRT-RSA key candidate tree becomes the binary tree. At
last, they have 2n/2 candidates. However, finding the correct secret keys con-
sumes tremendous time. Therefore, we adopt more pruning using side-channel
information in previous works [1,10].

Bernstein et al.’s Method [1]. Bernstein et al. [1] calculated the CRT-RSA
secret keys from square-and-multiply sequences in two ways: from via recovery
bits and from square-and-multiply sequences directly. In the former method, they
calculate CRT-RSA secret keys by discarding leaves that do not match with the
partial recovery bits. From now on, we explain the latter method mainly. In the
latter method, they focus on the fact that the number of bits and the number
of S in a square-and-multiply sequence are the same. They define the index of
S focusing only on S in a square-and-multiply sequence from LSB side. After
that, they define the set S as the indexes of S that is the next of M or the
beginning of w S in dp, dq. The set S directly corresponds to the position of bits
in dp, dq. Their method repeats branch and bound based on the set S. First,
they calculate bits of dp, dq. When they calculate bits in S, they only convert dp

or dq calculating bits in S into a square-and-multiply sequence, and they discard
a leaf if there are mismatches with the given sequence. By repeating these, they
calculate CRT-RSA secret keys from square-and-multiply sequences.

Kunihiro et al.’s Method [10]. Kunihiro et al.’s method [10] recovers CRT-
RSA secret keys when there are erasures and errors in secret keys. Their method
repeats branch and bound. First, they calculate t-revealed dp, dq bits by skipping
the erasure bits. Second, they discard a leaf if there are more than c mismatches
between the calculated and given t bits. By repeating these, they recover CRT-
RSA secret keys with erasures and errors.

3 Rate of All Knowable Bits

3.1 Theoretical Analysis of the Exact Rate of All Knowable Bits

Hereinafter, we provide a theoretical analysis of the exact rate of all knowable
bits, which is given by Theorem 1.
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Theorem 1. Suppose that we generate bits randomly. If w ≥ 2, the average
rate of all knowable bits is given by

2
w + 1

+

w−2∑

k=0

fw(k)g(k)

2(w + 1)
+

2w − 1
2w−1 (2w−1 + 1)

1
3(w + 1)

where

fw(k) =
2

3 · 2k

(
1 − 1

2w−k

) (
1 − 2

2w−k

)
, g(k) = 2

(
1 − 2k

2k+2 − 1

) k∏
j=1

2j−1

2j+1 − 1
.

To prove Theorem 1, we analyze the optimal bit recovery rules. The first term
2/(w + 1) corresponds to Rule 0 and Rule 3, the second term corresponds to
Rule 1, and the third term corresponds to Rule 2.

To prove Theorem 1, we use the renewal reward theorem [16]. This theorem
is given as Theorem 2 with notation in [1].

Theorem 2 [16]. We are given i.i.d. probability distribution (Xi, Yi) (i ∈ N).

We define Sn =
n∑

i=1

Xi (n ∈ N), Nt =
∞∑

n=1

1 (Sn ≤ t)
(
t ∈ R

+
)
, and Rt =

Nt∑

i=1

Yi

(
t ∈ R

+
)
. If E [X1] < ∞, E [Y1] < ∞, then lim

t→∞
Rt

t
=

E [Y1]
E [X1]

.

In the renewal reward theorem, we define the time that satisfies some condition as
renewal. In Theorem 2, we can regard Xi as inter-arrival times, Sn as the arrival
time of n-th elements, and Nt as the number of arrivals in time t. Renewal occurs
in each Xi. Moreover, we define the reward in each renewal. In Theorem2, we
regard Yi as the reward in each inter-arrival time Xi. Then, we can regard Rt as
the reward in time t. We regard the length of CRT-RSA secret keys (dp, dq) as
time t and that of the recovering bits as reward Rt. Bernstein et al. [1] attempted
to calculate the bit recovery rate by using the renewal reward theorem [16] under
the same settings. However, they only calculate the upper bound and the lower
bound of the rate of recovering bits using their bit recovery rules. Thus, they
failed to calculate the exact bit recovery rate.

We define i.i.d. (Xi, Yi) in the analysis of each Rule j as follows:

– Xi: The length of bit sequences until the designated bit pattern in Rule j
occurs,

– Yi: The number of recovered bits in Xi.

To define (Xi, Yi) as i.i.d., we determine the definition of Xi in each rule, while
Bernstein et al. only considered one window. This is because we consider m+

kj
or

m−
kj

in each rule, not the actual mkj
. Therefore, we must consider how we make

m+
kj

or m−
kj

constant. From now on, we explain (Xi, Yi) in each Rule 0–3.
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Table 1. Bit recovery rate in each rule

w Rule 0 (%) Rule 1 (%) Rule 2 (%) Rule 3 (%) all (%)

3 (Experimental) 25.01 8.06 2.93 24.96 60.97

3 (Theoretical) 25.00 8.04 2.92 25.00 60.95

4 (Experimental) 20.00 8.41 1.38 19.99 49.78

4 (Theoretical) 20.00 8.42 1.39 20.00 49.81

5 (Experimental) 16.67 7.94 0.63 16.67 41.90

5 (Theoretical) 16.67 7.95 0.63 16.67 41.92

6 (Experimental) 14.29 7.24 0.28 14.29 36.09

6 (Theoretical) 14.29 7.24 0.28 14.29 36.09

7 (Experimental) 12.50 6.49 0.13 12.53 31.65

7 (Theoretical) 12.50 6.52 0.13 12.50 31.65

At first, we explain (Xi, Yi) in Rule 0. In Rule 0, we recover a multiplication
bit in each window. Thus, the number of recovery bits is independent between
each window. Therefore, we simply define Xi as the number of bits until we hit
a window.

Next, we explain (Xi, Yi) in Rule 1. In Rule 1, we recover trailing zeros by
greedy algorithm as calculating m+

kj
. If we focus on one window, the value of

m+
kj

depends on the difference between m+
kj−1

and the actual mkj−1 . Thus, there
is dependency on Yj−1 and Yj . Now, we recall the definition of m+

kj
:= max mkj

.
When we hit the window whose mkj

= w, then we consider the same window in
Rule 1 as actual. Thus, we define Xi as the number of bits until we hit window
1x . . . x1, whose mkj

= w.
The same Xi as Rule 1 is used in Rule 3, recovering leading zeros. This is

because the difference between m+
kj−1

and the actual mkj−1 causes more recover-
ing bits in Rule 3. This means that the recovered bits in Rule 3 have dependency
with mkj−1 . Therefore, we use the same Xi in Rule 3 as Rule 1, because of the
same reason.

Finally, we explain (Xi, Yi) in Rule 2. In Rule 2, we recover leading one when
m+

kj
= m−

kj
during the calculation of m−

kj
. Thus, if we assure m+

kj+1
�= m−

kj+1
,

there is no dependency between Yj and Yj+1. Especially, if we we assure m+
kj+1

�=
mkj+1 , there is no dependency between Yj and Yj+1. Therefore, we define Xi as
the number of bits until we hit window that moves certainly, and calculate the
bit recovery rate.

The proof of Theorem1 is given in the full version of this paper.

3.2 Numerical Experiment: Calculating the Exact Rate of All
Knowable Bits

To check the validity of our analysis, we generate 10000 bits randomly, convert
them into square-and-multiply sequences, and apply the optimal bit recovery
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Table 2. All knowable bit rates in 2048-bit CRT-RSA scheme

w 3 4 5 6 7

CRT-RSA (%) 60.80 49.96 41.84 36.19 31.76

Random Bits (%) 60.97 49.80 41.89 35.98 31.65

rules. We conduct experiment 1000 times and calculate the average rate in each
rule and the average rate of all knowable bits. Table 1 shows the results of this
experiment. Table 1 shows that our analysis matches the experimental result.

3.3 Numerical Experiment: Applying to the CRT-RSA Scheme

Now, we apply the optimal bit recovery rules on CRT-RSA secret keys dp and dq.
In this experiments, we check if the rates of recovered bits are similar between
CRT-RSA secret keys and random bits. We generate secret keys on 2048-bit
CRT-RSA scheme, and generate square-and-multiply sequences. In each CRT-
RSA secret key, we generate square-and-multiply sequences on (dp, dq), and
therefore, obtain two square-and-multiply sequences. We apply the optimal bit
recovery rules on these two square-and-multiply sequences, and calculate all
knowable bit rates. We repeat the above for 100 CRT-RSA secret keys gener-
ated randomly. After that, we average all knowable bit rates over 100 times
results. Moreover, we generate 1024 bits randomly 200 times, generate square-
and-multiply sequences, apply the optimal bit recovery rules, and average all
knowable bit rates over 200 times results.

Table 2 shows our experimental results. The bit recovery rates in CRT-RSA
secret keys and random bits are almost the same. Therefore, the rates of recov-
ered bits are similar between CRT-RSA secret keys and random bits.

4 Obtaining More Information on Bits

In the previous section, we gave the exact rate of all knowable bits. However,
when we only use all knowable bits, we cannot recover CRT-RSA secret keys in
polynomial time when w = 4 because the exact rate of all knowable bits is less
than 50% [13]. This contradicts with Bernstein et al.’s result, according to which
we can recover CRT-RSA secret keys in polynomial time when w = 4 [1].

From now on, we focus on nonrecovered bits. The additional information is
embedded in nonrecovered bits, as dictated in [1,17]. We capture this additional
information by calculating the proportion of each bit value 0 or 1 in nonrecovered
bits. For example, we consider SSMSSM in w = 2 again. Bit sequences 0101,
1101, and 1111 do not contradict with SSMSSM. Common bits are the second
one and fourth one; thus, all knowable bits are x1x1. If there is no information
on the nonrecovered bits, the first and third bits, we have 22 = 4 candidates.
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Algorithm 2. Random Sampling
Input: the window size w, a square-and-multiply sequence
Output: An input candidate that does not contradict to a given square-and-
multiply sequence
Step 1: Calculate the Number of Candidates
from The lowest-order window to The highest-order window

for all possible windows
1. Sum of number of candidates of the neighboring lower-order windows

that do not have common bits with the current window (A).
2. Calculate the number of candidates of the current window (B).
3. Calculate A times B and store in the current candidate window.

end for
Step 2: Sampling a Bit Sequence
from The highest-order window to The lowest-order window

1. Define X1, X2, . . . , Xk as the number of candidates for all possible current
windows that do not overlap with the neighboring higher-order window.

2. Choose a window with probability Xi/
(∑k

j=1 Xj

)
.

3. Set 0 between the current window and the neighboring higher-order
window.

4. In the current window,
a. Set MSB bit as 1.
b. Set lower-order bits of 1 as 0.
c. Set nondetermined bits as 0 or 1 randomly.

However, there are actually 3 candidates. When we focus on the nonrecovered
bits, the proportions of each bit value are not the same. Therefore, additional
information on nonrecovered bits is embedded in the proportion of each bit value.

In this section, we propose the method for obtaining the proportion of each
bit value in each nonrecovered bit. For this purpose, we adopt the Monte-Carlo
approach. First, we choose many input sequences uniformly that do not contra-
dict with a given square-and-multiply sequence. However, the method of choosing
the input sequences uniformly is not trivial. To construct this random sampling
method, we construct our method based on van Vredendaal’s method [17] to
calculate the number of input candidates corresponding to the given square-
and-multiply sequences. Vredendaal’s method is a straightforward dynamic pro-
gramming approach that calculates the number of candidates in each window.
We use this information, the number of candidates, in our method for obtaining
the proportion of each bit value in each nonrecovered bit.

Now, we propose the random sampling method to choose an input candidate
uniformly that does not contradict with a given square-and-multiply sequence.
Then, we show the result of numerical experiments conducted for calculating the
proportion of each bit value.
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4.1 Random Sampling Method Based on a Given
Square-and-Multiply Sequence

Here, we propose a random sampling method of input candidates that do not
contradict with a given square-and-multiply sequence. Our random sampling
method is given as Algorithm 2. When we sample many outputs corresponding
to the input, we run Step 1 once and Step 2 many times.

Step 1 of Algorithm 2 corresponds to van Vredendaal’s method [17] for cal-
culating the number of input candidates corresponding to a given square-and-
multiply sequence. Step 1 calculates the number of candidates in each possible
position of windows from low-order windows. The value A summarizes the infor-
mation of low-order windows. The value B calculates the number of candidates
of the current window as the b th of 2, when b is the number of non-determined
bits in the current window. By storing A times B in each window, we preserve
the number of candidates in each possible position of windows, including the
information of low-order windows. When we finish Step 1, we obtain the number
of input candidates corresponding to the given square-and-multiply sequence.

In Step 2, we sample an input candidate uniformly corresponding to the
given square-and-multiply sequence. We determine the position of the window
from higher windows. When the position of some windows is determined, we
choose the neighboring low-order windows based on the number of candidates
of each window in step 1. This selection method realizes sampling uniformly
corresponding to the given square-and-multiply sequence. When the position of a
window is determined, we set 0 between the current window and the neighboring
higher-order window (leading zeros), set the MSB bit as 1 (leading one), and the
lower-order bits of 1 as 0 (trailing zeros). Moreover, we set the nondetermined
bits as 0 or 1 randomly because these bits are flat when the position of the
window is determined. When we finish Step 2, we sample the input candidates
that do not contradict with the square-and-multiply sequence, uniformly.

4.2 Numerical Experiment: Calculating the Proportion of Each Bit
Value in Each Nonrecovered Bit

Here, we calculate the proportion of each bit in CRT-RSA secret keys using
Algorithm 2. We conduct a numerical experiment on w = 3−7. In each w, we
generate 2048-bit CRT-RSA secret keys 100 times randomly. In each CRT-
RSA secret key, we generate square-and-multiply sequences on (dp, dq), and
therefore, obtain two square-and-multiply sequences. Therefore, we generate
200 square-and-multiply sequences corresponding to 1024-bit number. In each
square-and-multiply sequence, we obtain 1000 samples using Algorithm 2 and
calculate the proportion of 1. Moreover, we calculate the number of input can-
didates and that of bits that are not the same in 1000 samples. Finally, we
average the above information over 200 square-and-multiply sequences and cal-
culate the proportion of one bit, the average of unknown bits, and the average
of log2(the average of #Candidate). The result is given in Table 3. Note that
we drop fractions in the unknown bits and log2(the average of #Candidate) in
Table 3.
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Table 3. Distribution of proportion of 1 in 2048-bit CRT-RSA scheme

w 3 4 5 6 7

All 0 0.328 0.285 0.248 0.212 0.189

All 1 0.280 0.214 0.174 0.147 0.127

0–10% 0 0 0 0 0

10–20% 3.38 × 10−4 3.91 × 10−5 4.89 × 10−6 0 0

20–30% 1.02 × 10−2 5.17 × 10−3 2.52 × 10−3 1.41 × 10−3 9.00 × 10−4

30–40% 3.27 × 10−2 2.45 × 10−2 1.93 × 10−2 1.55 × 10−2 1.30 × 10−2

40–50% 7.99 × 10−2 0.104 0.133 0.168 0.199

50–60% 0.143 0.230 0.295 0.338 0.363

60–70% 5.90 × 10−2 6.42 × 10−2 5.86 × 10−2 5.23 × 10−2 4.74 × 10−2

70–80% 3.20 × 10−2 3.13 × 10−2 2.73 × 10−2 2.55 × 10−2 2.23 × 10−2

80–90% 2.31 × 10−2 2.39 × 10−2 2.29 × 10−2 2.02 × 10−2 1.84 × 10−2

90–100% 1.22 × 10−2 1.80 × 10−2 2.00 × 10−2 2.04 × 10−2 1.90 × 10−2

Unknown bits 400 512 591 655 699

log2(#Candidate) 350 448 534 608 660

From Table 3, the values of unknown bits and log2(#Candidate) are larger
in larger w, which agrees with our intuition that it is more difficult to calculate
CRT-RSA secret keys in a larger w. Moreover, the proportion of 1 gathers at
40-60% when w is larger. This is the reason why it is more difficult to calculate
CRT-RSA secret keys in a larger w.

From now on, we focus on w = 4, 5, because there is a gap between w = 4, 5
as we can recover CRT-RSA secret keys when w = 4 and cannot recover when
w = 5 in polynomial time.

When w = 4, the number of unknown bits is 512 and log2(#Candidate)
is 448. The number of unknown bits is almost the same as 1024/2 = 512 and
log2(#Candidate) is smaller than 1024/2 = 512. Therefore, this corresponds to
the fact that we can recover CRT-RSA secret keys when w = 4 in Bernstein et
al.’s analysis [1].

When w = 5, the number of unknown bits is 591 and log2(#Candidate) is
534. Both of the number of unknown bits and log2(#Candidate) are larger than
1024/2 = 512. Therefore, it is difficult to recover CRT-RSA secret keys when
w = 5 in polynomial time. However, there are about 2% bits, that are 1 with
high probability. This information corresponds to about 20 bits. In the next
section, we use this information for calculating CRT-RSA secret keys.

5 New Method for Calculating CRT-RSA Secret Keys

Here, we propose a new method for calculating CRT-RSA secret keys. Our
method is a combination Bernstein et al.’s method [1] and Kunihiro et al.’s
method [10].

From now on, we explain our proposed method. First, we collect the informa-
tion of dp, dq. At first, we recover all knowable bits using the optimal bit recovery
rules and define the set of the position of these bits as R. Next, we calculate set
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Table 4. Result of our proposed method in 2048-bit CRT-RSA scheme when w = 5

ε 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t 1 100 50 33 25 20 16 14 12 11 10

l = 1, 000, 000 Time (s) 8.37 7.71 8.27 7.12 7.23 16.6 8.70 11.3 19.1 14.2 32.9

Success Rate (%) 11 12 11 17 12 14 12 16 9 11 8

Too Many (%) 89 88 89 83 88 86 83 78 86 74 75

Pruning (%) 0 0 0 0 0 0 5 6 5 15 17

l = 2, 000, 000 Time (s) 12.1 11.2 15.9 17.0 14.0 27.8 8.50 12.6 20.4 17.5 12.6

Success Rate (%) 19 16 14 16 19 17 20 21 11 15 10

Too Many (%) 81 84 86 84 80 83 79 74 78 76 73

Pruning (%) 0 0 0 0 1 0 1 5 11 9 17

S similar to [1]. Moreover, we run our random sampling algorithm r times on
each dp and dq. In each dp and dq we recover bits as 0 when the proportion of 1
is less than ε, and 1 when the proportion is more than 1 − ε. We define the set
of the position of these bits as P .

Second, we calculate CRT-RSA secret keys using modification version of
Kunihiro et al.’s method [10]. We basically apply Kunihiro et al.’s method on
bits at the position in P . In Kunihiro et al.’s method, we must set the number
of expanding bits t and threshold of mismatches c. These values are set in two
points; ε ≤ c/t and t is as small as possible. The former condition is set not to
discard the correct leaf. The latter condition is set to decrease the interval of
pruning. Therefore, we basically set c = 1 and t as the smallest value such that
1/t ≥ ε, with the exception that c = 0 and t = 1 when ε = 0. After we set (t, c),
we conduct branch and bound method by repeating

– we calculate t-revealed dp, dq bits at the position in P .
– we discard a leaf if there are more than c mismatches between the calculated

and given t bits.

Additional to this pruning strategy, we adopt exception handling on the bits
at the position in R or S. First, if we calculate the bits in R, we discard a
leaf if there is mismatch with the information of all knowable bits. Next, if we
calculate the bits in S, we convert calculated bits hitting S to a square-and-
multiply sequence and we discard a leaf if there are mismatches with the given
square-and-multiply sequence. By doing these, we recover CRT-RSA secret keys
from square-and-multiply sequences.

Here, we compare our proposed method to the original Bernstein et al.’s
method [1]. Our method conducts more pruning using the proportion of each bit
value as additional information than the original method using only information
of S. Thus, our proposed method generates less leaves while there are possibil-
ity of discarding the correct leaf. Therefore, when w = 5, we assume that our
method recovers more CRT-RSA secret keys because we search less leaves than
the original method.

Here, we calculate CRT-RSA secret keys using our proposed method and
verify our assumption. We run our algorithm on w = 5 and set the number of
random sampling as r = 1000. In our experiment, we implement our algorithm in
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depth first search and abort if we search l leaves similar to [1]. In each parameters,
we make secret keys of 2048-bit CRT-RSA scheme 100 times randomly. We
measure average time in successful trials and success rate when we are given the
correct kp, kq.

Moreover, we record why our proposed method failed. There are two reasons
of failure:

– We search more than l leaves.
– We prune the correct leaf.

In the original Bernstein et al.’s method, the reason of failure is only the former.
However, stated above, our proposed method may discard the correct leave, and
then, our method fails. Thus, we record the reason of failure.

The result is given in Table 4. In Table 4, “Too Many” means the failure
because of searching more than l leaves and “Pruning” means the failure because
of pruning the correct leaf.

When l = 1, 000, 000, we calculate 17% CRT-RSA secret keys when (ε, t) =
(0.03, 33), while the original Bernstein et al.’s method [1] calculates 8.6% CRT-
RSA secret keys. When l = 2, 000, 000, we calculate 21% CRT-RSA secret keys
when (ε, t) = (0.07, 14), while the original method calculates 13% CRT-RSA
secret keys. In almost all parameters, our method calculates more CRT-RSA
secret keys than the original method. Therefore, our method calculates more
secret keys compared to Bernstein et al.’s method when w = 5.

From now on, we focus on the reason of failure. The failure probability
because of too many leaves is 70–90% in Table 4, that is much higher than
the failure probability because of pruning the correct leaf. This is because we
have small chance to hit the correct leaf because of too many leaves originally. In
larger ε, the failure probability of too many leaves decreases, especially ε ≥ 0.09
when l = 1, 000, 000, and ε ≥ 0.06 when l = 2, 000, 000. This matches our intu-
ition that our proposed method generate less leaves in larger ε. Moreover, in
larger ε, the failure probability of pruning the correct leaf increases, especially
ε ≥ 0.06 in both l. This matches our intuition that our proposed method tends
to discard the correct leaf in larger ε. Especially, when we set ε ≤ 0.05, there
is almost no failure because of pruning the correct leaf. However, when we set
ε ≥ 0.08, our method prunes the correct leaf with high probability. Therefore,
the appropriate parameter of our method exists in 0.05 < ε < 0.08.

6 Conclusion

Here, we improve Bernstein et al.’s method [1] when w = 5 by studying the
bit recovery method more profoundly. First, we calculate the exact rate of all
knowable bits. Next, we extract the information embedded in nonrecovery bits
by proposing a method for calculating the proportion of each bit value in each
nonrecovery bit. Finally, we propose a new method of calculating CRT-RSA
secret key using the proportion of each bit value and improve Bernstein et al.’s
method when w = 5. In the future, we should determine appropriate parameters
in our proposed method.
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7. İnci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 368–388. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2 18

8. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

10. Kunihiro, N., Shinohara, N., Izu, T.: Recovering RSA secret keys from noisy key
bits with erasures and errors. IEICE Trans. Fundam. E97-A, 1273–1284 (2014).
https://doi.org/10.1587/transfun.E97.A.1273

11. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

12. Moriarty, K., Kaliski, B., Jonsson, J., Rusch, A.: PKCS #1: RSA cryptography
specifications version 2.2 (2016). https://tools.ietf.org/html/rfc8017

13. Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A coding-theoretic approach
to recovering noisy RSA keys. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 386–403. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 24

14. Percival, C.: Cache missing for fun and profit (2005). http://www.daemonology.
net/papers/htt.pdf

15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978). https://doi.
org/10.1145/359340.359342

https://doi.org/10.1007/978-3-319-66787-4_27
https://doi.org/10.1007/978-3-662-48324-4_11
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1109/TC.2009.176
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1587/transfun.E97.A.1273
https://tools.ietf.org/html/rfc8017
https://doi.org/10.1007/978-3-642-34961-4_24
https://doi.org/10.1007/978-3-642-34961-4_24
http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342


296 K. Oonishi et al.

16. Smith, W.L.: Renewal theory and its ramifications. J. Roy. Stat. Soc. 20, 243–302
(1958). https://doi.org/10.1111/j.2517-6161.1958.tb00294.x

17. van Vredendaal, C.: Exploiting Mathematical Structures in Cryptography. Tech-
nische Universiteit Eindhoven, Eindhoven (2018)

18. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX 2014, pp. 719–732 (2014)

19. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: a timing attack on OpenSSL
constant time RSA. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS,
vol. 9813, pp. 346–367. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53140-2 17

https://doi.org/10.1111/j.2517-6161.1958.tb00294.x
https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1007/978-3-662-53140-2_17


Differential Random Fault Attacks
on Certain CAESAR Stream Ciphers

Kenneth Koon-Ho Wong(B) , Harry Bartlett(B) , Leonie Simpson(B) ,
and Ed Dawson(B)

Queensland University of Technology, Brisbane, Australia
{kk.wong,h.bartlett,lr.simpson,e.dawson}@qut.edu.au

Abstract. We show that a particular class of stream ciphers – namely
those in which the output function contains a bitwise AND operation
– are susceptible to a differential fault attack using random faults. Sev-
eral finalists and other candidates from the recent CAESAR competition
fall into this category, including the AEGIS variants, Tiaoxin and the
MORUS family. Attack outcomes range from key or full state recovery
for Tiaoxin, to full state recovery for the AEGIS family and partial state
recovery for MORUS. We present attack requirements and success prob-
abilities on these ciphers, along with design considerations to mitigate
against this attack.

Keywords: Fault attack · Differential fault attack · Random faults ·
Stream ciphers · CAESAR competition · Tiaoxin · AEGIS ·
Side-channel attack

1 Introduction

Given an implementation of a cryptographic algorithm, a fault occurring during
its operation will result in an erroneous output. Differential fault attacks exploit
this by comparing the output of the fault-free operation of the algorithm with the
faulty output after an error is induced during the operation [1]. The difference
between fault-free and faulty outputs reveals information about the encryption,
which may lead to the recovery of internal state or even secret key values. Note
that this implies a nonce-reuse scenario, as the same nonce must be used to
generate the fault-free and faulty outputs. In 1997, Boneh et al. [1] used fault
attacks against an implementation of RSA. Since then, fault attacks have been
widely used against many encryption algorithms, including DES [2] and AES [3].
Fault attacks can be very powerful, such that an entire AES key can be retrieved
using only a single fault injection [4].

When applying a fault attack on the implementation of a cryptographic algo-
rithm, there are a number of aspects to consider. These include:
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– Number of bits to be faulted: One bit, a few bits, one byte or multiple bytes;
– Modification type: Whether the faulted bits are stuck-at-zero, stuck-at-one,

bit-flipped or affected randomly;
– Fault precision: How tightly the location and/or timing of the fault can be

controlled;
– Fault duration: Whether the fault will be transient or permanent.

Combinations of these parameters determine the feasibility of a fault attack.
For example, an attack performed under the assumption that a fault results in
flipping every bit in a targeted variable implies a very strong adversary. This
bit-flipping approach is considered unrealistic in practice [5]. A random fault
model, in which a fault is injected but the adversary does not know in advance
the effect of the fault on a variable value, is considered more realistic since less
precise control of the fault outcome by the attacker is required [5].

The fault attack described in this paper is a differential random fault attack
on one targeted word at a time. Note that we have not implemented the attack,
but instead we present a theoretical analysis on its feasibility and success rate,
and rely on the fact that the practicality of applying such attacks has previously
been demonstrated in other literature such as [5,6]. The attack we describe can
be applied to stream ciphers where the keystream output function includes at
least one bitwise AND operation. Several stream ciphers from the Competition
for Authenticated Encryption: Security, Applicability and Robustness (CAE-
SAR) have output functions of this form. These include Tiaoxin [7], the AEGIS
family of stream ciphers [8] and the MORUS family of stream ciphers [9].

This paper extends on several previous fault attacks. Firstly, the bit-flipping
fault attack on Tiaoxin and AEGIS in [10] used a similar approach, but assumed
that the attacker could induce bit-flipping faults. For Tiaoxin, bit-flip faults on
three words were required to recover the 128-bit secret key in a known plaintext
scenario. For AEGIS-128, AEGIS-256 and AEGIS-128L, the internal state could
be recovered using bit-flip faults on 3, 4 and 4 words, respectively (also in a
known plaintext scenario). Secondly, the random fault attack applied to Tiaoxin
and AEGIS-128L in [11] demonstrated that a similar attack using random faults
rather than bit-flips could be applied to recover the Tiaoxin key or the AEGIS-
128L internal state. A requirement for both attacks from [10,11] is that the
output function includes the bitwise AND of two state words. However, [11]
has an additional requirement that the cipher must have two separate output
functions, and at least one output function included the bitwise XOR of one
of the state words that was used in the AND operation of the other ciphertext
word. This additional structure allowed the values of the random faults to be
determined. Hence, the attack in [11] requires less control of the induced faults
compared to [10], but is more restrictive on the required cipher structure.

The attack presented in this paper is a random fault attack which requires
only that the output function includes the bitwise AND of two state words.
Unlike the attacks of [11], it does not require two ciphertext words to be pro-
duced by separate output functions at each time step, and the attacker does not
need to know the values of the random faults. In fact, we show that all ciphers
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attacked in [10] can also be attacked with random faults, in place of the less
realistic bit-flipping faults that were used. Our attack also provides partial state
information in the case of other CAESAR candidates, for example the MORUS
family. The applicability of our attack on these ciphers highlights the importance
of preventing nonce-reuse with ciphers of this type.

The remainder of this paper is organised as follows. Section 2 introduces the
notation used and presents the attack algorithm. Section 3 provides an analysis
on the probabilities for successful recovery of underlying state bits. Section 4
presents the results on the application of this random fault attack to several
CAESAR candidates, namely the AEGIS family and Tiaoxin, where full key
or state recovery can be achieved. Section 5 provides a summary of the results,
including a discussion on a possible partial state recovery attack on MORUS.
Section 6 concludes the paper and provides suggestions for future work.

2 Random Fault Attacks

In this section, we first introduce the notation used, and then present our random
fault attack in a general form. Theoretical details of the attack and an attack
algorithm then follows.

2.1 Notation

The following notation will be used throughout the paper unless otherwise stated.
Let P , C, and S be the plaintext, ciphertext and internal state of the stream
cipher, respectively. At each timestep t, these values are denoted by P t, Ct, and
St. Where multiple words are present, the i-th word of these values are shown
as P t[i], Ct[i] and St[i]. We also use the common notations ⊕ and ⊗ to denote
the bitwise XOR and bitwise AND operations respectively.

Some ciphers in this paper use the AES round function in their state updates.
The function R is used to refer to the standard AES round function [12] without
the AddSubKey operation i.e.

R(x) = MixColumns(ShiftRows(SubBytes(x))) (1)

Note that this transformation is invertible. This is an important property for
state recovery, and in some cases, key recovery using this random fault attack,
as it allows the internal state to be clocked backwards.

2.2 Attack Outline

As stated previously, the attack presented in this paper is a differential attack.
That is, the plaintext is first encrypted without error and the ciphertext out-
put noted. The encryption is then repeated with a random fault injected into a
chosen state word. A comparison of the fault free and faulty ciphertexts reveals
information about the underlying state value, which in some cases may lead to
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recovery of key bits. Repeating the encryption with the same key and initialisa-
tion vector is referred to as nonce reuse or misuse.

Suppose a keystream generator has a ciphertext output function of the form

Ct = f(St) ⊕ (g(St) ⊗ St[u] ) (2)

where f(St) and g(St) are functions in St that do not depend on St[u]. Let e
be a randomly generated word unknown to the attacker. This random fault e
is injected into the state word St[u] such that its contents become faulty. The
relationship between the fault-free state word St[u] and the faulty state word,
denoted as S̃t[u], is given by:

S̃t[u] = St[u] ⊕ e

The difference between the fault-free ciphertext Ct and faulty ciphertext,
denoted as C̃t, is then given by:

Ct ⊕ C̃t = f(St) ⊕ (g(St) ⊗ St[u] ) ⊕ f(St) ⊕ (g(St) ⊗ S̃t[u] )

Ct ⊕ C̃t = g(St) ⊗ (St[u] ⊕ St[u] ⊕ e)

Ct ⊕ C̃t = g(St) ⊗ e (3)

From Eq. 3, it can be observed that for all bits in Ct ⊕ C̃t that are equal to
one, those bits in g(St) in the corresponding positions must also be one. Thus,
the difference in the ciphertexts reveals information about the underlying state
words that appear in g(St).

Unlike the attacks in [10,11], the full effect of these faults are unknown to the
attacker. In fact, the attacker can only determine that a given bit of e equals one
if the corresponding bit value of g(St) is also one. Apart from this, the attacker
does not know whether the remaining bits of e are one or zero. Therefore, the
success of this attack in recovering all bits of g(St) depends on repeating the
random fault injection multiple times, so that every bit in e is one for at least
one of these faults with high probability, thus revealing all non-zero bits of g(St).
Algorithm 1 outlines the random fault attack procedure.

Algorithm 1. Random fault attack
1: Load key and initialisation vector and perform the initialisation phase.
2: Obtain the fault free ciphertext Ct.
3: Repeat Steps 1 and 2 but inject a random multi-byte fault e into the state word

St[u] to obtain the faulty ciphertext C̃t.
4: Compute Ct ⊕ C̃t.
5: Record all bits of Ct⊕C̃t that are equal to one, which implies that the corresponding

bits in g(St) are also ones.
6: Repeat Steps 3 to 5 until all of the bits that equal one in g(St) are likely to have

been observed. The remaining bits are assumed to be zero with high probability.
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As discussed in Sect. 1, random faults are considered easier to implement
than bit flips and thus the attacks we present are more practical than the bit-
flipping attacks in [10]. The tradeoff is that random fault attacks are probabilis-
tic, whereas the bit-flipping fault attacks are deterministic. However, as we will
show in Sect. 3, very high success rates can be achieved with a feasible number
of repeated random faults.

3 Probability Calculations

In this section, we consider the probability of determining the contents of g(St)
after applying various numbers of random faults. In doing this, we focus on the
scenario discussed above, in which the attacker has only limited knowledge of
the values of the faulted bits in e. In this scenario, the attacker learns that a bit
of g(St) is equal to one when the corresponding fault bit equals one, but cannot
know for sure when a bit of g(St) is zero. Note that the zero bits in Ct ⊕ C̃t

do not reveal zeros in g(St) deterministically, as the attacker does not know
whether this is due to a zero value in the corresponding bit of g(St) or a zero
value in the relevant bit of the error word e.

The attacker’s aim is to find the value of g(St), which can be achieved by
correctly locating all of the ones in g(St). However, the attacker does not know
how many of the bits in g(St) are actually ones. We define success for the attacker
to be the event that the value of g(St) has been correctly determined, and our
analysis of the probability of success must take into account that the number of
ones in g(St) is unknown by conditioning on this random variable.

We assume initially that g(St) is a single state word of length w bits, and
also note the following assumptions:

I. Since the fault e is assumed to be random, we assume that the probability
that a given bit of e is equal to one is exactly 0.5, independently of the values
of all other bits.

II. Assuming that the attacker has no prior knowledge of the state contents, we
may also assume that each bit in the state is equally likely to be a one or a
zero, independently of all other bits in the state.

From these assumptions, we argue as follows:

1. Consider first a single bit in g(St). If the value of this bit is zero, then (as
discussed above) we cannot detect this directly. However, if the value of this
bit is one, then the probability pb,1(s) that the value of this bit has not been
determined after applying s faults is simply the probability that this bit is
equal to zero in all s instances of e, namely pb,1(s) = 0.5s.

2. Now consider the entire word g(St) containing w independent bits and sup-
pose that the number of ones in this word happens to be N (with 0 ≤ N ≤ w).
Then:
(a) The probability pN (k; s) that exactly k ones in this word have not yet been

recovered after applying s random (multi-byte) faults is given by the bino-
mial distribution Bi(N, pb,1(s)); specifically, pN (k; s) =

(
N
k

)
pb,1(s)k(1 −

pb,1(s))N−k =
(
N
k

)
0.5sk(1 − 0.5s)N−k.
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Table 1. Success rate PS(s;w) for w = 128 with different numbers of faults

Number of faults (s) 6 8 10 12 14 16

Success rate PS(s; 128) 36.64% 77.86% 93.94% 98.45% 99.61% 99.90%

Table 2. Success rate for full recovery of 128-bit words using attacks from [11]

Number of faults 6 8 10 12 14

Calculated success rate 13.32% 60.59% 88.24% 96.92% 99.22%

Simulated results: Tiaoxin [11, Table 2] 12.81% 61.72% 87.64% 96.78% 99.16%

Simulated results: AEGIS-128L [11, Table 5] 13.18% 59.58% 88.35% 96.70% 99.07%

(b) The probability of recovering at least m ones out of N after applying
s random (multi-byte) faults is equal to the probability that N − m or
fewer ones remain undiscovered after applying this number of faults. We
denote this probability as PN (m; s); it can be calculated by using the
cumulative form of the binomial distribution described above, namely as
PN (m; s) =

∑N−m
k=0 pN (k; s).

(c) The probability of discovering all N ones in a w-bit word after s (or fewer)
multi-byte faults is then equal to PN (N ; s) = pN (0; s) = (1 − 0.5s)N .

3. It follows from Assumption II that the number of ones (N) in the state
word of Step 2 has a binomial distribution Bi(w, 0.5) with Pr(N = n) =(
w
n

)
0.5n 0.5w−n =

(
w
n

)
0.5w.

4. Finally, let PS(s;w) denote the probability that the attacker has discovered
all the ones in a w-bit state word after applying s random (multi-byte) faults
(and without knowing how many ones there are to find). This probability is
given by the following expression (conditioning on the value of N):

PS(s;w) =
w∑

n=0

PN (N ; s|N = n) Pr(N = n)

=
w∑

n=0

pn(0; s) Pr(N = n)

=
w∑

n=0

(
w

n

)
0.5w−n0.5n(1 − 0.5s)n (4)

=
w∑

n=0

(
w

n

)
0.5w−n(0.5 − 0.5s+1)n = (1 − 0.5s+1)w

Table 1 presents some calculated values of PS(s;w) for the case w = 128 and
various values of s. Note that the success rate exceeds 99% for 14 or more
faults. To verify the applicability of our theoretical analysis, we applied a similar
process to determine the theoretical probabilities of the attacks from [11]. Table 2
shows that our calculated success rates agree closely with the simulation results
reported in [11].
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We now relax the assumption that g(St) is a single state word. Assuming
that the attacker has no prior knowledge of the state contents St, Assumption
II still holds for any state word. Provided that g(St) contains only bitwise oper-
ations, the contents of each bit of g(St) are then statistically independent of one
another. Now suppose that the probability that a particular bit in g(St) equals
one (independently of all other bits) is p

(g)
b,1 . The distribution of N in step 3

then becomes Bi(w, p(g)b,1) with Pr(N = n) =
(
w
n

)
(p(g)b,1)

n (1 − p
(g)
b,1)

w−n and Eq. 4
becomes:

PS(s;w) =
w∑

n=0

(
w

n

)
(1 − p

(g)
b,1)

w−n(p(g)b,1)
n(1 − 0.5s)n

=
w∑

n=0

(
w

n

)
(1 − p

(g)
b,1)

w−n(p(g)b,1 − p
(g)
b,1×0.5s)n

= (1 − p
(g)
b,1×0.5s)w

Now, provided that g(St) contains at least one linear term, we may assume from
II that p

(g)
b,1 = 0.5 and the same result is obtained as before. On the other hand,

if g(St) is purely quadratic, then p
(g)
b,1 = 0.25 and PS(s;w) becomes PS(s;w) =

(1 − 0.25×0.5s)w = (1 − 0.5s+2)w. Similar analyses can also be given for other
forms of g(St).

4 Key and State Recovery Attacks

In this section, we describe key recovery and full state recovery attacks on two
CAESAR competition candidates using random fault injections. These are the
AEGIS family of stream ciphers [8] and Tiaoxin [7]. Within the AEGIS family,
AEGIS-128 (version 1.1) is in the final portfolio of the CAESAR competition for
Use Case 2 (High-performance applications), whereas AEGIS-256 and AEGIS-
128L are finalists for the same use case. Tiaoxin (version 2) is a third round
candidate. In the cases of AEGIS-128L and Tiaoxin, ciphertext-only attacks are
possible. Our cipher descriptions mostly focus on the encryption phase, which
is where the random faults are injected. For details of the other phases, such as
initialisation, associated data processing finalisation and tag generation, please
refer to the respective cipher specification documents.

4.1 AEGIS-128

AEGIS-128 has an internal state with five 128-bit register stages
St[0], St[1], . . . , St[4], and thus has a total state size of 5 × 128 = 640 bits.
The internal state is updated at each timestep using a nonlinear state update
function defined as follows.

St+1[i] =
{
R(St[4]) ⊕ St[0] ⊕ M t for i = 0
R(St[i − 1]) ⊕ St[i] for 1 ≤ i ≤ 4 (5)
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Fig. 1. AEGIS-128 state update and output

This update function has one external input, M t, and nonlinearity is provided by
applying the transformation R to the contents of each register stage, as shown in
Fig. 1. During the encryption phase, each 128-bit plaintext block P t is encrypted
to obtain the corresponding ciphertext block Ct as per the AEGIS-128 output
function:

Ct = P t ⊕ St[1] ⊕ St[4] ⊕ St[2]St[3] (6)

This function is of the form identified in Eq. 2, which means that the random
fault attack described in Sect. 2.2 can be applied to this cipher.

Attack Procedure. Comparing with the generic form in Eq. 2, we can obtain
the following parameter sets:

(f(St), g(St), St[u]) = (P t ⊕ St[1] ⊕ St[4], St[2], St[3]) (7)

(f(St), g(St), St[u]) = (P t ⊕ St[1] ⊕ St[4], St[3], St[2]) (8)

Therefore, using the parameter set given in Eq. 7, the attacker can apply random
faults on St[3] to recover the contents of St[2] as per the analysis presented in
Sect. 2.2. Alternatively, using Eq. 8, random faults can be applied on St[2] to
recover St[3] in a similar manner.

State Recovery. To extend the recovery of single stages to the entire internal
state, observe from Eq. 5 that

St[2] = R(St−1[1]) ⊕ St−1[2])

St−1[1] = R−1(St[2] ⊕ St−1[2])

Therefore, recovering of S[2] over two consecutive timesteps permits the recovery
of S[1] on the earlier timestep. The process continues into St−2[0] as follows.

St−1[1] = R(St−2[0]) ⊕ St−2[1]

St−2[0] = R−1(St−1[1] ⊕ St−2[1])

= R−1(R−1(St[2] ⊕ St−1[2]) ⊕ R−1(St−1[2] ⊕ St−2[2]))
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In summary, applying random faults on St[2] with Eq. 7 on three consecutive
timesteps t, t − 1, t − 2 allows recovery of the stages St−2[0], St−2[1], St−2[2] at
timestep t − 2. Additionally, applying the attack with Eq. 8 allows recovery of
St−2[3].

To complete the full state recovery, the value St−3[4] needs to be computed.
Using one known plaintext block P t−2 and Eq. 6 gives

St−2[4] = P t−2 ⊕ Ct−2 ⊕ St−2[1] ⊕ St−2[2]St−2[3] (9)

Once the entire internal state is known at a certain timestep t, the cipher can be
clocked forwards to recover all subsequent plaintext using known ciphertext and
state contents. This attack strategy improves on the requirement of two known
plaintext blocks in [10], at the expense of injecting faults across three rounds
instead of two.

Success Rate. For the above attack strategy, we require four targets stages,
namely St[2], St−1[2], St−2[2], St−2[3], to recover the entire AEGIS-128 internal
state. From the analysis in Sect. 3, assuming that we require a 99.9% probability
of correctly recovering the contents of each target state, 16 random faults would
be injected for each target state, so a total of 64 random faults would be carried
out. The success probability of the full state recovery attack is about 0.9994 ≈
0.996. Higher probabilities can be achieved if more random faults are made on
each target stage.

4.2 AEGIS-256

AEGIS-256 has an internal state with six 128-bit register stages St[0], St[1], . . . ,
St[5], and thus has a total state size of 6 × 128 = 768 bits. The internal state
is updated at each timestep using a nonlinear state update function defined as
follows.

St+1[i] =
{
R(St[5]) ⊕ St[0] ⊕ M t for i = 0
R(St[i − 1]) ⊕ St[i] for 1 ≤ i ≤ 5 (10)

This update function has one external input M t, and nonlinearity is provided
by applying the AES round function R to the contents of each register stage, as
shown in Fig. 2. During the encryption phase, each 128-bit plaintext block P t is
encrypted to obtain the corresponding ciphertext block Ct as per the AEGIS-256
output function:

Ct = P t ⊕ St[1] ⊕ St[4] ⊕ St[5] ⊕ St[2]St[3] (11)

This function is of the form identified in Eq. 2, which means that the random
fault attack described in Sect. 2.2 can be applied to this cipher.
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Fig. 2. AEGIS-256 state update and output

Attack Procedure. The AEGIS-256 output function differs from the AEGIS-
128 output function by only a linear term St[5], so the same random fault attack
strategy applies. Comparing with the generic form in Eq. 2, we can obtain:

(f(St), g(St), St[u]) = (P t ⊕ St[1] ⊕ St[4] ⊕ St[5], St[2], St[3]) (12)

(f(St), g(St), St[u]) = (P t ⊕ St[1] ⊕ St[4] ⊕ St[5], St[3], St[2]) (13)

Therefore, applying random faults on St[3] allows an attacker to recover the
contents of St[2] as per the analysis presented in Sect. 2.2. Alternatively, random
faults can be applied on St[2] to recover St[3] in a similar manner.

State Recovery. The process for full state recovery is also similar to that for
AEGIS-128 as we also have, for 1 ≤ i ≤ 2:

St−i[2 − i] = R−1

(
i⊕

k=0

R−1(St−k[2] ⊕ St−k−1[2])

)

(14)

This means that applying the random fault attack on three consecutive timesteps
t, t − 1, t − 2 allows recovery of the stages St−2[0], St−2[1], St−2[2] at timestep
t − 2. Additionally, applying the attack with Eq. 13 allows recovery of St−2[3].
In total, the attack is applied four times.

To complete the full state recovery, the values of St−2[4], St−2[5] need to be
computed. Using one known plaintext block P t−2 gives

St−2[4] ⊕ St−2[5] = P t−2 ⊕ Ct−2 ⊕ St−2[1] ⊕ St−2[2]St−2[3] (15)

This cannot uniquely determine St−3[4] and St−3[5]. However, from the state
update function it is also known that

St−1[0] = R(St−2[5]) ⊕ St−2[0] ⊕ P t−2 (16)

Therefore, it is possible to calculate St−2[5] if an extra fault attack is carried out
at time t + 1 to recover St+1[2], so that St−1[0] can be computed from Eq. 14.
Once St−2[5] is known, St−2[4] can be readily computed via Eq. 15.



Differential Random Fault Attacks on Certain CAESAR Stream Ciphers 307

Similar to AEGIS-128, once the entire state is known at a certain timestep
t, the cipher can be clocked forwards to recover all subsequent plaintext using
known ciphertext and state contents. This attack strategy requires only one
known plaintext block, which improves on the requirement of three known plain-
text blocks in [10], at the expense of injecting faults across four rounds instead
of three.

Success Rate. For the above attack strategy, we require five targets stages,
namely St+1[2], St[2], St−1[2], St−2[2], St−2[3], to recover the entire AEGIS-128
internal state. From the analysis in Sect. 3, assuming that we require a 99.9%
probability of correctly recovering the contents of each target stage, 16 random
faults would be injected for each target state, so a total of 80 random faults
would be carried out. The success probability of the full state recovery attack
is about 0.9995 ≈ 0.995. Higher probabilities can be achieved if more random
faults are made on each target stage.

4.3 AEGIS-128L

AEGIS-128L has an internal state with eight 128-bit register stages
St[0], St[1], . . . , St[7], and thus has a total state size of 8 × 128 = 1024 bits. The
internal state is updated at each time instant using a nonlinear state update
function StateUpdate128L(St,M t

0,M
t
1). This update function has two external

inputs, M t
0 and M t

1, and nonlinearity is provided by applying the transformation
function R to the contents of each register stage, as shown in Fig. 3. Under this
update function, the state of AEGIS-128L at time t + 1 is defined as:

St+1[i] =

⎧
⎨

⎩

R(St[7]) ⊕ St[0] ⊕ M t
0 for i = 0

R(St[3]) ⊕ St[4] ⊕ M t
1 for i = 4

R(St[i − 1]) ⊕ St[i] for i ∈ {1, 2, 3, 5, 6, 7}
(17)

Fig. 3. AEGIS-128L state update and output

In contrast with AEGIS-128 and AEGIS-256, during the encryption phase
each 256-bit plaintext block is split into two words: P t = P t[0]||P t[1], which are
encrypted separately and then combined to obtain the corresponding ciphertext
block Ct = Ct[0]||Ct[1].
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The output functions of AEGIS-128L for the two words in each block are

Ct[0] = P t[0] ⊕ St[1] ⊕ St[6] ⊕ St[2]St[3] (18)

Ct[1] = P t[1] ⊕ St[2] ⊕ St[5] ⊕ St[6]St[7] (19)

These function are of the form identified in Eq. 2, which means that the random
fault attack described in Sect. 2.2 can be applied to this cipher.

Attack Procedure. Comparing with the generic form in Eq. 2, we can obtain
four sets of attack parameters from the two output functions. From Eq. 18, the
parameters corresponding to the first output function are:

(f0(St), g0(St), St[u]) = (P t[0] ⊕ St[1] ⊕ St[6], St[2], St[3]) (20)

(f0(St), g0(St), St[u]) = (P t[0] ⊕ St[1] ⊕ St[6], St[3], St[2]) (21)

From Eq. 19, the parameters corresponding to the second output function are:

(f1(St), g1(St), St[u]) = (P t[1] ⊕ St[2] ⊕ St[5], St[6], St[7]) (22)

(f1(St), g1(St), St[u]) = (P t[1] ⊕ St[2] ⊕ St[5], St[7], St[6]) (23)

Therefore, for example, at each timestep we can apply random faults to states
St[3], St[7] to recover the contents of St[2], St[6] respectively. Alternatively,
applying random faults to states St[2], St[6] allows recovery of St[3], St[7] respec-
tively.

State Recovery. If the plaintext words P t[0], P t[1], P t+1[0] and P t+1[1] are
also known, then the process used in [10] can be followed to obtain the whole
state content at time t. However, our attack can also be modified to recover
the entire state even when the attacker does not have access to the plaintext,
by following a similar process to that used for AEGIS-128 and AEGIS-256. By
recovering the values of St[6], St−1[6], St−2[6] using Eq. 22, one can determine
the values of St−2[5], St−2[4]. Likewise, by recovering St[2], St−1[2], St−2[2] using
Eq. 20, one can determine St−2[1] and St−2[0]. Finally, St−2[3], St−2[7] can be
recovered by Eqs. 21 and 23 respectively. This means the all state contents at
time t − 2 are known without having to use any known plaintext. Thus, this
attack is stronger than that reported in [10], being a ciphertext-only attack.

Success Rate. For the above attack strategy, we require eight target stages,
namely St[2], St−1[2], St−2[2], St−2[3], St[6], St−1[6], St−2[6], St−2[7]. From the
analysis in Sect. 3, assuming that we require a 99.9% probability of correctly
recovering the contents of each target state, 16 random faults would be injected
for each target state, so a total of 128 random faults would be carried out. The
success probability of the full state recovery attack is about 0.9998 ≈ 0.992.
Higher probabilities can be achieved if more random faults are made on each
target stage.
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4.4 Tiaoxin

Tiaoxin has an internal state consisting of three components T3, T4 and T6 with
three, four and six 128-bit stages respectively, and thus has a total state size of
13 × 128 = 1664 bits. Tiaoxin uses a 128-bit key K and a 128-bit initialisation
vector IV . The state update of Tiaoxin is defined as

T t+1
s [i] =

⎧
⎨

⎩

R(T t
s [s − 1]) ⊕ T t

s [0] ⊕ M t
s for i = 0

R(T t
s [0]) ⊕ Z0 for i = 1

T t
s [i − 1] 0 ≤ i ≤ s − 1

(24)

where s ∈ {3, 4, 6}, and M t
3,M

t
4 and M t

6 are the external inputs to T3, T4 and
T6, respectively. Therefore, all stages except for the first two stages in each
component are updated by shifting, while the first two stages of each component
are updated nonlinearly using the transformation function R defined in Sect. 2.1.
Figure 4 shows the initialisation and encryption process of Tiaoxin. As shown in
the figure, the plaintext P is divided into two blocks P t = P t[0]||P t[1], which are
successively loaded into the internal state of each component. Each ciphertext
block Ct is then computed after loading the corresponding plaintext block. At
the start of the initialisation phase, the state is loaded as

Fig. 4. Tiaoxin-346 state update and output

T3 = (K,K, IV ) T4 = (K,K, IV, Z0) T6 = (K,K, IV, Z1, 0, 0)

where K is the key, IV is the initialisation vector, and Z0, Z1 are known pub-
lic constants. The state is then updated 15 times using the external inputs
(M t

3,M
t
4,M

t
6) = (Z0, Z1, Z0) to obtain the initial state.

Once the initial state is obtained, the encryption phase begins. At each
timestep, the external inputs are composed from plaintext blocks, namely
(M t

3,M
t
4,M

t
6) = (P t[0], P t[1], P t[0] ⊕ P t[1]). The output functions of Tiaoxin

for the two blocks are

Ct[0] = T t+1
3 [0] ⊕ T t+1

3 [2] ⊕ T t+1
4 [1] ⊕ T t+1

6 [3]T t+1
4 [3] (25)

Ct[1] = T t+1
6 [0] ⊕ T t+1

4 [2] ⊕ T t+1
3 [1] ⊕ T t+1

6 [5]T t+1
3 [2] (26)
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These functions are of the form identified in Eq. 2, which means that the random
fault attack described in Sect. 2.2 can be applied to this cipher.

Attack Procedure. Comparing with the generic form in Eq. 2, we can obtain
four sets of attack parameters from the two output functions. From Eq. 25, the
parameters are:

(f0(St), g0(St), St[u]) = (T t
3 [0] ⊕ T t

3 [2] ⊕ T t
4 [1], T t

6 [3], T t
4 [3]) (27)

(f0(St), g0(St), St[u]) = (T t
3 [0] ⊕ T t

3 [2] ⊕ T t
4 [1], T t

4 [3], T t
6 [3]) (28)

From Eq. 26, the parameters are:

(f1(St), g1(St), St[u]) = (T t
6 [0] ⊕ T t

4 [2] ⊕ T t
3 [1], T t

3 [2], T t
6 [5]) (29)

(f1(St), g1(St), St[u]) = (T t
6 [0] ⊕ T t

4 [2] ⊕ T t
3 [1], T t

6 [5], T t
3 [2]) (30)

Since the state updates of T3, T4, T6 are independent, it makes sense to target
the shortest register, which is T3. One set of parameters allows recovery of a
stage in T3, namely Eq. 29, through which T t[2] is recovered.

Key Recovery. Similar to the AEGIS family of stream ciphers, the following
recurrence relations hold for the state update of T3 in Tiaoxin:

T t−1
3 [i] =

{
T t
3 [i − 1] 1 ≤ i ≤ 2

R−1(T t
3 [1] ⊕ Z0) i = 0 (31)

This enables us to recover the entire state contents of T t−2
3 after recovering

T t
3 [2], T t−1

3 [2], T t−2
3 [2] using the parameters in Eq. 30 through random faults on

T t
6 [5], T t−1

6 [5], T t−2
6 [5]. It is also possible to recover the secret key for Tiaoxin

by extending the attack into the initialisation phase provided that the single
plaintext block P 0[0] is known. First, apply the above attack to recover the
state contents of T 1

3 . Then, use the process shown in Fig. 5 to recover T 0
3 and

subsequently the key. Note that the external input Z0 used during initialisation
is public, so the updates of state component T3 can be reversed from T 0

3 all the
way to the beginning of the initialisation phase, which is T−15

3 . The key can then
be readily obtained from the initial contents of T−15

3 [0] from the loaded state.
From this point, all components in the state of Tiaoxin-346 can be initialised
with the known key K and initialisation vector IV , and the cipher can then be
clocked forwards to encrypt and verify any message chosen by the attacker.

In light of the above comments, the security of this cipher against our key
recovery attack depends entirely on maintaining the secrecy of the initial plain-
text block. In cases where the message format requires particular header infor-
mation to be included at the start of the message, this may be problematic.

State Recovery. If the initial plaintext block is not known, a state recovery
attack is still possible. Using the attack parameters in Eqs. 29, 28, 30 allows
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Fig. 5. Tiaoxin key recovery via random fault attack on T3

recovery of T3[2], T4[3], T6[5] respectively. Observe that recurrence relations sim-
ilar to T3 shown in Eq. 31 also holds for T4, T6, namely:

T t−1
4 [i] =

{
T t
4 [i − 1] 1 ≤ i ≤ 3

R−1(T t
3 [1] ⊕ Z0) i = 0

T t−1
6 [i] =

{
T t
6 [i − 1] 1 ≤ i ≤ 5

R−1(T t
3 [1] ⊕ Z0) i = 0

Therefore, by recovering stages T t−3
3 [2], T t−4

3 [2], T t−5
3 [2] using Eq. 29, T t−2

4 [2],
T t−3
4 [3], T t−4

4 [3], T t−5
4 [3] using Eqs. 27 or 28, and T t

6 [5], T t−1
6 [5], T t−2

6 [5], T t−3
6 [5],

T t−4
6 [5], T t−5

6 [5] using Eq. 30, we can recover the entire state (T t−5
3 , T t−5

4 , T t−5
6 )

at time t − 5 without the need of any known plaintext.

Success Rates. For the key recovery attack, we require three target stages.
From the analysis in Sect. 3, assuming that we require a 99.9% probability of
correctly recovering the contents of each target stage, 16 random faults would
be injected for each target state, so a total of 48 random faults would be carried
out. It can then be deduced that the success probability of the full key recovery
attack is about 0.9993 ≈ 0.997. For the state recovery attack, there are 13 target
stages and hence 208 random fault injections. The gives a success probability of
about 0.99913 ≈ 0.987 if the same attack parameters as the key recovery attack
are chosen. Higher probabilities can be achieved if more random faults are made
on each target stage.

5 Results

In this section, we summarise the results of our successful attacks on AEGIS and
Tiaoxin presented in Sect. 4, and also discuss a further application of our attack
on another CAESAR cipher, MORUS, where we achieve partial success.
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5.1 Successful Attacks

We first compare the random fault attacks presented in this paper on the AEGIS
family of ciphers and Tiaoxin with the bit-flipping fault attacks presented in
[10] and the random fault attacks of [11]. Table 3 summarises the attack out-
comes achieved and the corresponding attack requirements. In the table, “P’txt”
denotes the number of known plaintext blocks required for the attack, whereas
“Targets” denotes the number of state words into which random faults are to
be injected to implement the attack. For each targeted state word, each of the
attacks requires a corresponding faulted ciphertext word to be observed.

Table 3. Comparison of fault attacks on CAESAR candidates

Cipher Recovery type Bit-flipping

attack [10]

Random fault

attack [11]

Random fault attack (this work)

P’txt Targets P’txt Targets P’txt Targets

AEGIS-128 State 2 3 N/A 1 4

AEGIS-256 State 2 4 N/A 1 5

AEGIS-128L State 4 4 0 8 0 8

Tiaoxin Key 1 3 2 6 1 3

Tiaoxin State N/A N/A 0 13

The attack in [10] differs from the attack presented in this paper as it requires
bit-flipping faults rather than the more practical random faults. There are also
differences in the amount of plaintext required, with our attacks requiring fewer
known plaintext blocks. The attack presented in the current paper also requires
less plaintext than the attack of [11] while being applicable to a greater number
of ciphers, since our attack requires fewer conditions on the cipher’s structure.
In addition, in the cases of AEGIS-128L and Tiaoxin state recovery, our attack
is a ciphertext-only attack, requiring no knowledge of the plaintext.

5.2 Partially Successful Attacks

We now discuss briefly the potential application of this attack to the MORUS
cipher family [9], which was a third-round candidate in the CAESAR competi-
tion. The ciphertext output function for each of the ciphers in this family has the
form described in Eq. 2 so it is possible to obtain partial state information from
these ciphers by applying the attack of Sect. 2. However, the overall structure of
these ciphers prevents the attack from being extended to a full state recovery or
key recovery attack.

Each cipher in the MORUS family has a state comprising five state words,
and the ciphertext output function for each of these ciphers operates at the word
level. In each case, our basic attack can be applied to obtain the contents of two
of the five state words at any time step during the encryption phase. If the
attack is performed at two adjacent time steps, it is also possible to determine
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the values of these two words through all the intermediate updates between
these time steps. However, there does not appear to be a straightforward way
to determine the contents of the remaining three state words from this known
information, due to the use of AND operations between state words during the
update process introduces nonlinearity and prevents recovery of those unknown
state words.

For a full description on our attack on MORUS, the reader is referred to our
supplementary material [13] on the IACR Cryptology ePrint Archive.

6 Discussion and Conclusion

This paper shows that attacks based on random faults are possible, under the
nonce reuse scenario, on ciphers where the output function includes a bitwise
AND operation. When using any such cipher, care must therefore be taken to
avoid nonce reuse so that an attacker cannot obtain multiple encryptions using
the same parameters. We demonstrated successful application of this random
fault attack to several CAESAR finalists and other candidates. In particular,
ciphertext-only attacks resulting in state recovery are possible for AEGIS-128L
and Tiaoxin whereas a single plaintext block allows key recovery in Tiaoxin and
state recovery in AEGIS-128 and AEGIS-256.

This paper has demonstrated that our random fault attack strategy is par-
ticularly applicable to ciphers where the following conditions are satisfied.

– The ciphertext output functions contains one quadratic term and is otherwise
linear.

– The internal state transitions contain linear paths across different stages and
do not have external input.

Our attack was less successful on ciphers in the MORUS family, which also
have the form required for implementing the random fault attack. From our
examination of these ciphers, we observe that a cipher’s overall susceptibility
to this random fault attack can be reduced by ensuring that the state update
function provides nonlinear mixing of state words when moving from one time
step to the next. Akin to this, it should not be possible to use the state update
function to determine the value of any state word that is not in an AND term
in the output function purely from the knowledge (at one or more time steps)
of state words that do appear in an AND term in the output function. Other
potentially useful strategies for preventing partial recovery of state information
from leading to full state recovery or key recovery include the following:

– Any state word which appears within an AND term in the output function
should occur in several such terms.

– State words which appear within AND terms in the output function should be
as close as possible to structural features (e.g. external input) which prevent
them being clocked back to reveal information at the previous time step. (For
example, changing the non-linear term in the output function for AEGIS-128
to St[0]St[1] would prevent the attacker from obtaining any of St[2], St[3] or
St[4] without knowledge of additional plaintext blocks.)
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– The state update function during the initialisation phase of the cipher should
not be reversible without knowledge of the secret key.

The first strategy restricts an attacker to obtaining the value of some combina-
tion of state words from each run of the attack, rather than obtaining a single
state word directly. The second strategy limits the amount of state that can be
recovered from repeated applications of the attack at successive times steps, and
the third prevents the attacker from turning state recovery into key recovery.

This paper leaves several areas for future investigation. Firstly, further anal-
ysis is required to determine whether the existing attacks on MORUS can be
extended to retrieve further information, such as a full state recovery. Secondly,
we have only analysed the application of this attack to three CAESAR candi-
dates. There may be more ciphers with similar output functions that are there-
fore susceptible to this attack. Finally, work is required to determine whether
the mitigation strategies mentioned above introduce other vulnerabilities that
could be exploited by alternative attacks.
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