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Abstract For an integral domain R and a commutative cancellative monoid M , the
ring consisting of all polynomial expressions with coefficients in R and exponents
in M is called the monoid ring of M over R. An integral domain R is called atomic
if every nonzero nonunit element can be written as a product of irreducibles. In the
study of the atomicity of integral domains, the building blocks are the irreducible
elements. Thus, tools to prove irreducibility are crucial to study atomicity. In the
first part of this paper, we extend Gauss’s Lemma and Eisenstein’s Criterion from
polynomial rings to monoid rings. An integral domain R is called half-factorial (or
an HFD) if any two factorizations of a nonzero nonunit element of R have the same
number of irreducible elements (counting repetitions). In the second part of this
paper, we determine which monoid algebras with nonnegative rational exponents are
Dedekind domains, Euclidean domains, PIDs, UFDs, and HFDs. As a side result, we
characterize the submonoids of (Q≥0,+) satisfying a dual notion of half-factoriality
known as other-half-factoriality.

Keywords Monoid algebras · Gauss lemma · Eisenstein’s Criterion · Puiseux
algebras · Atomic domains · Other-half-factorial monoids · Puiseux monoids ·
Numerical semigroups

1 Introduction

Given an integral domain R and a commutative cancellative monoid M , the ring of
all polynomial expressions with coefficients in R and exponents in M is known as
the monoid ring of M over R (cf. group rings). Although the study of group rings
dates back to the first half of the twentieth century, it was not until the 1970s that
the study of monoid rings gained significant attention. A systematic treatment of
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ring-theoretical properties of monoid rings was initiated by R. Gilmer and T. Parker
[14, 16, 17] in 1974. Since then monoid rings have received a substantial amount
of consideration and have permeated through many fields under active research,
including algebraic combinatorics [7], discrete geometry [8], and functional analysis
[1]. During the last decades, monoid rings have also been studied from the point of
view of factorization theory; see, for instance, [2, 3, 25]. Gilmer in [15] offers a
comprehensive exposition on the advances of commutative semigroup ring theory
until mid 1980s.

An integral domain is called atomic if every nonzero nonunit element it contains
can be written as a product of irreducibles. Irreducible elements (sometimes called
atoms) are the building blocks of atomicity and factorization theory. As a result,
techniques to argue irreducibility are crucial in the development of factorization
theory. Gauss’s Lemma and Eisenstein’s Criterion are two of the most elementary
but effective tools to prove irreducibility in the context of polynomial rings. After
reviewing some necessary terminology and background in Sect. 2, we dedicate
Sect. 3 to extend Gauss’s Lemma and Eisenstein’s Criterion from the context of
polynomial rings to that one of monoid rings.

An atomic monoid M is called half-factorial provided that for all x ∈ M , any two
factorizations of x have the same number of irreducibles (counting repetitions). In
addition, an integral domain is called half-factorial (or an HFD) if its multiplicative
monoid is half-factorial. The concept of half-factoriality was first investigated by
L. Carlitz in the context of algebraic number fields; he proved that an algebraic
number field is half-factorial if and only if its class group has size at most two [9].
Other-half-factoriality, on the other hand, is a dual version of half-factoriality, and
it was introduced by J. Coykendall and W. Smith in [12].

Additive monoids of rationals have a wild atomic structure [18, 20] and a
complex arithmetic of factorizations [21, 22]. The monoid rings they determine have
been explored in [5]. In addition, examples of such monoid rings have also shown
up in the past literature, including [23, Section 1] and [4, Example 2.1] and more
recently in [11, Section 5]. In the second part of this paper, which is Sect. 4, we
study half-factoriality and other-half-factoriality in the context of additive monoids
of rationals and the monoid algebras they induce. We also determine which of
these monoid algebras are Dedekind domains, Euclidean domains, PIDs, UFDs,
and HFDs.

2 Notation and Background

2.1 General Notation

Throughout this paper, we let N0 denote the set of all nonnegative integers, and we
set N := N0 \ {0}. If a, b ∈ Z and a ≤ b, then we let [[a, b]] denote the interval of
integers from a to b, i.e.,

[[a, b]] := {j ∈ Z | a ≤ j ≤ b}.
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For a subset X of R, we set X• := X \ {0}. In addition, if r ∈ R, we define

X>r := {x ∈ X | x > r} and X≥r := {x ∈ X | x ≥ r}.
If q ∈ Q>0, then we denote the unique m,n ∈ N such that q = m/n and
gcd(m, n) = 1 by n(q) and d(q), respectively.

2.2 Monoids

Within the scope of our exposition, a monoid is defined to be a commutative and
cancellative semigroup with an identity element. In addition, monoids here are
written multiplicatively unless we specify otherwise. Let M be a monoid. We let
U(M) denote the set of units (i.e., invertible elements) of M . When U(M) consists
of only the identity element, M is said to be reduced. On the other hand, M is called
torsion-free if for all x, y ∈ M and n ∈ N, the equality xn = yn implies x = y.
For S ⊆ M , we let 〈S〉 denote the submonoid of M generated by S. Further basic
definitions and concepts on commutative cancellative monoids can be found in [24,
Chapter 2].

If y, z ∈ M , then y divides z in M provided that there exists x ∈ M such that
z = xy; in this case we write y |M z. Also, the elements y and z are called associates
if y |M z and z |M y; in this case we write y � z. An element p ∈ M \ U(M) is
said to be prime when for all x, y ∈ M with p |M xy, either p |M x or p |M y. If
every element in M \ U(M) can be written as a product of primes, then M is called
factorial. In a factorial monoid every nonunit element can be uniquely written as
a product of primes (up to permutation and associates). In addition, an element
a ∈ M \ U(M) is called an atom if for any x, y ∈ M such that a = xy either
x ∈ U(M) or y ∈ U(M). The set of all atoms of M is denoted by A(M), and M is
said to be atomic if every nonunit element of M is a product of atoms. Since every
prime element is clearly an atom, every factorial monoid is atomic.

2.3 Factorizations

Let M be a monoid, and let x ∈ M \ U(M). Suppose that for an index m ∈ N and
atoms a1, . . . , am ∈ A(M),

x = a1 · · · am. (1)

Then the right-hand side of (1) (treated as a formal product of atoms) is called
a factorization of x, and m is called the length of such a factorization. Two
factorizations a1 · · · am and b1 · · · bn of x are considered to be equal provided that
m = n and that there exists a permutation σ ∈ Sm such that bi � aσ(i) for every
i ∈ [[1,m]]. The set of all factorizations of x is denoted by ZM(x) or, simply, by
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Z(x). We then set

Z(M) :=
⋃

x∈M\U(M)

Z(x).

For z ∈ Z(x), we let |z| denote the length of z.

2.4 Monoid Rings

For an integral domain R, we let R× denote the group of units of R. We say that
R is atomic if every nonzero nonunit element of R can be written as a product of
irreducibles (which are also called atoms).

Let M be a reduced torsion-free monoid that is additively written. For an integral
domain R, consider the set R[X; M] comprising all maps f : M → R satisfying
that

{s ∈ M | f (s) 
= 0}

is finite. We shall conveniently represent an element f ∈ R[X; M] by

f =
∑

s∈M

f (s)Xs =
n∑

i=1

f (si)X
si ,

where s1, . . . , sn are those elements s ∈ M satisfying that f (s) 
= 0. Addition
and multiplication in R[X; M] are defined as for polynomials, and we call the
elements of R[X; M] polynomial expressions. Under these operations, R[X; M]
is a commutative ring, which is called the monoid ring of M over R or, simply, a
monoid ring. Following Gilmer [15], we will write R[M] instead of R[X; M]. Since
R is an integral domain, R[M] is an integral domain [15, Theorem 8.1] with set
of units R× [16, Corollary 4.2]. If F is a field, then we say that F [M] is a monoid
algebra. Now suppose that the monoid M is totally ordered. For k ∈ N, we say that

f = α1X
q1 + · · · + αkX

qk ∈ R[M] \ {0}

is written in canonical form if the coefficient αi is nonzero for every i ∈ [[1, k]] and
q1 > · · · > qk. Observe that there is only one way to write f in canonical form. We
call deg(f ) := q1 the degree of f . In addition, α1 is called the leading coefficient
of f , and αk is called the constant coefficient of f provided that qk = 0. As it is
customary for polynomials, f is called a monomial when k = 1.

Suppose that ψ : M → M ′ is a monoid homomorphism, where M and M ′
are reduced torsion-free monoids. Also, let ψ∗ : R[M] → R[M ′] be the ring
homomorphism determined by the assignment Xs 
→ Xψ(s). It follows from [15,



Irreducibility and Factorizations in Monoid Rings 133

Theorem 7.2(2)] that if ψ is injective (resp., surjective), then ψ∗ is injective (resp.,
surjective). Let us recall the following easy observation.

Remark 1 If R is an integral domain and the monoids M and M ′ are isomorphic,
then the monoid rings R[M] and R[M ′] are also isomorphic.

3 Irreducibility Criteria for Monoid Rings

3.1 Extended Gauss’s Lemma

Our primary goal in this section is to offer extended versions of Gauss’s Lemma and
Eisenstein’s Criterion for monoid rings.

Let R be an integral domain and take r1, . . . , rn ∈ R \ {0} for some n ∈ N.
An element r ∈ R is called a greatest common divisor of r1, . . . , rn if r divides
ri in R for every i ∈ [[1, n]] and r is divisible by each common divisor of
r1, . . . , rn. Any two greatest common divisors of r1, . . . , rn are associates in R. We
let GCD(r1, . . . , rn) denote the set of all greatest common divisors of r1, . . . , rn.

Definition 1 An integral domain R is called a GCD-domain if any finite subset of
R \ {0} has a greatest common divisor in R.

Let M be a reduced torsion-free monoid, and let R be an integral domain.
Suppose that for the polynomial expression

f = α1X
q1 + · · · + αkX

qk ∈ R[M] \ {0}

the exponents q1, . . . , qk are pairwise distinct. Then GCD(α1, . . . , αk) is called the
content of f and is denoted by c(f ). If c(f ) = R×, then f is called primitive.
Notice that if R is not a GCD-domain, then c(f ) may be the empty set. It is clear
that c(rf ) = rc(f ) for all r ∈ R \ {0} and f ∈ R[M] \ {0}. As for the case of
polynomials, the following lemma holds.

Lemma 1 Let M be a reduced torsion-free monoid, and let R be a GCD-domain.
If f and g are elements of R[M] \ {0}, then c(fg) = c(f )c(g).

Proof Since R is a GCD-domain, there exist primitive polynomial expressions f1
and g1 in R[M] such that f = c(f )f1 and g = c(g)g1. Because M is a torsion-free
monoid, it follows from [16, Proposition 4.6] that the element f1g1 is primitive in
R[M]. Therefore c(f1g1) = R×. As a consequence, we find that

c(fg) = c
(
c(f )f1c(g)g1

) = c(f )c(g)c(f1g1) = c(f )c(g),

as desired. ��
Let F denote the field of fractions of a GCD-domain R. Gauss’s Lemma states

that a non-constant polynomial f with coefficients in R is irreducible in R[X] if
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and only if it is irreducible in F [X] and primitive in R[X]. Now we extend Gauss’s
Lemma to the context of monoid rings.

Theorem 1 (Extended Gauss’s Lemma) Let M be a reduced torsion-free monoid,
and let R be a GCD-domain with field of fractions F . Then an element f ∈ R[M]\R
is irreducible in R[M] if and only if f is irreducible in F [M] and primitive in R[M].
Proof For the direct implication, suppose that f is irreducible in R[M]. If r ∈
c(f ), then there exists g ∈ R[M] \ R such that f = rg. Because R[M]× ⊂ R,
the element g is not a unit of R[M]. As f is irreducible in R[M], one finds that
r ∈ R[M]× = R×. So c(f ) = R×, which implies that f is primitive in R[M].
To argue that f is irreducible in F [M], take g1, g2 ∈ F [M] such that f = g1g2.
Since R is a GCD-domain, there exist nonzero elements a1, a2, b1, b2 ∈ R such that
both

h1 := a1

b1
g1 and h2 := a2

b2
g2

are primitive elements of R[M]. Clearly, a1a2f = b1b2h1h2. This, along with
Lemma 1, implies that

a1a2R
× = a1a2c(f ) = c(a1a2f ) = c(b1b2h1h2) = b1b2c(h1)c(h2) = b1b2R

×.

Then a1a2
b1b2

∈ R× and, as a consequence, a1a2
b1b2

f = h1h2 is irreducible in R[M].
Thus, either h1 ∈ R[M]× = R× or h2 ∈ R[M]× = R×. This, in turn,
implies that either g1 or g2 belongs to F× = F [M]×. Hence f is irreducible in
F [M].

Tor argue the reverse implication, suppose that f is irreducible in F [M] and
primitive in R[M]. Then take elements g1 and g2 ∈ R[M] such that f = g1g2.
Since f is irreducible in F [M], either g1 ∈ F [M]× = F× or g2 ∈ F [M]× =
F×. This, along with the fact that R[M] ∩ F× = R \ {0}, implies that either
g1 ∈ c(f ) or g2 ∈ c(f ). As c(f ) = R× = R[M]×, either g1 or g2
belongs to R[M]×. As a result, f is irreducible in R[M], which concludes the
proof. ��

3.2 Extended Eisenstein’s Criterion

It is hardly debatable that Eisenstein’s Criterion is one of the most popular and
useful criteria to argue the irreducibility of certain polynomials. Now we proceed to
offer an extended version of Eisenstein’s Criterion for monoid rings.

Proposition 1 (Extended Eisenstein’s Criterion) Let M be a reduced totally-
ordered torsion-free monoid, and let R be an integral domain. Suppose that the
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element

f = αnX
qn + · · · + α1X

q1 + α0 ∈ R[M] \ {0},

written in canonical form, is primitive. If there exists a prime ideal P of R satisfying
the conditions

1. αn /∈ P ,
2. αj ∈ P for every j ∈ [[0, n − 1]], and
3. α0 /∈ P 2,

then f is irreducible in R[M].
Proof We let R̄ denote the quotient R/P and, for any h ∈ R[M], we let h̄ denote
the image of h under the natural surjection R[M] → R̄[M], i.e., h̄ is the result of
reducing the coefficients of h modulo P . To argue that f is irreducible suppose,
by way of contradiction, that f = g1g2 for some nonzero nonunit elements g1
and g2 of R[M]. As f is primitive, g1 /∈ R and g2 /∈ R. By the condition (2)
in the statement, one obtains that ḡ1ḡ2 = f̄ = ᾱnX

qn . Thus, both ḡ1 and ḡ2 are
monomials. This, along with the fact that none of the leading coefficients of g1 and
g2 are in P (because αn /∈ P ), implies that the constant coefficients of both g1 and g2
are in P . As a result, the constant coefficient α0 of f must belong to P 2, which is a
contradiction. ��
Corollary 1 Let M be a reduced totally-ordered torsion-free monoid, and let R be
an integral domain containing a prime element. Then for each q ∈ M•, there exists
an irreducible polynomial expression in R[M] of degree q .

Proof Let p be a prime element of R. It suffices to verify that, for any q ∈ M•,
the element f := Xq + p ∈ R[M] is irreducible. Indeed, this is an immediate
consequence of Proposition 1 once we take P := (p). ��

In Corollary 1, the integral domain R is required to contain a prime element. This
condition is not superfluous, as the next example illustrates.

Example 1 For a prime number p, consider the monoid algebra Fp[M], where M is
the submonoid 〈1/pn | n ∈ N〉 of (Q≥0,+) and Fp is a finite field of characteristic
p. It is clear that M is a reduced totally-ordered torsion-free monoid. Now let

f := α1X
q1 + · · · + αnX

qn

be an element of Fp[M] \ Fp written in canonical form. As Fp is a perfect field of
characteristic p, the Frobenius homomorphism x 
→ xp is surjective and, therefore,
for each i ∈ [[1, n]] there exists βi ∈ Fp with αi = β

p
i . On the other hand, it is clear

that qi/p ∈ M for every i ∈ [[1, n]]. As

f = α1X
q1 + · · · + αnX

qn = (
β1X

q1/p + · · · + βnX
qn/p

)p
,
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the polynomial expression f is not irreducible in Fp[M]. Hence the monoid algebra
Fp[M] does not contain irreducible elements. Clearly, the field Fp is an integral
domain containing no prime elements.

4 Factorizations in Monoid Algebras

A numerical semigroup is a submonoid N of (N0,+) whose complement is
finite, i.e., |N0 \ N | < ∞. Numerical semigroups are finitely generated and,
therefore, atomic. However, the only factorial numerical semigroup is (N0,+).
For an introduction to numerical semigroups, see [13], and for some of their
many applications, see [6]. A Puiseux monoid, on the other hand, is an additive
submonoid of (Q≥0,+). Albeit Puiseux monoids are natural generalizations of
numerical semigroups, the former are not necessarily finitely generated or atomic;
for example, consider 〈1/2n | n ∈ N〉. The factorization structure of Puiseux
monoids have been compared with that of other well-studied atomic monoids in
[19] and, more recently, in [10]. In this section, we determine the Puiseux monoids
whose monoid algebras are Dedekind domains, Euclidean domains, PIDs, UFDs, or
HFDs.

Definition 2 An atomic monoid M is half-factorial (or an HF-monoid) if for all
x ∈ M \ U(M) and z, z′ ∈ Z(x), the equality |z| = |z′| holds. An integral domain
is half-factorial (or an HFD) if its multiplicative monoid is an HF-monoid.

Clearly, half-factoriality is a relaxed version of being a factorial monoid or a
UFD. Although the concept of half-factoriality was first considered by Carlitz in
his study of algebraic number fields [9], it was A. Zaks who coined the term “half-
factorial domain” [26].

Definition 3 An atomic monoid M is other-half-factorial (or an OHF-monoid) if
for all x ∈ M \ U(M) and z, z′ ∈ Z(x) the equality |z| = |z′| implies that z = z′.

Observe that other-half-factoriality is somehow a dual version of half-factoriality.
Although an integral domain is a UFD if and only if its multiplicative monoid is an
OHF-monoid [12, Corollary 2.11], OHF-monoids are not always factorial or half-
factorial, even in the class of Puiseux monoids.

Proposition 2 For a nontrivial atomic Puiseux monoid M , the following conditions
hold.

1. M is an HF-monoid if and only if M is factorial.
2. M is an OHF-monoid if and only if |A(M)| ≤ 2.

Proof For the direct implication of (1), suppose that M is an HF-monoid. Since
M is an atomic nontrivial Puiseux monoid, A(M) is not empty. Let a1 and a2
be two atoms of M . Then z1 := n(a2)d(a1)a1 and z2 := n(a1)d(a2)a2 are two
factorizations of the element n(a1)n(a2) ∈ M . Because M is an HF-monoid,
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|z1| = |z2| and so

n(a2)d(a1) = n(a1)d(a2).

Therefore a1 = a2, and then M contains only one atom. Hence M ∼= (N0,+) and,
as a result, M is factorial. The reverse implication of (1) is trivial.

To prove the direct implication of (2), assume that M is an OHF-monoid. If M is
factorial, then M ∼= (N0,+), and we are done. Then suppose that M is not factorial.
In this case, |A(M)| ≥ 2. Assume, by way of contradiction, that |A(M)| ≥ 3. Take
a1, a2, a3 ∈ A(M) satisfying that a1 < a2 < a3. Let d = d(a1)d(a2)d(a3), and
set a′

i = dai for each i ∈ [[1, 3]]. Since a′
1, a

′
2, and a′

3 are integers satisfying that
a′

1 < a′
2 < a′

3, there exist m,n ∈ N such that

m(a′
2 − a′

1) = n(a′
3 − a′

2). (2)

Clearly, z1 := ma1 + na3 and z2 := (m + n)a2 are two distinct factorizations in
Z(M) satisfying that |z1| = m + n = |z2|. In addition, after dividing both sides of
the equality (2) by d , one obtains that

ma1 + na3 = (m + n)a2,

which means that z1 and z2 are factorizations of the same element. However, this
contradicts that M is an OHF-monoid. Hence |A(M)| ≤ 2, as desired. For the
reverse implication of (2), suppose that |A(M)| ≤ 2. By [18, Proposition 3.2],
M is isomorphic to a numerical semigroup N . As N is generated by at most two
elements, either N = (N0,+) or N = 〈a, b〉 for a, b ∈ N≥2 with gcd(a, b) = 1. If
N = (N0,+), then N is factorial and, in particular, an OHF-monoid. On the other
hand, if N = 〈a, b〉, then it is an OHF-monoid by [12, Example 2.13]. ��

In [16, Theorem 8.4] Gilmer and Parker characterize the monoid algebras that
are Dedekind domains, Euclidean domains, or PIDs. We conclude this section
extending such a characterization in the case where the exponent monoids are
Puiseux monoids.

Theorem 2 For a nontrivial Puiseux monoid M and a field F , the following
conditions are equivalent:

1. F [M] is a Euclidean domain;
2. F [M] is a PID;
3. F [M] is a UFD;
4. F [M] is an HFD;
5. M ∼= (N0,+);
6. F [M] is a Dedekind domain.

Proof It is well known that every Euclidean domain is a PID, and every PID is
a UFD. Therefore condition (1) implies condition (2), and condition (2) implies
condition (3). In addition, it is clear that every UFD is an HFD, and so condition (3)
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implies condition (4). As Puiseux monoids are torsion-free, [25, Proposition 1.4]
ensures that M is an HF-monoid when F [M] is an HFD. This, along with
Proposition 2(1), guarantees that M ∼= (N0,+) provided that F [M] is an HFD.
Thus, condition (4) implies condition (5). Also, if condition (5) holds, then F [M] ∼=
F [N0] = F [X] (by Remark 1) is a Euclidean domain, which is condition (1). Then
we have argued that the first five conditions are equivalent.

To include (6) in the set of already-established equivalent conditions, observe that
condition (2) implies condition (6) because every PID is a Dedekind domain. On the
other hand, suppose that the monoid algebra F [M] is a Dedekind domain. Then the
fact that M is torsion-free, along with [16, Theorem 8.4], implies that M ∼= (N0,+).
Hence condition (6) implies condition (5), which completes the proof. ��
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