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Preface

During the week of September 3–7, 2018, 55 mathematical researchers from
15 different countries gathered at the “Il Palazzone” in Cortona, Italy, for the
“International Meeting on Numerical Semigroups.” This meeting has evolved into
a biennial event, with the initial gatherings meeting under the title “The Iberian
Meeting on Numerical Semigroups,” in Porto, Portugal (2008), Granada, Spain
(2010), and Vila Real, Portugal (2012). In 2014, the first meeting to use the
“International” title was held in Cortona, followed by the second such meeting in
2016 in Levico Terme, Italy. The pages of this volume constitute the proceedings of
the 2018 meeting in Cortona.

Talks were given at the conference by 41 participants. These talks centered on
not only traditional types of numerical semigroups (such as Arf or symmetric) and
their usual properties (such as the Frobenius number, genus, gap sets, and non-
unique factorization), but also related types of semigroups (such as affine, Puiseux,
Weierstrass, and primary) and their applications in other branches of algebra
(including semigroup rings, coding theory, star operations, and Hilbert functions).
The 21 papers in this Proceedings reflect the variety of the talks presented.

The meeting was organized by Marco D’Anna, University of Catania, Pedro A.
García-Sánchez, University of Granada, and Vincenzo Micale, University of Cata-
nia. The Scientific Committee consisted of Valentina Barucci, Sapienza University
of Rome; Scott Chapman, Sam Houston State University; Ralf Fröberg, Stockholm
University; Pieter Moree, Max Planck Institute for Mathematics; and José Carlos
Rosales, University of Granada. Marco D’Anna, assisted by Valentina Barucci,
Scott Chapman, and Ralf Fröberg, edited these Proceedings.

The principal sponsor for the meeting was the “Istituto Nazionale di Alta
Matematica ‘Francesco Severi’” and additional support was received from various
grants based in the Mathematics Departments at the Universities of Granada,
Catania, and Cadiz. The organizers and Scientific Committee thank all involved
for their generous support. We look forward to another International Meeting on
Numerical Semigroups in 2020, which is currently in the planning stage.

In this book, we chiefly present research papers. Additionally, we present a
few survey articles which collect results and examples which are difficult to find

v



vi Preface

elsewhere. The book is intended for researchers and students who want to learn
about recent developments in the theory of numerical semigroups. Our aim is
to present the current status of research on numerical semigroups and to gather
together papers on the topic from different areas, such as Semigroup Theory,
Factorization Theory, Algebraic Geometry, Combinatorics, Commutative Algebra,
and Coding Theory, which reflects how numerical semigroups arise in different
research contexts.

Roma, Italy Valentina Barucci
Huntsville, TX, USA Scott Chapman
Catania, Italy Marco D’Anna
Stockholm, Sweden Ralf Fröberg
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Counting Numerical Semigroups
by Genus and Even Gaps via
Kunz-Coordinate Vectors

Matheus Bernardini

Abstract We construct a one-to-one correspondence between a subset of numerical
semigroups with genus g and γ even gaps and the integer points of a rational
polytope. In particular, we give an overview to apply this correspondence to try to
decide if the sequence (ng) is increasing, where ng denotes the number of numerical
semigroups with genus g.

Keywords Numerical semigroup · Multiplicity · Even gaps · Genus ·
Kunz-coordinate vector

1 Introduction

A numerical semigroup S is a subset of N0 such that 0 ∈ S, it is closed under
addition and the set G(S) := N0 \ S, the set of gaps of S, is finite. The number of
elements g = g(S) of G(S) is called the genus of S and the first non-zero element
in S is called the multiplicity of S. If S is a numerical semigroup with positive
genus g then one can ensure that all gaps of S belongs to [1, 2g − 1]; in particular,
{2g + i : i ∈ N0} ⊆ S and the number of numerical semigroups with genus g,
denoted by ng , is finite. Some excellent references for the background on numerical
semigroups are the books [5] and [7].

Throughout this paper, we keep the notation proposed by Bernardini and Torres
[1]: the set of numerical semigroups with genus g is denoted by Sg and has ng
elements and the set of numerical semigroups with genus g and γ even gaps is
denoted by Sγ (g) and has Nγ (g) elements.

M. Bernardini (�)
Universidade de Brasília, Área Especial de Indústria Projeção A - UNB, Brasília, Brazil
e-mail: matheusbernardini@unb.br
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2 M. Bernardini

In this paper we use the quite useful parametrization

xg : Sγ (g)→ Sγ , S �→ S/2, (1)

where S/2 := {s ∈ N0 : 2s ∈ S}.
Naturally, the set Sγ (g) and the map xg can be generalized. Let d > 1 be

an integer. The set of numerical semigroups with genus g and γ gaps which are
congruent to 0 modulo d is denoted by S(d,γ )(g). There is a natural parametrization
given by

xgd : S(d,γ )(g)→ Sγ , S �→ S/d,

where S/d := {s ∈ N0 : ds ∈ S}. This concept appears in [9], for instance.
In this paper, we obtain a one-to-one correspondence between the set x−1

g (T ) and
the set of integer points of a rational polytope.

As an application of this correspondence, we give a new approach to compute the
numbers Nγ (g). Our main goal is finding a new direction to discuss the following
question.

Is it true that ng ≤ ng+1, for all g? (2)

The first few elements of the sequence (ng) are 1, 1, 2, 4, 7, 12, 23, 39, 67.
Kaplan [6] wrote a nice survey on this problem and one can find information of
these numbers in Sloane’s On-line Encyclopedia of Integer Sequences [10].

Bras-Amorós [3] conjectured remarkable properties on the behaviour of the
sequence (ng):

1. limg→∞
ng+1+ng
ng+2

= 1;

2. limg→∞
ng+1
ng

= ϕ := 1+√5
2 ;

3. ng+2 ≥ ng+1 + ng for any g.

Zhai [12] proved that limg→∞ ngϕ−g is a constant. As a consequence, it confirms
that items (1) and (2) hold true. However, item (3) is still an open problem; even a
weaker version, proposed at (2), is an open question. Zhai’s result also ensures that
ng < ng+1 for large enough g. Fromentin and Hivert [4] verified that ng < ng+1
also holds true for g ≤ 67.

Torres [11] proved that Sγ (g) 
= ∅ if, and only if, 2g ≥ 3γ . Hence,

ng =
�2g/3
∑

γ=0

Nγ (g) . (3)

In order to work on Question (2), Bernardini and Torres [1] tried to understand
the effect of the even gaps on a numerical semigroup. By using the so-called t-
translation, they proved that Nγ (g) = Nγ (3γ ) for g ≥ 3γ and also Nγ (g) <
Nγ (3γ ) for g < 3γ . Although numerical evidence points out thatNγ (g) ≤ Nγ (g+
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1) holds true for all g and γ , their methods could not compare numbers Nγ (g1)

and Nγ (g2), with 3γ /2 ≤ g1 < g2 < 3γ . Notice that if Nγ (g1) ≤ Nγ (g2), for
3γ /2 ≤ g1 < g2 < 3γ then ng < ng+1, for all g.

2 Apéry Set and Kunz-Coordinate Vector

Let S be a numerical semigroup and n ∈ S. The Apéry set of S (with respect to
n) is the set Ap(S, n) = {s ∈ S : s − n /∈ S}. If n = 1, then S = N0 and
Ap(N0, 1) = {0}. If n > 1, then there are w1, . . . , wn−1 ∈ N such that Ap(S, n) =
{0, w1, . . . , wn−1}, where wi = min{s ∈ S : s ≡ i (mod n)}.
Proposition 1 Let S be a numerical semigroup with multiplicity m and
Ap(S,m) = {0, w1, . . . , wm−1}. Then

S = 〈m,w1, w2, . . . , wm−1〉.

Proof It is clear that am ∈ 〈m,w1, w2, . . . , wm−1〉,∀a ∈ N. For s ∈ S, m � s,
there is i ∈ {1, . . . ,m − 1} such that s = mk + i. By minimality of wi , there is
k̃ ∈ N0 such that s = wi + k̃m ∈ 〈m,w1, w2, . . . , wm−1〉. On the other hand,
m,w1, . . . , wm−1 ∈ S.

Let S be a numerical semigroup, n ∈ S and consider Ap(S, n) =
{0, w1, . . . , wn−1}. There are e1, . . . , en−1 ∈ N such that wi = nei + i, for each
i ∈ {1, . . . , n− 1}. The vector (e1, . . . , en−1) ∈ N

n−1
0 is called the Kunz-coordinate

vector of S (with respect to n). In particular, if m is the multiplicity of S, then the
Kunz-coordinate vector of S (with respect to m) is in N

m−1. This concept appears
in [2], for instance.

A natural task is finding conditions for a vector (x1, . . . , xm−1) ∈ N
m−1 to be a

Kunz-coordinate vector (with respect to the multiplicity m of S) of some numerical
semigroup S with multiplicity m. The following examples illustrate the general
method, which is presented in Proposition 2.

Example 1 Numerical semigroups with multiplicity 2 are 〈2, 2e1 + 1〉, where e1 ∈
N. Observe that e1 is the genus of such numerical semigroup.

There is a one-to-one correspondence between the set of numerical semigroups
with multiplicity 2 and the set of positive integers given by 〈2, 2e1 + 1〉 �→ e1.

Example 2 Let S = 〈3, 3e1+1, 3e2+2〉 be a numerical semigroup with multiplicity
3 and genus g, where e1, e2 ∈ N. By minimality ofw1 = 3e1+1 andw2 = 3e2+2,
(e1, e2) satisfies

{
(3e1 + 1)+ (3e1 + 1) ≥ 3e2 + 2

(3e2 + 2)+ (3e2 + 2) ≥ 3e1 + 1.

The set of gaps of S has e1 + e2 elements, since G(S) = {3n1 + 1 : 0 ≤ n1 <

e1}∪{3n2+2 : 0 ≤ n2 < e2}. Thus, e1+e2 = g. On the other hand, if (e1, e2) ∈ N
2
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is such that 2e1 ≥ e2, 2e2 + 1 ≥ e1 and e1 + e2 = g, then 〈3, 3e1 + 1, 3e2 + 2〉 is a
numerical semigroup with multiplicity m and genus g.

Hence, there is a one-to-one correspondence between the set of numerical
semigroups with multiplicity 3 and genus g the vectors of N2 which are solutions of

⎧
⎪⎪⎨

⎪⎪⎩

2X1 ≥ X2

2X2 + 1 ≥ X1

X1 +X2 = g.

In order to give a characterization of numerical semigroups with fixed multiplic-
ity and fixed genus, the main idea is generalizing Example 2. The following is a
result due to Rosales et al. [8].

Proposition 2 There is a one-to-one correspondence between the set of numerical
semigroups with multiplicitym and genus g and the positive integer solutions of the
system of inequalities

⎧
⎪⎪⎨

⎪⎪⎩

Xi +Xj ≥ Xi+j , for 1 ≤ i ≤ j ≤ m− 1; i + j < m;
Xi +Xj + 1 ≥ Xi+j−m, for 1 ≤ i ≤ j ≤ m− 1; i + j > m
∑m−1
k=1 Xk = g.

Let S = 〈m,w1, . . . , wm−1〉 be a numerical semigroup with multiplicity m and
genus g, where wi = mei + i. The main idea of the proof is using the minimality
of w1, . . . , wm−1 and observing that wi + wj ≡ i + j (mod m) and G(S) =⋃m−1
i=1 {mni + i : 0 ≤ ni < ei}. For a full proof, see [8].

3 The Main Result and an Application to a Counting
Problem

In [1], the calculation of Nγ (g) was given by

Nγ (g) =
∑

T ∈Sγ
#x−1
g (T ). (4)

In this section, we present a new way for computing those numbers. In order to
do this, we fix the multiplicity of T ∈ Sγ .

First of all, we obtain a relation between the genus and the multiplicity of a
numerical semigroup.

Proposition 3 Let S be a numerical semigroup with genus g and multiplicity m.
Then m ≤ g + 1.
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Proof If a numerical semigroup S has multiplicity m and genus g with m ≥ g + 2,
then the number of gaps of S would be, at least, g + 1 and it is a contradiction.
Hence m ≤ g + 1.

Remark 1 The bound obtained in Proposition 3 is sharp, since {0, g + 1, . . .} has
genus g has multiplicity g + 1.

If γ = 0, then S0 = {N0} and x−1
g (N0) = {〈2, 2g+1〉}. Hence,N0(g) = 1, for all

g. If γ > 0, we divide the set Sγ into the subsets Smγ := {S : g(S) = γ and m(S) =
m}, wherem ∈ [2, γ + 1] ∩ Z. We can write

Sγ =
γ+1⋃

m=2

Smγ . (5)

Putting (4) and (5) together, we obtain

Nγ (g) =
γ+1∑

m=2

∑

T ∈Smγ
#x−1
g (T ).

Thus, it is important to give a characterization for T ∈ Smγ . We can describe T
by its Apéry set (with respect to its multiplicity m) and write

T = 〈m,me1 + 1,me2 + 2, . . . ,mem−1 + (m− 1)〉,

wheremei + i = min{s ∈ S : s ≡ i (mod m)}.
The next result characterizes all numerical semigroups of x−1

g (T ), for T ∈ Smγ .
It is a consequence of Proposition 2.

Theorem 1 Let T = 〈m,me1 + 1, . . . ,mem−1 + (m − 1)〉 ∈ Smγ . A numerical

semigroup S belongs to x−1
g (T ) if, and only if,

S = 〈2m, 2me1+2, . . . , 2mem−1+(2m−2), 2mk1+1, 2mk3+3, . . . , 2mk2m−1+(2m−1)〉,

where (k1, k3, . . . , k2m−1) ∈ N
m
0 satisfies the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∗)
⎧
⎨

⎩
X2i−1 + ej ≥ X2(i+j)−1, for 1 ≤ i ≤ m; 1 ≤ j ≤ m− 1; i + j ≤ m;
X2i−1 + ej + 1 ≥ X2(i+j−m)−1, for 1 ≤ i ≤ m; 1 ≤ j ≤ m− 1; i + j > m;

(∗∗)
⎧
⎨

⎩
X2i−1 +X2j−1 ≥ ei+j−1, for 1 ≤ i ≤ j ≤ m; i + j ≤ m;
X2i−1 +X2j−1 + 1 ≥ ei+j−1−m, for 1 ≤ i ≤ j ≤ m; i + j ≥ m+ 2;

∑m
i=1 X2i−1 = g − γ,

Proof The even numbers 2m, 2me1+2, . . . , 2mem−1+2mem−1+2(m−1) belongs
to Ap(2m,S). Let 2mk1 + 1, 2mk3 + 3, . . . , 2mk2m−1 + (2m − 1) be the odd
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numbers of Ap(2m,S). Thus, (e1, k1, e2, k3, . . . , em−1, k2m−1) ∈ N
m−1
0 is the

Kunz-coordinate vector of S (with respect to 2m).
Now, we apply Proposition 2. Inequalites given in (∗) come from sums of an odd

element of Ap(2m,S) with an even element of Ap(2m,S), while inequalities given
in (∗∗) come from sums of two odd elements of Ap(2m,S). Since (e1, . . . , em−1)

is the Kunz-coordinate vector of T (with respect to m), then the sum of two even
elements of Ap(2m,S) belongs to S. Finally, last equality comes from the fact that
S has g − γ odd gaps.

Remark 2 Some of the numbers ki can be zero. Hence, it is possible that the
multiplicity of S is not 2m.

Example 3 Let T = 〈2, 2γ + 1〉 ∈ S2
γ , with γ ∈ N. Theorem 1 ensures that if

S ∈ x−1
g (T ), then

S = 〈4, 4γ + 2, 4k1 + 1, 4k3 + 3〉,

where (k1, k3) ∈ N
2
0 satisties

(#)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∗)
{
−γ − 1 ≤ X3 −X1 ≤ γ

(∗∗)
{
X1 +X1 ≥ γ
X3 +X3 + 1 ≥ γ

X1 +X3 = g − γ.

The set of integer points of the region in Figure 1 is in one-to-one correspondence
with the set {S ∈ Sγ (g) : S/2 has multiplicity 2}.

Fig. 1 Region in R
2 given by inequalities (∗) and (∗∗)
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Fig. 2 For fixed g, the integer points in the line segment represent numerical semigroups of {S ∈
Sγ (g): S/2 has multiplicity 2}

If g is fixed, then the set of points that satisfies the system (#) is a polytope (a
line segment). We are interested in the set of integer points of this polytope. Figure 2
shows examples for some values of g. Each integer point represents a numerical
semigroup of the set {S ∈ Sγ (g) : S/2 has multiplicity 2}.

Let Nmγ (g) =
∑
T ∈Smγ #x−1

g (T ). After some computations, we obtain

N2
γ (g) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if g < 2γ

k + 1, if g = 2γ + k and k ∈ {0, 1, . . . , γ − 1}
γ + 1, if g ≥ 3γ.

In particular, N2
γ (g) ≤ N2

γ (g + 1). We leave the following open question.

Let γ ∈ N and m ∈ [2, γ + 1] ∩ Z. Is it true that Nmγ (g) ≤ Nmγ (g + 1), for all g?
(6)

A positive answer to Question (6) implies a positive answer to Question (2).
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Patterns on the Numerical Duplication by
Their Admissibility Degree

Alessio Borzì

Abstract We develop the theory of patterns on numerical semigroups in terms
of the admissibility degree. We prove that the Arf pattern induces every strongly
admissible pattern, and determine all patterns equivalent to the Arf pattern. We study
patterns on the numerical duplication S ��

d E when d � 0. We also provide a
definition of patterns on rings.

Keywords Numerical semigroup · Arf semigroup · Pattern on a numerical
semigroup · Numerical duplication

1 Introduction

A numerical semigroup S is an additive submonoid of N with finite complement
in N. The set of values of a Noetherian, one-dimensional, analytically irreducible,
local, domain is a numerical semigroup, therefore the study of numerical semi-
groups is related to the study of this class of rings. In [14], Lipman introduces and
motivates the study of Arf rings, which constitute an important class of rings for the
classification problem of singular curve branches. A good reference for the study
of Arf rings in the analytically irreducible case is [1]. The value semigroup of an
Arf ring is an Arf numerical semigroup. We say that a numerical semigroup S is
Arf if for every x, y, z ∈ S with x ≥ y ≥ z we have x + y − z ∈ S. There
are several works in the literature about Arf numerical semigroups, see for instance
[11, 17]. Note that Arf semigroups are related to the polynomial x + y − z. In [6],
Bras-Amóros and García-Sánchez generalize the definition of Arf semigroup to any
linear homogeneous polynomial, introducing the theory of patterns on numerical
semigroups [7, 19–21].
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In this manner, Arf numerical semigroups are the semigroups that admit the Arf
pattern x + y − z. In addition, Arf numerical semigroups can be characterized
in terms of their additive behaviour (see for instance [4, 5]). Therefore, one can
translate similar characterizations for certain classes of patterns.

Given a numerical semigroup S we can consider the quotient of S by a positive
integer d ∈ N

S

d
= {x ∈ N : dx ∈ S}.

In [9], D’Anna and Strazzanti define a semigroup construction, called the numerical
duplication, that is, in a certain sense, the reverse operation of the quotient by 2.
If A ⊆ N, the set of doubles is denoted by 2 · A = {2a : a ∈ A} (note that
2 · A 
= 2A = A + A). Given a numerical semigroup S, a semigroup ideal of S is
a subset E ⊆ S such that E + S ⊆ E. If d ∈ S is an odd integer, the numerical
duplication of S with respect to the semigroup ideal E and d is

S ��
d E = 2 · S ∪ (2 ·E + d).

The numerical duplication can be seen as the value semigroup of a quadratic
quotient of the Rees algebra, see for instance [2, 3]. This construction generalizes
Nagata’s idealization and the amalgamated duplication (see [8]), and it is one of the
main tools used in [15] to give a negative answer to a problem of Rossi [18].

In [3] it was characterized when the numerical duplication S ��
d E is Arf. The

characterization is given in terms of the multiplicity sequence of the Arf semigroup
S. A natural question is how this characterization can be generalized to any pattern.
This paper deals with this question.

In particular, in Sects. 3 and 4 we develop the theory of patterns on numerical
semigroups in terms of the admissibility degree, generalizing some results of [6]
proved for Boolean patterns. Further, we prove that the Arf pattern induces every
strongly admissible pattern and we determine the family of patterns equivalent to
the Arf pattern. In Sect. 5 we characterize when the numerical duplication S ��

d E

admits a monic pattern for d � 0 and give some examples of the general case. In
Sect. 6 we give some observations and trace possible future work about pattern on
rings.

Several computations are performed by using the GAP system [22] and, in
particular, the NumericalSgps package [10].

2 Preliminaries

Let S be a numerical semigroup, the multiplicity of S is the integer m(S) = min(S \
{0}), the conductor of S is c(S) = min{x ∈ N : x + N ⊆ S}. If E ⊆ S is a
semigroup ideal of S, set c(E) = min{x ∈ N : x + N ⊆ E}. Note that, if d ∈ S is



Patterns on the Numerical Duplication by Their Admissibility Degree 11

an odd integer, from [9, Proposition 2.1] the conductor of the numerical duplication
is c(S ��

d E) = 2 c(E)+ d − 1.
A pattern p(x1, . . . , xn) of length n is a linear homogeneous polynomial in n

variables with non-zero integer coefficients. The pattern of length zero is the zero
polynomial p = 0. A numerical semigroup S admits a pattern p if for every
s1, . . . , sn ∈ S with s1 ≥ · · · ≥ sn we have p(s1, . . . , sn) ∈ S. The family of all
numerical semigroups admitting p is denoted by S (p). Given two patterns p1, p2,
we say that p1 induces p2 if S (p1) ⊆ S (p2); we say that p1 and p2 are equivalent
if they induce each other, or equivalently S (p1) = S (p2). Let p be a pattern of
length n, set

p(x1, . . . , xn) =
n∑

i=1

aixi,

and bi =∑j≤i aj , we will keep this notation throughout. Note that we can write

p(x1, . . . , xn) = a1x1 + · · · + anxn =
= b1(x1 − x2)+ · · · + bn−1(xn−1 − xn)+ bnxn,

we will use frequently this decomposition in the sequel. The pattern p is admissible
if S (p) 
= ∅, that is, p is admitted by some numerical semigroup. Set

p′ =
{
p − x1 if a1 > 1

p(0, x1, . . . , xn−1) if a1 = 1,

and define recursively p(0) = p and p(i) = (p(i−1))′ for i ∈ N \ {0}. The
admissibility degree of p, denoted by ad(p), is the least integer k such that p(k)

is not admissible, if such integer exists, otherwise is ∞. If p′ is admissible, p is
strongly admissible. With this definitions, p is admissible if ad(p) ≥ 1, strongly
admissibile if ad(p) ≥ 2.

Proposition 1 [6, Theorem 12] For a pattern p the following conditions are
equivalent

1. p is admissible,
2. N admits p,
3. bi ≥ 0 for all i ∈ {1, . . . , n}.
Corollary 1 If p has admissibility degree 1, then there exists i ∈ {1, . . . , n} such
that bi = 0.

Proof By hypothesis p′ is not admissibile, then from Proposition 1 there exists i
such that (a1 − 1)+∑ij=2 aj = −1 ⇒ bi =∑ij=1 aj = 0.

The trivializing pattern is x1 − x2, note that S (x1 − x2) = {N}, so from
Proposition 1 it induces every admissibile pattern, in other words it induces every
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pattern p with ad(p) ≥ 1. The Arf pattern is x1 + x2 − x3, it is equivalent to
2x1 − x2 (see [6, Example 5]). The family S (x1 + x2 − x3) is the family of Arf
numerical semigroups. More in general, the subtraction pattern of degree k is the
pattern x1 + x2 + · · · + xk − xk+1. So the trivializing pattern and the Arf pattern
are the subtraction patterns of degree 1 and 2. Note that the admissibility degree of
a subtraction pattern is equal to its degree.

Following [16, Chapter 6], a Frobenius variety is a nonempty family F of
numerical semigroups such that

1. S, T ∈ F ⇒ S ∩ T ∈ F ,
2. S ∈ F \ {N} ⇒ S ∪ {F(S)} ∈ F .

Proposition 2 [16, Proposition 7.17] If p is a strongly admissible pattern, then
S (p) is a Frobenius variety.

Given a Frobenius variety F , it is possible to define the closure of a numerical
semigroup S as the smallest (with respect to set inclusion) numerical semigroup in
F that contains S. From this idea, we can define the notion of system of generators
with respect to the variety. In addition, we can construct a tree of all numerical
semigroups in F rooted in N and such that T is a son of S if and only if T =
S ∪ {F(S)}.

From Proposition 2, these definitions generalize many notions given in [6], for
instance p-closure or p-system of generators.

3 Patterns and Their Admissibility Degree

In [19] and [21] it was noted that a pattern p is strongly admissibile (i.e. ad(p) ≥ 2)
if and only if bi ≥ 1 for all i ∈ {1, . . . , n}. Of course if bi ≥ k for all i ∈ {1, . . . , n}
then ad(p) ≥ k + 1.

Proposition 3 If a pattern p has admissibility degree at least k + 1, then
bi ≥ min{i, k} for all i ∈ {1, . . . , n}.
Proof Let a′i be the coefficients of p′ and b′i =

∑
j≤i a′j . We proceed by induction

on k. The base case follows from Proposition 1. For the inductive step, firstly we
assume that p is monic. For all i ∈ {1, . . . , n− 1} we have bi+1 = b′i + 1, then

ad(p) ≥ k + 1 ⇒ ad(p′) ≥ k ⇒ b′i ≥ min{i, k − 1} ⇒ bi+1 ≥ min{i + 1, k},

in addition b1 = 1 ≥ min{1, k}. On the other hand, if p is not monic, for all
i ∈ {1, . . . , n} we have bi = b′i + 1, then

ad(p) ≥ k + 1 ⇒ ad(p′) ≥ k ⇒
⇒ b′i ≥ min{i, k − 1} ⇒ bi ≥ min{i + 1, k} ≥ min{i, k}.
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Example 1 Proposition 3 cannot be inverted. For instance consider the pattern p =
x1 + 3x2 − x3, then bi ≥ min{i, k} for all k ∈ N, but p has admissibility degree 4.

The next result generalizes [6, Lemma 42] and the proof is similar.

Lemma 1 An admissible pattern p with finite admissibility degree can be written
uniquely as

p(x1, . . . , xn) = Hp(x1, . . . , xh)+ Cp(xh, . . . , xt )+ Tp(xt+1, . . . , xn),

where eitherHp = 0 or all the coefficients ofHp are positive and their sum is equal
to ad(p)−1, Cp is admissible and the sum of all its coefficients is zero, ad(Tp) > 1.

Proof Set ad(p) = k + 1, then p can be written uniquely as the sum

p(x1, . . . , xn) = Hp(x1, . . . , xh)+ p(k)(xh, . . . , xn)

where Hp is a pattern with positive coefficients and their sum is equal to k =
ad(p) − 1, and p(k) is admissible with ad(p(k)) = 1. If a′i are the coefficients of

p(k), by Corollary 1 there exists an integer i such that
∑i
j=h a′j = 0, set t to be the

largest of such integers. Set

Cp(xh, . . . , xt ) =
t∑

i=h
a′ixi, Tp(xt+1, . . . , xn) =

n∑

i=t+1

a′ixi .

By the choice of t it follows
∑m
i=t+1 a

′
i =
∑m
i=h a′i > 0 for all m ∈ {t + 1, . . . , n},

hence ad(Tp) > 1.

If the pattern p has admissibility degree ∞, we set Hp = p and Cp = Tp = 0.
Therefore, we can write every pattern as

p(x1, . . . , xn) = Hp(x1, . . . , xh)+ Cp(xh, . . . , xt )+ Tp(xt+1, . . . , xn) (1)

we will keep this notation throughout.

Definition 1 Let p be a pattern. With the notation of Lemma 1 we call Hp the
head, Cp the center and Tp the tail of p. The decomposition (1) is the standard
decomposition of p.

Example 2 Let p = x1 + 3x2 + x3 − 2x4 + x5 + x6, the admissibility degree of p
is 4, the standard decomposition of p is

Hp(x1, x2) = x1 + 2x2,

Cp(x2, x3, x4) = x2 + x3 − 2x4,

Tp(x5, x6) = x5 + x6.
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Corollary 2 Any non-zero strongly admissible pattern p can be decomposed into
the sum

p = p1 + q1 + p2 + q2 + · · · + pm + qm,

where the coefficients of the pattern pi are positive, the pattern qi is admissible and
the sum of its coefficients is zero, for all i ∈ {1, . . . ,m}.
Proof It follows by recursively applying Lemma 1 on the tail of p.

Remark 1 Note that the head of every pattern of admissibility degree 1 is zero.
Further, if p is an admissible pattern in which the sum of all coefficients is zero
(i.e. bn = 0), the tail of p is zero. In addition, by Proposition 3, the admissibility
degree of p is 1, so the head of p is also zero, consequently p is equal to its center.
Therefore, an admissible pattern is equal to its center if and only if the sum of all its
coefficients is equal to zero.

The next result follows a similar idea of [21, Proposition 2.4].

Proposition 4 Let p be an admissible pattern such that the sum of its coefficients
is zero. A numerical semigroup S admits p if and only if the monoid generated by
the integers b1, . . . , bn is a subset of S.

Proof Necessity Let i ∈ {1, . . . , n} and λ ∈ N such that λ, λ+ 1 ∈ S. Then

p(λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
i

, λ, . . . , λ) =
n∑

j=1

ajλ+
i∑

j=1

aj = bnλ+ bi = bi ∈ S.

Sufficiency It is enough to write

p(x1, . . . , xn) = a1x1 + · · · + anxn =
= b1(x1 − x2)+ · · · + bn−1(xn−1 − xn)+ bnxn.

Proposition 5 If p has admissibility degree 1, then a numerical semigroup S admits
p if and only if it admits Cp and Tp.

Proof Sufficiency follows from p = Cp+Tp. For the necessity it is enough to write

p(x1, . . . , xt , 0, . . . , 0) = Cp(x1, . . . , xt ),

p(xt+1, . . . , xt+1, xt+2, . . . , xn) = Tp(xt+1, . . . , xn),

where t is the same index used in the proof of Lemma 1.

Corollary 3 If p has admissibility degree 1, then a numerical semigroup S admits
p if and only if S admits Tp and contains the monoid generated by b1, . . . , bt .
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By iterating on the tail, the previous Corollary 3 with [6, Lemma 14] gives us
an algorithm to determine if a numerical semigroup admits an admissible pattern.
Further, the previous result allows us to extend Proposition 2 to (not necessarily
strongly) admissible patterns.

Proposition 6 If p is monic and has admissibility degree 2 with

p(x1, . . . , xn) = x1 + Cp(x2, . . . , xt )+ Tp(xt+1, . . . , xn),

then S admits p if and only if it admits pi(x1, x2, x3) = x1 + (bi − 1)(x2 − x3) for
all i ∈ {2, . . . , n}, and x1 + Tp.

Proof First, write

p(x1, . . . , xn) = x1 +
t∑

i=2

(bi − 1)(xi − xi+1)+ Tp(xt+1, . . . , xn).

Necessity Let i ∈ {2, . . . , n}, we have

p(x1, x2, . . . , x2︸ ︷︷ ︸
i−1

, x3, . . . , x3︸ ︷︷ ︸
t−i

, 0, . . . , 0) = x1 + (bi − 1)(x2 − x3),

p(x1, . . . , x1︸ ︷︷ ︸
t

, xt+1, . . . , xn) = x1 + Tp(xt+1, . . . , xn).

Sufficiency Let λ1, . . . , λn ∈ S with λ1 ≥ . . . λn. We can write

p(λ1, . . . , λt , 0, . . . , 0) = λ1 +
t∑

i=2

(bi − 1)(λi − λi+1).

By hypothesis λ1 + (b2 − 1)(λ2 − λ3) ∈ S and it is greater than λ1. Thus also(
λ1 + (b2 − 1)(λ2 − λ3)

)
+ (b3 − 1)(λ3 − λ4) ∈ S. By iterating this process we

obtain p(λ1, . . . , λt , 0, . . . , 0) ∈ S and it is greater than λ1. Finally, since S admits
x1 + Tp, we have

p(λ1, . . . , λn) = p(λ1, . . . , λt , 0, . . . , 0)+ Tp(λt+1, . . . , λn) ∈ S.

4 Patterns Equivalent to the Arf Pattern

The next result is a straightforward generalization of [6, Proposition 34].

Lemma 2 A numerical semigroup S admits every pattern of admissibility degree
greater or equal than � c(S)

m(S)� + 1.
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Proof Write

p(x1, . . . , xn) = Hp(x1, . . . , xh)+ Cp(xh+1, . . . , xt )+ Tp(xt+1, . . . , xn),

and recall that the coefficients of Hp are positive and their sum is equal to ad(p) −
1 ≥ � c(S)

m(S)�. Let s1, . . . , sn ∈ S with s1 ≥ · · · ≥ sn. If sh+1 < m(S), then sh+1 =
sh+2 = · · · = sn = 0 and

p(s1, . . . , sn) =
h∑

i=1

aisi ∈ S.

On the other hand, if sh+1 ≥ m(S), then s1 ≥ . . . sh ≥ m(S), therefore

p(s1, . . . , sn) ≥ Hp(s1, . . . , sh) ≥ (ad(p)− 1)m(S) ≥

≥
⌈

c(S)

m(S)

⌉
m(S) ≥ c(S).

Proposition 7 If p has admissibility degree k, then there exists a numerical
semigroup S that admits every pattern of admissibility degree k + 1 but it does
not admit p.

Proof If k = 0 take S = N. Assume k ≥ 1. The sum of the coefficients of Cp is
zero, therefore we can write

p(x1, . . . , xn) = Hp(x1, . . . , xh)+
t∑

i=h+1

ci(xi − xi+1)+ Tp(xt+1, . . . , xn)

for some ci ∈ N. Note that there exists r ∈ {h+ 1, . . . , t} such that cr > 0. Now let
q ∈ N such that q > cr + k − 1. Set S = 〈q, q + 1〉 ∪ (kq + N), then

p(q + 1, . . . , q + 1︸ ︷︷ ︸
r

, q, . . . , q︸ ︷︷ ︸
t−r

, 0, . . . , 0) = (k − 1)(q + 1)+ cr = λ,

with (k−1)q+k−1 < λ < kq , therefore λ /∈ S, so S does not admit p. Nonetheless,
since c(S) = kq = km(S), from the preceding lemma S admits every pattern of
admissibility degree k + 1.

Corollary 4 Let p and q be two patterns.

1. If p induces q , then ad(p) ≤ ad(q).
2. If p and q are equivalent, then ad(p) = ad(q).

Lemma 3 The Arf pattern induces the pattern x1 + n(x2 − x3) for every n ∈ N.
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Proof We prove this by induction on n. The case n = 0 is the pattern x1, the case
n = 1 is the Arf pattern itself. For the inductive step, suppose that the Arf pattern
induces x1 + n(x2 − x3), then it is enough to write

x1 + (n+ 1)(x2 − x3) =
(
x1 + n(x2 − x3)

)
+ x2 − x3.

Recall that a pattern p is strongly admissible if and only if it has admissibility
degree at least 2.

Proposition 8 The Arf pattern induces every strongly admissible pattern.

Proof Let p be a strongly admissible pattern, so ad(p) ≥ 2. We proceed by
induction on the number of variables n of the pattern p. If n = 1 then p is
equivalent to the zero pattern, so the Arf pattern induces p. Now, for the inductive
step, suppose that the Arf pattern induces every pattern of admissibility degree at
least 2 with at most n − 1 variables. Since p′ induces p, it is enough to prove that
the Arf pattern induces every pattern of admissibility degree 2 with n variables. So
assume ad(p) = 2. Suppose that S admits the Arf pattern. Let s1, . . . , sn ∈ S with
s1 ≥ · · · ≥ sn. From Lemma 1 we have

p(s1, . . . , sn) = s1 +
t−1∑

i=1

(bi − 1)(si − si+1)+ Tp(st+1, . . . , sn),

note that bt − 1 = 0 and t > 1. From Lemma 3 the Arf pattern induces the pattern
x1 + (b1 − 1)(x2 − x3), so s′1 = s1 + (b1 − 1)(s1 − s2) ∈ S with s′1 ≥ s1. Similarly,
since the Arf pattern induces the pattern x1 + (b2 − 1)(x2 − x3), then

s′2 = s′1 + (b2 − 1)(s2 − s3) = s1 + (b1 − 1)(s1 − s2)+ (b2 − 1)(s2 − s3) ∈ S,

with s′2 ≥ s1. Iterating this process we obtain that

s = s1 +
t−1∑

i=1

(bi − 1)(si − si+1) ∈ S.

Since t > 1, the number of variables of the pattern x1 + Tp is less than n. By the
inductive hypothesis, the Arf pattern induces x1 + Tp(xt+1, . . . , xn), so

p(s1, . . . , sn) = s + Tp(st+1, . . . , sn) ∈ S.

What we have so far is that for k = 1, 2, the subtraction pattern of degree k
induces all patterns of admissibility degree at least k. As [6, Example 50] shows,
this cannot be extended to k ≥ 3.
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Theorem 1 A pattern p =∑ni=1 aixi is equivalent to the Arf pattern if and only if it
has admissibility degree 2 and there exists i ∈ {1, . . . , n} such that bi =∑ij=1 aj =
2.

Proof From Corollary 4, we can assume that ad(p) = 2. Now from Proposition 8,
the Arf pattern induces p. If there exists i such that bi = 2, then

p(x1, . . . , xn) = x1 +
t∑

i=1

(bi − 1)(xi − xi+1)+ Tp(xt+1, . . . , xn)⇒

⇒ p(x1, . . . , x1︸ ︷︷ ︸
i

, x2, . . . , x2︸ ︷︷ ︸
t−i

, 0, . . . , 0) = x1 + (bi − 1)(x1 − x2) = 2x1 − x2.

Therefore p induces the pattern 2x1 − x2 which is equivalent to the Arf pattern. On
the other hand, suppose that bi 
= 2 for all i ∈ {1, . . . , n}. Then, from Proposition 3,
either bi = 1 or bi ≥ 3. Let q > 1 and S = {q, q+1, q+3,→}. From Lemma 2, S
admits every pattern of admissibility degree greater or equal than 3. In particular, S
admits x1+Tp. Now let s1, . . . , sn ∈ S with s1 ≥ · · · ≥ sn. If for every i ∈ {1, . . . , t}
either bi = 1 or si = si+1, then

p(s1, . . . , sn) = s1 + Tp(st+1, . . . , sn) ∈ S.

Otherwise, there exists i ∈ {1, . . . t} such that si > si+1 and bi ≥ 3, then s1 ≥ si >
si+1 ≥ q ⇒ s1 ≥ q + 1, and

p(s1, . . . , sn) ≥ s1 + (bi − 1)(si+1 − si ) ≥ q + 3 = c(S).

Clearly, S is not Arf since 2(q + 1)− q = q + 2 /∈ S, therefore p is not equivalent
to the Arf pattern.

Note that Corollary 3 and Theorem 1, generalize and provide another proof of
[6, Proposition 48], since if p is a Boolean pattern of admissibility degree k, then
bk = k.

5 Patterns on the Numerical Duplication

In this section S will be a numerical semigroup, E will be an ideal of S, d ∈ S will
be an odd integer and p =∑ni=1 aixi will be an admissible pattern. We say that the
numerical duplication S ��

d E admits p eventually with respect to d if there exists
d ′ ∈ N such that S ��

d E admits p for all d ≥ d ′.
Proposition 9 If S admits p then also S

k
admits p for every k ≥ 1.
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Proof If λ1 ≥ · · · ≥ λn are elements of S
k

, then kλ1 ≥ · · · ≥ kλn are in S. Therefore

p(kλ1, . . . , kλn) = kp(λ1, . . . , λn) ∈ S ⇒ p(λ1, . . . , λn) ∈ S
k
.

For the next result, recall that S��
dE

2 = S.

Corollary 5 If S ��
d E admits p then S admits p.

Throughout we will assume that S admits the pattern p. Note that if p has
admissibility degree 2, then by applying Corollary 1 to the center of p, we obtain
that the set B = {i : bi − 1 = 0} is nonempty.

Proposition 10 Suppose that p has admissibility degree 2 and set

B = {i : bi − 1 = 0}, r = minB, t = maxB.

If S ��
d E admits p eventually with respect to d , then

1. for every 1 ≤ i ≤ t , � bi2 
 ∈ E − E;
2. for every r ≤ i ≤ t , if bi is even then bi/2 ≥ c(E)−min(E).

Proof From Lemma 1, we can write p in the following manner

p = x1 +
t−1∑

i=1

(bi − 1)(xi − xi+1)+ Tp(xt+1, . . . , xn).

Now, assume d ≥ 2 c(S)− 2 min(E)+ 1, then we have that

(2 min(E)+ d − 1)+ 2 ·N ⊆ 2 c(S)+ 2 ·N ⊆ 2 · S ⊆ S ��
d E.

Let i ∈ {1, . . . , t − 1}, e ∈ E and fix λ = 2e + d − 1. By the assumption on d we
have that λ ∈ S ��

d E. If bi is odd, it follows that

p(λ + 1, . . . , λ+ 1︸ ︷︷ ︸
i

, λ, . . . , λ

︸ ︷︷ ︸
t

, 0, . . . , 0) = λ+ 1+ (bi − 1) =

= 2e + d + bi − 1 = 2(e + (bi − 1)/2)+ d ∈ S ��
d E,

hence e+ (bi − 1)/2 ∈ E, so by the arbitrary choice of e ∈ E we have (bi − 1)/2 ∈
E − E. On the other hand, if bi is even, then

p(λ+ 2, . . . , λ+ 2︸ ︷︷ ︸
i

, λ+ 1, . . . , λ+ 1

︸ ︷︷ ︸
r

, 0, . . . , 0) = λ+ 2+ (bi − 1) =

= 2e + d + bi = 2(e+ bi/2)+ d ∈ S ��
d E
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hence e + bi/2 ∈ E, so as before bi/2 ∈ E − E. This proves that � bi2 
 ∈ E − E.
Now let i ∈ {r, . . . , t} such that bi is even and set λ = 2 min(E)+ d + 1. Let x ∈ N

and set μ = λ + 2x. Again by the assumption on d we have that μ, λ ∈ S ��
d E.

Thus

p(μ, . . . , μ︸ ︷︷ ︸
r

, λ . . . , λ

︸ ︷︷ ︸
i

, λ− 1, . . . , λ− 1

︸ ︷︷ ︸
t

, 0, . . . , 0) = μ+ (bi − 1) =

= λ+ 2x + bi − 1 = 2(min(E)+ bi/2+ x)+ d ∈ S ��
d E,

hence min(E)+ bi/2+ x ∈ E. By the arbitrary choice of x we have that min(E)+
bi/2 ≥ c(E)⇒ bi/2 ≥ c(E)−min(E).

Proposition 11 If p has admissibility degree 2 and is monic, then S ��
d E admits

p eventually with respect to d if and only if

1. for every i ∈ {1, . . . , t}
– if bi is odd then (bi − 1)/2 ∈ E − E;
– if bi is even then bi/2 ≥ c(E)−min(E).

2. S ��
d E admits x1 + Tp.

Proof Necessity The first condition follows from Proposition 10 since we have
b1 − 1 = 0. Further, if we take x2 = x3 = · · · = xt , then

p(x1, x2 . . . , x2, xt+1, . . . , xn) = x1 + Tp(xt+1, . . . , xn).

Sufficiency From Proposition 6 it is enough to show that S ��
d E admits

pi(x1, x2, x3) = x1 + (bi − 1)(x2 − x3) for all i ∈ {2, . . . , n}. Let i ∈ {2, . . . , n}
and λ1, λ2, λ3 ∈ S ��

d E with λ1 ≥ λ2 ≥ λ3. If λ2 = λ3, then pi(λ1, λ2, λ3) =
λ1 ∈ S ��

d E, so we can assume λ2 > λ3. Since S admits p, it admits also pi , so if
λ1 < 2 min(E) + d then λ1, λ2, λ3 ∈ 2 · S and pi(λ1, λ2, λ3) ∈ 2 · S ⊆ S ��

d E.
Now assume that λ1 ≥ 2 min(E) + d . If bi is even then, bi ≥ 2(c(E) − min(E))
and we have

pi(λ1, λ2, λ3) = λ1 + (bi − 1)(λ2 − λ3) ≥ λ1 + bi − 1 ≥
≥ 2 min(E)+ d + 2(c(E)−min(E))− 1 =
= 2 c(E)+ d − 1 = c(S ��

d E),

therefore pi(λ1, λ2, λ3) ∈ S ��
d E. On the other hand, if bi is odd, then μ =

(bi − 1)(λ2 − λ3) ∈ 2(E − E) since E − E is a semigroup. Now if λ1 is even,
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then λ1 + μ is also even, so for d � 0 we have λ1 + μ ∈ 2 · S ⊆ S ��
d E. If

λ1 = 2e + d ∈ 2 · E + d , then λ1 + μ = 2(e + μ/2)+ d ∈ 2 · E + d ⊆ S ��
d E

since μ ∈ 2(E − E).
Proposition 12 If p has admissibility degree at least 3 and it is not monic (i.e.
a1 ≥ 2), then S ��

d E admits p eventually with respect to d .

Proof Let λ1, . . . , λn ∈ S ��
d E with λ1 ≥ · · · ≥ λn. Since S admits p, if λ1 <

2 min(E) + d then λi ∈ 2 · S for all i ∈ {1, . . . , n} and we have p(λ1, . . . , λn) ∈
2 · S ⊆ S ��

d E. Now assume that λ1 ≥ 2 min(E) + d . Note that, since p has
admissibility degree at least 3, p′′ is admissible, so p′′(λ1, . . . , λn) ≥ 0. Now if we
take d ≥ 2 c(E)− 4 min(E), then

p(λ1, . . . , λn) = 2λ1 + p′′(λ1, . . . , λn) ≥ 4 min(E)+ 2d ≥
≥ 2 c(E)+ d ≥ c(S ��

d E),

hence p(λ1, . . . , λn) ∈ S ��
d E.

Proposition 13 If p is monic with admissibility degree at least 3, then p′(S) ⊆
E − E if and only if S ��

d E admits p eventually with respect to d .

Proof Necessity Let λ1, . . . , λn ∈ S ��
d E with λ1 ≥ · · · ≥ λn. First assume that

λ2 < 2 min(E)+ d , so λi = 2si with si ∈ S for all i ≥ 2. Now if λ1 ∈ 2 · S, then
p(λ1, . . . , λn) ∈ 2 · S ⊆ S ��

d E. Otherwise, if λ1 = 2e + d ∈ 2 · E + d , then fix
g = p′(s2, . . . , sn) ∈ p′(S) ⊆ E − E, we have g + e ∈ E, hence

p(λ1, . . . , λn) = 2e+ d + p′(2s2, . . . , 2sn) =
= 2e+ d + 2p′(s2, . . . , sn) =
= 2(e+ g)+ d ∈ 2 ·E + d ⊆ S ��

d E.

On the other hand, if λ2 ≥ 2 min(E)+ d , take d ≥ 2 c(E)− 4 min(E). Since p has
admissibility degree at least 3, p′′ is admissible, so p′′(λ2, . . . , λn) ≥ 0, then

p(λ1, . . . , λn) = λ1 + λ2 + p′′(λ2, . . . , λn) ≥ 4 min(E)+ 2d ≥
≥ 2 c(E)+ d ≥ c(S ��

d E),

hence p(λ1, . . . , λn) ∈ S ��
d E.
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Sufficiency Let g = p′(s1, . . . , sn−1) ∈ p′(S), with s1, . . . , sn−1 ∈ S and s1 ≥
· · · ≥ sn−1. Let e ∈ E, it is enough to prove that g+e ∈ E. If 2s1 < 2 min(E)+d ≤
2e+ d , it follows that

p(2e + d, 2s1, . . . , 2sn−1) = 2e+ d + p′(2s1, . . . , 2sn−1) =
= 2e+ d + 2p′(s1, . . . , sn−1) =
= 2(e+ g)+ d ∈ S ��

d E ⇒ e + g ∈ E.

On the other hand, if 2s1 ≥ 2 min(E)+ d , take d ≥ 2 c(E)− 2 min(E), then

2g = p′(2s1, . . . , 2sn−1) =
= 2s1 + p′′(2s1, . . . , 2sn−1) ≥ 2s1 ≥ 2 min(E)+ d ≥ 2 c(E),

hence g ≥ c(E)⇒ g ∈ E − E.

Assembling Corollary 3, Proposition 11 and Proposition 13 and iterating these
results on Hp + Tp, we are able to characterize when the numerical duplication
S ��

d E admits a monic pattern p for d � 0.

Theorem 2 Let p be a monic pattern, written as

p(x1, . . . , xn) = Hp(x1, . . . , xh)+ Cp(xh+1, . . . , xt )+ Tp(xt+1, . . . , xn).

Then S ��
d E admits p eventually with respect to d if and only if one of the following

cases occurs:

1. ad(p) = 1, S ��
d E = N.

2. ad(p) = 2, for every i ∈ {1, . . . , t}
– if bi is odd then (bi − 1)/2 ∈ E − E;
– if bi is even then bi/2 ≥ c(E)−min(E);

and S ��
d E admits x1 + Tp.

3. ad(p) ≥ 3 and p′(S) ⊆ E − E.

From Propositions 10, 12 and Corollary 3, in order to extend the previous
theorem to not monic patterns, we would need just a sufficient condition in the
case ad(p) = 2.

In the general case, that is when d can be small, we can extend the character-
ization of [3, Theorem 2.4] by combining it with Theorem 1. Nonetheless, as the
following examples show, it seems complicated to find a sort of characterization for
a generic pattern.

Example 3 The following tables show for which values of d the numerical duplica-
tion S ��

d E admits p.
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S = 〈3, 19, 20〉
E = 3+ S

p(x1, x2) = 3x1 − x2.

S = 〈5, 8, 19, 22〉
E = 5+ S

p(x1, x2, x3) = 4x1 − x2 − x3.

d admits p

3 �
9 �
15 �
19

21 �
23

25

27 �
29 �

d admits p

5

13 �
15

19 �
21

23

25 �
27 �
29 �

6 Patterns on Rings

In this section, (R,m) will be a one-dimensional, Noetherian, Cohen–Macaulay,
local ring, R will be the integral closure of R in its total ring of fractionsQ(R). An
ideal I of R is open if it contains a regular element. We will assume that the residue
field k = R/m is infinite. From [13, Proposition 1.18, pag 74], the last condition
assures that every open ideal I has an I -transversal element, namely an element
x ∈ I such that xIn = In+1 for n � 0. On R we define the following preorder
(namely a reflexive and transitive relation): let x, y ∈ R, then x ≤R y if y/x ∈ R.
Let p be the pattern

p(x1, . . . , xn) =
n∑

i=1

aixi.

Definition 2 The ring R admits the pattern p if for every y1, . . . , yn ∈ R with
y1 ≥R · · · ≥R yn, we have

y
a1
1 y

a2
2 . . . y

an
n ∈ R.

With this definition, when the relation ≤R is a total preorder, R is an Arf ring if
and only if it admits the Arf pattern. Note that R admits the trivializing pattern if
and only if R = R.

Remark 2 The ring R admits the pattern n(x1 − x2), with n ∈ N, if and only if for
every z ∈ R it results zn ∈ R. In fact, for every z ∈ R ⊆ Q(R), there exist x, y ∈ R
such that z = y/x, and by definition y ≥R x.

From the previous remark we can determine when a ring R admits a pattern of
admissibility degree 1 applying, mutatis mutandis, Corollary 3.
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Corollary 6 The ring R admits a pattern p of admissibility degree 1 if and only if
it admits Tp and for every z ∈ R it results zbi ∈ R for all i ∈ {1, . . . n}.

Similarly, if p is monic and ad(p) = 2, we can apply, mutatis mutandis,
Proposition 6

Now we make additional assumptions on R. Following [1], let V be a discrete
valuation domain with valuation v : V → N, and let V be the set of all subrings R
of V such that R is a local, Noetherian, one-dimensional, analytically irreducible,
residually rational, domain and its integral closure R is equal to V . Set V (p) be the
family of rings in V that admit the pattern p. If p1 and p2 are two patterns, then it is
clear that if V (p1) ⊆ V (p2) then S (p1) ⊆ S (p2), i.e. p1 induces p2. A question
naturally arise.

Question 1 Is the implication S (p1) ⊆ S (p2)⇒ V (p1) ⊆ V (p2) true?

Now fix R ∈ V , note that, since R is a valuation ring, ≤R is a total preorder.
Further, x ≤R y if and only if v(x) ≤ v(y). In this setting, the integral closure of an
ideal I of R is

I = IR ∩ I = {x ∈ R : v(x) ≥ min v(I)},

(see [12, Proposition 1.6.1, Proposition 6.8.1]). It is not difficult to prove (see for
instance [14, Theorem 2.2] or [1, Theorem II.2.13]) that R is an Arf ring if and only
if I 2 = xI for every integrally closed ideal I ⊆ R and some x ∈ I of minimum
value. Actually, the inclusion xI ⊆ I 2 is always true, so what we actually prove is
that I 2 ⊆ xI . We can generalize this idea to any subtraction pattern of degree k.

Proposition 14 The ring R admits the subtraction pattern of degree k if and only if
Ik ⊆ xI for every integrally closed ideal I ⊆ R and some x ∈ I of minimum value.

Proof Necessity Let i1, i2, . . . , ik ∈ I , since ≤R is a total preorder, we can assume
that i1 ≥R · · · ≥R ik. If x ∈ I is an element of minimum value, then ik ≥R x. By
hypothesis i1i2 . . . ikx−1 ∈ I , hence i1i2 . . . ik ∈ xI .

Sufficiency Let y1, . . . , yk+1 ∈ R with y1 ≥R · · · ≥R yk+1. Set I to be the integral
closure of Ryk+1. Since v(y1) ≥ v(y2) ≥ · · · ≥ v(yk+1) and I is integrally closed,
then yi ∈ I for all i ∈ {1, . . . , k}. By hypothesis y1 . . . yk ∈ Ik ⊆ yk+1I , then
y1 . . . yky

−1
k+1 ∈ I ⊆ R.

In [1, Theorem II.2.13] it was proved that R is Arf if and only if v(R) is Arf and
the multiplicity sequence of R and v(R) coincides.

Question 2 For an arbitrary pattern p are there any characterization similar to the
previous one?
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Primality in Semigroup Rings

Brahim Boulayat and Said El Baghdadi

Abstract Following P.M. Cohn, an element x in an integral domain A is primal
if whenever x | a1a2 with a1, a2 ∈ A, x can be written as x = x1x2 such that
xi | ai , i = 1, 2, and x is completely primal if every factor of x is primal. A ring in
which every element is (completely) primal is called a pre-Schreier domain and an
integrally closed pre-Schreier domain is called a Schreier domain. In this paper, we
study (completely) primal elements and shed more light on the Schreier property in
semigroup rings.

Keywords Monoid · Primal · Completely primal · Schreier domain ·
Pre-Schreier domain

2020 Mathematics Subject Classification 13A15, 13F05, 13B30, 13C11, 13F20,
13G05

1 Introduction

Let A be an integral domain. Following P.M. Cohn [7], an element x ∈ A is primal
if whenever x | a1a2 with a1, a2 ∈ A, x can be written as x = x1x2 such that xi | ai ,
i = 1, 2, and x is completely primal if every factor of x is primal. A ring in which
every element is (completely) primal is called a pre-Schreier domain [16] and an
integrally closed pre-Schreier domain is called a Schreier domain [7]. The Schreier
property generalizes the GCD property.

The primality of an element in a domain depends only on the multiplicative
semigroup of nonzero elements of that domain. This led several authors to study
the primality in the more general context of semigroups. Let S be a commutative
multiplicative cancellative monoid. For s, t ∈ S, s | t if t = sr for some r ∈ S. An
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element s ∈ S is primal if for t1, t2 ∈ S, s | t1t2 implies s = s1s2 where s1, s2 ∈ S
and si | ti , i = 1, 2. Completely primal elements and the (pre-)Schreier property for
semigroups are defined similarly.

In a polynomial ring in the indeterminateX over a ringA, the fact that the powers
Xn, n ∈ N, are primal, i.e.,Xn | fg for some f, g ∈ A[X], then f = Xrf1 and g =
Xn−r g1 for some r ∈ N, f1, g1 ∈ A[X], is crucial when working with polynomials.
This raises the question of whether this result can be extended to powersXα , α ∈ S,
S a semigroup. Note that in this case Xα is not necessarily a power of a prime
element like in the polynomial rings. On the other hand, an interesting work on the
Schreier property for semigroup rings was made by Matsuda [13] and Brookfield
and Rush [6]. In [6], the authors showed that a semigroup ring is pre-Schreier if and
only if it is Schreier.

The aim of this paper is to deepen and shed new light on primality in semigroup
rings. In Sect. 1, we write some well known results on primal elements and Schreier
property, in domains and ordered groups, in the language of monoids. In Sect. 2
we study primality in the more general context of graded domains. In [6] it was
shown that in graded domains the Schreier property can be reduced to the study
of the primality of the homogeneous elements. In this section we characterize the
(completely) primality of an homogeneous element in terms of its (completely)
primality in the multiplicative semigroup of nonzero homogeneous elements. In
the integrally closed case we get an equivalence between these two primalities. As
an application, in Sect. 3 we characterize primal elements in semigroup rings. In
particular, we investigate the primality of the powers Xα in a semigroup ring and
recover the case of polynomial rings.

2 Primal Elements in Monoids

Throughout this section a monoid means (multiplicative) commutative cancellative
unitary semigroup. Let S be a monoid. If T ⊆ S is a multiplicatively closed subset
of S, then we get the fraction monoid ST := {s/t, s ∈ S, t ∈ T }. If T = S, we have
the quotient group of S, G =< S >.

The aim of this section is to translate and adapt the proofs of some well known
results on primality and the Schreier property in domains and partially ordered
groups, by using the language of monoids. These results on monoids are needed
in the next sections in the case of graded domains and semigroup rings.

Let s, t ∈ S. We say that s divides t , denoted s | t , if t = sr for some r ∈ S.
We make use of the preoder on S: s ≤ t if s | t . An element s ∈ S is primal if for
t1, t2 ∈ S, s ≤ t1t2 implies s = s1s2, where s1, s2 ∈ S and si ≤ ti , i = 1, 2, and
s is completely primal if every factor of s is primal. As for domains, a monoid in
which every element is (completely) primal is called a pre-Schreier monoid and an
integrally closed pre-Schreier monoid is called a Schreier monoid. Note that in the
case of a domain A, the monoid in question is the multiplicative monoid A \ {0},
and in the case of an ordered groupG, it is the positive coneG+.
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In [3], the authors believe that completely primal elements are the building
blocks of the Schreier property. In what follows we give some characterizations of
completely primal elements in monoids. For x1, . . . , xn ∈ S, let U(x1, . . . , xn) =
{g ∈ S|g ≥ x1, . . . , xn}. A nonempty subset U ⊆ S is lower directed if for
s1, s2 ∈ U , there exists s ∈ U with s ≤ s1, s2. The following lemma is well known
in ordered groups [3, Theorem 2.1].

Lemma 2.1 Let S be a monoid. An element s of S is completely primal if and only
if for each x ∈ S, the set U(s, x) is lower directed. Moreover, if {s1, s2, . . . , sn} is a
set of completely primal elements of S, then U(s1, s2, . . . , sn) is lower directed.

Proof The proof of the first part is similar to [3, Theorem 2.1, (1)⇔(2)]. For
the second part, note that the case n = 1 is clear and n = 2 follows from
the first part. Suppose that U(s1, s2, . . . , sn−1) is lower directed. Let r1, r2 ∈
U(s1, s2, . . . , sn). Then r1, r2 ∈ U(s1, s2, . . . , sn−1) and by induction there exists
t ∈ U(s1, s2, . . . , sn−1) such that t ≤ r1, r2. But then r1, r2 ∈ U(t, sn) and
since sn is completely primal there is s ∈ U(t, sn) such that s ≤ r1, r2. Hence
s ∈ U(t, sn) ⊆ U(s1, s2, . . . , sn). ��

The following key characterization of completely primal elements in monoids
was proven in [4, Lemma 4.6] for domains. Here we give a short proof in the case
of monoids.

Proposition 2.2 Let S be a monoid. An element s of S is completely primal if and
only if s ≤ ri tj , ri , tj ∈ S, for i = 1, . . . ,m and j = 1, . . . , n implies that s = s1s2,
where s1 ≤ ri for each i and s2 ≤ tj for each j .

Proof Let s be a completely primal element and s ≤ ri tj for i = 1, . . . ,m and
j = 1, . . . , n. Then for each i = 1, . . . ,m, s = rij tj i , where rij ≤ ri and tj i ≤ tj
for j = 1, . . . , n. Since for each i, rij is completely primal (a factor of s), and
s, ri ∈ U(ri1, . . . , rin), there exists di ∈ S such that rij ≤ di ≤ ri, s for every
j = 1, . . . , n. Now, s, t1, . . . , tn ∈ U(s/d1, . . . , s/dn), then there exists t ∈ S such
that s/d1, . . . , s/dn ≤ t ≤ s, t1, . . . , tn. Let r ∈ S such that s = rt . One can easily
check that r ≤ ri for i = 1, . . . ,m.

For the converse, let s ∈ S satisfying the condition as in the proposition, and let
x ∈ S. We show that U(s, x) is lower directed. Let r1, r2 ∈ U(s, x). For i = 1, 2,
write ri = xti , so s ≤ xti . By our hypothesis s = s1s2 such that s1 ≤ x and s2 ≤ ti
for i = 1, 2. But d = xs2 ∈ U(s, x) and d ≤ r1, r2. Thus U(s, x) is lower directed
and by the previous lemma s is completely primal. ��

To sum up, we get the following characterization of pre-Schreier monoids, see
[16, Theorem 1.1].

Corollary 2.3 Let S be a monoid. The following are equivalent.

(i) S is a pre-Schreier monoid;
(ii) For all s, t, x, y ∈ S with s, t | x, y there exists r ∈ S such that s, t | r | x, y;
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(iii) For all s1, . . . ., sm ∈ S and t1, . . . , tn ∈ S such that si | tj , for each i =
1, . . . ,m and j = 1, . . . , n, then there exists r ∈ S such that si | r | tj for each
i, j ;

(iv) For all r1, . . . , rm ∈ S and t1, . . . , tn ∈ S such that s | ri tj , for each i =
1, . . . ,m and j = 1, . . . , n, then s = s1s2 for some s1, s2 ∈ S such that s1 | ri
and s2 | tj for each i, j .

We end this section by translating to monoids the well known Nagata type
theorem for Schreier domains due to Cohn [7, Theorem 2.6]. Our proof is slightly
different from that in [7] for we use the characterization of completely primals in
Propostion 2.2.

Let S be a monoid and T a multiplicative subset of S. The set T is called divisor-
closed if T is saturated.

Proposition 2.4 Let S be a monoid and T a multiplicative set of S.

(1) If S is pre-Schreier, then ST is pre-Schreier.
(2) Assume that T is a divisor-closed subset of S such that every element of T is

primal in S. If the monoid ST is pre-Schreier, then S is pre-Schreier.

Proof

(1) Similar to domains [16, Corollary 1.3].
(2) Assume that ST is pre-Schreier and let s, x1, x2 ∈ S such that s ≤ x1x2 in S. So

s ≤ x1x2 in ST . Since ST is pre-Schreier, s is completely primal in ST . Then
s = (s1t−1

1 )(s2t
−1
2 ) for some s1, s2 ∈ S and t1, t2 ∈ T such that s1t

−1
1 ≤ x1 and

s2t
−1
2 ≤ x2 in ST . So x1 = (s1t−1

1 )(s′1r
−1
1 ) and x2 = (s2t−1

2 )(s′2r
−1
2 ) for some

s′1, s′2 ∈ S and r1, r2 ∈ T . We put r = t1r1t2r2, then r is an element of T which
satisfies:

rs = (s1r2)(s2r1)
rx1 = (s1r2)(s′1t2)
rx2 = (s2r1)(s′2t1)

r((x1x2)/s) = (s′1t2)(s′2t1)

So r ≤ to the elements in the set product {s1r2, s′2t1}{s2r1, s′1t2}. As r is
completely primal in S and by Proposition 2.2, there exist u, v ∈ S such that
r = uv with u ≤ s1r2, s′2t1 and v ≤ s2r1, s′1t2. Then s = (s1r2u−1)(s2r1v

−1)

with s1r2u−1 ≤ x1 and s2r1v−1 ≤ x2, hence s is primal in S. Consequently, S
is pre-Schreier. ��



Primality in Semigroup Rings 31

3 Primal Elements in a Graded Domain

Throughout, a monoid means a torsionless grading monoid, that is, a (additive)
commutative cancellative torsion-free semigroup. In this section, we study primality
in a graded integral domain R = ⊕α∈�Rα , graded by a torsionless grading monoid
�. We denote by H the multiplicative set (monoid) of nonzero homogeneous
elements of R. If S ⊆ H is a multiplicative set of R, that is, a submonoid of H ,
the ring of fractions RS is graded by some fraction monoid of � with the nonzero
homogeneous elements are of the form h/s, where h ∈ H and s ∈ S. In particular,
H(R) = RH is a < � >-graded domain, called the homogeneous quotient field of
R. Note that H(R) is a completely integrally closed GCD domain [2, Proposition
2.1]. Let x ∈ R. Then x = x1 + · · · + xm with the xi’s are homogeneous and
deg(xi) < deg(xj ) for i < j . A fractional ideal I of R is homogeneous if
uI ⊆ R is a homogeneous ideal of R for some u ∈ H . Clearly, a homogeneous
fractional ideal is a submodule of H(R). Let x ∈ H(R), x = x1 + · · · + xm with
deg(xi) < deg(xj ) for i < j . The content of x is the R-submodule of H(R),
C(x) = (x1, . . . , xm). Note that a fractional ideal I ⊆ H(R) of R is homogeneous
if and only if C(x) ⊆ I for every x ∈ I . The content satisfies the Dedekind–Mertens
lemma for graded domains [15]. That is, for x, y ∈ H(R), there is a positive integer
n so that C(x)nC(xy) = C(x)n+1C(y). For more details, see [1].

We say that an element x ∈ H is gr-primal [6] if whenever x | y1y2 with y1, y2 ∈
H , then x = x1x2, x1, x2 ∈ H , where xi | yi , i = 1, 2, and x is completely
gr-primal if every homogeneous factor of x is gr-primal. These two definitions are
equivalent, respectively, to x primal and completely primal in the multiplicative
monoid H . The graded domain R is called gr-pre-Schreier if every element of H is
(completely) gr-primal. In [6], the authors introduced gr-pre-Schreier domains and
characterized graded pre-Schreier domains in terms of the gr-pre-Schreier property.
In the integrally closed case, they showed that the Schreier property is equivalent to
the gr-pre-Schreier property.

For an integral domain A with quotient field K and fractional ideals I, J , define
[I : J ] = {x ∈ K, xJ ⊆ I }, I−1 = [A : I ] and I : J = [I : J ]∩A. A homogeneous
(fractional) ideal I of the graded domain R is called H -locally cyclic if every finite
subset of homogeneous elements of I is contained in a (homogeneous) principal
sub-ideal of I . We start this section with some characterization of gr-pre-Schreier
domains.

Proposition 3.1 Let R = ⊕α∈�Rα be a graded domain. The following statements
are equivalent.

(i) R is a gr-pre-Schreier domain.
(ii) H is a pre-Schreier monoid.

(iii) For every nonzero homogeneous element u ∈ H(R), (1, u)−1 is H-locally
cyclic.

(iv) For every nonzero x ∈ H(R), C(x)−1 is H-locally cyclic.
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Proof (i)⇔(ii) is obvious. For (ii) ⇔(iii), note that for a, b ∈ H , we have
(a, b)−1 = (ab)−1(aR ∩ bR), and for a homogeneous element u ∈ H(R), u = a/b
for some a, b ∈ H . Then apply Corollary 2.3 (ii) in H . For (iii)⇔(iv), note that
C(x)−1 is a finite intersection of homogeneous principal fractional ideals. ��

Also, we get the following Nagata type theorem for gr-pre-Schreier domains
analogue to that of Schreier property due to P.M. Cohn [7, Theorem 2.6].

Proposition 3.2 LetR = ⊕α∈�Rα be a graded domain and S ⊆ H a multiplicative
set of R. Then

(i) If R is a gr-pre-Schreier domain, then RS is a gr-pre-Schreier domain.
(ii) If S is generated by completely gr-primal elements and (S divisor-closed)RS is

a gr-pre-Schreier domain, then R is a gr-pre-Schreier domain.

Proof Apply Proposition 2.4 to the quotient monoidHS . ��
Example 3.3

(1) Let R = A[X] be the polynomial ring over a ring A. One can easily see that
A[X] is gr-pre-Schreier if and only if A is pre-Schreier. By [6, Theorem 3.2],
A[X] is pre-Schreier if and only if it is Schreier, if and only if A is Schreier.

(2) Let A ⊆ B be an extension of integral domains and set R = A + XB[X].
Primality and the Schreier property for A + XB[X] domains were studied in
[8, 9]. We claim that R = A+XB[X] is gr-pre-Schreier if and only if A is pre-
Schreier and B = AS , where S = U(B)∩A, U(B) denotes the set of invertible
elements of B. Suppose that R is gr-pre-Schreier. Clearly A is pre-Schreier.
On the other hand, by using the primality of X and the fact that X | (bX)2,
b ∈ B, it was shown in [8, Remark 1.1] that B = AS , where S = U(B) ∩ A.
Conversely, we use Proposition 3.2. The quotient ring RS = AS[X] is gr-pre-
Schreier since A, and henceAS , is pre-Schreier. The elements of S are gr-primal
inR = A+XAS[X]. Indeed, let a ∈ S and h1, h2 ∈ H such that a | h1h2. Since
A is pre-Schreier, the case where h1, h2 ∈ A is clear. Assume that h2 = bXn
for some b ∈ AS and n 
= 0. Then a | h2 in R, and write a = 1× a.

By [9, Theorem 2.7 and Corollary 2.9], R is a pre-Schreier (resp., Schreier)
domain if and only if A is a pre-Schreier (resp., Schreier) domain, B = AS ,
where S = U(B) ∩ A, and AS is a Schreier domain.

Inspired by the work in [6], in the following we study (completely) primal
elements in a graded domain in terms of (completely) gr-primality.

Let h ∈ H ; we say that h is degree gr-primal if h | xiyj , xi, yj ∈ H , for
i = 1, . . . ,m and j = 1, . . . , n, with deg(xk) < deg(xl) and deg(yk) < deg(yl)
for all k < l, then h = h1h2 such that h1 | xi for each i and h2 | yj for each j . The
degree gr-primality is a weak form of the completely gr-primality in H .

Theorem 3.4 Let R = ⊕α∈�Rα be a graded domain and h ∈ H . Then

(i) h is primal in R if and only if h is degree gr-primal and (h) : (x) is
homogeneous for each x ∈ R.
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(ii) h is completely primal inR if and only if h is completely gr-primal and (h) : (x)
is homogeneous for each x ∈ R.

Proof

(i) For the “only if”condition, assume that h | xiyj , xi, yj ∈ H , for i = 1, . . . ,m
and j = 1, . . . , n, with deg(xk) < deg(xl) and deg(yk) < deg(yl) for all
k < l, Then h | xy in R, where x = x1 + · · · + xm and y = y1 + · · · + yn.
By the primality h = h1h2, h1, h2 ∈ H , with h1 | x and h2 | y. Clearly,
h1 | xi and h2 | yj for each i, j . To see that (h) : (x) is homogeneous, let
y ∈ (h) : (x). Then h | xy. Now, h = h1h2, h1, h2 ∈ H , with h1 | x and
h2 | y. It follows that C(y) ⊆ (h) : (x).

For the “if”condition, let x = x1 + · · · + xm and y = y1 + · · · + yn be two
nonzero elements of R, with deg(xk) < deg(xl) and deg(yk) < deg(yl) for
all k < l, such that h | xy. Now, y ∈ (h) : (x), a homogeneous ideal, then
h | xiyj for i = 1, . . . ,m and j = 1, . . . , n. On the other hand, h is degree
gr-primal implies that h = h1h2, where h1 | xi and h2 | yj for each i, j . Then
h = h1h2 with h1 | x and h2 | y, so h is primal in R.

(ii) For the “only if”condition, clearly, if h is completely primal in R it is
completely gr-primal. The remainder is similar to (i). For the “if”condition,
by the same argument as in the proof of (i), h is primal in R. To prove that
h is completely primal in R, let k be a factor of h. Necessarily, k ∈ H . Then
k is completely gr-primal and h = kk′ for some k′ ∈ H . Let x ∈ R and
y ∈ (k) : (x), with y = y1 + · · · + yn and deg(yi) < deg(yj ) for all i < j .
Then k′y ∈ (kk′) : (x) = (h) : (x). Since (h) : (x) is homogeneous, then, for
each i, k′yi ∈ (h) : (x), so yi ∈ (k) : (x). Thus (k) : (x) is homogeneous.
Hence, like h, k is primal in R. Therefore, h is completely primal in R. ��

Example 3.5 We give an example of a degree gr-primal element which is not
completely gr-primal. Let R = Z + XR[X]. By [8, Example 1.7(ii)], X2 is primal
in R, but X is not primal in R, so X2 is not completely primal. By Theorem 3.4,X2

is degree gr-primal but not completely gr-primal.

Let R = ⊕α∈�Rα be a graded domain, h ∈ H , and let Rh be the quotient ring
of R with respect to the multiplicative set generated by h. Note that Rh is a graded
subring of H(R). We say thatR is Rh-almost normal if every homogeneous element
x ∈ Rh of nonzero degree which is integral over R is actually in R. Note that R is
Rh-integrally closed, that is, R is integrally closed in Rh, if R is integrally closed in
Rh with respect to the homogeneous elements ofRh. ThusR is Rh-integrally closed
if and only if R is Rh-almost normal and R0 is integrally closed in (Rh)0. Almost
normality defined in [1] is a globalization of Rh-almost normality, h ∈ H . Thus, R
is almost normal if and only if R is Rh-almost normal for every h ∈ H . A similar
statement is true for the integrally closed case.

Recall that an extension of domainsA ⊆ B is inert if whenever bb′ ∈ A for some
b, b′ ∈ B, then b = au and b′ = a′u−1 for some a, a′ ∈ A and u a unit of B.
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Proposition 3.6 Let R = ⊕α∈�Rα be a graded domain and h ∈ H . Consider the
following statements.

(i) R is Rh-integrally closed.
(ii) (h) : (x) is homogeneous for each x ∈ Rh.

(iii) R is Rh-almost normal.

Then (i)⇒(ii)⇒(iii). Moreover, if R contains a (homogeneous) unit of nonzero
degree the three conditions are equivalent, and if R0 ⊆ R is inert, then (ii)⇔(iii).

Proof The proof is inspired from [1].
(i)⇒(ii). Let x ∈ Rh and y ∈ R such that C(xy) ∈ (h). Then C(x)nC(xy) ⊆

hC(x)n implies C(x)n+1C(y) ⊆ hC(x)n, for some integer n in the Dedekind
Mertens lemma. Thus 1

h
C(x)C(y) ⊆ [C(x)n : C(x)n] ∩ Rh = R, since R is Rh-

integrally closed. Hence C(x)C(y) ∈ (h). Therefore, (h) : (x) is homogeneous.
(ii)⇒(iii). Let x = a/hk ∈ Rh, a ∈ H , a homogeneous element of nonzero

degree which is integral over R. Let f (Y ) = Yn + an−1Y
n−1 + · · · + a0 with

coefficients in R such that f (x) = 0. Since x is homogeneous, we may assume
that we have an equation of the form xn + an−1x

n−1 + · · · + a0 = 0 with the
ai’s homogeneous and deg(ai) = (n − i)deg(x). Then f (Y ) = (Y − x)g(Y ) with
g(Y ) = Yn−1 + bn−2Y

n−2 + · · · + b0. We may assume that the elements bi ∈ Rh
are homogeneous of distinct nonzero degree. From f (1) = (1 − x)g(1), it follows
that (1 − x)g(1) ⊆ R. Now, (hk − a)(g(1)/hk−1) ⊆ hR implies hk − a ⊆ (h) :
(g(1)/hk−1), which is homogeneous. Since 1/hk−1 ∈ C(g(1)/hk−1), it follows
that (1/hk−1)(hk − a) ∈ hR. So 1− x ∈ R. Hence x ∈ R.

For the moreover statements, assume that R contains a (homogeneous) unit u
of nonzero degree. If x ∈ Rh is a homogeneous element of zero degree which is
integral over R, then ux ∈ Rh is a homogeneous element of nonzero degree which
is integral over R. If R is Rh-almost normal, then ux ∈ R. Hence x ∈ R. This
proves that (iii)⇒(i). For the last statement, we proceed as in [1, Theorem 3.7 (2)].��
Corollary 3.7 Let R = ⊕α∈�Rα be a graded domain. Assume that R is integrally
closed or R0 ⊆ R is inert and R is almost normal. Then

(1) A homogeneous element is primal in R if and only if it is degree gr-primal.
(2) A homogeneous element is completely primal in R if and only if it is completely

gr-primal.

Proof This follows from Theorem 3.4 and Proposition 3.6. ��
Remark 3.8

(1) In [12, Section 3], the author gave un example which show that R may be an
almost normal graded domain, that is, R is Rh-almost normal for every h ∈ H ,
but there exist h ∈ H and x ∈ R such that (h) : (x) is not homogeneous.

(2) Let h ∈ H . In Theorem 3.4, we can check that h is primal (resp., completely
primal) if and only if h is degree (resp., completely) gr-primal and (h) : (x) is
homogeneous for every x ∈ Rh.
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Example 3.9

(1) LetA be an integral domain with quotient fieldK . LetR = A[X], a polynomial
ring. Note that the extension A ⊆ A[X] is inert. If every element of A is primal
in A[X], then, by Cohn’s Nagata type theorem for Schreier domains, A[X] is
Schreier since K[X] = A[X]S , where S = A \ {0}, is Schreier (UFD). The
above results shed more light on the primality of elements of A in A[X]. Let
0 
= a ∈ A. Clearly, a is degree gr-primal if and only if a is completely gr-
primal, if and only if a is completely primal in A. Thus a is (completely) primal
in A[X] if and only if a is completely primal in A and A is integrally closed in
Aa . For more details, see the next section.

(2) For an extension of integral domains A ⊆ B, consider the pullback R =
A + XB[X]. Since the extension A ⊆ R is inert, then by Theorem 3.4 and
Proposition 3.6, h = aXn ∈ H is primal (resp., completely primal) in R if and
only if h is degree (resp., completely) gr-primal and B is integrally closed in Ba
( Here Rh = Ba[X,X−1] if n ≥ 1, and Rh = Aa +XBa [X] if n = 0.)

As a corollary of Theorem 3.4, Proposition 3.6, and Cohn’s Nagata type theorem
for Schreier domains, we reobtain the characterization of the Schreier property in
graded domains.

Corollary 3.10 [6, Theorem 2.2] Let R = ⊕α∈�Rα be a graded domain. Then the
following statements are equivalent.

(i) R is Schreier.
(ii) R is pre-Schreier and R0 is integrally closed in (RH )0.

(iii) R is gr-pre-Schreier and integrally closed.

4 Primal Elements in Semigroup Rings

As an application of the previous sections, we study the primality in semigroup
rings. Throughout this section, � denotes a nonzero torsionless commutative
cancellative monoid (written additively) with quotient group G, and A is an integral
domain with quotient field K . Let A[�] be the semigroup ring of � over A. Then
A[�] is a �-graded integral domain and each nonzero element f ∈ A[�] can be
written uniquely as f = a1X

s1 + · · · + anXsn , where 0 
= ai ∈ A and si ∈ � with
s1 < . . . < sn. Note that here,H = {aXα, 0 
= a ∈ A,α ∈ �} andA[�]H = K[G].
For more on semigroup rings, see [11].

Proposition 4.1 Let A[�] be the semigroup ring of � over A, and consider an
element of the form aXα where 0 
= a ∈ A and α ∈ �. The followings statements
are equivalent.

(i) aXα is primal in A[�].
(ii) a and Xα are both primal in A[�].
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Proof (i) ⇒ (ii). Suppose that aXα is primal in A[�]. Let f, g ∈ A[�] such that
a | fg, then aXα | f (gXα). Since aXα is primal aXα = a1X

α1a2X
α2 where

a1X
α1 | f and a2X

α2 | gXα , so a1 | f and a2 | g. Thus a = a1a2 such that a1 | f
and a2 | g, so a is primal in A[�].

To prove that Xα is primal in A[�], let f, g ∈ A[�] such that Xα | fg, then
aXα | (af )g. Thus aXα = a1X

α1a2X
α2 , where a1X

α1 | af and a2X
α2 | g. Hence

Xα = Xα1Xα2 with Xα1 | f and Xα2 | g.
(ii) ⇒ (i). Assume that a and Xα are both primal in A[�] and let f, g ∈ A[�]

such that aXα | fg. Then a | fg and Xα | fg. Since a and Xα are primal in
A[�], we have a = a1a2 such that a1 | f and a2 | g for some a1, a2 ∈ A; and
Xα = Xα1Xα2 such that Xα1 | f and Xα2 | g for some α1, α2 ∈ �. Hence aXα =
a1X

α1a2X
α2 , where a1X

α1 | f and a2X
α2 | g, so aXα is primal in A[�]. ��

For a semigroup ring A[�], let h = aXα ∈ H . Then A[�]h = Aa[�α], where
�α is the quotient monoid with respect to the additive set generated by α. Note that
A[�] is integrally closed in Aa[�α] if and only if A is integrally closed in Aa and �
is integrally closed in �α .

Proposition 4.2 Let A[�] be the semigroup ring of � over A and h = aXα ∈ H .
The following statements are equivalent.

(i) A[�] is Aa[�α]-integrally closed.
(ii) (h) : (f ) is homogeneous for each f ∈ Aa[�α].

(iii) A[�] is Aa[�α]-almost normal.

Proof By Proposition 3.6, it remains to show that (iii)⇒(i). Let λ ∈ Aa be integral
over A[�]. Take 0 
= γ ∈ �. Then λXγ ∈ Aa[�α] is a homogeneous element of
nonzero degree which is integral over A[�]. So λXγ ∈ A[�], hence λ ∈ A. Now,
by the Aa[�α]-almost normality, A[�] is Aa[�α]-integrally closed. ��

The following lemmas characterize degree (resp., completely) gr-primality in
semigroup rings.

Lemma 4.3 Let A[�] be the semigroup ring of � over A and 0 
= a ∈ A. The
following statements are equivalent.

(i) a is completely gr-primal.
(ii) a is degree gr-primal.

(iii) a is completely primal in A.

Proof (i)⇒(ii). This is clear.
(ii)⇒(iii). Suppose that a | bicj in A for i = 1, . . . ,m and j = 1, . . . , n. Let

0 
= α ∈ �; set βi = iα and γj = jα for i = 1, . . . ,m and j = 1, . . . , n. Then
a | (biXβi )(cjXγj ) in A[�], for i = 1, . . . ,m and j = 1, . . . , n. By (ii), there exist
a1, a2 ∈ A such that a = a1a2 where a1 | bi for each i and a2 | cj for each j . Hence
a is completely primal in A (cf. Proposition 2.2).

(iii)⇒(i). Assume that a | biXβi cjXγj in A[�] for i = 1, . . . ,m and j =
1, . . . , n.
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Then a | bicj inA for each i, j . So a = a1a2, where a1 | bi for each i and a2 | cj
for each j . Thus a = a1a2 such that a1 | biXβi for each i and a2 | cjXγj for each
j . This proves that a is completely gr-primal. ��
Lemma 4.4 Let A[�] be the semigroup ring of � over A and α ∈ �. The following
statements are equivalent.

(i) Xα is completely gr-primal.
(ii) Xα is degree gr-primal.

(iii) α is completely primal in �.

Proof (i)⇒(ii). This is clear.
(ii)⇒(iii). Suppose that α | βi + γj in � for i = 1, . . . ,m and j = 1, . . . , n.

We may assume that β1 < · · · < βm and γ1 < · · · < γn. Then Xα | XβiXγj
for i = 1, . . . ,m and j = 1, . . . , n. By (ii), there exist α1, α2 ∈ � such that
α = α1+α2, where α1 | βi for each i and α2 | γj for each j . Hence α is completely
primal in �.

(iii)⇒(i). Assume that Xα | biXβi cjXγj in A[�] for i = 1, . . . ,m and j =
1, . . . , n. Then α | βi + γj in � for each i, j . So α = α1 + α2, where α1 | βi for
each i and α2 | γj for each j . Thus Xα = Xα1Xα2 such that Xα1 | biXβi for each i
and Xα2 | cjXγj for each j . This proves (i). ��

Next, we state our main result of this section.

Theorem 4.5 Let A[�] be the semigroup ring of � over A, and let 0 
= a ∈ A and
α ∈ �. Then

(i) a is (completely) primal in A[�] if and only if a is completely primal in A and
A is integrally closed in Aa .

(ii) Xα is (completely) primal in A[�] if and only if α is completely primal in �
and � is integrally closed in �α .

Proof This follows from Theorem 3.4, Remark 3.8 (2), Proposition 4.2, and
Lemmas 4.3 and 4.4. ��

From Theorem 4.5 and Corollary 3.7, we get:

Corollary 4.6 Let A[�] be the semigroup ring of � over A, and let 0 
= a ∈ A and
α ∈ �. Then

(i) Assume that A is integrally closed. Then a is (completely) primal in A[�] if
and only if a is completely primal in A.

(ii) Assume that � is integrally closed. Then Xα is (completely) primal in A[�] if
and only if α is completely primal in �.

Corollary 4.7 [6, Theorem 3.2] Let A[�] be the semigroup ring of � over A. The
following statements are equivalent.

(i) A[�] is pre–Schreier.
(ii) A[�] is Schreier.

(iii) A and � are Schreier.
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Proof For (i)⇒(ii)⇒(iii) use Proposition 4.1 and Theorem 4.5, and remark that A
(resp., �) is integrally closed if and only if A (resp., �) is integrally closed in Aa
(resp., �α) for each 0 
= a ∈ A (resp., 0 
= α ∈ �). For (iii)⇒(i) we need the Cohn’s
Nagata type theorem for Schreier domains. ��

In the case of polynomial rings, we recover some results established in [5,
Proposition 6] and [4, Lemma 4.7]. Note that in a polynomial ring the powers of X
are primary, so they are primal. Thus, by Proposition 4.1, a nonzero homogeneous
element of the form aXn, a ∈ A, is primal in A[X] if and only if a is primal in
A[X].
Corollary 4.8 Let A be an integral domain and X an indeterminate. Then

(i) a is (completely) primal in A[X] if and only if a is completely primal in A and
A is integrally closed in Aa .

(ii) A[X] is Schreier if and only if A[X] is pre-Schreier, if and only if A is Schreier.

Acknowledgement The authors are grateful to the referee for comments that helped to improve
the exposition.
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Conjecture of Wilf: A Survey

Manuel Delgado

Abstract This paper intends to survey the vast literature devoted to a problem
posed by Wilf in 1978 which, despite the attention it attracted, remains unsolved.
As it frequently happens with combinatorial problems, many researchers who got
involved in the search for a solution thought at some point that a solution would be
just around the corner, but in the present case that corner has never been reached.

By writing this paper I intend to give the reader a broad approach on the problem
and, when possible, connections between the various available results. With the hope
of gathering some more information than just using set inclusion, at the end of the
paper a slightly different way of comparing results is developed.

Keywords Numerical semigroup · Wilf semigroup · Wilf’s conjecture

1 Introduction

At the beginning, my personal motivation was to build a list of references, each
with a summary of the results therein related to Wilf’s conjecture. This would have
helped me by not having to dive into a collection of papers each time I needed a
result. Then I thought that making the list public could also be a contribution to
Wilf’s conjecture. This process ended up in the writing of this paper, which is in
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some sense yet another survey. Another, because most papers fully dedicated to the
conjecture provide good literature reviews. Although not aiming to be complete,
these could be taken as surveys.

As it frequently happens with easy to state combinatorial problems, while
working on them one thinks that a solution is at reach. This is certainly the case
of the problem posed by Wilf, but nevertheless no one has found the aimed solution
so far. Taking into account the number of published papers on the theme, one can
infer that much time has globally been dedicated to the problem. This may lead
people to classify the problem in the category of dangerous problems, in the sense
that one risks to spend too much time struggling with it and have to give up without
getting a solution. Fortunately, partial results may be of some interest.

The plan of the paper follows.
This introductory section contains most of the terminology and notation to be

used along the paper. There are not many differences to what is commonly used.
This section contains also what I consider a convenient way to visualize numerical
semigroups. Although almost all further images appear only in the last section, we
provided sufficient information to produce images of semigroups appearing in the
remaining parts of the text.

Some problems posed by Wilf are described in the second section, which can be
seen as a kind of motivation for the paper.

The third section is the real survey. It contains a large introductory part and then
the statements of results grouped into several subsections.

In the final section we introduce the notion of quasi-generalization (roughly
speaking, a set quasi-generalizes another if it contains all its elements, except
possibly a finite number of them). It allows to draw a lattice involving some
important properties that give rise to semigroups satisfying Wilf’s conjecture.

1.1 Terminology and Notation

Most of the notation and terminology used appears in the book by Rosales and
Garcìa-Sánchez [31]. Results referred as “well known” can be found in the same
reference.

Let S be a numerical semigroup. Recall that a numerical semigroup S is a subset
of N (the set of nonnegative integers) such that 0 ∈ S, S is closed under addition
and the complement N \ S is finite (possibly empty). Throughout the paper, when
the letter S appears and nothing else is said, it should be understood as being a
numerical semigroup.

The minimal generators of S are also known as primitive elements of S. The set
of primitive elements of S is denoted P(S). It is well known to be finite. When there
is no possible confusion on which is the semigroup at hand, the notation is often
simplified and we write P instead of P(S). This kind of simplification in the notation
is made for all the other combinatorial invariants introduced along the paper.
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The multiplicity of S is the least positive integer of S and is denoted m(S), or
simply m. The Frobenius number of S is the largest integer that does not belong to
S, and is denoted F(S). The conductor of S is simply F(S)+ 1. Wilf’s notation will
be used for the conductor: χ(S), or simply χ . Note that χ(S) is the smallest integer
in S from which all the larger integers belong to S. Let q(S) = �χ(S)/m(S)� be
the smallest integer greater than or equal to χ(S)/m(S). This number is called the
depth of S and is frequently denoted just by q. It is worth to keep in mind that
χ(S) ≤ m(S) q(S).

The set of left elements of S consists of the elements of S that are smaller than
χ(S). It is denoted L(S) (or simply L). A positive integer that does not belong to S
is said to be a gap of S (omitting value in Wilf’s terminology). The cardinality of
the set of gaps is said to be the genus of S and, following Wilf, is denoted by 	(S),
or simply by 	.

If x ∈ S, then F(S)− x 
∈ S. Thus, the following well known remark holds.

Remark 1.1 Let S be a numerical semigroup. Then 	(S) ≥ χ(S)/2.

As usual, |X| denotes the cardinality of a set X. It is immediate that 	(S) +
|L(S)| = χ(S). From the above remark it follows that χ(S) ≥ 2 |L(S)|.

The number of primitives of S is called the embedding dimension of S. As it is
just the cardinality of P(S), it can be denoted |P(S)|, but in this paper I will mainly
use the notation d(S), or simply d; d stands for dimension (a short for embedding
dimension).

An integer x is said to be a pseudo-Frobenius number of S if x 
∈ S and x+s ∈ S,
for all s ∈ S \ {0}. The cardinality of the set of pseudo-Frobenius numbers of S is
said to be the type of S and is denoted by t(S). The notion of type has been an
important ingredient in the discovery of various families of numerical semigroups
satisfying Wilf’s conjecture, due to Proposition 3.1 below. Another important tool,
which is used in a crucial (and frequently rather technical) way in the proofs of some
results presented in this survey is the Apéry set (with respect to the multiplicity):
Ap(S,m) = {s ∈ S | s −m 
∈ S}.

Let X be a set of positive integers. The notation 〈X〉t is used to represent the
smallest numerical semigroup that contains X and all the integers greater than or
equal to t .

For a numerical semigroup S, the interval of integers starting in χ(S) and having
m(S) elements is called the threshold interval of S (following a suggestion of
Eliahou).

1.2 A Convenient Way to Visualize Numerical Semigroups

The pictures in this paper were produced using the GAP [21] package IntPic [9],
while the computations have been carried out using the GAP package numericals-
gps [11].
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Fig. 1 Pictorial
representation of the
numerical semigroup
〈5, 13, 21, 22, 24〉

20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Let S be a numerical semigroup. The set of nonnegative integers up to χ +m−1
clearly contains L and it is easy to see that it contains P as well. It is helpful to
dispose the mentioned integers into a table and to highlight those that, in some
sense, are special.

Several figures will be presented to give pictorial views of numerical semigroups.
Each of them consists of a rectangular (q+1)×m-table and the entries correspond-
ing to elements of the semigroup are highlighted in some way. Some gaps can also
be emphasized. The entries in uppermost row are those of the threshold interval.

Example 1.1 Figure 1 is a pictorial representation of the numerical semigroup
〈5, 13〉20 = 〈5, 13, 21, 22, 24〉. The elements of the semigroup are highlighted and,
among them, the primitive elements and the conductor are emphasized. When an
element is highlighted for more than one reason, gradient colours are used.

Observe that there is at most one primitive per column. This happens exactly when
the semigroup is of maximal embedding dimension.

Note that all the integers in a given column are congruent modulo m. In particular,
an element belongs to the Apéry set relative to m if and only if it is the lowest
emphasized element in some column (provided that no gaps (for instance the
pseudo-Frobenius numbers) are highlighted).

For the benefit of the reader, I explain the way I produced Fig. 1, including the
GAP code used. To start, GAP is taught what my numerical semigroup is (see the
manual of numericalsgps for details).

ns := NumericalSemigroup(5,13,21,22,24);

Then one can use the following commands to produce the TikZ code for the picture
shown (which can be included in a LATEX document):

GAP-code 1 #cls is given just to make a change to the default colors
cls := [ "blue","-red","red!70", "black!40" ];
P := MinimalGenerators(ns);
m := Multiplicity(ns);
c := Conductor(ns);
q := CeilingOfRational(c/m);
rho := q*m-c;
list := [-rho .. c+m-1];
ti := [c..c+m-1];
importants := Union(SmallElements(ns),ti);
options := rec(colors := cls,highlights:=[[c],importants,P]);
tkz := IP_TikzArrayOfIntegers(list,m,options);;
Print(tkz);
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38 39 40 41 42 43 44 45 46 47 48 49
26 27 28 29 30 31 32 33 34 35 36 37
14 15 16 17 18 19 20 21 22 23 24 25
2 3 4 5 6 7 8 9 10 11 12 13
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Fig. 2 Pictorial representation of 〈12, 19, 20, 22, 23, 26, 27, 28, 29〉, with the pseudo-Frobenius
numbers highlighted

The function IP_TikzArrayOfIntegers (which produces the TikZ code
from the information previously computed using numericalsgps) is part of the
intpic package. The manual of the package can be consulted for details and
examples. In particular, the manual contains a complete example showing a possible
way to include the picture (or its TikZ code) in a LATEX document.

Executing the following command, the created picture should pop up. As this
command depends on some other software, namely the operating system, some extra
work on the configuration may be needed.

IP_Splash(tkz);

If everything goes well, the figure (in pdf format) can be saved and included in the
LATEX document in some standard way.

Example 1.2 Figure 2 is just another example. The following GAP session shows
some important data: a numerical semigroup and its pseudo-Frobenius numbers.
These are highlighted in the figure, in addition to elements of the semigroup, as in
Example 1.1.

gap> ns := NumericalSemigroup(12, 19, 20, 22, 23, 26, 27, 28, 29);;
gap> Conductor(ns);
38
gap> pf := PseudoFrobenius(ns);
[ 16, 30, 33, 37 ]

The picture can be obtained with just small changes from GAP-code 1. Besides
redefining the numerical semigroup, it suffices to replace the line beginning with
options by the following two lines of code:

pf := PseudoFrobenius(ns);;
options := rec(colors := cls,highlights:=[[c],importants,P,pf]);;

In order to obtain an image just showing the shape, the options can be changed
as follows:

GAP-code 2 # options to produce the shape
options := rec(
highlights:=[[],[],[c],importants,[],[],[],[],P],
cell_width := "6",colsep:="0",rowsep:="0",inner_sep:="2",
shape_only:=" ",line_width:="0",line_color:="black!20");;
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2 Two Problems Posed by Wilf

This section starts with a few words on Wilf’s paper [36], including a transcript of
the two problems that Wilf left open. Then, a little about each problem is said.

2.1 Wilf’s Paper

Wilf’s concern was: to present an algorithm, which, given a numerical semigroup
S and a finite generating set for S, finds the conductor of S, decides whether a
given integer is representable (in terms of the elements of the generating set), finds
a representation of an element of S, and determines the number of omitted values of
S.

These are problems that many researchers interested in combinatorial problems
related to numerical semigroups are nowadays still concerned with. In a somewhat
more modern language, one would say that Wilf was concerned with the Frobenius
problem (see [30]), the membership problem, factorization problems (see [22]) and
the problem of determining the genus. These problems continue to be (are at the
base of) active fields of research.

The circle of lights algorithm explicitly given in [36] determines both the
conductor and the genus of a numerical semigroup provided that a finite generating
set is at hand. Wilf also suggests a few changes to the circle of lights algorithm
in order test membership and also to find a factorization. He also observed that to
test membership, a suggestion of Brauer [6] should be incorporated: it involves the
use of the Apéry set (relative to the multiplicity). Another observation that I would
like to make is that the (space and time) complexity is explicitly given, which is a
relevant contribution to the overall quality of Wilf’s paper. It is extremely agreeable
to read and this without doubt contributes to the success of the problems stated in it.

At the end of Wilf’s article one finds the following two problems. It should be
understood that the positive integer k represents the embedding dimension of some
numerical semigroup.

Problem 2.1 ([36]) Wilf asked:

(a) Is it true that for a fixed k the fractionΩ/χ of omitted values is at most 1−(1/k)
with equality only for the generators k, k + 1, . . . , 2k − 1?

(b) Let f (n) be the number of semigroups whose conductor is n. What is the order
of magnitude of f (n) for n→∞?

The first problem consists in fact of two problems. They can be stated explicitly
as follows:

Problem 2.2 Wilf’s problem (a) splits into two problems.

(a.i) Is it true that for a fixed k the fraction Ω/χ of omitted values is at most
1− (1/k)?
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(a.ii) Is it true that for a fixed k the fraction Ω/χ of omitted values is 1 − (1/k)
only for the generators k, k + 1, . . . , 2k − 1?

Problem (a.i) is nowadays known as Wilf’s conjecture. Sylvester’s result (which
is mentioned in the first page of Wilf’s paper) gives counter examples to Prob-
lem (a.ii). Apparently Wilf forgot about them. Nowadays there are other counter
examples known, but a characterization of those semigroups for which the equality
holds is an open problem (see Sect. 2.3).

2.2 Problem (a.i): Wilf’s Conjecture

To a numerical semigroup S one can associate the following number denoted W(S)
and called the Wilf number of S:

W(S) = |P(S)||L(S)| − χ(S). (1)

A numerical semigroup is said to be a Wilf semigroup if and only if its Wilf
number is nonnegative. Wilf’s conjecture can be stated as follows:

Conjecture 2.1 (Wilf [36]) Every numerical semigroup is a Wilf semigroup.

It is a simple exercise to verify that Conjecture 2.1 is precisely Problem 2.2 (a.i).
There is another number that can be associated to a numerical semigroup, just

as Wilf number is, and which has revealed great importance in recent research (as
the reader will be able to confirm, in particular when reading Sect. 3.8). Let S be
a numerical semigroup and let D = P(S) ∩ {χ, . . . , χ +m−1} be the set of non
primitives in the threshold interval. Eliahou [16] associated to S the number E(S)
that appears in Eq. (2) below and used the notation W0(S) to represent it. I prefer
the notation E(S), and use the terminology Eliahou number of S:

E(S) = |P∩L||L| − q|D| + q m−χ . (2)

Eliahou [16, Pg. 2112] observed that there are numerical semigroups with
negative Eliahou number and stated the following problem which is still open.

Problem 2.3 Give a characterization of the class of numerical semigroups whose
Eliahou number is negative.

2.3 Problem (a.ii): Another Open Problem

A very nice result of Sylvester [34] gives a formula for the Frobenius number of a
numerical semigroup of embedding dimension 2. A closed formula (of a certain
type) for the Frobenius number of a numerical semigroup of higher embedding
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dimension is not at reach (see [8] or [30, Cor. 2.2.2]). Sylvester’s results can be
written as follows (see [31]): if S = 〈a, b〉 is a numerical semigroup of embedding
dimension 2, then F(S) = ab − a − b, and 	(S) = χ(S)/2. From this, it is
immediate that for a numerical semigroup S of embedding dimension 2, W(S) = 0.
The fact that numerical semigroups of the form 〈m, km+1, . . . km+m−1〉 (which
are of maximal embedding dimension and generated by some generalized arithmetic
sequences) have Wilf number equal to 0 is straightforward (see [19, 28]).

Whether these are the only numerical semigroups for which Wilf number is 0 is
a slight modification of Problem 2.2(a.ii) and is open. I rephrase the question stated
by Moscariello and Sammartano.

Problem 2.4 ([28, Question 8]) Let S = 〈m, g2, . . . , gd〉 be a numerical semi-
group with multiplicity m and embedding dimension d. Is it true that if W(S) = 0,
then d(S) = 2 or d(S) = m(S) and there exists an integer k ≥ 1 such that
gi = km+(i − 1), for i ∈ {2, . . . , d}?

Moscariello and Sammartano observed that in order to answer affirmatively this
question it suffices to prove that for a semigroup with Wilf number equal to 0, either
its embedding dimension is 2 or it has maximal embedding dimension.

They also observed that no numerical semigroup of genus up to 35 provides a
negative answer to the question.

Kaplan [23, Prop. 26] has shown that Problem 2.4 has a positive answer in the
case of numerical semigroups whose multiplicity is at least half of the conductor.
The same holds for numerical semigroups of depth 3 (see a remark by Sammartano
in [16, Rem. 6.6]), thus concluding that there are no counter examples among the
semigroups satisfying χ ≤ 3 m.

2.4 Problem (b): Counting Numerical Semigroups

Wilf’s Problem 2.1(b) can be viewed as a problem about counting numerical semi-
groups by conductor. Backelin [1] addressed this problem. A slight modification
consists on counting by genus. Great attention has been given to this problem
after Bras-Amorós [5] proposed some conjectures on the theme. Some of these
conjectures were solved by Zhai [37], while others remain open. For an excellent
survey (which in particular contains references for counting by conductor and has
an outline of Zhai’s proofs), see Kaplan [24].

Denote respectively by N(g) and t (g) the number of numerical semigroups of
genus g and the number of numerical semigroups of genus g satisfying χ(S) ≤
3 m(S).

In the paper where he proved some of the conjectures of Bras-Amorós (one of
them being that the sequence

(
N(g)
)

behaves like the Fibonacci sequence), Zhai
also proved that the proportion of numerical semigroups such that χ(S) ≤ 3 m(S)
tends to 1 as g tends to infinity, as conjectured by Zhao [38].
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Proposition 2.1 ([37]) With the notation introduced, the following holds:

lim
g→∞

t (g)

N(g)
= 1.

I will leave here a question that can be stated in a similar way to Zhao’s
conjecture. It will be better appreciated when reading Sect. 3.6 (and confronting
with Sect. 3.8).

Denote by p(g) the number of numerical semigroups of genus g satisfying
d(S) ≥ m(S)/3.

Question 2.1 Does limg→∞ p(g)
N(g)

exist?

3 Some Classes of Wilf Semigroups

As already observed, it follows from a result of Sylvester that semigroups of
embedding dimension 2 have Wilf number equal to 0. In particular, semigroups
of embedding dimension 2 are Wilf semigroups. Many other classes are known to
consist of Wilf semigroups. This section gives an account of a large number of them.

The theme is rather popular and it is frequent to check a family of numerical
semigroups against Wilf’s conjecture, whenever that new family of numerical
semigroups is investigated for some reason. It may well happen that some results
are not referred to in this paper. This is far from meaning that I do not consider
the ideas involved important. In a few cases this may be a matter of choice, but
most probably it simply means that the results are not part of my very restricted
knowledge. For that, I humbly express my apologies both to the authors and the
readers.

The results are split into several subsections, according to a criterion that seems
difficult to explain. It finally just aims at putting results together so that they can be
compared with ease.

Most of the families considered are described through at least two combinatorial
invariants such as embedding dimension, the multiplicity or the conductor. Excep-
tions (besides finite sets) are families that are completely described by using only
one invariant among the embedding dimension, the multiplicity or the number of
left elements.

Inside each subsection several results are mentioned (through precise numbered
statements or just in the text) and there are cases in which the most general one is
stated as a theorem. In a few cases there are results mentioned in more than one
subsection.

In the first subsection, there is an emphasis on a particular ingredient used
along the proofs of the various results. The ingredient is an inequality involving
the type. As illustrations of the results that can be found there, we shall see that
semigroups with embedding dimension up to three, almost symmetric numerical
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semigroups and those semigroups generated by generalized arithmetic sequences
are Wilf semigroups.

The second subsection is about families of semigroups (somehow explicitly)
given by some sets of generators. The examples therein share the particularity that
all the members have negative Eliahou number.

The third subsection refers to numerical semigroups with nonnegative Eliahou
number.

The fourth subsection is dedicated to constructions that are somehow natural. In
fact, only one such construction is given here: dilations of numerical semigroups.
This subsection could certainly be filled with other constructions. My choice just
reflects the feeling that possible generalizations could be worth exploring.

Then there is a subsection devoted to numerical semigroups of small multiplicity.
The sixth subsection is about results in which the main attention is given to

semigroups with large embedding dimension, when compared to the multiplicity.
Next there appears a subsection containing a result involving numerical semi-

groups with big multiplicities and possibly small embedding dimensions.
The eighth subsection is similar to the sixth, but now the results have an emphasis

on semigroups with large multiplicity, when compared to the conductor.
In ninth subsection there is a result taking into account an invariant not previously

considered (at least in a fundamental way, to the best of my knowledge). It is the
second smallest primitive, sometimes called the ratio.

The final subsection is concerned with families of numerical semigroups that can
be described using only one combinatorial invariant.

3.1 The Type as an Important Ingredient

The following proposition, due to Fröberg, Gottlieb and Haeggkvist, is at the base of
some results on Wilf’s conjecture. It implies that semigroups whose type is smaller
than its embedding dimension are Wilf.

Proposition 3.1 ([19, Theorem 20]) Let S be a numerical semigroup. Then
χ(S) ≤ (t(S)+ 1) |L(S)|.

By proving that the type of a numerical semigroup of embedding dimension 3 is
either 1 or 2 ([19, Th. 11]) and using the fact that χ ≥ 2 |L| referred in Sect. 1.1,
they obtained that numerical semigroups of embedding dimension 3 are Wilf, a
result that Dobbs and Matthews [14, Cor. 2.6] reproved using a different approach.
Using Sylvester’s result for embedding dimension 2 and the fact that N is Wilf, the
same authors obtained the following result.

Theorem 3.1 ([19, Th. 20], [14, Th. 2.11]) Numerical semigroups of embedding
dimension smaller than 4 are Wilf.

Since there is no upper bound for the type of numerical semigroups of embedding
dimension bigger than 3 (see [19, pg. 75], for an example due to Backelin),
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Proposition 3.1 can not be used to obtain other general results (but can, and has
been applied successfully to particular families of semigroups).

A numerical semigroup S is said to be irreducible if it cannot be expressed as
the intersection of two numerical semigroups properly containing it. S is said to be
symmetric if it is irreducible and F(S) is odd and it is said to be pseudo-symmetric
if it is irreducible and F(S) is even. One could take the following as definition
(see [31, Cor 4.5]): S is symmetric if and only if	(S) = χ(S)/2, while S is pseudo-
symmetric if and only if 	(S) = (χ(S)+ 1)/2.

It can be proved as a simple exercise that irreducible numerical semigroups are
Wilf. A more involved proof could be to observe that the type of this class of
semigroups does not exceed 2.

Proposition 3.2 ([14, Prop. 2.2]) Irreducible numerical semigroups are Wilf.

The above result was generalized by Marco La Valle in [2, Th. 5.5]. Before stating
this generalization, a further definition is needed. A numerical semigroup is said to
be almost symmetric if its genus is the arithmetic mean of its Frobenius number and
its type (see [3]). It is a class of semigroups that includes the symmetric and the
pseudo-symmetric ones.

Proposition 3.3 ([2, Th. 5.5]) Almost symmetric numerical semigroups are Wilf.

As a consequence of Theorem 3.1 Dobbs and Matthews derived an interesting
corollary:

Corollary 3.1 ([14, Cor 2.7]) If S is a numerical semigroup with χ ≤ 4 |L|, then
S is Wilf.

Also making use of Proposition 3.1, Kunz [25] obtained the following result (for
p and q coprime). See also Kunz and Waldi [26] for some other generalizations.

Proposition 3.4 ([26, Cor. 3.1]) Let S be a numerical semigroup with d(S) ≥ 3.
Let p and q be two distinct primitives of S. If g+h ∈ (p+S)∪(q+S), for any (non
necessarily distinct) primitives g and h of S, then t(S) ≤ d(S) − 1. In particular, S
is Wilf.

A semigroup generated by a generalized arithmetic sequence is a semigroup of
the form S = 〈m,hm + d, hm + 2d, . . . , hm + �d〉, where m, d, h, � are positive
integers such that m ≥ 2, gcd(m, d) = 1 and � ≤ m − 2. Note that m and d
being coprime ensures that S is a numerical semigroup. For a picture made up from
a semigroup generated by a generalized arithmetic sequence with m = 20, d =
9, h = 2, � = 8, see Fig. 3. By using a result of Matthews [27, Cor. 3.4] that
computes the type of a numerical semigroup generated by a generalized arithmetic
sequence, Sammartano observed the following:

Proposition 3.5 ([32, Prop. 20]) Numerical semigroups generated by generalized
arithmetic sequences are Wilf.
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Fig. 3 Shape of the semigroup 〈20, 49, 58, 67, 76, 85, 94, 103, 112〉

3.2 Semigroups Given by Sets of Generators

Let G be an abelian group. Let A ⊆ G be a nonempty finite subset and let h be a
positive integer. (For the purpose of this paper the reader may think of the group as
being a cyclic group Z/m and take h = 3; for more details, see [35, Chap. 4].)

The set A is said to be a Bh set if, for all a1, . . . , ah, b1, . . . , bh ∈ A, the equality

a1 + · · · + ah = b1 + · · · + bh
holds if and only if (a1, . . . , ah) is a permutation of (b1, . . . , bh).

Let m, a, b, n ∈ N>0 be such that n ≥ 3 and

(3m+ 1)/2 ≤ a < b ≤ (5m− 1)/3.

Let A ⊆ {a, . . . , b} be such that |A| = n − 1 and A induces a B3 set in Z/m.
That such a set exists follows from [17, Proposition 3.1]. Finally, let

S = 〈{m} ∪ A〉4m.

Eliahou and Fromentin proved the following result:

Proposition 3.6 ([17, Th. 4.1]) Let S = 〈{m}∪A〉4m be a semigroup as constructed
above. Then W(S) ≥ 9 and, in particular, S is a Wilf semigroup.

Let p be an even positive integer, let μ = μ(p) = p2

4 + 2p + 2 and let γ =
γ (p) = 2μ(p)− (p2 + 4

)
. The following holds:

Proposition 3.7 ([10, Prop.6]) Let S = S(p) = 〈μ, γ, γ + 1〉pμ. Then W(S) > 0
and, in particular, S is a Wilf semigroup.
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56 57 58 59 60 61 62 63 64 65 66 67 68 69
42 43 44 45 46 47 48 49 50 51 52 53 54 55
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Fig. 4 Pictorial representation of S(4) = 〈14, 22, 23〉56

Example 3.1 Figure 4 is a pictorial representation of the numerical semigroup S(4).
Note that S(4) is of the form 〈{m} ∪A〉4m, with m = 14 and A = {22, 23}.

To end this subsection I would like to make the following observations:

Remark 3.1 The numerical semigroups S = 〈{m} ∪ A〉4m and S(p) = 〈μ, γ, γ +
1〉pμ defined above have (possibly large) negative Eliahou numbers (see [10, 17]).
The proof that they are Wilf involves explicit counting.

Remark 3.2 The semigroups 〈{m} ∪A〉4m have depth 4, while, since the conductor
of S(p) is pμ, there is no bound for the depths of the semigroups S(p).

Remark 3.3 Several other families obtained using similar constructions to the one in
Proposition 3.7 can be found in the same paper. In particular, for any given integer
n, an infinite family of numerical semigroups with Eliahou number equal to n is
obtained. All these families consist entirely of Wilf semigroups.

3.3 Semigroups with Nonnegative Eliahou Numbers

Recall that the Eliahou number of a numerical semigroup was introduced in
page 45. The following result, which states that semigroups with nonnegative
Eliahou number are Wilf, appears in [16, Prop. 3.11] (see also [17, Cor. 2.3]).

Proposition 3.8 Let S be a numerical semigroup with E(S) ≥ 0. Then W(S) ≥ 0.

This result is similar to Proposition 3.1 in the sense that in order to prove that
a numerical semigroup is Wilf it suffices to prove that it has nonnegative Eliahou
number. The main consequences are referred to in Sect. 3.8.

While waiting for those consequences, let me refer a result obtained by Eliahou
and Marín-Aragón. As they observed, the number 12 that appears in the statement
is the best that can be obtained in this way: Example 3.1 gives a counter example
for |L| = 13.

Proposition 3.9 ([18]) If S is a numerical semigroup with |L| ≤ 12, then S has
nonnegative Eliahou number and therefore is Wilf.
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3.4 Natural Constructions

Barucci and Strazzanti gave in [4] the definition of dilation of S with respect to a.
NamelyD(S, a) = {0} ∪ {S + a | s ∈ S \ {0}}. Moreover they proved the following
result.

Proposition 3.10 ([4, Prop. 2.7]) If S is a Wilf semigroup S then so is any dilation
of S.

Thus, for each Wilf semigroup S, the class {D(S, a) | a ∈ S} is an infinite family
of Wilf semigroups.

O’Neill and Pelayo [29] defined shifted numerical semigroup (they used the (less
common for some historical reason, but more accurate) terminology “monoid”) as
follows. Let r1, . . . , rk be positive integers such that r1 < · · · < rk , and let d =
gcd(r1, . . . , rk). Let n > rk be an integer and assume that gcd(n, d) = 1. Under
these conditions,Mn = 〈n, n+ r1, . . . , n+ rk〉 is a numerical semigroup. It is called
a shifted numerical semigroup (with respect to the shift parameter n). Note that it is
the monoid obtained by shifting by n each generator of S = 〈r1, . . . , rk〉. As one of
the applications of the characterization obtained for the Apèry set ofMn in terms of
the Apèry set of the base semigroup S, they obtained the following result:

Proposition 3.11 ([29, Cor. 4.6]) If n > r2
k , then the shifted numerical semigroup

Mn is Wilf.

3.5 Semigroups with Small Multiplicity

Sammartano [32, Cor. 19] proved that semigroups of multiplicity not greater than
8 are Wilf. Eliahou [15] announced the same kind of result but for multiplicity 12
(with a similar proof; see the comment just after Theorem 3.2). In the meantime,
Dhany [13, Cor. 4.10] had obtained the result for multiplicity 9.

A big breakthrough was obtained by Bruns, García-Sánchez, O’Neil and
Wilburne, who achieved multiplicity 17. (The first version of this paper referred
“multiplicity 16”, personally communicated by Pedro García-Sánchez.) Their proof
involves computational methods, combined with geometrical ones, such as the use
of Kunz polytopes.

Proposition 3.12 ([7]) Let S be a numerical semigroup with m ≤ 17. Then S is
Wilf.
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3.6 Semigroups with Large Embedding Dimension (Compared
to the Multiplicity)

As stated in Theorem 3.1, numerical semigroups with very small (≤3) embedding
dimension are Wilf. The same happens for those with large embedding dimension
(when compared to the multiplicity). There are several proofs of the fact that
semigroups of maximal embedding dimension (i.e., with embedding dimension
equal to the multiplicity). The first one (to the best of my knowledge) is due to
Dobbs and Matthews [14, Cor. 2.4]. Sammartano [32, Th. 18], by means of a rather
technical proof involving Apéry sets and the counting in intervals of length m
of elements in the semigroup, proved that numerical semigroups with embedding
dimension at least half the multiplicity are Wilf. With refined arguments, Dhayni
(see also her thesis [12, Th. 2.3.13]) generalized Sammartano’s result.

Proposition 3.13 ([13, Th. 4.12]) Let S be a numerical semigroup with(
2+ 1

q

)
d ≥ m. Then S is Wilf.

Eliahou obtained the following impressive generalization by using a graph
theoretical approach. The concept of matching (set of independent edges) in a
certain graph associated to the Apéry set is used.

Theorem 3.2 ([15]) Let S be a numerical semigroup with 3 d(S) ≥ m(S). Then S
is Wilf.

3.6.1 Some Comments

1. The previous result implies that semigroups of multiplicity up to 12 are Wilf,
as already mentioned. We rephrase an argument due to Sammartano: by The-
orem 3.1, a non Wilf semigroup satisfies d(S) ≥ 4. As it must also satisfy
3 d(S) < m(S), it follows that if S is non Wilf, then m(S) > 12.

2. A positive answer to Question 2.1 would lead to possibly interesting conse-
quences. For instance, if the limit were 1/2, one could conclude that asymp-
totically, as 	 grows, half of the numerical semigroups satisfy 3 d ≥ m, and
consequently are Wilf.

Two other simple consequences of Theorem 3.2 follow. The first is a general-
ization of a result of Dhany [13, Th. 4.9], who proved that semigroups satisfying
d ≥ m−5 are Wilf. At this stage, this remark does not give anything new, but gives
a very explicit result. (The first version of this paper contained a weaker result, with
the same proof. This is due to the fact that at the time the first version of the paper
was written the number appearing in Proposition 3.12 was 16 and now is 17. The
statement in the first version was “If d(S) ≥ m(S)− 10, then S is Wilf”.)

Remark 3.4 If d(S) ≥ m(S)− 12, then S is Wilf.
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Proof If m(S) ≤ 17, then Proposition 3.12 can be used. If m(S) > 17, then
m(S)/3 ≥ 6. But in this case m(S) − 12 ≥ m(S)/3. In fact, this last inequality
is equivalent to 2 m(S) ≥ 36, which holds by hypothesis. ��

Another consequence (it suffices Sammartano’s result to get it), was observed by
Eliahou.

Proposition 3.14 ([16, Prop. 7.6]) Let S be a numerical semigroup with
gcd(L∩P) ≥ 2. Then S is Wilf.

3.7 Semigroups with Big Multiplicity (and Possibly Small
Embedding Dimension)

Moscariello and Sammartano proved that for every fixed value of �m / d� the
conjecture holds for all values of m which are sufficiently large and are not divisible
by a finite set of primes. Recall from previous subsection that the cases �m / d� ≤ 3
have been solved.

Proposition 3.15 ([28, Th. 1]) Let S be a numerical semigroup. Let ρ =⌈m(S)
d(S)

⌉
and let φ be the product of prime factors of ρ. If ρ > 3, m(S) ≥

ρ(3ρ2−ρ−4)(3ρ2−ρ−2)
8(ρ−2) and gcd(m(S), φ) = 1, then S is Wilf.

The multiplicities of the semigroups that arise from Proposition 3.15 are large,
as the following GAP session suggests (by showing that for ρ = 4 the smallest
multiplicity is 1680).

gap> mult := r -> (r*(3*r^2-r-4)*(3*r^2-r-2))/8*(r-2);
function( r ) ... end
gap> mult(4);
1680

3.8 Semigroups with Large Multiplicity (Compared
to the Conductor)

It was proved by Kaplan [23, Th. 24] that numerical semigroups with conductor not
greater than twice the multiplicity are Wilf. This result was generalized by Eliahou.
One of the ingredients he used is a theorem of Macaulay on the growth of Hilbert
functions of standard graded algebras. In fact, he proved the following:

Proposition 3.16 ([16, Th. 6.4]) Let S be a numerical semigroup with χ(S) ≤
3 m(S). Then S has nonnegative Eliahou number.
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This result combined with Proposition 3.8 leads to the following major fact. (Its
importance can be better appreciated by seeing the comments that follow the
statement.)

Theorem 3.3 ([16, Cor. 6.5]) Let S be a numerical semigroup with χ(S) ≤ 3 m(S).
Then S is Wilf.

3.8.1 Some Comments

1. Denote by e(g) the number of numerical semigroups of genus g having positive
Eliahou number. Combining Proposition 3.16 with Zhai’s Proposition 2.1 one
sees that limg→∞ e(g)

N(g)
= 1. Thus, in the sense given by this limit, one can

say that asymptotically, as the genus grows, all numerical semigroups have
nonnegative Eliahou number. Consequently, asymptotically, as the genus grows,
all numerical semigroups are Wilf.

2. I observe that, despite this asymptotic result concerning Eliahou numbers, there
are infinitely many numerical semigroups with negative Eliahou number (see
[10, 17]). All the examples given in the mentioned papers are Wilf semigroups
(some of them appear in Sect. 3.2).

3.9 Considering Unusual Invariants

The second smallest primitive is sometimes called the ratio (see [31, Exercise 2.12]).
Spirito proved that if the ratio is large and the multiplicity is bounded by a

quadratic function of the embedding dimension, then S is Wilf. He also proved
various related statements. As an illustration, I choose one that is rather explicit:

Proposition 3.17 ([33, Prop 4.6]) Let S be a numerical semigroup with ratio r and
embedding dimension d ≥ 10. If

r >
χ(S)+m(S)

3
and m(S) ≤ 8

25
d2+1

5
d−5

4
(3)

then S is a Wilf semigroup.

Remark 3.5 It is straightforward to check that if d ≤ 9, then 8/25d2+1/5d−5/4 ≤
3d . The following GAP session may help to quickly convince the reader:

gap> f := d -> 8/25*d^2 + 1/5*d - 5/4;
gap> Int(f(9));
26
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One concludes by using Theorem 3.2 that the restriction d ≥ 10 can be removed
from the statement of Proposition 3.17. Moreover, when d < 10 there is no need to
impose any restriction on the ratio.

3.10 Families Described Through One Invariant

Families of semigroups described by limiting the multiplicity of its members were
already considered in Sect. 3.5. Proposition 3.12 could have been stated in this
subsection, as well as Proposition 3.9 which refers to the number of left elements.

Dobbs and Matthews [14, Th. 2.11] proved that numerical semigroups with |L| ≤
4 are Wilf semigroups. As a corollary they obtained that semigroups with χ ≤ 21
are Wilf. Eliahou [16, Prop. 7.4] observed that numerical semigroups with less than
7 left elements are Wilf. These results have been largely superseded.

Recall that Proposition 3.9 gives a similar result, but the restriction on the number
of left elements was weakened: numerical semigroups with |L| ≤ 12 are Wilf.

Let S be a non Wilf semigroup. By Proposition 3.12, m(S) ≥ 18. Using
Proposition 3.16, which guarantees that non Wilf semigroups satisfy χ(S) >
3 m(S), one gets that χ(S) > 54. This proves that semigroups with conductor
smaller than 55 are Wilf.

Fromentin and Hivert, through exhaustive computation, have shown that there
are no non Wilf semigroups with genus smaller than 61. The previous published
record, genus 51, had been obtained by Bras-Amorós [5].

Theorem 3.4 ([20]) Every numerical semigroups of genus up to 60 is Wilf.

Since the genus of a numerical semigroup is not smaller than its conductor plus
one, the following consequence, which supersedes the above results concerning the
conductor, is immediate.

Corollary 3.2 Semigroups whose conductor does not exceed 61 are Wilf.

(I am currently developing techniques to replace in Theorem 3.4 the integer 60
by a larger one. It will probably be part of an experimental preprint of mine which is
in an advanced phase of preparation and is provisionally entitled “Wilf’s conjecture
on numerical semigroups holds for small genus”.)

4 Quasi-Generalization

Denote by S the class of all numerical semigroups. Let W = {S ∈ S | W(S) ≥ 0}
and let E = {S ∈ S | E(S) ≥ 0}.

Whether S =W is presently not known (Wilf’s conjecture says that the equality
holds, but it is still a conjecture). That E ⊆ W follows from Proposition 3.8, and
up to genus 60 there are exactly 5 numerical semigroups not in E, thus showing that
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the inclusion is strict (the examples were obtained by Fromentin and appear in [16,
pgs 2112,2113]). The following is a consequence of Remark 3.1.

Fact 4.1 W \ E is infinite.

Let P be a property (about numerical semigroups). For instance, “d ≥ 3” is such
a property. Let P = {S ∈ S | S |� P} be the class of numerical semigroups
satisfying P. With this notation, most results in the previous sections can be written
in the following form: “If S ∈ P, then S ∈W.”, or “If S satisfies P, then S is Wilf”.

I invite the reader to think of all the results as if they had been written in this
form. Some properties cannot be as nicely written as in the above example (“d ≥
3”). However, for instance, the statement “We say that S satisfies property P if and
only if S is of the form S(p), with p an even positive integer.” allows to write
Proposition 3.7 in the above form.

By doing so, one can associate a property to each result and conversely. Although
I do not intend to explicitly give names to all the properties corresponding to the
results stated, there are some exceptions:

• D3 stands for the property “d ≥ 3”, which is associated to Theorem 3.1. The
corresponding class of semigroups is D3.

Similarly, one has the correspondences:

• D—“3 d ≥ m”—Theorem 3.2—D;
• M—“χ ≤ 3 m”—Theorem 3.3—M;
• G60—“	 ≤ 60”—Theorem 3.4—G60.

It seems reasonable to add other exceptions: S,W,E are the properties about
numerical semigroups associated, respectively, to S,W,E. (Note that S is trivial:
it is satisfied by all numerical semigroups.)

Fact 4.2 All the classes D3,D,M,G60 are strictly contained in W. Furthermore,
for every P ∈ {D3,D,M,G60}, W \P is infinite.

Proof By Proposition 3.16, M ⊆ E. Thus W \ E ⊆ W \M. Since, by Fact 4.1,
W\E is infinite, it follows that W\M is infinite. The reader will have no difficulties
in giving examples showing that also W \D3, W \D and W \G60 are infinite. ��

In what follows I will define a relation on properties (about numerical semi-
groups). It can be used to, in some sense, compare classes of numerical semigroups,
or even results taking into account the above correspondences. Note that I do not
want to make any judgement on the results and even less on their proofs. It may
well happen that the ideas involved in the proof of a given result will in the future
have a greater impact than the ideas involved in a proof of one of its generalizations.

A property P is said to be a generalization of a property Q if all the semigroups
satisfying Q also satisfy P, that is, Q ⊆ P (or Q \ P is empty). It is clear that a
result that proves a generalization is better, but this can not be said in a definitive way
when the arguments in the proofs are different. Except in some obvious cases (such
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as happens in several subsections of Sect. 3), just comparing through set inclusion
is not of great help.

A property P is a quasi-generalization of a property Q if all but finitely many
numerical semigroups satisfying Q also satisfy P, that is, Q \ P is either empty
or finite. It is straightforward to check that quasi-generalization is reflexive and
transitive (a partial quasiorder) in the set of properties on numerical semigroups.
The notation Q ≺ P is used for “P is a quasi-generalization of Q”. In symbols:
Q ≺ P if and only if |Q \P| <∞.

I am far from saying that properties that are quasi-generalized by others are not
important (even without taking the proofs into account). According to this definition,
any property defining an infinite class of numerical semigroups quasi-generalizes
all the properties defining finite classes. For instance, the property G60 is quasi-
generalized by the properties associated to the results stated in previous section that
define infinite classes. But none of these results generalizes G60 (as the reader can
easily check), which, from my point of view, makes it a property of high interest.

I encourage anyone who finds a new property (such that all numerical semigroups
in the class of semigroups satisfying that property are Wilf) to compare it with
other properties for quasi-generalization. Observing that it is not known any quasi-
generalization P of the property under consideration such that P ⊆ W probably
will count in favour of the results obtained.

My aim now is to compare, under quasi-generalization, the properties for which
a name was given: S,W,E,D3,D,M, and G60. They do not form a chain, as it
follows from next result. The impatient reader may already take a look at the lattice
depicted in Fig. 7.

Proposition 4.1 M and D are not comparable under quasi-generalization.

Proof For a given m > 1, S = 〈m〉mk = 〈m, km + 1, . . . , km + m − 1〉 is a
semigroup of maximal embedding dimension, thus satisfies D and, for k > 3, S
does not satisfy M. As there are infinitely many such semigroups, it follows that
D \M is infinite and therefore D ⊀ M.

It remains to prove that M ⊀ D, which amounts to show that there are infinitely
many semigroups in M with small embedding dimension.

The proof of this fact begins with a trivial observation. As usual, for sets of
integers A and B, A + B denotes the set {a + b | a ∈ A, b ∈ B}. Let X =
{0, 1, 2, 3} ∪ {7k | k ∈ N}.
Claim The set X +X + X consists of all nonnegative integers. ��
Proof of the Claim ClearlyX+X+X ⊆ N. It is also clear that {0, . . . , 6} ⊆ X+X.
By the Euclidean algorithm every integer can be written in the form 7k + ρ, with
k an integer and ρ ∈ {0, . . . , 6}. Consequently, any nonnegative integer belongs to
X +X +X, which proves the claim.

Let m be a positive integer and let Y = {m} + X. Consider the semigroup S =
〈Y 〉. Example 4.1 helps to visualize it for two possible values of m.

Since, by the above Claim, Y +Y +Y = {3m}+X+X+X = {3m}+N holds,
it follows that χ(S) ≤ 3 m(S). Thus S satisfies M.
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Fig. 5 Pictorial representation of the semigroup obtained withm = 28

Fig. 6 Shape of the numerical semigroup obtained with m = 80

It is straightforward to check that P(S) = {m,m+ 1,m+ 2,m+ 3} ∪ {7k +m |
0 < k ≤ �m7 �− 1}. Thus the embedding dimension of S is 4+�m7 �− 1 = 3+�m7 �.
Note that 3+ m

7 ≤ 3+�m7 , and that 3+ m
7 <

m
3 if and only if 7m−3m > 3×7×3,

that is 4m > 63. Thus one concludes that, for m > 15, S does not satisfy D. ��
Example 4.1 Let Y = {m,m + 1,m + 2,m + 3} ∪ {7k + m | 0 < k ≤ �m7 �} be
the set introduced in the proof of Proposition 4.1. Consider the semigroup S = 〈Y 〉.
Figures 5 and 6 give a pictorial representation for the cases m = 28 andm = 80 (in
the latter case only the shape is drawn).

The following GAP code can be used to give the semigroups.

m := 28;;
small_gens := [m,m+1,m+2,m+3];
other_gens := List([1..Int(m/7)], k -> 7*k+m);
ns := NumericalSemigroup(Union(small_gens,other_gens));;

Then an adaptation of the GAP-code 1 can be used to get the TikZ code. In order to
obtain an image just showing the shape, one can use the options in GAP-code 2.

Most of the indicated relations in the lattice represented in Fig. 7 have been
treated along the text in this section. That D and M are not comparable under quasi-
generalization is shown in Proposition 4.1. Thus, the following has been proved:

Proposition 4.2 With the notation introduced, one has the lattice in Fig. 7.

Other comparisons could be made. As an example, fix a Wilf semigroup S
(possibly with small multiplicity when compared to the conductor). It is easy to
check that m(D(S, a)) = m(S) + a and that χ(D(S, a)) = χ(S) + a. Thus,
m(D(S,a))
χ(D(S,a))

= m(S)+a
χ(S)+a tends to 1 when a tends to infinity. In particular, from a certain

point on, the quotient m
χ

is greater than 1/3 and so, from that point on, all the
semigroups satisfy M. Therefore, M quasi-generalizes the property corresponding
to Proposition 3.10, for any fixed S.

Denote by P4 the property associated to Proposition 3.15 with ρ = 4. As there
are infinitely many semigroups satisfying D whose multiplicity is even, we get that
D ⊀ P4. On the other hand, it is straightforward to check that there are infinitely
many semigroups satisfying P4 and with small embedding dimension (less than
m /3). Thus D � P4, and we conclude that D and P4 are not comparable under
quasi-generalization.
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Fig. 7 Lattice of some
numerical semigroup
properties (for
quasi-generalization)
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Let d ≥ 10 be an integer and denote by S(d,χ) the class of numerical semigroups
with embedding dimension d and conductor χ . Denote by r = r(S) the ratio (second
smallest primitive) of a numerical semigroup S. For fixed d and χ , consider the set

R(d,χ) =
{
S ∈ S(d,χ) | m ≤ 8 d2

25
+ d

5
− 5

4
and r >

⌊
χ +m

3

⌋}
.

Since no primitive of a numerical semigroup exceeds χ +m−1, the ratio of a
semigroup of embedding dimension d must be at most χ +m− d+1.

Note that the class of numerical semigroups satisfying Eq. (3) in Proposition 3.17
is:

Rd =
⋃

χ≥m

R(d,χ).

Consider now the class Rd\(M∪D). In set notation it may be written as follows:

{
S ∈ S | 3 d < m ≤ 8

25
d2+1

5
d−5

4
, χ > 3 m and

⌊
χ +m

3

⌋
< r ≤ χ +m− d+1

}
.

A natural question is whether this class is finite, that is, does the disjunction of the
properties M and D quasi-generalize the property associated to Proposition 3.17
(with d fixed)? Apparently there is no bound for the conductor, so one would be
temped to answer “yes”. But, observing that a big conductor will force a big ratio
and that, on the other hand, a small embedding dimension and a big ratio leads to a
huge conductor, one sees the question may be challenging.
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Gapsets of Small Multiplicity

Shalom Eliahou and Jean Fromentin

Abstract A gapset is the complement of a numerical semigroup in N. In this paper,
we characterize all gapsets of multiplicity m ≤ 4. As a corollary, we provide a new
simpler proof that the number of gapsets of genus g and fixed multiplicitym ≤ 4 is
a nondecreasing function of g.

Keywords Numerical semigroups · Genus · Kunz coordinates · Gapset
filtrations

1 Introduction

Denote N = {0, 1, 2, 3, . . . } and N+ = N \ {0} = {1, 2, 3, . . . }. For a, b ∈ Z, let
[a, b] = {z ∈ Z | a ≤ z ≤ b} and [a,∞[= {z ∈ Z | a ≤ z} denote the integer
intervals they span. A numerical semigroup is a subset S ⊆ N containing 0, stable
under addition and with finite complement in N. Equivalently, it is a subset S ⊆ N

of the form S = 〈a1, . . . , an〉 = Na1+· · ·+Nan for some globally coprime positive
integers a1, . . . , an.

For a numerical semigroup S ⊆ N, its gaps are the elements of N \ S, its genus
is g = |N \ S|, its multiplicity is m = min S \ {0}, its Frobenius number is f =
maxZ\S, its conductor is c = f +1, and its embedding dimension, usually denoted
e, is the least number of generators of S, i.e. the least n such that S = 〈a1, . . . , an〉.
Note that the conductor c of S satisfies c + N ⊆ S, and is minimal with respect to
this property since c − 1 = f /∈ S.

Given g ≥ 0, the number ng of numerical semigroups of genus g is finite, as
easily seen. The values of ng for g = 0, . . . , 15 are as follows:

1, 1, 2, 4, 7, 12, 23, 39, 67, 118, 204, 343, 592, 1001, 1693, 2857.
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In 2006, Maria Bras-Amorós made some remarkable conjectures concerning the
growth of ng. In particular, she conjectured [1] that

ng ≥ ng−1 + ng−2 (1)

for all g ≥ 2. This conjecture is widely open. Indeed, even the weaker inequality

ng ≥ ng−1 (2)

whose validity has been settled by Alex Zhai [9] for all sufficiently large g, remains
to be proved for all g ≥ 1. See also [2, 4, 7] for closely related information on the
numbers ng.

Still in [9], Zhai showed that ‘most’ numerical semigroups S satisfy c ≤ 3m,
where c and m are the conductor and multiplicity of S, respectively. For a more
precise statement, let us denote by n′g the number of numerical semigroups of genus
g satisfying c ≤ 3m. The values of n′g for g = 0, . . . , 15 are as follows:

1, 1, 2, 4, 6, 11, 20, 33, 57, 99, 168, 287, 487, 824, 1395, 2351.

Zhai showed then that limg→∞ n′g/ng = 1, as had been earlier conjectured by
Yufei Zhao [10]. In that sense, numerical semigroups satisfying c ≤ 3m may be
considered as generic.

Recently, the strong conjecture (1) has been established for generic numerical
semigroups. Here is the precise statement, first announced at the IMNS 2018
conference in Cortona (https://www.ugr.es/~imns2010/2018/).

Theorem 1 ([3], Theorem 6.4) The inequalities

n′g−1 + n′g−2 + n′g−3 ≥ n′g ≥ n′g−1 + n′g−2,

hold for all g ≥ 3.

The proof of this result essentially rests on the notion of gapset filtrations, a
new flexible framework to investigate numerical semigroups introduced in [3]. More
details are given in Sect. 2 since, here also, gapsets filtrations are at the core of the
present results.

Remark Let g ≥ 0,m ≥ 1 be two integers. We denote by �g,m the finite set of
all numerical semigroups of genus g and multiplicity m, and by ng,m = |�g,m| its
cardinality.

Since, for a numerical semigroup S of multiplicity m and genus g, the integers
1, . . . ,m− 1 belong to the complement N \ S, the relation g ≥ m− 1 holds. Thus
ng,m = 0 form ≥ g + 2, and so we have

ng =
g+1∑

m=1

ng,m.

https://www.ugr.es/~imns2010/2018/
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The first values of ng,m for g ≥ 0 and small fixed m are given below.

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .
m = 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
m = 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .
m = 3 0 0 1 2 2 2 3 3 3 4 4 4 5 5 5 . . .
m = 4 0 0 0 1 3 4 6 7 9 11 13 15 18 20 23 . . .
m = 5 0 0 0 0 1 4 7 10 13 16 22 24 32 35 43 . . .
m = 6 0 0 0 0 0 1 5 11 17 27 37 49 66 85 106 . . .

For instance, the unique numerical semigroup of multiplicity 1 is N. Nathan Kaplan
proposed the following conjecture in [6], a refinement of the conjectured inequality
(2).

Conjecture 1 Let m ≥ 2. Then

ng,m ≥ ng−1,m (3)

for all g ≥ 1.

On the other hand, still for m ≥ 2 fixed, there is no hope a stronger inequality such
as (1) may hold for the ng,m, as the reader can check by looking at the rows of the
above table.

Conjecture 1 is trivial for m = 2 since ng,2 = 1 for all g ≥ 1, and has been
settled for m = 3, 4, 5 in 2018 by Pedro A. García-Sánchez, Daniel Marín-Aragón
and Aureliano M. Robles-Pérez [5]. For that, they used a linear integer software
to count the number of integral points of the associated Kunz polytope. With it,
they first achieved formulas for ng,m for m = 3, 4, 5, and then proved them to
be increasing using a computer algebra system. The conjecture remains open for
m ≥ 6.

Our purpose in this paper is to give new proofs of Conjecture 1 for m = 3 and
m = 4 by constructing explicit injections

�g,3 → �g+1,3 and �g,4 → �g+1,4

for g ≥ 0, thereby establishing the desired inequalities ng+1,3 ≥ ng,3 and ng+1,4 ≥
ng,4. Thus, our proofs are computer-free and do not rest on counting formulas for
ng,3 and ng,4. These injections were first announced in [3].

2 Gapset Filtrations

The content of this section is mostly taken from [3].
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Definition 1 Let n ∈ N+. An additive decomposition of n is any expression of
the form n = a + b with a, b ∈ N+. We refer to the positive integers a, b as the
summands of this decomposition.

Definition 2 A gapset is a finite set G ⊂ N+ satisfying the following property: for
all z ∈ G, if z = x + y with x, y ∈ N+, then x ∈ G or y ∈ G. That is, for any
additive decomposition of z ∈ G, at least one of its summands belongs to G.

Notice the similarity of this definition with that of a prime ideal P in a ringR, where
for any z ∈ P , any decomposition z = xy with x, y ∈ R implies x ∈ P or y ∈ P .

Remark 1 It follows from the definition that a gapsetG is nothing else than the set
of gaps of a numerical semigroup S, where S = N \G.

Definition 3 We naturally extend the definitions of multiplicity, Frobenius number,
conductor and genus of a gapset G as being those of the corresponding numerical
semigroup S = N \G, respectively.

More directly, for a gapsetG, these notions may be described as follows:

– the multiplicity of G is the smallest integer m ≥ 1 such that m 
∈ G;
– the Frobenius number of G is max(G) if G 
= ∅, and −1 otherwise;
– the conductor of G is 1+max(G) if G 
= ∅, and 0 otherwise;
– the genus of G is g(G) = card(G).

Example 1 The set G = {1, 2, 3, 4, 6, 7, 11} is a gapset. For instance, for each
additive decomposition of 11, namely

1+ 10, 2+ 9, 3+ 8, 4+ 7, 5+ 6,

at least one of the two summands belongs to G. Let S = N \G = {0, 5, 8, 9, 10} ∪
[12,+∞[. Then S = 〈5, 8, 9, 12〉 as easily seen, whence S is indeed a numerical
semigroup. The multiplicity, conductor, Frobenius number, genus and embedding
dimension ofG and S are m = 5, c = 12, f = 11, g = 7 and e = 4, respectively.

2.1 The Canonical Partition

Lemma 1 Let G be a gapset of multiplicity m. Then

[1,m− 1] ⊆ G,
G ∩mN = ∅.

Proof By definition of the multiplicity,G contains [1,m− 1] but notm. Let a ≥ 2
be an integer. The formula am = m + (a − 1)m and induction on a imply that
am /∈ G. ��



Gapsets of Small Multiplicity 67

This motivates the following notation and definition.

Remark LetG be a gapset of multiplicitym. We denoteG0 = [1,m−1] and, more
generally,

Gi = G ∩ [im+ 1, (i + 1)m− 1] for all i ≥ 0. (4)

Definition 4 Let G be a gapset of multiplicity m and conductor c. The depth of G
is the integer q = �c/m�.
Proposition 1 Let G be a gapset of multiplicity m and depth q . Let Gi be defined
as in (4). Then

G = G0 �G1 � · · · �Gq−1 (5)

andGq−1 
= ∅. Moreover Gi+1 ⊆ m+Gi for all i ≥ 0.

Proof As G ∩ mN = ∅, it follows that G is the disjoint union of the Gi for i ≥ 0.
Let c be the conductor of G. Then G ⊆ [1, c − 1]. Since (q − 1)m < c ≤ qm by
definition of q , it follows that Gi = ∅ for i ≥ q , whence (5). Let f = c − 1. Since
f ∈ G, (q − 1)m ≤ f < qm and f 
≡ 0 mod m, it follows that f ∈ Gq−1.

It remains to show that Gi+1 ⊆ m + Gi for all i ≥ 0. Let x ∈ Gi+1. Since
Gi+1 ⊆ [(i + 1)m+ 1, (i + 2)m− 1], we have

x −m ∈ [im+ 1, (i + 1)m− 1].
Now x −m ∈ G since x = m+ (x −m) and m /∈ G. So x −m ∈ Gi . ��
Definition 5 Let G be a gapset. The canonical partition of G is the partition G =
G0 �G1 � · · · �Gq−1 given by Proposition 1.

Remark 2 The multiplicity m, genus g and depth q of a gapset G may be read off
from its canonical partitionG = �iGi as follows:

m = max(G0)+ 1,

g =
∑

i

|Gi |,

q = the number of parts of the partition.

2.2 Gapset Filtrations

LetG ⊂ N+ be a gapset. LetG = G0 �G1 � · · · �Gq−1 be its canonical partition.
For all 0 ≤ i ≤ q − 1, denote

Fi = −im+Gi. (6)
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Then Fi+1 ⊆ Fi for all i, as follows from the inclusion Gi+1 ⊆ m + Gi stated in
Proposition 1. This gives rise to the following definition.

Definition 6 Let G ⊂ N+ be a gapset of multiplicity m and depth q . The gapset
filtration associated to G is the finite sequence

(F0, F1, . . . , Fq−1) = (G0,−m+G1, . . . ,−(q − 1)m+Gq−1),

i.e. with Fi defined as in (6) for all i. Thus, as seen above, we have

F0 = [1,m− 1] ⊇ F1 ⊇ · · · ⊇ Fq−1. (7)

We define the multiplicity, Frobenius number, conductor and genus of a gapset
filtration F = (F0, . . . , Fq−1) from those of the corresponding gapset G, namely:

– the multiplicity of F is 1+max(F0) if F0 
= ∅ and 0 otherwise;
– the Frobenius number of F is (q−1)m+max(Fq−1) if F0 
= ∅ and−1 otherwise;
– the conductor of F is 1+ (q − 1)m+max(Fq−1) if F0 
= ∅ and 0 otherwise;
– the genus of F is card(F0)+ · · · + card(Fq−1).

Example 2 Consider the gapset G = {1, 2, 3, 4, 6, 7, 11} of Example 1. Its
multiplicity is m = 5, and its canonical partition is given by G0 = {1, 2, 3, 4},
G1 = {6, 7} andG2 = {11}. Thus, its associated filtration is

F = ({1, 2, 3, 4}, {1, 2}, {1}).

Definition 7 For integers g ≥ 1,m ≥ 1, we denote by F(g,m) the set of all gapset
filtrations of genus g and multiplicitym.

Note that any given gapset filtration F = (F0, . . . , Fq−1) corresponds to a unique
gapsetG, since (6) is equivalent to

Gi = im+ Fi. (8)

In particular, there is a straightforward bijection between gapsets G and gapset fil-
trations F , which naturally preserves the multiplicity, Frobenius number, conductor
and genus. Here is a direct consequence.

Proposition 2 For any integers g ≥ 1,m ≥ 1, we have

ng,m = |F(g,m)|.

Proof Straightforward from the above discussion. ��
This result allows us to study properties of the sequence g �→ ng,m in the setting

of gapset filtrations of multiplicitym. In particular, in order to establish its growth, it
suffices to exhibit injections from F(g,m) to F(g+ 1,m). This is what we achieve
in subsequent sections for m = 3 and m = 4.
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We start with the separate case m = 3, which can be treated in a straightforward
way and which points to a general strategy for larger values of m. Then, following
those clues, we introduce some general tools, and we end up applying them to the
case m = 4.

3 The Case m = 3

Any filtration (F0, . . . , Ft ) such that

{1, 2} = F0 ⊇ F1 ⊇ · · · ⊇ Ft 
= ∅

is of one of the two possible forms below, with the terms on the left standing as a
compact notation:

(12)r(1)s = ({1, 2}, . . . , {1, 2}︸ ︷︷ ︸
r

, {1}, . . . , {1}︸ ︷︷ ︸
s

),

(12)r(2)s = ({1, 2}, . . . , {1, 2}︸ ︷︷ ︸
r

, {2}, . . . , {2}︸ ︷︷ ︸
s

),

both with r ≥ 1 since F0 = {1, 2}, and s ≥ 0. We now characterize those filtrations
which are gapset filtrations of multiplicity 3.

Theorem 2 The gapset filtrations of multiplicity m = 3 are exactly the following
ones:

(12)r(2)s with 0 ≤ s ≤ r,
(12)r(1)s with 0 ≤ s ≤ r + 1,

both with r ≥ 1.

Note that g = 2r + s in both cases, since the genus of a gapset filtration F =
(F0, . . . , Fq−1) is given by the sum of the |Fi |.
Proof We start with the second case.

Case F = (12)r(2)s Then

F0 = · · · = Fr−1 = {1, 2},
Fr = · · · = Fr+s−1 = {2}.

Using (8) with m = 3, namelyGi = 3i + Fi for all i, let

G = G0 ∪ · · · ∪Gr+s−1 (9)



70 S. Eliahou and J. Fromentin

be the corresponding finite set. By construction,F is a gapset filtration if and only if
G is a gapset. So, when is it the case thatG is a gapset? We now proceed to answer
this question.

Step 1 The set G given by (9) has the following properties:

3N ∩G = ∅
3i + 1 ∈ G ⇐⇒ i ≤ r − 1

3i + 2 ∈ G ⇐⇒ i ≤ r + s − 1.

Indeed, this directly follows from the definition Gi = 3i + Fi and (9).

Step 2 For i ∈ N, any additive decomposition 3i + 1 = a + b is of the form

(a, b) = (3x + 1, 3(i − x)) or (3y + 2, 3(i − 1− y)+ 2)

for some integers 0 ≤ x ≤ i − 1 or 0 ≤ y ≤ i − 1. Similarly, any additive
decomposition 3i + 2 = a + b is of the form

(a, b) = (3x + 2, 3(i − x)) or (3y + 1, 3(i − y)+ 1)

for some integers 0 ≤ x ≤ i − 1 or 0 ≤ y ≤ i.

Step 3 Let 3i + 1 ∈ G, i.e. with i ≤ r − 1 according to Step 1. We now show
that for any additive decomposition 3i + 1 = a + b, either a or b belongs to G.
Using Step 1, if (a, b) = (3x + 1, 3(i − x)), then a ∈ G since x ≤ i − 1 and
we are done. Similarly, if (a, b) = (3y + 2, 3(i − 1 − y) + 2), then a ∈ G since
y ≤ i ≤ r − 1 ≤ r + s − 1 and we are done again.

Step 4 Let 3i + 2 ∈ G, i.e. with i ≤ r + s − 1. Let 3i + 2 = a + b be any additive
decomposition. If (a, b) = (3x+2, 3(i−x)), then a ∈ G since x ≤ i−1 and we are
done. Assume now (a, b) = (3y + 1, 3(i − y)+ 1) with 0 ≤ y ≤ i. Then a, b /∈ G
if and only if y, i − y ≥ r . This is only possible if i ≥ 2r and, since i ≤ r + s − 1
by hypothesis, the latter is equivalent to s−1 ≥ r . In particular, if s ≤ r , then either
a or b belongs to G. In summary, we have

(12)r(2)s is a gapset filtration ⇐⇒ G is a gapset ⇐⇒ s ≤ r,
as desired.
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Case F = (12)r(1)s The arguments are similar to those of the previous case. Here,
to start with, we have

F0 = · · · = Fr−1 = {1, 2},
Fr = · · · = Fr+s−1 = {1}.

The corresponding setG defined byGi = 3i+Fi for all i and (8) has the following
properties:

3N ∩G = ∅
3i + 1 ∈ G ⇐⇒ i ≤ r + s − 1

3i + 2 ∈ G ⇐⇒ i ≤ r − 1.

Analogously to Step 3 above, it is easy to see that for any additive decomposition
a + b = 3i + 2 where 3i + 2 ∈ G, then either a or b belongs to G.

On the other hand, let 3i + 1 ∈ G. Then, analogously to Step 4 above, we find
that there exists an additive decomposition 3i + 1 = a + b with a, b /∈ G if and
only if s ≥ r + 2. The details, using Step 2 and the above properties of G, are
straightforward and left to the reader. Therefore, G is a gapset if and only if s ≤
r + 1, as claimed. This concludes the proof of the proposition. ��

Here is a straightforward consequence of the above characterization and the main
result of this section.

Corollary 1 For all g ≥ 0, there is a natural injection

F(g, 3) −→ F(g + 1, 3).

In particular, we have ng+1,3 ≥ ng,3 for all g ≥ 0.

Proof Since F(g, 3) = ∅ for g ≤ 1, the statement holds in this case. Assume now
g ≥ 2. For F = (F0, . . . , Fq−1) ∈ F(g, 3), let us denote by f1(F ) the insertion
of a 1 in F at the unique possible position to get a new nonincreasing sequence of
subsets of [1, 2]. That is, for r, s ≥ 1, we define

(12)r
f1�−→ (12)r(1)

(12)r(1)s
f1�−→ (12)r(1)s+1

(12)r(2)s
f1�−→ (12)r+1(2)s−1.

When is it the case that f1(F ) is still a gapset filtration, of course automatically of
genus g + 1? In other words, when do we have that f1(F ) belongs F(g + 1, 3)?
Theorem 2 easily provides the following answer.
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• If F = (12)r(2)s ∈ F(g, 3), then f1(F ) ∈ F(g + 1, 3) for all r, s.
• If F = (12)r(1)s ∈ F(g, 3), then f1(F ) ∈ F(g + 1, 3) if and only if s ≤ r .
Recall that g = 2r + s in both cases. In particular, the only case where F ∈ F(g, 3)
but f1(F ) /∈ F(g + 1, 3) is for F = (12)r(1)s with s = r + 1, i.e. for F =
(12)r(1)r+1 ∈ F(g, 3) where g = 3r + 1.

Consequently, f1 provides a well-defined map

f1 : F(g, 3) −→ F(g + 1, 3),

obviously injective by construction, whenever g 
≡ 1 mod 3.
Similarly, for F ∈ F(g, 3), denote by f2(F ) the insertion of a 2 in F where it

makes sense. That is, for r, s ≥ 1, define

(12)r
f2�−→ (12)r(2)

(12)r(1)s
f2�−→ (12)r+1(1)s−1

(12)r(2)s
f2�−→ (12)r(2)s+1.

By Theorem 2 again, we have

• If F = (12)r(2)s ∈ F(g, 3), then f2(F ) ∈ F(g + 1, 3) if and only if s ≤ r − 1.
• If F = (12)r(1)s ∈ F(g, 3), then f2(F ) ∈ F(g + 1, 3) for all r, s ≥ 1.

In particular, the only case where F ∈ F(g, 3) but f2(F ) /∈ F(g + 1, 3) is for
F = (12)r(2)r ∈ F(g, 3) with g = 3r . Therefore, f2 provides a well-defined
injective map

f2 : F(g, 3) −→ F(g + 1, 3)

whenever g 
≡ 0 mod 3.
Summarizing, we end up with a well-defined injective map

f : F(g, 3) −→ F(g + 1, 3)

defined by f = f1 if g ≡ 0, 2 mod 3, and f = f2 otherwise. ��

4 Some More General Tools

In order to facilitate discussing gapsets and gapset filtrations, and gather more tools
to treat more cases, it is useful to consider somewhat more general subsets of N+.
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4.1 On m-Extensions and m-Filtrations

Definition 8 Let m ∈ N+. An m-extension is a finite set A ⊂ N+ containing
[1,m− 1] and admitting a partition

A = A0 � A1 � · · · � At (10)

for some t ≥ 0, where A0 = [1,m− 1] and Ai+1 ⊆ m+ Ai for all i ≥ 0.

In particular, an m-extension A satisfies A ∩ mN = ∅. Moreover, the above
conditions on the Ai imply

Ai = A ∩ [im+ 1, (i + 1)m− 1] (11)

for all i ≥ 0, whence the Ai are uniquely determined by A.

Remark 3 Every gapset of multiplicity m is an m-extension. This follows from
Proposition 1.

Closely linked is the notion of m-filtration.

Definition 9 Let m ∈ N+. An m-filtration is a finite sequence

F = (F0, F1, . . . , Ft )

of nonincreasing subsets of N+ such that

F0 = [1,m− 1] ⊇ F1 ⊇ · · · ⊇ Ft .
The genus g of F is defined as g =∑ti=0 |Fi |.
For m ∈ N+, there is a straightforward bijection between m-extensions and m-
partitions.

Proposition 3 Let A = A0 �A1 � · · · �At be an m-extension. Set Fi = −im+Ai
for all i. Then (F0, F1, . . . , Ft ) is an m-filtration. Conversely, let (F0, F1, . . . , Ft )

be an m-filtration. Set Ai = im+ Fi for all i, and let

A =
t⊔

i=0

Ai =
t⊔

i=0

(im+ Fi).

Then A is an m-extension.

Proof We have Fi = −im+ Ai if and only if Ai = im+ Fi . ��
Remark If A is an m-extension, we denote by F = ϕ(A) them-filtration associated
to it by Proposition 3. Conversely, if F is an m-filtration, we denote by A = τ (F )
its associated m-extension.

By Proposition 3, the maps ϕ and τ are inverse to each other.
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4.2 Gapset Filtrations Revisited

Definition 10 Let G ⊂ N+ be a gapset of multiplicity m. The gapset filtration
associated to G is the m-filtration F = ϕ(G).
By Remark 3, every gapset G of multiplicity m is an m-extension, whence ϕ(G) is
well-defined.

Concretely, let G be a gapset of multiplicity m and depth q . As in (4), let Gi =
G ∩ [im+ 1, (i + 1)m− 1] for all i ≥ 0, so thatG0 = [1,m− 1] and

G = G0 � · · · �Gq−1.

The associated m-filtration F = ϕ(G) is then given by F = (F0, . . . , Fq−1) where
Fi = −im+Gi for all i ≥ 0.

It follows from Remark 2 and the equality |Fi | = |Gi | for all i, that the genus of
F is equal to |F0|+ · · ·+|Fq−1| and that its depth is equal to the number of nonzero
Fi .

4.3 A Compact Representation

In this section, we use permutations of [1,m− 1] and exponent vectors to represent
m-filtrations in a compact way. We denote by Sm−1 the symmetric group on [1,m−
1].
Proposition 4 Let F = (F0, . . . , Ft ) be an m-filtration. Then there exists a
permutation σ ∈ Sm−1 and exponents e0, . . . , em−2 ∈ N such that

F = (F ′0, . . . , F ′0︸ ︷︷ ︸
e0

, F ′1, . . . , F ′1︸ ︷︷ ︸
e1

, . . . , F ′m−2, . . . , F
′
m−2︸ ︷︷ ︸

em−2

),

where F ′0 = [1,m− 1] and F ′i = F ′i−1 \ {σ(i)} for 1 ≤ i ≤ m − 2. In particular,
we have |F ′i | = m− 1− i for all 0 ≤ i ≤ m− 2.

Proof By hypothesis, we have

[1,m− 1] = F0 ⊇ F1 ⊇ · · · ⊇ Ft .

Equalities may occur in this chain. Removing repetitions, let

[1,m− 1] = H0 � H1 � · · · � Hs
denote the underlying descending chain, i.e. with

{F0, F1, . . . , Ft } = {H0,H1, . . . , Hs}
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and Hi 
= Hj for all i 
= j . Each Hi comes with some repetition frequency μi ≥ 1
in {F0, F1, . . . , Ft }. Thus, we have

F = (H0, . . . , H0︸ ︷︷ ︸
μ0

,H1, . . . , H1︸ ︷︷ ︸
μ1

, . . . , Hs, . . . ,Hs︸ ︷︷ ︸
μs

).

Now, between each consecutive pair Hi−1 � Hi , we insert some maximal
descending chain of subsets H ′

i,j , i.e.

Hi−1 = H ′
i,0 � H ′

i,1 � · · · � H ′
i,ki
= Hi,

where ki = |Hi−1| − |Hi |. Thus |H ′
i,j | = |H ′

i−1| − j for all 0 ≤ j ≤ ki .
We end up with a maximal descending chain of subsets

F ′ = [1,m− 1] = F ′0 � F ′1 � · · · � F ′m−2,

where each term has one less element than the preceding one, i.e. where |F ′j | =
|F ′j−1| − 1 for all 1 ≤ j ≤ m− 2. By construction, we have

{F0, F1, . . . , Ft } = {H0,H1, . . . , Hs} ⊆ {F ′0, F ′1, . . . , F ′m−2},

and each F ′i arises with some frequency ei ≥ 0 in {F0, F1, . . . , Ft }. Thus

F = (F ′0, . . . , F ′0︸ ︷︷ ︸
e0

, F ′1, . . . , F ′1︸ ︷︷ ︸
e1

, . . . , F ′m−2, . . . , F
′
m−2︸ ︷︷ ︸

em−2

).

Finally, since each F ′i is obtained by removing one distinct element from F ′i−1 for
1 ≤ i ≤ m− 2, there is a permutation σ of [1,m− 1] such that

F ′i = F ′i−1 \ {σ(i)}

for 1 ≤ i ≤ m− 2. ��
Remark Given σ ∈ Sm−1 and e = (e0, . . . , em−2) ∈ N

m−1 such that e0 ≥ 1, we
denote by F(σ, e) the m-filtration

F = (F ′0, . . . , F ′0︸ ︷︷ ︸
e0

, F ′1, . . . , F ′1︸ ︷︷ ︸
e1

, . . . , F ′m−2, . . . , F
′
m−2︸ ︷︷ ︸

em−2

)

where F ′i = F ′i−1 \ {σ(i)} for 1 ≤ i ≤ m− 2.

Example 3 Consider the 5-filtration F = ({1, 2, 3, 4}, {1, 2}, {1}) of Example 2.
Let σ = (3, 4, 2, 1) ∈ S4 and e = (1, 0, 1, 1). Then F = F(σ, e) as readily
checked. Note that we also have F = F(σ ′, e) where σ ′ = (4, 3, 2, 1).
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One important question is: when is the m-filtration F = F(σ, e) a gapset
filtration? The next section provides an answer.

4.4 Complementing an m-Extension

Remark Let F = F(σ, e) be an m-filtration, where σ ∈ Sm−1 and e =
(e0, . . . , em−2) ∈ N

m−1 with e0 ≥ 1. We denote byG = G(σ, e) the corresponding
m-extension, i.e. G = τ (F ) using Notation 4.1.

Here is how to determine the set complement in N of the m-extension G =
G(σ, e).

Proposition 5 Let F = F(σ, e) be an m-filtration, where σ ∈ Sm−1 and e =
(e0, . . . , em−2) ∈ N

m−1 with e0 ≥ 1. Let G = G(σ, e) be the corresponding m-
extension, i.e. G = τ (F ). Then

N \G =
m−1⊔

i=0

σ(i)+m(e0 + · · · + ei−1 + N), (12)

with the conventions σ(0) = 0 and e0 + · · · + ei−1 = 0 for i = 0.

Proof For 0 ≤ i ≤ m − 1, denote Fi = [1,m − 1] \ {σ(0), . . . , σ (i)}. Thus
F0 = [1,m− 1], F1 = [1,m− 1] \ {σ(1)}, F2 = [1,m− 1] \ {σ(1), σ (2)} and so
on. By definition of F = F(σ, e), we have

F = (F0, . . . , F0︸ ︷︷ ︸
e0

, F1, . . . , F1︸ ︷︷ ︸
e1

, . . . , Fm−2, . . . , Fm−2︸ ︷︷ ︸
em−2

).

Let G = τ (F ). For k ∈ [0,m − 1], set G(k) = {x ∈ G | x ≡ k mod m}. Then

G =
m−1⊔

k=0

G(k). SinceG is an m-extension, we haveG∩mN = ∅, i.e.G(0) = ∅. We

now proceed to determine G(k) for k ≥ 1. Since σ is a permutation of [1,m − 1],
there exists i ∈ [1,m− 1] such that k = σ(i). We claim that

G(k) = G(σ(i)) = σ(i)+m[0, e0 + · · · + ei−1 − 1]. (13)

Indeed by construction, for all r ≥ 0 we have

σ(i) ∈ Fr ⇔ r ≤ i − 1. (14)

Now, by definition of the map τ , we have

G =
m−2⊔

l=0

( e0+···+el−1⊔

j=e0+···+el−1

(jm+ Fl)
)
. (15)
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It follows from (14) and (15) that

σ(i)+ jm ∈ G⇔ j < e0 + · · · + ei−1

for all j ≥ 0. This proves (13). Taking the complement in N, it follows that

σ(i)+ jm ∈ N \G⇔ j ≥ e0 + · · · + ei−1.

This proves (12). ��
Remark Given σ ∈ Sm−1 and e = (e0, . . . , em−2) ∈ N

m−1 with e0 ≥ 1, we denote

S(σ, e) =
m−1⊔

i=0

σ(i)+m(e0 + · · · + ei−1 + N).

Thus, the above proposition amounts to the statement

N = G(σ, e) � S(σ, e)

for all σ ∈ Sm−1 and e = (e0, . . . , em−2) ∈ N
m−1 with e0 ≥ 1.

This yields the following way to construct all gapsets of given multiplicity m ≥
3.

Proposition 6 Let m ≥ 2. Every numerical semigroup S of multiplicity m is of the
form S = S(σ, e) for some σ ∈ Sm−1 and e = (e0, . . . , em−2) ∈ N

m with e0 ≥ 1.

Proof Let S be a numerical semigroup of multiplicity m. Let G = N \ S and F =
ϕ(G) be the associated gapset and gapset filtration, respectively. Then F is an m-
filtration, whence by Proposition 4, it is of the form F = F(σ, e) for some σ and e
of the desired type. ThenG = τ (F ) = G(σ, e), whence S = N \G = S(σ, e). ��

We now determine the conditions under which a set of the form S(σ, e) is a
numerical semigroup.

Theorem 3 Let m ≥ 3. Let σ ∈ Sm−1 and e = (e0, . . . , em−2) ∈ N
m with e0 ≥ 1.

Then S(σ, e) is a numerical semigroup if and only if for all 1 ≤ i, j, k ≤ m−1 with
i ≤ j < k, we have

ej + · · · + ek−1 ≤
{
e0 + · · · + ei−1 if σ(i)+ σ(j) = σ(k),
e0 + · · · + ei−1 + 1 if σ(i)+ σ(j) = σ(k)+m.

Proof Denote S0 = N and Si = σ(i)+m(e0 + · · · + ei−1 +N) for 1 ≤ i ≤ m− 1.
Let S′ = S(σ, e). Then

S′ =
m−1⊔

i=0

Si
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by definition. We have 0 ∈ S0 ⊂ S′. The complement of S′ in N is finite, since
N \ S(σ, e) = G(σ, e). It remains to prove that S′ is stable under addition if and
only if the stated inequalities are satisfied.

Let i, j be integers such that 0 ≤ i ≤ j ≤ m − 1. If i = 0 then Si + Sj =
Sj +mN = Sj . We now assume i 
= 0. There are three cases.

• Case σ(i) + σ(j) ≤ m − 1. There exists k ∈ [1,m − 1] satisfying σ(k) =
σ(i)+ σ(j). Then

Si + Sj = σ(i)+m(e0 + · · · + ei−1 + N)+ σ(j)+m(e0 + · · · + ej−1 + N)

= σ(k)+m(e0 + · · · + ei−1 + e0 + · · · + ej−1 + N).

Therefore Si + Sj is contained in S′ if and only if it is contained in Sk , and this
occurs if and only if

e0 + · · · + ek−1 ≤ e0 + · · · + ei−1 + e0 + · · · + ej−1.

This condition is plainly satisfied if k < j , and is equivalent to

ej + · · · + ek−1 ≤ e0 + · · · + ei−1

if k > j .

• Case σ(i)+ σ(j) ≥ m+ 1. There exists k ∈ [1,m− 1] satisfying σ(k)+m =
σ(i)+ σ(j). Then

Si + Sj = σ(i)+m(e0 + · · · + ei−1 + N)+ σ(j)+m(e0 + · · · + ej−1 + N)

= σ(k)+m(e0 + · · · + ei−1 + e0 + · · · + ej−1 + 1+ N).

Again, Si + Sj is contained in S′ if and only if it is contained in Sk , and this
occurs if and only if

e0 + · · · + ek−1 ≤ e0 + · · · + ei−1 + e0 + · · · + ej−1 + 1.

This is plainly satisfied if j < k, and is equivalent to

ej + · · · + ek−1 ≤ e0 + · · · + ei−1 + 1

otherwise.

• Case σ(i)+ σ(j) = m. Then Si + Sj ⊆ mN = S0 ⊂ S′. ��
Remark 4 For a gapset filtration F = F(σ, e) of multiplicity m, there is a strong
connection between its exponent vector e ∈ N

m−1 and the Kunz coordinates of the
associated numerical semigroup S(σ, e).
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Indeed, let S be a numerical semigroup of multiplicity m. Recall that the Apéry set
of S is Ap(S) = {x ∈ S | x − m 
∈ S}. By Lemma 1.4 of [8], we have Ap(S) =
{0 = w(0),w(1), . . . , w(m − 1)} where w(i) is the smallest element of S which
is congruent to i modulo m. Hence for i ∈ [0,m − 1] there exist ki ∈ N such that
w(i) = i+mki. The integers k1, . . . , km−1 are the Kunz coordinates of S. From (12),
we obtain that the smallest element of S(σ, e) which is congruent to σ(i)modulom
is σ(i)+m(e0 + · · · + ei−1). Hence for all i ∈ [1,m− 1], we have

kσ(i) = e0 + · · · + ei−1.

4.5 The Insertion Maps fi

Let m ≥ 3 and let F = (F0, . . . , Ft ) be an m-filtration, i.e. with

[1,m− 1] = F0 ⊇ F1 ⊇ · · · ⊇ Ft .

Let g =∑tj=0 |Fj | be the genus of F . Given i ∈ [1,m− 1], we wish to insert i in
F so as to end up with an m-filtration of genus g + 1. There is only one way to do
this, namely to insert i in the first Fj for which i /∈ Fj . More formally, we define
fi(F ) as follows:

• If i ∈ Fs \ Fs+1 for some s ≤ t − 1, then fi(F ) = (F ′0, . . . , F ′t ) where

F ′j =
{
Fj if j 
= s + 1,
Fs+1 � {i} if j = s + 1.

• If i ∈ Ft , then fi(F ) = (F0, . . . , Ft , Ft+1) where Ft+1 = {i}.
By construction, for all i ∈ [1,m−1], we have that fi(F ) is anm-filtration of genus
g + 1.

One delicate question is the following. If F is a gapset filtration of multiplicity
m, for which i ∈ [1,m− 1] does it hold that fi(F ) remains a gapset filtration? This
question was successfully addressed in Sect. 3 form = 3.

5 The Case m = 4

We now use the above tools to characterize all gapset filtrations of multiplicitym =
4 and to derive a counting-free proof of the inequality ng+1,4 ≥ ng,4 for all g ≥ 0.

Let F be a gapset filtration of multiplicity m = 4. By Proposition 4, there exists
σ ∈ S3 and e = (a, b, c) ∈ N

3 with a ≥ 1 such that F = F(σ, e). Moreover,
Theorem 3 gives the exact conditions for S(σ, e) to be a numerical semigroup, i.e.
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forF(σ, e) to be a gapset filtration. This yields the following characterization, where
the six elements of S3 are displayed in window notation.

Theorem 4 The gapset filtrations of multiplicity m = 4 are exactly the filtrations
F = F(σ, e) given in the table below, with σ ∈ S3 and e = (a, b, c) ∈ N

3 such
that a ≥ 1 and subject to the stated conditions:

σ ∈ S3 F = F(σ, e) conditions on a, b, c
(1, 2, 3) (123)a(23)b(3)c b ≤ a, c ≤ a
(1, 3, 2) (123)a(23)b(2)c b + c ≤ a
(2, 1, 3) (123)a(13)b(3)c c ≤ a
(2, 3, 1) (123)a(13)b(1)c c ≤ a + 1
(3, 1, 2) (123)a(12)b(2)c b + c ≤ a + 1, c ≤ a + b
(3, 2, 1) (123)a(12)b(1)c b ≤ a + 1, c ≤ a + 1

(16)

Proof Consider for instance the case σ = (1, 3, 2). We have σ(1) + σ(1) = σ(3)
and σ(2)+σ(2) = σ(3)+m. Hence, by Theorem 3, the conditions on e = (a, b, c)
for S = S(σ, e) to be a numerical semigroup, i.e. for F = F(σ, e) to be a gapset
filtration, are exactly b+c ≤ a and c ≤ a+b+1. Since the latter condition is implied
by the former, it may be ignored. We end up with the sole condition b + c ≤ a,
as stated in the table. The proof in the five other cases is again a straightforward
application of Theorem 3 and is left to the reader. ��
Corollary 2 For all g ≥ 0, there is an explicit injection

F(g, 4) −→ F(g + 1, 4).

In particular, we have ng+1,4 ≥ ng,4 for all g ≥ 0.

Proof The statement is trivial for g ≤ 2 since F(g, 4) = ∅ in this case. Assume
now g ≥ 3. Let F ∈ F(g, 4) be a gapset filtration of genus g. Write F = F(σ, e)
for some σ ∈ S3 and e = (a, b, c) ∈ N

3 with a ≥ 1. For i = 1, 3, consider the
4-filtrations F ′ = f1(F ) and F ′′ = f3(F ) of genus g + 1 obtained by the insertion
maps f1 and f3, respectively. Then F ′ = F(σ, e′) where

e′ =

⎧
⎪⎪⎨

⎪⎪⎩

(a + 1, b − 1, c) if σ ∈ {(1, 2, 3), (1, 3, 2)},
(a, b + 1, c − 1) if σ ∈ {(2, 1, 3), (3, 1, 2)},
(a, b, c+ 1) if σ ∈ {(2, 3, 1), (3, 2, 1)}.

It follows from (16) that F ′ fails to be a gapset filtration, i.e. F ′ /∈ F(g + 1, 4), if
and only if σ = (2, 3, 1) or (3, 2, 1) and e = (a, b, a + 1). This corresponds to F
being one of

(123)a(13)b(1)a+1 or (123)a(23)b(1)a+1.
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Here g = 3a + 2b + a + 1 = 4a + 2b + 1, whence g is odd. In particular, if
g 
≡ 1 mod 2, then F ′ is always a gapset filtration. We conclude that, whenever g is
even, then f1 yields a well-defined injection

F(g, 4) −→ F(g + 1, 4).

Let us now turn to F ′′ = f3(F ). Then F ′′ = F(σ, e′′) where e′′ is easily described
by a table similar to (16). Omitting details, it follows that F ′′ fails to be a gapset
filtration if and only if F is one of

(123)a(13)b(3)a or (123)a(23)b(3)a.

In this case we have g = 3a + 2b + a = 4a + 2b, which is even. We conclude that
whenever g is odd, then f3 yields a well-defined injection

F(g, 4) −→ F(g + 1, 4).

This concludes the proof of the corollary. ��

5.1 Concluding Remark

We have shown that for m = 3 and 4, an injection F(g,m) −→ F(g + 1,m) is
provided by one of the insertion maps fi , where i ∈ [1,m− 1] depends on the class
of g modulo 3 and 2, respectively.

Unfortunately, for any givenm ≥ 5, this is no longer true in general. That is, one
should not expect that for each g ≥ 1, an injection F(g,m) −→ F(g + 1,m) will
be provided by just one of the insertion maps fi . Constructing such injections for
all m, g remains open at the time of writing.
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Generic Toric Ideals and
Row-Factorization Matrices in Numerical
Semigroups

Kazufumi Eto

Abstract In this paper, we give conditions in which the defining ideal of the
semigroup ring associated with a numerical semigroup is a generic toric ideal. As an
application, we prove that the defining ideals of almost Gorenstein monomial curves
are not generic, if their embedding dimension is greater than three.

Keywords Numerical semigroup · Symmetric semigroup · Almost symmetric
semigroup · Generic lattice ideal

1 Preliminaries

1.1 Numerical Semigroups

Let Z be the ring of integers and N0 the set of non negative integers. For s > 1 and
n1, . . . , ns ∈ N0, we write [1, s] = {1, . . . , s} and

〈n1, . . . , ns〉 =
{

s∑

i=1

aini : ai ∈ N0 for each i

}
,

which is called the semigroup generated by n1, . . . , ns of embedding dimension s.
We always assume the minimality of n1, . . . , ns , that is ni − nj /∈ 〈n1, . . . , ns〉
for each i 
= j . Let S = 〈n1, . . . , ns〉. We write Ti(S) = 〈n1, . . . , ňi , . . . , ns〉 for
i ∈ [1, s]. If gcd(n1, . . . , ns) = 1, then we say that S is numerical. Note that S is a
numerical semigroup if and only if N0 \ S is finite. We define an order ≤S in S as

d1 ≤S d2 ⇐⇒ d2 − d1 ∈ S
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Assume that S = 〈n1, . . . , ns〉 is numerical. We call the greatest integer in Z \ S
the Frobenius number of S, denoted by F(S). For f ∈ Z, if f /∈ S and f + ni ∈ S
for each i, then it is called a pseudo-Frobenius number of S. By definition, the
Frobenius number is a pseudo-Frobenius number. Put PF(S) the set of the pseudo-
Frobenius numbers. The number of elements of the set PF(S) is called the type of
S. If the type of S is one, we say that S is symmetric. If F(S)− f ∈ PF(S) for each
f ∈ PF(S) except F(S), then we say that S is almost symmetric. For d ∈ S, we
define the Apèry set for d in S (cf [7]) as

Ap(S, d) = {x ∈ S : x − d /∈ S}.

Lemma 1 Let d1, d2 ∈ S.

(1) d1 ∈ Ap(S, d2) if and only if d1 − d2 /∈ S.
(2) If d1 ≤S d2, then Ap(S, d1) = {x ∈ S : x + (d2 − d1) ∈ Ap(S, d2)}.
Proof (1) follows from the definition of the Apèry set. In (2), x ∈ Ap(S, d1) if and
only if x − d1 = x + (d2 − d1) − d2 /∈ S and it is equivalent to x + (d2 − d1) ∈
Ap(S, d2). ��

For f ∈ Z \ S, we define RF-matrices (row-factorization matrices) as follows
(cf. [2, 5]): For each i, there is a unique negative number aii satisfying f − aiini ∈
Ap(S, ni ). Then there are aij ≥ 0 for j 
= i with f − aiini = ∑j 
=i aij nj . And
we consider the matrix (aij )i,j called an RF-matrix for f in S. Note that it is not
necessarily unique. However, we denote it by RF(f ) in abbreviation, and it indicates
one of them.

1.2 The Fibers of Elements in Numerical Semigroups

In this subsection, we always assume that S = 〈n1, . . . , ns〉 is a numerical
semigroup. For a = (ai)i∈[1,s] ∈ Z

s = ⊕s
i=1 Zei , we define the support of a as

supp a = {i : ai 
= 0}. We also define the degree map with respect to S, sending
a ∈ Z

s to degS a =
∑
i aini ∈ Z. For d ∈ Z, we write the fiber of d as

Vd(S) = deg−1
S (d) ∩ N

s
0 and put suppS d =

⋃

a∈Vd(S)
supp a

(cf. [1]). Note d ∈ S if and only if Vd(S) 
= ∅. The following are clear.

Lemma 2 Let d1, d2 ∈ S.

(1) d1 ∈ Ap(S, nl) if and only if l /∈ suppS d1.
(2) If d1 ≤S d2, then |Vd1(S)| ≤ |Vd2(S)|.
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For Λ ⊂ [1, s], we denote
∑
i∈Λ ni by nΛ and define

Ap(S,Λ) =

⎧
⎪⎨

⎪⎩

∅ if Λ = ∅,
Ap(S, nΛ) \

⋃

l∈Λ
Ap(S, nΛ−{l}) otherwise.

If Λ = {l}, then nΛ = nl and Ap(S,Λ) = Ap(S, nl).
We also denote S \⋃sl=1 Ap(S, nl) by NAP(S), and the set of minimal numbers

in Ap(S,Λ) by Ap(S,Λ). We put APj (S) = ⋃|Λ|=j+1 Ap(S,Λ) for j ≥ 0 and
AP(S) =⋃j≥0 APj (S). Note that AP0(S) = {0} for any S.

Example 1 If S = 〈3, 4, 5〉, then AP1(S) = {8, 9, 10} and AP2(S) = {13, 14}. If
S = 〈4, 5, 6〉, then AP1(S) = {10, 12} and AP2(S) = {22}.
Lemma 3 Let d ∈ S. Then d ∈ NAP(S) if and only if suppS d = [1, s].
Proof For d ∈ S, suppS d = [1, s] if and only if d /∈ Ap(S, nl) for each l by
Lemma 2(1). The assertion follows from this. ��
Lemma 4 Let Λ ⊂ [1, s] be a non empty subset and d ∈ S. Then the following are
equivalent:

(1) d ∈ Ap(S,Λ),
(2) d − nΛ /∈ S, and d − nΛ\{l} ∈ S for each l.
(3) Λ 
⊂ supp a for each a ∈ Vd(S), and there is al ∈ Vd(S) satisfying supp al ∩

Λ = Λ \ {l} for each l.

If the conditions are satisfied, then |Vd(S)| ≥ |Λ| and d − nΛ\Λ′ ∈ Ap(S,Λ′) for
Λ′ � Λ.

Proof (1) ⇔ (2) follows from Lemma 1(1). We have d − nΛ /∈ S if and only
if Λ 
⊂ supp a for each a ∈ Vd(S), and d − nΛ\{l} ∈ S if and only if there is
al ∈ Vd(S) satisfyingΛ \ {l} ⊂ supp al . This proves (2)⇔ (3). Finally, (3) implies
|Vd(S)| ≥ |Λ|.

We prove d − nΛ\Λ′ ∈ Ap(S,Λ′) for Λ′ � Λ. By (2), d − nΛ\Λ′ ∈ S. By
Lemma 1(2), this implies d − nΛ\Λ′ ∈ Ap(S, nΛ′ ), since d ∈ Ap(S, nΛ) and d =
d−nΛ\Λ′+(nΛ−nΛ′). Suppose that there isΛ′′ � Λ′ with d−nΛ\Λ′ ∈ Ap(S, nΛ′′ ).
Again by Lemma 1(2), we have d ∈ Ap(S, nΛ\Λ′ + nΛ′′ ), a contradiction. Hence,
d − nΛ\Λ′ /∈ Ap(S, nΛ′′ ) and d − nΛ\Λ′ ∈ Ap(S,Λ′). ��
Proposition 1 Ap(S, [1, s]) = Ap(S, [1, s]) = {f + n[1,s] : f ∈ PF(S)}.
Proof Put Λ = [1, s] and let d ∈ Ap(S,Λ). By Lemma 4, we have d − nl /∈
Ap(S,Λ) for each l. Hence d is minimal w.r.t. ≤S and d ∈ Ap(S,Λ).

If f ∈ PF(S), then f + nΛ ∈ Ap(S, nΛ), by Lemma 1(1). Since f + nl ∈ S
and f + nΛ = (f + nl)+ nΛ\{l} for each l, we have f + nΛ /∈ Ap(S, nΛ\{l}). This
implies f + nΛ ∈ Ap(S,Λ). Further, if d ∈ Ap(S,Λ), then d − nΛ /∈ S and there
is f ∈ PF(S) with f − (d − nΛ) ∈ S. Thus d ≤S f + nΛ and d = f + nΛ since
Ap(S,Λ) = Ap(S,Λ). This completes the proof. ��
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For j ≥ 0, we put

Oj(S) = {d ∈ Z : |Vd(S)| = j }.

We note d ∈ O0(S) if and only if d /∈ S, and d ∈ O1(S) if and only if d has
a unique factorization in S. We denote the set of the minimal elements in Oj(S)
(resp. S \ ⋃l≤j Ol(S)) with respect to the order ≤S by Oj(S) (resp. Õj (S)) for

j ≥ 0. Note Oj+1(S) ⊂ Õj (S) for j ≥ 0.

Proposition 2

(1) Let d ∈ Õ1(S) and a1, a2 ∈ Vd(S) with a1 
= a2. Then supp a1 ∩ supp a2 = ∅.
(2) O1(S) ∩ Tl(S) ⊂ Ap(S, nl) for each l.
(3) Õ1(S) ⊂ AP1(S) ⊂⋃l (Tl(S) \Ap(S, nl)) ⊂ S \O1(S).

Proof

(1) If l ∈ supp a1∩supp a2, then a1−el = a2−el ∈ Vd−nl (S) and d−nl /∈ O1(S),
a contradiction. Thus supp a1 ∩ supp a2 = ∅.

(2) Let d ∈ Tl(S) \Ap(S, nl). Since d ∈ Tl(S), there is a ∈ Vd(S) with l /∈ supp a.
Since d /∈ Ap(S, nl), there is b ∈ Vd(S) with l ∈ supp b by Lemma 2(1).
Hence |Vd(S)| > 1 and d /∈ O1(S). Therefore Tl(S) \ Ap(S, nl) ⊂ S \ O1(S)

and O1(S) ∩ Tl(S) ⊂ Ap(S, nl).
(3) Let d ∈ Õ1(S) and a1, a2 ∈ Vd(S) with a1 
= a2. By (1), we have supp a1 ∩

supp a2 = ∅. We choose lj ∈ supp aj for j = 1, 2. Then d − nlj ∈ O1(S)

for j = 1, 2 and d − (nl1 + nl2) /∈ S, by the choice of l1, l2. By Lemma 4,
d ∈ Ap(S, {l1, l2}) ⊂ AP1(S) and Õ1(S) ⊂ AP1(S).

Let d ∈ AP1(S). Then there are l1 
= l2 ∈ [1, s] with d ∈ Ap(S, {l1, l2}).
And there are a1, a2 ∈ Vd(S) satisfying lj ∈ supp aj , since d /∈ Ap(S, nlj )
for j = 1, 2. Then l2 /∈ supp a1 since d ∈ Ap(S, nl1 + nl2). This implies
d ∈ Tl2 \ Ap(S, nl2). This completes the proof. ��

Example 2 Let S = 〈7, 8, 10〉. Then 25 = 7+ 8+ 10 ∈ O1(S) \Ap(S, nl) for each
l. Hence, in general, we haveO1(S) 
⊂⋃l Ap(S, nl) and NAP(S) ∩O1(S) 
= ∅.

Example 3 Let S = 〈23, 37, 48〉. Then

9 · 23 = 3 · 37+ 2 · 48, 7 · 37 = 5 · 23+ 3 · 48, 5 · 48 = 4 · 23+ 4 · 37

are minimal relations. Put d = 4 · 23+ 5 · 37+ 6 · 48. Then

Vd(S) = {(4, 5, 6), (8, 9, 1), (13, 2, 4)}

and d /∈ O1(S). This implies

⋃

i

(Ti(S) \ Ap(S, ni)) � S \O1(S).
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Proposition 3 The following are equivalent:

(1) RF(f ) is unique for each f ∈ PF(S),
(2) Ap(S, nl) ⊂ O1(S), that is Ap(S, nl) = O1(S) ∩ Tl(S) for each l,
(3) S \O1(S) ⊂ NAP(S).

Proof (1)⇔ (2) Assume that RF(f ) is unique for each f ∈ PF(S). Then f + nl ∈
O1(S) for each l. Fix l and let d ∈ Ap(S, nl). By Lemma 1(1), d−nl /∈ S and there
is f ∈ PF(S) with d − nl ≤S f , thus d ≤S f + nl . Since f + nl ∈ O1(S), we have
d ∈ O1(S) and Ap(S, nl) ⊂ O1(S). By Proposition 2(2), we haveO1(S)∩ Tl(S) ⊂
Ap(S, nl) and Ap(S, nl) = O1(S)∩ Tl(S). Conversely, assume Ap(S, nl) ⊂ O1(S)

for each l. If f ∈ PF(S), then f +nl ∈ Ap(S, nl) ⊂ O1(S), hence RF(f ) is unique.
(2) ⇔ (3). The assertion follows from the definition of NAP(S) = S \⋃
l Ap(S, nl). ��

1.3 Semigroup Rings

Let k be a field and S = 〈n1, . . . , ns〉 a numerical semigroup. Then we define the
semigroup ring of S as

k[S] = k[td ]d∈S.
There is a canonical surjection form the polynomial ring k[X] = k[X1, . . . , Xs ]
to k[S] sending Xa =

∏

i

X
ai
i to tdegS a where a = (ai) ∈ N

s
0. And we denote

its kernel by I (S), called the defining ideal of k[S]. Then I (S) is a binomial ideal
generated by Xa − Xb satisfying degS a = degS b. Indeed, I (S) is a prime ideal,
called a toric ideal.

Let g = Xa − Xb be a binomial. If g is contained in any minimal binomial
generating system of I (S), we say that g is indispensable. It follows that g is
indispensable if and only if its degree is contained in O2(S). We also say that a
monomial Xa is indispensable, if any minimal binomial generating system of I (S)
contains a binomial of the form Xa −Xb for some b ∈ N

s
0 (cf. [1]).

Example 4 Let S = 〈4, 5, 6〉. ThenX4
1−X2

3 andX2
2−X1X3 are indispensable, since

O2(S) = {10, 12}. Hence I (S) is minimally generated by indispensable binomials.

Example 5 Let S = 〈6, 10, 15〉. Then the monomialsX5
1,X3

2 andX2
3 are indispens-

able, since Õ1(S) = {30}. We also have O2(S) ⊂ O2(S) = ∅ � Õ1(S). Note that
I (S) is not minimally generated by indispensable binomials. On the other hand,

RF(F(S)) = RF(29) =
⎛

⎝
−1 2 1
4 −1 1
4 2 −1

⎞

⎠

is unique. Note AP1(S) = {30} and |V30(S)| = 3 > 2.
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2 Generic Toric Ideals

2.1 Main Results

Let g = Xa − Xb be a binomial. We write suppg = supp a ∪ supp b. If supp g =
[1, s], we say that g has full support. If a toric ideal I has a minimal generating
system consisting of binomials with full support, then I is called generic.

Theorem 1 The following are equivalent:

(1) I (S) is generic,
(2) O2(S) = Õ1(S) = AP1(S) ⊂ NAP(S),
(3) For each f ∈ PF(S), RF(f ) = (mij ) is unique and mij 
= mi′j if i 
= i ′.
If the above conditions are satisfied, Õ1(S) is the set of degrees of the binomials
contained in a minimal generating system of I (S).

Proof (1) ⇒ (2) Assume that I (S) is generic. Then each binomial of the minimal
generating system is indispensable (cf [1, 6]). This implies Õ1(S) = O2(S). If d ∈
Õ1(S), we have suppS d = [1, s] since I (S) is generic. Hence Õ1(S) ⊂ NAP(S)
by Lemma 3. Let d ∈ AP1(S). Then there are l1 
= l2 ∈ [1, s] satisfying d ∈
Ap(S, {l1, l2}). By Proposition 2(3), we have d ∈ S \O1(S) and there is d ′ ∈ Õ1(S)

with d ′ ≤S d . Since d ′ ≤S d , d ′ is contained in Ap(S, nl1 + nl2). We also have
suppS d

′ = [1, s] and d ′ /∈ Ap(S, nlj ) for j = 1, 2. Hence d ′ ∈ Ap(S, {l1, l2}) and
d = d ′ ∈ Õ1(S). Again by Proposition 2(3), we conclude AP1(S) = Õ1(S).
(2) ⇒ (3) Let f ∈ PF(S). By Proposition 3, RF(f ) = (mij ) is unique.

We choose i 
= i ′ ∈ [1, s] and put a1 = ∑sj=1 max{mij − mi′j , 0}ej , a2 =∑s
j=1 max{mi′j − mij , 0}ej and d = degS a1 = degS a2. Then d ∈ AP1(S). Since

d ∈ O2(S) ⊂ NAP(S), we have Vd(S) = {a1, a2} and suppa1 ∪ supp a2 = [1, s].
This implies mij 
= mi′j for each j .
(3) ⇒ (1) Put PF(S) = {f1, . . . , fu} and RF(fl) = (mlij ) for each l. And

put ali = ∑j max{ml1j − mlij , 0}ej and bli = ∑j max{mlij − ml1j , 0}ej for each

i, l. Then degS ali = degS bli and put gli = Xali − Xbli ∈ I (S) for each i, l and
J = (gli )i,l a binomial ideal in k[X]. By the assumption, gli is a binomial with
full support for each i, l and J + (X1) = (Xali )i,l + (X1). For each i, l, we claim
d − nk ∈ Ap(S, n1) for k ∈ supp ali , where d = degS ali = degS bli . Otherwise,
there is d ′ ∈ S with d−nk = d ′+n1 and d−n1 = d ′+nk ∈ S. Note d−n1 ≤S fl+ni
and d − n1 ∈ O1(S). Since d = degS bli and 1 ∈ supp bli , we have k ∈ supp(bli −
e1) ⊂ supp bli . This contradicts to k ∈ supp ali , since supp ali∩supp bli = ∅. Hence
d − nk ∈ Ap(S, n1) for each k ∈ supp ali . This implies dimk k[X]/J + (X1) =
|Ap(S, n1)| = n1 = dimk k[X]/I (S) + (X1). From J ⊂ I (S), we have I (S) = J
(cf [4]) and it is generic. Note that a subset of {gli} forms a minimal generating
system of I (S). ��

For a numerical semigroup S, we say that the semigroup ring k[S] is almost
Gorenstein (resp. Gorenstein), if S is almost symmetric (resp. symmetric) (cf [3]).
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Note that k[S] is Gorenstein if and only if k[S] is almost Gorenstein of type one,
where the type of semigroup rings means that of semigroups.

Theorem 2 If s > 3 and if k[S] is almost Gorenstein, then I (S) is not generic. In
case of s = 3, I (S) is always generic, if k[S] is almost Gorenstein of type greater
than one. (note that I (S) is not generic, if s = 3 and if k[S] is Gorenstein).

Proof Assume s = 3. If k[S] is Gorenstein, then I (S) is a complete intersection
(cf. [4]) and not generic. If the type of k[S] is grater than one, then I (S) is an almost
complete intersection (cf. [4]) and generic.

Assume s > 3. If k[S] is Gorenstein and if there is a unique RF-matrix for
the Frobenius number F(S) of S, then I (S) is a complete intersection by Eto [2,
Proposition 3.5], thus not generic. If the RF-matrix of F(S) is not unique, then I (S)
is not generic by Theorem 1.

Suppose that k[S] is almost Gorenstein of type greater than one and that I (S) is
generic. Note that S is almost symmetric. Then, for each f ∈ PF(S), RF(f ) = (mij )
is unique and mij 
= mi′j for i 
= i ′. Since the type of S is greater than one, we
choose f1, f2 ∈ PF(S)with f1+f2 = F(S). Let a ∈ Vf1+ni (S). Suppose | supp a| >
1 and choose l 
= l′ ∈ supp a. Then f1+ni−nl (resp. f1+ni−el′) is contained in S
and l /∈ suppS(f2+nl) (resp. l′ /∈ suppS(f2+n′l)). And (a−el)+b 
= (a−el′)+b′
for b ∈ Vf2+nl (S) and b′ ∈ Vf2+nl′ (S). Thus

F(S)+ ni = (f1 + ni)+ f2 /∈ O1(S),

a contradiction. Hence | supp a| = 1 for each i. This implies that there are s − 2
zeros in each row of RF(f ) = (mij ) for f ∈ PF(S) with f 
= F(S) and that there
exists j withmij = mi′j for i 
= i ′ since s > 3. This contradicts that I (S) is generic
by Theorem 1. ��

2.2 Basic Fibers

For d ∈ S, the fiber Vd(S) is called basic if

⋂

a∈Vd(S)
supp a = ∅ and

⋂

a∈Vd(S)
a 
=b

supp a 
= ∅ for ∀b ∈ Vd(S).

Note that Vd(S) is basic if and only if gcd{xa : a ∈ Vd(S)} = 1, that is the general
common divisor of all xa with a ∈ Vd(S) is one, and gcd{xa : a ∈ Vd(S), a 
= b} 
=
1 for each b ∈ Vd(S). Hence this definition agrees with that in [6].

Proposition 4 Let d ∈ S. Then, Vd(S) is a basic fiber if and only if there is Λ ⊂
[1, s] with |Λ| = |Vd(S)| and d ∈ Ap(S,Λ). Equivalently, d ∈ AP|Vd(S)|−1(S).
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Proof Assume that Vd(S) = {bj } is a basic fiber. By definition, for each l, there is
il ∈ [1, s] with il ∈ supp bj if j 
= l. Note il /∈ supp bl and supp bl ∩Λ = Λ \ {il}
for each l. Put Λ = {il}l . Note |Λ| = |Vd(S)|. Then d − nΛ /∈ S. Otherwise,
there is bl ∈ Vd(S) with supp bl ⊃ Λ, and this contradicts to d − nΛ /∈ S. Since
supp bl ∩Λ = Λ \ {il} for each l, we obtain d −nΛ\{l} ∈ S for each l. By Lemma 4,
d ∈ Ap(S,Λ). Suppose d − ni ∈ Ap(S,Λ). By Lemma 4, we have |Vd−ni (S)| =
|Vd(S)| = |Λ|. This implies

⋂
supp bj & i, since we may write bj = b′j + ei where

b′j ∈ Vd−ni (S) for each j . By assumption, we conclude d −ni /∈ Ap(S,Λ) for each
i and d ∈ Ap(S,Λ).

Conversely, assume d ∈ Ap(S,Λ) and |Λ| = |Vd(S)|. Since d ∈ Ap(S,Λ), we
have
⋂
a∈Vd(S) supp a = ∅. Since |Vd(S)| = |Λ|, we may assume Vd(S) = {al}l∈Λ

and suppal∩Λ = Λ\{l} for each l, by Lemma 4. Then
⋂
j 
=l supp aj & l. Therefore

Vd(S) is a basic fiber. ��
Example 6 Let S = 〈4, 5, 6〉. Then

V22(S) = {(1, 0, 3), (4, 0, 1), (3, 2, 0), (0, 2, 2)}.

Thus |V22(S)| = 4 > 3. By Proposition 4, V22(S) is not a basic fiber. On the other
hand, we have 22 ∈ AP2(S).

Theorem 3 Assume that I (S) is generic. For Λ ⊂ [1, s], Ap(S,Λ) ⊂ O|Λ|(S).
For d ∈ Ap(S,Λ), we have

Vd(S) =
⎧
⎨

⎩

s∑

j=1

mljej +
∑

j∈Λ
ej : l ∈ Λ

⎫
⎬

⎭ ,

where RF(d − nΛ) = (mij )i,j . (Note RF(d − nΛ) is unique in this case.)

Proof Let Λ ⊂ [1, s]. We prove |Vd(S)| = |Λ| for d ∈ Ap(S,Λ). Since d −
nΛ /∈ S, there is f ∈ PF(S) satisfying d ≤S f + nΛ. Put d ′ = f + nΛ. Since
|Λ| ≤ |Vd(S)| ≤ |Vd ′(S)|, if |Vd ′(S)| = |Λ|, we obtain |Vd(S)| = |Λ|. Hence we
may assume d = f + nΛ.

By Theorem 1, RF(f ) = (mij ) is unique. Let a =∑j aj ej ∈ Vd(S). Then there

is l ∈ Λ \ supp a. Put b = ∑j bj ej =
∑
j mljej +

∑
j∈Λ ej . Then l /∈ supp b.

Suppose a 
= b. Put a′ = ∑j max{aj − bj , 0}ej , b′ = ∑j max{bj − aj , 0}ej ,
and d ′ = degS a

′ = degS b
′. Then a′ 
= b′ and |Vd ′(S)| > 1. Thus d ′ ∈ Õ1(S) ⊂

NAP(S) and l /∈ supp a′ ∪ supp b′. This contradicts to suppS d
′ = [1, s]. Hence

a = b and |Vd(S)| = |Λ|. ��
Example 7 We write Vd(S) as a matrix (mij ), that is Vd(S) = {∑j mij ej }. If
d = f + n[1,s] where f ∈ PF(S), we have Vd(S) = RF(f ) + U where U
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is the matrix whose entries are 1. For example, let S = 〈20, 24, 25, 31〉. Then
PF(S) = {61, 66, 67, 77, 78, 83} and

V161(S) =

⎛
⎜⎜⎝

0 1 3 2
4 0 2 1
1 2 0 3
2 4 1 0

⎞
⎟⎟⎠ ,

V177(S) =

⎛

⎜⎜⎝

0 4 2 1
2 0 3 2
3 1 0 3
4 3 1 0

⎞

⎟⎟⎠ ,

V166(S) =

⎛
⎜⎜⎝

0 2 1 3
3 0 3 1
4 1 0 2
1 4 2 0

⎞
⎟⎟⎠ ,

V178(S) =

⎛

⎜⎜⎝

0 3 3 1
3 0 1 3
1 4 0 2
4 2 2 0

⎞

⎟⎟⎠ ,

V167(S) =

⎛
⎜⎜⎝

0 1 2 3
4 0 1 2
2 4 0 1
1 3 3 0

⎞
⎟⎟⎠ ,

V183(S) =

⎛

⎜⎜⎝

0 4 1 2
2 0 2 3
4 3 0 1
3 2 3 0

⎞

⎟⎟⎠ .

We denote the i-th Betti number of k[S] as k[X]-module with degree j , by
βi,j (k[S]). From [6, Corollary 3.4] and Theorem 3, we obtain

Theorem 4 (cf. [6, Corollary 3.4]) Assume that I (S) is generic. Then every
element in AP(S) defines a basic fiber. Therefore βi,j (k[S]) > 0, equivalently
βi,j (k[S]) = 1 if and only if j ∈ APi (S).
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Symmetric (Not Complete Intersection)
Semigroups Generated by Six Elements

Leonid G. Fel

Abstract We consider symmetric (not complete intersection) numerical
semigroups S6, generated by a set of six positive integers {d1, . . . , d6},
gcd(d1, . . . , d6) = 1, and derive inequalities for degrees of syzygies of such
semigroups and find the lower bound for their Frobenius numbers. We show that
this bound may be strengthened if S6 satisfies the Watanabe lemma.

Keywords Symmetric (not complete intersection) semigroups · Betti’s numbers ·
Frobenius number

1 Introduction

Among a vast number of numerical semigroups of different types, symmetric
numerical semigroups Sm = 〈d1, . . . , dm〉 of embedding dimension (edim) m,
generated by positive integers {d1, . . . , dm}, are of particular interest in commutative
algebra. The whole set of symmetric semigroups may be decomposed in two
parts depending on the associated with Sm graded Gorenstein semigroup rings
k[Sm], whose defining ideals ISm are generated either by m − 1 or more than m
elements1 whenm ≥ 4. The former and latter semigroups are refered to as complete
intersection (CI) and symmetric (not CI) semigroups. They both possess the duality
properties of Betti’s numbers βk(Sm) and of syzygies degrees in the Hilbert series
of k[Sm] with the Cohen-Macaulay type 1.

Unlike the CI semigroups, a study of their not CI counterparts is far from full
completion. Bresinsky [3, 4] studied symmetric (not CI) semigroups with small edim

1By Kunz theorems [11, 12], if a cardinality #ISm is equal m, then a semigroup Sm cannot be
symmetric and, therefore, k[Sm] cannot be Gorenstein. The defining ideals IS2 and IS3 are always
generated by 1 and 2 elements, respectively.
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and found β1(S4) = 5 and an upper bound for β1(S5) when di are constraint by
linear relation. However, the other characteristics of Sm are left unknown even for
small m ≥ 4.

Recently, we have derivedm−1 polynomial identities [7] for degrees of syzygies
in non-symmetric semigroups Sm. They became a source of various relations for
semigroups of a different nature. In the case of CI, the whole set ofm− 1 identities
was reduced up to one identity for degrees of the 1st syzygy [7]. In [6] and [8],
we have studied two symmetric (not CI) semigroups with m = 4 and m = 5,
respectively, and found that the number of identities in both cases is reduced up to
two. New lower bounds for the Frobenius numbers in these semigroups were given
in [6–8]. In the present paper we apply the approach of polynomial identities to
study the next case of symmetric (not CI) semigroups with m = 6, which have two
independent Betti’s numbers β1, β2.

The paper is organized in five sections. In Sect. 2 we derive polynomial identities
for symmetric (not CI) semigroups S6 and show that only three identities are
independent. We prove Stanley’s conjecture 4b [13] on the unimodal sequence of
Betti’s numbers in the Gorenstein rings k[Sm] if m = 6. Combining polynomial
identities with Cauchy-Schwarz’s inequality, we find the final inequality (22) for
symmetric polynomials Xk built of the 1st syzygy degrees and arrive at the lower
bound (23) for Frobenius number F(S6) which provides a sufficient condition to
satisfy inequality (22). In Sect. 3 we improve the lower bound (37) for F(S6) by
providing the necessary condition to satisfy inequality (22). In Sect. 4 we compare
the lower bounds (38) for F(S6) in CI, symmetric (not CI) and non-symmetric
semigroups, generated by six elements, and find the upper bound (41) for the
difference β2−β1, while its lower bound (7) follows in proof of Stanley’s conjecture
4b. The upper bound (41) coexists with an absence of the upper bounds for Betti’s
numbers β1, β2. In Sect. 5 we consider the symmetric (not CI) semigroups S6
satisfying Watanabe’s Lemma [14] and find the lower bound of their Frobenius
numbers, which is stronger than its counterparts for symmetric (not CI) semigroups
S6 not satisfying Watanabe’s Lemma.

2 Symmetric (Not CI) Semigroups Generated by Six Integers
and Polynomial Identities

Consider a symmetric numerical semigroup S6, which is not CI and generated by
six positive integers. Its Hilbert series H

(
S6; t
)

with independent Betti’s numbers
β1, β2 reads:

H
(
S6; t
) = Q6(t)∏6

i=1

(
1− tdi ) , (1)

Q6(t) = 1−
β1∑

j=1

txj +
β2∑

j=1

tyj −
β2∑

j=1

tg−yj +
β1∑

j=1

tg−xj − tg,

xj , yj , g ∈ Z>, 2d1 ≤ xj , yj < g.
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The Frobenius number F(S6) of numerical semigroup S6 is related to the largest
degree g as follows:

F(S6) = g − σ1, σ1 = d1 + . . .+ d6.

There are two constraints more,

a) β1 ≥ 7 and b) d1 ≥ 7. (2)

The inequality (2a) holds since S6 is neither CI (β1 = 5) nor almost CI (β1 =
6) according to [12], and the inequality (2b) is necessary since a semigroup
〈m, d2, . . . , dm〉 is never symmetric [5].

Polynomial identities for degrees of syzygies for numerical semigroups were
derived in [7, Thm 1]. In the case of a symmetric (not CI) semigroup S6, they read:

β1∑

j=1

xrj −
β2∑

j=1

yrj +
β2∑

j=1

(g − yj )r −
β1∑

j=1

(g − xj )r + gr = 0, r ≤ 4, (3)

β1∑

j=1

x5
j −

β2∑

j=1

y5
j +

β2∑

j=1

(g − yj )5 −
β1∑

j=1

(g − xj )5 + g5 = 120π6, π6 =
6∏

j=1

dj .

Only three of five identities in (3) are not trivial, these are for r = 1, 3, 5:

B6g +
β1∑

j=1

xj =
β2∑

j=1

yj , B6 = β2 − β1 + 1

2
, (4)

B6g
3 +

β1∑

j=1

x2
j

(
3g − 2xj

) =
β2∑

j=1

y2
j

(
3g − 2yj

)
, (5)

B6g
5 +

β1∑

j=1

x3
j

(
10g2 − 15gxj + 6x2

j

)
− 360π6 =

β2∑

j=1

y3
j

(
10g2 − 15gyj + 6y2

j

)
, (6)

where B6 is defined according to the expression for an arbitrary symmetric
semigroup Sm in [7], Formulas (5.7, 5.9). The sign of B6 is strongly related to the
famous Stanley Conjecture 4b [13] on the unimodal sequence of Betti’s numbers in
the 1-dim local Gorenstein semigroup rings k[Sm]. We give its simple proof in the
case edim = 6.

Lemma 1 Let a symmetric (not CI) semigroup S6 be given with the Hilbert series
H
(
S6; z
)

in accordance with (1). Then

β2 ≥ β1 + 1. (7)
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Proof According to identity (4) and the constraints on degrees xj of the 1st
syzygies (1) we have,

β2∑

j=1

yj < B6g + β1g = β2 + β1 + 1

2
g. (8)

On the other hand, there holds another constraint on degrees yj of the 2nd syzygies,

β2∑

j=1

yj < β2g. (9)

Inequality (9) holds always, while inequality (8) is not valid for every set
{x1, . . . , xβ1}, but only when (4) holds. In order to make the both inequalities
consistent, we have to find a relation between β1 and β2 where both inequalities (8)
and (9) are satisfied, even if (8) is stronger than (9). To satisfy these inequalities, it
is enough to require (β2 + β1 + 1)/2 ≤ β2, that leads to (7). ��
Another constraint for Betti’s numbers βj follows from the general inequality for
the sum of βj in the case of non-symmetric semigroups [5], Formula (1.9),

m−1∑

j=0

βj ≤ d12m−1 − 2(m− 1), β0 = 1. (10)

Applying the duality relation for Betti’s numbers, βj = βm−j−1, βm−1 = 1, in
symmetric semigroups S6 to inequality (10) and combining it with Lemma 1, we
obtain

β1 < 2(4d1 − 1). (11)

To study polynomial identities (4, 5, 6) and their consequences, start with
estimation for two real functions R1(z), R2(z), presented in Fig. 1,

R1(z) ≥ A∗R2(z), 0 ≤ z ≤ 1, where (12)

R1(z) = z2
√

10− 15z+ 6z2, R2(z) = z2(3− 2z), A∗ = 0.9682.

The constant A∗ is chosen by requirement of the existence of such a coordinate
z∗ ∈ [0, 1] providing
two equalities,

R1(z∗) = A∗R2(z∗), R′1(z∗) = A∗R′2(z∗), z∗ ' 0.8333,
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Fig. 1 Plot of the functions (a) R1(z) in red color, A∗R2(z) in blue color and a discrepancy (b)
δR(z) = R1(z)− A∗R2(z) in the range z ∈ [0, 1] (colour figure online)

where R′j (z∗) = dRj (z)/dz at z = z∗. Substituting z = yj/g, 0 < z < 1, into
inequality (12) and making summation over 1 ≤ j ≤ β2, we get

A∗
β2∑

j=1

y2
j (3g − 2yj ) <

β2∑

j=1

y2
j

√
10g2 − 15gyj + 6y2

j . (13)

Applying the Cauchy-Schwarz inequality
(∑N

j=1 ajbj

)2 ≤
(∑N

j=1 a
2
j

) (∑N
j=1 b

2
j

)

to the right-hand side of inequality (13), we obtain

⎛

⎝
β2∑

j=1

y
3/2
j

√
10g2 − 15gyj + 6y2

j
y

1/2
j

⎞

⎠
2

≤
β2∑

j=1

y3
j (10g2 − 15gyj + 6y2

j )

β2∑

j=1

yj . (14)

Combining (13) and (14), we arrive at the inequality

A2∗

⎛

⎝
β2∑

j=1

y2
j (3g − 2yj )

⎞

⎠
2

<

β2∑

j=1

y3
j (10g2 − 15gyj + 6y2

j )

β2∑

j=1

yj . (15)

Denote by Xk the k-th power symmetric polynomial Xk(x1, . . . , xβ1) =
∑β1
j=1 x

k
j ,

where xj < g, and substitute identities (4, 5, 6) into inequality (15),

A2∗
(
B6g

3 + 3gX2 − 2X3

)2
<
(
B6g

5 − 360π6 + 10g2X3 − 15gX4 + 6X5

)(
B6g +X1

)
. (16)
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On the other hand, similar to inequalities (13, 14, 15), let us establish another set
of inequalities for Xk by replacing yj → xj . We write the last of them, which is
similar to (15),

A2∗

⎛

⎝
β1∑

j=1

x2
j (3g − 2xj )

⎞

⎠
2

<

β1∑

j=1

x3
j (10g2 − 15gxj + 6x2

j )

β1∑

j=1

xj , (17)

and present (17) in terms of Xk ,

A2∗ (3gX2 − 2X3)
2 <
(

10g2X3 − 15gX4 + 6X5

)
X1. (18)

Represent the both inequalities (16) and (18) as follows:

360π6 − B6g
5 + A2∗

(B6g
3 + 3gX2 − 2X3

)2

B6g +X1
< 10g2X3 − 15gX4 + 6X5, (19)

A2∗
(3gX2 − 2X3)

2

X1
< 10g2X3 − 15gX4 + 6X5. (20)

Inequality (20) holds always, while inequality (19) is not valid for every set
{x1, . . . , xβ1, g}. In order to make both inequalities consistent, we have to find
a range of g where both inequalities (19) and (20) are satisfied. To satisfy these
inequalities, it is enough to require that inequality (20) implies inequality (19), i.e.,

360π6 − B6g
5

A2∗
+
(B6g

3 + 3gX2 − 2X3
)2

B6g +X1
<
(3gX2 − 2X3)

2

X1
. (21)

Simplifying the above expressions, we present the last inequality (21) as follows:

CX1(X1 + B6g) <
(

3gX2 − 2X3 − g2X1

)2
, C = 360π6 − αB6g

5

A2∗B6g
, (22)

where α = 1 − A2∗ ' 0.06259 and B6 ≥ 1 due to Lemma 1. Inequality (22) holds
always if its left-hand side is negative, i.e., C < 0, that results in the following
constraint,

g > q6, q6 = 5

√
360

α B6

5
√
π6, where 5

√
360

α
' 5.649. (23)

The lower bound q6 in (23) provides a sufficient condition to satisfy the inequal-
ity (22). In fact, a necessary condition has to produce another bound g6 < q6.
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3 The Lower Bound for the Frobenius Numbers
of Semigroups S6

An actual lower bound of g precedes the bound, given in (23), since the inequal-
ity (22) may be satisfied for a sufficiently small C > 0. To find it, we introduce
another kind of symmetric polynomials Xk :

Xk =
β1∑

i1<i2<...<ik

xi1xi2 . . . xik ,

X0 = 1, X1 =
β1∑

i=1

xi, X2 =
β1∑

i<j

xixj , X3 =
β1∑

i<j<r

xixj xr, . . . , Xβ1 =
β1∏

i=1

xi,

which are related to polynomialsXk by the Newton recursion identities,

mXm =
m∑

k=1

(−1)k−1XkXm−k, i.e.,

X1 = X1, X2 = X 2
1 − 2X2, X3 = X 3

1 − 3X2X1 + 3X3, . . . . (24)

Recall the Newton-Maclaurin inequalities [9] for polynomials Xk ,

X1

β1
≥
(

X2(
β1
2

)

) 1
2

≥
(

X3(
β1
3

)

) 1
3

≥ . . . ≥ β1
√Xβ1 . (25)

Consider the inequality (22) in the following form

CX1(X1 + B6g) < 9g2X2
2 + 4X2

3 + g4X2
1 + 4g2X1X3 − 12gX2X3 − 6g3X1X2, (26)

and substitute Newton’s identities (24) into (26),

X1P(X1,X2,X3) < X1Q1(X1)+ X2Q2(X1,X2)+ X3Q3(X1,X2,X3), (27)

where

P(X1,X2,X3) = 4g2X1X2 + 2X 3
1 X2 + 6X2X3 + 6gX 2

2 + 3gX1X3,

Q1(X1) = 1

3
X 5

1 − gX 4
1 +

13

12
g2X 3

1 −
1

2
g3X 2

1 +
g4 − C

12
X1 − C

12
B6g,

Q2(X1,X2) = 3g2X2 + 3X2X 2
1 + 5gX 3

1 + g3X1,

Q3(X1,X2,X3) = 3X3 + 2X 3
1 + g2X1 + 6gX2.
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Applying inequalities (25) toQ2(X1,X2) andQ3(X1,X2,X3), we obtain

Q2(X1,X2) < X1Q21(X1), Q21(X1) = 3
X1

β2
1

(
β1

2

)(
g2 + X 2

1

)
+ 5gX 2

1 + g3,

Q3(X1,X2,X3) < X1Q31(X1), Q31(X1) = 3
X 2

1

β3
1

(
β1

3

)
+ 2X 2

1 + g2 + 6g
X1

β2
1

(
β1

2

)
. (28)

Substituting inequalities (28) into (27) and applying again (25), we obtain

P(X1,X2,X3) < Q1(X1)+ X 2
1

β2
1

(
β1

2

)
Q21(X1)+ X 3

1

β3
1

(
β1

3

)
Q31(X1). (29)

Represent the right-hand side of inequality (29) as a polynomial E(X1) of the 5th
order in X1,

E(X1) =
5∑

k=0

Ekg
5−kX k1 , where (30)

E0 = −B6Cg
−4

12
, E1 = 1− Cg−4

12
, E2 = 1

β2
1

(
β1

2

)
− 1

2
= − 1

2β1
,

E3 = 3

β4
1

(
β1

2

)2

+ 1

β3
1

(
β1

3

)
+ 13

12
, E4 = 5

β2
1

(
β1

2

)
+ 6

β5
1

(
β1

2

)(
β1

3

)
− 1,

E5 = 3

β4
1

(
β1

2

)2

+ 3

β6
1

(
β1

3

)2

+ 2

β3
1

(
β1

3

)
+ 1

3
.

Thus, the inequality (22) reads:

P(X1,X2,X3) < E(X1). (31)

On the other hand, applying (25) to the polynomial P(X1,X2,X3), we have another
inequality,

P(X1,X2,X3) < J (X1), J (X1) =
5∑

k=3

Jkg
5−kX k

1 , (32)

J5 = 2

β2
1

(
β1

2

)[
1+ 3

β3
1

(
β1

3

)]
, J4 = 6

β4
1

(
β1

2

)2

+ 3

β3
1

(
β1

3

)
, J3 = 4

β2
1

(
β1

2

)
.

Inequality (32) holds always, while inequality (31) is not valid for every set
{x1, . . . , xβ1, g}. In order to make both inequalities consistent, we have to find
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a range for g where both inequalities (31) and (32) are satisfied. To satisfy both
inequalities, it is enough to require that (32) implies (31),

E(X1) > J(X1), or

(E5 − J5)X 5
1 +(E4 − J4)gX 4

1 +(E3 − J3)g
2X 3

1 +E2g
3X 2

1 +E1g
4X1 +E0g

5 > 0, (33)

where

E5 − J5 = 3

β4
1

(
β1

2

)2

+ 3

β6
1

(
β1

3

)2

+ 2

β3
1

(
β1

3

)
+ 1

3
− 2

β2
1

(
β1

2

)[
1+ 3

β3
1

(
β1

3

)]
= 1

3β4
1

,

E4 − J4 = 5

β2
1

(
β1

2

)
+ 6

β5
1

(
β1

2

)(
β1

3

)
− 1− 6

β4
1

(
β1

2

)2

− 3

β3
1

(
β1

3

)
= − 1

β3
1

,

E3 − J3 = 3

β4
1

(
β1

2

)2

+ 1

β3
1

(
β1

3

)
+ 13

12
− 4

β2
1

(
β1

2

)
= 13

12β2
1

. (34)

Substituting expressions Ek − Jk , k = 3, 4, 5 from (34) and E0, E1, E2 from (30)
into (33), we obtain

C

g4
< G(b, u), G(b, u) = u

u+ b (1− u)
2(1− 2u)2, u = X1

β1g
, b = B6

β1
. (35)

The functionG(b, u) is continuous (see Fig. 2) and attains its global maximal value
G(b, um) at um(b) ∈ (0, 1/2), where um = um(b) is a smaller positive root of cubic
equation,

8u3
m + 2(5b− 3)u2

m − 9bum + b = 0,

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

u

G
b,
u

Fig. 2 Plot of the functions G(b, u) with different b: (in brown) b = 1.75, um = 0.125; (in blue)
b = 0.85, um = 0.117; (in red) b = 0.5, um = 0.112; (in black) b = 0.35, um = 0.107 (colour
figure online)
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0 1 2 3 4
0.0
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0.6

0.8

1.0

b

G
b,
u m

(a) (b)

Fig. 3 Plot of the functions (a) um(b) and (b) G(b, um) in a wide range of b

with asymptotic behavior of um(b) and G(b, um) (see Fig. 3),

um(b)
b→0−→
√
b

6
, (36)

um(b)
b→∞−→ v1 − v2

b
, v1 = 9−√41

20
' 0.1298, v2 = 7

√
41− 3

500
√

41
' 0.013,

G(b, um)
b→0−→ 1, G(b, um)

b→∞−→ w

b
, w = 411+ 41

√
41

12500
' 0.05388.

Theorem 1 Let a symmetric (not CI) semigroup S6 be given with its Hilbert series
H
(
S6; z
)

in accordance with (1). Then the following inequality holds:

g > g6, g6 = λ6
5
√
π6, λ6 = 5

√
360

B6K(b,A∗)
, K(b,A∗) = α + A2∗G(b, um). (37)

Proof Substitute into (35) the expression for C, given in (22), and arrive at
inequality

360π6 − αB6g
5

A2∗B6g5 < G(b, um),

which gives rise to the lower bound g6 in (37). ��
The formula for λ6 in (37) shows a strong dependence on B6, even the last is

implicitly included intoG(b, um) by a slowly growing function um(b) when b > 1.
Such dependence λ6(B6) may lead to a very small values of λ6 if B6 is not bounded
from above, but b is fixed, and results in an asymptotic decrease of the bound,

g6
B6→∞−→ 0. The last limit poses a question: does formula (37) for g6 contradict

the known lower bound [10] for the Frobenius number in the case of 6-generated
numerical semigroups of arbitrary nature, i.e., not assuming symmetry. If the answer
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is affirmative then it arises another question: what should be required in order to
avoid such contradiction. We address both questions in the next section in a slightly
different form: are there any constraints on Betti’s numbers.

4 Are There Any Constraints on Betti’s Numbers
of Symmetric (Not CI) Semigroups S6?

Denote by g̃6 and g6 the lower bounds of the largest degree of syzygies for
non-symmetric [10] and symmetric CI [7] semigroups generated by six integers,
respectively. Compare g6 with g̃6 and g6 and note that the following double
inequality hold:

g̃6 < g6 < g6, g̃6 = 5
√

120 5
√
π6, g6 = 5 5

√
π6. (38)

Substituting the expression for g6 from (37) into (38), we obtain

72

625

1

K(b,A∗)
< B6 <

3

K(b,A∗)
,

72

625
= 0.1152, (39)

K(b,A∗)
b→0−→ 1, K(b,A∗)

b→∞−→ α,

where the two limits follow by (36, 37). The double inequality (39) determines the
upper and lower bounds for varying B6 in the plane (b,B6) as monotonic functions
(see Fig. 4a) with asymptotic behavior,

Upp. bound : B6
b→0−→ 3, B6

b→∞−→ 47.92; (40)

Low. bound : B6
b→0−→ 0.1152, B6

b→∞−→ 1.84.

According to Lemma 1, the lower bound in (39, 40) may be chosen as B6 = 1.
Find the constraints on Betti’s numbers. In order to find the constraints on Betti’s

numbers, inequality (39) has to be replaced by

1 < β2 − β1 <
6

K(b,A∗)
− 1, β2 − β1

β1→7−→ 83.8, β2 − β1
β1→∞−→ 5, (41)

and the plot in Fig. 4a has to be transformed by rescaling the coordinates (b,B6)

with inversion, b→ β1 = B6/b, and shift, B6 → β2 − β1 = 2B6 − 1 (see Fig. 4b).
Following Sect. 2, the constraints (39) have to be supplemented by another double
inequality 7 ≤ β1 < 2(4d1 − 1) in accordance with (2a) and (11).

The double inequality (41) manifests a phenomenon, which does not exist in
symmetric (not CI) semigroups Sm, generated by four [6] and five [8] integers,
where inequalities g̃m < gm < gm, are always satisfied and independent of Betti’s
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Fig. 4 Plots of the lower (blue) and upper (red) bounds in the planes (a) (b,B6) and (b) (β1, β2−
β1). The lower bounds are given by the values (a) B6 = 1 and (b) β2 − β1 = 1 (colour figure
online)

numbers (β1 = 5 for S4 and β1 = β for S5):

g̃m < λm
m−1
√
πm < gm, (42)

λ4 = 3
√

25,
λ5 = 4

√
192(β − 1)/β,

g̃m = m−1
√
(m− 1)! m−1

√
πm,

gm = (m− 1) m−1
√
πm.

Note, that constraints (41) do not contradict Bresinsky’s theorem [2] on the
arbitrarily large finite value of β1 for generic semigroup Sm, m ≥ 4. Below, we
put forward some considerations about validity of (41) for Betti’s numbers β1, β2 of
symmetric (not CI) semigroup S6.

The double inequality (41) has arisen by comparison of g6 with two other bounds
g̃6 and g6 and, strictly speaking, a validity of (41) is dependent on how small is a
discrepancy δR(z) in Fig. 1. If δR(z) is not small enough and neglecting it in (12) is
far too crude approximation, then there may exist symmetric (not CI) semigroups S6
with Betti’s numbers β1, β2, where (41) is not true. Such violation should indicate
a necessity to improve the lower bound g6 in (37) to restore the relationship g̃6 <

g6 < g6. Note, that such improvement is very hard to provide even by replacing
A∗ → A in inequality (13), where A∗ < A < 1, and still preserving (13) with
a new A. Such replacement leads again to (37) with K(b,A) instead K(b,A∗),
i.e., the constraints on β1, β2 still exist, even the area of admissible Betti’s numbers
becomes wider.

However, if there are no such symmetric (not CI) semigroups S6, for which the
double inequality (41) does not hold, then there arises a much more deep question:
why do the constraints on Betti’s numbers exist. This problem is strongly related to
the structure of minimal relations of the first and second syzygies in the minimal
free resolution for the 1–dim Gorenstein (not CI) semigroup ring k[S6] and has to
be addressed in a separate paper.
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5 Symmetric (Not CI) Semigroups S6 with the W and W 2

Properties

In [8], we introduced a notion of the W property for the m-generated symmetric
(not CI) semigroups Sm satisfying Watanabe’s Lemma [14]. We recall this Lemma
together with the definition of the W property and two other statements relevant in
this section.

Lemma 2 ([14]) Let a semigroup Sm−1 = 〈δ1, . . . , δm−1〉 be given and a ∈ Z, a >
1, such that gcd(a, dm) = 1, dm ∈ Sm−1 \ {δ1, . . . , δm−1}. Consider a semigroup
Sm = 〈aδ1, . . . , aδm−1, dm〉 and denote it by Sm = 〈aSm−1, dm〉. Then Sm is
symmetric if and only if Sm−1 is symmetric, and Sm is symmetric CI if and only if
Sm−1 is symmetric CI.

Corollary 1 ([8]) Let a semigroup Sm−1 = 〈δ1, . . . , δm−1〉 be given and a ∈ Z,
a > 1, such that gcd(a, dm) = 1, dm ∈ Sm−1 \ {δ1, . . . , δm−1}. Consider a
semigroup Sm = 〈aSm−1, dm〉. Then Sm is symmetric (not CI) if and only if Sm−1
is symmetric (not CI).

Definition 1 ([8]) A symmetric (not CI) semigroup Sm has the property W if
there exists another symmetric (not CI) semigroup Sm−1 giving rise to Sm by the
construction, described in Corollary 1.

Theorem 2 ([8]) A minimal edim of symmetric (not CI) semigroup Sm with the
property W is m = 5.

In this section we study the symmetric (not CI) semigroups S6 satisfying Watan-
abe’s Lemma [14]. To distinguish such semigroups from the rest of symmetric (not
CI) semigroups S6 without the property W we denote them by W6.

Lemma 3 Let two symmetric (not CI) semigroups W6 = 〈aS5, d6〉 and S5 =
〈q1, . . . , q5〉 be given and gcd(a, d6) = 1, d6 ∈ S5 \ {q1, . . . , q5}. Let the lower
bound F6w of the Frobenius number F(W6) be represented as, F6w = g6w −(
a
∑5
j=1 qj + d6

)
. Then

g6w = a
(
λ5

4
√
π5(q)+ d6

)
, π5(q) =

5∏

j=1

qj . (43)

where λ5 is defined in (42).

Proof Consider a symmetric (not CI) numerical semigroup S5 generated by five
integers (without theW property), and apply the recent result [8] on the lower bound
F5 of its Frobenius number, F(S5),

F(S5) ≥ F5, F5 = h5 −
5∑

j=1

qj , h5 = λ5
4
√
π5(q). (44)
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The following relationship between the Frobenius numbers F(W6) and F(S5) was
derived in [1]:

F(W6) = aF(S5)+ (a − 1)d6. (45)

SubstitutingF(W6) = g−
(
a
∑5
j=1 qj + d6

)
and the representation (44) forF(S5)

into (45), we obtain

g − a
5∑

j=1

qj − d6 = ah5 − a
5∑

j=1

qj + (a − 1)d6 and hence g = a(h5 + d6). (46)

Comparing the last equality in (46) with the lower bound of h5 in (44), we arrive
at (43). ��

Following Corollary 1, let us apply the construction of a symmetric (not CI)
semigroup Sm with theW property to a symmetric (not CI) semigroup Sm−1, which
already has such property.

Definition 2 A symmetric (not CI) semigroup Sm has the property W 2 if there
exist two symmetric (not CI) semigroup Sm−1 = 〈q1, . . . , qm−1〉 and Sm−2 =
〈p1, . . . , pm−2〉 giving rise to Sm by the construction, described in Corollary 1,

Sm = 〈a1Sm−1, dm〉, dm ∈ Sm−1 \ {q1, . . . , qm−1}, gcd(a1, dm) = 1,

Sm−1 = 〈a2Sm−2, qm−1〉, qm−1 ∈ Sm−2 \ {p1, . . . , pm−2}, gcd(a2, qm−1) = 1.

Theorem 3 A minimal edim of symmetric (not CI) semigroup Sm with the property
W 2 is m = 6.

Proof This statement follows if we combine Definition 2 and Theorem 2. ��
In this section we denote the symmetric (not CI) semigroups S6 with the property
W 2 by W2

6.

Lemma 4 Let three symmetric (not CI) semigroups W2
6 = 〈a1W5, d6〉, W5 =

〈a2S4, q5〉, and S4 = 〈p1, . . . , p4〉, where qj = a2pj , 1 ≤ j ≤ 4, be given in
such a way that

d6 ∈ W5\{q1, . . . , q5}, q5 ∈ S4\{p1, . . . , p4}, gcd(a1, d6) = gcd(a2, q5) = 1.

Let the lower boundF6w of the Frobenius numberF(W2
6) be represented as, F6w2 =

g6w2 −
(
a1a2
∑4
j=1 pj + a1q5 + d6

)
. Then

g6w2 = a1

[
a2

(
λ4

3
√
π4(p)+ q5

)
+ d6

]
, π4(p) =

4∏

j=1

pj , (47)
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where λ4 is defined in (42).

Proof By Lemma 2 in [8], the lower bound F5w of its Frobenius number F(W5) of
the symmetric (not CI) semigroup W5 reads:

F5w = g5w −
⎛

⎝a2

4∑

j=1

pj + q5

⎞

⎠ , g5w = a2

(
λ4

3
√
π4(p)+ q5

)
. (48)

Consider a symmetric (not CI) semigroup W2
6, generated by six integers, and make

use of a relationship between the Frobenius numbers F(W2
6) and F(W5) derived in

[1]:

F(W2
6) = a1F(W5)+ (a1 − 1)d6. (49)

Substituting F(W2
6) = g6w2 −

(
a1a2
∑4
j=1 pj + a1q5 + d6

)
and the representa-

tion (48) for F(S5) into (49), we obtain

g6w2 − a1a2

4∑

j=1

pj − a1q5 − d6 = a1

⎡

⎣g5w −
⎛

⎝a2

4∑

j=1

pj + q5

⎞

⎠

⎤

⎦+ (a1 − 1)d6. (50)

Simplifying the last equality (50), we arrive at (47). ��
Among the subsets {W2

6}, {W6} and the entire set {S6} of symmetric (not CI)
semigroups, generated by six integers, the following containment holds:

{W2
6} ⊂ {W6} ⊂ {S6}.

Below we present twelve symmetric (not CI) semigroup generated by six integers:
V1, V2, V3, V4—without the W property, V5, V6, V7, V8—with the W property, and
V9, V10, V11, V12—with theW 2 property.

V1 = 〈7, 9, 11, 12, 13, 15〉, V5 = 〈12, 20, 28, 30, 38, 41〉, V9 = 〈30, 33, 36, 37, 42, 48〉,
V2 = 〈7, 9, 10, 11, 12, 13〉, V6 = 〈12, 20, 28, 38, 46, 47〉, V10=〈42, 45, 48, 54, 59, 78〉,
V3 = 〈12, 13, 14, 15, 17, 19〉, V7 = 〈14, 24, 26, 36, 46, 49〉, V11=〈40, 42, 48, 54, 71, 78〉,
V4 = 〈12, 13, 14, 15, 18, 19〉, V8 = 〈38, 46, 58, 62, 74, 79〉, V12=〈46, 48, 75, 78, 90, 102〉.

We give a comparative Table 1 for the largest degree g of syzygies and its lower
bounds g6, g6w, g6w2 and g̃6, calculated by formula (38).

For symmetric (not CI) semigroups W2
6, presented in Table 1, the following

inequalities hold:

g > g6w2 > g6w > g6 > g̃6. (51)
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Table 1 The largest degree g of syzygies for symmetric (not CI) semigroups S6 with different
Betti’s numbers β1, β2 and its lower bounds g6, g6w , g6w2 , g̃6

– W property W 2 property

S6 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

β1 13 14 10 10 8 9 10 14 7 7 7 7

β2 31 35 19 22 19 18 23 37 16 16 16 16

B6 9.5 11 5 6.5 6 5 7 12 5 5 5 5

g 84 77 125 126 256 292 302 638 387 603 598 816

g6w2 – – – – – – – – 385.6 595.3 590.3 811.2

g6w – – – – 240.4 271.2 286 609.2 359.8 554.8 548 746.9

g6 55 49.6 88 86.5 173.3 196 196.6 395.4 274.4 420.8 426.6 586.6

g̃6 45.5 42 66.2 66.9 130.4 146 153.4 338 199.9 306.5 310.7 427.2

For the rest of symmetric (not CI) semigroups W6 and S6 the bounds g6w2 and
g6w are skipped in inequalities (51) depending on the existence (or absence) of
the W property in these semigroups. It is easy to verify that Betti’s numbers of all
semigroups from Table 1 satisfy the constraints (41).
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Syzygies of Numerical Semigroup Rings,
a Survey Through Examples

Philippe Gimenez and Hema Srinivasan

Abstract This survey presents recent results on minimal free resolutions of
numerical semigroup rings. We focus on two classes of numerical semigroups where
the resolution is explicitly given: Gorenstein semigroups of embedding dimension
4 that are not a complete intersection and semigroups generated by a sequence
of integers in arithmetic progression. Finally, we describe how the resolution is
constructed when the semigroup is obtained by gluing of two numerical semigroups
of smaller embedding dimension. Along the paper, we provide several non-trivial
examples to illustrate our results.

Keywords Semigroup rings · Syzygies · Gorenstein rings · Arithmetic
sequence · Gluing

1 Introduction

Given a sequence of positive integers a = (a1, . . . an) and an arbitrary field k,
consider the ring homomorphism φa : k[x1, . . . , xn] → k[t] defined by φa(xi) =
tai . Then Ia := kerφa is a prime binomial ideal of height n−1 inR := k[x1, . . . , xn]
and it is weighted homogeneous with the weighting deg xi = ai on R. It is the
defining ideal of the affine monomial curve Ca ⊂ A

n
k parametrically defined by a

and whose coordinate ring is k[a] := Imφa = k[ta1, . . . , tan ] ' R/Ia. As k[a] is
isomorphic to k[da] for any integer d ≥ 1, we may assume without loss of generality
that a1, . . . , an are relatively prime. The ring k[a] is also known as the semigroup
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ring of the numerical semigroup 〈a〉 = 〈a1, . . . an〉 ⊂ N generated by a1, . . . , an,
and it is always a Cohen-Macaulay ring. When the sequence a minimally generates
the semigroup 〈a〉, then the semigroup ring k[a] has embedding dimension n which
is equivalent to the condition Ia ⊆ 〈x1, . . . , xn〉2. We also say a is numerically
independent if it is a minimal generating set for the semigroup 〈a〉.

In this survey, we are interested in the minimal graded free resolution of k[a]
as R-module with respect to the grading on R induced by deg xi = ai , and in
particular in determining the graded Betti numbers of k[a] and other invariants
related to its syzygies like the Hilbert series, the Cohen-Macaulay type or the
Castelnuovo-Mumford regularity. The complete intersection case is under control
since the Kozsul complex gives a minimal graded free resolution in this case so one
only needs to give a minimal generating set of Ia. When the embedding dimension
is ≤ 2, things are hence trivial and for n = 3, one can easily describe the syzygies
of k[a] using the results of Herzog [10]. For n ≥ 4, the number of elements in
a minimal generating set of Ia is not bounded and the description of a minimal
resolution in general becomes a hard problem. The first interesting case is thus when
n = 4 and k[a] is Gorenstein and not a complete intersection. In this case, Bresinsky
shows in [2] that Ia is minimally generated by 5 elements and he gives a complete
description of a minimal generating set of Ia. This information also encodes the
whole minimal graded free resolution of k[a] in this case as we will recall in
Proposition 1. The concept of principal matrix, that we recall in Sect. 2, is useful for
understanding Gorenstein monomial curves of embedding dimension 4 that are not a
complete intersection. Bresinsky’s construction shows that when k[a] is Gorenstein
and not a complete intersection, then a has a principal matrix that satisfies a property
that we call pseudo-Gorenstein (Definition 2) but not any pseudo-Gorenstein matrix
provides a Gorenstein sequence (Theorem 1). We will also recall from [9] how,
given a Gorenstein monomial curve, one gets two families of Gorenstein monomial
curves by translation (Theorem 2). Note that in [1, Theorem 6], one can find a
minimal graded free resolution of k[a] in another interesting case of embedding
dimension 4: when 〈a〉 is pseudosymmetric, i.e., almost symmetric of type 2. The
case of almost symmetric numerical semigroups of embedding dimension 4 and
type t is treated in [11, Sec. 6].

In Sect. 3, we focus on the case of semigroup rings defined by a sequence in
arithmetic progression. This is, to our knowledge, the biggest familly of numerical
semigroup rings where the minimal graded free resolution is completely described
in arbitrary embedding dimension, [8]. The construction of the sygygies and the
computation of the graded Betti numbers are recalled in Theorem 3. Using this
result, one can describe all the patterns of minimal graded free resolutions of
semigroup rings defined by arithmetic sequences in low embedding dimension
(Examples 5–7).

Finally, we will show in Sect. 4 how the syzygies behave when one glues two
numerical semigroups. When c = k1a � k2b is a gluing, a minimal graded free
resolution of k[c] can be obtained from minimal resolutions of k[a] and k[b]
(Theorem 4) and formulas for all the numerical invariants can then easily be deduced
(Corollary 2).
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Along this survey, we illustrate results and phenomenons with many examples
where we construct syzygies and compute invariants like Betti numbers and
regularity. The computer algebra system SINGULAR [3] was very useful to check
our computations and build non-trivial examples.

2 Principal Matrices and Gorenstein Sequences of Length 4

Given a sequence of relatively prime positive integers a = (a1, . . . , an), n ≥ 2,
there is an integer s such that x > s �⇒ x ∈ 〈a〉. The smallest integer with this
property is called the Frobenius number of 〈a〉 and we will denote it by F(a). When
n = 2, one has a formula for F(a) but in higher embedding dimension, there is no
such a simple formula; see [12].

Lemma 1 If a1 and a2 are two relatively prime positive integers, then F(a1, a2) =
a1a2−a1−a2, i.e., if x ≥ a1a2−a2−a1+1 then x ∈ 〈a1, a2〉, and a1a2−a1−a2 /∈
〈a1, a2〉.

For each i, 1 ≤ i ≤ n, there exists a multiple of ai that belongs to the numerical
semigroup generated by the rest of the elements in the sequence and we denote by
ri > 0 the smallest positive integer such that riai ∈ 〈a1, . . . , ai−1, ai+1, . . . , an〉.
So we have that

∀i, 1 ≤ i ≤ n, riai =
∑

j 
=i
rij aj , rij ≥ 0, ri > 0 . (1)

Definition 1 The n × n integer matrix D(a) := (rij ) where rii := −ri is called a
principal matrix associated to a.

Principal matrixD(a) is not uniquely defined. Although the diagonal entries−ri
are uniquely determined, there is not a unique choice for rij in general. We have
the “map” D : N[n] → T ∗n from the set N[n] of sequences of n relatively prime
positive integers to the set T ∗n of n × n singular matrices with negative integers on
the diagonal and non-negative integers outside the diagonal. When D(a) has rank
n − 1, the maximum possible, we can recover a from D(a) by factoring out the
greatest common divisor of the n maximal minors of the n − 1 × n submatrix of
D(a) obtained by removing the first row. In other words, callD−1 : T ∗n → N [n] the
operation that, for M ∈ T ∗n , takes the first column of adj(M) and then factors out
the g.c.d. and removes the signs to get an element in N

[n]. Then D−1(D(a)) = a if
D(a) has rank n− 1. Now given a matrixM ∈ T ∗n , D(D−1(M)) 
= M in general.
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Example 1 Consider the matrix M =

⎛

⎜⎜⎝

−4 0 1 1
1 −5 4 0
0 4 −5 1
3 1 0 −2

⎞

⎟⎟⎠. It has rank 3 and

D−1(M) = (7, 11, 12, 16) but D(D−1(M)) 
= M . It is easy to check, for
example, that for a = (7, 11, 12, 16), one has that r2 = 3 < 5.

As observed in [4] where Delorme characterizes sequences a such that k[a]
is a complete intersection, this fact does not depend on the field k by [10,
Corollary 1.13]. On the other hand, it is well-known that k[a] is Gorenstein if and
only if the numerical semigroup 〈a1, . . . an〉 ⊂ N is symmetric, which does not
depend either on the field k. We will thus say that a is a complete intersection
(respectively Gorenstein) if the semigroup ring k[a] is a complete intersection
(respectively Gorenstein).

In his classical paper [2], Bresinsky gives a characterization of monomial curves
in A

4
k that are Gorenstein but not a complete intersection. As shown in [9], principal

matrices turn out to play an important role in this characterization as we will recall
now.

Assume that n = 4. If a is Gorenstein but is not a complete intersection, by [2,
Theorems 3 and 5], there is a principal matrixD(a) that has the following form:

D(a) =

⎛

⎜⎜⎝

−c1 0 d13 d14

d21 −c2 0 d24

d31 d32 −c3 0
0 d42 d43 −c4

⎞

⎟⎟⎠ (2)

with ci ≥ 2 and dij > 0 for all 1 ≤ i, j ≤ 4, the columns summing to zero
and all the columns of the adjoint being relatively prime. The first column of the
adjoint of this matrix is −aT and Bresinsky’s characterization also says that the first
column of the adjoint of every such matrix defines a Gorenstein monomial curve
(after removing the signs) provided they are relatively prime. In fact, we can do this
with any column of the matrix adj(D(a)) in (2), not only the first one, that all give
a after factoring out the g.c.d.

Definition 2 We say that a 4 × 4 matrix with integer entries A = (aij ) is pseudo-
Gorenstein if

1. the columns add up to zero;
2. entries on the diagonal are all negative;
3. the other entries are all non-negative;
4. there are exactly 4 entries that are zero: a12 = a23 = a34 = a41 = 0.



Syzygies of Numerical Semigroup Rings 115

Remark 1 Any pseudo-Gorenstein matrix A will be of rank 3 so adj (A) has rank
1, i.e., its columns are all equal up to a multiple. Moreover, since the columns of A
add up to zero, the 4 columns of adj (A) are the same. This means that adj (A) =
aT × [−1− 1− 1− 1] for some a = (a1, a2, a3, a4).

Thus, by Bresinsky, any sequence in N
4 that is Gorenstein but not a complete

intersection has a principal matrix which is pseudo-Gorenstein with the four entries
in the first column of the adjoint being relatively prime. We can prove the following
strengthening of this criterion.

Theorem 1 If A is a pseudo-Gorenstein 4 × 4 matrix, then the first column of
the adjoint of A (after removing the signs) defines a Gorenstein monomial curve
provided these entries are relatively prime.

Proof Consider such a matrix A and let a1, a2, a3, a4 be the entries in the first
column of the adjoint of A (after removing the signs). Since we are assuming that
they are relatively prime, there exist integers λ1, . . . , λ4 such that λ1a1 + · · · +
λ4a4 = 1.

It suffices to show that the four relations in the rows of A are principal relations.
We will show this for the first row and the other rows are similar. Suppose that
b11a1 = b12a2 + b13a3 + b14a4 is a relation with b11 ≥ 2 and b12, b13, b14 ≥ 0 and
let’s show that b11 ≥ c1.

Since the system

⎡

⎢⎢⎣

−b11 b12 b13 b14

d21 −c2 0 d24

d31 d32 −c3 0
0 d42 d43 −c4

⎤

⎥⎥⎦Y = 0 has a non-trivial solution,

namely Y = (a1, a2, a3, a4)
T , we see that it has determinant zero. So there exist

xi such that

(1, x2, x3, x4)

⎡
⎢⎢⎣

−b11 b12 b13 b14

d21 −c2 0 d24

d31 d32 −c3 0
0 d42 d43 −c4

⎤
⎥⎥⎦ = 0 . (3)

Consider the matrix T4 =

⎡
⎢⎢⎣

−b11 b12 b13 b14

d21 −c2 0 d24

d31 d32 −c3 0
λ1 λ2 λ3 λ4

⎤
⎥⎥⎦. If the determinant of T4 is

−t4, then the last column of its adjoint is −t4(a1, a2, a3, a4)
T . This is because

T4(a1, a2, a3, a4)
T = (0, 0, 0, 1)T . Hence, looking at the element in the last row

and last column of the adjoint of T4, one gets using (3) that

−t4a4 =
∣∣∣∣∣∣

−b11 b12 b13

d21 −c2 0
d31 d32 −c3

∣∣∣∣∣∣
=
∣∣∣∣∣∣

0 −x4d42 −x4d43

d21 −c2 0
d31 d32 −c3

∣∣∣∣∣∣
= −x4a4 .
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Hence t4 = x4, and since t4 is an integer, so is x4. Now, looking at the element in
the last column and first row of the adjoint of T4, one has

t4a1 =
∣∣∣∣∣∣

b12 b13 b14

−c2 0 d24

d32 −c3 0

∣∣∣∣∣∣
= b12c3d24 + b13d32d24 + b14c2c3 > 0 .

So, x4 = t4 is now a positive integer.

Consider the matrix T2 =

⎡

⎢⎢⎣

−b11 b12 b13 b14

d31 d32 −c3 0
0 d42 d43 −c4

λ1 λ2 λ3 λ4

⎤

⎥⎥⎦ which determinant is denoted

by −t2. By similar calculations, we see that x2 = t2 is an integer and, focusing on
the element in the last column and third row of the adjoint of T2, one gets that

t2a3 =
∣∣∣∣∣∣

−b11 b12 b14

d31 d32 0
0 d42 −c4

∣∣∣∣∣∣
= b11c4d32 + b12d31c4 + b14d31d42 > 0

so x2 = t2 is also a positive integer.

Similarly, using the matrix T3 =

⎡
⎢⎢⎣

−b11 b12 b13 b14

d21 −c2 0 d24

0 d42 d43 −c4

λ1 λ2 λ3 λ4

⎤
⎥⎥⎦ of determinant−t3, one

gets that x3 = −t3 and hence x3 is an integer. However, by calculating the entry in
the last column and second row of the adjoint of T3, one gets that

(−t3)a2 =
∣∣∣∣∣∣

−b11 b13 b14

d21 0 d24

0 d43 −c4

∣∣∣∣∣∣
= b11d43d24 + b13d21c4 + b14d21d43 > 0,

and hence, x3 is again a positive integer.
So, b11 = x2d21 + x3d31 ≥ d21 + d31 = c1 as desired.
Since we can make any of the ci’s the first row, by rearranging the ai’s suitably,

this proves that all of the rows are principal relations and this is a principal matrix.
Hence a = (a1, a2, a3, a4) is Gorenstein by Bresinsky’s criterion. ��
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Example 2 The matrix A =

⎛

⎜⎜⎝

−3 0 5 2
2 −5 0 3
1 1 −6 0
0 4 1 −5

⎞

⎟⎟⎠ is pseudo-Gorenstein and

the first column of its adjoint is (−75,−63,−23,−55)T . The sequence
a = (75, 63, 23, 55) is, by our criterion, Gorenstein and not a complete
intersection and A is a principal matrix for a, i.e., D(D−1(A)) = A.

However not all pseudo-Gorenstein matrices provide a Gorenstein sequence
through this process.

Example 3 Consider the matrix A =

⎛

⎜⎜⎝

−4 0 2 1
3 −7 0 4
1 5 −5 0
0 2 3 −5

⎞

⎟⎟⎠. It is pseudo-

Gorenstein. But the columns of adj (A) do not have relatively prime entries: all
the columns of the adjoint are −3a for a = (25, 29, 34, 32). Hence a cannot
be Gorenstein. In fact, the principal matrix of (25, 29, 34, 32) can be seen to

be D(a) =

⎛
⎜⎜⎝

−4 0 2 1
2 −4 1 1
3 1 −4 1
0 2 3 −5

⎞
⎟⎟⎠ which is not pseudo-Gorenstein! One has that

Ia ⊂ R = k[x1, . . . , x4] is minimally generated by 7 elements, the semigroup
ring k[a] ' R/Ia is not Gorenstein, and its minimal free resolutions have the
following shape:

0 → R4 → R10 → R7 → R→ k[a] → 0 .

The following result [9, Thm. 4] gives two families of Gorenstein monomial
curves in A

4
k by translation from a given Gorenstein curve.

Theorem 2 Given any Gorenstein non-complete intersection sequence a of length
4 with principal pseudo-Gorenstein matrix D(a), there exist two vectors u and v in
N

4 such that, for all t ≥ 0, a + tu and a + tv are also Gorenstein non-complete
intersection whenever the entries of the corresponding sequence (a+ tu for the first
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family, a+ tv for the second) are relatively prime. When this occurs, their principal
matrices are

D(a+ tu) = D(a)+ t

⎛

⎜⎜⎝

−1 0 1 0
0 0 0 0
1 0 −1 0
0 0 0 0

⎞

⎟⎟⎠ andD(a+ tv) = D(a)+ t

⎛

⎜⎜⎝

0 0 0 0
0 −1 0 1
0 0 0 0
0 1 0 −1

⎞

⎟⎟⎠ .

Example 4 Let a = (34, 33, 42, 64). This is a Gorenstein non-complete
intersection sequence with the principal matrix

D(a) =

⎛
⎜⎜⎝

−5 0 1 2
2 −4 0 1
3 2 −4 0
0 2 3 −3

⎞
⎟⎟⎠ .

Here, the vector u defined in [9] is u = (10, 9, 10, 16). So, if one sets at :=
a + tu, it is not a relatively prime sequence if t = 1 but it is relatively prime
sequence for t = 2. Denoting by At the principal matrix of at , one has that

A1 =

⎛

⎜⎜⎝

−6 0 2 2
2 −4 0 1
4 2 −5 0
0 2 3 −3

⎞

⎟⎟⎠ and A2 =

⎛

⎜⎜⎝

−7 0 3 2
2 −4 0 1
5 2 −6 0
0 2 3 −3

⎞

⎟⎟⎠. It is clear from the

first row of A1, that the first column of its adjoint is not relatively prime and
hence it is not the principal matrix of a Gorenstein not complete intersection.
However, for A2, the sequence a + 2u = (54, 51, 62, 96) is Gorenstein and
not complete intersection for it is relatively prime.

At the end of [9], we also show that when a is Gorenstein and not a complete
intersection, the principal matrix (2) encodes the resolution of k[a]. This result was
also obtained, independently, in [1].

Proposition 1 If a is Gorenstein and not a complete intersection, then a minimal
graded free resolution of k[a] is

0 → R
δ3→ R5 φ→ R5 δ1→ R→ k[c] → 0

with φ =

⎛

⎜⎜⎜⎜⎜⎝

0 0 x
d32
2 x

d43
3 x

d24
4

0 0 x
d21
1 x

d14
4 x

d42
2

−xd32
2 −xd21

1 0 0 x
d13
3

−xd43
3 −xd14

4 0 0 x
d31
1

−xd24
4 −xd42

2 −xd13
3 −xd31

1 0

⎞

⎟⎟⎟⎟⎟⎠
and δ3 = (δ1)T =

⎛

⎜⎜⎜⎜⎜⎝

x
c1
1 − xd13

3 x
d14
4

x
c3
3 − xd31

1 x
d32
2

x
c4
4 − xd42

2 x
d43
3

x
c2
2 − xd21

1 x
d24
4

x
d21
1 x

d43
3 − xd32

2 x
d14
4

⎞

⎟⎟⎟⎟⎟⎠
.
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Fact
If A is a pseudo-Gorenstein matrix, then there is always a Gorenstein ideal

associated to it: if A =

⎛

⎜⎜⎝

−c1 0 d13 d14

d21 −c2 0 d24

d31 d32 −c3 0
0 d42 d43 −c4

⎞

⎟⎟⎠ is as in Definition 2, consider

the ideal I (A) = 〈xc11 − xd13
3 x

d14
4 , x

c2
2 − xd21

1 x
d24
4 , x

c3
3 − xd31

1 x
d32
2 , x

c4
4 −

x
d42
2 x

d43
3 , x

d21
1 x

d43
3 − xd32

2 x
d14
4 〉 and the sequence a = (a1, a2, a3, a4) given

in Remark 1. Then I (A) is homogeneous if we give weight ai to xi in
R = k[x1, . . . , x4] and if I (A) has height 3, then the resolution given in
Proposition 1 is a minimal graded free resolution of R/I (A) so I (A) is
Gorenstein. The ideal I (A) is the pfaffian ideal of the 4 × 4 minors of the
skew symmetric matrix φ. The thing is that the ideal I (A) might not coincide
with Ia, one can just say that it is contained in Ia. If it is equal to Ia then, of
course, Ia will be Gorenstein and A = D(a).

Remark 2 Fröberg proved in [5] that the Cohen-Macaulay type of k[a] coincides
with the number of elements � ∈ N that are not in the semigroup 〈a〉 and such
that � + s ∈ 〈a〉 for all s ∈ 〈a〉; see also [14, Thm 10.2.10]. Of course F(a), the
Frobenious number of 〈a〉 defined before Lemma 1, is always such an element so
k[a] is Gorenstein if and only if it is the only one.

Question
When a is not Gorenstein, can one tell the Cohen-Macaulay type of k[a] from
the principal matrixD(a) or its adjoint when it is of maximal rank?

Question
Can we characterize the Goresntein sequences of length n ≥ 5 by their
principal matrices?

3 Arithmetic Sequences

In this section, we will consider arithmetic sequences of length n ≥ 3, i.e.,
sequences of integers of the form a = (a, a + d, . . . , a + (n − 1)d) for some
a, d ∈ N. We will assume that the elements in the sequence are relatively prime,
i.e., gcd(a, d) = 1, and that they minimally generate the semigroup 〈a〉.
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In [8], we construct a minimal graded free resolution for k[a] when a is an
arithmetic sequence and derive formulae for various invariants. These form an
important class of semigroup rings and, as of now, it is the only big class of
semigroup rings, besides complete intersections, for which we have a minimal
resolution in all embedding dimensions. In Sect. 4, we will define the concept of
gluing (or decomposition) and semigroup rings defined by arithmetic sequences of
length at least 4 are significant because they are not decomposable or equivalently
cannot be obtained by gluing two semigroup rings of smaller embedding dimensions
as we will recall in Remark 4.

Let us recall here the construction of a minimal graded free resolution of
semigroup rings defined by an arithmetic sequence. The main preliminary result
is a description of the ideal Ia as the sum of two determinantal ideals. Write

a = q(n− 1)+ r

for q, r positive integers and r ∈ [1, n − 1]. As observed in [7], q ≥ 1 because
we have assumed that a minimally generates the semigroup 〈a〉. Now consider the
following two matrices,

A =
(
x1 · · · xn−1

x2 · · · xn
)

and B =
(
x
q
n x1 · · · xn−r

x
q+d
1 xr+1 · · · xn

)
.

By [7, Thm. 1.1], Ia is the sum of the two determinantal ideals on maximal minors of
A and B, i.e., Ia = I2(A)+ I2(B). Using the minimal resolution of R/I2(A) given
by the Eagon-Northcott complex and then an iterated mapping cone construction
that we make minimal at each step, we construct a minimal graded free resolution
of k[a] that we recall in Theorem 3; see [8, Thms. 3.10 and 4.1].

Notations
Given two integers m ≥ t ≥ 1, denote by σ(m, t) the collection (with
repetitions) of all possible sums of t distinct non-negative integers which
are all strictly smaller than m, i.e., σ(m, t) = {

∑

0≤r1<···<rt≤m−1

ri}. Note that

#σ(m, t) = (m
t

)
.

Theorem 3 Let a = (a, a + d, . . . , a + (n − 1)d) be an arithmetic sequence of
length n ≥ 3 with gcd(a, d) = 1, and write a = q(n− 1)+ r for q, r two positive
integers with r ∈ [1, n− 1]. If R = k[x1, . . . , xn] is graded according to deg(xi) =
a + (i − 1)d , the minimal graded free resolution of k[a] as an R-module is

0 → Fn−1 −→ En−2 ⊕ Fn−2 −→ · · · −→ E1 ⊕ F1 −→ R −→ k[a] → 0
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where, for all s ∈ [2, n− 1], Es−1 =
s−1⊕

i=1

⎛

⎝
⊕

j∈σ(n−1,s)

R(−(sa + id + jd))
⎞

⎠, and

F1 =
(
n−1−r⊕

i=0

R(−[a(q + d + 1) + id])
)

F2 =
⎛

⎝
n−1−r⊕

i=1

⎛

⎝
n−2⊕

j=0

R(−[(a(q + d + 2)+ id + jd])
⎞

⎠

⎞

⎠

Fs =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
n−r−1⊕

i=s−1

⎛

⎝
⊕

j∈σ (n−1,s−1)

R(−[a(q + d + s) + id + jd])
⎞

⎠

⎞

⎠ if s ∈ [3, n − r],
⎛

⎝
s−1⊕

i=n−r

⎛

⎝
⊕

j∈σ (n−1,s)

R(−[a(q + d + s + 1) + id + jd])
⎞

⎠

⎞

⎠ if s ∈ [n− r + 1, n− 1].

In particular, for n ≥ 3 fixed, the Betti numbers of the semigroup ring associated to
an arithmetic sequence a = (a, a + d, . . . , a + (n− 1)d) of length n, only depend
on the value of a modulo n− 1, and they are given by the following formula:

βj = j
(
n− 1

j + 1

)
+

⎧
⎪⎪⎨

⎪⎪⎩

(n− r + 1− j)
(
n− 1

j − 1

)
if 1 ≤ j ≤ n− r

(j − n+ r)
(
n− 1

j

)
if n− r < j ≤ n− 1

.

Corollary 1 If a = (a, a+d, . . . , a+(n−1)d) is an arithmetic sequence of length
n ≥ 3 with gcd(a, d) = 1 and q, r are the integers defined in Theorem 3, the value
of the Castelnuovo-Mumford regularity of k[a] is

reg(k[a]) =
{
(n−2)(n+1)

2 d + a(q + d)+ (n− 1)(a − 1) if r = 1,
(n−2)(n+1)

2 d + a(q + d + 1)+ (n− 1)(a − 1) otherwise.

Example 5 For n = 3, given an arithmetic sequence a = (a, a + d, a + 2d)
with gcd(a, d)) = 1, one has that:

• if a is even (and d is odd and relatively prime to a/2), then the minimal
graded free resolution of k[a] is 0 → R→ R2 → R→ k[a] → 0. In this
case, k[a] is a complete intersection;

• if a is odd (and gcd(a, d) = 1), then the minimal graded free resolution of
k[a] is 0 → R2 → R3 → R → k[a] → 0. In this case, k[a] is Hilbert-
Burch.

(continued)



122 P. Gimenez and H. Srinivasan

Example 5 (continued)
Using [10, Thms. 3.7 and 3.8], one easily gets that an arbitrary sequence of
length 3 always defines a semigroup ring that is either a complete intersection
or Hilbert-Burch.

Example 6 For n = 4, the minimal graded free resolution of the semigroup
ring k[a] defined by an arithmetic sequence a = (a, a + d, a + 2d, a + 3d)
with gcd(a, d) = 1 is of one of the following types:

0 → R3 −→ R8 −→ R6 −→ R −→ k[a] → 0 if a ≡ 1 mod 3
0 → R −→ R5 −→ R5 −→ R −→ k[a] → 0 if a ≡ 2 mod 3,
0 → R2 −→ R5 −→ R4 −→ R −→ k[a] → 0 if a ≡ 0 mod 3.

Note that for an arbitrary sequence a of length 4, it is well-known that the
number of minimal generators of Ia is not bounded while, when the sequence
is arithmetic, it can only be 4, 5 or 6 (in particular it is never a complete
intersection).

Example 7 For n = 5, the semigroup ring k[a] associated to an arithmetic
sequence a = (a, a + d, a + 2d, a + 3d, a + 4d) with gcd(a, d) = 1 has a
minimal graded free resolution of one of the following forms:

0 → R4 −→ R15 −→ R20 −→ R10 −→ R −→ k[a] → 0 if a ≡ 1 mod 4,
0 → R −→ R9 −→ R16 −→ R9 −→ R −→ k[a] → 0 if a ≡ 2 mod 4,
0 → R2 −→ R7 −→ R12 −→ R8 −→ R −→ k[a] → 0 if a ≡ 3 mod 4,
0 → R3 −→ R11 −→ R14 −→ R7 −→ R −→ k[a] → 0 if a ≡ 0 mod 4.

Remark 3 In particular, an arithmetic sequence a = (a, a + d, . . . , a + (n − 1)d)
with gcd(a, d) = 1 is a complete intersection if and only if n = 3 and a is even (and
d is odd and relatively prime to a/2).

Example 8 The sequence a = (4, 11, 18, 25) defines a semigroup ring whose
minimal graded free resolution is of the first type in Example 6 while the
sequences b = (7, 12, 17, 22, 27) and d = (11, 13, 15, 17, 19) both define

(continued)
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Example 8 (continued)
semigroup rings whose minimal graded free resolution is of the third type in
Example 7. Applying Corollary 1, one gets that reg(k[a]) = 76, reg(k[b]) =
118 and reg(k[d]) = 113.

4 Gluing

Let’s recall here the concept of gluing introduced by Rosales in [13]. We say that a
sequence of relatively prime integers c = (c1, . . . , cn) is a gluing of two relatively
prime sequences a and b if the set c splits into two disjoint parts, c = k1a ∪ k2b,
with k1 and k2 relatively prime and such that k1 ∈ 〈b〉 \ b and k2 ∈ 〈a〉 \ a. When
this occurs, we also say that c is decomposable, or that c is a gluing of a and b, and
we denote c = k1a � k2b.

In [6], we construct a minimal graded free resolution of the semigroup ring k[c]
in terms of that of k[a] and k[b] when c is a gluing of a and b. We first recall some
well-known facts on gluing.

Notations
If c = k1a � k2b is a gluing:

• The number of elements in a and b, will be denoted by p and
q respectively: a = (a1, . . . ap), b = (b1, . . . , bq), so that c =
(k1a1, . . . , k1ap, k2b1, . . . , k2bq).

• Set Ra = k[x1, . . . , xp], Rb = k[y1, . . . , yq ] and R = Rc =
k[x1, . . . , xp, y1, . . . , yq] and consider on those rings the grading induced
giving weights to the variables according to the associated sequence. Then,
k[a] ' Ra/Ia, k[b] ' Rb/Ib and k[c] ' R/Ic are graded modules on Ra,
Rb and R respectively.

Lemma 2 Let c be a gluing of a and b, c = k1a � k2b.

1. If a and b are numerically independent then so is c.
2. Since k1 ∈ 〈b〉 and k2 ∈ 〈a〉, there exist non-negative integers αi, βi such that
k1 =∑qj=1 βjbj and k2 =∑pi=1 αiai . Then, the ideal Ic is minimally generated
by the union of minimal generating sets of Ia and Ib, and exactly one extra
generator,

ρ =
p∏

i=1

x
αi
i −

q∏

j=1

y
βj
j ∈ R .



124 P. Gimenez and H. Srinivasan

3. ρ is homogeneous of degree k1k2.

Now we are ready to state the theorem on resolution; see [6, Thm. 3.1].

Theorem 4 Suppose that c = k1a � k2b and let FA and FB be minimal resolutions
of k[a] and k[b] respectively. A minimal graded free resolution of the semigroup
ring k[c] is obtained as the mapping cone of the map of complexes ρ : FA ⊗ FB →
FA ⊗ FB , where ρ is induced by multiplication by ρ. In particular, (IaR + IbR :R
ρ) = IaR + IbR.

Example 9 Consider the decomposable sequence

c = (76, 209, 342, 475, 182, 312, 442, 572, 702)

where c = k1a � k2b for a = (4, 11, 18, 25), b = (7, 12, 17, 22, 27), k1 =
19 = 7 + 12 ∈ 〈b〉 \ b and k2 = 26 = 2 · 4 + 18 ∈ 〈a〉 \ a. Set Ra =
k[x1, . . . , x4], Rb = k[y1, . . . , y5] and R = k[x1, . . . , y5].

Both a and b are arithmetic sequences. They appeared in Example 8 and
the minimal graded free resolutions of k[a] and k[b] are

0 → R3 → R8 → R6 → R→ k[a] → 0 ,

0 → R2 → R7 → R12 → R8 → R→ k[b] → 0 .

The tensor product of these two resolutions provides a minimal graded free
resolution of R/J (as R-module) where J = IaR + IbR:

0 → R6 → R37 → R104 → R164 → R146 → R68 → R14 → R→ R/J → 0 .

Note that the differentials can be easily written down if needed.
Finally, the extra minimal generator in Ic is ρ = x2

1x3 − y1y2 and the
mapping cone induced by multiplication by ρ gives a minimal resolution of
k[c] (as R-module):

0 → R6 → R43 → R141 → R268 → R310 → R214 → R82 → R15 → R→ k[c] → 0 .

Again, the differentials are easily given by the mapping cone construction.

We obtain many corollaries from the theorem, some are new and some are
recovering results already obtained by different methods that did not require the
construction of the minimal resolution. Using the explicit resolution, we can read
off many invariants, such as Hilbert function, Cohen-Macaulay type, Betti numbers
(global or graded), etc.
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Corollary 2 Assume that c = k1a � k2b is a gluing.

1. The Betti numbers of k[c] are given by the following two formulas:

∀i ≥ 0, βi(k[c]) =
i∑

i′=0

βi′(k[a])[βi−i′(k[b])+ βi−i′−1(k[b])]

=
i∑

i′=0

βi′(k[b])[βi−i′(k[a])+ βi−i′−1(k[a])] .

2. The Cohen Macaulay type is given by Type(k[c]) = Type(k[a]) · Type(k[b]).
3. k[c] is Gorenstein, respectively a complete intersection, if and only if k[a] and
k[b] are both Gorenstein, respectively complete intersections.

4. If neither k[a] nor k[b] is Gorenstein, then the Cohen-Macaulay type of k[C] is
not prime.

5. The graded Betti numbers of k[c] are given by the following two formulas

βi,j (k[c]) =
i∑

i′=0

( ∑

r,s/k1r+k2s=j
βi′r (k[a])[βi−i′,s(k[b])+ βi−i′−1,s−k1(k[b])]

)

=
i∑

i′=0

( ∑

r,s/k1r+k2s=j
βi′r (k[b])[βi−i′,s (k[a])+ βi−i′−1,s−k1(k[a])]

)
.

6. The Castelnuovo-Mumford regularity of k[c] can be seen as

reg(k[c]) = k1reg(k[a])+k2reg(k[b])+(p−1)(k1−1)+(q−1)(k2−1)+k1k2−1 .

7. The Hilbert series of k[c] is given by Hc(t) = (1− tk1k2)Ha(t
k1)Hb(t

k2).
8. If the minimal free resolutions of k[a] and k[b] admit a DG algebra structure,

then k[c] inherits the structure from those of k[a] and k[b]. That is, we can
explicitly construct a multiplication on the minimal resolution of k[c] if we know
the multiplication on those of k[a] and k[b].
Recall that if a resolution F admits a multiplication which makes it an associa-

tive, graded commutative differential graded algebra, we say it has a differential
graded algebra structure or a DG algebra structure.
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Example 10 For the sequence c = (76, 209, 342, 475, 182, 312, 442, 572,
702), one has that c = k1a � k2b with A = (4, 11, 18, 25), B =
(7, 12, 17, 22, 27), k1 = 19 and k2 = 26. The minimal resolutions in
Example 9 give the Betti numbers of k[a] and k[b]:

i 0 1 2 3
βi(A) 1 6 8 3

i 0 1 2 3 4
βi(B) 1 8 12 7 2

Applying both formulas in Corollary 2(1), one gets that β0 = β0(C) = 1, and

β1 = 1 · (8+ 1)+ 6 · 1 = 15 = 1 · (6+ 1)+ 8 · 1
β2 = 1 · (12+ 8)+ 6 · (8+ 1)+ 8 · 1 = 82 = 1 · (8+ 6)+ 8 · (6+ 1)+ 12 · 1
β3 = 1 · (7+ 12)+ 6 · (12+ 8)+ 8 · (8+ 1)+ 3 · 1 = 214
= 1 · (3+ 8)+ 8 · (8+ 6)+ 12 · (6+ 1)+ 7 · 1

β4 = 1 · (2+ 7)+ 6 · (7+ 12)+ 8 · (12+ 8)+ 3 · (8+ 1) = 310
= 1 · 3+ 8 · (3+ 8)+ 12 · (8+ 6)+ 7 · (6+ 1)+ 2 · 1

β5 = 1 · 2+ 6 · (2+ 7)+ 8 · (7+ 12)+ 3 · (12+ 8) = 268
= 8 · 3+ 12 · (3+ 8)+ 7 · (8+ 6)+ 2 · (6+ 1)

β6 = 6 · 2+ 8 · (2+ 7)+ 3 · (7+ 12) = 141 = 12 · 3+ 7 · (3+ 8)+ 2 · (8+ 6)

β7 = 8 · 2+ 3 · (2+ 7) = 43 = 7 · 3+ 2 · (3+ 8)

β8 = 3 · 2 = 6,

and the minimal free resolution of k[c] shows, as announced in Example 9, as

0 → R6 → R43 → R141 → R268 → R310 → R214 → R82 → R15 → R→ k[c] → 0 .

One could also get the graded Betti numbers applying Corollary 2 (5). Now
recall that in Example 8 we computed the values of the regularity of k[a] and
k[b] using Corollary 1: reg(k[a]) = 76 and reg(k[b]) = 118. By applying the
formula in Corollary 2 (6), one has that the regularity of the semigroup ring
k[c] is

reg(k[c]) = k1reg(k[a]) + k2reg(k[b]) + (p − 1)(k1 − 1)+ (q − 1)(k2 − 1)+ k1k2 − 1

= 19 · 76+ 26 · 118+ 3 · 18+ 4 · 25 + 19 · 26− 1 = 5159 .

Remark 4 As observed in [6, Prop. 5.2], an arithmetic sequence (a, a+ d, . . . , a+
(n − 1)d) is glued if and only if n = 3 and a is even (and d is odd and relatively
prime to a/2). According to Remark 3, these are also the only arithmetic sequences
that are a complete intersection.
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Irreducibility and Factorizations
in Monoid Rings

Felix Gotti

Abstract For an integral domain R and a commutative cancellative monoidM , the
ring consisting of all polynomial expressions with coefficients in R and exponents
inM is called the monoid ring ofM over R. An integral domain R is called atomic
if every nonzero nonunit element can be written as a product of irreducibles. In the
study of the atomicity of integral domains, the building blocks are the irreducible
elements. Thus, tools to prove irreducibility are crucial to study atomicity. In the
first part of this paper, we extend Gauss’s Lemma and Eisenstein’s Criterion from
polynomial rings to monoid rings. An integral domain R is called half-factorial (or
an HFD) if any two factorizations of a nonzero nonunit element of R have the same
number of irreducible elements (counting repetitions). In the second part of this
paper, we determine which monoid algebras with nonnegative rational exponents are
Dedekind domains, Euclidean domains, PIDs, UFDs, and HFDs. As a side result, we
characterize the submonoids of (Q≥0,+) satisfying a dual notion of half-factoriality
known as other-half-factoriality.

Keywords Monoid algebras · Gauss lemma · Eisenstein’s Criterion · Puiseux
algebras · Atomic domains · Other-half-factorial monoids · Puiseux monoids ·
Numerical semigroups

1 Introduction

Given an integral domain R and a commutative cancellative monoidM , the ring of
all polynomial expressions with coefficients in R and exponents in M is known as
the monoid ring of M over R (cf. group rings). Although the study of group rings
dates back to the first half of the twentieth century, it was not until the 1970s that
the study of monoid rings gained significant attention. A systematic treatment of
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ring-theoretical properties of monoid rings was initiated by R. Gilmer and T. Parker
[14, 16, 17] in 1974. Since then monoid rings have received a substantial amount
of consideration and have permeated through many fields under active research,
including algebraic combinatorics [7], discrete geometry [8], and functional analysis
[1]. During the last decades, monoid rings have also been studied from the point of
view of factorization theory; see, for instance, [2, 3, 25]. Gilmer in [15] offers a
comprehensive exposition on the advances of commutative semigroup ring theory
until mid 1980s.

An integral domain is called atomic if every nonzero nonunit element it contains
can be written as a product of irreducibles. Irreducible elements (sometimes called
atoms) are the building blocks of atomicity and factorization theory. As a result,
techniques to argue irreducibility are crucial in the development of factorization
theory. Gauss’s Lemma and Eisenstein’s Criterion are two of the most elementary
but effective tools to prove irreducibility in the context of polynomial rings. After
reviewing some necessary terminology and background in Sect. 2, we dedicate
Sect. 3 to extend Gauss’s Lemma and Eisenstein’s Criterion from the context of
polynomial rings to that one of monoid rings.

An atomic monoidM is called half-factorial provided that for all x ∈ M , any two
factorizations of x have the same number of irreducibles (counting repetitions). In
addition, an integral domain is called half-factorial (or an HFD) if its multiplicative
monoid is half-factorial. The concept of half-factoriality was first investigated by
L. Carlitz in the context of algebraic number fields; he proved that an algebraic
number field is half-factorial if and only if its class group has size at most two [9].
Other-half-factoriality, on the other hand, is a dual version of half-factoriality, and
it was introduced by J. Coykendall and W. Smith in [12].

Additive monoids of rationals have a wild atomic structure [18, 20] and a
complex arithmetic of factorizations [21, 22]. The monoid rings they determine have
been explored in [5]. In addition, examples of such monoid rings have also shown
up in the past literature, including [23, Section 1] and [4, Example 2.1] and more
recently in [11, Section 5]. In the second part of this paper, which is Sect. 4, we
study half-factoriality and other-half-factoriality in the context of additive monoids
of rationals and the monoid algebras they induce. We also determine which of
these monoid algebras are Dedekind domains, Euclidean domains, PIDs, UFDs,
and HFDs.

2 Notation and Background

2.1 General Notation

Throughout this paper, we let N0 denote the set of all nonnegative integers, and we
set N := N0 \ {0}. If a, b ∈ Z and a ≤ b, then we let [[a, b]] denote the interval of
integers from a to b, i.e.,

[[a, b]] := {j ∈ Z | a ≤ j ≤ b}.
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For a subset X of R, we set X• := X \ {0}. In addition, if r ∈ R, we define

X>r := {x ∈ X | x > r} and X≥r := {x ∈ X | x ≥ r}.
If q ∈ Q>0, then we denote the unique m,n ∈ N such that q = m/n and
gcd(m, n) = 1 by n(q) and d(q), respectively.

2.2 Monoids

Within the scope of our exposition, a monoid is defined to be a commutative and
cancellative semigroup with an identity element. In addition, monoids here are
written multiplicatively unless we specify otherwise. Let M be a monoid. We let
U(M) denote the set of units (i.e., invertible elements) ofM . When U(M) consists
of only the identity element,M is said to be reduced. On the other hand,M is called
torsion-free if for all x, y ∈ M and n ∈ N, the equality xn = yn implies x = y.
For S ⊆ M , we let 〈S〉 denote the submonoid of M generated by S. Further basic
definitions and concepts on commutative cancellative monoids can be found in [24,
Chapter 2].

If y, z ∈ M , then y divides z in M provided that there exists x ∈ M such that
z = xy; in this case we write y |M z. Also, the elements y and z are called associates
if y |M z and z |M y; in this case we write y ' z. An element p ∈ M \ U(M) is
said to be prime when for all x, y ∈ M with p |M xy, either p |M x or p |M y. If
every element inM \U(M) can be written as a product of primes, thenM is called
factorial. In a factorial monoid every nonunit element can be uniquely written as
a product of primes (up to permutation and associates). In addition, an element
a ∈ M \ U(M) is called an atom if for any x, y ∈ M such that a = xy either
x ∈ U(M) or y ∈ U(M). The set of all atoms ofM is denoted by A(M), andM is
said to be atomic if every nonunit element of M is a product of atoms. Since every
prime element is clearly an atom, every factorial monoid is atomic.

2.3 Factorizations

Let M be a monoid, and let x ∈ M \ U(M). Suppose that for an index m ∈ N and
atoms a1, . . . , am ∈ A(M),

x = a1 · · · am. (1)

Then the right-hand side of (1) (treated as a formal product of atoms) is called
a factorization of x, and m is called the length of such a factorization. Two
factorizations a1 · · · am and b1 · · · bn of x are considered to be equal provided that
m = n and that there exists a permutation σ ∈ Sm such that bi ' aσ(i) for every
i ∈ [[1,m]]. The set of all factorizations of x is denoted by ZM(x) or, simply, by
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Z(x). We then set

Z(M) :=
⋃

x∈M\U(M)
Z(x).

For z ∈ Z(x), we let |z| denote the length of z.

2.4 Monoid Rings

For an integral domain R, we let R× denote the group of units of R. We say that
R is atomic if every nonzero nonunit element of R can be written as a product of
irreducibles (which are also called atoms).

LetM be a reduced torsion-free monoid that is additively written. For an integral
domain R, consider the set R[X;M] comprising all maps f : M → R satisfying
that

{s ∈ M | f (s) 
= 0}

is finite. We shall conveniently represent an element f ∈ R[X;M] by

f =
∑

s∈M
f (s)Xs =

n∑

i=1

f (si)X
si ,

where s1, . . . , sn are those elements s ∈ M satisfying that f (s) 
= 0. Addition
and multiplication in R[X;M] are defined as for polynomials, and we call the
elements of R[X;M] polynomial expressions. Under these operations, R[X;M]
is a commutative ring, which is called the monoid ring of M over R or, simply, a
monoid ring. Following Gilmer [15], we will write R[M] instead ofR[X;M]. Since
R is an integral domain, R[M] is an integral domain [15, Theorem 8.1] with set
of units R× [16, Corollary 4.2]. If F is a field, then we say that F [M] is a monoid
algebra. Now suppose that the monoidM is totally ordered. For k ∈ N, we say that

f = α1X
q1 + · · · + αkXqk ∈ R[M] \ {0}

is written in canonical form if the coefficient αi is nonzero for every i ∈ [[1, k]] and
q1 > · · · > qk. Observe that there is only one way to write f in canonical form. We
call deg(f ) := q1 the degree of f . In addition, α1 is called the leading coefficient
of f , and αk is called the constant coefficient of f provided that qk = 0. As it is
customary for polynomials, f is called a monomial when k = 1.

Suppose that ψ : M → M ′ is a monoid homomorphism, where M and M ′
are reduced torsion-free monoids. Also, let ψ∗ : R[M] → R[M ′] be the ring
homomorphism determined by the assignment Xs �→ Xψ(s). It follows from [15,
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Theorem 7.2(2)] that if ψ is injective (resp., surjective), then ψ∗ is injective (resp.,
surjective). Let us recall the following easy observation.

Remark 1 If R is an integral domain and the monoids M and M ′ are isomorphic,
then the monoid rings R[M] and R[M ′] are also isomorphic.

3 Irreducibility Criteria for Monoid Rings

3.1 Extended Gauss’s Lemma

Our primary goal in this section is to offer extended versions of Gauss’s Lemma and
Eisenstein’s Criterion for monoid rings.

Let R be an integral domain and take r1, . . . , rn ∈ R \ {0} for some n ∈ N.
An element r ∈ R is called a greatest common divisor of r1, . . . , rn if r divides
ri in R for every i ∈ [[1, n]] and r is divisible by each common divisor of
r1, . . . , rn. Any two greatest common divisors of r1, . . . , rn are associates in R. We
let GCD(r1, . . . , rn) denote the set of all greatest common divisors of r1, . . . , rn.

Definition 1 An integral domain R is called a GCD-domain if any finite subset of
R \ {0} has a greatest common divisor in R.

Let M be a reduced torsion-free monoid, and let R be an integral domain.
Suppose that for the polynomial expression

f = α1X
q1 + · · · + αkXqk ∈ R[M] \ {0}

the exponents q1, . . . , qk are pairwise distinct. Then GCD(α1, . . . , αk) is called the
content of f and is denoted by c(f ). If c(f ) = R×, then f is called primitive.
Notice that if R is not a GCD-domain, then c(f ) may be the empty set. It is clear
that c(rf ) = rc(f ) for all r ∈ R \ {0} and f ∈ R[M] \ {0}. As for the case of
polynomials, the following lemma holds.

Lemma 1 Let M be a reduced torsion-free monoid, and let R be a GCD-domain.
If f and g are elements of R[M] \ {0}, then c(fg) = c(f )c(g).

Proof Since R is a GCD-domain, there exist primitive polynomial expressions f1
and g1 in R[M] such that f = c(f )f1 and g = c(g)g1. BecauseM is a torsion-free
monoid, it follows from [16, Proposition 4.6] that the element f1g1 is primitive in
R[M]. Therefore c(f1g1) = R×. As a consequence, we find that

c(fg) = c
(
c(f )f1c(g)g1

) = c(f )c(g)c(f1g1) = c(f )c(g),

as desired. ��
Let F denote the field of fractions of a GCD-domain R. Gauss’s Lemma states

that a non-constant polynomial f with coefficients in R is irreducible in R[X] if
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and only if it is irreducible in F [X] and primitive in R[X]. Now we extend Gauss’s
Lemma to the context of monoid rings.

Theorem 1 (Extended Gauss’s Lemma) LetM be a reduced torsion-free monoid,
and letR be a GCD-domain with field of fractionsF . Then an element f ∈ R[M]\R
is irreducible inR[M] if and only if f is irreducible in F [M] and primitive inR[M].
Proof For the direct implication, suppose that f is irreducible in R[M]. If r ∈
c(f ), then there exists g ∈ R[M] \ R such that f = rg. Because R[M]× ⊂ R,
the element g is not a unit of R[M]. As f is irreducible in R[M], one finds that
r ∈ R[M]× = R×. So c(f ) = R×, which implies that f is primitive in R[M].
To argue that f is irreducible in F [M], take g1, g2 ∈ F [M] such that f = g1g2.
SinceR is a GCD-domain, there exist nonzero elements a1, a2, b1, b2 ∈ R such that
both

h1 := a1

b1
g1 and h2 := a2

b2
g2

are primitive elements of R[M]. Clearly, a1a2f = b1b2h1h2. This, along with
Lemma 1, implies that

a1a2R
× = a1a2c(f ) = c(a1a2f ) = c(b1b2h1h2) = b1b2c(h1)c(h2) = b1b2R

×.

Then a1a2
b1b2

∈ R× and, as a consequence, a1a2
b1b2
f = h1h2 is irreducible in R[M].

Thus, either h1 ∈ R[M]× = R× or h2 ∈ R[M]× = R×. This, in turn,
implies that either g1 or g2 belongs to F× = F [M]×. Hence f is irreducible in
F [M].

Tor argue the reverse implication, suppose that f is irreducible in F [M] and
primitive in R[M]. Then take elements g1 and g2 ∈ R[M] such that f = g1g2.
Since f is irreducible in F [M], either g1 ∈ F [M]× = F× or g2 ∈ F [M]× =
F×. This, along with the fact that R[M] ∩ F× = R \ {0}, implies that either
g1 ∈ c(f ) or g2 ∈ c(f ). As c(f ) = R× = R[M]×, either g1 or g2
belongs to R[M]×. As a result, f is irreducible in R[M], which concludes the
proof. ��

3.2 Extended Eisenstein’s Criterion

It is hardly debatable that Eisenstein’s Criterion is one of the most popular and
useful criteria to argue the irreducibility of certain polynomials. Now we proceed to
offer an extended version of Eisenstein’s Criterion for monoid rings.

Proposition 1 (Extended Eisenstein’s Criterion) Let M be a reduced totally-
ordered torsion-free monoid, and let R be an integral domain. Suppose that the
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element

f = αnXqn + · · · + α1X
q1 + α0 ∈ R[M] \ {0},

written in canonical form, is primitive. If there exists a prime ideal P of R satisfying
the conditions

1. αn /∈ P ,
2. αj ∈ P for every j ∈ [[0, n− 1]], and
3. α0 /∈ P 2,

then f is irreducible in R[M].
Proof We let R̄ denote the quotient R/P and, for any h ∈ R[M], we let h̄ denote
the image of h under the natural surjection R[M] → R̄[M], i.e., h̄ is the result of
reducing the coefficients of h modulo P . To argue that f is irreducible suppose,
by way of contradiction, that f = g1g2 for some nonzero nonunit elements g1
and g2 of R[M]. As f is primitive, g1 /∈ R and g2 /∈ R. By the condition (2)
in the statement, one obtains that ḡ1ḡ2 = f̄ = ᾱnX

qn . Thus, both ḡ1 and ḡ2 are
monomials. This, along with the fact that none of the leading coefficients of g1 and
g2 are inP (becauseαn /∈ P ), implies that the constant coefficients of both g1 and g2
are in P . As a result, the constant coefficient α0 of f must belong to P 2, which is a
contradiction. ��
Corollary 1 Let M be a reduced totally-ordered torsion-free monoid, and let R be
an integral domain containing a prime element. Then for each q ∈ M•, there exists
an irreducible polynomial expression in R[M] of degree q .

Proof Let p be a prime element of R. It suffices to verify that, for any q ∈ M•,
the element f := Xq + p ∈ R[M] is irreducible. Indeed, this is an immediate
consequence of Proposition 1 once we take P := (p). ��

In Corollary 1, the integral domainR is required to contain a prime element. This
condition is not superfluous, as the next example illustrates.

Example 1 For a prime number p, consider the monoid algebra Fp[M], whereM is
the submonoid 〈1/pn | n ∈ N〉 of (Q≥0,+) and Fp is a finite field of characteristic
p. It is clear thatM is a reduced totally-ordered torsion-free monoid. Now let

f := α1X
q1 + · · · + αnXqn

be an element of Fp[M] \ Fp written in canonical form. As Fp is a perfect field of
characteristic p, the Frobenius homomorphism x �→ xp is surjective and, therefore,
for each i ∈ [[1, n]] there exists βi ∈ Fp with αi = βpi . On the other hand, it is clear
that qi/p ∈ M for every i ∈ [[1, n]]. As

f = α1X
q1 + · · · + αnXqn =

(
β1X

q1/p + · · · + βnXqn/p
)p
,
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the polynomial expression f is not irreducible in Fp[M]. Hence the monoid algebra
Fp[M] does not contain irreducible elements. Clearly, the field Fp is an integral
domain containing no prime elements.

4 Factorizations in Monoid Algebras

A numerical semigroup is a submonoid N of (N0,+) whose complement is
finite, i.e., |N0 \ N | < ∞. Numerical semigroups are finitely generated and,
therefore, atomic. However, the only factorial numerical semigroup is (N0,+).
For an introduction to numerical semigroups, see [13], and for some of their
many applications, see [6]. A Puiseux monoid, on the other hand, is an additive
submonoid of (Q≥0,+). Albeit Puiseux monoids are natural generalizations of
numerical semigroups, the former are not necessarily finitely generated or atomic;
for example, consider 〈1/2n | n ∈ N〉. The factorization structure of Puiseux
monoids have been compared with that of other well-studied atomic monoids in
[19] and, more recently, in [10]. In this section, we determine the Puiseux monoids
whose monoid algebras are Dedekind domains, Euclidean domains, PIDs, UFDs, or
HFDs.

Definition 2 An atomic monoid M is half-factorial (or an HF-monoid) if for all
x ∈ M \ U(M) and z, z′ ∈ Z(x), the equality |z| = |z′| holds. An integral domain
is half-factorial (or an HFD) if its multiplicative monoid is an HF-monoid.

Clearly, half-factoriality is a relaxed version of being a factorial monoid or a
UFD. Although the concept of half-factoriality was first considered by Carlitz in
his study of algebraic number fields [9], it was A. Zaks who coined the term “half-
factorial domain” [26].

Definition 3 An atomic monoid M is other-half-factorial (or an OHF-monoid) if
for all x ∈ M \ U(M) and z, z′ ∈ Z(x) the equality |z| = |z′| implies that z = z′.

Observe that other-half-factoriality is somehow a dual version of half-factoriality.
Although an integral domain is a UFD if and only if its multiplicative monoid is an
OHF-monoid [12, Corollary 2.11], OHF-monoids are not always factorial or half-
factorial, even in the class of Puiseux monoids.

Proposition 2 For a nontrivial atomic Puiseux monoidM , the following conditions
hold.

1. M is an HF-monoid if and only ifM is factorial.
2. M is an OHF-monoid if and only if |A(M)| ≤ 2.

Proof For the direct implication of (1), suppose that M is an HF-monoid. Since
M is an atomic nontrivial Puiseux monoid, A(M) is not empty. Let a1 and a2
be two atoms of M . Then z1 := n(a2)d(a1)a1 and z2 := n(a1)d(a2)a2 are two
factorizations of the element n(a1)n(a2) ∈ M . Because M is an HF-monoid,
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|z1| = |z2| and so

n(a2)d(a1) = n(a1)d(a2).

Therefore a1 = a2, and then M contains only one atom. Hence M ∼= (N0,+) and,
as a result,M is factorial. The reverse implication of (1) is trivial.

To prove the direct implication of (2), assume thatM is an OHF-monoid. IfM is
factorial, thenM ∼= (N0,+), and we are done. Then suppose thatM is not factorial.
In this case, |A(M)| ≥ 2. Assume, by way of contradiction, that |A(M)| ≥ 3. Take
a1, a2, a3 ∈ A(M) satisfying that a1 < a2 < a3. Let d = d(a1)d(a2)d(a3), and
set a′i = dai for each i ∈ [[1, 3]]. Since a′1, a′2, and a′3 are integers satisfying that
a′1 < a′2 < a′3, there exist m,n ∈ N such that

m(a′2 − a′1) = n(a′3 − a′2). (2)

Clearly, z1 := ma1 + na3 and z2 := (m + n)a2 are two distinct factorizations in
Z(M) satisfying that |z1| = m + n = |z2|. In addition, after dividing both sides of
the equality (2) by d , one obtains that

ma1 + na3 = (m+ n)a2,

which means that z1 and z2 are factorizations of the same element. However, this
contradicts that M is an OHF-monoid. Hence |A(M)| ≤ 2, as desired. For the
reverse implication of (2), suppose that |A(M)| ≤ 2. By [18, Proposition 3.2],
M is isomorphic to a numerical semigroup N . As N is generated by at most two
elements, either N = (N0,+) or N = 〈a, b〉 for a, b ∈ N≥2 with gcd(a, b) = 1. If
N = (N0,+), then N is factorial and, in particular, an OHF-monoid. On the other
hand, if N = 〈a, b〉, then it is an OHF-monoid by [12, Example 2.13]. ��

In [16, Theorem 8.4] Gilmer and Parker characterize the monoid algebras that
are Dedekind domains, Euclidean domains, or PIDs. We conclude this section
extending such a characterization in the case where the exponent monoids are
Puiseux monoids.

Theorem 2 For a nontrivial Puiseux monoid M and a field F , the following
conditions are equivalent:

1. F [M] is a Euclidean domain;
2. F [M] is a PID;
3. F [M] is a UFD;
4. F [M] is an HFD;
5. M ∼= (N0,+);
6. F [M] is a Dedekind domain.

Proof It is well known that every Euclidean domain is a PID, and every PID is
a UFD. Therefore condition (1) implies condition (2), and condition (2) implies
condition (3). In addition, it is clear that every UFD is an HFD, and so condition (3)
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implies condition (4). As Puiseux monoids are torsion-free, [25, Proposition 1.4]
ensures that M is an HF-monoid when F [M] is an HFD. This, along with
Proposition 2(1), guarantees that M ∼= (N0,+) provided that F [M] is an HFD.
Thus, condition (4) implies condition (5). Also, if condition (5) holds, then F [M] ∼=
F [N0] = F [X] (by Remark 1) is a Euclidean domain, which is condition (1). Then
we have argued that the first five conditions are equivalent.

To include (6) in the set of already-established equivalent conditions, observe that
condition (2) implies condition (6) because every PID is a Dedekind domain. On the
other hand, suppose that the monoid algebra F [M] is a Dedekind domain. Then the
fact thatM is torsion-free, along with [16, Theorem 8.4], implies thatM ∼= (N0,+).
Hence condition (6) implies condition (5), which completes the proof. ��
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On the Molecules of Numerical
Semigroups, Puiseux Monoids,
and Puiseux Algebras

Felix Gotti and Marly Gotti

Abstract A molecule is a nonzero non-unit element of an integral domain (resp.,
commutative cancellative monoid) having a unique factorization into irreducibles
(resp., atoms). Here we study the molecules of Puiseux monoids as well as
the molecules of their corresponding semigroup algebras, which we call Puiseux
algebras. We begin by presenting, in the context of numerical semigroups, some
results on the possible cardinalities of the sets of molecules and the sets of reducible
molecules (i.e., molecules that are not irreducibles/atoms). Then we study the
molecules in the more general context of Puiseux monoids. We construct infinitely
many non-isomorphic atomic Puiseux monoids all whose molecules are atoms. In
addition, we characterize the molecules of Puiseux monoids generated by rationals
with prime denominators. Finally, we turn to investigate the molecules of Puiseux
algebras. We provide a characterization of the molecules of the Puiseux algebras
corresponding to root-closed Puiseux monoids. Then we use such a characterization
to find an infinite class of Puiseux algebras with infinitely many non-associated
reducible molecules.

Keywords Numerical semigroups · Puiseux monoids · Monoid algebras ·
Atoms · Irreducibles · Atomic monoids · Atomic algebras

1 Introduction

Let M be a commutative cancellative monoid. A non-invertible element of M is
called an atom if it cannot be expressed as a product of two non-invertible elements.
If x ∈ M can be expressed as a formal product of atoms, then such a formal
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product (up to associate and permutation) is called a factorization of x. If every non-
invertible element of M has a factorization, then M is called atomic. Furthermore,
the atoms and factorizations of an integral domain are the irreducible elements
and the formal products of irreducible elements, respectively. All the undefined
or informally-defined terms mentioned in this section will be formally introduced
later on.

The elements having exactly one factorization are crucial in the study of factor-
ization theory of commutative cancellative monoids and integral domains. Aiming
to avoid repeated long descriptions, we call such elements molecules. Molecules
were first studied in the context of algebraic number theory by W. Narkiewicz and
other authors in the 1960’s. For instance, in [18] and [19] Narkiewicz studied some
distributional aspects of the molecules of quadratic number fields. In addition, he
gave an asymptotic formula for the number of (non-associated) integer molecules
of any algebraic number field [20]. In this paper, we study the molecules of
submonoids of (Q≥0,+), including numerical semigroups, and the molecules of
their corresponding semigroup algebras.

A numerical semigroup is a finite-complemented submonoid of (N0,+), where
N0 = {0, 1, 2, . . . }. Every numerical semigroup is finitely generated by its set of
atoms and, in particular, atomic. In addition, if N 
= N0 is a numerical semigroup,
then it contains only finitely many molecules. Notice, however, that every positive
integer is a molecule of (N0,+). Figure 1 shows the distribution of the sets of
molecules of four numerical semigroups. We begin Sect. 3 pointing out how the
molecules of numerical semigroups are related to the Betti elements. Then we show
that each element in the set {n ∈ N0 : n ≥ 4} ∪ {∞} (and only such elements) can
be the number of molecules of a numerical semigroup. We conclude our study of
molecules of numerical semigroups exploring the possible cardinalities of the sets
of reducible molecules (i.e., molecules that are not atoms).

A submonoid of (Q≥0,+) is called a Puiseux monoid. Puiseux monoids were
first studied in [11] and have been systematically investigated since then (see [3]
and references therein). Albeit a natural generalization of the class of numerical

30 40 50 60 7010 20

N1

N2

N3

N4

Fig. 1 The dots on the horizontal line labeled by Ni represent the nonzero elements of the
numerical semigroup Ni ; here we are setting N1 = 〈2, 21〉, N2 = 〈6, 9, 20〉, N3 = 〈5, 6, 7, 8, 9〉,
and N4 = 〈2, 3〉. Atoms are represented in blue, molecules that are not atoms in red, and non-
molecules in black (colour figure online)
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semigroups, the class of Puiseux monoids contains members having infinitely many
atoms and, consequently, infinitely many molecules. A Puiseux monoid is prime
reciprocal if it can be generated by rationals of the form a/p, where p is a prime and
a is a positive integer not divisible by p. In Sect. 4, we study the sets of molecules
of Puiseux monoids, finding infinitely many non-isomorphic Puiseux monoids all
whose molecules are atoms (in contrast to the fact that the set of molecules of a
numerical semigroup always differs from its set of atoms). In addition, we construct
infinitely many non-isomorphic Puiseux monoids having infinitely many molecules
that are not atoms (in contrast to the fact that the set of molecules of a nontrivial
numerical semigroup is always finite). We conclude Sect. 4 characterizing the sets
of molecules of prime reciprocal Puiseux monoids.

The final section of this paper is dedicated to the molecules of the semigroup
algebras of Puiseux monoids, which we call Puiseux algebras. Puiseux algebras
have been studied in [1, 5, 12]. First, for a fixed field F we establish a bijection
between the set molecules of a Puiseux monoid and the set of non-associated
monomial molecules of its corresponding Puiseux algebra over F . Then we
characterize the molecules of Puiseux algebras of root-closed Puiseux monoids.
We conclude this paper using the previous characterization to exhibit a class of
Puiseux algebras having infinitely many molecules that are neither monomials nor
irreducibles.

2 Monoids, Atoms, and Molecules

2.1 General Notation

In this section we review the nomenclature and main concepts on commutative
monoids and factorization theory we shall be using later. For a self-contained
approach to the theory of commutative monoids we suggest [16] by P. A. Grillet, and
for background on non-unique factorization theory of atomic monoids and integral
domains the reader might want to consult [9] by A. Geroldinger and F. Halter-Koch.

We use the double-struck symbols N and N0 to denote the set of positive integers
and the set of nonnegative integers, respectively, while we let P denote the set of
primes. If R ⊆ R and r ∈ R, then we set

R≥r := {x ∈ R : x ≥ r}.

The notation R>r is used in a similar way. We let the symbol ∅ denote the empty
set. If q ∈ Q>0, then the unique a, b ∈ N such that q = a/b and gcd(a, b) = 1 are
denoted by n(q) and d(q), respectively. ForQ ⊆ Q>0, we call

n(Q) := {n(q) : q ∈ Q} and d(Q) := {d(q) : q ∈ Q}
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the numerator set and denominator set of Q, respectively. In addition, if S is a set
consisting of primes and q ∈ Q>0, then we set

DS(q) := {p ∈ S : p | d(q)} and DS(Q) := ∪q∈QDS(q).

For p ∈ P, the p-adic valuation on Q ≥ 0 is the map defined by vp(0) = ∞ and
vp(q) = vp(n(q)) − vp(d(q)) for q ∈ Q > 0, where for n ∈ N the value vp(n)
is the exponent of the maximal power of p dividing n. It can be easily seen that
the p-adic valuation satisfies that vp(q1+ · · ·+ qn) ≥ min{vp(q1), . . . , vp(qn)} for
every n ∈ N and q1, . . . , qn ∈ Q>0.

2.2 Monoids

Throughout this paper, we will tacitly assume that the term monoid by itself always
refers to a commutative and cancellative semigroup with identity. In addition, we
will use additive notation by default and switch to multiplicative notation only when
necessary (in which case, the notation will be clear from the context). For a monoid
M , we let M• denote the set M \ {0}. If a, c ∈ M , then we say that a divides c
in M and write a |M c provided that c = a + b for some b ∈ M . We write
M = 〈S〉 whenM is generated by a set S. The monoidM is finitely generated if it
can be generated by a finite set; otherwise,M is said to be non-finitely generated. A
succinct exposition of finitely generated monoids can be found in [7].

2.3 Atoms and Molecules

The set of invertible elements of M is denoted byM×, andM is said to be reduced
ifM× contains only the identity element.

Definition 1 An element a ∈ M\M× is an atom provided that for all u, v ∈ M the
fact that a = u+ v implies that either u ∈ M× or v ∈ M×. The set of atoms ofM
is denoted by A(M), andM is called atomic ifM = 〈A(M)〉.

LetM be a reduced monoid. Then the factorization monoid Z(M) ofM is the free
commutative monoid on A(M). The elements of Z(M), which are formal sums of
atoms, are called factorizations. If z = a1+· · ·+an ∈ Z(M) for some a1, . . . , an ∈
A(M), then |z| := n is called the length of z. As Z(M) is free on A(M), there is
a unique monoid homomorphism from Z(M) to M determined by the assignment
a �→ a for all a ∈ A(M). Such a monoid homomorphism is called the factorization
homomorphism of M and is denoted by φM (or just φ when there is no risk of
ambiguity involved). For x ∈ M , the sets

Z(x) := ZM(x) := φ−1(x) ⊆ Z(M) and L(x) := LM(x) := {|z| : z ∈ Z(x)}
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are called the set of factorizations and the set of lengths of x, respectively. Clearly,
M is atomic if and only if Z(x) 
= ∅ for all x ∈ M .

Let Mred denote the set of classes of M under the equivalence relation x ∼ y if
y = x + u for some u ∈ M×. It turns out that Mred is a monoid with the addition
operation inherited from M . The monoid Mred is called the reduced monoid of M
(clearly, Mred is reduced). Note that an element a belongs to A(M) if and only if
the class of a belongs to A(Mred). IfM is an atomic monoid (that is not necessarily
reduced), then we set Z(M) := Z(Mred) and, for x ∈ M , we define Z(x) and L(x)
in terms of Z(M) as we did for the reduced case.

As one of the main purposes of this paper is to study elements with exactly
one factorization in Puiseux monoids (in particular, numerical semigroups), we
introduce the following definition.

Definition 2 LetM be a monoid. We say that an elementm ∈ M\M× is a molecule
provided that |Z(m)| = 1. The set of all molecules ofM is denoted by M(M).

It is clear that the set of atoms of any monoid is contained in the set of molecules.
However, such an inclusion might be proper (consider, for instance, the additive
monoid N0). In addition, for any atomic monoidM the set M(M) is divisor-closed
in the sense that if m ∈ M(M) and m′ |M m for some m′ ∈ M \ M×, then
m′ ∈ M(M). If the condition of atomicity is dropped, then this observation is not
necessarily true (see Example 3).

3 Molecules of Numerical Semigroups

In this section we study the sets of molecules of numerical semigroups, putting
particular emphasis on their possible cardinalities.

Definition 3 A numerical semigroup is a cofinite additive submonoid of N0.

We let N denote the class consisting of all numerical semigroups (up to isomor-
phism). We say that N ∈ N is nontrivial if N0 \N is not empty, and we let
N • denote the class of all nontrivial numerical semigroups. Every N ∈ N has
a unique minimal set of generators A, which is finite. The cardinality of A is
called the embedding dimension of N . Suppose that N has embedding dimension
n, and let N = 〈a1, . . . , an〉 (we always assume that a1 < · · · < an). Then
gcd(a1, . . . , an) = 1 and A(N) = {a1, . . . , an}. In particular, every numerical
semigroup is atomic. When N is nontrivial, the maximum of N0 \N is called the
Frobenius number of N . Here we let F(N) denote the Frobenius number of N . See
[8] for a friendly introduction to numerical semigroups.

Example 1 For k ≥ 1, consider the numerical semigroup N1 = 〈2, 21〉, whose
molecules are depicted in Fig. 1. It is not hard to see that x ∈ N•1 is a molecule if
and only if every factorization of x contains at most one copy of 21. Therefore

M(N1) =
{
2m+ 21n : 0 ≤ m < 21, n ∈ {0, 1}, and (m, n) 
= (0, 0)}.
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In addition, if 2m + 21n = 2m′ + 21n′ for some m,m′ ∈ {0, . . . , 20} and n, n′ ∈
{0, 1}, then one can readily check that m = m′ and n = n′. Hence |M(N1)| = 41.

3.1 Betty Elements

Let N = 〈a1, . . . , an〉 be a minimally generated numerical semigroup. We always
represent an element of Z(N) with an n-tuple z = (c1, . . . , cn) ∈ N

n
0, where the

entry ci specifies the number of copies of ai that appear in z. Clearly, |z| = c1 +
· · · + cn. Given factorizations z = (c1, . . . , cn) and z′ = (c′1, . . . , c′n), we define

gcd(z, z′) = (min{c1, c
′
1}, . . . ,min{cn, c′n}).

The factorization graph of x ∈ N , denoted by ∇x(N) (or just ∇x when no risk of
confusion exists), is the graph with vertices Z(x) and edges between those z, z′ ∈
Z(x) satisfying that gcd(z, z′) 
= 0. The element x is called a Betti element of N
provided that ∇x is disconnected. The set of Betti elements of N is denoted by
Betti(N).

Example 2 Take N to be the numerical semigroup 〈14, 16, 18, 21, 45〉. A compu-
tation in SAGE using the numericalsgps GAP package reveals that N has nine
Betti elements. In particular, 90 ∈ Betti(N). In Fig. 2 one can see the disconnected
factorization graph of the Betti element 90 on the left and the connected factorization
graph of the non-Betti element 84 on the right.

Observe that 0 /∈ Betti(N) since |Z(0)| = 1. It is well known that every numerical
semigroup has finitely many Betti elements. Betti elements play a fundamental role
in the study of uniquely-presented numerical semigroups [6] and the study of delta
sets of BF-monoids [2]. For a more general notion of Betti element, meaning the
syzygies of anNn-graded module, see [17]. In a numerical semigroup, Betti elements
and molecules are closely related.

Fig. 2 The factorization graphs of 90 ∈ Betti(N) and 84 /∈ Betti(N), where N is the numerical
semigroup 〈14, 16, 18, 21, 45〉
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Remark 1 Let N be a numerical semigroup. An element m ∈ N is a molecule if
and only if β �N m for any β ∈ Betti(N).

Proof For the direct implication, suppose thatm is a molecule ofN and take α ∈ N
such that α |N m. As the set of molecules is closed under division, |Z(α)| = 1. This
implies that ∇α is connected and, therefore, α cannot be a Betti element. The reverse
implication is just a rephrasing of [6, Lemma 1]. ��

3.2 On the Sizes of the Sets of Molecules

Obviously, for every n ∈ N there exists a numerical semigroup having exactly n
atoms. The next proposition answers the same realization question replacing the
concept of an atom by that of a molecule. Recall that N • denotes the class of all
nontrivial numerical semigroups.

Proposition 1 {|M(N)| : N ∈ N •} = N≥4.

Proof LetN be a nontrivial numerical semigroup. ThenN must contain at least two
atoms. Let a and b denote the two smallest atoms ofN , and assume that a < b. Note
that 2a and a + b are distinct molecules that are not atoms. Hence |M(N)| ≥ 4. As
a result, {|M(N)| : N ∈ N •} ⊆ N≥4 ∪{∞}. Now take x ∈ N with x > F(N)+ ab.
Since x ′ := x − ab > F(N), we see that x ′ ∈ N and, therefore, Z(x ′) contains at
least one factorization, namely z. So we can find two distinct factorizations of x by
adding to z either a copies of b or b copies of a. Then F(N)+ ab is an upper bound
for M(N), which means that |M(N)| ∈ N≥4. Thus, {|M(N)| : N ∈ N •} ⊆ N≥4.

To argue the reverse inclusion, suppose that n ∈ N≥4, and let us findN ∈ N with
|M(N)| = n. For n = 4, we can take the numerical semigroup 〈2, 3〉 (see Fig. 1).
For n > 4, consider the numerical semigroup

N = 〈n− 2, n− 1, . . . , 2(n− 2)− 1〉.

It follows immediately that A(N) = {n− 2, n− 1, . . . , 2(n− 2)− 1}. In addition,
it is not hard to see that 2(n− 2), 2(n− 2)+ 1 ∈M(N) while k /∈M(N) for any
k > 2(n− 2)+ 1. Consequently, M(N) = A(N)∪{2(n− 2), 2(n− 2)+ 1}, which
implies that |M(N)| = n. Therefore {|M(N)| : N ∈ N } ⊇ N≥4, which completes
the proof. ��
Corollary 1 The monoid (N0,+) is the only numerical semigroup having infinitely
many molecules.

In Proposition 1 we have fully described the set {|M(N)| : N ∈ N }. A full
description of the set {|M(N) \ A(N)| : N ∈ N } seems to be significantly more
involved. However, the next theorem offers some evidence to believe that {|M(N)\
A(N)| : N ∈ N } = N≥2 ∪ {∞}.
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Theorem 1 The following statements hold.

1. {|M(N) \A(N)| : N ∈ N •} ⊆ N≥2.
2. |M(N)\A(N)| = 2 for infinitely many numerical semigroups N .
3. For each k ∈ N, there is a numerical semigroup N with |M(N)\A(N)| > k.
Proof To prove (1), take N ∈ N •. Then we can assume that N has embedding
dimension n with n ≥ 2. Take a1, . . . , an ∈ N with a1 < · · · < an such that N =
〈a1, . . . , an〉. Since a1 < a2 < aj for every j = 3, . . . , n, the elements 2a1 and
a1+a2 are two distinct molecules ofN that are not atoms. Hence M(N)\A(N) ⊆
N≥2 ∪ {∞}. On the other hand, Proposition 1 guarantees that |M(N)| <∞, which
implies that |M(N) \A(N)| <∞. As a result, the statement (1) follows.

To verify the statement (2), one only needs to consider for every n ∈ N the
numerical semigroup Nn := {0} ∪ N≥n−2. The minimal set of generators of Nn is
the (n − 2)-element set {n − 2, n − 1, . . . , 2(n − 2) − 1} and, as we have already
argued in the proof of Proposition 1, the set M(Nn)\A(Nn) consists precisely of
two elements.

Finally, let us prove condition (3). To do this, we first argue that for any
a, b ∈ N≥2 with gcd(a, b) = 1 the numerical semigroup 〈a, b〉 has exactly ab − 1
molecules (cf. Example 1). Assume a < b, take N := 〈a, b〉, and set

M = {ma + nb : 0 ≤ m < b, 0 ≤ n < a, and (m, n) 
= (0, 0)}.
Now take x ∈ N to be a molecule of N . As |Z(x)| = 1, the unique factorization
z := (c1, c2) ∈ Z(x) (with c1, c2 ∈ N0) satisfies that c1 < b; otherwise, we
could exchange b copies of the atom a by a copies of the atom b to obtain another
factorization of x. A similar argument ensures that c2 < a. As a consequence,
M(N) ⊆M. On the other hand, if ma + nb = m′a + n′b for some m,m′, n, n′ ∈
N0, then gcd(a, b) = 1 implies that b | m − m′ and a | n − n′. Because of this
observation, the element (b − 1)a + (a − 1)b has only the obvious factorization,
namely (b − 1, a − 1). Since (b − 1)a + (a − 1)b is a molecule satisfying that
y |N (b − 1)a + (a − 1)b for every y ∈ M, the inclusion M ⊆ M(N) holds.
Hence |M(N)| = |M| = ab− 1. To argue the statement (3) now, it suffices to take
N := 〈2, 2k + 1〉. ��

We conclude this section with the following conjecture.

Conjecture 1 For every n ∈ N≥2, there exists a numerical semigroup N such that
|M(N)\A(N)| = n.

4 Molecules of Puiseux Monoids

4.1 Molecules of Generic Puiseux Monoids

In this section we study the sets of molecules of Puiseux monoids. We will argue
that there are infinitely many non-finitely generated atomic Puiseux monoidsP such
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that |M(P ) \ A(P )| = ∞. On the other hand, we will prove that, unlike the case
of numerical semigroups, there are infinitely many non-isomorphic atomic Puiseux
monoids all whose molecules are, indeed, atoms. The last part of this section is
dedicated to characterize the molecules of prime reciprocal Puiseux monoids.

Definition 4 A Puiseux monoid is an additive submonoid of Q≥0.

Clearly, every numerical semigroup is naturally isomorphic to a Puiseux monoid.
However, Puiseux monoids are not necessarily finitely generated or atomic, as
the next example illustrates. The atomic structure of Puiseux monoids has been
investigated recently [11, 14, 15]. At the end of Sect. 2 we mentioned that the set
of molecules of an atomic monoid is divisor-closed. The next example indicates
that this property may not hold for non-atomic monoids.

Example 3 Consider the Puiseux monoid

P =
〈

2

5
,

3

5
,

1

2n
: n ∈ N

〉
.

First, observe that 0 is a limit point of P •, and so P cannot be finitely generated.
After a few easy verifications, one can see that A(P ) = {2/5, 3/5}. On the other
hand, it is clear that 1/2 /∈ 〈2/5, 3/5〉, so P is not atomic. Observe now that Z(1)
contains only one factorization, namely 2/5 + 3/5. Therefore 1 ∈ M(P ). Since
Z(1/2) is empty, 1/2 is not a molecule of P . However, 1/2 |P 1. As a result, M(P )

is not divisor-closed.

Although the additive monoid N0 contains only one atom, it has infinitely many
molecules. The next result implies that N0 is basically the only atomic Puiseux
monoid having finitely many atoms and infinitely many molecules.

Proposition 2 Let P be a Puiseux monoid. Then |M(P )| ∈ N≥2 if and only if
|A(P )| ∈ N≥2.

Proof Suppose first that |M(P )| ∈ N≥2. As every atom is a molecule, A(P ) is
finite. Furthermore, note that if A(P ) = {a}, then every element of the set S =
{na : n ∈ N} would be a molecule, which is not possible as |S| = ∞. As a result,
|A(P )| ∈ N≥2. Conversely, suppose that |A(P )| ∈ N≥2. Since the elements in
P\〈A(P )〉 have no factorizations, M(P ) =M(〈A(P )〉). Therefore there is no loss
in assuming that P is atomic. As 1 < |A(P )| < ∞, the monoid P is isomorphic
to a nontrivial numerical semigroup. The proposition now follows from the fact that
nontrivial numerical semigroups have finitely many molecules. ��
Corollary 2 If P is a Puiseux monoid, then |M(P )| 
= 1.

The set of atoms of a numerical semigroup is always strictly contained in its set of
molecules. However, there are many atomic Puiseux monoids which do not satisfy
such a property. Before proceeding to formalize this observation, let us mention that
if two Puiseux monoids P and P ′ are isomorphic, then there exists q ∈ Q>0 such
that P ′ = qP ; this is a consequence of [13, Proposition 3.2(1)].
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Theorem 2 (cf. Theorem 1(1)) There are infinitely many non-isomorphic atomic
Puiseux monoids P satisfying that M(P ) = A(P ).
Proof Let S = {Sn : n ∈ N} be a collection of infinite and pairwise-disjoint sets
of primes. Now take S = Sn for some arbitrary n ∈ N, and label the primes in S
strictly increasingly by p1, p2, . . . . Recall that DS(r) denotes the set of primes in S
dividing d(r) and that DS(R) = ∪r∈RDS(r) for R ⊆ Q>0. We proceed to construct
a Puiseux monoid PS satisfying that DS(PS) = S.

Take P1 := 〈1/p1〉 and P2 := 〈P1, 2/(p1p2)〉. In general, suppose that Pk is a
finitely generated Puiseux monoid such that DS(Pk) ⊂ S, and let r1, . . . , rnk be all
the elements in Pk which can be written as a sum of two atoms. Clearly, nk ≥ 1.
Because |S| = ∞, one can take p′1, . . . , p′nk to be primes in S \DS(Pk) satisfying
that p′i � n(ri ). Now consider the following finitely generated Puiseux monoid

Pk+1 :=
〈
Pk ∪
{
r1

p′1
, . . . ,

rnk

p′nk

}〉
.

For every i ∈ {1, . . . , nk}, there is only one element in Pk ∪ {r1/p′1, . . . , rnk /p′nk }
whose denominator is divisible by p′i , namely ri/p′i . Therefore ri/p′i ∈ A(Pk+1)

for i = 1, . . . , nk . To check that A(Pk) ⊂ A(Pk+1), fix a ∈ A(Pk) and take

z :=
m∑

i=1

αiai +
nk∑

i=1

βi
ri

p′i
∈ ZPk+1(a), (1)

where a1, . . . , am are pairwise distinct atoms in A(Pk+1) ∩ Pk and αi, βj are
nonnegative coefficients for i = 1, . . . ,m and j = 1, . . . , nk . In particular,
a1, . . . , am ∈ A(Pk). For each i = 1, . . . , nk , the fact that the p′i -adic valuation
of a is nonnegative implies that p′i | βi . Hence

a =
m∑

i=1

αiai +
nk∑

i=1

β ′iri ,

where β ′i = βi/p′i ∈ N0. Since ri ∈ A(Pk) + A(Pk) and (βi/p′i )ri |Pk a for every
i = 1, . . . , nk , one obtains that β1 = · · · = βnk = 0. As a result, a = ∑mi=1 αiai .
Because a ∈ A(Pk), the factorization

∑m
i=1 αiai in ZPk (a) must have length 1, i.e,∑m

i=1 αi = 1. Thus,
∑m
i=1 αi +

∑nk
i=1 βi = 1, which means that z has length 1 and

so a ∈ A(Pk+1). As a result, the inclusion A(Pk) ⊂ A(Pk+1) holds. Observe that
because nk ≥ 1, the previous containment must be strict. Now set

PS =
⋃

k∈N
Pk.
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Let us verify that PS is an atomic monoid satisfying that A(PS) = ∪k∈NA(Pk).
Since Pk is atomic for every k ∈ N, the inclusion chain A(P1) ⊂ A(P2) ⊂ . . .

implies that P1 ⊂ P2 ⊂ . . . . In addition, if a0 = a1 + · · · + am for m ∈ N

and a0, a1, . . . , am ∈ PS , then a0 = a1 + · · · + am will also hold in Pk for some
k ∈ N large enough. This immediately implies that ∪k∈NA(Pk) ⊆ A(PS). Since
the reverse inclusion follows trivially, A(PS) = ∪k∈NA(Pk). To check that PS is
atomic, take x ∈ P •S . Then there exists k ∈ N such that x ∈ Pk and, because Pk is
atomic, x ∈ 〈A(Pk)〉 ⊆ 〈A(PS)〉. Hence PS is atomic.

To check that M(PS) = A(PS), suppose thatm is a molecule of PS . TakeK ∈ N

such that m ∈ Pk for every k ≥ K . Since A(Pk) ⊂ A(Pk+1) ⊂ . . . , we obtain
that ZPk (m) ⊆ ZPk+1(m) ⊆ . . . . Moreover, ∪k≥KA(Pk) = A(PS) implies that
∪k≥KZPk (m) = ZPS (m). Now suppose for a contradiction that m = ∑ij=1 aj for
i ∈ N≥2, where a1, . . . , ai ∈ A(PS). Take j ∈ N≥K such that a1, . . . , ai ∈ A(Pj ).
Then the way in which Pj+1 was constructed ensures that |ZPj+1(a1+a2)| ≥ 2 and,
therefore, |ZPj+1(m)| ≥ 2. As ZPj+1(m) ⊆ ZPS (m), it follows that |ZPS (m)| ≥ 2,
which contradicts that m is a molecule. Hence M(PS) = A(PS).

Finally, we argue that the monoids constructed are not isomorphic. Let S and S′
be two distinct members of the collection S and suppose, by way of contradiction,
that ψ : PS → PS ′ is a monoid isomorphism. Because homomorphisms of Puiseux
monoids are given by rational multiplications, there exists q ∈ Q>0 such that PS ′ =
qPS . In this case, all but finitely many primes in DP(PS) belong to DP(PS ′). Since
DP(PS) ∩ DP(PS ′) = ∅ when S 
= S′, we get a contradiction. ��

4.2 Molecules of Prime Reciprocal Monoids

For the remaining of this section, we focus our attention on the class consisting of
all prime reciprocal monoids.

Definition 5 Let S be a nonempty set of primes. A Puiseux monoid P is prime
reciprocal over S if there exists a set of positive rationals R such that P = 〈R〉,
d(R) = S, and d(r) = d(r ′) implies r = r ′ for all r, r ′ ∈ R.

Within the scope of this paper, the term prime reciprocal monoid refers to a
Puiseux monoid that is prime reciprocal over some nonempty set of primes. Let us
remark that if a Puiseux monoid P is prime reciprocal, then there exists a unique
S ⊆ P such that P is prime reciprocal over S. It is easy to verify that every prime
reciprocal Puiseux monoid is atomic.

Proposition 3 (cf. Theorem 1(1)) There exist infinitely many non-finitely gener-
ated atomic Puiseux monoids P such that |M(P )\A(P )| = ∞.
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Proof As in the proof of Theorem 2, let S = {Sn : n ∈ N} be a collection of infinite
and pairwise-disjoint subsets of P\{2}. For every n ∈ N, let Pn be a prime reciprocal
Puiseux monoid over Sn. Fix a ∈ A(Pn), and take a factorization

z :=
k∑

i=1

αiai ∈ Z(2a)

for some k ∈ N, pairwise distinct atoms a1, . . . , ak , and α1, . . . , αk ∈ N0. Since
d(a) 
= 2, after applying the d(a)-adic valuation on both sides of the equality 2a =∑t
i=1 αiai , one obtains that z = 2a. So 2a ∈ M(Pn) \ A(Pn) and, as a result,

|M(Pn) \ A(Pn)| = ∞. Now suppose, by way of contradiction, that Pi ∼= Pj for
some i, j ∈ N with i 
= j . Since isomorphisms of Puiseux monoids are given by
rational multiplication, there exists q ∈ Q>0 such that Pj = qPi . However, this
implies that only finitely many primes in d(Pi) are not contained in d(Pj ), which
contradicts that Si∩Sj = ∅. Hence no two monoids in {Pn : n ∈ N} are isomorphic,
and the proposition follows. ��

Theorem 2 and Proposition 3 ensure the existence of infinitely many non-finitely
generated atomic Puiseux monoids P andQ with |M(P )\A(P )| = 0 and |M(Q)\
A(Q)| = ∞.

Conjecture 2 (cf. Conjecture 1) For every n ∈ N there exists a non-finitely
generated atomic Puiseux monoid P satisfying that |M(P )\A(P )| = n.

Before characterizing the molecules of prime reciprocal monoids, let us introduce
the concept of maximal multiplicity. Let P be a Puiseux monoid. For x ∈ P and
a ∈ A(P ) we define the maximal multiplicity of a in x to be

m(a, x) := max{n ∈ N0 : na |P x}.

Proposition 4 Let P be a prime reciprocal monoid. If x ∈ P satisfies that
m(a, x) < d(a) for all a ∈ A(P ), then x ∈M(P ).

Proof Suppose, by way of contradiction, that x /∈ M(P ). Then there exist k ∈ N,
elements αi, βi ∈ N0 (for i = 1, . . . , k), and pairwise distinct atoms a1, . . . , ak
such that

z :=
k∑

i=1

αiai and z′ :=
k∑

i=1

βiai

are two distinct factorizations in Z(x). As z 
= z′, there is an index i ∈ {1, . . . , k}
such that αi 
= βi . Now we can apply the d(ai)-adic valuation to both sides of the
equality

k∑

i=1

αiai =
k∑

i=1

βiai
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to verify that d(ai) | βi − αi . As αi 
= βi , we obtain that

m(ai, x) ≥ max{αi, βi} ≥ d(ai).

However, this contradicts the fact that m(a, x) < d(a) for all a ∈ A(P ). Hence
x ∈M(P ). ��

For S ⊆ P, we call the monoid ES := 〈1/p : p ∈ S〉 the elementary prime
reciprocal monoid over S; if S = P we say that ES is the elementary prime
reciprocal monoid. It was proved in [15, Section 5] that every submonoid of the
elementary prime reciprocal monoid is atomic. This gives a large class of non-
finitely generated atomic Puiseux monoids, which contains each prime reciprocal
monoid.

Proposition 5 Let S be an infinite set of primes, and letES be the elementary prime
reciprocal monoid over S. For x ∈ ES , the following conditions are equivalent:

1. x ∈M(ES);
2. 1 does not divide x in ES;
3. m(a, x) < d(a) for all a ∈ A(ES);
4. If a1, . . . , an ∈ A(ES) are distinct atoms and α1, . . . , αn ∈ N0 satisfy that∑n

j=1 αj aj ∈ Z(x), then αj < d(aj ) for each j = 1, . . . , n.

Proof First, let us recall that since ES is atomic, M(ES) is divisor-closed. On the
other hand, note that for any two distinct atoms a, a′ ∈ A(ES), both factorizations
d(a) a and d(a′) a′ are in Z(1). Therefore 1 /∈M(ES). Because the set of molecules
of ES is divisor-closed, 1 �ES m for any m ∈ M(ES); in particular, 1 �ES x. Thus,
(1) implies (2). If m(a, x) ≥ d(a) for a ∈ A(ES), then

x = m(a, x) a + y = 1+ (m(a, x)− d(a)) a + y
for some y ∈ ES . As a result, 1 |ES x, from which we can conclude that (2) implies
(3). It is obvious that (3) and (4) are equivalent conditions. Finally, the fact that (3)
implies (1) follows from Proposition 4. ��
Corollary 3 Let S be an infinite set of primes, and let ES be the elementary prime
reciprocal monoid over S. Then |Z(x)| = ∞ for all x /∈M(ES).

In order to describe the set of molecules of an arbitrary prime reciprocal monoid,
we need to cast its atoms into two categories.

Definition 6 Let P be a prime reciprocal monoid. We say that a ∈ A(P ) is stable
if the set {a′ ∈ A(P ) : n(a′) = n(a)} is infinite, otherwise we say that a is unstable.
If every atom of P is stable (resp., unstable), then we call P stable (resp., unstable).

For a prime reciprocal monoid P , we let S(P ) denote the submonoid of P
generated by the set of stable atoms. Similarly, we let U(P ) denote the submonoid
of P generated by the set of unstable atoms. Clearly, P is stable (resp., unstable)
if and only if P = S(P ) (resp., P = U(P )). In addition, P = S(P ) + U(P ),



154 F. Gotti and M. Gotti

and S(P ) ∩ U(P ) is trivial only when either S(P ) or U(P ) is trivial. Clearly, if
P is stable, then it cannot be finitely generated. Finally, we say that u ∈ U(P ) is
absolutely unstable provided that u is not divisible by any stable atom in P , and we
let Ua(P ) denote the set of all absolutely unstable elements of P .

Example 4 Let {pn} be the strictly increasing sequence with underlying set P \ {2},
and consider the prime reciprocal monoid P defined as

P :=
〈

3+ (−1)n

p2n−1
,
p2n − 1

p2n
: n ∈ N

〉
.

Set an = 3+(−1)n

p2n−1
and bn = p2n−1

p2n
. It is clear that P is an atomic monoid with

A(P ) = {an, bn : n ∈ N}. As both sets {n ∈ N : n(an) = 2} and {n ∈ N : n(an) =
4} have infinite cardinality, an is a stable atom for every n ∈ N. In addition, since
{n(bn)} is a strictly increasing sequence bounded below by n(b1) = 4 and n(an) ∈
{2, 4}, the element bn is an unstable atom for every n ∈ N≥2. Also, notice that
4/3 = 2a1 ∈ S(P ), but 4/3 /∈ U(P ) because d(4/3) = 3 /∈ d(U(P )). Furthermore,
for every n ∈ N the element un := (p2n − 1)bn ∈ U(P ) is not in S(P ) because
p2n = d(un) /∈ d(S(P )). However, S(P ) ∩ U(P ) 
= ∅ since the element 4 =
6a1 = 5b1 belongs to both S(P ) and U(P ). Finally, we claim that 2bn is absolutely
unstable for every n ∈ N. If this were not the case, then 2bk /∈ M(P ) for some
k ∈ N. By Proposition 4 there exists a ∈ A(P ) such that m(a, 2bk) ≥ d(a). In this
case, one would obtain that 2bk ≥ m(a, 2bk)a ≥ d(a)a = n(a) ≥ 2, contradicting
that bn < 1 for every n ∈ N. Thus, 2bn ∈ Ua(P ) for every n ∈ N.

Proposition 6 Let P be a prime reciprocal monoid that is stable, and let x ∈ P .
Then x ∈M(P ) if and only if n(a) does not divide x in P for any a ∈ A(P ).
Proof For the direct implication, assume that x ∈ M(P ) and suppose, by way
of contradiction, that n(a) |P x for some a ∈ A(P ). Since a is a stable atom,
there exist p1, p2 ∈ P with p1 
= p2 such that gcd(p1p2,n(a)) = 1 and
n(a)/p1,n(a)/p2 ∈ A(P ). As n(a) |P x, we can take a1, . . . , ak ∈ A(P ) such
that x = n(a)+ a1 + · · · + ak. Therefore

p1
n(a)
p1

+ a1 + · · · + ak and p2
n(a)
p2

+ a1 + · · · + ak

are two distinct factorizations in Z(x), contradicting that x is a molecule. Con-
versely, suppose that x is not a molecule. Consider two distinct factorizations
z := ∑ki=1 αiai and z′ := ∑ki=1 βiai in Z(x), where k ∈ N, αi, βi ∈ N0, and
a1, . . . , ak ∈ A(P ) are pairwise distinct atoms. Pick an index j ∈ {1, . . . , k} such
that αj 
= βj and assume, without loss of generality, that αj < βj . After applying
the d(aj )-adic valuations on both sides of the equality

k∑

i=1

αiai =
k∑

i=1

βiai
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one finds that the prime d(aj ) divides βj − αj . Therefore βj > d(aj ) and so

x = n(aj )+ (βj − d(aj ))aj +
∑

i 
=j
αiai .

Hence n(aj ) |P x, which concludes the proof. ��
Observe that the reverse implication of Proposition 6 does not require that

S(P ) = P . However, the stability of P is required for the direct implication to
hold as the following example illustrates.

Example 5 Let {pn} be the strictly increasing sequence with underlying set P \ {2},
and consider the unstable prime reciprocal monoid

P :=
〈

1

2
,
p2
n − 1

pn
: n ∈ N

〉
.

As the smallest two atoms of P are 1/2 and 8/3, it immediately follows that m :=
2(1/2)+ 8/3 /∈ 〈1/2〉 must be a molecule of P . In addition, notice that 1 = n(1/2)
dividesm in P .

We conclude this section characterizing the molecules of prime reciprocal
monoids.

Theorem 3 Let P be a prime reciprocal monoid. Then x ∈ P is a molecule if and
only if x = s + u for some s ∈ S(P ) ∩M(P ) and u ∈ Ua(P ) ∩M(P ).

Proof First, suppose that x is a molecule. As P = S(P ) + U(P ), there exist s ∈
S(P ) and u ∈ U(P ) such that x = s + u. The fact that x ∈M(P ) guarantees that
s, u ∈M(P ). On the other hand, since |Z(u)| = 1 and u can be factored using only
unstable atoms, u cannot be divisible by any stable atom in P . Thus, u ∈ Ua(P ),
and the direct implication follows.

For the reverse implication, assume that x = s + u, where s ∈ S(P ) ∩M(P )

and u ∈ Ua(P ) ∩M(P ). We first check that x can be uniquely expressed as a sum
of two elements s and u contained in the sets S(P ) ∩M(P ) and Ua(P ) ∩M(P ),
respectively. To do this, suppose that x = s+u = s′ +u′, where s′ ∈ S(P )∩M(P )

and u′ ∈ Ua(P ) ∩M(P ). Take pairwise distinct stable atoms a1, . . . , ak of P for
some k ∈ N such that z = ∑ki=1 αiai ∈ ZP (s) and z′ = ∑ki=1 α

′
iai ∈ ZP (s′),

where αj , α′j ∈ N0 for j = 1, . . . , k. Because u and u′ are absolutely unstable
elements, they are not divisible in P by any of the atoms ai’s. Thus, d(aj ) � d(u)
and d(aj ) � d(u′) for any j ∈ {1, . . . , k}. Now for each j = 1, . . . , k we can apply
the d(aj )-adic valuation in both sides of the equality

u+
k∑

i=1

αiai = u′ +
k∑

i=1

α′iai
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to conclude that the prime d(aj ) must divide αj − α′j . Therefore either z = z′ or
there exists j ∈ {1, . . . , k} such that |αj − α′j | > d(aj ). Suppose that |αj − α′j | >
d(aj ) for some j , and say αj > α′j . As αj > d(aj ), one can replace αj aj by
(αj − d(aj ))aj + n(aj ) in s = φ(z) = α1a1+ · · · + αkak to find that n(aj ) divides
s in S(P ), which contradicts Proposition 6. Then z = z′. Therefore s′ = s and
u′ = u.

Finally, we argue that x ∈ M(P ). Write x = ∑�i=1 γiai +
∑�
i=1 βibi for

� ∈ N≥k, pairwise distinct stable atoms a1, . . . , a� (where a1, . . . , ak are the atoms
showing up in z), pairwise distinct unstable atoms b1, . . . , b�, and coefficients
γi, βi ∈ N0 for i = 1, . . . , �. Set z′′′ := ∑�i=1 γiai and w′′′ = ∑�i=1 βibi . Note
that, a priori, φ(z′′′) and φ(w′′′) are not necessarily molecules. As in the previous
paragraph, we can apply d(aj )-adic valuation to both sides of the equality

u+
k∑

i=1

αiai =
�∑

i=1

γiai +
�∑

i=1

βibi

to find that z′′′ = z. Hence φ(z′′′) = s and φ(w′′′) = u are both molecules.
Therefore z′′′ must be the unique factorization of s, while w′′′ must be the unique
factorization of u. As a result, x ∈M(P ). ��

5 Molecules of Puiseux Algebras

Let M be a monoid and let R be a commutative ring with identity. Then R[X;M]
denotes the ring of all functions f : M → R having finite support, which means that
Supp(f ) := {s ∈ M : f (s) 
= 0} is finite. We represent an element f ∈ R[X;M]
by

f (X) =
n∑

i=1

f (si)X
si ,

where s1, . . . , sn are the elements in Supp(f ). The ring R[X;M] is called the
monoid ring of M over R, and the monoid M is called the exponent monoid of
R[X;M]. For a field F , we will say that F [X;M] is a monoid algebra. As we are
primarily interested in the molecules of monoid algebras of Puiseux monoids, we
introduce the following definition.

Definition 7 If F is a field and P is a Puiseux monoid, then we say that F [X;P ]
is a Puiseux algebra. If N is a numerical semigroup, then F [X;N] is called a
numerical semigroup algebra.

Let F [X;P ] be a Puiseux algebra. We write any element f ∈ F [X;P ] \ {0} in
canonical representation, that is, f (X) = α1X

q1 + · · · + αkXqk with αi 
= 0 for
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i = 1, . . . , k and q1 > · · · > qk. It is clear that any element of F [X;P ] \ {0} has
a unique canonical representation. In this case, deg(f ) := q1 is called the degree of
f , and we obtain that the degree identity deg(fg) = deg(f )+ deg(g) holds for all
f, g ∈ F [X;P ] \ {0}. As for polynomials, we say that f is a monomial if k = 1.
It is not hard to verify that F [X;P ] is an integral domain with group of units F×,
although this follows from [10, Theorem 8.1] and [10, Theorem 11.1]. Finally, note
that, unless P ∼= (N0,+), no monomial of F [X;P ] can be a prime element; this
is a consequence of the trivial fact that non-cyclic Puiseux monoids do not contain
prime elements.

For an integral domain R, we let Rred denote the reduced monoid of the
multiplicative monoid of R.

Definition 8 Let R be an integral domain. We call a nonzero non-unit r ∈ R a
molecule if rR× is a molecule of Rred.

Let R be an integral domain. By simplicity, we let A(R), M(R), Z(R), and
φR denote A(Rred), M(Rred), Z(Rred), and φRred , respectively. In addition, for
a nonzero non-unit r ∈ R, we let ZR(r) and LR(r) denote ZRred(rR

×) and
LRred(rR

×), respectively.

Proposition 7 Let F be a field, and let P be a Puiseux monoid. For a nonzero
α ∈ F , a monomialXq ∈M(F [X;P ]) if and only if q ∈M(P ).

Proof Consider the canonical monoid monomorphism μ : P → F [X;P ] \ {0}
given by μ(q) = Xq . It follows from [4, Lemma 3.1] that an element a ∈ P is
an atom if and only if the monomial Xa is irreducible in F [X;P ] (or, equivalently,
an atom in the reduced multiplicative monoid of F [X;P ]). Therefore μ lifts
canonically to the monomorphism μ̄ : Z(P ) → Z(F [X;P ]) determined by the
assignments a �→ Xa for each a ∈ A(P ), preserving not only atoms but also
factorizations of the same element. Put formally, this means that the diagram

Z(P )
μ̄

Z(F [X; P ])
φP φF [X;P ]

P
μ

F [X; P ]red

commutes, and the (fiber) restriction maps μ̄q : ZP (q) → ZF [X;P ](Xq) of μ̄ are
bijections for every q ∈ P . Hence |ZP (q)| = 1 if and only if |ZF [X;P ](Xq)| = 1
for all q ∈ P •, which concludes our proof. ��
Corollary 4 For each field F , there exists an atomic Puiseux monoid P whose
Puiseux algebra satisfies that |M(F [X;P ]) \A(F [X;P ])| = ∞.

Proof It is an immediate consequence of Proposition 3 and Proposition 7. ��
The difference group gp(M) of a monoid M is the abelian group (unique up to

isomorphism) satisfying that any abelian group containing a homomorphic image
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of M will also contain a homomorphic image of gp(M). An element x ∈ gp(M)
is called a root element of M if nx ∈ M for some n ∈ N. The subset M̃ of gp(M)
consisting of all root elements ofM is called the root closure ofM . If M̃ =M , then
M is called root-closed. From now on, we assume that each Puiseux monoid P we
mention here is root-closed. Before providing a characterization for the irreducible
elements of F [X;P ], let us argue the following two easy lemmas.

Lemma 1 Let P be a Puiseux monoid. Then d(P •) is closed under taking least
common multiples.

Proof Take d1, d2 ∈ d(P •) and q1, q2 ∈ P • with d(q1) = d1 and d(q2) = d2.
Now set d = gcd(d1, d2) and n = gcd(n(q1),n(q2)). It is clear that n is the greatest
common divisor of (d2/d)n(q1) and (d1/d)n(q2). So there existm ∈ N and c1, c2 ∈
N0 such that

n
(
1+m lcm(d1, d2)

) = c1
d2

d
n(q1)+ c2

d1

d
n(q2). (2)

Using the fact that d lcm(d1, d2) = d1d2, one obtains that

n
(
1+m lcm(d1, d2)

)

lcm(d1, d2)
= c1q1 + c2q2 ∈ P

after dividing both sides of the equality (2) by lcm(d1, d2). In addition, note that
n(1 + m lcm(d1, d2)) and lcm(d1, d2) are relatively prime. Hence lcm(d1, d2) ∈
d(P •), from which the lemma follows. ��
Lemma 2 Let P be a root-closed Puiseux monoid containing 1. Then 1/d ∈ P for
all d ∈ d(P •).

Proof Let d ∈ d(P •), and take r ∈ P • such that d(r) = d . As gcd(n(r),d(r)) = 1,
there exist a, b ∈ N0 such that an(r)− b d(r) = 1. Therefore

1

d
= an(r)− b d(r)

d
= ar − b ∈ gp(P ).

This, along with the fact that d(1/d) = 1 ∈ P , ensures that 1/d is a root element of
P . Since P is root-closed, it must contain 1/d , which concludes our argument. ��

We are in a position now to characterize the irreducibles of F [X;P ].
Proposition 8 Let F be a field, and let P be a root-closed Puiseux monoid
containing 1. Then f ∈ F [X;P ] \ F is irreducible in F [X;P ] if and only if
f (Xm) is irreducible in F [X] for every m ∈ d(P •) that is a common multiple
of the elements of d(Supp(f )).

Proof Suppose first that f ∈ F [X;P ] \ F is an irreducible element of F [X;P ],
and let m ∈ d(P •) be a common multiple of the elements of d

(
Supp(f )

)
. Then

f (Xm) is an element of the polynomial ring F [X]. Take g, h ∈ F [X] such that



On the Molecules of Puiseux Monoids 159

f (Xm) = g(X) h(X). Since P is a root-closed and m ∈ d(P •), Lemma 2 ensures
that g(X1/m), h(X1/m) ∈ F [X;P ]. Thus, f (X) = g(X1/m)h(X1/m) in F [X;P ].
Since f is irreducible in F [X;P ] either g(X1/m) ∈ F or h(X1/m) ∈ F , which
implies that either g ∈ F or h ∈ F . Hence f (Xm) is irreducible in F [X].

Conversely, suppose that f ∈ F [X;P ] satisfies that f (Xm) is an irreducible
polynomial in F [X] for everym ∈ d(P •) that is a common multiple of the elements
of the set d(Supp(f )). To argue that f is irreducible in F [X;P ] suppose that f =
g h for some g, h ∈ F [X;P ]. Letm0 be the least common multiple of the elements
of d(Supp(g)) ∪ d(Supp(h)). Lemma 1 guarantees that m0 ∈ d(P •). Moreover,
f = g h implies that m0 is a common multiple of the elements of d(Supp(f )).
As a result, the equality f (Xm0) = g(Xm0)h(Xm0 ) holds in F [X]. Since f (Xm0) is
irreducible in F [X], either g(Xm0 ) ∈ F or h(Xm0 ) ∈ F and, therefore, either g ∈ F
or h ∈ F . This implies that f is irreducible in F [X;P ], as desired. ��

We proceed to show the main result of this section.

Theorem 4 Let F be a field, and let P be a root-closed Puiseux monoid. Hence

M(F [X;P ]) = 〈A(F [X;P ])〉.

Proof As each molecule of F [X;P ] is a product of irreducible elements in
F [X;P ], the inclusion M(F [X;P ]) ⊆ 〈A(F [X;P ])〉 holds trivially. For the
reverse inclusion, suppose that f ∈ F [X;P ] \ F can be written as a product of
irreducible elements in F [X;P ]. As a result, there exist k, � ∈ N and irreducible
elements g1, . . . , gk and h1, . . . , h� in F [X;P ] satisfying that

g1(X) · · · gk(X) = f (X) = h1(X) · · · h�(X). (3)

Let m be the least common multiple of all the elements of the set

( k⋃

i=1

d
(
Supp(gi)

))⋃( �⋃

j=1

d
(
Supp(hj )

))
.

Note that f (Xm), gi(Xm) and hj (Xm) are polynomials in F [X] for i = 1, . . . , k
and j = 1, . . . , �. Lemma 1 ensures that m ∈ d(P •). On the other hand, m is
a common multiple of all the elements of d(Supp(gi)) (or all the elements of
d(Supp(hi))). Therefore Proposition 8 guarantees that the polynomials gi(Xm)
and hj (Xm) are irreducible in F [X] for i = 1, . . . , k and j = 1, . . . , �. After
substituting X by Xm in (3) and using the fact that F [X] is a UFD, one finds
that � = k and gi(Xm) = hσ(i)(X

m) for some permutation σ ∈ Sk and every
i = 1, . . . , k. This, in turns, implies that gi = hσ(i) for i = 1, . . . , k. Hence
|ZF [X;P ](f )| = 1, which means that f is a molecule of F [X;P ]. ��

As we have seen before, Corollary 4 guarantees the existence of a Puiseux
algebra F [X;P ] satisfying that |M(F [X;P ]) \ A(F [X;P ])| = ∞. Now we use
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Theorem 4 to construct an infinite class of Puiseux algebras satisfying a slightly
more refined condition.

Proposition 9 For any field F , there exist infinitely many Puiseux monoids P such
that the algebra F [X;P ] contains infinite molecules that are neither atoms nor
monomials.

Proof Let {pj } be the strictly increasing sequence with underlying set P. Then for
each j ∈ N consider the Puiseux monoid Pj = 〈1/pnj | n ∈ N〉. Fix j ∈ N, and
take P := Pj . The fact that gp(P ) = P ∪−P immediately implies that P is a root-
closed Puiseux monoid containing 1. Consider the Puiseux algebra Q[X;P ] and the
element X + p ∈ Q[X;P ], where p ∈ P. To argue that X + p is an irreducible
element in Q[X;P ], write X + p = g(X) h(X) for some g, h ∈ Q[X;P ]. Now
taking m to be the maximum power of pj in the set d(Supp(g) ∪ Supp(h)), one
obtains that Xm + p = g(Xm) h(Xm) in Q[X]. Since Q[X] is a UFD, it follows
by Eisenstein’s criterion that Xm + p is irreducible as a polynomial over Q. Hence
either g(X) ∈ Q or h(X) ∈ Q, which implies that X + p is irreducible in Q[X;P ].
Now it follows by Theorem 4 that (X + p)n is a molecule in Q[X;P ] for every
n ∈ N. Clearly, the elements (X + p)n are neither atoms nor monomials.

Finally, we prove that the algebras we have defined in the previous paragraph
are pairwise non-isomorphic. To do so suppose, by way of contradiction, that
Q[X;Pj ] ∼= Q[X;Pk] for distinct j, k ∈ N. Let ψ : Q[X;Pj ] → Q[X;Pk] be an
algebra isomorphism. Since ψ fixes Q, it follows that ψ(Xq) /∈ Q for any q ∈ P •j .
This implies that deg(ψ(X)) ∈ P •k . As d(P •j ) is unbounded there exists n ∈ N such
that pnj > n(deg(ψ(X))). Observe that

deg
(
ψ(X)
) = deg

(
ψ
(
X

1
pn
j
)pnj ) = pnj deg

(
ψ
(
X

1
pn
j
))
. (4)

Because gcd(pj , d) = 1 for every d ∈ d(P •k ), from (4) one obtains that pnj divides
n(degψ(X)), which contradicts that pnj > n(deg(ψ(X))). Hence the Puiseux
algebras in {Pj : j ∈ N} are pairwise non-isomorphic, which completes our proof.

��
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Arf Numerical Semigroups
with Multiplicity 9 and 10

Halil İbrahim Karakaş

Abstract In this work we give a new characterization of Arf numerical semigroups
and use it to parametrize Arf numerical semigroups with multiplicity 9 and 10.

Keywords Numerical semigroups · Arf numerical semigroups · Multiplicity ·
Conductor · Frobenius number · Ratio · Major

1 Introduction

Let N denote the set of positive integers and N0 = N ∪ {0}, the set of nonnegative
integers. The cardinality of a set K will be denoted by |K|. A subset S ⊆ N0
satisfying

(i) 0 ∈ S (ii) x, y ∈ S ⇒ x+ y ∈ S (iii) |N0 \ S| <∞

is called a numerical semigroup. It is well known (see, for instance, [2, 4, 7]) that
the condition (iii) above is equivalent to saying that the greatest common divisor
gcd(S) of elements of S is 1.

If A is a subset of N0, we will denote by 〈A〉 the submonoid of N0 generated
by A. If S = 〈A〉, A is called a set of generators for S. If A = {a1, . . . , ar }, we
write 〈A〉 = 〈a1, . . . , ar〉. The monoid 〈A〉 is a numerical semigroup if and only if
gcd(A) = 1.

For every numerical semigroup S there exists a unique minimal set of generators
{a1, a2, . . . , ae} with a1 < a2 < · · · < ae; that is, {a1, a2, . . . , ae} is a set of
generators for S, but no proper subset of {a1, a2, . . . , ae} generates S. The integers
a1 and e are called the multiplicity and the embedding dimension of S, and they
are denoted by m(S) and e(S), respectively. The multiplicity m(S) is the smallest
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positive element of S. It is known that e(S) ≤ m(S) (see, for instance Chapter 1
of [7]). S is said to be a numerical semigroup of maximal embedding dimension if
e(S) = m(S).

For a numerical semigroup S, the largest integer that is not in S is called the
Frobenius number of S and it is denoted by f(S); the smallest element of S for
which all subsequent natural numbers belong to S is called the conductor of S and
it is denoted by c(S). Clearly, c(S) = f(S)+1. We have c(N0) = 0 and c ≥ 2 if and
only if S 
= N0.

If S is a numerical semigroup and a ∈ S\{0}, the Apéry set of S with respect to
a is the set

Ap(S, a) = {s ∈ S : s − a 
∈ S}.

It is easy to see that Ap(S, a) = {w(0) = 0, w(1), . . . , w(a−1)}, wherew(i) is the
least element of S such that w(i) ≡ i (mod a). It is also easy to see that

S = 〈a,w(1), . . . , w(a − 1)〉 and f(S) = max(Ap(S, a))− a.

Thus

c = max(Ap(S, a))− a + 1 and max(Ap(S, a)) = c + a − 1.

For general concepts and facts about numerical semigroups, we refer to [7].

2 Arf Numerical Semigroups

A numerical semigroup S satisfying the additional condition

x, y, z ∈ S; x ≥ y ≥ z⇒ x + y − z ∈ S (2.1)

is called an Arf numerical semigroup.
This is the original definition of an Arf numerical semigroup given by C. Arf

in [1]. We will refer to the condition (2.1) as the Arf condition. Fifteen conditions
equivalent to the Arf condition are given in Theorem 1.3.4 of [2]. If x, y, z ∈ S;
x ≥ y ≥ z and x ≥ c, the conductor of S, then x+y−z ≥ c and thus x+y−z ∈ S.
Therefore, to prove that a numerical semigroup with conductor c is an Arf numerical
semigroup it is enough to check the Arf condition (2.1) for small elements of S; i.e,
for elements x < c.

The following lemma by Compillo, Farran and Munuera [3] gives a very useful
condition equivalent to the Arf condition.

Lemma 2.1 ([3], Proposition 2.3) A numerical semigroup S is an Arf numerical
semigroup if and only if 2x − y ∈ S for all x, y ∈ S with x ≥ y.
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Combining Lemma 2.1 and our remark above about the Arf condition, we see that
a numerical semigroup S is an Arf numerical semigroup if and only if 2x − y ∈ S
for all x, y ∈ S with c > x > y.

The following lemma of Rosales et al. [8] will be crucial for what follows.

Lemma 2.2 ([8], Lemma 11) Let S be an Arf numerical semigroup and let s be
any element of S. If s + 1 ∈ S, then s + k ∈ S for all k ∈ N0 and thus c ≤ s.

It is well known (see for instance [6] or [7]) that every Arf numerical semigroup
is of maximal embedding dimension, that is, e(S) = m(S). Thus if S is an Arf
numerical semigroup with multiplicity m = m(S), then

{m,w(1), . . . , w(m− 1)}
is the minimal set of generators for S, where

Ap(S,m) = {w(0) = 0, w(1), . . . , w(m− 1)}.
The number max(Ap(S,m)) is called the major of S and it is denoted by M. The

smallest minimal generator that is larger than the multiplicity of S is called the ratio
of S and it is denoted by R. Thus M = c +m− 1 and R =min(Ap(S,m)\{0}).

From now on we stick to the above notations and we put f(S) = f, c(S) = c.
Let S be a numerical semigroup with multiplicity m and conductor c. Since any

multiple of m is an element of S, c 
≡ 1 (mod m). Hence c ≡ k (mod m), where
k ∈ {0, 2, . . . ,m − 1}. If S is an Arf numerical semigroup with multiplicity m and
conductor c, the following lemma by Garcia-Sánchez et al. [5] shows that w(1) and
w(m− 1) are completely determined by c and m.

Lemma 2.3 ([5], Lemma 13) Let S be an Arf numerical semigroup with multiplic-
ity m and conductor c where c ≡ k (modm), k ∈ {0, 2, . . . ,m− 1}. Then

(i) w(1) =
{
c+ 1 if k = 0 (i.e, c ≡ 0 (mod m)),

c− k +m+ 1 if k 
= 0 (i.e, c 
≡ 0 (mod m)),
(ii) w(m− 1) = c − k +m− 1.

Lemma 2.4 Let S be a numerical semigroup with multiplicity m > 2, conductor c
and Ap(S) = {w(0) = 0, w(1), . . . , w(m − 1)}. Let h, k ∈ {0, 1, . . . ,m− 1} such
that w(h) < w(k). Then

(i) h < k �⇒ w(h) ≤ w(k)− k + h and thus w(k)− k + h ∈ S,
(ii) h > k �⇒ w(h) ≤ w(k)− k + h−m and thus w(k)− k + h−m ∈ S.

Proof There exist xh, xk ∈ N0 such that w(h) = h+ xhm and w(k) = k+ xkm.

(i) The assertion is clear if h = 0, because k < m < w(k). Thus we may assume
that 0 < h < k. Then xh, xk ∈ N and w(h) < w(k) �⇒ xh ≤ xk . Hence

w(k)−w(h) = (k − h)+ (xk − xh)m ≥ (k − h)

which yields w(h) ≤ w(k)− k + h.
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(ii) We have h > k > 0, because w(h) < w(k). Therefore xh < xk and

w(k)−w(h) = (k − h)+ (xk − xh)m ≥ (k − h)+m

which yields w(h) ≤ w(k)− k + h−m.

Corollary 2.1 ([5], Lemma 11) Let S be an Arf numerical semigroup with mul-
tiplicity m > 2, conductor c, and Ap(S,m) = {w(0) = 0, w(1), . . . , w(m − 1)}.
Then

(i) w(k − 1) < w(k) �⇒ w(k)− 1 ≥ c,
(ii) w(k − 1) > w(k) �⇒ w(k − 1) ≥ c,

for any k ∈ {2, . . . ,m− 1}.
Proof

(i) w(k) − k + (k − 1) = w(k − 1) + 1 ∈ S by Lemma 2.4(i). So w(k) − 1 ≥ c
by Lemma 2.2.

(ii) w(k − 1)− (k − 1)+ k −m = w(k − 1)−m+ 1 ∈ S by Lemma 2.4(ii). So
w(k − 1)+ 1 ∈ S, and w(k − 1) ≥ c by Lemma 2.2.

Corollary 2.1 shows that if S is an Arf numerical semigroup with multiplicity
m > 2 and k ∈ {2, . . . ,m− 1}, at least one of w(k − 1) or w(k) is not less than the
conductor of S.

Lemma 2.5 Let S be a numerical semigroup with multiplicity m > 2 and

Ap(S,m) = {w(0) = 0, w(1), . . . , w(m− 1)}.

For any h, k ∈ {0, 1, . . . ,m − 1} with h 
= k, there exists a unique integer tkh such
that

tkhm ≤ w(k)−w(h) ≤ (tkh + 1)m.

Proof Let h, k ∈ {0, 1, . . . ,m − 1} such that h 
= k. Then there exist xh, xk ∈ N0
such that w(h) = h+ xhm, w(k) = k + xkm. Thus

w(k)− w(h)
m

= k − h
m

+ (xk − xh),

where k−h
m

is a rational number with | k−h
m
| < 1. Let

tkh =
{
xk − xh − 1 if k − h < 0,
xk − xh if k − h > 0.

Clearly, tkh is uniquely determined and we have

tkhm ≤ w(k)−w(h) ≤ (tkh + 1)m.
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Notations being as above, for any h, k ∈ {0, 1, . . . ,m−1} such that h 
= k, there
exists a unique tkh ∈ Z for which w(h) + tkhm ≤ w(k) ≤ w(h) + (tkh + 1)m. In
that case, we set

∗wk(h) = w(h)+ tkhm , w∗k (h) = w(h) + (tkh + 1)m.

Then ∗wk(h) is called the left h-neighbour of w(k) and w∗k (h) is called the right
h-neighbour of w(k). Thus we have

∗wk(h) ≤ w(k) ≤ w∗k (h)

for h, k ∈ {0, 1, · · · ,m− 1} such that h 
= k.
Note that ∗wk(h) and w∗k (h) are both elements of S if tkh ∈ N0. This is the case

if h, k ∈ {0, 1, . . . ,m− 1} such that w(h) < w(k). Because in that case

h < k �⇒ ∗wk(h) = w(k)− k + h , w∗k (h) = w(k)− k + h+m,

h > k �⇒ ∗wk(h) = w(k)− k + h−m , w∗k (h) = w(k)− k + h;

from which we conclude by Lemma 2.4 that ∗wk(h) and w∗k (h) are both elements
of S.

Left and right neighbours can be used to characterize Arf numerical semigroups.
Namely, we have the following propostion.

Proposition 2.2 Let S be a numerical semigroup with multiplicity m > 2,
conductor c and Ap(S) = {w(0) = 0, w(1), . . . , w(m − 1)}. Then S is Arf if and
only if

2w(k)− ∗wk(h) ∈ S and 2w∗k (h)−w(k) ∈ S

for any h, k ∈ {0, 1, · · · ,m− 1} with c > w(k) > w(h).

Proof The necessity is obvious. As for the sufficiency, we will show that 2x−y ∈
S for all x, y ∈ S with x > y. For such a pair x, y, there exist i, j ∈
{0, 1, . . . ,m − 1} and nonnegative integers rx, ry such that x = w(i) + rxm,
y = w(j) + rym. If x ≥ c, then 2x − y ≥ c and therefore 2x − y ∈ S. So we
may assume that x < c. Then w(i) < c and w(j) < c. If i = j , then rx > ry and
2x − y = w(i)+ (2rx − ry)m ∈ S. Therefore we may assume that i 
= j . There are
two cases: either w(i) > w(j) or w(i) < w(j).

If w(i) > w(j), then

y = w(j)+ rym < x = w(i)+ rxm ≤ w∗i (j )+ rxm = w(j)+ (tij + 1)m+ rxm,



168 H. İ. Karakaş

which implies tij + 1+ rx > ry or, equivalently, tij + rx − ry ≥ 0. Now we have

2x − y = 2w(i)−w(j)+ (2rx − ry)m
= 2w(i)− (∗wi(j)− tijm)+ (2rx − ry)m
= 2w(i)− ∗wi(j)+ (tij + 2rx − ry)m,

where 2w(i)− ∗wi(j) ∈ S by hypothesis, and also (tij + 2rx − ry)m ∈ S since
(tij + 2rx − ry) ≥ 0. Hence 2x − y ∈ S in this case.

If w(i) < w(j), then

x = w(i)+ rxm > y = w(j)+ rym ≥ ∗wj (i)+ rym = w(i)+ tj im+ rym,

which implies rx > tji + ry or, equivalently, rx − ry − tj i − 1 ≥ 0. On the other
hand,

2x − y =2w(i)−w(j)+ (2rx − ry)m
= 2(w∗j (i)− (tji + 1)m)−w(j)+ (2rx − ry)m
= 2w∗j (i)−w(j)+ (2rx − ry − 2tj i − 2)m,

where 2w∗j (i)−w(j) ∈ S by hypothesis, and also (2rx − ry − 2tj i)m ∈ S since
(2rx − ry − 2tj i − 2) ≥ 0. Hence 2x − y ∈ S in this case, too.

Proposition 2.3 Let S be an Arf numerical semigroup with multiplicity m > 2,
conductor c and Ap(S) = {w(0) = 0, w(1), . . . , w(m−1)}. Let k ∈ {1, . . . ,m− 1}.
Then

(i) w(m− k)+ 2k ∈ S and thus w(k) ≤ w(m− k)+ 2k.
(ii) For any positive integer q with qk < m, we have w(k) + (q − 1)k ∈ S and

thus w(qk) ≤ w(k)+ (q − 1)k.
(iii) For k < m

2 , we have w(m− 2k) ≤ w(m− k)+ (m− k).
Proof

(i) w(m− k)+ k = w∗m−k(0) ∈ S. Since S is Arf,

2w∗m−k(0)−w(m− k) = 2(w(m− k)+ k)−w(m− k)= w(m− k)+2k ∈ S.

Moreover,w(m− k)+ 2k ≡ k (mod m). Thus w(k) ≤ w(m− k)+ 2k.
(ii) We proceed by induction on q . The assertion is trivially true for q = 1. Since

w(k)− k = ∗wk(0) ∈ S and S is Arf, we have

2w(k)− ∗wk(0) = w(k)+ k ∈ S.

Moreover, w(k) + k ≡ 2k (mod m). Thus w(2k) ≤ w(k) + k, proving the
assertion for q = 2. Now let q > 2, qk < m, and assume that the assertion is
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true for all integers r with 1 < r < q . Then

w(k)+ (q − 2)k,w(k)+ (q − 3)k ∈ S.

Since w(k)+ (q − 2)k > w(k)+ (q − 3)k and S is Arf, we get

2(w(k)+ (q − 2)k)− (w(k)+ (q − 3)k) = w(k)+ (q − 1)k ∈ S.

This yields w(qk) ≤ w(k) + (q − 1)k, because w(k) + (q − 1)k ≡ qk(mod
m).

(iii) Assume k < m
2 . Note that ∗wm−k(0) = w(m − k) − (m − k) ∈ S and S is

Arf. So 2w(m − k) −∗ wm−k(0) = w(m − k) + (m − k) ∈ S. Note also that
w(m−k)+(m−k) ≡ m−2k (mod m). Hencew(m−2k) ≤ w(m−k)+(m−k).

Proposition 2.4 Let S be an Arf numerical semigroup with multiplicity m > 2,
conductor c and Ap(S) = {w(0) = 0, w(1), . . . , w(m− 1)}. Assume that the ratio
of S is R = w(k), where k ∈ {1, . . . ,m− 1}. Let q ∈ N such that qk < m. Then

(i) w(qk) = w(k)+ (q − 1)k,
(ii) w(qk + 1) ≥ c+ 1 if qk + 1 < m,

(iii) w(qk − 1) ≥ c if qk 
= 1.

Proof

(i) The assertion is trivially true for q = 1. Thus we may assume that q > 1. Then
w(k) < w(qk), becausew(k) is the ratio. Lemma 2.4 yieldsw(k)+(q−1)k ≤
w(qk). We also have w(qk) ≤ w(k) + (q − 1)k by Proposition 2.3. Hence
we have the equality.

(ii) Note that qk+1 > k. Sow(k) < w(qk+1), becausew(k) is the ratio. Applying
Lemma 2.4, we get w(k) + (q − 1)k + 1 ≤ w(qk + 1). Now we use (i) to
obtain w(qk)+ 1 ≤ w(qk + 1), or equivalently,w(qk) ≤ w(qk + 1)− 1. We
conclude that w(qk + 1) and w(qk + 1) − 1 are both elements of S. Hence
w(qk + 1) ≥ c+ 1 by Lemma 2.2.

(iii) qk − 1 = k only if q = 2 and k = 1. In that case, the assertion is true,
because w(1) ≥ c by Lemma 2.3. If q 
= 2 or k 
= 1, then k 
= qk − 1
and thus we have w(k) < w(qk − 1), because w(k) is the ratio. Therefore
w(k) + (q − 1)k − 1 ≤ w(qk − 1) by Lemma 2.4. Now we use (i) to obtain
w(qk)− 1 ≤ w(qk − 1), or equivalently, w(qk) ≤ w(qk − 1)+ 1. It follows
that w(qk − 1) and w(qk − 1) + 1 both belong to S. Lemma 2.2 implies
w(qk − 1) ≥ c.

Proposition 2.5 Let S be an Arf numerical semigroup with multiplicity m > 2,
conductor c and Ap(S) = {w(0) = 0, w(1), . . . , w(m− 1)}. Assume that the ratio
of S is R = w(m− k), where k ∈ {1, . . . ,m− 1}. Then for any q ∈ N

(i) q ≥ 2, qk < m �⇒ w((q − 1)k) = w(m − k) + qk and w(m − 2k) =
w(m− k)+ (m− k),

(ii) m < qk < m+ k �⇒ w((q − 1)k) ∈ {w(m− k)+ qk −m,w(m− k)+ qk}.
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Proof

(i) Sincew(m−k) is the ratio, we havew(m−k) < w((q−1)k) andw(m−k) <
w(m− 2k). Therefore

w(m− k)+ qk ≤ w((q − 1)k) and w(m− k)+ (m− k) ≤ w(m− 2k)

by Lemma 2.4. On the other hand,

w((q−1)k) ≤ w(k)+(q−2)k ≤ w(m−k)+2k+(q−2)k = w(m−k)+qk,

and

w(m− 2k) ≤ w(m− k)+ (m− k)

by Proposition 2.3. Hence

w((q − 1)k) = w(m− k)+ qk and w(m− 2k) = w(m− k)+ (m− k).

(ii) Since w(m − k) is the ratio, we have w(m − k) < w((q − 1)k). Therefore
w(m− k)+ qk −m ≤ w((q − 1)k) by Lemma 2.4. On the other hand,

w((q−1)k) ≤ w(k)+ (q−2)k ≤ w(m−k)+2k+ (q−2)k = w(m−k)+qk

by Proposition 2.3. Hencew((q−1)k) ∈ {w(m−k)+qk−m,w(m−k)+qk}.
In [5], Arf numerical semigroups with multiplicity up to seven and given

conductor are described parametrically. A similar description is given in [9] for
Arf numerical semigroups with multiplicity eight and given conductor. In what
follows, we use the above characterizations to describe Arf numerical semigroups
with multiplicity nine and ten.

The ratio R will play an important part in our discussions. Recall that R is the
least element larger than the multiplicity in the minimal set of generators of the
numerical semigroup under consideration. It is easily seen that

R ≤ c + 1 if c ≡ 0 (mod m) and R ≤ c if c 
≡ 0 (mod m).

Each proposition in the next two sections will give the list of all Arf numerical
semigroups with multiplicity m = 9 or m = 10 and conductor c for a congruence
class of c (modm). Each semigroup in each list is easily seen to be Arf by applying,
for instance, Proposition 2.2. Therefore in the proof of each proposition we only
verify that the list there contains all Arf numerical semigroups with the given
multiplicity and conductor.
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3 Arf Numerical Semigroups with Multiplicity 9

Let S be an Arf numerical semigroup with multiplicity 9 and conductor c. Then
c ≡ 0, 2, 3, 4, 5, 6, 7 or 8 (mod 9).

The following proposition describes all Arf numerical semigroups S with
multiplicity 9 and conductor c if c ≡ 0 (mod 9), c > 9.

Proposition 3.1 Let S be a numerical semigroup with multiplicity 9 and conduc-
tor c, where c > 9 and c ≡ 0 (mod 9). Then S is an Arf semigroup if and only if S
is one of the following:

〈9, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8〉; or
〈9, 9u+ 3, 9u+ 6, c + 1, c + 2, c + 4, c + 5, c + 7, c + 8〉, 1 ≤ u ≤ c−9

9 ; or
〈9, c − 4, c − 2, c + 1, c + 2, c + 3, c + 4, c + 6, c + 8〉, or
〈9, c − 4, c + 1, c + 2, c + 3, c + 4, c + 6, c + 7, c + 8〉; or
〈9, 9v + 6, 9v + 12, c+ 1, c + 2, c + 4, c + 5, c + 7, c + 8〉, 1 ≤ v ≤ c−9

9 ; or
〈9, c − 2, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 8〉.
Proof Let S be an Arf numerical semigroup with multiplicity 9 and conductor c ≡ 0
(mod 9), where c > 9. Then w(1) = c + 1 and w(8) = c + 8 =M by Lemma 2.3.
Using Proposition 2.3(ii), c+ 8 = w(8) ≤ w(2)+ 6 �⇒ w(2) = c+ 2. Similarly,
w(4) = c + 4. Now we have c + 2 = w(2) ≤ w(7) + 4 �⇒ w(7) ≥ c − 2, and
c + 4 = w(4) ≤ w(5)+ 8 �⇒ w(5) ≥ c − 4 by Proposition 2.3(i). It follows that

R ∈ {w(1) = c + 1, w(3),w(5) = c − 4, w(6),w(7) = c − 2}.

If R = w(1) = c + 1, then

S = 〈9, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8〉.

If R = w(3), then w(3) = 9u + 3 for some u ∈ {1, . . . , c9 − 1}. In that case,
w(5) = c + 5, w(7) = c + 7 and w(6) = 9u+ 6 by Proposition 2.4. Hence

S = 〈9, 9u+ 3, 9u+ 6, c + 1, c + 2, c + 4, c + 5, c + 7, c + 8〉, 1 ≤ u ≤ c − 9

9
.

IfR = w(5) = c−4, thenw(6) = c+6 by Proposition 2.4 and thereforew(3) = c+
3 by Proposition 2.3. Moreover, since c− 4 = w(5) < w(7), we havew(7) = c− 2
or w(7) = c + 7. Hence

S = 〈9, c − 4, c − 2, c + 1, c + 2, c + 3, c + 4, c + 6, c + 8〉, or

S = 〈9, c − 4, c + 1, c + 2, c + 3, c + 4, c + 6, c + 7, c + 8〉.

If R = w(6), then w(6) = 9v+6 for some v ∈ {1, . . . , c9 −1}. We havew(5) =
c+ 5, w(7) = c+ 7 by Proposition 2.4; and w(3) = 9v + 12 by Proposition 2.5(i).
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Hence

S = 〈9, 9v + 6, 9v + 12, c+ 1, c+ 2, c+ 4, c+ 5, c+ 7, c+ 8〉, 1 ≤ u ≤ c − 9

9
.

If R = w(7) = c − 2, then w(6) = c + 6 by Proposition 2.4. Since c − 2 is the
ratio, c−2 < w(3) and c−2 < w(5), which implyw(3) = c+3 andw(5) = c+5.
Thus

S = 〈9, c − 2, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 8〉.

Proposition 3.2 Let S be a numerical semigroup with multiplicity 9 and conductor
c, where c > 11 and c ≡ 2 (mod 9). Then S is an Arf semigroup if and only if S is
one of the following:

〈9, c, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 8〉; or
〈9, 9u+ 3, 9u+ 6, c, c + 2, c + 3, c + 5, c + 6, c + 8〉, 1 ≤ u ≤ c−11

9 ; or

〈9, 9v + 6, 9v + 12, c, c+ 2, c + 3, c + 5, c + 6, c + 8〉, 1 ≤ v ≤ c−11
9 ; or

〈9, c − 4, c, c + 1, c + 2, c + 3, c + 4, c + 6, c + 8〉.
Proof Let S be an Arf numerical semigroup with multiplicity 9 and conductor c ≡
2 (mod 9 ), where c > 11. Then w(1) = c + 8 = M and w(8) = c + 6 by
Lemma 2.3. Using Proposition 2.3, we get w(2) = c, w(4) = c + 2, w(5) = c + 3
and w(7) ≥ c − 4. It follows that

R ∈ {w(2) = c,w(3),w(6),w(7) = c − 4}.

The rest of the proof is similar to the proof of Proposition 3.1 and we omit it.

Proposition 3.3 Let S be a numerical semigroup with multiplicity 9 and conduc-
tor c, where c > 12 and c ≡ 3 (mod 9). Then S is an Arf semigroup if and only if S
is one of the following:

〈9, 9u+ 3, 9u+ 6, c + 1, c + 2, c + 4, c + 5, c + 7, c + 8〉, 1 ≤ u ≤ c−3
9 ; or

〈9, 9v + 6, 9v + 12, c+ 1, c + 2, c + 4, c + 5, c + 7, c + 8〉, 1 ≤ v ≤ c−12
9 .

Proof Let S be an Arf numerical semigroup with multiplicity 9 and conductor c ≡ 3
(mod 9 ), where c > 12. Then w(1) = c + 7, w(8) = c + 5 by Lemma 2.3. We
also have M = c + 8 = w(2). Applying Proposition 2.3, we get w(4) = c + 1,
w(5) = c + 2 and w(7) = c + 4. Therefore either R = w(3) or R = w(6) and the
assertions follow.

We have an unexpected result for Arf numerical semigroups with multiplicity 9
if the conductor c is congruent to 4 (mod 9).
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Proposition 3.4 Let S be a numerical semigroup with multiplicity 9 and conduc-
tor c, where c > 13 and c ≡ 4 (mod 9 ). Then S is an Arf semigroup if and only if S
is one of the following:

〈9, c, c + 1, c + 2, c + 3, c + 4, c + 6, c + 7, c + 8〉; or
〈9, c − 2, c, c + 1, c + 2, c + 3, c + 4, c + 6, c + 8〉; or
〈9, c − 6, c − 2, c, c + 1, c + 2, c + 4, c + 6, c + 8〉.
Proof Let S be an Arf numerical semigroup with multiplicity 9 and conductor c ≡ 4
(mod 9 ), where c > 13. Then we have w(1) = c+ 6, w(8) = c+ 4 by Lemma 2.3;
and M = c + 8 = w(3). Using Proposition 2.3, we get w(2) ≥ c − 2, w(4) = c,
w(5) = c + 1, w(6) = c + 2 and w(7) ≥ c − 6. Thus

R ∈ {w(7) = c − 6, w(2) = c − 2, w(4) = c}.

Furthermore, if R = w(7) = c−6, thenw(2) = w(7)+4 = c−2 by Proposition 2.3
and the assertions follow.

Proposition 3.5 Let S be a numerical semigroup with multiplicity 9 and conduc-
tor c, where c > 14 and c ≡ 5 (mod 9). Then S is an Arf semigroup if and only if S
is one of the following:

〈9, c, c + 1, c + 2, c + 3, c + 5, c + 6, c + 7, c + 8〉; or
〈9, 9u+ 3, 9u+ 6, c, c + 2, c + 3, c + 5, c + 6, c + 8〉, 1 ≤ u ≤ c−5

9 ; or

〈9, 9v + 6, 9v + 12, c, c+ 2, c + 3, c + 5, c + 6, c + 8〉, 1 ≤ v ≤ c−14
9 .

Proof Let S be an Arf numerical semigroup with multiplicity 9 and conductor c ≡ 5
(mod 9 ), where c > 14. Then w(1) = c + 5, w(8) = c + 3 by Lemma 2.3; and
M = c + 8 = w(4). Applying Proposition 2.3, w(2) = c + 6, w(7) = c + 2 and
w(5) = c. It follows that

R ∈ {w(5) = c,w(3),w(6)}.

The rest of the proof is similar to the proof of Proposition 3.1 and we omit it.

Proposition 3.6 Let S be a numerical semigroup with multiplicity 9 and conduc-
tor c, where c > 15 and c ≡ 6 (mod 9). Then S is an Arf semigroup if and only if S
is one of the following:

〈9, c − 4, c − 2, c, c + 1, c + 2, c + 4, c + 6, c + 8〉; or
〈9, 9u+ 3, 9u+ 6, c + 1, c + 2, c + 4, c + 5, c + 7, c + 8〉, 1 ≤ u ≤ c−15

9 ; or
〈9, c − 2, c, c + 1, c + 2, c + 4, c + 5, c + 6, c + 8〉; or
〈9, 9v + 6, 9v + 12, c+ 1, c + 2, c + 4, c + 5, c + 7, c + 8〉, 1 ≤ v ≤ c−6

9 .

Proof Let S be an Arf numerical semigroup with multiplicity 9 and conductor
c ≡ 6 (mod 9), where c > 15. Then w(1) = c + 4, w(8) = c + 2 by Lemma 2.3;
and M = c + 8 = w(5). We have w(2) ≥ c − 4, w(4) ≥ c − 2 and w(7) = c + 1
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by Proposition 2.3. It follows that

R ∈ {w(2) = c − 4, w(3),w(4) = c − 2, w(6)}.

The rest of the proof is similar to the proof of Proposition 3.1 and we omit it.

The proof of the next proposition is very similar to the proof of Proposition 3.4
and we omit it.

Proposition 3.7 Let S be a numerical semigroup with multiplicity 9 and conduc-
tor c, where c > 16 and c ≡ 7 (mod 9). Then S is an Arf semigroup if and only if S
is one of the following:

〈9, c − 3, c, c + 1, c + 3, c + 4, c + 5, c + 7, c + 8〉; or
〈9, c − 2, c, c + 1, c + 3, c + 4, c + 5, c + 6, c + 8〉; or
〈9, c, c + 1, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8〉.
Proposition 3.8 Let S be a numerical semigroup with multiplicity 9 and conduc-
tor c, where c > 17 and c ≡ 8 (mod 9). Then S is an Arf semigroup if and only if S
is one of the following:

〈9, c − 6, c − 4, c − 2, c, c + 2, c + 4, c + 6, c + 8〉; or
〈9, 9u+ 3, 9u+ 6, c, c + 2, c + 3, c + 5, c + 6, c + 8〉, 1 ≤ u ≤ c−8

9 ; or
〈9, c − 4, c − 2, c, c + 2, c + 3, c + 4, c + 6, c + 8〉, or
〈9, c − 4, c, c + 2, c + 3, c + 4, c + 6, c + 7, c + 8〉; or

〈9, c − 3, c, c + 2, c + 3, c + 4, c + 5, c + 7, c + 8〉; or
〈9, 9v + 6, 9v + 12, c, c+ 2, c + 3, c + 5, c + 6, c + 8〉, 1 ≤ v ≤ c−8

9 ; or
〈9, c, c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8〉.
Proof Let S be an Arf numerical semigroup with multiplicity 9 and conductor c ≡
8 (mod 9), where c > 17. Then w(1) = c + 2, w(8) = c by Lemma 2.3; and
M = c + 8 = w(7). Using Proposition 2.3, we get w(2) ≥ c − 6, w(4) ≥ c − 4
and w(5) ≥ c − 3. It follows that

R ∈ {w(2) = c − 6, w(3),w(4) = c − 4, w(5) = c − 3, w(6),w(8) = c}.

If R = w(2) = c − 6, then w(3) = c + 4, w(4) = c − 4, w(5) = c + 6, and
w(6) = c − 2 by Proposition 2.4. Hence, in that case

S = 〈9, c − 6, c − 4, c − 3, c, c+ 4, c+ 6, c+ 8〉.

If R = w(3), then w(3) = 9u+ 3 for some u ∈ {1, . . . , c−8
9 }. In that case, w(2) =

c + 3, w(4) = c + 5, w(5) = c + 6 and w(6) = 9u+ 6 by Proposition 2.4. Hence

S = 〈9, 9u+ 3, 9u+ 6, c, c + 2, c + 3, c + 5, c + 6, c + 8〉, 1 ≤ u ≤ c − 8

9
.
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If R = w(4) = c − 4, then w(3) = c + 4 and w(5) = c + 6 by Proposition 2.4.
We have c − 4 = w(4) < w(2) �⇒ w(2) = c + 3; and using Proposition 2.3(i),
c + 4 = w(3) ≤ w(6)+ 6 �⇒ w(6) ≥ c − 2 �⇒ w(6) = c − 2 or w(6) = c + 7.
Hence

S = 〈9, c − 4, c − 2, c, c+ 2, c+ 3, c+ 4, c+ 6, c+ 8〉, or

S = 〈9, c − 4, c, c + 2, c + 3, c + 4, c + 6, c + 7, c + 8〉.

If R = w(5) = c − 3, then w(4) = c + 5 and w(6) = c + 7 by Proposition 2.4.
We have c − 3 = w(5) < w(3) �⇒ w(3) = c + 4; and using Proposition 2.3(ii),
c + 5 = w(4) ≤ w(2)+ 2 �⇒ w(2) = c + 3. Hence

S = 〈9, c − 3, c, c + 2, c + 3, c + 4, c + 5, c + 7, c + 8〉.

If R = w(6), then w(6) = 9v + 6 for some v ∈ {1, . . . , c−8
9 }. We have w(5) =

c+ 6 by Proposition 2.4 and w(3) = w(6)+ 6 = 9v+ 12 by Proposition 2.5(i). On
the other hand w(6) < w(4) �⇒ w(6) + 7 ≤ w(4) by Lemma 2.4(ii). Therefore
w(3) < w(4) and this yields w(4) = c + 5 by Corollary 2.1. Now, applying
Proposition 2.3(ii), we get c + 5 = w(4) ≤ w(2)+ 2 �⇒ w(2) = c + 3. Hence

S = 〈9, 9v + 6, 9v + 12, c, c+ 2, c + 3, c + 5, c + 6, c + 8〉, 1 ≤ v ≤ c − 8

9
.

If R = w(8) = c, then

S = 〈9, c, c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8〉.

We denote the number of Arf numerical semigroups with multiplicity m and
conductor c by NARF (m, c). For any rational number x, the greatest integer less
than or equal to x will be denoted by �x
.
Corollary 3.9 Let c be a positive integer such that � c9
 > 1. The number of Arf
numerical semigroups with multiplicity 9 and conductor c is

NARF (9, c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 c9 + 2 if c ≡ 0 (mod 9),
2 c−2

9 if c ≡ 2 (mod 9),
2 c−3

9 − 1 if c ≡ 3 (mod 9),
3 if c ≡ 4 (mod 9),
2 c−5

9 if c ≡ 5 (mod 9),
2 c−6

9 + 2 if c ≡ 6 (mod 9),
3 if c ≡ 7 (mod 9),
2 c−8

9 + 5 if c ≡ 8 (mod 9).
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Example 3.10 There are 8 Arf numerical semigroups with multiplicity 9 and
conductor 27, which are listed below.

〈9, 28, 29, 30, 31, 32, 33, 34, 35〉 , 〈9, 12, 15, 28, 29, 31, 32, 34, 35〉

〈9, 21, 24, 28, 29, 31, 32, 34, 35〉 , 〈9, 23, 25, 28, 29, 30, 31, 33, 35〉

〈9, 23, 28, 29, 30, 31, 33, 34, 35〉 , 〈9, 15, 21, 28, 29, 31, 32, 34, 35〉,

〈9, 24, 28, 29, 30, 31, 32, 34, 35〉 , 〈9, 25, 28, 29, 30, 31, 32, 33, 35〉.

Example 3.11 There are 3 Arf numerical semigroups with multiplicity 9 and
conductor 40, which are listed below.

〈9, 40, 41, 42, 43, 44, 46, 47, 48〉 , 〈9, 38, 40, 41, 42, 43, 44, 46, 48〉 ,
〈9, 34, 38, 40, 41, 42, 44, 46, 48〉.

There are 3 Arf numerical semigroups with multiplicity 9 and conductor 940, too:

〈9, 940,941, 942,943,944,946, 947,948〉 , 〈9, 938,940, 941,942,943,944, 946,948〉,

〈9, 934, 938, 940, 941, 942, 944, 946, 948, 〉.

Example 3.12 There are 11 Arf numerical semigroups with multiplicity 9 and
conductor 35, which are listed below.

〈9, 29, 31, 33, 35, 37, 39, 41, 43〉 , 〈9, 12, 15, 35, 37, 38, 40, 41, 43〉 ,
〈9, 21, 24, 35, 37, 38, 40, 41, 43〉, 〈9, 30, 33, 35, 37, 38, 40, 41, 43〉 ,
〈9, 31, 33, 35, 37, 38, 39, 41, 43〉 , 〈9, 31, 35, 37, 38, 39, 41, 42, 43〉,
〈9, 32, 35, 37, 38, 39, 40, 42, 43〉 , 〈9, 15, 21, 35, 37, 38, 40, 41, 43〉 ,
〈9, 24, 30, 35, 37, 38, 40, 41, 43〉,

〈9, 33, 30, 35, 37, 38, 39, 41, 43〉 , 〈9, 35, 37, 38, 39, 40, 41, 42, 43〉.

4 Arf Numerical Semigroups with Multiplicity 10

Let S be an Arf numerical semigroup with multiplicity 10 and conductor c. Then
c ≡ 0, 2, 3, 4, 5, 6, 7, 8 or 9 (mod 10).
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The following proposition describes all Arf numerical semigroups S with
multiplicity 10 and conductor c if c ≡ 0 (mod 10), c > 10.

Proposition 4.1 Let S be a numerical semigroup with multiplicity 10 and conduc-
tor c, where c > 10 and c ≡ 0 (mod 10). Then S is an Arf semigroup if and only if
S is one of the following:

〈10, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8, c + 9〉; or

〈10, 10u+ 2, 10u+ 4, 10u+ 6, 10u+ 8, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ u ≤ c−10

10 ; or

〈10, 10v + 4, 10v + 6, 10v + 8, 10v + 12, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ v ≤ c−10

10 , or

〈10, 10v + 4, 10v + 8, 10v + 12, 10v + 16, c+ 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ v ≤ c−10

10 ; or

〈10, 10x + 5, c − 2, c + 1, c + 2, c + 3, c + 4, c + 6, c + 7, c + 9〉,
1 ≤ x ≤ c−10

10 , or

〈10, 10x + 5, c + 1, c + 2, c + 3, c + 4, c + 6, c + 7, c + 8, c + 9〉,
1 ≤ x ≤ c−10

10 ; or

〈10, 10y + 6, 10y + 8, 10y + 12, 10y + 14, c+ 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ y ≤ c−10

10 , or

〈10, 10y + 6, 10y + 12, 10y + 14, 10y + 18, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ y ≤ c−10

10 ; or

〈10, c − 3, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 8, c + 9〉; or

〈10, 10z+ 8, 10z+ 12, 10z+ 14, 10z+ 16, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ z ≤ c−10

10 .

Proof Let S be an Arf numerical semigroup with multiplicity 10 and conductor
c ≡ 0 (mod 10), where c > 10. Then w(1) = c + 1 and w(9) = c + 9 = M by
Lemma 2.3. We have w(3) = c+ 3 and w(7) ≥ c− 3 by Proposition 2.3. It follows
that

R ∈ {w(1) = c + 1, w(2),w(4),w(5),w(6),w(7) = c − 3, w(8)}.

If R = w(1) = c + 1, then

S = 〈10, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8, c + 9〉.
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If R = w(2), then w(2) = 10u + 2 for some u ∈ {1, . . . , c10 − 1}. Then we have
w(4) = 10u+ 4, w(5) = c + 5, w(6) = 10u+ 6, w(7) = c + 7, w(8) = 10u+ 8
by Proposition 2.4. In other words,

S = 〈10, 10u+2, 10u+4, 10u+6, 10u+8, c+1, c+3, c+5, c+7, c+9, 〉, 1 ≤ u ≤ c − 10

10
.

If R = w(4), then w(4) = 10v + 4 for some v ∈ {1, . . . , c10 − 1}. One can see
by using Proposition 2.4 that w(5) = c + 5, w(7) = c + 7 and w(8) = 10v + 8.
One can also see by Proposition 2.5 that w(6) ∈ {10v + 6, 10v + 16}. Moreover,
we have w(4) < w(2) ≤ w(8) + 4 = w(4) + 8 by Proposition 2.3, which implies
w(2) = 10v + 12. Thus

S=〈10, 10v+4, 10v+6, 10v+8, 10v+12, c+1, c+3, c+5, c+7, c+9 〉, 1≤ v≤ c − 10

10
, or

S=〈10, 10v+4, 10v+8, 10v+12, 10v+16, c+1, c+3, c+5, c+7, c+9〉, 1 ≤ v ≤ c − 10

10
.

If R = w(5), then w(5) = 10x + 5 for some x ∈ {1, . . . , c10 − 1}. We have
w(4) = c + 4 and w(6) = c + 6 by Proposition 2.4. By Proposition 2.3, we have
w(4) ≤ w(2)+2 and w(2) ≤ w(8)+4. Hencew(2) = c+2 and w(8) ≥ c−2. We
have observed in the beginning of the proof that w(7) ≥ c − 3. However w(7) 
=
c − 3, because otherwise ∗w7(5) = c − 5 and 2(c − 3) − (c − 5) = c − 1 
∈ S.
Therefore, w(7) = c + 7 and it follows that in this case

S = 〈10, 10x+5, c−2, c+1, c+2, c+3, c+4, c+6, c+7, c+9〉, 1 ≤ x ≤ c−10
10 ,

or
S = 〈10, 10x+5, c+1, c+2, c+3, c+4, c+6, c+7, c+8, c+9〉, 1 ≤ v ≤ c−10

10 .

If R = w(6), then w(6) = 10y + 6 for some y ∈ {1, . . . , c10 − 1}. In that case,
w(5) = c+ 5 and w(7) = c+ 7 by Proposition 2.4. We see by Proposition 2.5 that
w(4) = 10y + 14, w(2) = 10y + 12 and w(8) ∈ {10y + 8, 10y + 18}. Hence

S = 〈10, 10y + 6, 10y + 8, 10y + 12, 10y + 14, c+ 1, c+ 3, c+ 5, c+ 7, c+ 9〉,
1 ≤ y ≤ c−10

10 , or

S = 〈10, 10y + 6, 10y+ 12, 10y+ 14, 10y+ 18, c+ 1, c+ 3, c+ 5, c+ 7, c+ 9〉,
1 ≤ y ≤ c−10

10 .

If R = w(7) = c − 3, then w(6) = c + 6 and w(8) = c + 8 by Proposition 2.4.
Note also that, c−3 being the ratio, w(2) = c+2, w(4) = c+4 and w(5) = c+5.
Thus

S = 〈10, c − 3, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 8, c + 9〉.

If R = w(8), then w(8) = 10z+8 for some z ∈ {1, . . . , c10−1}. We havew(7) =
c+7 by Proposition 2.4;w(2) = w(8)+4 = 10z+12,w(4) = w(8)+6 = 10z+14
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and w(6) = w(8)+ 8 = 10z+ 16 by Proposition 2.5. On the other hand, w(5) can
not be less than c, because if we had w(5) < c, then we would have w(5) ≤ c − 5
and w(4) = c+ 4 by Corollary 2.1, and thereforew(8) = c− 2. This is impossible
because w(8) is the ratio. So w(5) = c + 5 and

S = 〈10, 10z+ 8, 10z+ 12, 10z+ 14, 10z+ 16, c+ 1, c+ 3, c+ 5, c+ 7, c+ 9〉,
1 ≤ z ≤ c−10

10 .

The proof of each of the remaining propositions is very similar to the proof of
Proposition 4.1. Therefore we state them without proof.

Proposition 4.2 Let S be a numerical semigroup with multiplicity 10 and conduc-
tor c, where c > 12 and c ≡ 2 (mod 10). Then S is an Arf semigroup if and only if
S is one of the following:

〈10, 10u+ 2, 10u+ 4, 10u+ 6, 10u+ 8, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ u ≤ c−2

10 ; or
〈10, 10v + 4, 10v + 6, 10v + 8, 10v + 12, c + 1, c + 3, c + 5, c + 7, c + 9〉,

1 ≤ v ≤ c−12
10 , or

〈10, 10v + 4, 10v + 8, 10v + 12, 10v + 16, c+ 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ v ≤ c−12

10 ; or

〈10, 10x + 5, c, c + 1, c + 2, c + 4, c + 5, c + 6, c + 7, c + 9〉,
1 ≤ x ≤ c−12

10 ; or

〈10, 10y + 6, 10y + 8, 10y + 12, 10y + 14, c+ 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ y ≤ c−12

10 , or

〈10, 10y + 6, 10y + 12, 10y + 14, 10y + 18, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ y ≤ c−12

10 ; or
〈10, c − 5, c, c + 1, c + 2, c + 3, c + 4, c + 6, c + 7, c + 9〉; or

〈10, 10z+ 8, 10z+ 12, 10z+ 14, 10z+ 16, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ z ≤ c−12

10 .

Proposition 4.3 Let S be a numerical semigroup with multiplicity 10 and conduc-
tor c, where c > 13 and c ≡ 3 (mod 10). Then S is an Arf semigroup if and only if
S is one of the following:

〈10, c, c + 1, c + 2, c + 3, c + 4, c + 5, c + 6, c + 8, c + 9〉; or

〈10, 10u+ 5, c, c+ 1, c+ 3, c+ 4, c+ 5, c+ 6, c+ 8, c+ 9〉, 1 ≤ u ≤ c−13
10 ; or

〈10, c − 6, c, c + 1, c + 2, c + 3, c + 5, c + 6, c + 8, c + 9〉.
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Proposition 4.4 Let S be a numerical semigroup with multiplicity 10 and conduc-
tor c, where c > 14 and c ≡ 4 (mod 10). Then S is an Arf semigroup if and only if
S is one of the following:

〈10, 10u+ 2, 10u+ 4, 10u+ 6, 10u+ 8, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ u ≤ c−4

10 ; or

〈10, 10v + 4, 10v + 6, 10v + 8, 10v + 12, c+ 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ v ≤ c−4

10 , or

〈10, 10v + 4, 10v + 8, 10v + 12, 10v + 16, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ v ≤ c−14

10 ; or

〈10, 10x + 5, c, c+ 2, c+ 3, c+ 4, c+ 5, c+ 7, c+ 8, c+ 9〉, 1 ≤ x ≤ c−14
10 , or

〈10, 10x + 5, c − 2, c, c+ 2, c+ 3, c+ 4, c+ 5, c+ 7, c+ 9〉, 1 ≤ x ≤ c−14
10 ; or

〈10, 10y + 6, 10y + 8, 10y + 12, 10y + 14, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ y ≤ c−14

10 , or

〈10, 10y + 6, 10y + 12, 10y + 14, 10y + 18, c+ 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ y ≤ c−14

10 ; or

〈10, 10z+ 8, 10z+ 12, 10z+ 14, 10z+ 16, c+ 1, c + 3, c + 7, c + 9〉,
1 ≤ z ≤ c−14

10 .

Proposition 4.5 Let S be a numerical semigroup with multiplicity 10 and conduc-
tor c, where c > 15 and c ≡ 5 (mod 10). Then S is an Arf semigroup if and only if
S is one of the following:

〈10, c − 2, c, c + 1, c + 2, c + 3, c + 4, c + 6, c + 7, c + 9〉; or

〈10, 10u+ 5, c− 2, c+ 1, c+ 2, c+ 3, c+ 4, c+ 6, c+ 7, c+ 9〉,
1 ≤ u ≤ c−15

10 , or

〈10, 10u+ 5, c+ 1, c+ 2, c+ 3, c+ 4, c+ 6, c+ 7, c+ 8, c+ 9〉,
1 ≤ u ≤ c−5

10 .

Proposition 4.6 Let S be a numerical semigroup with multiplicity 10 and conduc-
tor c, where c > 16 and c ≡ 6 (mod 10). Then S is an Arf semigroup if and only if
S is one of the following:

〈10, 10u+ 2, 10u+ 4, 10u+ 6, 10u+ 8, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ u ≤ c−6

10 ; or

〈10, c− 3, c, c+ 1, c + 2, c + 3, c + 5, c + 6, c + 8, c + 9〉; or
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〈10, 10v + 4, 10v + 6, 10v + 8, 10v + 12, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ v ≤ c−6

10 , or

〈10, 10v + 4, 10v + 8, 10v + 12, 10v + 16, c+ 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ v ≤ c−16

10 ; or

〈10, 10x + 6, 10x + 8, 10x + 12, 10x + 14, c+ 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ x ≤ c−6

10 , or

〈10, 10x + 6, 10x + 12, 10x + 14, 10x + 18, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ x ≤ c−16

10 ; or

〈10, 10y + 8, 10y + 12, 10y + 14, 10y + 16, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ y ≤ c−16

10 .

Proposition 4.7 Let S be a numerical semigroup with multiplicity 10 and conduc-
tor c, where c > 17 and c ≡ 7 (mod 10). Then S is an Arf semigroup if and only if
S is one of the following:

〈10, c − 3, c, c + 1, c + 2, c + 4, c + 5, c + 6, c + 8, c + 9〉, or

〈10, 10u+ 5, c, c+ 1, c + 2, c + 4, c + 5, c + 6, c + 7, c + 9〉, 1 ≤ u ≤ c−7
10 , or

〈10, c, c + 1, c + 2, c + 4, c + 5, c + 6, c + 7, c + 8, c + 9〉.

Proposition 4.8 Let S be a numerical semigroup with multiplicity 10 and conduc-
tor c, where c > 18 and c ≡ 8 (mod 10). Then S is an Arf semigroup if and only if
S is one of the following:

〈10, 10u+ 2, 10u+ 4, 10u+ 6, 10u+ 8, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ u ≤ c−8

10 ; or

〈10, c− 5, c− 2, c, c+ 1, c + 3, c + 4, c + 6, c + 7, c + 9〉; or

〈10, 10v + 4, 10v + 6, 10v + 8, 10v + 12, c+ 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ v ≤ c−8

10 , or

〈10, 10v + 4, 10v + 8, 10v + 12, 10v + 16, c+ 1, c+ 3, c+ 5, c+ 7, c+ 9〉,
1 ≤ v ≤ c−8

10 ; or

〈10, 10x + 5, c, c+ 1, c + 3, c + 4, c + 5, c + 6, c + 8, c + 9〉, 1 ≤ x ≤ c−8
10 , or

〈10, 10y + 6, 10y + 8, 10y + 12, 10y + 14, c+ 1, c+ 3, c+ 5, c+ 7, c+ 9〉,
1 ≤ y ≤ c−8

10 , or



182 H. İ. Karakaş

〈10, 10y + 6, 10y + 12, 10y + 14, 10y + 18, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ y ≤ c−18

10 ; or

〈10, 10z+ 8, 10z+ 12, 10z+ 14, 10z+ 16, c + 1, c + 3, c + 5, c + 7, c + 9〉,
1 ≤ z ≤ c−8

10 .

Proposition 4.9 Let S be a numerical semigroup with multiplicity 10 and conduc-
tor c, where c > 19 and c ≡ 9 (mod 10). Then S is an Arf semigroup if and only if
S is one of the following:

〈10, c − 6, c − 3, c, c + 2, c + 3, c + 5, c + 6, c + 8, c + 9〉; or

〈10, 10u+ 5, c− 2, c, c+ 2, c + 3, c + 4, c + 5, c + 8, c + 9〉, 1 ≤ u ≤ c−9
10 , or

〈10, 10u+ 5, c, c+ 2, c + 3, c + 4, c + 5, c + 6, c + 8, c + 9〉, 1 ≤ u ≤ c−9
10 , or

〈10, c − 3, c, c + 2, c + 3, c + 4, c + 6, c + 7, c + 8, c + 9〉; or

〈10, c − 2, c, c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 9〉; or

〈10, c, c + 2, c + 3, c + 4, c + 5, c + 6, c + 7, c + 8, c + 9〉.

Corollary 4.10 Let c be a positive integer such that � c10
 > 1. The number of Arf
numerical semigroups with multiplicity 10 and conductor c is

NARF (10, c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4c
5 − 6 if c ≡ 0 (mod 10),
7(c−2)

10 − 5 if c ≡ 2 (mod 10),
c−3
10 + 1 if c ≡ 3 (mod 10),

4(c−4)
5 − 6 if c ≡ 4 (mod 10),

c−5
5 if c ≡ 5 (mod 10),

3(c−6)
5 − 2 if c ≡ 6 (mod 10),

c−7
10 + 2 if c ≡ 7 (mod 10),

7(c−8)
10 if c ≡ 8 (mod 10),

c−9
5 + 4 if c ≡ 9 (mod 10).

Example 4.11 There are 10 Arf numerical semigroups with multiplicity 10 and
conductor 24:

〈10, 12, 14, 16, 18, 25, 27, 29, 31, 33〉, 〈10, 22, 24, 26, 25, 27, 28, 29, 31, 33〉,

〈10, 14, 16, 18, 22, 25, 27, 29, 31, 33〉, 〈10, 22, 24, 25, 26, 27, 28, 29, 31, 33〉,

〈10, 14, 18, 22, 25, 26, 27, 29, 31, 33〉, 〈10, 15, 24, 25, 26, 27, 28, 31, 32, 33〉,
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〈10, 22, 24, 25, 26, 27, 28, 30, 31, 33〉, 〈10, 16, 18, 22, 24, 25, 27, 29, 31, 33〉

〈10, 16, 22, 24, 25, 27, 28, 30, 31, 33〉, 〈10, 18, 22, 24, 25, 26, 27, 29, 31, 33〉

Example 4.12 There are 6 Arf numerical semigroups with multiplicity 10 and
conductor 35, which are listed below.

〈10, 33, 35, 36, 37, 38, 39, 41, 42, 44〉 , 〈10, 15, 33, 36, 37, 38, 39, 41, 42, 44〉,

〈10, 25, 33, 36, 37, 38, 39, 41, 42, 44〉 , 〈10, 15, 36, 37, 38, 39, 41, 42, 43, 44〉,

〈10, 25, 36, 37, 38, 39, 41, 42, 43, 44〉 , 〈10, 35, 36, 37, 38, 39, 41, 42, 43, 44〉

Example 4.13 There are 7 Arf numerical semigroups with multiplicity 10 and
conductor 63:

〈10, 63, 64, 65, 66, 67, 68, 69, 71, 72〉, 〈10, 15, 63, 64, 66, 67, 68, 69, 71, 72〉,

〈10, 25, 63, 64, 66, 67, 68, 69, 71, 72〉, 〈10, 35, 63, 64, 66, 67, 68, 69, 71, 72〉,

〈10, 45, 63, 64, 66, 67, 68, 69, 71, 72〉, 〈10, 55, 63, 64, 66, 67, 68, 69, 71, 72〉,

〈10, 57, 63, 66, 67, 68, 69, 71, 72〉.
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Numerical Semigroup Rings of Maximal
Embedding Dimension
with Determinantal Defining Ideals

Do Van Kien and Naoyuki Matsuoka

Abstract We give a criterion of a numerical semigroup ring for having the defining
ideal generated by 2 × 2-minors of a 2 × n matrix in terms of pseudo-Frobenius
numbers when the numerical semigroup has maximal embedding dimension. The
ring-theoretic properties of a symbolic Rees algebra of the defining ideal are also
explored.

Keywords Cohen-Macaulay ring · Numerical semigroup · Numerical semigroup
ring · Graded ring · Pseudo-Frobenius number · Minimal free resolution ·
Symbolic Rees algebra

1 Introduction

Let S = k[x1, x2, . . . , xn] be the polynomial ring over a field k and I be an ideal
of S. Exploring the graded minimal free resolution of R = S/I is an important
problem in commutative algebra because the resolution contains much information
on R. In the present paper, we consider a relation between the generation of the
defining ideal of a semigroup ring of a numerical semigroupH and the behavior of
the pseudo-Frobenius numbers of H .
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Let a1, a2, . . . , an be positive integers with gcd(a1, a2, . . . , an) = 1 and put

H = 〈a1, a2, . . . , an〉 =
{
n∑

i=1

ciai

∣∣∣∣∣ 0 ≤ ci ∈ Z for all 1 ≤ i ≤ n
}

be the numerical semigroup minimally generated by a1, a2, . . . , an. Let k be a field.
We set

R = k[H ] = k[ta1, ta2, . . . , tan ]

and we call it the numerical semigroup ring ofH over k, where t is an indeterminate.
Let S = k[x1, x2, . . . , xn] be the weighted polynomial ring over k with deg xi = ai
for each 1 ≤ i ≤ n. Let ϕ : S → R denote the homomorphism of graded k-algebras
defined by ϕ(xi) = tai for all 1 ≤ i ≤ n. Let P = Kerϕ be the defining ideal of R.

When the number n is small, there are a few known results about the structure of
P . The most important result is due to J. Herzog [14] when n = 3. When n = 4,
there are some partial answers to describe the structure of the defining ideal: e.g.
[2] for the symmetric case, [16] for the pseudo-symmetric case, [8] for the almost
symmetric of type three case, and [19] for the case where H is generated by an
almost arithmetic progression. On the other hand, results with no restriction on n
also exist. P. Gimenez et al. [9] constructed an explicit form of the graded minimal
free resolution of R whenH is generated by an arithmetic progression. Besides, the
authors, S. Goto, and H. L. Truong [13] found that the pseudo-Frobenius numbers
of H affect the generation of the defining ideal P of R = k[H ], cf. Theorem 1.

We denote the Frobenius number of H by f(H) = max(Z \H). We set

PF(H) = {α ∈ Z \H | α + ai ∈ H for all 1 ≤ i ≤ n}

and call the elements in PF(H) pseudo-Frobenius numbers of H . Hence f(H) ∈
PF(H) and

KR =
∑

α∈PF(H)

Rt−α

[11], where KR denotes the graded canonical module of R. Therefore, the a-
invariant a(R) of R (resp. the Cohen-Macaulay type r(R) of R) is given by a(R) =
f(H) (resp. r(R) = � PF(H)). For a given matrix A with entries in S, we denote by
I2(A) the ideal of S generated by 2× 2 minors of A.

Theorem 1 ([13, Theorem 1.2]) LetH = 〈a1, a2, . . . , an〉 (n ≥ 3) be a numerical
semigroup and assume that H is minimally generated by the n numbers {ai}1≤i≤n.
Then the following conditions are equivalent.
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(1) P = I2

(
f1 f2 · · · fn
x1 x2 · · · xn

)
for some homogeneous elements f1, f2, . . . , fn ∈

S+ = (xi | 1 ≤ i ≤ n).
(2) After suitable permutations of a1, a2, . . . , an if necessary, we have

P = I2

(
x
�2
2 x

�3
3 · · · x�nn x

�1
1

x1 x2 · · · xn−1 xn

)

for some positive integers �1, �2, . . . , �n > 0.
(3) There exists an element α ∈ PF(H) such that (n− 1)α /∈ H .

When this is the case, the following assertions hold true.

(a) For each 1 ≤ i ≤ n, we have �i = min{� > 0 | �ai ∈ Hi} − 1, where

Hi =
〈
a1, . . . ,

∨
ai, . . . , an

〉
.

(b) α = degfi − ai for all 1 ≤ i ≤ n.
(c) PF(H) = {α, 2α, . . . , (n− 1)α}.
(d) The numerical semigroup H is almost symmetric (For the definition, see [1]).

In the light of Theorem 1 it is natural to ask when P is generated by 2×2 minors
of a matrix

(
f1 f2 · · · fn
g1 g2 · · · gn

)

where fi and gi are homogeneous elements in S. The main theorem of this paper
gives an answer to this question when H has maximal embedding dimension as
follows.

Theorem 2 Let H = 〈a1, a2, . . . , an〉 and we assume H has maximal embedding
dimension n ≥ 3. Then the following 4 conditions are equivalent to each other.

(1) H = 〈n, n+ h+ α, n+ h+ 2α, . . . , n+ h+ (n− 1)α〉 for some h ≥ 0 and
α > 0.

(2) PF(H) = {h+ α, h + 2α, . . . , h+ (n− 1)α} for some h ≥ 0 and α > 0.
(3) There exist homogeneous elements f1, f2, . . . , fn, g1, g2, . . . , gn ∈ S+ such

that

P = I2
(
f1 f2 ··· fn
g1 g2 ··· gn

)
.

(4) After suitable permutations of a1, a2, . . . , an if necessary, we have

P = I2

(
x2 x3 ··· xn xs+α1
xs1 x2 ··· xn−1 xn

)

for some positive integers s and α.
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When this is the case, we have the following.

(a) The Eagon-Northcott complex associated to the matrix
(
f1 f2 ··· fn
g1 g2 ··· gn

)
gives rise

to a graded minimal free resolution of R.
(b) The symbolic Rees algebra RS(P ) =⊕r≥0 P

(r)T r ⊆ S[T ] is Noetherian and
Cohen-Macaulay, where P (r) = P rSP ∩ S for all integers r ≥ 0.

(c) RS(P ) is Gorenstein if and only if n = 3.

We clearly have the equivalence between (1) and (2), because PF(H) = {a2 −
a1, a3 − a1, . . . , an − a1}, if H = 〈a1, a2, . . . , an〉 has maximal embedding
dimension n = a1. The implication (4)–(3) is obvious. In the next section, we give
a proof of the implications (3)–(2) and (2)–(4) together with the assertions (a), (b),
and (c). In the last section, we will explore examples to illustrate the meaning of the
equivalence of (1)–(4).

Before we enter the next section, we recall history and known facts about the
symbolic Rees algebras. R. Cowsik [4] asked whether the symbolic Rees algebra
RS(P ) of a prime ideal P of a regular local ring (or the polynomial ring over a field)
is Noetherian. This question has been studied by many researchers, even though
counterexamples are already known. The first one is given by P. Roberts [18]. When
P is the defining ideal pk(a, b, c) of a space monomial curve (ta, tb, tc) in k3, C.
Huneke [15] and S. D. Cutkosky [5] found criterions for the Noetherian property of
such rings, where k is a field and a, b, c are positive integers. In 1994, S. Goto et
al. Watanabe [12] discovered integers a, b, c such that the symbolic Rees algebra of
pk(a, b, c) is not finitely generated over k, if the characteristic of k is zero.

On the other hand, S. Goto [10, Theorem (7.4)] proved that the symbolic Rees
algebra of the defining ideal of k[ta, ta+m, . . . , ta+(a−1)m] is Noetherian and studied
the Cohen-Macaulay property also. Recently, C. D’Cruz and S. K. Masuti [6] gave a
complete description of the Cohen-Macaulay and Gorenstein properties of the same
ring. The method to prove the assertions (b) and (c) in Theorem 2 is completely the
same as their ones.

2 Proof of Theorem 2

2.1 Proof of (3) ⇒ (2) and the Assertion (a)

In this subsection we give a proof of (3)⇒ (2) in Theorem 2 without the assumption
that H has maximal embedding dimension.

Let H = 〈a1, a2, . . . , an〉 (n ≥ 3) and we assume the embedding dimension of
H is n. Let f1, f2, . . . , fn, g1, g2, . . . , gn ∈ S+ be homogeneous elements. In this
subsection, we always assume that the defining ideal P of R = k[ta1, ta2 , . . . , tan ]
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is generated by 2× 2 minors of the matrix

(
f1 f2 · · · fn
g1 g2 · · · gn

)
.

Notice that P ⊆ (g1, g2, . . . , gn)(f1, f2, . . . , fn) ⊆ S+(f1, f2, . . . , fn).

Lemma 1 The difference deg fi − deggi is constant and independent of the choice
of 1 ≤ i ≤ n.

Proof We begin with the following claim.

Claim fi, gi /∈ P for all 1 ≤ i ≤ n.

Proof (Claim) It is enough to show this claim when i = 1. We put M = S+.
Suppose that f1 ∈ P . Then we have

P = (f1)+ I2

(
0 f2 · · · fn
g1 g2 · · · gn

)
,

whence fig1 ∈ P for all 2 ≤ i ≤ n. In addition, we assume g1 /∈ P . Then fi ∈
P for all 2 ≤ i ≤ n because P is a prime ideal of S. Therefore we have P ⊆
M(f1, f2, . . . , fn) ⊆ MP ⊆ P . Thus PSM = (MSM)(PSM) which implies the
contradiction that P = (0) by Nakayama’s lemma. Hence g1 ∈ P . Then

P ⊆ I2

(
0 f2 · · · fn
0 g2 · · · gn

)
+M(f1, g1) ⊆ I2

(
f2 · · · fn
g2 · · · gn

)
+MP ⊆ P.

Again by Nakayama’s lemma, we have

PSM = I2

(
f2 · · · fn
g2 · · · gn

)
SM.

Hence htS P = htSM PSM ≤ n − 2 (see [3, (2.1) Theorem]) which is impossible
because dim S/P = 1. Therefore f1 /∈ P . Similarly, we also have g1 /∈ P.

Now, suppose that deg fi − deggi 
= degfj − deg gj for some 1 ≤ i < j ≤ n.
Then deg(figj ) 
= deg(fjgi). Since figj−fjgi ∈ P and P is a homogeneous ideal
of S, we have figj , fj gi ∈ P . However figj can not be in P because P ∈ SpecS
and fi, gj /∈ P by Claim 2.1. Therefore deg fi − deg gi = degfj − deggj for all
1 ≤ i ≤ j ≤ n.

Without loss of generality, we may assume degfi ≥ deg gi for all 1 ≤ i ≤ n.
Let α denote the difference degf1 − degg1. We put h = ∑ni=1 (deg gi − ai). The
following theorem shows the implication (3)–(2) in Theorem 2.

Theorem 3 PF(H) = {h+ α, h + 2α, . . . , h+ (n− 1)α}.
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Proof Although the method is almost the same as [13, Section 4], for the sake of
completeness, let us include the construction of the Eagon-Northcott complex C
associated to the matrix

(
f1 f2 · · · fn
g1 g2 · · · gn

)
. Let F be a free S-module with a basis

{Ti}1≤i≤n and let K = ∧F be the exterior algebra of F over S. We denote
∂1 and ∂2 the differentials of the Koszul complexes K•(f1, f2, . . . , fn; S) and
K•(g1, g2, . . . , gn; S), respectively. Let U = S[y1, y2] be the polynomial ring over
S with 2 variables and we regard U as a standard Z-graded ring over S. Let

{
C0 = S
Cq = Kq+1 ⊗S Uq−1 1 ≤ q ≤ n− 1.

Then, for each 1 ≤ q ≤ n− 1, Cq is a finitely generated free S-module with a free
basis

{TΛ ⊗ yq−1−�
1 y�2 | Λ ⊆ {1, 2, . . . , n}, �Λ = q + 1, 0 ≤ � ≤ q − 1},

where TΛ = Ti1Ti2 · · · Tiq+1 with Λ = {i1 < i2 < · · · < iq+1}. Then the complex

C : 0 → Cn−1
dn−1−→ Cn−2

dn−2−→ · · · d2−→ C1
d1−→ C0 → 0

is called the Eagon-Northcott complex associated to

(
f1 f2 · · · fn
g1 g2 · · · gn

)
with the

differentials

d1(TiTj ⊗ 1) = det

(
fi fj

gi gj

)

for 1 ≤ i < j ≤ n and

dq(TΛ ⊗ yq−1−�
1 y�2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂1(TΛ)⊗ yq−2−�
1 y�2 if 1 ≤ � ≤ q − 2,

+∂2(TΛ)⊗ yq−1−�
1 y�−1

2

∂1(TΛ)⊗ yq−2
1 if � = 0,

∂2(TΛ)⊗ yq−2
2 if � = q − 1.

Because htS P = dim S − dim S/P = n − 1, C is a minimal S-free resolution of
R ([7]). Next, we regard the complex C as a complex of graded S-modules by the
grading

deg(TΛ ⊗ yq−1−�
1 y�2) =

∑

i∈Λ
deg fi − (�+ 1)α.
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Therefore

Cn−1 =
n−1⊕

i=1

S(iα − b)

as a graded S-module, where b = ∑ni=1 degfi . Let KS = S(−∑ni=1 ai) denote
the graded canonical module of S. By taking the KS-dual of C, we get a minimal
presentation

n−1⊕

i=1

S(−iα + b −
n∑

j=1

aj )→ KR → 0

of KR . Since α = degfj − deggj for all 1 ≤ j ≤ n and b =∑ni=1 degfi ,

−iα + b −
n∑

j=1

aj =
n∑

j=1

(deg gj − aj )+ (n− i)α.

Hence PF(H) = {h+α, h+ 2α, . . . , h+ (n− 1)α} where h =∑ni=1 (deg gi − ai),
because KR =∑p∈PF(H) Rt

−p ([11]).

2.2 Proof of (2) ⇒ (4)

Let H = 〈a1, a2, . . . , an〉 and assume the embedding dimension of H is n ≥ 3. We
begin with the following lemma.

Lemma 2 Suppose PF(H) = {h + α, h + 2α, . . . , h + (n − 1)α} for some h ≥ 0
and α > 0. Then α /∈ H and h ∈ H .

Proof Since n ≥ 3, we have h + α, h + 2α ∈ PF(H). Hence α /∈ H . This implies
that p − α ∈ H for some p ∈ PF(H). Therefore we can find 1 ≤ i ≤ n − 1
such that (h + iα) − α = h + (i − 1)α ∈ H . Then we must have i = 1, because
h+ (i − 1)α ∈ PF(H) if 2 ≤ i ≤ n− 1. Thus h ∈ H as desired.

We are now in a position to prove the implication (2)–(4) in Theorem 2.

Proof ((2)⇒ (4) in Theorem 2)
We assume the condition (2). After suitable permutations of a1, a2, . . . , an, we

may assume n = a1 < a2 < · · · < an. SinceH has maximal embedding dimension,
we have

PF(H) = {a2 − a1, a3 − a1, . . . , an − a1}
= {h+ α, h+ 2α, . . . , h+ (n− 1)α}.



192 D. V. Kien and N. Matsuoka

Therefore ai = a1 + h+ (i − 1)α for all 2 ≤ i ≤ n. Because h < a2 = a1 + h+ α
and h ∈ H by Lemma 2, h must be divided by a1 = n. We put s = h

n
+ 1.

Claim P = I2

(
x2 x3 · · · xn xs+α1
xs1 x2 · · · xn−1 xn

)
.

Proof (Claim) We put B = (bij ) =
(
x2 x3 · · · xn xs+α1
xs1 x2 · · · xn−1 xn

)
andQ = I2(B). Then,

because ai = a1 + h + (i − 1)α for all 2 ≤ i ≤ n and a1 = n, we get deg b1j −
deg b2j = α for all 1 ≤ j ≤ n. HenceQ ⊆ P . It implies that (x1)+Q ⊆ (x1)+P .
Since

(x1)+Q = (x1)+ I2

(
x2 x3 · · · xn 0
0 x2 · · · xn−1 xn

)

= (x1)+ (x2, x3, . . . , xn)
2,

we have �S(S/(x1)+Q) = n. On the other hand,

�S(S/(x1)+ P) = �R(R/(ta1)) = a1 = n.

Hence (x1)+ P = (x1)+Q. Consider the following commutative diagram

0 P/Q

x1

S/Q

x1

S/P

x1

0

0 P/Q S/Q S/P 0

where x̂1 denotes the map of multiplication by x1. By Snake Lemma and the fact
that R ∼= S/P is an integral domain, we have the exact sequence

0 → (P/Q)/x1(P/Q)→ S/[(x1)+Q] → S/[(x1)+ P ] → 0.

Hence P/Q = x1(P/Q). Therefore, by Nakayama’s lemma, we get P = Q as
desired.

The proof of the implication (2)–(4) in Theorem 2 is now completed.

Remark 1 As we proved, the implication (3)–(2) holds without our assumption that
H has maximal embedding dimension. The authors conjectured the implication (2)–
(4) also holds without the assumption through the discussion with D. T. Cuong and
H. L. Truong. At this moment, we have no proof for the general case and also no
counter-example for the conjecture.
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2.3 Proof of (b) and (c)

Now recall our notation. Let k be a field. Let S = k[x1, x2, . . . , xn] be the
polynomial ring. We assume the condition (4) in Theorem 2, namely,

P = I2

(
x2 x3 · · · xn xs+α1
xs1 x2 · · · xn−1 xn

)

is the defining ideal of the numerical semigroup ring R. Let P (r) = P rSP ∩ S be
the r-th symbolic power of P and RS(P ) = ⊕r≥0 P

(r)T r ⊆ S[T ] the symbolic
Rees algebra of P , where T is an indeterminate. Notice that all the proofs in this
subsection are deeply inspired by works by S. Goto [10] and by C. D’Cruz and S.
K. Masuti [6] and the method is the same as theirs. Although the results in [10] hold
for local rings, we can apply the results to our situation by passing to the formal
power series ring k[[x1, x2, . . . , xn]] = ŜM where M = (x1, x2, . . . , xn) ⊆ S and
ŜM denotes theMSM -adic completion of SM .

First, we prove that RS(P ) is a Noetherian ring. Let

Y = (yij ) :=

⎛

⎜⎜⎜⎜⎜⎝

xs1 x2 x3 · · · xn−2 xn−1 xn

x2 x3 x4 · · · xn−1 xn xs+α1
x3 x4 x5 · · · xn xs+α1 xα1 x2

· · · · · · · · · · · · · · · · · · · · ·
xn x

s+α
1 xα1 x2 · · · xα1 xn−3 x

α
1 xn−2 x

α
1 xn−1

⎞

⎟⎟⎟⎟⎟⎠
.

Then we have the following.

Lemma 3 Im+1(Y ) ⊆ P (m) for all 1 ≤ m ≤ n− 1.

Proof We prove by induction on m. Indeed, because deg yij − deg ykj = (i − k)α
for all 1 ≤ i < k ≤ n, 1 ≤ j ≤ n, we get I2(Y ) ⊆ P . Therefore, the assertion is true
with m = 1. Now suppose that m ≥ 2 and that our assertion holds true for m − 1.
Let Z = (zij ) be the (m+ 1)× (m+ 1) submatrix of Y andΔ = detZ. We want to
show thatΔ ∈ P (m). For each 1 ≤ i ≤ m+1, Zi denotes them×mmatrix obtained
from Z by deleting i-th row and the last column. Then Δi = (−1)i+m+1 detZi ∈
P (m−1) for each 1 ≤ i ≤ m+ 1 by the hypothesis of induction. Moreover, we have
Δ =∑m+1

i=1 zi,m+1Δi and
∑m+1
i=1 zimΔi = 0. Hence

z1mΔ =
m+1∑

i=1

(z1mzi,m+1 − zimz1,m+1)Δi ∈ I2(Y )P
(m−1).

It follows that Δ ∈ P (m) since z1m /∈ P and P (m) is a P -primary ideal. Thus
Im+1(Y ) ⊆ P (m) for all 1 ≤ m ≤ n− 1.
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For each 0 ≤ i ≤ n − 1, Y (i) denotes the submatrix of Y consiting of the first
(i + 1) rows and columns of Y and we put ξi = det Y (i).

Theorem 4 RS(P ) is a Noetherian ring.

Proof By Lemma 3 we have ξi ∈ Ii+1(Y ) ⊆ P (i) for all 1 ≤ i ≤ n− 1. Notice that

ξ0 = xs1 and ξi ≡ (−1)
i(i+1)

2 xi+1
i+1 mod(x1, x2, . . . , xi)S for all 1 ≤ i ≤ n − 1. We

now consider �S(S/(ξ0, ξ1, . . . , ξn−1)). Let a = (ξ1, ξ2, . . . , ξn−1). Since

[(xm1 )+ a]/[(xm+1
1 )+ a] ∼= (xm1 )/[(xm1 ) ∩ ((xm+1

1 )+ a)]
= (xm1 )/[(xm+1

1 )+ ((xm1 ) ∩ a)]
= (xm1 )/xm1 [(x1)+ a]
∼= S/[(x1)+ a]

for all m ≥ 1, we have �S(S/(ξ0, ξ1, . . . , ξn−1)) = �S(S/[(xs1) + a]) =
s·�S(S/[(x1)+ a]). Thanks to the form of ξi ’s, the same argument shows that

�S(S/(ξ0, ξ1, . . . , ξn−1)) = s·2·3· · ·n = s·n!.

Since the coefficient fields of R and S coincide and R/(ta1s ) ∼= S/[(xs1)+ P ] as S-
modules, we know that �S(S/[(xs1) + P ]) = �R(R/(ta1s )) = a1s = ns. Therefore
�S(S/(ξ0, ξ1, . . . , ξn−1)) = �S(S/[(xs1)+P ])·(n−1)!. Thus RS(P ) is a Noetherian
ring by [10, Theorem (1.1)].

Theorem 5 RS(P ) is a Cohen-Macaulay ring.

Proof Thanks to [10, Corollary (6.9)], to show that RS(P ) is a Cohen-Macaulay
ring it is sufficient to show that S/

[
(ξ1, . . . , ξn−1)+ P (i)

]
is Cohen-Macaulay for

all 1 ≤ i ≤
(
n− 1

2

)
=∑n−1

i=1 i − n+ 1 . By applying the proof of Theorem 6.5 in

[6] for the matrix Y , we can see that

e
(
x1; S/[(ξ1, . . . , ξn−1)+ P (i)]

)
= �S
(
S/[(x1, ξ1, . . . , ξn−1)+ P (i)]

)

for all i ≥ 1. Here e
(
x1; S/[(ξ1, . . . , ξn−1)+ P (i)]

)
denotes the multiplicity of

S/[(ξ1, . . . , ξn−1)+P (i)] with respect to (x1). Therefore we obtain the assertion by
[17, Theorem 17.11].

We put GS(P ) = ⊕i≥0 P
(i)/P (i+1). Then, by [10, Lemma (6.1)] and G(PSP ) is

a polynomial ring in n − 1 variables, we get a(GS(P )) = a(G(PSP )) = −(n −
1), where a(GS(P )) denotes the a-invariant of GS(P ). Moreover, thanks to [10,
Corollary (5.9)], GS(P ) is Gorenstein because S/[(f1, f2, . . . , fn)+P (i)] is Cohen-

Macaulay for all 1 ≤ i ≤
(
n− 1

2

)
by the proof of the previous theorem. Therefore
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RS(P ) is Gorenstein if and only if a(GS(P )) = −2 by [10, Theorem (6.6)] and the
latter condition is equivalent to n = 3. Here, notice that we assume n ≥ 3. Now we
get the following and finish to prove Theorem 2.

Theorem 6 RS(P ) is a Gorenstein ring if and only if n = 3.

3 Examples

Here let us show 2 examples. One of them satisfies the condition in Theorem 2 and
the other one does not.

Example 1 Let H = 〈4, 11, 14, 17〉. Then H satisfies the condition (1) by taking
n = 4, h = 4, and α = 3. Thanks to the proof of the implication (2)–(4) of
Theorem 2, if we take s = h

n
+ 1 = 2, we have

P = I2

(
y z w xs+α
xs y z w

)

= I2

(
y z w x5

x2 y z w

)
,

where P ⊆ k[x, y, z,w] is the defining ideal of k[H ]. Notice that deg y − deg x2 =
deg z − deg y = degw − deg z = deg x5 − degw = 3 = α.

Example 2 Let H = 〈4, 10, 11, 13〉. Then H does not satisfy the condition (1) in
Theorem 2. Hence the defining ideal P ⊆ k[x, y, z,w] of k[H ] can not have the
form as in the condition (3). In fact, we can check that

P = I2

(
y x3 w xz

x2 y z w

)
+ I2

(
z w xy x4

x2 y z w

)
.

Notice that deg y−deg x2 = deg x3−deg y = degw−deg z = deg xz−degw = 2
and deg z−deg x2 = degw−deg y = deg xy−deg z = deg x4−degw = 3. These
numbers coincide with the numbers in {f(H) − α | α ∈ PF(H) \ {f(H)}}. Notice
that PF(H) = {6, 7, f(H) = 9}.
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Embedding Dimension of a Good
Semigroup

Nicola Maugeri and Giuseppe Zito

Abstract In this paper, we study good semigroups of Nn, a class of semigroups
that contains the value semigroups of algebroid curves with n branches. We give the
definition of embedding dimension of a good semigroup showing that, in the case
of good semigroups of N2, some of its properties agree with the analogue concepts
defined for numerical semigroups.

Keywords Good semigroups · Embedding dimension · Semigroup of a ring

1 Introduction

The concept of good subsemigroup of N
n was formally introduced in [1]. Its

definition arises from the properties of the value semigroups of one dimensional
analytically unramified rings (for example the local rings of an algebraic curve) that
were initially studied in [2, 4, 5, 7, 10, 11, 13]. In [1], the authors proved that the
class of good semigroups is actually larger than the one of value semigroups. Thus,
such semigroups can be seen as a natural generalization of numerical semigroups
and studied without necessarily referring to the ring theory context, using a more
combinatorial approach.

Although, as we have already pointed out, good semigroups share traits with the
numerical semigroups, there are some important properties of the latter that cannot
be generalized to them. For instance, they are not finitely generated as monoids,
and they are not closed under finite intersections. This makes the study of good
semigroups much more difficult than the numerical ones.
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Thus, a relevant part of the literature dedicated to these objects is concerned to
find a suitable way to represent them by means of a finite set of data.

For instance, for what concerns good semigroups which are also value semi-
groups, in [13, 18] singularities with only two branches are studied. In these papers,
the finite set considered is the set of maximal elements (in [10], it is possible to
find a generalization of this approach to the case of more than two branches). In
[8], the authors considered a new approach that is still valid for good semigroups
not realizable as value semigroups of curves. They firstly notice that the set of
small elements of the semigroup, that is, the finite set of elements between 0 and
the conductor of the semigroup with the usual partial order, completely describes
it. Then they proved the uniqueness of the minimal subset G � Small(S), called
minimal good generating system, from which is possible to recover completely the
semigroup S, if also the conductor of S is known. Another interesting approach is
the one presented in [6], where the authors introduced the semiring of valuesΓ of an
algebroid curveR where also the values of the zero-divisors elements are considered
(v(0) = (∞, . . . ,∞)). Thus Γ contains the value semigroup of R and (Γ,+) is a
semigroup setting γ +∞ = ∞ for all γ ∈ Γ . The key point is that Γ , equipped
with the tropical operations

α ⊕ β = min{α,β} := (min{α1, β1}, . . . ,min{αn, βn}) and α . β = α + β,

is a finitely generated semiring. This leads the authors to introduce the concept of
minimal standard basis.

The aim of this paper is to continue this kind of investigation, in order to find the
smallest possible finite set that is able to encode some of the information of a good
semigroup with two branches. Specifically, we introduce the concept of minimal
set of representatives of a good subsemigroup S of N2. Although a minimal set of
representatives η of S does not univocally describe the semigroup (however S is
still among the minimal good semigroups containing η), it is possible to show that
it stores relevant data. For instance, in the case of value semigroup, a system of
representatives contains all the information regarding the value of a minimal system
of generators of the corresponding ring. This leads us to generalize in a reasonable
way, to the good semigroups of N2, the concept of embedding dimension that plays
an important role in the numerical case.

The structure of the paper is the following.
In Sect. 2 we give all the basic definitions and we introduce all the main tools

of the paper. In particular, in Sect. 2.1 we recall the definition of good semigroup
and we explain how to associate to a good semigroup S of N

2 a semiring ΓS .
Then, in Proposition 3, we prove that, in the case of value semigroups, our semiring
coincides with the one given in [6]. In Sect. 2.2 we define the concept of irreducible
and absolute element of ΓS , and in Theorem 10, we prove that ΓS is generated as
a semiring by its set IA of irreducible absolute elements generalizing to all good
semigroups a result proved by Carvalho E. and Hernandes M.E. [6, Thm 11, Cor
20] for the value semigroups of a ring.
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In Sect. 3, we introduce the notation Sη for the set of the minimal good
semigroups containing η. In Proposition 13 we give some conditions on η in order
to have finitely many elements in Sη. Then, given a good semigroup S, a set η
is called a system of representatives of S if S ∈ Sη. This lets us to define the
embedding dimension of a good semigroup S as the smallest cardinality of a system
of representatives of S. Starting from this point we work on good semigroups of N2

in order to study the property of the embedding dimension. In Sect. 3.1 we introduce
the definition of track of a good semigroup S and with Lemma 21 we show how to
obtain a good semigroup S′ contained in S by removing one of its tracks. Using
this lemma we can compute an inferior bound for the embedding dimension. In
Sect. 3.2 it is given the definition of reducibility of an element of IA(S) with respect
to a subset η ⊆ IA(S). Then, Theorem 31 gives a way to use this concept in order
to develop a strategy to find a superior bound for the embedding dimension. In
Sect. 3.3 we present a series of functions implemented in GAP [17] that, using the
computational vantages of calculating the previous bounds, allow us to describe a
fast algorithm to find the embedding dimension. In the examples proposed in this
section, for reasons of legibility and space, some verifications are not reported; these
were made using functions written in GAP [17].

Finally, Sect. 4 is dedicated to studying whether the embedding dimension
defined in N

2 retains some of the features of the numerical case. In particular in
Theorem 39 we prove that a good semigroup S, realizable as a value semigroup,
has embedding dimension greater or equal than the corresponding ring (as in the
numerical case). Then we give some examples, when the previous inequality is
strict, where it is possible to observe the limits of the combinatorial structure of a
good semigroup that is not always able to store all the information contained in the
ring in the same amount of data given by a system of generators. In Sect. 4.2 we give
the definition of levels of the Apéry set of a good semigroup as in [9], and we use
it to prove that edim(S) ≤ e1 + e2, where e = (e1, e2) is the multiplicity vector of
S (extending the relation edim(S) ≤ e of the numerical case and the corresponding
relation for one-dimensional rings). This result also lets us to prove Corollary 50,
where we show that the Arf good semigroups of N

2 have maximal embedding
dimension, generalizing another important property valid in the numerical case.

2 Semiring Associated to a Good Semigroup and Irreducible
Absolutes

2.1 Semiring ΓS and Basic Properties

We start this section recalling the definition of good semigroup introduced in [1].

Definition 1 A submonoid S of (Nn,+) is a good semigroup if it satisfies the
following properties:

(G1) If α,β ∈ S, then min(α;β) = (min{α1, β1}, . . . ,min{αn, βn}) ∈ S;
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(G2) There exists δ ∈ N
n such that S ⊇ δ + N

n;
(G3) If (α,β) ∈ S; α 
= β and αi = βi for some i ∈ {1, . . . , n}; then there exists

ε ∈ S such that εi > αi = βi and εj ≥ min{αj , βj } for each j 
= i (and if
αj 
= βj , the equality holds).

Furthermore, we always suppose to work with a local good semigroup S, i.e. if
α = (α1, . . . , αn) ∈ S and αi = 0 for some i ∈ {1, . . . , n}, then α = 0. As a
consequence of property (G2), the element c = min{δ|S ⊇ δ + N

n} = (c1, . . . , cn)

is well defined and it is called conductor of the good semigroup. We denote by≤, the
partial order on the elements of S induced by the standard order on N

n. Furthermore,
we denote by e = min(S\{0}) the multiplicity vector of the good semigroup. In
order to simplify the notation and some proofs, in this paper, we often work with
good semigroups S ⊆ N

2 but most of the definitions and proofs remain true also in
the general case.

According to the work of Carvalho and Hernandes [6], we wish to introduce a
semiring ΓS associated with the good semigroup S ⊆ N

2.
We set N = N∪ {∞}, where∞ is just a symbol that will correspond to the value

of the element 0 if the semigroup is the value semigroup of a ring. We extend the
natural order and the sum over N to N, setting respectively, a < ∞ for all a ∈ N

and x +∞ = ∞+ x = ∞.
We set:

S∞1 = {(a,∞) | ∃ỹ ∈ N : (a, y) ∈ S ∀y ≥ ỹ};

S∞2 = {(∞, b) | ∃x̃ ∈ N : (x, b) ∈ S ∀x ≥ x̃};

S∞ = S∞1 ∪ S∞2 ∪ {(∞,∞)};

ΓS = S ∪ S∞.

If α= (α1, α2), β=(β1, β2) ∈ ΓS , we set min{α,β} := (min{α1, β1},min{α2, β2}).
Now we define over ΓS the following tropical operations:

⊕ : α ⊕ β = min{α,β}

. : α . β = α + β

It is easy to prove that, with these operations, (ΓS,⊕,.) is a semiring.
We observe that, with the symbols + and ., we denoted exactly the same

operation on ΓS . For this reason these two symbols will be used with the same
meaning in the following.

Now we recall some facts and fix some notations that will be useful for the
following.

Let be R = K[[x1, . . . , xn]]/Q a two-branches algebroid curve, where Q =
P1 ∩ P2 is an ideal of K[[x1, . . . , xn]] such that P1,P2 are prime ideals.
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We can embed R ↪→ R1 × R2 where Ri = K[[x1, . . . , xn]]/Pi , i = 1, 2.
Furthermore R ↪→ R ∼= R1 × R2 ∼= K[[t1]] × K[[t2]]. Given r ∈ R, r = (r1, r2) ∈
K[[t1]] ×K[[t2]] that is a product of DVRs, so we can associate to each element of R
a valuation. If vi is the valuation function on K[[ti]], we set:

vi(r) =
{
vi(ri) if ri 
= 0

∞ if ri = 0

and v(r) = (v1(r), v2(r)).
According to the notation of Carvalho and Hernandes [6], we introduce the

following sets:

ΓSi = {vi(r) | r ∈ R} ⊆ N;

Si = {vi(r)|r is not a zerodivisor in R} ⊆ N;

ΓR = {v(r) := (v1(r), v2(r)), r ∈ R} ⊆ N
2;

S = {v(r) := (v1(r), v2(r)) | r is not a zerodivisor in R} ⊆ N
2.

ΓR and S will be called respectively semiring of values and semigroup of values
associated to R. It is easy to observe that S = ΓR ∩ N

2.
At this point, we wish to prove that, if R is a two-branches algebroid curve, and

S is its semigroup of values, then ΓS = ΓR .

Lemma 2 The following statements hold:

(i) (a,∞) ∈ ΓS if and only if (a, y) ∈ S for any y ≥ c2.
(ii) (∞, b) ∈ ΓS if and only if (x, b) ∈ S for any x ≥ c1.

Proof We prove (i), the other statement is analogue. If (a,∞) ∈ ΓS , then there
exists ỹ ∈ N such that (a, ỹ), . . ., (a, ỹ + n) ∈ S for any n ∈ N. If ỹ ≤ c2 the
statement is proved, otherwise ỹ = c2+n, with n ∈ N. Since S is a good semigroup,
for all i < n, a < c1, we have that (a, c2 + i) = min{(a, ỹ), (c1, c2 + i)} ∈ S.

Proposition 3 If R is a two-branches algebroid curve and S is its semigroup of
values, then ΓS = ΓR .

Proof We have observed that S = ΓR∩N2, thus we need to prove that ΓR\S = S∞.
If α ∈ ΓR\S, we can write α = v(r), where r is a zerodivisor in R or r = 0; in
both cases we have r ∈ P1 ∪ P2. If r = 0, v(r) = (∞,∞); if r ∈ P1, then r = 0
in R1, v1(r) = ∞, hence α ∈ S∞2 ; if r ∈ P2, then r = 0 in R2, v2(r) = ∞, hence
α ∈ S∞1 . If α ∈ S∞, without loss of generality, we can suppose α ∈ S∞2 , we can
write α = (∞, b), and, as a consequence of Lemma 1, (c1, b) ∈ S. Since S = v(R)
and the conductor ideal is C = (tc1 , uc2)(K[[t]] ×K[[u]]), there exists an element in
R of the form (tc1 , by(u)) with v(by(u)) = b. Since the element (tc1 , 0) ∈ R, we
have that the element (0, by(u)) ∈ R, thus (∞, b) ∈ ΓR .
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2.2 A System of Generators of ΓS as a Semiring

Definition 4 We will say that an element α ∈ ΓS \ {0} is irreducible if, from α =
β+γ , with β, γ ∈ ΓS , it follows α = β or α = γ . An element that is not irreducible
will be said reducible.

We denote by I (S) the set of irreducible elements of ΓS .

Remark 5 We observe that:

1. If α = (a, b) ∈ ΓS with a ≥ c1 + e1 and b ≥ c2 + e2, then α is reducible.
2. If α = (a,∞) ∈ ΓS with a ≥ c1 + e1, then α is reducible.
3. If α = (∞, b) ∈ ΓS with b ≥ c2 + e2, then α is reducible.

Given a good semigroup S ⊆ N
2, and an element α ∈ N

2, following the notation
in [1], we set:

Δi(α) := {β ∈ Z
2|αi = βi and αj < βj for j 
= i}

Δ(α) := Δ1(α) ∪Δ2(α)

ΔSi (α) := S ∩Δi(α)
ΔS(α) := S ∩Δ(α).

Furthermore we define:

iΔ(α) := {β ∈ Z
2|αi = βi and βj < αj for j 
= i}

iΔ
S(α) := S ∩i Δ(α).

Extending the previous definitions to infinite elements of N
2
, we set

1Δ((α1,∞)) := {β ∈ Z
2|β1 = α1}

2Δ((α1,∞)) := ∅
1Δ((∞, α2)) := ∅
2Δ((∞, α2)) := {β ∈ Z

2|β2 = α2}
iΔ
S(α) := S ∩ iΔ(α).

Definition 6 An element α ∈ ΓS will be said absolute in ΓS if α ∈ S andΔS(α) =
∅ (finite absolute), or if α ∈ S∞ (infinite absolute).

Remark 7 We observe that an element α ∈ ΓS is an absolute in ΓS if and only
if it is irreducible with respect to the operation ⊕. If we suppose that α ∈ ΓS is
not an absolute, then ΔS(α) 
= ∅, hence there exists β ∈ ΔSi (α), with i ∈ {1, 2}.
Therefore, by property (G3) of the good semigroups, there exists γ ∈ ΔS3−i (α),
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hence we would have α = β ⊕ γ , which is a contradiction. If we suppose that an
element α ∈ ΓS is such that α = β⊕ γ with β, γ 
= α, then α ∈ S andΔS(α) 
= ∅.

We denote by Af (ΓS) the set of finite absolutes in ΓS , by A∞(ΓS) the set of
infinite absolutes in ΓS and byA(ΓS) the set of all absolutes in ΓS . We call IAf (ΓS)
the set of finite irreducible absolutes in ΓS , I∞A (ΓS) the set of infinite irreducible
absolutes in ΓS and IA(ΓS) the set of all irreducible absolutes in ΓS .

Remark 8 By Remark 7, IA(S) can be seen as the set of the elements of ΓS that
are irreducible with respect to both the operations defined in it. Notice that this
interpretation lets us to naturally generalize the concept of irreducible absolute
elements to good subsemigroups of Nn, with n > 2.

As a consequence of the Remark 5, the set of irreducible absolutes is finite. Now
we introduce other sets that will be considered in the following:

small(S) = {(a, b) ∈ S|a ≤ c1, b ≤ c2};
small(ΓS) = small(S) ∪ {(∞, b) ∈ S∞2 , b ≤ c2} ∪ {(a,∞) ∈ S∞1 , a ≤ c1};
B∞1 (ΓS) = {(a,∞) ∈ ΓS |c1 < a ≤ c1 + e1} ⊆ S∞1 ;
B∞2 (ΓS) = {(∞, b) ∈ ΓS |c2 < b ≤ c2 + e2} ⊆ S∞2 ;
B∞(ΓS) = B∞1 (ΓS) ∪ B∞2 (ΓS) ⊆ S∞(C).

The sets small(S), small(ΓS), B∞(ΓS) will be said respectively: small elements
of S, small elements of ΓS and beyond elements of ΓS (Fig. 1).

Remark 9 It is easy to observe the following facts:

(i) Each element in the semiring can be written as a tropical product of irreducible
elements, i.e. if α ∈ ΓS , α = α1 . . . .. αn where αi ∈ I (ΓS).

Fig. 1 A graphic
representation of ΓS ’s
elements

c + e

c

small(S) S∞
1 ∩ small(ΓS)

S∞
2 ∩ small(ΓS)

B(ΓS)



204 N. Maugeri and G. Zito

(ii) Each element in the semiring can be written as a tropical sum of two absolute
elements, i.e. if β ∈ ΓS , β = β1 ⊕ β2 where β1,β2 ∈ A(ΓS).

Now we prove that the set of irreducible absolutes generates ΓS as a semiring.

Theorem 10 (ΓS,⊕,.) is generated as a semiring by the irreducible absolutes,
i.e. if α ∈ ΓS \ {0},

α =
m⊕

i=1

(

n⊙

j=1

γji
),

with γji
∈ IA(S).

Proof First of all, we observe that we can reduce to prove the thesis only for the
elements α ∈ small(ΓS) ∪ B(ΓS). Indeed, if α /∈ small(ΓS) ∪ B(ΓS), then there
exists k ∈ N such that β = α − ke ∈ small(ΓS) ∪ B(ΓS). In this case we would
have α = β . ke, where β ∈ small(ΓS) ∪ BS and e is trivially irreducible.

We can reduce again the proof only for the elements α ∈ I (ΓS) ∩ S (finite
irreducibles). In fact, if α is reducible, by Remark 9, we can write α = α(1) .
. . .. α(n), with α(i) irreducibles. Furthermore, we observe that if α(i) ∈ S∞, then
α(i) ∈ IA(ΓS); thus we can write:

α = α(1) . . . .. α(f ) .
(
.γ∈IA(S)γ

)

where α(i) ∈ I (ΓS) ∩ S. If we prove the thesis for the elements α(i) with i ∈
{1, . . . , f }, using the distributive property of . with respect to ⊕, the result is true
also for α. Therefore we can suppose α ∈ I (ΓS) ∩ S and prove the thesis. By
Remark 9, we can write α = β ⊕ γ with β = (β1, β2) ∈ A, γ = (γ1, γ2) ∈ A and
we can assume β1 = α1 ≤ γ1 and γ2 = α2 ≤ β2.

We consider

β = β(1) . . . .. β(n),

γ = γ (1) . . . .. γ (m),

the decompositions in irreducible elements of β and γ . We define β ′(i) = β(i) ⊕ γ ,
for all i ∈ {1, . . . , n} and γ ′(j) = γ (j) ⊕ β for all j ∈ {1, . . . ,m}. Defining
β ′ = β ′(1). . . ..β ′(n), γ ′ = γ ′(1). . . ..γ ′(m), it is easy to observe that β ′1 = β1
and γ ′2 = γ2, thus we have α = β ′ ⊕ γ ′.

We can definitely write:

α = (β ′(1) . . . .. β ′(n))⊕ (γ ′(1) . . . .. γ ′(m)),

where each β ′(i) and γ ′(j) is strictly smaller than α (that is γ ′(j) ≤ α and γ ′(j) 
=
α). If we express each of these elements as a tropical product of irreducibles, we can
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write α as a tropical sum of tropical products, where all the terms are irreducible
and strictly smaller than α. This means that if we repeat the same argument on each
element in this expression, in a finite number of iteration we will surely obtain the
required expression.

Remark 11 In the case of good semigroups that are value semigroup of a ring, the
theorem above follows by [6, Thm 11] and [6, Thm 19].

But we recall that not all good semigroups are value semigroup of a ring (for an
example cf.[1, Example 2.16]).

Thus, the previous theorem generalizes this property to all semirings obtained by
semigroups of N2, also if they are not value semigroup of a ring.

3 Embedding Dimension of a Good Semigroup

It is a well known fact that every numerical semigroup S ⊆ N admits a unique
minimal system of generators as a monoid and the embedding dimension of the
numerical semigroup is defined as the number of these generators. This name
follows from the fact that it is equal to the embedding dimension of the monomial
curve associated with the numerical semigroup.

Now we will define a set of vectors that, although it does not uniquely determine
a good semigroup, will allow us to give a definition of embedding dimension of a
good semigroup. This embedding dimension, in the case of good semigroup of N2,
will satisfy some of the properties that are valid in the case of numerical semigroups.

Starting from this point, in order to lighten the notations, when we consider a
good semigroup S, we suppose that it coincides with the semiring ΓS , i.e. we treat
the infinite elements as elements of S. Given a set of vectors η ⊆ N

n
, we denote

by 〈η〉⊕ the semiring generated by η. Furthermore, given a set of vectors η ⊆ N
n
,

we denote by Sη the family of all the good semigroups containing η and that are
minimal with respect to the set inclusion. Sη can be finite, infinite or empty as in the
following example.

Example 12 Let us consider η = {[2, 2], [3, 3]} ⊆ N
2, and suppose that there exists

a good semigroup S ∈ Sη.
First of all we prove that, for any n ∈ N\{1}, we have (n, n) ∈ S. In fact, it is

easy to observe that each natural number n 
= 1 can be written as n = 2α+3β, with
α, β ∈ N. Hence we can write (n, n) = (2α+3β, 2α+3β) = α(2, 2)+β(3, 3) ∈ S.

We denote by c(S) = (c1, c2) the conductor of S. If c1 = 1, we have that
(1, 2) = min{(1, c2), (2, 2)} ∈ S; hence, as a consequence of properties (G1) and
(G3) of the good semigroups, either c(S) = (1, 2) or S = N

2. In both cases, if
we consider S′ such that small(S′) = {(0, 0), (2, 2)} we have that S′ is a good
semigroup containing η and such that S′ ⊂ S; but this contradicts the minimality
of S. Therefore we have obtained c1 
= 1 and, using the same argument, we can
suppose c2 
= 1.
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If c1 > 1 and c2 > 1 we prove that c(S) = (c, c), with c ∈ N. Let us assume
by contradiction that c(S) = (c1, c2) with c1 < c2; in this case, there exists α =
(α1, α2) with α1 ≥ c1, c1 ≤ α2 < c2 such that α /∈ S. If α1 ≤ α2, we would
have α = min{(α1, c2), (α2, α2)} ∈ S, hence we necessarily have α1 > α2. Now
we observe that (c1, α2) = min{c(S), (α2, α2)} ∈ S and by property (G3) of good
semigroups applied to c(S) and (c1, α2), there exists (x1, α2) ∈ S with x1 > c1. If
x1 ≥ α1, we would have α = min{(x1, α2), (α1, c2)} ∈ S that is a contradiction.
Thus we necessarily have x1 < α1. Now, if we consider (x1, α2), (x1, c2) ∈ S, using
again property (G3), we observe that there exists (x2, α2) ∈ S with x2 > x1. We can
repeat this argument until we find an element (xi, α2) ∈ S with xi ≥ α1. In this case
we obtain α = min{(xi, α2), (α1, c2)} ∈ S, that is a contradiction.

Now, by repeatedly using the properties (G2) and (G3), it is easy to observe that,
small(S) = {(0, 0), (2, 2), (3, 3), . . . , (c − 1, c − 1), (c, c)}. If we define S′ such
that small(S′) = {(0, 0), (2, 2), (3, 3), . . . , (c, c), (c + 1, c + 1)}, we have found
a minimal good semigroup containing (2, 2), (3, 3) and strictly contained in S, in
contradiction with the minimality of S.

The following proposition gives a condition that guarantees that Sη is finite.

Proposition 13 Suppose we have η = {η(1) = (η1
1, . . . , η

1
n), . . . , η

(k) =
(ηk1, . . . , η

k
n)} ⊆ N

n.
Then the set Sη is finite if the following conditions hold:

– gcd
{
ηhi , h = 1, . . . , k

} = 1 for i = 1, . . . , n;
– For all i, j ∈ {1, . . . , n} with i 
= j there exists a l ∈ {1, . . . , k} such that
ηli 
= ηlj .

Proof We denote by 〈η〉⊕ the semiring generated by η. We claim that for each i =
1, . . . , n, we can obtain two vectors α(i) = (αi1, . . . , αin) and β(i) = (βi1, . . . , βin) in
〈η〉⊕ such that

αii = βii and αji < β
j
i for all j 
= i.

We will prove this fact by induction on n.

– Base case n = 2. Suppose that i = 1. By the second property assumed on
the set η, there exists a η(l) ∈ η such that ηl1 
= ηl2. Then η must contain

a vector η(m) such that
ηm2
ηm1


= ηl2
ηl1

. We assume by contradiction that
ηh2
ηh1

=
ηl2
ηl1

= 1 for all h = 1, . . . , k. If ηl1 did not divide ηl2, it would follow from

ηh2 = ηl2
ηl1
ηh1 that ηl1 divides ηh1 for all h = 1, . . . , k. Hence ηl1 would divide

gcd
{
ηh1 , h = 1, . . . , k

} = 1; but this contradicts the first assumption on the set η.

Therefore we have
ηl2
ηl1
∈ N. Since the integer

ηl2
ηl1

, divides ηh2 for all h = 1, . . . , k;

it divides gcd
{
ηh2 , h = 1, . . . , k

} = 1 but this is a contradiction.
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Then, we consider η(m) such that
ηm2
ηm1

= ηl2
ηl1

and the vectors

α(1) = (ηl1ηm1 , ηl2ηm1 ), β(1) = (ηl1ηm1 , ηl1ηm2 )

satisfy our condition because ηl2η
m
1 
= ηl1ηm2 and they belong to 〈η〉⊕. For i = 2

we can use the same strategy.
– Inductive step: Let us suppose that the claim is true for n − 1 and we prove it

for n. We suppose that i = 1 (the other cases can be treated in the same way).
We consider the set η̃ = {η(h) = (ηh1 , . . . , ηhn−1), h = 1, . . . , k

}
that satisfies the

conditions of the theorem. Then, by the inductive step, it easily follows that in
〈η〉⊕ there exist two vectors γ (1) = (γ 1

1 , . . . , γ
1
n ) and δ(1) = (δ1

1, . . . , δ
1
n) such

that

γ 1
1 = δ1

1 and γ 1
j < δ

1
j for all j = 2, . . . , n− 1.

If γ 1
n < δ

1
n, then the claim is true for α(1) = γ (1) and β(1) = δ(1). If γ 1

n > δ
1
n,

we consider α(1) = min(2γ (1), 2δ(1)) and β(1) = γ (1) . δ(1). In fact we have
α1

1 = 2γ 1
1 = β1

1 . If j ∈ {2, . . . , n− 1}, then α1
j = 2γ 1

j < γ
1
j + δ1

j = β1
j . Finally,

we have α1
n = 2δ1

n < γ
1
n + δ1

n = β1
n . Thus suppose that γ 1

n = δ1
n. In this case

we can consider η = {η(h) = (ηh1 , ηh3 , . . . , ηhn), h = 1, . . . , k
}
. By the inductive

step there exist two vectors γ (2) = (γ 2
1 , . . . , γ

2
n ) and δ(2) = (δ2

1, . . . , δ
2
n) ∈ 〈η〉⊕

such that

γ 2
1 = δ2

1 and γ 2
j < δ

2
j for all j = 3, . . . , n.

Then, as we have just seen, if γ 2
2 
= δ2

2 the claim is true. Therefore we suppose
that γ 2

2 = δ2
2. Then, it is very easy to check that the claim is true with α(1) =

γ (1) . γ (2) and β(1) = δ(1) . δ(2).

Now, we denote by c(i) the conductor of the numerical semigroup generated by{
ηhi : h = 1, . . . , k

}
and we choose α(i) = (αi1, . . . , αin) and β(i) = (βi1, . . . , βin) in

〈η〉⊕ as in the previous claim. We will prove that for each i ∈ {1, . . . , n} there exist
ci,j for j = 1, . . . , i − 1, i + 1, . . . , n such that the vectors

σ i (y) = (ci,1, . . . , ci,i−1, c
(i) + αii + y, ci,i+1, . . . , ci,n) ∈ S,

for each S ∈ Sη, and y ∈ N. If this is true then it is clear that

cη =
n⊙

i=1

σ i (0)+ N
n ⊆ S,

for all S ∈ Sη.
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Suppose that i = 1 (the proof is identical in the other cases). Let us consider an
arbitrary S ∈ Sη. We obviously have 〈η〉⊕ ⊆ S. We will denote by m = α1

1 = β1
1 .

Since c(1) is the conductor of 〈{ηh1 : h = 1, . . . , k
}〉, we can find the vectors:

σ (h) = (σh1 , . . . , σ hn ) ∈ 〈η〉⊕, for h = 0, . . . ,m− 1,

such that σh1 = c(1) + h for all h = 0, . . . ,m− 1.

For each i = 0, . . . ,m− 1 we consider λ(i) =⊕m−1
k=i σ (k). Then we have λ(0) ≤

. . . ≤ λ(m−1) and, if λ(h) = (λh1, . . . , λhn), then λh1 = c(1) + h.
Now we want to show that (c(1) + m + y, λ0

2 + α1
2 , . . . , λ

0
n + α1

n) ∈ S for each
y ∈ N.

We notice that

λ(0) . α(1) = (c(1) +m,λ0
2 + α1

2 , . . . , λ
0
n + α1

n) ∈ S,
λ(0) . β(1) = (c(1) +m,λ0

2 + β1
2 , . . . , λ

0
n + β1

n) ∈ S,

thus, recalling that α1
j < β

1
j for all j = 2, . . . , n, it follows by (G3) that there exists

x > c(1) +m such that (x, λ0
2 + α1

2 , . . . , λ
0
n + α1

n) ∈ S.
Now we consider

λ(1) . β(1) = (c(1) +m+ 1, λ1
2 + β1

2 , . . . , λ
1
n + β1

n) ∈ S.

Since λ0
h ≤ λ1

h for all h = 2, . . . , n and α1
j < β

1
j for all j = 2, . . . , n, we have

(x, λ0
2+α1

2, . . . , λ
0
n+α1

n)⊕(λ(1).β(1)) = (c(1)+m+1, λ0
2+α1

2, . . . , λ
0
n+α1

n) ∈ S.

Now, as before, from

(c(1) +m+ 1, λ0
2 + α1

2 , . . . , λ
0
n + α1

n) ∈ S,
(c(1) +m+ 1, λ0

2 + β1
2 , . . . , λ

0
n + β1

n) ∈ S,

we can deduce that there exists x > c(1) +m + 1 such that (x, λ0
2 + α1

2, . . . , λ
0
n +

α1
n) ∈ S.

Repeating the previous considerations and using the fact that λ(0) ≤ λ(i) for each
i ≤ m− 1, we can show that

(c(1) +m+ y, λ0
2 + α1

2, . . . , λ
0
n + α1

n) ∈ S,
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for all y = 0, . . . ,m− 1. Now, we can consider

λ(0) . β(1) = (c(1) +m,λ0
2 + β1

2 , . . . , λ
0
n + β1

n) ∈ S
. . .

λ(m−1) . β(1) = (c(1) + 2m− 1, λm−1
2 + β1

2 , . . . , λ
m−1
n + β1

n) ∈ S

and since λjh + β1
h > λ

0
h + α1

h for all j = 0, . . . ,m − 1 and h = 2, . . . , n, we can
use the same strategy to show that

(c(1) +m+ y, λ0
2 + α1

2, . . . , λ
0
n + α1

n) ∈ S,
for all y = 0, . . . , 2m− 1. Now it is clear that we can endlessly repeat the strategy
and we finally proved that

(c(1) +m+ y, λ0
2 + α1

2, . . . , λ
0
n + α1

n) ∈ S,
for all y ∈ N and for all the S ∈ Sη (S was arbitrarily chosen). Therefore we proved
that if S ∈ Sη, then the conductor of S is smaller than cη. Now we know that a good
semigroup is completely characterized by its small elements. This implies that the
set of good semigroups with a conductor smaller than cη is finite and therefore also
Sη must be finite.

Remark 14 Let us consider a set of vector η ⊆ N
n which satisfies the hypothesis of

the previous theorem. The proof of the theorem gives us also a way to determine a
bound for the conductor of all good semigroups containing η.

Definition 15 Given a good semigroup S ⊆ N
2 and a set of vector η ⊆ IA(S), we

say that η is a system of representatives of S, or more simply sor, if S ∈ Sη.

Remark 16 As a consequence of the Theorem 10, IA(S) is a sor of S, because every
semigroup containing the elements of IA(S) must contain S.

Definition 17 A system of representatives η of S is minimal, if given another set of
representatives η′ ⊆ η, it follows η′ = η. We call such a set a msor of S.

It is possible to show that two msor can have different cardinalities (see
Example 35).

Definition 18 Given a good semigroup S, we define embedding dimension of S:

edim(S) = min{|η| : S ∈ Sη and η ⊆ IA(S)}.

From this point onwards we will start to analyze the properties of the embedding
dimension. We will consider only good semigroups S ⊆ N

2. Computing all the
minimal good semigroups containing a set of vectors is computationally very
dispensing, also in the two-branches case. At this point, our first aim is to produce
a “fast” algorithm that, in the case of good semigroup S ⊆ N

2, returns a msor of S.
In order to do this we will calculate two bounds for the embedding dimension.
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3.1 An Inferior Bound for the Embedding Dimension

First of all we want to produce an inferior bound for the embedding dimension. We
give the following definitions.

Definition 19 Given α,β ∈ IA(S) we say that α and β are connected by a piece of
track if they are not comparable, i.e. α 
≤ β and β 
≤ α, and denoted by γ = α⊕ β,
we have ΔS(γ ) ∩ (S \ I (S)) = ∅.

Definition 20 Given α1, . . . ,αn ∈ IA(S), with α11 < . . . < αn1 we say that
α1, . . . ,αn are connected by a track if we have:

– 2Δ
S(α1) ∩ (S \ I (S)) = ∅;

– 1Δ
S(αn) ∩ (S \ I (S)) = ∅;

– αi and αi+1 are connected by a piece of track for all i ∈ {1, . . . , n− 1}.
In this case, denoted with γi = αi ⊕ αi+1 for i ∈ {1, . . . , n− 1}, we set:

T ((α1, . . . ,αn)) = {α1} ∪ 2Δ
S(α1) ∪

(
∪n−1
i=1Δ

S(γi)
)
∪ 1Δ

S(αn) ∪ {αn},

and we call this set the track connecting α1, . . . ,αn.

We will simply say that T ⊆ S is a track in S if there exist α1, . . . ,αn ∈ IA(S)
such that T is the track connecting α1, . . . ,αn. Notice that the previous definition
implies that a track T of S never contains elements α such that α ≥ c(S)+ e(S).

In the following lemma we will show how these definitions are related to the
embedding dimension.

Lemma 21 Given a good semigroup S, and a track T = T ((α1, . . . ,αn)) in S,
then, S′ = S \ T is a good semigroup strictly contained in S.

Proof If α,β ∈ S′, since α,β ∈ S and T ∩ (S \ I (S)) = ∅, we have α + β ∈ S′,
thus S′ is a semigroup. Now, we have to check that S′ satisfies the property (G1);
therefore, considering α,β ∈ S′, we have to prove that α ⊕ β ∈ S′. If we suppose
α ⊕ β ∈ T , then: there exists a γi = αi ⊕ αi+1 such that α ⊕ β ∈ ΔS(γi); or
α ⊕ β ∈ 1Δ

S(α1); or α ⊕ β ∈ 2Δ
S(αn). But, in all the previous cases, by the

definition of track, this would imply that α,β ∈ T . Furthermore, for all α ∈ S with
α ≥ c(S) + e(S) we have α ∈ S′, thus S′ satisfies property (G2). We complete
the proof verifying the property (G3). Therefore, we take α,β ∈ S′ and suppose
that β ∈ ΔS ′i (α), we need to show that ΔS

′
j (α) 
= ∅, where j ∈ {1, 2} \ {i}. Since

α,β ∈ S, for property (G3), there exists δ ∈ ΔSj (α). If δ ∈ ΔS ′j (α), the thesis is
proved; hence we suppose the converse, in this case δ necessarily belongs to T ′. We
have two cases. Case 1: there exists γk = αk ⊕ αk+1 such that δ ∈ ΔSj (γk), but this

implies γk ∈ ΔS ′j (α). Case 2: there exists γk = αk⊕αk+1 such that δ ∈ ΔSi (γk). We
notice that, if δ ∈ IA(S) we can reduce to the previous case, hence we can suppose
that there exists ρ 
= δ with ρ ∈ ΔSi (γk) ∩ IA(S). But, since ρ, δ ∈ S, by property
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(G3) in S and by definition of track, ΔS
′
j (δ) 
= ∅, then we also have ΔS

′
j (α) 
= ∅.

Case 3: δ ∈ ΔSi (α1) if i = 2 or δ ∈ ΔSi (αn) if i = 1; in this case we can conclude
the proof with the same argument of Case 2.

Definition 22 Given M ⊂ IA(S), we say that M is an hitting set (HS) of S, if for
any track T in S there exists an element α ∈ M such that α ∈ T . We say that M is
a minimal hitting set (MHS), if for any hitting set M such that M ′ ⊆ M , we have
M ′ = M .

Remark 23 Given a hypergraph (V ,E), with E = {E1, . . . En}, Ei ⊆ V , a set of
vertices H ⊂ V such that H ∩ Ei 
= ∅ for all i = 1, . . . , n is called transversal or
hitting set [3].

If we consider the hypergraph with vertices V = IA(S) ⊂ ΓS and edges E =
{T ⊂ S : T is a track}, then the hitting sets of the good semigroup S correspond
exactly to the hitting sets of this hypergraph. The problem of finding the minimal
hitting set of an hypergraph is an NP-hard problem and there are several algorithms
related to its computation (see for example [12, 15]).

We set H = {M | M is a HS}.
Proposition 24 IfM is a sor, thenM ∈ H.

Proof If we suppose thatM is not a HS, then it would exist a track T in S that does
not contain elements of M . Using the same construction of Lemma 21 we could
build a good semigroup S′ such thatM ⊆ S′ � S, but it is a contradiction.

The converse of the previous theorem is not true in general as it is shown by the
following example.

Example 25 Let us consider the good semigroup S with the following set of
irreducible absolute elements:

IA(S) = {(6, 3), (12, 17), (18, 25), (19, 6), (24,∞), (25, 28), (27, 9), (31,∞),
(33, 20), (39,∞), (41,∞), (44,∞), (46,∞), (∞, 15), (∞, 23), (∞, 31)}.

From Fig. 2 we can easily deduce that S contains only the following tracks:

– T1 = T ((6, 3));
– T2 = T ((12, 17), (19, 6));
– T3 = T ((39,∞), (∞, 31));
– T4 = T ((41,∞), (∞, 23));
– T5 = T ((41,∞), (∞, 31));
– T6 = T ((41,∞));
– T7 = T ((46,∞), (∞, 15));
– T8 = T ((46,∞), (∞, 23));
– T9 = T ((46,∞), (∞, 31)).
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Fig. 2 Big circle: irreducible absolutes; Circle: reducible elements; Black dot: irreducible element

Then, it is easy to verify thatM = {(6, 3), (12, 17), (39,∞), (41,∞), (46,∞)}
is a MHS for S.

However, M is not a sor for S, in fact it is possible to check that there exists a
good semigroup S′ with

IA(S
′) = {(6, 3), (12, 17), (19, 6), (24,∞), (39,∞), (41,∞), (46,∞),

(50,∞), (∞, 18), (∞, 29), (∞, 34)},

such that S′ is strictly contained in S and we haveM ⊆ S′.
Now we define: bedim(S) = min{|M|, M ∈ H}.

Corollary 26 Given a good semigroup S ⊆ N
2, bedim(S) ≤ edim(S).

Example 27 The inequality of Corollary 26 can be strict. In fact, for instance, it
is possible to check that each minimal hitting set of the semigroup S described in
Example 25 is not a sor for S, implying that bedim(S) < edim(S).
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3.2 A Superior Bound for the Embedding Dimension

Let S ⊆ N
2 be a good semigroup; given η ⊆ IA(S), and α ∈ IA(S), we want to

define the reducibility of α with respect to η. By convention we will say that all the
elements α ∈ η are reducible by η. We take α ∈ IA(S)\η and we will treat the finite
and infinite elements separately.

Finite Case We suppose α = (α1, α2) ∈ IAf (S)\η.

Given a semiring Γ ⊆ N
2
, we introduce the following notations:

iΔ
Γ (α) := Γ ∩ iΔ(α)

1δ
Γ (α) := max{y|(a, y) ∈ 1Δ

Γ (α)} if 1Δ
Γ (α) 
= ∅

2δ
Γ (α) := max{x|(x, b) ∈ 2Δ

Γ (α)} if 2Δ
Γ (α) 
= ∅.

Notice that the fact that α is an absolute finite element implies that iδΓ (α) is finite.
In the following, given η ⊆ IA(S), we will work with the semiring 〈η〉⊕. In order to
simplify the notation we will write iΔη(α) instead of iΔ〈η〉⊕(α)

Remark 28 If iΔη(α) 
= ∅, we have i δη(α) ≤ i δ
S(α).

If1Δ
η(α) 
= ∅, we define Yη(α) = {y ∈ {1δη(α), . . . , 1δ

S(α)}|(α1, y) ∈ S} and
similarly if 2Δ

η(α) 
= ∅, we define Xη(α) = {x ∈ {2δη(α), . . . , 2δ
S(α)}|(x, α2) ∈

S}.
Definition 29 We say that α = (α1, α2) ∈ IAf (S)\η is reducible by η, if 1Δ

η(α)∪
2Δ

η(α) 
= ∅ and one of the following conditions is satisfied:

1. 1Δ
η(α) 
= ∅, and for all y ∈ Yη(α), there exists (x, y) ∈ 〈η〉⊕ such that x > α1.

2. 2Δ
η(α) 
= ∅, and for all x ∈ Xη(α), there exists (x, y) ∈ 〈η〉⊕ such that y > α2.

Infinite Case If α = (α1,∞) ∈ IA(S)∞\η, then we consider ỹ such that (α1, y) ∈
S for all y ≥ ỹ (it exists by Lemma 2). Let us consider the set:

Yη(α) = {y ∈ {1δη(α), . . . ,max{ỹ, 1δ
η(α)} + e2 − 1} | (α1, y) ∈ S}.

If α = (∞, α2) ∈ IA(S)∞\η, then we consider x̃ such that (x, α2) ∈ S for all x ≥ x̃
(it exists by Lemma 2). Let us consider the set:

Xη(α) = {x ∈ {2δη(α), . . . ,max{x̃, 2δ
η(α)} + e1 − 1} | (x, α2) ∈ S}.

Definition 30 We say that α = (α1,∞) is reducible by η, if 1Δ
η(α) 
= ∅ and for

all y ∈ Yη(α), there exists an element (x, y) ∈ 〈η〉⊕ with x > α1. We say that
α = (∞, α2) is reducible by η, if 2Δ

η(α) 
= ∅ and for all x ∈ Xη(α), there exists
an element (x, y) ∈ 〈η〉⊕ with y > α2.
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As we will see in detail in the proof of Theorem 31, the previous definitions
are motivated by the fact that the reducibility of an element α ∈ IA(S) by a set
η ⊆ IA(S) essentially ensures that the presence of α in IA(S) is forced by η as a
consequence of property (G3) of good semigroups.

Given η ⊆ IA(S), we set:

〈〈η〉〉 := {α ∈ IA(S) | α is reducible by η}.

Let us consider the following algorithm:

input : η ⊆ IA(S)
output: A subset η′, with η ⊆ η′ ⊆ IA
η′ ←− 〈〈η〉〉
while η′ 
= η do

η←− η′
η′ ←− 〈〈η〉〉

end
return η′

Algorithm 1: Algorithm to find red(η)

The input of Algorithm 1 is a subset η of IA(S). As long as we can, we
expand η by including elements of IA(S) \ η that are reducible by it. Notice
that the algorithm produces an output in finite time, since IA(S) is finite. We
denote by red(η) the output of the previous algorithm and we introduce the set
R(S) = {η ⊆ IA(S) | red(η) = IA(S)}. We will say that η ⊆ IA(S) satisfy the
reducibility condition if η ∈ R(S).

We have the following statement:

Theorem 31 If η ∈ R(S), then η is a sor.

Proof From η ∈ R(S) it follows that there exists a chain of subset of IA(S):

η ⊂ η1 ⊂ . . . ⊂ ηn−1 ⊂ ηn = red(η) = IA(S)

such that ηi = 〈〈ηi−1〉〉We prove that η is a sor using a decreasing induction on this
chain. We have that ηn = IA(S) is a sor for Remark 16, now we prove that if ηi+1
is a sor, then ηi is a sor.

We assume by contradiction that S /∈ Sηi ; in this case there exists a good
semigroup Si such that ηi ⊆ Si � S.

If we suppose ηi+1 ⊆ IA(Si), we would have ηi+1 ⊆ 〈ηi+1〉⊕ ⊆ 〈IA(Si)〉⊕ =
Si � S, against the fact that ηi+1 is a sor for S. For this reason, we can always
suppose that there exists α = (α1, α2) ∈ ηi+1\IA(Si). Furthermore we observe that
α /∈ ηi , indeed, assuming the opposite, we should have α ∈ Si and since Si ⊆ S
and α ∈ ηi+1 ⊆ IA(S), it would imply that α ∈ IA(Si). We distinguish two case:
α ∈ ηi+1 ∩ IAf (S) and α ∈ ηi+1 ∩ I∞A (S).
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Case 1 α ∈ ηi+1 ∩ IAf (S).
Since 〈〈ηi 〉〉 = ηi+1, α is reducible by ηi . Without loss of generality we can

assume 1Δ
ηi (α) 
= ∅; in this case there exists (α1, 1δ

ηi (α)) ∈ 〈ηi〉⊕ ⊆ Si .
We have 1δ

ηi (α) ∈ Yη1(α) and, from the reducibility of α by ηi , there exists
(xη(α), 1δ

ηi (α)) ∈ 〈ηi〉⊕ ⊆ Si . We have obtained two elements (α1, 1δ
ηi (α)),

(xη(α), 1δ
ηi (α)) ∈ Si , by property (G3), there exists (α1, y) ∈ Si , with y > 1δ

ηi (α).
We observe that, from the definition of 1δ

S(α), y ≤ 1δ
S(α). Hence y ∈ Yηi (α). We

can repeat the same argument until we obtain that (α1, 1δ
S(α)) ∈ Si . Using again

the property (G3) we should obtain α ∈ Si (notice that ΔSi1 (α) = ∅), but this is a
contradiction.

Case 2 α ∈ ηi+1 ∩ IA∞(S).
Without loss of generality we can suppose α = (α1,∞). Since α is reducible by

ηi , we have 1Δ
ηi (α) 
= ∅. We set M(α) := max{ỹ, u} + e2 − 1, where ỹ is such

that (α1, y) ∈ S for any y > ỹ. Now, using the same argument of the finite case, we
obtain that (α1,M(α)) ∈ Si , but, by Lemma 2, this implies (α1,∞) ∈ Si which is
a contradiction.

The following example shows that the converse of the previous theorem is not
true in general.

Example 32 Let us consider the good semigroup S with the following set of
irreducible absolute elements (Fig. 3):

IA(S) = {(3, 4), (6,∞), (7, 8), (10, 15), (14, 18), (17, 25), (∞, 12), (∞, 19),

(∞, 22), (∞, 29)}.

Notice that, since S contains only the tracks T1 = T ((3, 4)), T2 =
T ((6,∞), (7, 8)), T3 = T ((6,∞), (10, 15), (∞, 12)) and T4 = T ((10, 15),
(∞, 12)), we have that η = {(3, 4), (7, 8), (10, 15), (14, 18), (∞, 12), (∞, 22)} is

0 3 7 10 14 1718 21
0

4

8

12

15

18
19

22

25
26

29
30

0 3 7 10 14 1718 21
0

4

8

12

15

18
19

22

25
26

29
30

η

η η

η η

η

η η

η

η

η

η
η

η

η

η
η

η

η

η

η

η

η

η
η

η

η

η

η
η
η

η

η

η

η

η
η
η

η

η

η

η

η η

η

η

η

η η η η

η

η

η

η

η

η

η

Fig. 3 Big circle: irreducible absolutes; Circle: reducible elements; Black dot: irreducible ele-
ments, η: Elements of 〈red(η)〉⊕
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a HS for S. Let us show that red(η) 
= IA(S). It suffices to show that 〈〈η〉〉 = η, i.e.
all the elements in IA(S) \ η are not reducible by η. We have

– α1 = (6,∞) is not reducible by η. Notice that there exists (6, 8) = 2(3, 4) ∈
1Δ

η(α1), thus we have 1δ
η(α1) = 8. Furthermore, ỹ = 22 and we have:

Yη(α1) = {y ∈ {1δη(α1), . . . ,max{ỹ, 1δ
η(α1)} + e2 − 1|(6, y) ∈ S} =

= {8, 12, 15, 16, 18, 19, 20, 22, 23, 24, 25}.

For each element y in Yη(α1) we need to find (x, y) ∈ 〈η〉⊕ with x > 6. It is
not difficult to notice that for y = 25 ∈ Yη(α1), it is not possible to produce such
an element in 〈η〉⊕.

– α2 = (17, 25) is not reducible by η. Notice that there exists (17, 23) =
(7, 8). (10, 15) ∈ 1Δ

η(α2), thus we have 1δ
η(α2) = 23 (while 2Δ

η(α2) = ∅).
Furthermore, 1δ

S(α2) = 24 and we have:

Yη(α2) = {y ∈ {1δη(α2), . . . , 1δ
S(α2) = 24|(17, y) ∈ S} = {23, 24}.

For each element y in Yη(α2) we need to find (x, y) ∈ 〈η〉⊕ with x > 17.
However for y = 23 ∈ Yη(α2), it is not possible to produce such an element in
〈η〉⊕

– α3 = (∞, 19) is not reducible by η. Notice that there exists (13, 19) = (3, 4).
(10, 15) ∈ 2Δ

η(α3), thus we have 2δ
η(α3) = 13. Furthermore, x̃ = 15 and we

have:

Xη(α3) = {x ∈ {2δη(α3), . . . ,max{x̃, 2δ
η(α3)}+e1−1|(x, 19) ∈ S} = {13, 15, 16, 17}.

For each element x in Xη(α3) we need to find (x, y) ∈ 〈η〉⊕ with y > 19. It is
not difficult to notice that for x = 13 ∈ Xη(α3), it is not possible to do that.

– α4 = (∞, 29) is not reducible by η, since 2Δ
η(α4) = ∅.

However it is possible to check that there are no good semigroups S′ such that
η ⊆ S′ � S. Thus η is actually a sor for S and it is not difficult to check that the
minimal hitting setM = {(3, 4), (7, 8), (10, 15)} contained in it, is a sor itself, thus
a msor for S.

Now we define: Bedim(S) = min{|η|, η ∈ R(S)},
Corollary 33 Given a good semigroup S ⊆ N

2, edim(S) ≤ Bedim(S).

Example 34 The inequality in Corollary 33 can be strict. An example of this
behaviour is the good semigroup S with the following set of irreducible absolute
elements:

IA(S) = {(7, 7), (14, 20), (17, 14), (24,∞), (25, 21), (32, 30), (39, 45), (42,∞),
(43, 35), (44, 37), (46,∞), (47, 50), (50,∞), (54,∞), (∞, 32),

(∞, 34), (∞, 42), (∞, 51), (∞, 57)}.
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It is possible to prove that for each MHS η of S we have that η is a sor for S but
red(η) 
= IA(S). This easily implies that edim(S) < Bedim(S).

Example 35 Let us consider the good semigroup S, with

IA(S) = {(4, 3), (6, 7), (8, 8), (9, 6), (11,∞), (12,∞), (13,∞), (14,∞),
(∞, 9), (∞, 11), (∞, 13)}.

This is an example of good semigroup having msor with distinct cardinalities. In
fact, it is possible to prove that the sets η1 = {(4, 3), (6, 7), (8, 8), (11,∞), (13,∞)}
and η2 = {(4, 3), (6, 7), (8, 8), (11,∞), (∞, 9), (∞, 11)} are both MHS of S
satisfying the reducibility condition. In particular edim(S) = 5.

3.3 An Algorithm for the Computation of the Embedding
Dimension of a Semigroup S ⊆ N

2

We will conclude this section presenting an algorithm for the computation of the
embedding dimension and with some remarks concerning the definition that we
have given.

We proved that:

bedim(S) ≤ edim(S) ≤ Bedim(S)

and both inequalities are sharp as we will see in Example 38.
We implemented in GAP [17] the following functions:

– ComputeMHS(S): it takes in input a good semigroup and returns the set of its
MHS.

– VerifyReducibility(list): it takes in input a list of subsets of IA(S) and returns
the first set that satisfy the condition of reducibility if there exists, otherwise it
returns “fail”.

– IsThereAMGSContainedInAndContaining(S,V ): it takes in input a good semi-
group S and a subset V of IA(S) and returns “true” if there exists a good
semigroup S′ such that V ⊆ S′ � S

Remark 36 Testing in GAP these functions on a sample of about 200,000 semi-
groups, we observed empirically that VerifyReducibility is about seventy times
faster than IsThereAMGSContainedInAndContaining.

We introduce the following algorithm to compute the embedding dimension and
a set of representatives with minimal cardinality.
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input : A good Semigroup S
output: A minimal system of representatives of minimal cardinality

M←− ComputeMHS(S)
H←−M
n←− bedim(S)
Stop ←− false
while Stop=false do

H←− {η ⊆ IA(S) | |η| = n and H ⊆ η for some H ∈ H} ∪ {η ∈M||η| = n}
if VerifyReducibility(H)=η then

Stop=true, return η
end
if VerifyReducibility(H)=fail then

if ForAny η ∈ H, IsThereAMGSContainedInAndContaining(S,η)=false then
Stop=true, return η

else
n←− n+ 1

end
end

end

Algorithm 2: Algorithm to find an msor of minimal cardinality

Remark 37 We tested the algorithm on a sample of 200,000 good semigroups and
we noticed that, for n = bedim(S):

– The condition “VerifyReducibility(H) = f ail” occurred only in 82 cases.
– Both the conditions “VerifyReducibility(H) = f ail” and “IsThereAMGSCon-

tainedInAndContaining(S, η)= true for all η ∈ H” occurred only in 2 cases. In
these cases bedim(S) 
= edim(S).

– The situation which all MSH of minimal cardinality are not reducible and at least
one of them is a sor occurred only in one case. In this case Bedim(S) 
= edim(S)).

For this reasons and by Remark 36 this algorithm is considerably faster than to
computing the embedding dimension using the definition.

Example 38 Let us consider the good semigroup S, represented in Fig. 4, we want
to find a msor for S and the embedding dimension of S.

We have that

IA(S) = {(4, 3), (7, 13), (11, 17), (14,∞), (15,∞), (16, 20), (24,∞),
(∞, 12), (∞, 16), (∞, 26)}.

First of all we need to compute the minimal hitting sets of S. It contains the
following tracks:

• T1 = T ((4, 3));
• T2 = T ((7, 13));
• T3 = T ((11, 17), (∞, 16));
• T4 = T ((15,∞), (16, 20), (∞, 12));
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Fig. 4 Big circle: irreducible absolutes; Circle: reducible elements; Black dot: irreducible ele-
ments, η: Elements of 〈red(η)〉⊕

• T5 = T ((15,∞), (16, 20), (∞, 16));
• T6 = T ((24,∞), (∞, 26)).

Thus the following is the complete list of the MHS of S.

• η1 = {(4, 3), (7, 13), (∞, 12), (∞, 16), (∞, 26)};
• η2 = {(4, 3), (7, 13), (11, 17), (15,∞), (∞, 26)};
• η3 = {(4, 3), (7, 13), (11, 17), (16, 20), (24,∞)};
• η4 = {(4, 3), (7, 13), (11, 17), (16, 20), (∞, 26)};
• η5 = {(4, 3), (7, 13), (15,∞), (24,∞), (∞, 16)};
• η6 = {(4, 3), (7, 13), (15,∞), (∞, 16), (∞, 26)};
• η7 = {(4, 3), (7, 13), (16, 20), (24,∞), (∞, 16)};
• η8 = {(4, 3), (7, 13), (16, 20), (∞, 16), (∞, 26)};
• η9 = {(4, 3), (7, 13), (24,∞), (∞, 12), (∞, 16)};
• η10 = {(4, 3), (7, 13), (11, 17), (15,∞), (24,∞)}.

Thus for this semigroup bedim(S) = 5. We consider η = η1 =
{(4, 3), (7, 13), (∞, 12), (∞, 16), (∞, 26)} and we want to show that η ∈ R(S).

We have η1 = 〈〈η〉〉 = {(4, 3), (7, 13), (11, 17), (14,∞), (16, 20), (24,∞),
(∞, 12), (∞, 16), (∞, 26)}.

In fact

– α1 = (11, 17) is reducible by η because we have 1Δ
η(α1) 
= ∅ since (4, 3) .

(7, 13) = (11, 16) ∈ 〈η〉⊕. Furthermore 1δ
η(α1) = 16.

Since 1δ
S(α1) = 16 we need only to find an element of the type (x, 16) ∈

〈η〉⊕ with x > 11. The element (∞, 16) ∈ η satisfies this property.
– α2 = (14,∞) is reducible by η because we have 1Δ

η(α2) 
= ∅; in fact we have
2(7, 13) = (14, 26) ∈ 〈η〉⊕. Furthermore 1δ

η(α2) = 26.
Since ỹ = 18, for all

y ∈ Yη(α2) = {y ∈ {1δη(α2) = 26, . . . ,max{ỹ, 1δ
η(α2)} + e2 − 1 = 28|(14, y) ∈ S} =

= {26, 27, 28},
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we need to find an element of the type (x, y) ∈ 〈η〉⊕ with x > 14. The following
elements of 〈η〉⊕ satisfy this property:

(∞, 26), 9(4, 3) = (36, 27), 5(4, 3). (7, 13) = (27, 28).

– α3 = (16, 20) is reducible by η. In fact we have 1Δ
η(α3) 
= ∅; since 4(4, 3) =

(16, 12) ∈ 〈η〉⊕. Furthermore 1δ
η(α3) = 12.

Since 1δ
S(α3) = 19, for all y ∈ Yη(α3) = {12, 15, 16, 18, 19} we need to

find an element of the type (x, y) ∈ 〈η〉⊕ with x > 16. The following elements
of 〈η〉⊕ satisfy this property:

(∞, 12), 5(4, 3) = (20, 15), (∞, 16), 6(4, 3) = (24, 18),

(4, 3). (∞, 16) = (∞, 19).

– α4 = (24,∞) is reducible by η. In fact 1Δ
η(α4) 
= ∅ since 6(4, 3) = (24, 18) ∈

〈η〉⊕. Thus 1δ
η(α4) = 18. Since ỹ = 24, for all

y ∈ Yη(α4) = {y ∈ {1δη(α4) = 18, . . . ,max{ỹ, 1δ
η(α4)} + e2 − 1 = 26|(24, y) ∈ S} =

= {18, 19, 21, 22, 24, 25, 26},

we need to find an element of the type (x, y) ∈ 〈η〉⊕ with x > 24. The following
elements of 〈η〉⊕ satisfy this property:

2(4, 3). (∞, 12) = (∞, 18) (4, 3). (∞, 16) = (∞, 19),

3(4, 3). (∞, 12) = (∞, 21), 2(4, 3). (∞, 16) = (∞, 22),

2(∞, 12) = (∞, 24), (7, 13). (∞, 12) = (∞, 25), (∞, 26).

Notice that α5 = (15,∞) is not reducible by η, but it is reducible by η1. In fact

1Δ
η1
(α5) 
= ∅ since (4, 3) . (11, 17) = (15, 20) ∈ 〈η1〉⊕. Thus 1δ

η1
(α5) = 20.

Since ỹ = 18, for all

y∈Yη1
(α5) = {y∈{1δη1

(α5) = 20, . . . ,max{ỹ, 1δ
η1
(α5)} + e2− 1 = 22|(14, y)∈S} =

= {20, 21, 22},

we need to find an element of the type (x, y) ∈ 〈η1〉⊕ with x > 15. The following
elements of 〈η1〉⊕ satisfy this property:

(16, 20), 3(4, 3). (∞, 12) = (∞, 21), 3(4, 3). (7, 13) = (19, 22).
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Thus 〈〈η1〉〉 = IA(S), and this means η ∈ R(S) since red(η) = IA(S). Hence
Bedim(S) ≤ 5 = |η|. Since we have

5 = bedim(S) ≤ edim(S) ≤ Bedim(S) ≤ 5,

we can finally deduce that edim(S) = 5 and η is an msor.
It is possible to check that all the minimal hitting sets previously found satisfy

the reducibility condition, thus they are all msor for S.

All the previous computations were realized implementing all the previous
algorithms in GAP [17].

4 Properties of Embedding Dimension

4.1 Relationship Between Embedding Dimension of a Ring
and Embedding Dimension of Its Value Semigroup

Theorem 39 Let S be a good semigroup of N2 such that there exists an algebroid
curve R with v(R) = S. Then edim(S) ≥ edim(R).

Proof Let us consider an algebroid curveR such that v(R) = S and denote by ε the
embedding dimension of S. Thus there exists η ⊂ IA(S), msor of S, with |η| = ε.
We want to prove edim(R) ≤ ε.

We denote by

η = {α1, . . . ,αε},

and we want to show that it is possible to choose elements φ1, . . . , φε in R, such
that:

– v(φj ) = αj for each j = 1, . . . , ε;
– v(K[[φ1, . . . , φε]]) is a good semigroup.

Denote by R1 = K[[φ1, . . . , φε]]. By construction, for each choice of the
elements φj , the subsemigroup v(R1) ⊆ N

2 always satisfies the properties (G1) and
(G3) of good semigroups, thus we need to guarantee the existence of a conductor.
This can be done by forcing in v the presence of vectors that fulfil the conditions of
Proposition 13 (it is not difficult to do that by accordingly adding to the φi elements
of R with value greater than its conductor).

Now,

η ⊆ v(R1) ⊆ v(R) = S,
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and, since η is a msor of S and v(R1) is a good semigroup, we have v(R1) = S.
Notice that R1 ⊆ R with v(R) = v(R1) implies that R1 = R. In fact, considered
an element r ∈ R, there exists an element r1 ∈ R1 such that v(r) = v(r1). Thus we
can fin a k1 ∈ K such that v(r − k1r1) is strictly greater than v(r). We eventually
find kj ∈ K and rj ∈ R1 such that v(r −∑ kj rj ) ≥ c(S) = c(v(R1)), implying
that r −∑ kj rj ∈ R1, and r ∈ R1.

Thus edim(R) = edim(R1) ≤ ε = edim(S).

We want to show that the inequality can be strict and we want to analyze the
cases when this happens.

Example 40 Let us consider the ring R ∼= K[[(t4, u4), (t6 + t9, u6 + u7), (2t15 +
t18, 2u13 + u14)]], and the corresponding semigroup v(R) (Fig. 5).

We observe that R = K[[(t4, u4), (t6+ t9, u6+ u7), (2t15+ t18, 2u13+ u14)]] =
K[[(t4, u4), (t6 + t9, u6 + u7)]], in fact:

(2t15 + t18, 2u13 + u14) = (t6 + t9, u6 + u7)2 − (t4, u4)3.

We have that edim(R)= 2, but edim(v(R))= 3, sinceM = {(4, 4), (6, 6), (15, 13)}
is the only hitting set of the semigroup v(R)

This fact happens because in the ring R the element of value (15, 13) is obtained
by the sum of the elements of value (4, 4) and (6, 6) because of a cancellation.

This situation cannot be controlled by the property (G3) of the good semigroups.
This gap in embedding dimension can be justified by the fact that this piece of
information is lost in the passage from the ring to the semigroup. For this value
semigroup it is possible to find a ring, namely T = K[[(t4, u4), (t6, u6), (t15, u13)]]
with v(T ) = v(R), and such that edim(T ) = edim(v(T )). This situation is not
guaranteed to happen in general, as it is shown in the following example.

Example 41 Let us consider the ringR = [[(t4, u3), (t7, u13), (t11, u17), (t16, u20)]]
that has embedding dimension 4. Its value semigroup is the good semigroup that
appeared in Example 38, where we proved that its embedding dimension is five.

We focus on one of its msor, namely η = {(4, 3), (7, 13), (11, 17), (16, 20),
(∞, 26)}. If we analyze in detail what happens, we observe that (t23, u33) =
(t7, u13) · (t16, u20) ∈ R and (t23, u26) = (t11, u17) · (t12, u9) ∈ R, thus
(0, u26 − u33) ∈ R. But η = {(4, 3), (7, 13), (11, 17), (16, 20)} is not a sor, since
we have seen in the Example 38 that all MHS have to contain either (∞, 26) or
(24,∞). This fact happens because in the ring R all the elements of value (x, 26)
with x ≥ 25 appear because we have a complete cancellation on the first component
(i.e. we obtain 0 on the first component).

In the semiring 〈η〉⊕ the existence of the elements (23, 33) and (23, 26)
guarantees, by property (G3) of the good semigroups, only the existence of one
element of value (>23, 26), but not the presence of all elements (x, 26), with
x ≥ 24.

Also in this case in the semigroup we lose a piece of information present in the
ring.
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Fig. 5 Semigroup v(R) of the Example 40

Differently from the previous example, it is not possible to find a ring T such
that v(T ) = v(R) and edim(T ) = edim(v(T )) = 5. To see this, let us suppose by
contradiction that such a ring T exists. Let us considerψ1, . . . , ψ5 ∈ T , such that

– v(ψ1) = (4, 3);
– v(ψ2) = (7, 13);
– v(ψ3) = (11, 17);
– v(ψ4) = (16, 20);
– v(ψ5) = (∞, 26).

From the proof of Theorem 39 we have that T ∼= K[[ψ1, ψ2, ψ3, ψ4, ψ5]].
Let us consider the ring T ′ ∼= K[[ψ1, ψ2, ψ3, ψ4]]. We must have v(T ′) � v(T )

because otherwise T = T ′, against the fact that edim(T ) = 5. Now we have that
{(4, 3), (7, 13), (11, 17), (16, 20)} ⊆ v(T ′) and it is not difficult to show that there
exists only one good semigroupD containing these vectors and contained in v(T ).
The good semigroupD is the one appeared in [1, Example 2.16] as the first example
of a good semigroup that cannot be a value semigroup of a ring. Thus v(T ′) = v(T )
and we have a contradiction.
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4.2 Relationship Between Embedding Dimension
and Multiplicity

Now we want to prove the following theorem.

Theorem 42 Let S be a good semigroup. Denote by e = (e1, e2) the multiplicity
vector of S. Then edim(S) ≤ e1 + e2.

We recall that, if S is a numerical semigroup with multiplicity e(S), it is possible
to prove that edim(S) ≤ e(S) using the fact that the set Ap(S) \ {0} ∪ {e(S)} is a
system of generators of S with cardinality e(S). Using the properties of the Apéry
set of a good semigroup, introduced in [9], we wish to prove the same inequality for
good semigroups contained in N

2.
First of all, we recall the notion of Apéry set and levels.

Definition 43 The Apéry set of the good semigroup S (with respect to the
multiplicity) is defined as the set:

Ap(S) = {α ∈ S : α − e /∈ S}.

We say that (α1, α2) ≤≤ (β1, β2) if and only if (α1, α2) = (β1, β2) or (α1, α2) 
=
(β1, β2) and we have (α1, α2) 1 (β1, β2) where the last means α1 < β1 and α2 <

β2.
As described in [9], it is possible to build up a partition of the Apéry set, in the

following way. Let us define,D0 = ∅:

B(i) = {α ∈ Ap(S)\(∪j<iD(j)) : α is maximal with respect to ≤≤}
C(i) = {α ∈ B(i) : α = β1 ⊕ β2 for some β1,β2 ∈ B(i) \ {α}}

D(i) = B(i)\C(i).
For a certain N ∈ N, we have Ap(S) = ∪Ni=1D

(i) and D(i) ∩ D(j) = ∅. In
according to notation of [9], we rename these sets in an increasing order setting
Ai = D(N+1−i). Thus we have

Ap(S) = ∪Ni=1Ai.

Notice that the first levelA1 of Ap(S) consists only of the zero vector. It was proved
[9, Thm. 3.4] that N = e1 + e2, a key result in the proof of our inequality.

In order to simplify the notation in the following results we define the set
Ap(S) = (Ap(S) \ {0}) ∪ {e}. Since we are only interchanging the role of the
multiplicity vector and the zero vector, we have

Ap(S) = ∪Ni=1A
′
i ,

where Ai = A′i for i = 2, . . . , N , and A′1 = {e}.
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In order to prove Theorem 42, it is useful to introduce the following new
definition of reducibility of an element of IA(S) by a subset η ⊆ IA(S).
Definition 44 Let α = (α1, α2) ∈ IA(S) and η ⊆ IA(S).
– Case (α1, α2) ∈ IAf (S). Then α is ρ-reducible by η if

1. ∃h1, . . . ,hk ∈ η such that h1 . · · · . hk = (β1, α2) with β1 < α1.
2. ∀x ∈ {β1, . . . , 2δ

S(α)} such that (x, α2) ∈ S we can find j1, . . . , j l ∈ η such
that j 1 . · · · . j l = (x, β2) with β2 > α2.

– Case α = (∞, α2) ∈ IA(S)∞. Denote, as we did before, by x̃ the minimal
element such that (x, α2) ∈ S for all x ≥ x̃. Then (∞, α2) is ρ-reducible by η
if

1. ∃h1, . . . ,hk ∈ η such that h1 . · · · . hk = (β1, α2) with β1 <∞.
2. ∀x̃ ∈ {x ∈ {β1, . . . ,max(β1, x̃) + e1 − 1} : (x, α2) ∈ S} we can find

j1, . . . , j l ∈ η such that j 1 . · · · . j l = (x̃, β2) with β2 > α2.

– Case α = (α1,∞) ∈ IA(S)∞. Such an element is never ρ-reducible by η.

Remark 45 If an element of IA(S) is ρ-reducible by η, it is also reducible by η.

Remark 46 If an element (α1, α2) of IA(S) is ρ-reducible by η, then it is also ρ-
reducible by ηα1 = {(x, y) ∈ η : x < α1}. In fact, the elements required to satisfy
the condition 1. and 2. of Definition 44 cannot be obtained by using irreducible
absolute elements of S with first component bigger than α1 (because we only allow
the operation. to produce them).

Now we write

IA(S) = {α(1) = (α(1)1 , α
(1)
2 ), . . . ,α(n) = (α(n)1 , α

(n)
2 )},

where the elements are ordered in decreasing order with respect to the first
coordinate, i.e. if j < l, then α(j)1 > α

(l)
1 or α(j)1 = α

(l)
1 = ∞ and α(j)2 > α

(l)
2 .

Let us consider the following algorithm to produce, starting from IA(S), a set η that
is still a sor for S.

input : The set of irreducible absolute elements IA(S)
output: A subset η ⊆ IA(S)
η←− IA(S)
for k← 1 to n do

if α(k) is ρ-reducible by IA(S) \ {α(k)} then
η←− η \ {α(k)}

end
end
return η

Algorithm 3: A way to produce a sor using ρ-reducibility
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Proposition 47 The output η of Algorithm 3 is a sor for S

Proof Let us prove by induction on k that the subset η produced by the algorithm is
a sor for S. By Theorem 31, we can do it by showing that it satisfies the reducibility
condition. At the first step η = IA(S), hence we have a sor for S. Suppose that
at the kth step of the algorithm η ∈ R(S) and let us show that it still satisfies
the reducibility condition after the k + 1th step. If α(k+1) is not ρ-reducible by
IA(S) \ {α(k+1)}, then we have nothing to prove since η remains unchanged. Now
let us suppose that α(k+1) is ρ-reducible by IA(S) \ {α(k+1)}. We need to prove
that η \ {α(k+1)} = η′ ∈ R(S). By Remark 46, α(k+1) is ρ-reducible by the set
W = {(α1, α2) ∈ IA(S) \ {α(k+1)} : α1 < α

(k+1)
1 } = {α(k+2), . . . ,α(n)}. But at this

step of the algorithmW ⊆ η′, thus α(k+1) is ρ-reducible by η′, thus also reducible by
η and this means that η ⊆ red(η′). By the inductive step IA(S) = red(η) ⊆ red(η′),
hence η′ ∈ R(S) and it is still a sor.

Proposition 48 If α = (α1, α2) ∈ IA(S) is such that 2Δ
S(α) 
⊆ Ap(S), then α is

ρ-reducible by IA(S) \ {α}.
Proof Let us choose (β1, α2) /∈ Ap(S) with the largest possible β1. Thus, there
exists an integer k ≥ 1 such that (α̃1, α̃2). k(e1, e2) = (β1, α2), where (α̃1, α̃2) ∈
Ap(S) ∪ {0}. Notice that, if (α̃1, α̃2) = 0, then k ≥ 2, otherwise we would have
(β1, α2) = (e1, e2) ∈ Ap(S).

If (α̃1, α̃2) 
= 0, we write it as

(α̃1, α̃2) = h1 . · · · . hl ,

where the hj are irreducible elements of S.

Each hj = (αj1 , αj2 ) is an absolute element. In fact, if it were possible to write it
as

(x, α
j

2 )⊕ (αj1 , y), with x > αj1 and y > αj2 ,

and (x, αj2 ), (α
j

1 , y) ∈ S, then it would follow that

h1 . · · · . (x, αj2 ). · · · . hl . k(e1, e2) = (γ1, α2) /∈ Ap(S),

and γ1 > β1, this is against the maximality of β1.
Thus hi ∈ IA(S) for all i (and they are clearly distinct from (α1, α2)).
Now, if (e1, e2) ∈ IA(S), then

(β1, α2) = k(e1, e2). h1 . · · · . hl

is already the element required to fulfill condition 1. in Definition 44.
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Thus, let us suppose that (e1, e2) = (ẽ1, e2) ⊕ (e1, ẽ2), where ẽ1 > e1, ẽ2 >

e2 and (ẽ1, e2), (e1, ẽ2) ∈ IA(S) \ {(α1, α2)}. Notice that α cannot be of the type
(ẽ1, e2) or (e1, ẽ2) because in both cases we would have 2Δ

S(α) ⊆ Ap(S) against
our hypothesis.

First of all notice that ẽ1 
= ∞. In fact, if it were equal to ∞, then there would
exist x such that (x, e2) ∈ S for all x ≥ x. This implies that

k(x, e2). h1 . · · · . hl = (kx + α̃1, α2) ∈ S

for all x ≥ x. Thus (α1, α2) = (∞, α2) and this is a contradiction since

(α1, α2) = (∞, α2) = k(∞, e2). h1 . · · · . hl ,

is not an element of IA(S) being reducible (recall that if h1 . · · · . hl = 0, then
k ≥ 2). Thus ẽ1 
= ∞, and the element

(α1, α2) = k(ẽ1, e2). h1 . · · · . hl ,

is the required element that satisfies the condition 1. of Definition 44.
Now we want to show that we can satisfy the condition 2. of ρ-reducibility. Let

us suppose that α = (α1, α2) ∈ IAf (S) (all the following considerations can be
adapted to the case (α1, α2) = (∞, α2)).

We have to show that for each x̃ ∈ X = {x ∈ {β1, . . . , 2δ
S(α)} : (x, α2) ∈ S}

we can find j 1, . . . , j l ∈ η such that j1 . · · · . j l = (x̃, β2) with β2 > α2.
Thus, let us consider an arbitrary x̃ ∈ X. Since (x̃, α2), (α1, α2) ∈ S, by the (G3)

property of Definition 1, there exists β2 > α2 such that (x̃, β2) ∈ S.
Theorem 10 ensures that we can write

(x̃, β2) =
m⊕

i=1

(

n⊙

j=1

γ ji ), γ ji ∈ IA(S).

It must exist an index i such that

n⊙

j=1

γ ji
= (x̃, β̃2).

Notice that γ ji
∈ IA(S) \ {(α1, α2)} for all j = 1, . . . , n (they all have first

coordinate less than x̃ ≤ α1). Furthermore β̃2 ≥ β2 > α2, thus it is the element
which we were looking for in order to satisfy the condition 2. of ρ-reducibility.
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As a consequence of Proposition 48 and Algorithm 3, we can immediately
deduce the following Corollary.

Corollary 49 Let S be a good semigroup. Then the set

ηS = {α ∈ IA(S) : 2Δ
S(α) ⊆ Ap(S)}

is a sor for S.

Now we are ready to give a proof of Theorem 42.

Proof (Proof of Theorem 42) Using Corollary 49 and the definition of embedding
dimension, it suffices to show that |ηS | ≤ e1 + e2.

Let us write ηS = {h(1) = (α(1)1 , α
(1)
2 ), . . . ,h

(k) = (α(k)1 , α
(k)
2 )} where if i < j

then α(i)2 < α
(j)

2 or α(i)2 = α(j)2 = ∞ with α(i)1 < α
(j)

2 . Furthermore we denote by
c = (c1, c2) the conductor of S. Now to each element h(i) of ηS we associate an

element h
(i)

in the following way:

– Case h(i) = (α1,∞). Then we set h
(i) = (α1, c2 + i).

– Case h(i) = (α1, α2), with α2 
= ∞. Then we set h
(i) = min(2ΔS(h(i))∪{h(i)}).

We consider the set η′ = {h(1), . . . ,h(k)}, and we want to show that distinct
elements of η′ belong to distinct levels of the Apéry set of S. In order to do that we

consider two arbitrary elements h
(i)

and h
(j)

of η′ and we prove that they cannot
belong to the same level of the Apéry set. We have four possible configurations:

– Case h
(i) = (α(i)1 , α

(i)
2 ) and h

(j) = (α(j)1 , α
(j)

2 ), with α(i)1 < α
(j)

1 and α(i)2 < α
(j)

2 .

In this case h
(i) 1 h

(j)
and from definition of Apéry levels it follows that

h
(j) ∈ An and h

(i) ∈ Am with m < n.

– Case h
(i) = (α(i)1 , α

(i)
2 ) and h

(j) = (α(j)1 , α
(j)

2 ), with α(i)1 < α
(j)

1 and α(i)2 = α(j)2 .
This configuration is not possible, because it is against the minimality of the

element h
(j)

(it is easy to check that this situation cannot involve elements that
come from h(i) of the type (α1,∞)).

– Case h
(i) = (α(i)1 , α

(i)
2 ) and h

(j) = (α(j)1 , α
(j)
2 ), with α(i)1 < α

(j)
1 and α(i)2 > α

(j)
2 .

This configuration is not possible, since the element h
(i)⊕h

(j) ∈ S is against

the minimality of the element h
(j)

(it is also easy to check that this situation
cannot involve elements that come from h(i) of the type (α1,∞)).

– Case h
(i) = (α(i)1 , α

(i)
2 ) and h

(j) = (α(j)1 , α
(j)

2 ), with α(i)1 = α(j)1 and α(i)2 > α
(j)

2 .

Suppose by contradiction that there exists n ∈ N such that h
(i)
,h
(j) ∈ An. From

the definition of ηS it follows that ΔS2 (h
(j)
) ⊆ Ap(S). Thus from Lemma 3.3

(3) of [9], the minimal element β of ΔS2 (h
(j)
) ∈ Am with m ≤ n. On the other
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hand h
(j) ≤ β, thus β ∈ Al with l ≥ n. Thus β ∈ An and this is a contradiction

because we have

∈An︷︸︸︷
h
(i) ⊕

∈An︷︸︸︷
β = h

(j) ∈ An,

that is against the definition of Apéry set level. Since Theorem 3.4 of [9], states
that the levels of the Apéry Set are exactly e1 + e2, it follows that

edim(S) ≤ |ηS | = |η′| ≤ e1 + e2,

and the proof of Theorem 42 is complete.

We recall that a good semigroup is said to be Arf if and only if S(α) = {β ∈
S|β ≥ α} is a semigroup for any α ∈ S. In [1, Proposition 3.19 and Corollary
5.8] the authors proved that an Arf semigroup can be always seen as the value
semigroup of an Arf ring. From this result and Theorem 42 we can deduce the
following corollary.

Corollary 50 Let S be an Arf good subsemigroup of N2. Then, denoted as usual by
e = (e1, e2) the multiplicity vector of S, we have edim(S) = e1 + e2.

Proof By Theorem 42 we have edim(S) ≤ e1 + e2. Denote by R an Arf ring such
that v(R) = S. By Theorem 39 we have edim(S) ≥ edim(R). But R is an Arf ring,
thus its embedding dimension is equal to its multiplicity (cf.[14, Theorem 2.2]).
Since the multiplicity of R is also equal to e1 + e2, we have

e1 + e2 = edim(R) ≤ edim(S) ≤ e1 + e2,

and the proof of the corollary is complete.

We say that a good semigroup S ⊆ N
2 is maximal embedding dimension if

edim(S) = e1 + e2. Thus, Arf good semigroups constitute a particular class of
maximal embedding dimension semigroups. It is known that a numerical semigroup
is maximal embedding dimension if and only ifM+M = e+M whereM = S\{0}
is its maximal ideal and e is its multiplicity (cf.[16]).

Thus, we propose the following conjecture.

Conjecture 51 Let S be a good subsemigroup of N2. Then S is maximal embedding
dimension if and only if M +M = e +M , where e is its multiplicity vector and
M = S \ {0}.

At the moment we have tested Conjecture 51 for a large number of good
semigroup, and we have a proof of the fact that M + M = e + M implies
edim(S) = e1 + e2.
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On Multi-Index Filtrations Associated
to Weierstraß Semigroups

Julio José Moyano-Fernández

Abstract This paper is a survey on the main techniques involved in the computation
of the Weierstraß semigroup at several points of curves defined over perfect fields,
with special emphasis on the case of two points. Some hints about the usage of
some packages of the computer algebra software SINGULAR are also given; these
are however only valid for curves defined over Fp with p a prime number.

Keywords Algebraic curve · Adjunction theory · Normalisation ·
Weierstraß semigroup

1 Introduction

There are several classical problems in the theory of algebraic curves which are
interesting from a computational point of view. One of them is the computation of
the Weierstraß semigroup of a smooth projective algebraic curve χ̃ defined over a
field F at a rational point P , together with a rational function fm ∈ F(χ̃) regular
outside P and achieving a pole at P of order m, for each m in this semigroup. This
problem is solved with the aid of the adjunction theory for plane curves, profusely
developed by A. von Brill and M. Noether in the nineteenth century (see [3, 4, 27])
so that we assume the knowledge of a singular plane birrational model χ for the
smooth curve χ̃ .

Let F be a perfect field. For a smooth projective algebraic curve χ̃ defined
over F and rational points P1, . . . , Pr on χ̃ , we consider the family of finitely
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dimensional vector subspaces of F(χ̃) given by the Riemann-Roch vector spaces
L(mP ) = L(m1P1 + m2P2 + · · · +mrPr), where m = (m1, . . . ,mr) ∈ Z

r . This
family gives rise to a Zr -multi-index filtration on the F-algebraA of the affine curve
χ̃ \ {P1, . . . , Pr }, since one has A = ⋃m∈Zr L(mP). This multi-index filtration is
related to Weierstraß semigroups (see Delgado [10]) and, in case of finite fields, to
the methodology for trying to improve the Goppa estimation of the minimal distance
of algebraic-geometrical codes (also called Goppa codes), see for instance Carvalho
and Torres [9]. A connection of that filtration with global geometrical-topological
aspects in a particular case was shown by Campillo et al. [6]. Moreover, Poincaré
series associated to these filtrations have been studied by the author in [25], and by
Moyano-Fernández et al. [26].

Thus, a natural question is to provide a computational method in order to estimate
the values of dimF L(mP ) = �(mP) for m ∈ Z

r . More precisely, it would be
convenient to estimate and compute values of type �((m + ε)P ) − �(mP) where
ε ∈ Z

r is a vector whose components are 0 or 1. This can be done by extending
the method developed by Campillo and Farrán [8] in the case r = 1, based on the
knowledge of a plane model χ for χ̃ (with singularities) and representing the global
regular differentials in terms of adjoint curves to χ̃ .

This work is intended as an attempt to summarize the basic facts in the study of
the theory of Weierstraß semigroups which turned out to be relevant for the Goppa
codes; we will touch therefore only a few aspects of the theory rather than present a
comprehensive treatise on the topic. We neither claim novelty in most of the results,
which are worked out from Campillo and Farrán [8], Campillo and Castellanos [5]
or Matthews [23], mainly.

The paper is organised as follows: Sect. 2 is devoted to fix the algebraic-
geometrical prerequisites. Section 3 deals with the study of more specific questions
concerning to our purpose, namely the adjunction theory of curves, with the
remarkable Brill-Noether Theorem. In Sect. 4 we define the Weierstraß semigroup
at several points and describe two methods to compute values of the form �((m +
ε)P ) − �(mP). The last section is devoted to show and explain some procedures
implemented in SINGULAR [13] which are based on Sect. 4.

Notice the practical relevance of these ideas in view of the algebraic-geometric
coding theory: the Weierstraß semigroup plays an important role in the decoding
procedure of Feng and Rao, see e.g. Campillo and Farrán [7], or Høholdt et al. [17].
Weierstraß semigroups are also helpful in quantum coding theory, see for instance
Hernando Carrillo et al. [16]. For a recent account of the theory and the bibliography
we refer the reader to Martínez-Moro et al. [21, 22].

2 Terminology and Notation

Let F be a perfect field, and let F be a fixed algebraic closure of F. Let χ be an
absolutely irreducible projective algebraic curve defined over F. We distinguish
three types of points on χ , namely the geometric points, i.e. those with coordinates
on F; the rational points, i.e. those with coordinates on F; and the closed points,
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which are residue classes of geometric points under the action of the Galois group
of the field extension F/F, namely

P := {σ(p) : σ ∈ Gal(F/F)},

where p is a geometric point. Notice that closed points correspond one to one to
points on the curve χ viewed as an F-scheme which are closed for the Zariski
topology. Every closed point has an associated residue field F

′ which is a finite
extension of F. The degree of a closed point P is defined as the cardinal of its
conjugation class, which equals the degree of the extension F

′/F. In particular, P is
rational if and only if degP = 1.

2.1 Branches and Parametrizations

In this subsection we follow [8]. Let χ be an absolutely irreducible algebraic plane
curve defined over F, and consider a closed point P on χ , as well as the local
ring O := Oχ,P at P with maximal ideal m; write O for the semilocal ring of the
normalisation of χ at P , and let Ô be the completion of O with respect to the m-adic
topology. Each maximal ideal of O (or, equivalently, every minimal prime ideal p of
Ô) is said to be a branch of χ at P .

Let us now choose an affine chart containing P so that the curve χ has an
equation f (X, Y ) = 0, and set A := F[X,Y ]/(f (X, Y )) for the affine coordinate
ring; observe that O = AP , therefore

F ⊆ F[X,Y ]/(f (X, Y )) = A ⊆ AP = O.

Since F is perfect, we can apply Hensel’s lemma to find a finite field extensionK/F
such that K ⊆ ÂP = Ô is a coefficient field for Ô. Moreover, K is the integral

closure of F in Ô. Since Ô ⊆ Ô ∼= Ô, we deduce that

K ⊆ Ô/p ⊆ Ô/p = Ôm,

hence we can apply Hensel’s lemma again to obtain a finite extension K ′/K which

is a coefficient field for the local ring Ôm. Without loss of generality we can consider
P as the ideal (X, Y ) in K[[X,Y ]] so that Ô ∼= K[[X,Y ]]/(f (X, Y )). This implies
the existence of natural morphisms

K[[X,Y ]]/(f (X, Y )) ∼= Ô −→ Ô/p −→ K ′[[t]] ∼= Ôm

for any local uniformizing parameter t ∈ m \ m2. Notice that K can be consid-
ered isomorphic to the residue field at P . With these preliminaries as in [8], a
parametrization of the curve χ at the point P related to the coordinates X,Y is a
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K-algebra morphism ρ : K[[X,Y ]] −→ K ′[[t]] which is continuous for the (X, Y )-
adic and t-adic topologies and satisfies that Im(ρ) 
⊆ K ′ and ρ(f ) = 0. This is
indeed equivalent to give formal power series x(t), y(t) ∈ K ′[[t]] with x(t) 
= 0 or
y(t) 
= 0 such that f (x(t), y(t)) ≡ 0.

Let ρ : K[[X,Y ]] → K ′[[t]] and σ : K[[X,Y ]] → K ′′[[t]] be two parametrizations
of the same rational branch. The parametrization σ is said to be derivated from ρ if
there is a formal power series τ (u) ∈ K ′′[[u]] with positive order and a continuous
K-algebra morphism α : K ′[[t]] → K ′′[[u]] with α(t) = τ (u) such that σ = α ◦ ρ.
We write σ 4 ρ. The relation 4 is a partial preorder. Two parametrizations σ and
ρ are called equivalent if σ 4 ρ and ρ 4 σ . Those parametrizations being minimal
with respect to 4 up to equivalence are called primitive. Equivalent primitive
parametrizations are called rational. They always exist and are invariant under the
action of the Galois group of the extension K/K . Rational parametrizations are in
one to one correspondence with rational branches of the curve (cf. Campillo and
Castellanos [5]).

2.2 Divisors on Smooth Curves

Let us assume χ to be non-singular (or, equivalently, smooth, since F is perfect) for
the remainder of the section. Let F(χ) be the field of rational functions of χ . Let P
be a closed point on χ . The local ring Oχ,P of χ at P with maximal ideal mχ,P is
therefore a discrete valuation ring with associated discrete valuation vP . An element
f ∈ Oχ,P is said to vanish at P (or to have a zero at P ) if f ∈ mχ,P . A rational
function f such that f /∈ Oχ,P is said to have a pole at P . The order of the pole of
f at P is given by |vP (f )|.

A rational divisor D over F is a finite linear combination of closed points P ∈ χ
with integer coefficients nP , that is, D = ∑P nP P . If nP ≥ 0 for all P , then D is
called effective, and we writeD ≥ 0; for two divisorsD,D′ we writeD ≥ D′ if the
divisor D −D′ is effective. We define the degree of D as degD :=∑P nP degP ,
and the support of D as the set supp(D) = {P ∈ χ closed | nP 
= 0

}
. The set

of rational divisors on F form an abelian group. Rational functions define principal
divisors, namely divisors of the form

(f ) :=
∑

P

ordP (f )P.

A rational divisorD =∑ nPP defines a F-vector space

L(D) =
{
f ∈ F(χ)∗ | (f ) ≥ −D

}
∪ {0},

that is, the set of rational functions f with poles only at the points P with nP ≥ 0
(and, furthermore, with the pole order of f at P must be less or equal than nP ), and
if nP < 0 such functions must have a zero at P of order greater or equal than nP .
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The dimension �(D) := dimF L(D) is finite. Two elements f, g ∈ L(D) satisfy
(f ) + D = (g) + D if and only if f = λg, λ ∈ F, i.e., if and only if f = λg for
a constant λ ∈ F. Therefore the set |D| of effective divisors equivalent to D can be
identified with the projective space PL(D) of dimension �(D) − 1. The set |D| is
called a complete linear system of D.

Let 	F(F(χ)) be the module of differentials on F(χ). A differential form ω ∈
	F(F(χ)) defines a divisor (ω) := ∑P ordP (ω)P , which is called canonical. A
rational divisor D defines again a F-vector space

	(D) := {ω ∈ 	F(F(χ))
∗ | (ω) ≥ D} ∪ {0}

of finite dimension, denoted by i(D). The interplay of the dimensions �(D) and
i(D) is a big milestone in the theory of algebraic curves; first notice that the
dimension �(D) is bounded in the following sense:

Proposition 1 (Riemann’s Inequality) There exists a nonnegative integer g such
that �(D) ≥ degD + 1− g for any rational divisorD on χ .

Definition 1 The smallest integer g satisfying the Riemann’s inequality is called
the genus of χ .

Riemann’s inequality tells us that if D is a large divisor, L(D) is also large. But
we can be a bit more precise by considering i(D):

Theorem 1 (Riemann-Roch) For D a rational divisor, �(D) − i(D) = degD +
1− g.

3 Brill-Noether Theory for Curves

This section contains a summary of the classic theory of adjunction for curves,
started by Riemann [28] and developed by Brill and Noether in the nineteenth
century [4].

Let P be a closed point on a plane curve χ as in the previous section. Let CP be
the annihilator of the O-module O/O, i.e.

CP = CO/O = {z ∈ O | zO ⊆ O}.

This set is the largest ideal in O which is also an ideal in O, and is called the
conductor ideal of the extension O/O. Since O is a semilocal Dedekind domain
with maximal ideals mQ1, . . . ,mQd (whereQi denote the rational branches of χ at
P ), the conductor ideal has a unique factorisation

CP =
d∏

i=1

m
dQi
Qi
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as ideal in O. The exponents dQi can be easily computed by means of the Dedekind
formula (see Zariski [30]): if (xi(ti), yi(ti )) is a rational parametrisation of Qi one
has

dQi = ordtQi

(
fY (X(tQi ), Y (tQi ))

X′(tQi )

)
= ordtQi

(
fX(X(tQi ), Y (tQi ))

Y ′(tQi )

)
. (1)

Let n : χ̃ → χ be the normalisation morphism of χ . Notice that χ̃ is a
nonsingular curve with F(χ̃) = F(χ). Let be O = Oχ,P and let O be the

normalisation of O. If Q ∈ n−1({P }), then Q is nonsingular, hence CP · O = m
dQ
Q

for a nonnegative integer dQ. We define the effective divisor

A :=
∑

P

∑

Q∈n−1({P })
dQ ·Q

which is called the adjunction divisor of χ . Notice that A is a well-defined divisor
on χ̃ (in fact, if P is nonsingular, there is only one Q ∈ n−1({P }) and in this case
dQ = 0). This implies in particular that the support of A consists of all rational
branches of χ at singular points. Moreover, by setting nP := dimF O/CP we have

nP =
∑

Q∈n−1({P })
dQ

for every P on χ . Therefore degA = ∑P∈χ nP (cf. Arbarello et al. [1, Appendix
A]; also Tsfasman and Vlăduţ [29, 2.5.2]).

Recall that F is a perfect field. Let F := F(X0,X1,X2) be a homogeneous
(absolutely irreducible) polynomial of degree d over F which defines the projective
plane curve χ . Let Fd be the set of all homogeneous polynomials in three variables
of degree d . Let i : χ → P

2
F

be the embedding of χ into the projective plane and
N : χ̃ → P

2
F

be the natural morphism given by N = i ◦ n. A rational divisor D
on P

2
F

such that χ is not contained in supp(D) is called an adjoint divisor of χ if
the pull-back divisor N∗D satisfies supp(A) ⊆ supp(N∗D) for A the adjunction
divisor of χ . We may consider the analogous notion for homogeneous polynomials.
For H ∈ Fd with F � H we consider the pull-back N∗H , which is actually the
intersection divisor on χ̃ cut out by the plane curve defined byH on P

2
F

, namely

N∗H =
∑

Q∈χ̃
rQ ·Q, (2)

with rQ = ordQ(h), with h ∈ Oχ,n(Q) a local equation of the curve defined byH at
the point n(Q). If H satisfies additionally that N∗D ≥ A, then it will be called an
adjoint form on χ , and the curve defined by H will be called an adjoint curve to χ .
Notice that adjoint curves there always exist (consider e.g. the polars of the curve,
cf. Brieskorn and Knörrer [2, p. 599]).
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Let d := degχ . The differentials globally defined at χ are in one to one
correspondence with adjoint curves on χ̃ of degree d−3, as stated in the following:

Theorem 2 Let An be the set of adjoints of degree n of the curve χ embedded in
P

2
F

, let Kχ̃ be a canonical divisor on χ̃ and set d := degχ . For n = d − 3 there is
an F-isomorphism of complete linear systems

An −→ |Kχ̃ |
D �−→ N∗D −A.

The key idea is to realise that the map is injective since n = d − 3 < d; see
Gorenstein [12, p. 433] or [29, 2.2.1] for further details.

In practice, we know a priori the equation of the plane curve χ (defined over a
perfect field F) given by the form F ∈ Fd and the data of a certain divisor R =∑
Q′ rQ′ ·Q′ (for finitely many pointsQ′ on χ̃) which is effective and rational over

F, involving a finite number of rational branches Q of χ and their corresponding
coefficients. Moreover, we are able to compute the adjunction divisor

A =
∑

Q

dQ ·Q

of χ . Our purpose is the interpretation of the condition of being an adjoint form—
called adjoint condition—given by (2) in terms of equations. More generally, we are
interesting in finding some adjoint form H ∈ F[X0,X1,X2] satisfying

N∗H ≥ A+ R. (3)

This procedure is known as computing adjoint forms with base conditions (see [8],
§4). Let us sketch briefly this process:

1. Choose a positive integer ñ ∈ N in such a way that there exists an adjoint of
degree ñ not being a multiple of F and satisfying (3). A bound for ñ can be
found in Haché [14].

2. Take a general, arbitrary form H ∈ Fñ i.e., take a homogeneous polynomial
in three variables of degree ñ leaving its coefficients as indeterminates (that is,
H(X0,X1,X2) =∑i+j+k=ñ λi,j,kXi0Xj1Xk2).

3. Compute a rational primitive parametrization
(
X(t), Y (t)

)
of χ at every branch

involved in the support of the adjunction divisor A and the divisor R.
4. Get the support of the adjunction divisor A from the conductor ideal via the

Dedekind formula (1).
5. Consider the coefficient rQ of the divisor R atQ, and thus the local condition at
Q imposed on H by (3) is given by

ordth(X(t), Y (t)) ≥ dQ + rQ, (4)
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with h the local affine equation of H at Q. The inequality (4) expresses a linear
condition (given by a linear inequation) on the coefficients λi,j,k of h.

6. The required linear equations are a consequence of the vanishing of those terms,
and when Q takes all the possible values, i.e., all the possible branches of the
singular points on χ and of the support of R, we get the linear equations globally
imposed by the condition (3).

An easy reasoning reveals that the number of such adjoint conditions is equal to

1

2
degA+ degR = 1

2

∑

P∈χ
nP + degR =

∑

P∈χ
δP + degR. (5)

Example 1 Let χ be the projective plane curve over the finite field F2 given
by the equation F(X, Y,Z) = X3 − Y 2Z. The only singular point of χ is
P1 = [0 : 0 : 1]. Consider the point P2 = [0 : 1 : 0] and the effective divisor
R = 0P1 + P2. The adjunction divisor of χ is A = 2P1. A local equation
of χ with P1 = (0, 0) is f (x, y) = x3 − y2. A parametrization of χ at P1 is
given by

X1(t1) = t21 , Y1(t1) = t31 .

Take a form H ∈ F4−3=1, say H(X, Y,Z) = aX + bY + cZ. First we want
to express the adjoint conditions in terms of the coefficients

N∗H ≥ A+ R = 2P1 + P2.

To this end we consider first a local equation for H at P1, namely

h(x, y) = H(x, y, 1) = ax + by + c.

Then h(X1(t1), Y1(t1)) = h(t2, t3) = at21 + bt31 + c. Since 2 is the coefficient
for P1 and (X1(t1), Y1(t1)) is a parametrization at P1, the inequality wish to
have

ordt1(h(X1(t1), Y1(t1))) = ordt1(bt
3
1 + at21 + c) ≥ 2

(continued)
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Example 1 (continued)
holds if and only if c = 0. Thus c = 0 is one of the required linear adjoint
conditions.

Next we consider a local equation for χ at P2; this is f ′(x, z) =
F(x, 1, z) = x3 − z, which admits a parametrization

X2(t2) = t2, Z2(t2) = t32 .

Consider the local equation for H at P2

h′(x, z) = H(x, 1, z) = ax + b + cz.

The adjoint conditions imposed by N∗H ≥ A + R = 2P1 + P2 at P2 come
from considering h′(X2(t2), Z2(t2)) = h′(t2, t32 ) = at2 + b + ct32 and they
impose the conditions given by

ordt2(h
′(X2(t2), Z2(t2))) = ordt2(ct

3
2 + at2 + b) ≥ 1.

This inequality holds whenever b = 0. Hence b = 0 is another linear equation
to be considered in the set of adjoint conditions contained in N∗H ≥ A+ R.
We have thus obtained two adjoint conditions, as we expected in view of (5),
since 1

2 degA+ degR = 1
2 · 2+ 1 = 2.

We finish this section with two remarkable results. Let χ be an absolutely
irreducible projective plane curve overF and given by an equationF(X0,X1,X2) =
0, where F ∈ Fd . One application of the adjoint forms is the following result, due
to Max Noether (of course, he did not state it in this way; our version may be found
in Haché and Le Brigand [15], Theorem 4.2, and Le Brigand and Risler [20], §3.1):

Theorem 3 (Max Noether) Let χ resp. χ ′ be curves as above given by homoge-
neous equations F(X0,X1,X2) = 0 resp. G(X0,X1,X2) = 0, and such that χ ′
does not contain χ as a component. Then, if we consider another such a curve given
by H(X0,X1,X2) = 0 with N∗H ≥ A + N∗G (where A is the adjunction divisor
on χ), then there exist forms A,B with coefficients in F such that H = AF + BG.

Theorem 3 has great importance; in particular it allows us to prove the Brill-
Noether theorem, which provides a basis for the vector spaces L(D). The reader is
referred to [15, Theorem 4.4], for further details. A short remark about notation is
needed: For any non effective divisorD we will write D = D+ −D− with D+ and
D− effective divisors of disjoint support.

Theorem 4 (Brill-Noether) Let χ be an adjoint curve as above with normalization
χ̃ and adjunction divisor A. Let D be a divisor on χ̃ rational over F, and consider
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a formH0 ∈ Fñ defined over F, not divisible by F and satisfying N∗H0 ≥ A+D+.
Then

L(D) =
{
h

h0
| H ∈ Fñ, F � H and N∗H +D ≥ N∗H0

}
∪ {0},

where h resp. h0 denote the rational functionsH resp. H0 restricted on χ .

Remark 1 The choice ñ > max

{
d−1, d−3

2 + deg(A+D+)
d

}
guarantees the existence

of the form H0 ∈ Fñ in Theorem 4 (see Haché and Le Brigand [15] for details).

4 The Weierstraß Semigroup at Several Points

As above, let F be a perfect field of cardinality greater than or equal to r . Let χ
be an absolutely irreducible projective algebraic plane curve defined over F. Let P
denote a set of r different points P1, . . . , Pr on χ . Let χ̃ be the normalization of χ .
Consider a divisormP := m1P1 + · · · +mrPr formi ∈ N, for all i = 1, . . . , r . We
will write m = (m1, . . . ,mr), εi = (0, . . . , 0, 1, 0, . . . , 0), and 1 = (1, . . . , 1).

Our purpose is to compute the dimensions of the so-called Riemann-Roch
quotients,

0 ≤ dimF

L(mP )
L((m− 1)P )

≤ r,

by choosing functions inL(mP) = L(m1P1+· · ·+mrPr) but not in L((m−1)P ) =
L((m1 − 1)P1 + · · · + (mr − 1)Pr), that is, achieving at the Pi poles of order mi .
We are going to restrict ourselves to the case mi ∈ N, for all i = 1, . . . , r . These
dimensions will be determined by the previous computations of the Riemann-Roch
quotients with respect to Pi :

0 ≤ dimF

L(mP )
L((m− εi)P ) ≤ 1,

where εi denotes the vector in N
r with 1 in the i-th position and 0 in the other ones.

This section deals with the following issues:

• How to compute dimF

L(mP)
L((m−εi)P ) and an associated function belonging to this

quotient vector space when its dimension is 1.
• How to compute dimF

L(mP)
L((m−1)P) (deducing bounds).

• How to compute the Weierstrasß semigroup at two points.

All the statements and proofs of this section can be found in [9, §2].
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Definition 2 For P ∈ χ we set

�P :=
{
− (ordP1(f ), . . . , ordPr (f )) | f ∈ F(χ)∗ regular at χ \ P

}
.

The set �P is a subsemigroup of (N,+). Notice that, for mP = m1P1 +m2P2,
the fact that f ∈ L(mP) is equivalent to the fulfilling of the inequalities

(�)

{
ordP1(f ) ≥ −m1

ordP2(f ) ≥ −m2.

Definition 3 An element m ∈ N
r is called a non-gap of �P if and only if m ∈ �P ;

otherwisem is called a gap of �P .

A very important characterization for the non-gaps is given by the following (see
[10], p. 629):

Lemma 1 If m ∈ Z
r then one has that

m ∈ �P if and only if �(mP ) = �((m− εi)P )+ 1 ∀ i = 1, . . . , r.

For every i = 1, . . . , r and m = (m1, . . . ,mr) ∈ N
r , we set

∇i (m) :=
{
(n1, . . . , nr ) ∈ �P | ni = mi and nj ≤ mj ∀j 
= i

}
.

Then the two conditions proven to be equivalent in Lemma 1 are indeed also
equivalent to ∇i (m) 
= 0 for every i ∈ {1, . . . , r}.

A gap m of �P satisfying �(mP ) = �((m − εi)P ) for all i ∈ {1, . . . , r} (or,
equivalently, such that ∇i (m) = ∅ for all i ∈ {1, . . . , r}) is called pure. It is easily
seen that, ifm is a pure gap of �P , then mi is a gap for �Pi for every i ∈ {1, . . . , r}.
Furthermore, if 1 ∈ �P , then �P contains no pure gaps. The converse does not hold,
as we will show in Example 5.

A fundamental result on Weierstraß semigroups is the following

Theorem 5 (Weierstraß Gap Theorem) Let χ̃ be a curve of genus g ≥ 1. Let P
be a rational branch on χ̃ . Then there are g gaps γ1, . . . , γg of �P such that

1 = γ1 < · · · < γg ≤ 2g − 1.

Under the above conditions we show:

Proposition 2 Letm = (m1, . . . ,mr) ∈ N
r . Ifm is a gap of �P , then there exists a

regular differential form ω on χ̃ with (ω) ≥ m− εi and a zero at Pi of ordermi − 1
for some i ∈ {1, . . . , r}.
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Proof Set ϕ(m) := �(mP )− �((m− εi)P ) and ψ(m) := i((m− εi)P ) − i(mP );
notice that 0 ≤ ϕ(m),ψ(m) ≤ 1. By the Riemann-Roch theorem it is clear that

�(mP )− i(mP ) = m1 +m2 + · · · +mr + 1− g
�((m− εi)P )− i((m− εi)P ) = m1 +m2 + · · · +mr − 1+ 1− g.

By adding both equations we have that ϕ(m) + ψ(m) = 1 for every i = 1, . . . , r .

If m is a gap of �P , then ϕ(m) = 0, hence ψ(m) = 1, i.e. dimF

(
	((m−εi)P )
	(mP )

)
= 1

and so there exists a regular differential form ω on χ̃ with (ω) ≥ m − εi and
ordPi (ω) = mi − 1 for some i ∈ {1, . . . , r}.
Proposition 3 Let χ be a plane curve of genus g, let P be a set of r closed points
on χ and setm = (m1, . . . ,mr) ∈ N

r . Ifm is a gap of �P , thenm1+· · ·+mr < 2g.

Proof Denote by D2g,P a divisor with degree 2g and support P , and by D2g−1,P
a divisor with degree 2g − 1 and support P . If m1 + · · · + mr ≥ 2g − 1 then
m1 + · · · +mr ≥ 0 as a consequence of Riemann-Roch, and

�(D2g,P ) = 2g + 1− g = g + 1 
= g = 2g − 1+ 1− g = �(D2g−1,P ),

which implies that m ∈ �P . So, if m /∈ �P , then m1 + · · · +mr < 2g.

4.1 Dimension of the Riemann-Roch Quotients with Respect
to Pi and Associated Functions

We start with the computation of the dimension of the Riemann-Roch quotients
associated to the points Pi .

Proposition 4 Let m ∈ N
r such that

∑r
i=1mi < 2g. For each i ∈ {1, . . . , r} we

have:

(a) dimF[	((m− εi)P ) \ 	(mP)] = 1 if and only if there exists a homogeneous
polynomial H0 of degree d − 3 with N∗H0 ≥ A + (m − εi)P such that Pi is
not in the support of the effective divisor N∗H0 −A− (m− εi)P .

(b) There exists m′ ≥ m with dimF[	((m′ − εi)P ) \ 	(m′P)] = 1 if and only if
there exists a homogeneous polynomial H0 of degree d − 3 such that N∗H0 ≥
A+ (m− εi)P .

Proof

(a) If dimF[	((m−εi)P )\	(mP)] = 1, then this is equivalent tom /∈ �P and also
to the existence of an index i with �(mP ) = �((m−εi)P ), or, in other words, to
the existence of an index i with i((m−εi)P ) = i(mP)+1; that is, there exists a
homogeneous polynomialH0 of degree d−3 such that N∗H0 ≥ A+(m−εi)P .
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(b) If there is m′ ≥ m with dimF[	((m′ − εi)P ) \ 	(m′P)] = 1 then there exists
an adjointH0 of degree d − 3 whose divisor is ≥ (m′ − εi)P outside A, i.e.,

N∗H0 −A ≥ (m′ − εi)P ≥ (m− εi)P .

Conversely, if there is H0 of degree d − 3 with N∗H0 ≥ A + (m − εi)P then
there exists ω 
= 0 differential form such that (ω) = N∗H0 −A ≥ (m− εi)P .
Assume thatm′−εi are the orders of the zeros of ω at P . Thus,m′−εi ≥ m−εi ,
what implies m′ ≥ m and ω ∈ 	((m− εi)P ) \	(mP).

The following corollary yields a way to relate the adjunction theory and the
computation of the Weierstraß semigroup at several points:

Corollary 1 Let m ∈ N
r with

∑r
i=1mi < 2g. For a given form H of degree d − 3

and i ∈ {1, . . . , r} there exists a condition imposed by the inequality N∗H ≥ A +
mP at Pi which is independent of the conditions imposed by N∗H ≥ A+(m−εi)P
at Pi if and only if

dimF

	((m− εi)P )
	(mP)

= 1.

The second step is the computation of the rational functions associated to the
nongaps of the Weierstraß semigroup at P . Note that, if dimF

	((m−εi)P )
	(mP )

= 0, then

dimF

L(mP )
L((m−εi)P ) = 1 and so there is a rational function fi,m ∈ L(mP)

L((m−εi)P ) with a
pole of order mi at Pi ; this function can be computed by application of the Brill-
Noether Theorem 4:

Algorithm 1 Preserving notation as above, we obtain a function fi,m ∈
L(mP)

L((m−εi)P ) with a pole of ordermi at Pi by following these steps:

1. Compute a homogeneous polynomial H0 not divisible by F of large
enough degree n in the sense of Remark 1 satisfying N∗H0 ≥ A+mP .

2. Calculate Rm, which is the effective divisor such that N∗H0 = A+mP +
Rm. Obviously Rm−εi = Rm + Pi .

3. Find a form Hm of degree n not divisible by F such that N∗Hm ≥ Rm but
not satisfying N∗Hm ≥ Rm−εi = Rm + Pi .

4. Output: fi,m = hm
h0

, where hm resp. h0 is the restricted form on χ for Hm
resp. forH0.
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Example 2 Let χ be the curve given by the equation F(X, Y,Z) = X3Z +
X4+Y 3Z+YZ3 and consider the points P1 = [0 : 1 : 1] and P2 = [0 : 1 : 0]
and m = (1, 2). We want to compute dimF

L(mP)
L((m−ε1)P )

and dimF

L(mP)
L(m−ε2)P

.
A local parametrization of F at P1 is given by

X1(t1) = t1
Y1(t1) = t31 + t41 + t91 + t10

1 + t11
1 + t12

1 + · · ·

with local equation f1(x, y) = y2+y3+x3+x4. Analogously at P2 we have

X2(t2) = t2
Z2(t2) = t42 + t72 + t10

2 + t12
2 + t13

2 + t16
2 + · · ·

with local equation f2(x, z) = z+ z3 + x3z+ x4.
We compute the adjunction divisor, which is A = 2P1. Then we search for

a form H of degree d − 3 = 4 − 3 = 1, that is, a linear form H(X, Y,Z) =
aX+bY+cZ. The formH admits the equation h1(x, y) = H(X, Y−1, 1) =
ax + by + b + c at P1, and H admits the equation h2(x, z) = H(X, 1, Z) =
ax + b + cz at P2; thus

h1(X1(t1), Y1(t1)) = at1 + b(t31 + t41 + t91 + · · · )+ b + c
= (b + c)+ at1 + bt31 + bt41 + bt91 + · · ·

h2(X2(t2), Z2(t2)) = b + at2 + ct42 + ct72 + ct10
2 + · · ·

In order to compute dimF

L(mP)
L((m−ε1)P)

we impose the adjunction conditions
at P1, namely

N∗H ≥ A+ (m1 − 1)P1 = 2P1 and N∗H ≥ A+m1P1 = 3P1,

i.e.

{
ordt1(h1(X1(t1), Y1(t1))) ≥ 2 �⇒ b + c = a = 0
ordt1(h1(X1(t1), Y1(t1))) ≥ 3 �⇒ b + c = a = 0

We see that the second equation does not add any independent condition to
the first one; by Corollary 1, this means that dimF

L(mP)
L((m−ε1)P )

= 1.

(continued)
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Example 2 (continued)
We repeat this process in order to compute dimF

L(mP )
L((m−ε2)P )

, but imposing
the adjunction conditions at P2, which are

N∗H ≥ (m2 − 1)P2 = P2 and N∗H ≥ m2P2 = 2P2,

that is,

{
ordt2(h2(X2(t2), Z2(t2))) ≥ 1 ⇒ b = 0
ordt2(h2(X2(t2), Z2(t2))) ≥ 2 ⇒ a = 0 = b.

Notice that, in this case, the adjunction divisor does not appear in the
inequalities since P2 does not belong to its support. The second system adds
one independent condition to the first one, which means dimF

L(mP)
L((m−ε2)P )

= 0
again by Corollary 1. ��

Example 3 Consider Example 2 but with m = (4, 6). Asm1+m2 = 4+6 =
10 > 2g, we deduce immediately thatm ∈ �P , i.e., that dimF

L(mP)
L((m−εi)P ) = 1

for i = 1, 2. So we will look for the corresponding functions fi,m with poles
at Pi of ordermi for i = 1, 2.

First of all, we need to find an ñ ∈ N such that ñ > max
{

3, 2
4 + 12

4

}
=

max
{

3, 14
4

}
. Consider for instance ñ = 5.

Then we look for a form H0 of degree ñ = 5 such that N∗H0 ≥ A+mP .
In this case N∗H0 ≥ 4P1+ 6P2+ 2P3, since A = 2P3, with P3 = [0 : 0 : 1].
After some computations we find H0 = X4Z.

In order to compute N∗H0, we have to calculate N∗(X), N∗(Y ) and N∗(Z).
The intersection points between {F = 0} and {X = 0} are P1 = [0 : 1 : 1],
P2 = [0 : 1 : 0] andP3 = [0 : 0 : 1]with multiplicities 1, 1 and 2 respectively.
So N∗(X) = P1 + P2 + 2P3. The intersection points between {F = 0} and
{Y = 0} are P3 = [0 : 0 : 1] and P4 = [1 : 0 : 1] so that N∗(Y ) = 3P3 + P4;
and the only point lying in the intersection between {F = 0} and {Z = 0} is
P2 = [0 : 1 : 0] with multiplicity 4, therefore N∗(Z) = 4P2.

Hence N∗H0 = 4N∗(X)+N∗(Z) = 4P1+8P2+8P3. The residue divisor
Rm is equal to N∗H0 −A − mP = 2P2 + 6P3. Following Algorithm 1, we
have to find a form Hε1 such that N∗Hε1 ≥ Rm but N∗Hε1 	 Rm + P1. For

(continued)
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Example 3 (continued)
instance we take Hε1 = Y 2Z3, since

N∗Hε1 = 12P2 + 6P3 + 2P4 ≥ 2P2 + 6P3

N∗Hε1 	 P1 + 2P2 + 6P3.

So f1,m = Y 2Z3

X4Z
= Y 2Z2

X4 ∈ L(mP)
L((m−ε1)P )

.

On the other hand, we want to find a form Hε2 such that N∗Hε2 ≥ Rm but
N∗Hε2 	 Rm + P2. We can take Hε2 = X2Y 3, since

N∗Hε2 = 2P1 + 2P2 + 13P3 + 3P4 ≥ 2P2 + 6P3

N∗Hε2 	 3P2 + 6P3.

Thus f2,m = X2Y 3

X4Z
= Y 3

X2Z
∈ L(mP )

L((m−ε2)P)
. ��

Algorithm 2 There is an alternative and more efficient way to compute the
functions fi,m:

1. Take a basis of L(mP), say {h1, . . . , hs}.
2. Compute the pole orders at Pi , {−ordPi (h1), . . . ,−ordPi (hs)}.
3. Order these pole orders increasing, in such a way that −ordPi (hs) = mi .

We can assume this, as otherwise, if−ordPi (hs) = ki > mi we can replace
mi by ki , since L(m1P1 + · · · +miPi + · · · +mrPr) = L(m1P1 + · · · +
kiPi + · · · +mrPr ).

4. The function hs has pole ordermi at Pi , but other functions could also have
the same property. So, for any hj satisfying−ordPi (hj ) = mi , there exists
λj 
= 0 in F such that hj = λjhs , that is, −ordPi (hj − λjhs)<mi . So we
change hj by gj := hj − λjhs , and gk := hk for k 
= j .

5. We obtain a set of functions {g1, . . . , gs} where gs = fi,m, and
g1, . . . , gs−1 build a basis of the vector space L((m− εi)P ).

Example 4 We present a worked example in SINGULAR for computing
functions as above. First we import the library brnoeth.lib [11] and
another virtual one—say several.lib—in which we have programmed

(continued)
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Example 4 (continued)
the procedure ordRF that computes the pole orders of a rational function:

> LIB "brnoeth.lib";
> LIB "several.lib";
> int plevel=printlevel;
> printlevel=-1;

We define both the ring and the curve:

> ring s=2,(x,y),lp;
> list C=Adj_div(x3y+y3+x);
==>The genus of the curve is 3

The list of computed places is

> C=NSplaces(1,C);
> C[3];
-->[1]:
--> 1,1
-->[2]:
--> 1,2
-->[3]:
--> 1,3

The base point of the first place of degree 1 is, in homogeneous coordinates:

> def SS=C[5][1][1];
> setring SS;
> POINTS[1];
-->[1]:
--> 0
-->[2]:
--> 1
-->[3]:
--> 0

> setring s;

We define the divisor G=4C[3][1]+4C[3][3]:

> intvec G=4,0,4;

(Alternatively we can program an auxiliary procedure zeroes which has
as output the coefficients of those points in the support of G). We need to
change to the suitable ring; then, basis LG of L(mP ) is supplied by the Brill-
Noether algorithm:

> def R=C[1][2];
> setring R;
> list LG=BrillNoether(G,C);
-->Vector basis successfully computed

> int lG=size(LG);

(continued)



248 J. J. Moyano-Fernández

Example 4 (continued)
The pole orders for the rational functions in LG are

> int j;
> intvec h;
> for (j=1;j<=lG;j=j+1){
. h[j]=ordRF(LG[j],SS,1)[1]; . }
> h;
-->0,-1,2,-2,-3,-4

And the desired rational function is

> LG[lG];
-->_[1]=xyz2+y4
-->_[2]=x4

> printlevel=plevel;

4.2 Computing the Weierstraß Semigroup at Two Points

In the above notation, let �P resp. �Pi be the Weierstraß semigroup at P resp. at the
point Pi for i = 1, . . . , r . Write N

∗ := N \ {0} and mi := m−miεi .
Proposition 5 For m ∈ N

r , i ∈ {1, . . . , r} and mi ∈ N
r \ �P , let be

m := min
{
n ∈ N

∗ | mi + nεi ∈ �P
}
,

then any vector n = (n1, . . . , nr ) ∈ N
r belongs to N

r \ �P whenever ni = m, and
nj = mj = 0 or nj < mj for j 
= i. In particular,m is a gap at Pi .

Define the usual partial order 5 over Nr , i.e.

(m1, . . . ,mr) 5 (n1, . . . , nr ) ⇐⇒ mi ≤ ni for all i = 1, . . . , r.

Proposition 6 For i ∈ {1, . . . , r}, let m = (m1, . . . ,mr) be a minimal element in

{
(n1, . . . , nr ) ∈ �P | ni = mi

}

with respect to the partial order5. Assume that ni > 0 and the existence of an index
j ∈ {1, . . . , r}, j 
= i with mj > 0, then

• mi ∈ N
r \ �P ;

• mi = min{n ∈ N
∗ | mi + nεi ∈ �P }; in particular,mi is a gap at Pi .
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Propositions 5 and 6 determine a surjective map

ϕi :
{
mi ∈ N

r | mi ∈ N
r \ �P

}
−→ N \ �Pi

mi �→ min
{
m ∈ N

∗ | mi +mεi ∈ �P
}
.

For r = 2 this is in fact a bijection between the set of gaps at P1 and the set of
gaps at P2:

m1 ∈ N \ �P1 ⇔ (m1, 0) ∈ N
2 \ �P �→ βm1 := ϕ2((m1, 0)) ∈ N

\�P2 .

Furthermore,m1 = min
{
n ∈ N

∗ | (n, βm1) ∈ �P
}

. For further details the reader is

referred to Homma and Kim [18] and Kim [19], and also to Matthews [24].
For the case of two points (r = 2), we would like to point out some useful facts

from a computational point of view:

• All the gaps at P1 and at P2 are also gaps at P1, P2.
• By Corollary 6, for any gap m1 at P1, one has that (m1, βm1) are gaps at P1, P2

for βm1 = 0, 1, . . . , �m1 , with 0 ≤ �m1 ≤ 2g − 1, with g the genus of the curve
and �m1 such that �m1 + 1 is a gap at P2. Then (m1, �m1 + 1) ∈ �P , and we call
it the minimal (non-gap) at m1. We will refer to the set of the minimal non-gaps
at every gap at P1 (they will be g, since the number of gaps at P1 is precisely g)
as the set of minimal non-gaps at P1.

• The gaps obtained of that form, i.e., the set

{
(m1, βm1 ) ∈ N

2\�P | m1 ∈ N\�P1 and βm1 = 0, 1, . . . , �m1 with �m1+1 ∈ N\�P2

}

will be called the set of gaps with respect to P1.
• Similarly, for any gap m2 at P2, one has that (αm2 ,m2) are gaps at P1, P2 for
αm2 = 0, 1, . . . , �m2 , until some 0 ≤ �m2 ≤ 2g − 1 such that �m2 satisfies that
�m2 + 1 is a gap at P1. Then (�m2 + 1,m2) ∈ �P , which we will call the minimal
(non-gap) at m2. The set of the minimal non-gaps for every gap at P2 will be
called the set of minimal non-gaps at P2. The cardinality of such a set is g, since
g is the number of gaps at P2.

• The set of gaps

{
(αm2 ,m2) ∈ N

2\�P | m2 ∈ N\�P2 and αm2 = 0, 1, . . . , �m2 with �m2+1 ∈ N\�P1

}

is called the set of gaps with respect to P2.
• The intersection between the set of gaps with respect to P1 and with respect to
P2 is not necessarily empty. In fact, the gaps in the intersection are just the pure
gaps at P1, P2.

The minimal non-gaps at P1 and P2 provide enough information in order to
deduce the Weiestraß semigroup at P1, P2. Recall that we have already described
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algorithms to compute the dimension (and associated functions, when is possible)
of the Riemann-Roch quotients L(mP)

L((m−εi)P ) for given m, and i ∈ {1, 2} and two
rational points P1, P2 on an absolutely irreducible projective algebraic plane curve
χ (see Algorithms 1 and 2). An procedure to compute the set of minimal non-gaps
at Pi , for i = 1, 2 is given by the following:

Algorithm 3 Write dim(m, P,C, i) for the procedure calculating the dimen-
sion of the quotient vector space L(mP)

L((m−εi)P ) :
INPUT : Points P1, P2, an integer i ∈ {1, 2} and a curve χ .

OUTPUT : The set of minimal non-gaps at Pi .

• Let L be a empty list and g be the genus of χ ;
• LetW1 andW2 be the lists of gaps of χ at P1 and P2, respectively;
• FOR k = 1, . . . , g; k = k + 1;

– IF i = 1 THEN

· j=size ofW2;

· WHILE
(

dim((W1[k],W2[j ]), P, χ, i)= 1 AND dim((W1[k],W2[j ]−
1), P, χ, i) = 1) OR j = 0

)
DO

· j = j − 1;

· L = L ∪ {(W1[k],W2[j ])};
· W2 = W2 \ {j };

– ELSE

· j=size ofW1;

· WHILE
(

dim((W1[j ],W2[k]), P, χ, i) = 1 AND dim((W1[j ] −
1,W2[k]), P, χ, i) = 1) OR j = 0

)
DO

· j = j − 1;

· L = L ∪ {(W1[j ],W2[k])};
· W1 = W1 \ {j };

• RETURN(L);



On Multi-Index Filtrations Associated to Weierstraß Semigroups 251

Example 5 Let χ be the curve over F2 given by F(X, Y,Z) = X3Z +X4 +
Y 3Z + YZ3, and consider the points P1 = [0 : 1 : 1] and P2 = [0 : 1 : 0] on
χ ; then

N
2 \ �P =

{
(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)

}
,

as shown in the figure below (where the black points indicate the elements of
�P , and the white points indicate the gaps at P1, P2).

0

1

2

3

4

P2

0 1 2 3 4 P1

As an illustration of Corollary 6, let be i = 1, m = (m1,m2) = (2, 2) ∈
�P and the set

{
(n1, n2) ∈ �P | n1 = m1

}
=
{
(2, n) for n ≥ 2

}
. The

smallest element in this set is (2, 2), and

mi = m−m1ε1 = (2, 2)− 2(1, 0) = (0, 2)

is a gap at P1, P2. Therefore min
{
n ∈ N

∗ | (n, 2) ∈ �P
}
= 2 = m1, and

m1 = 2 is actually a gap at P1.
In this example we can also see the bijection between the gaps at P1 and

the gaps at P2: if we take n1 = 1 as a gap at P1, then (1, 0) is a gap at P1, P2
and

ϕ2((1, 0)) = min
{
n ∈ N

∗ | (1, 0)+(0, n) ∈ �P
}
= min

{
n ∈ N

∗ | (1, n) ∈ �P
}
= 1,

with 1 /∈ �P2 . Moreover, n1 = 1 = min
{
n ∈ N

∗ | (n, ϕ2((1, 0))) ∈ �P
}

.

Consider on the other hand p1 = 2 as a gap at P1, then ϕ2((2, 0)) = 2,

which is a gap at P2. Indeed p1 = 2 = min
{
n ∈ N

∗ | (n, ϕ2((2, 0)) ∈ �P
}

.

The gaps at P2 behave analogously.
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5 Computational Aspects Using SINGULAR

We are interested in explaining the most important procedures implemented in
SINGULAR and to give examples to show how to work with them.

More precisely, in Sect. 5.1 we give some hints of use of the library
brnoeth.lib, since our procedures are based on most of the algorithms
contained in it. In Sect. 5.2 we present the procedures which generalize the
computation of the Weierstraß semigroup to the case of two points; they yield
the computation of

– dimF

L(mP)
L((m−εi)P ) and a function fm,i ∈ L(mP ) \ L((m− εi)P ) if possible;

– the set of minimal non-gaps at a point Pi , for i ∈ {1, 2}.

5.1 Hints of Usage of brnoeth.lib

The purpose of the library brnoeth.lib of SINGULAR, due to Farrán and Lossen
[11], is the implementation of the Brill-Noether algorithm for solving the Riemann-
Roch problem and some applications in Algebraic Geometry codes, involving the
computation of Weierstraß semigroups for one point.

A first warning: brnoeth.lib accepts only prime base fields (i.e. finite fields
of the form Fp for p prime) and absolutely irreducible planes curves as inputs,
although the latter is not checked.

Curves are usually defined by means of polynomials in two variables, that is,
by its local equation. It is possible to compute most of the data concerning the
curve with the aid of the procedure Adj_div. We define the procedure (previously
we must have defined the ring, the polynomial f and have charged the library
brnoeth.lib):

> list C=Adj_div(f);

The output consists of a list of lists as follows:

• The first list contains the affine and the local ring.
• The second list has the degree and the genus of the curve.
• Each entry of the third list corresponds to one closed place,that is, a place and all

its conjugates, which is represented by two integer, the first one the degree of the
point and the second one indexing the conjugate point.

• The fourth one has the conductor of the curve.
• The fifth list consists of a list of lists, the first one, namely C[5][d][1] being

a (local) ring over an extension of degree d and the second one (C[5][d][2])
containing the degrees of base points of places of degree d .
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Furthermore, inside the local ring C[5][d][1] we can find the following
lists:

• list POINTS: base points of the places of degree d .
• list LOC_EQS: local equations of the curve at the base points.
• list BRANCHES: Hamburger-Noether expressions of the places.
• list PARAMETRIZATIONS: local parametrizations of the places.

Now we explain how we can deal with the most common objects in
brnoeth.lib. Affine points P are represented by a standard basis of a prime
ideal, and a vector of integers containing the position of the places above P in
the list supplied by C[3]; if the point lies at the infinity, the ideal is replaced by
an homogeneous irreducible polynomial in two variables. A place is represented
by the four lists mentioned above: a base point (list POINTS of homogeneous
coordinates); a local equation (list LOC_EQS) for the curve at the base point; a
Hamburger-Noether expansion of the corresponding branch (list BRANCHES);
and a local parametrization (list PARAMETRIZATIONS) of that branch. A
divisor is represented by a vector of integers, where the integer at the position i is
the coefficient of the i-th place in the divisor. Rational functions are represented
by ideals with two homogeneous generators, the first one being the numerator of
the rational function, and the second one being the denominator.

Furthermore, we can compute a complete list containing all the non-singular
affine (closed) places with fixed degree d just by invoking the procedureNSplaces
in this way:

> C=NSplaces(1..d,C);

The procedure Weierstrass, which computes the non-gaps of the Weier-
straß semigroup at one point and the associated functions with poles, is closer to
our aim. It has three inputs, namely

• an integer indicating the rational place in which we compute the semigroup;
• an integer indicating how many non-gaps we want to calculate;
• the curve given in form of a list C=Adj_div(f) for some polynomial f

representing the local equation of the curve at the point given in the first entry.

This procedure needs to be called from the ring C[1][2]. Moreover, the places
must be necessarily rational.

5.2 Procedures Generalizing to Several Points

We present now a main procedure to compute the dimension of the so-called
Riemann-Roch vector spaces of the form L(mP ) \L((m− εi)P ). If this dimension
equals 1, then the procedure is also able to compute a rational function belonging to
the space.
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The technique developed here is not the use of the adjunction theory directly, as
we have developed theoretically in Sect. 4.1 (cf. Algorithm 1), because of its high
computational cost, but we use a slight modification of Algorithm 2: we order the
poles in a vector from the biggest one to the smallest one (in absolute value) and
then we take the first entry in this vector.

proc RRquot (intvec m, list P, list CURVE, int chart)
"USAGE:RRquot( m, P, CURVE, ch ); m,P intvecs, CURVE a list and
ch an integer. RETURN: an integer 0 (dimension of
L(m)\L(m-e_i)), or a list with three entries:

@format
RRquot[1] ideal (the associated rational function)
RRquot[2] integer (the order of the rational function)
RRquot[3] integer (dimension of L(m)\L(m-e_i))
@end format

NOTE: The procedure must be called from the ring CURVE[1][2],
where CURVE is the output of the procedure
@code{NSplaces}.

@* P represents the coordinates of the place CURVE[3][P].
@* Rational functions are represented by

numerator/denominator
in form of ideals with two homogeneous generators.

WARNING: The place must be rational, i.e., necessarily
CURVE[3][P][1]=1. @* SEE ALSO: Adj_div, NSplaces, BrillNoether
EXAMPLE: example RRquot; shows an example " {

// computes a basis for the quotient of Riemann-Roch
// vector spaces L(m)\L(m-e_i)
// where m=m_1 P_1 + ... + m_r P_r and
// m-e_i=m_1P_1+...+(m_i-1)P_i+...+m_r P_r,
// a basis for the vector space L(m-e_i) and the orders of such
// functions, via Brill-Noether
// returns 2 lists : the first consists of all the pole orders
// in increasing order and the second consists of the
// corresponding rational functions, where the last one is
// the basis for the quotient vector space
// P_1,...,P_r must be RATIONAL points on the curve.

def BS=basering;
def SS=CURVE[5][1][1];
intvec posinP;
int i,dimen;
setring SS;
//identify the points P in the list CURVE[3]
int nPOINTS=size(POINTS);
for(i=1;i<=size(m);i=i+1)
{

posinP[i]=isPinlist(P[i],POINTS);
}

//in case the point P is not in the list CURVE[3]
if (posinP==0)
{
ERROR("The given place is not a rational place on the curve");
}
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setring BS;
//define the divisor containing m in the right way
intvec D=zeroes(m,posinP,nPOINTS);
list Places=CURVE[3];
intvec pl=Places[posinP[chart]];
int dP=pl[1];
int nP=pl[2];

//check that the points are rational
if (dP<>1)
{
ERROR("The given place is not defined over the prime field");

}
int auxint=0;
ideal funcion;
funcion[1]=1;
funcion[2]=1;

// Brill-Noether algorithm
list LmP=BrillNoether(D,CURVE);
int lmP=size(LmP);
if (lmP==1)
{
dimen=0;
return(dimen);

}
list ordLmP=list();
list sortpol=list();
for (i=1;i<=lmP;i=i+1)
{

ordLmP[i]=orderRF(LmP[i],SS,nP)[1];
}
ordLmP=extsort(ordLmP);
if (D[posinP[chart]] <> -ordLmP[1][1])

{
dimen=0;

return(dimen);
}

LmP=permute_L(LmP,ordLmP[2]);
funcion=LmP[1];
dimen=1;
return(list(funcion,ordLmP[1][1],dimen));

}

Let us see an example:

int plevel=printlevel;
printlevel=-1;
ring s=2,(x,y),lp;
poly f=y2+y3+x3+x4;
list C=Adj_div(f);

The genus of the curve is 2
C=NSplaces(1,C);
def pro_R=C[1][2];
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setring pro_R;
intvec m=4,6;
intvec P1=0,1,1;
intvec P2=0,1,0;
list P=P1,P2;
int chart=1;
RRquot(m,P,C,chart);

Vector basis successfully computed
-->[1]:

_[1]=x3+yz2
_[2]=xyz+xz2

-->[2]:
-4

-->[3]:
1
printlevel=plevel;

This procedure needs also some auxiliar procedures, as we explain now before
concluding.

As RRquot reads off the point through its homogeneous coordinates we need
to localize that point in the list POINTS and make the correspondence between
such a point and its position in the list of points contained in the third output of the
procedure Adj_div. This is done by mean of a routine named isPinlist. Its
inputs are the point P in homogeneous coordinates, that is, a vector of integers, and
the list L of points from Adj_div. The output is an integer being zero if the point
is not in the list or a positive integer indicating the position of P in L. Look at the
following example:

ring r=0,(x,y),ls;
intvec P=1,0,1;
list POINTS=list(list(1,0,1),list(1,0,0));
isPinlist(P,POINTS);

-->1

We need also a procedure for ordering a list of integers. This is partially solved by
the procedure sort from general.lib. But sort cannot order lists of negative
numbers, so we have to extend this algorithm, say to extsort, to do so. This
procedure needs to permute a vector of integers, what can be done by the procedure
perm_L (this is actually implemented for lists of integers, see permute_L in
brnoeth.lib, but not for vectors of integers). Here it is an example of usage:

ring r=0,(x,y),ls;
list L=10,9,8,0,7,1,-2,4,-6,3,0;
extsort(L);

-->[1]:
-6,-2,0,0,1,3,4,7,8,9,10

-->[2]:
9,7,4,11,6,10,8,5,3,2,1

Finally, it is important to fix a comfortable way of reading off the data of the
divisor needed in the procedure BrillNoether. The routine zeroes takes two
vectors of integers m and pos, and an integer siz and it builds up a vector of size
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siz, with the values contained in m set in the places given by pos and zeroes in the
other places:

ring r=0,(x,y),ls;
intvec m=4,6;
intvec pos=4,2;
zeroes(m,pos,5);

-->0,6,0,4,0
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On the Hilbert Function
of Four-Generated Numerical
Semigroup Rings

Anna Oneto and Grazia Tamone

Abstract In this article we study the Hilbert function HR of one-dimensional
semigroup rings R = k[[S]], with embedding dimension four over an infinite field
k. Let S =< e, n2, n3, n4 > and let M = S \ {0}. Consider the Apéry set of
S with respect to the multiplicity e and its subsets Ah = {s ∈ Apéry(S) | s ∈
hM \ (h + 1)M}, h ≥ 2. Further let D2 ⊆ {n3, n4} be the set of generators with
torsion order 1. We prove thatHR is non-decreasing at level≤ 3 and thatHR is non
decreasing in each of the following cases: if A2 has cardinality ≤ 4, if A3 has
cardinality ≤ 3, if A4 = ∅, if D2 has cardinality 2, if S has multiplicity ≤ 13.

Keywords Numerical semigroup · Hilbert function · Apéry set
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1 Introduction

The behaviour of the Hilbert function HR of a local noetherian ring (R,m, k)
has been studied by many authors in the last 40 years. HR is by definition the
Hilbert function of the associated graded ring G = ⊕n≥0

(
mn/mn+1

)
: HR(n) =

dimk
(
mn/mn+1

)
, n ∈ N. When G is Cohen Macaulay the function HR is non

decreasing but in general HR can be decreasing, that is HR(n − 1) > HR(n) for
some value of n even if the ring R is Cohen Macaulay or Gorenstein of dimension
one, see [9, 13–15, 17].

If (R,m, k) is a one-dimensional local Cohen-Macaulay ring with
∣∣k
∣∣ = ∞,

multiplicity e and embedding dimension v, it is known that

• HR is non decreasing if either v ≤ 3, or v ≤ e ≤ v + 2, see [6, 7, 18]
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while there are various classes of rings with e ≥ v+3 which haveHR decreasing, see
[12–14]. In the particular case R = k[[S]], S ⊆ N numerical semigroup, we know
that the functionHR is non decreasing if S verifies one of the following conditions

• S is generated by an almost arithmetic sequence (moreover G is Cohen
Macaulay if the sequence is arithmetic) [11, 19]

• S is minimally generated by 4 elements and either belongs to particular classes
of symmetric semigroups or has Buchsbaum tangent cone [1, 3]

• S is minimally generated by 4 or 5 elements and e ≤ 8 [4, Corollary 3.14]
• S has multiplicity e = v + 3 ≤ 12 [13]
• S is constructed by “gluing” particular semigroups [2, 10]
• S is balanced [3, 16].

Given a semigroup ring R = k[[S]], S ⊆ N, it is convenient to consider two
families {Cn, n ∈ N}, {Dn, n ∈ N} of subsetes of S (see Definition 2.2), which give
an handy method to compute HR , as in [3, 4, 13, 14, 16]. In this article we focus
on the case R = k[[S]], where S ⊆ N is a semigroup minimally generated by four
elements: besides the sets {Cn,Dn}, the main tool we use is the Apéry set of S with
respect to the multiplicity of R. Let M = S \ {0} and for s ∈ S, let ord(s) =
max{n ∈ N | s ∈ nM}: we consider a partition of the Apéry set according to the
order of its elements as follows

Ah = {s ∈ Apéry(S) | ord(s) = h}, h ∈ N.

The first case to consider is h = 2: since C2 = A2, a necessary condition to have
HR decreasing, is

∣∣A2
∣∣ ≥ 3 and, when the cardinality is 3, we must have A2 =

{2np, np + nq, 2nq} (2 ≤ p, q ≤ 4), see [13, Theorem 2.1 and Theorem 2.6]. By
analyzing the sets Ch,Dh,A2 in several different subcases and by means of other
technical facts, we obtain the following results:

• The Hilbert function HR is non decreasing at level � ≤ 3 (Theorem 7.1).
• The Hilbert function HR is non decreasing in each of the following cases

(a) |A2| ≤ 4 (Theorem 4.1)
(b) |D2| = 2 (Theorem 5.4)
(c) R has multiplicity e ≤ 13 (Theorem 7.2) .

2 Preliminaries

Setting 2.1 In this paper R = k[[S]] denotes a one-dimensional numerical
semigroup ring, where k is an infinite field and S ⊆ N is a numerical semigroup,
that is a submonoid of the natural numbers with finite complement to N. Given the
minimal set {n1, . . . , nv} of generators of S, we write S = 〈n1, n2, . . . , nv〉 and
assume n1 < n2 < · · · < nv .
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The ring R = k[[tn1, . . . , tnv ]] has multiplicity e = n1, embedding dimension
v and it is the completion of the local ring k[x1, . . . , xv](x1,...,xv) of the monomial
affine curve C parametrized by xi = tni (1 ≤ i ≤ v). The maximal ideal of R
is m = (tn1 , . . . , tnv ), k = R/m, further te is a superficial element of degree 1;
dimk
(
mn/mn+1

) ≤ e for each n ∈ N and the equality holds for each n >> 0;
we shall denote by r the reduction exponent , i.e. the minimum integer such that
dimk
(
mn/mn+1

) = e (r ≤ e − 1).
We shall denote the values of the Hilbert functionHR of R by [a0, a1, .., ap →],

where ap → means that HR(n) = ap for each n ≥ p. Let ν : k((t)) −→ Z ∪ {∞}
be the usual valuation; thenM = S\{0} = ν(m) and ν(mh) = hM for each h ≥ 1.
We have: HR(0) = a0 = 1, HR(n) =

∣∣nM \ (n+ 1)M
∣∣ for each n ≥ 1.

In order to study the Hilbert function of R, we deeply use the structure of the
semigroup S and mainly the subsets Ah,Ck,Dk ⊆ S, h ≥ 0, k ≥ 1. The elements
in Dk are precisely the elements of order k − 1 with torsion order = 1, as defined
in [3, Page 296].

Definition 2.2 Let S ⊆ N be a numerical semigroup.

• The order of an element g ∈ S is ord(g) = max {h | g ∈ hM}
• The Apéry set of S with respect to the multiplicity e isAp(S)={s ∈ S | s−e /∈ S}
• Ah is the subset of the elements of order h in Ap(S)
• D1 = ∅, Dk = {s ∈ S | ord(s) = k − 1 and ord(s + e) > k}, for each k ≥ 2
• Dhk = {s ∈ Dk | ord(s + e) = h}, for each h > k

• Ck = {s ∈ S | ord(s) = k and s − e /∈ (k − 1)M}, for each k ≥ 1
• A maximal representation of s ∈ S ( shortly denoted by mrp ) is any expression

s =
∑v

j=1
ajnj , with aj ∈ N for each 1 ≤ j ≤ v and

∑v

j=1
aj = ord(s)

• Given an mrp s =∑vj=1 ajnj , we say that s′ ∈ S is induced (by the mrp ) if

s′ =
∑v

j=1
bjnj with 0 ≤ bj ≤ aj for each 1 ≤ j ≤ v.

Remark 2.3 Let r be the reduction exponent of R. We have:

(1) C1 = {n2, . . . , nv}, C2 =A2, Ch =Ah ⋃
{ ∪k (Dhk + e), 2 ≤ k ≤ h − 1

}
,

∀h ≥ 3
(2) Ch = ∅ for each h ≥ r + 1, Dk = ∅ for each k ≥ r

[16, Lemmas 1.5.2–1.8.1]
(3) If s =∑vj=1 ajnj ∈ Ch, mrp , then a1 = 0.

The following known results are crucial in the sequel.

Theorem 2.4 Let S be be a numerical semigroup as in Setting 2.1, let HR be the
Hilbert function of R = k[[S]] and let k ≥ 2.
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(1) HR(k)−HR(k − 1) = ∣∣Ck
∣∣− ∣∣Dk

∣∣ [16, Proposition 1.9.3], [3, Remark 4.1]
(2) [8, Theorem 7], [16, Theorem 1.6] The following conditions are equivalent:

(a) The associated graded ring G is Cohen Macaulay
(b) ord(s + e) = ord(s)+ 1 for each s ∈ S
(c) Dk = ∅ for each k ≥ 2.

(3) If
∣∣Dk
∣∣ ≤ k + 1, then HR does not decrease at level k [4, Corollary 3.4]

(4) If HR is decreasing, then
∣∣C3
∣∣ ≥ 4 [13, Proposition 1.7]

(5) IfHR decreases at level k, then
∣∣Ch
∣∣≥h+1 for all h∈ [2, k] [4, Proposition 3.9]

In particularHR decreasing implies
∣∣A2
∣∣ ≥ 3 [4, Corollary 3.11]

(6) If HR is decreasing at level 2, then v ≥ 6 [4, Corollary 3.13]
(7) If 4 ≤ v ≤ 5 and e ≤ 8, then HR is non decreasing [4, Corollary 3.14]

Proposition 2.5 Let S be a numerical semigroup as in Setting 2.1.

(1) For s ∈ S, ord(s) = k, let s = ∑vj=1 ajnj , mrp and let s′ = ∑j≥1 bjnj
with 0 ≤ bj ≤ aj be an induced element. Then:
ord(s′) =∑vj=1 bj and s ∈ Ck, �⇒ s′ ∈ Ch, where h = ord(s′).

(2) If ni ∈ D2, let ni + e = ∑v2 λjnj , mrp ord(ni + e) = k ≥ 3. Then
every induced element s =∑v2 λ′j nj , with λ′j ∈ [0, λj ] and

∑
j λ

′
j = h < k

belongs to Ah.
(3) Let s ∈ Dk , s + e =∑vj=1 λjnj with

∑v
j=1 λj ≥ k + 1, then λ1 = 0 and

if σ = ∑vj=1 αjnj , αj ∈ [0, λj ], then any mrp σ = ∑vj=1 γjnj has
γ1 = 0.

(4) If s ∈ Dk and ord(s + ni) = k, (i ≥ 2), then s + ni ∈ Dk+1.
(5) Let s1 
= s, ord(s1) = ord(s), s = ∑vj=1 ajnj , s1 = ∑vj=1 bjnj , both

maximal representations. Then there exist 1 ≤ i, h ≤ v such that ai > bi,

ah < bh.

(6) If s, s1 ∈ Dk, and s1 + e = ∑vj=2 αjnj , s + e =
∑v
j=2 λjnj are both mrp ,

then there exist i, h such that αi > λi, αh < λh.

Proof

(1) See [16, Lemma 1.11] and [13, Proposition 1.4].

(2) Clearly, ni + e = ∑vj=2 λjnj , implies λi = 0 and so a′i = 0; if s /∈ Ap(S),
then s ∈ M + e and so ni ∈ 〈n2, . . . , n̂i , . . . , nv〉 is not a minimal generator
of S.

(3) If λ1 > 0, then s = (λ1 − 1)e+∑vj=2 λjnj would imply ord(s) ≥ k.
s + e = ∑vj=1(λj − αj )nj + σ =

∑v
j=2(λj − αj )nj +

∑v
j=1 γjnj . If

γ1 > 0, then s = (γ1− 1)e+∑vj=2(λj − αj + γj )nj would have order≥ k,
since, by assumption,

∑v
j=1 γj ≥

∑v
j=1 αj .

(4) ord(s + ni + e) ≥ ord(s + e)+ 1 ≥ k + 2, hence s + ni ∈ Dk+1.
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(5–6) In fact, if ai ≥ bi for each i, then s = s1 + σ , ord(σ ) ≥ 1, impossible. The
second proof is similar. ��

Notation 2.6 In the following we shall often use that induced elements have the
properties stated in Proposition 2.5: for brevity we shall write “induced element”
without referring to the above proposition.

Example 2.7 In general, claim (2.5.2) is false for elements s ∈ Apk ∩Dk+1, k ≥ 2.
For instance if S =< 13, 27, 68, 150 >, s = 122 ∈ D4 ∩ A3, one has s + e = 5n2,

but 4n2 /∈ A4 because 4n2 = n2 + n3 + e.
Proposition 2.8 With Setting 2.1 elements a1e + a2n2 /∈ Dk, for each a1, a2 ≥ 0.

Proof Note that s = a1e+a2n2, or d(s) = a1+a2=k−1 �⇒ s+e = (a1+1)e+
a2n2 < kn2. If s ∈ Dk, then s+e = λ2n2+λ3n3+· · ·+λvnv ≥ (λ2+. . .+λv)n2 ≥
(k + 1)n2, impossible. ��
Proposition 2.9 Let s = ∑v1 ajnj , mrp , a1 > 0. For i ∈ [0, a1] and for p ∈
[2, v−1], let sip = (a1−i)e+a2n2+· · ·+(ap+i)np+· · ·+avnv, (s = s0p) :
(1) Assume i ≥ 1 and sip ∈ Dk, sip + e =∑j≥2 λij nj mrp . Then

λip < i and for each nq > np the following conditions hold:(
1 − ∑j /∈{p,q} λij

)
nq <

(
1 + ∑j /∈{1,p,q}(aj − λij )

)
nq <∑

j /∈{1,p,q}(aj−λij )nj ( ∗i )
(2) If s ∈ Dk, ap > 0, s + e =∑j≥2 λ0j nj and condition ( ∗0 ) doesn’t hold for

s, then for all 1 ≤ i ≤ ap
s′ip = (a1 + i)e + a2n2 + · · · + (ap − i)np + · · · + avnv /∈ Dk.

Proof

(1) If λip ≥ i, the equality

s = (sip+e)+(i−1)e−inp=λi2n2+· · ·+(λip−i)np+· · ·+λivnv+(i−1)e

would imply ord(s) ≥ k, against the assumption ord(s) = k − 1. Further we
have

σ = ∑j 
=p λij nj = sip + e−λipnp = (a1−i+1)e + (ap+i−λip)np +∑j /∈{1,p} ajnj
<
(
(a1−i + 1)+ (ap + i − λip)+ aq

)
nq +∑j /∈{1,p,q} ajnj =

= (a1+ap+aq+1−λip)nq+∑j /∈{1,p,q} ajnj �⇒
σ < (k −∑j /∈{1,p,q} aj − λip)nq +

∑
j /∈{1,p,q} ajnj .Nowλiq ≥ k + 1−∑j 
=q λij �⇒

σ = ∑j 
=p λij nj ≥ (k + 1−∑j 
=q λij )nq +
∑
j /∈{p,q} λij nj , and so

(k+1−
∑

j 
=q
λij )nq +

∑

j /∈{p,q}
λij nj < (k−

∑

j /∈{1,p,q}
aj −λip)nq +

∑

j /∈{1,p,q}
ajnj

equivalently,
(
1+∑j /∈{1,p,q}(aj−λij )

)
nq <
∑
j /∈{1,p,q}(aj−λij )nj ( ∗i )
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(2) Consider the element t = s′ip , then tip = s. If t ∈ Dk then, by assumption,
condition (∗i ) for tip (that is condition (∗i ) for s) doesn’t hold. Hence by (1),
tip = s /∈ Dk , contradiction. ��

3 The Case Embedding Dimension 4

From now on we restrict to the embedding dimension four case. Then HR does not
decrease at level two by (2.4.6) and HR does not decrease if e ≤ 8 by (2.4.7). The
easy Remark 3.1 gives other conditions which assure that HR does not decrease.

Remark 3.1

(1) Let S = 〈e, n2, n3, n4〉 : recall that S is said balanced if e + n4 = n2 + n3 in
this case HR is non decreasing by Patil and Tamone [16, Theorem 2.11].

(2) Let S = 〈e, np, nq , nr 〉. If either 2np = e + nq , or 2nq = np + nr then
respectively, np − e = nq − np, and the sequence e, np, nq is arithmetic or
nq − nr = nq − np and the sequence np, nq, nr is arithmetic. In these cases
S is generated by an almost arithmetic sequence (AAS) therefore HR is non
decreasing by Tamone [19, Corollary 2.7].

According to Theorem (2.4.5) and by the above Remark (3.1), from now on we
shall consider semigroups which satisfy the following setting.

Setting 3.2 From now on we assume that S = 〈e, n2, n3, n4〉, with e < n2 <

n3 < n4 is a numerical semigroup as in (2.1), with
∣∣A2
∣∣ ≥ 3, which is neither

balanced nor AAS.
In particular, e, n2, n3, n4 are such that:

• 2n2 
= e + n3, e + n3 
= n2 + n4, 2n2 
= e + n4, 2n3 
= n2 + n4.

• if ni + nh /∈ A2, then ord(ni + nh) ≥ 3, for each i, h ∈ {2, 3, 4}.
We write S = 〈e, np, nq, nr 〉 when we don’t require an ordered sequence of
generators.

Proposition 3.3 Let S = 〈e, np, nq, nr 〉, with np < nq. Let s = a1e + apnp +
aqnq + arnr ∈ Dk mrp ,with s + e = λpnp + λqnq + λrnr .
(1) Assume that (1+ ar − λr) nq ≥ (ar − λr)nr . Then

(a1 + i)e+ (ap − i)np + aqnq + arnr /∈ Dk for each 1 ≤ i ≤ ap.
(2) According to the values of (p, q, r) we get

(p, q, r) = (2, 3, 4) :
a1 e+a2n2+a3n3 ∈ Dk �⇒ (a1+i) e+(a2−i)n2+a3n3 /∈ Dk
a1 e+a2n2+a3n3+n4 ∈ Dk, n4 < 2n3 �⇒ (a1+i) e+(a2−i)n2+a3n3+n4 /∈ Dk
(p, q, r) = (2, 4, 3) :

a1 e+a2n2+a3n3+a4n4 ∈ Dk, a3 ≥ λ3−1 �⇒ (a1+i) e+(a2−i)n2+a3n3+a4n4 /∈ Dk
(p, q, r) = (3, 4, 2) :

a1 e+a2n2+a3n3+a4n4 ∈ Dk, a2 ≥ λ2−1�⇒ (a1+i) e+a2n2+(a3−i)n3+a4n4 /∈ Dk
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(3) If ord(2nr) ≥ 3, in each case considered in (2), for any pair (b1, bp) 
=
(a1, ap), with b1+bp = a1+ap, we have b1e+bpnp+aqnq+arnr /∈ Dk.

(4) If ord(2nr) ≥ 3, then
∣∣Dk∩{a1e+apnp+aqnq, a1+ap+aq = k−1}∣∣ ≤ k−1.

Proof

(1) is a special case of (2.9.2) in fact by assumption we have np < nq .

(2) It is a direct computation, since np < nq �⇒ p 
= 4, q 
= 2.

(3) ord(2nr) ≥ 3 �⇒ ar, λr , λir ≤ 1. By (1) we get (a1 + i)e + (ap − i)np +
aqnq + arnr /∈ Dk for each 1 ≤ i ≤ ap. Further in each case considered in (2)
condition (∗i ) of (2.9) does not hold, hence by (2.9.1), (a1− i)e+ (ap+ i)np+
aqnq + arnr /∈ Dk for each 1 ≤ i ≤ a1.

(4) Let D′k = Dk ∩ {a1e + apnp + aqnq } and let a1e + apnp + aqnq ∈ Dk.
By applying (2), for each (b1, bp) such that b1 + bp = a1 + ap, we get s′ =
b1e + bpnp + aqnq /∈ Dk. Hence

∣∣D′k
∣∣ ≤ |{0 ≤ aq ≤ k − 1}∣∣.

If np = n2, then aq ≥ 1, since a1e + a2n2 /∈ Dh by (2.8).
If np = n3, i.e., 2n2 /∈ A2, then aq = 0, s ∈ D′k �⇒ s + e = (a1 +

1)e + a3n3 = λ2n2 + λ3n3 + λ4n4, with λ2 ≤ 1, λ2 + λ3 + λ4 ≥ k + 1:
clearly this is impossible, since (a1 + 1)e + a3n3 < n2 + (k − 1)kn3 and
λ2n2 + λ3n3 + λ4n4 > n2 + kn3. Hence aq ≥ 1 and the claim follows. ��

Lemma 3.4 Let S = 〈e, n2, n3, n4〉.
(1) Let n2 + n3 ∈ A2; then n3 ∈ D2 ⇐⇒ n2 + n3 ∈ D3.

(2) Assume n2 + n3 /∈ A2, i.e., n2 + n3 = �e + mn4, mrp with � + m ≥ 3 ,
m ≤ 1 : if either n3 ∈ D2 or n3 + e ∈ D3, then 2n3 /∈ A2.

Proof

(1) n2+n3 ∈ D3 ⇐⇒
(
n2+n3 ∈ A2 and n2+n3+e = λ2n2, λ2 ≥ 4

)⇐⇒ n3+
e = (λ2 − 1)n2, i.e. n3 ∈ D2.

(2) n3 ∈ D2 �⇒ n3+ e = αn2 �⇒ 2n3+ e = (α−1)n2+n2+n3 = (α−1)n2+
�e +mn4 �⇒ 2n3 = (α − 1)n2 + (�− 1)e +mn4 /∈ Ap(S).

Similarly, n3+e ∈ D3 �⇒ 2n3 /∈ A2, ifm = 1 and 2n3 /∈ Ap(S), ifm = 0.��
Lemma 3.5 Let S = 〈e, n2, n3, n4〉. With setting (3.2), assume

∣∣A2
∣∣ ≥ 4.

Then:

(1) At least one between 2n2, n2 + n3 belongs to A2 and n2 + n3 ∈ D3 ⇐⇒ n3 ∈
D2.

(2) If 2n2 /∈ A2, i.e., 2n2 = �e + mni , mrp with i ∈ {3, 4}, m ≤ 1, �+ m ≥ 3,
then

(a) If s = a1e+a2n2+a3n3 is mrp with a1+a2+a3 = k−1, a2 ∈ {0, 1}, k ≥
2, then s /∈ Dk . In particular n3 /∈ D2, n2 + n3, 2n3, n3 + e /∈ D3

(b)
∣∣{n4+e, n3+n4

}∩D3
∣∣≤ 1, D3 ⊆

{
n4+e, n3+n4, n2+n4, 2n4

}
,
∣∣D3
∣∣ ≤ 3
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(c)
∣∣Dk
∣∣ ≤ 2k − 3 for each k ≥ 3 and HR is non-decreasing at level ≤ 4

Proof

(1) Let 2n2 = �e + mni , n2 + n3 = �′e + m′n4, ��
′ > 0, m,m′ ∈ {0, 1},

then n3 − n2 = (�′ − �)e − ni �⇒ (�′ − �) > 0 �⇒ n3 + ni /∈ Ap(S) then∣∣A2
∣∣ ≤ 3, against the assumption. The other cases are either similar or easy

to prove.

(2.a) Assume s = a1e + a2n2 + a3n3 ∈ Dk , then s + e = λ2n2 + λ3n3 + λ4n4,

with λ2 + λ3 + λ4 ≥ k + 1 a2, λ2 ≤ 1, by assumption; impossible since[
either s + e = (a1 + 1)e+ a2n2 + a3n3 ≤ n2 + (k − 1)n3

or s + e = λ2n2 + λ3n3 + λ4n4 ≥ n2 + kn3

(2.b) It follows by (3.3.3), with r = 2, p = 3.

(2.c) By (2.a–b), we know that 2n2 /∈ A2 �⇒
∣∣Dk
∣∣ ≤ ∣∣{(k−1)n4, (k−2)n4+

n3, · · · , n4 + (k− 2)n3}
∣∣+ ∣∣{n2+ (k− 2)n4, n2+ (k− 3)n4+ n3, · · · , n2 +

n4 + (k − 3)n3}
∣∣ hence

∣∣Dk
∣∣ ≤ 2k − 3. The second claim follows by (2.4.3),

since 2k − 3 < k + 2 for k ≤ 4. ��

4 Cases with Cardinality of A2 ≤ 4

In this section, through several steps we shall prove the following theorem.

Theorem 4.1 Assume S = 〈n1 = e, np, nq, nr 〉 and
∣∣A2
∣∣ ≤ 4, then the Hilbert

function of R = k[[S]] is non-decreasing.

Proof Let |A2| = 3: by Oneto and Tamone [13, Prop.1.7.2, Theorem 2.1.2],
if HR decreases there exist two generators np < nq such that A2 =
{2np, np + nq, 2nq}. We show that in this case

∣∣Dk
∣∣ ≤ k for each k ≥ 2. In

fact the possible maximal representations of the elements with order k− 1 are:[
s = (k − 2)e + nr
s = (k − 1− ap − aq)e + apnp + aqnq

then by (3.3.4), we have
∣∣Dk
∣∣ ≤ 1+ k − 1 = k and the claim follows by (2.4.3).

In case |A2| = 4 the proof is developed in the remaining part of this section. ��
Remark 4.2 Let S = 〈n1 = e, np, nq , nr 〉 and assume

∣∣A2
∣∣ = 4. By Oneto and

Tamone [13, Theorem 2.6] necessary conditions for the decreasing of HR are the
following four shapes of A2:

(1)A2 = {2np, n2 + n3, n2 + n4, n3 + n4}, p ∈ {2, 3, 4}, ord(2ni) ≥ 3, for i 
= p
(2)A2 = {2np, 2nq, np + nr , nq + nr} ord(2nr) ≥ 3, ord(np + nq) ≥ 3

(3)A2 = {2np, np + nq, 2nq, np + nr }, ord(ni + nr) ≥ 3, for i 
= p
(4)A2 = {2np, 2nq, 2nr, np + nq} ord(ni + nr) ≥ 3, for i 
= r
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Proposition 4.3 Let S = 〈n1 = e, np, nq , nr 〉. Let
∣∣A2
∣∣ = 4 and assume that S

verifies either case (1) or case (2) of (4.2); then HR is non-decreasing.

Proof In the first case we have ord(2nh) ≥ 3, if h 
= p. Then
∣∣Ck
∣∣ ≤ 4 for each

k ≥ 3:

Ck ⊆ {knp, (k − 1)np + nq, (k − 1)np + nr , (k − 2)np + nq + nr }.

In the second one, any mrp of s ∈ S is s = a1e + apnp + aqnq + arnr , with
apaq = 0, ar ≤ 1. Then:

Ck ⊆ {knp, knq, (k − 1)np + nr , (k − 1)nq + nr },
∣∣Ck
∣∣ ≤ 4 for each k ≥ 3.

By (2.4.5) HR decreasing at level � implies that
∣∣Ck
∣∣ ≥ k + 1, ∀ k ≤ �, and so HR

cannot decrease at level ≥ 4. For � = 3, in case (1), if p ∈ {3, 4}, then 2n2 /∈ A2
and apply (3.5.2.c). If p = 2, by applying (3.3.4) with p = 2, q = 3, r = 4,
s = e+n3, σ = n2+n3 we see that

∣∣D3∩{s, σ }
∣∣ ≤ 1; hence

∣∣D3
∣∣ ≤ 4, sinceD3 ⊆

{n2+n3, n2+n4, n3+n4, n3+ e, n4+ e}. In case (2), with r ∈ {2, 3} the argument
is similar to the (1) above. If r = 4, we have n2 + n3 /∈ A2, then by (3.4.2) we have
n3 + e /∈ D3 and so

∣∣D3
∣∣ ≤ 4, since D3 ⊆ {2n3, n2 + n4, n3 + n4, n3 + e, n4 + e}.

In both cases we concludeHR is non decreasing by (2.4.3). ��
Proposition 4.4 Let S = 〈n1 = e, np, nq , nr 〉. Let

∣∣A2
∣∣ = 4 and assume that S

verifies case (3) of (4.2). Then HR is non-decreasing.

Proof Let 2nr /∈ A2 and letA2 = {2np, np+nq, 2nq, np+nr }, ord(nq+nr) ≥ 3.

We getDk = D′k∪D′′k where

[
D′k = {a1e+apnp+aqnq | a1+ap+aq = k − 1}
D′′k = {a1e+apnp+nr | a1+ap = k − 2}

We divide the proof in 6 subcases:

(3.1)A2 = {2n2, 2n3, n2+n3, n2+n4} 2n4, n3+n4 /∈ A2 D
′′
k ⊆ {a1e+a2n2+n4}

(3.2)A2 = {2n2, 2n4, n2+n3, n2+n4} 2n3, n3+n4 /∈ A2 D
′′
k ⊆ {a1e+a2n2+n3}

(3.3)A2 = {2n3, 2n4, n2+n3, n3+n4} 2n2, n2+n4 /∈ A2 D
′′
k ⊆ {a1e+a3n3+n2}

(3.4)A2 = {2n2, 2n3, n2+n3, n3+n4} 2n4, n2+n4 /∈ A2 D
′′
k ⊆ {a1e+a3n3+n4}

(3.5)A2 = {2n2, 2n4, n2+n4, n3+n4} 2n3, n2+n3 /∈ A2 D
′′
k ⊆ {a1e+a4n4+n3}

(3.6)A2 = {2n3, 2n4, n2+n4, n3+n4} 2n2, n2+n3 /∈ A2 impossible by (3.5.1)

In cases (3.1,3.2, 3.3), by (3.3.4) we have
∣∣D′k
∣∣ ≤ k − 1 for each k ≥ 2. We shall

prove that
∣∣D′′k
∣∣ ≤ 2 and so

∣∣Dk
∣∣ ≤ k + 1 and the claim follows by (2.4.3).

Case (3.1) If s ∈ D′′k �⇒ s + e = λ2n2 + λ3n3, let m = min{a2, λ2}; then
(a1 + 1)e+ (a2 −m)n2 + n4 = (λ2 −m)n2 + λ3n3. If m = a2, since there is an
unique a1 such that a1e+n4 ∈ Da1+2 (2.5.6), we get s = a1e+(k−2−a1)n2+n4
is unique; ifm = λ2, then (a1+1)e+ (a2−m)n2+n4 = λ3n3 and λ3 is unique.
We deduce that

∣∣D′′k
∣∣ ≤ 2.
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Case (3.2) If s ∈ D′′k �⇒ s+e = (a1+1)e+a2n2+n3 = λ2n2+λ4n4 �⇒ λ4 =
0, otherwise λ4 > 0, λ2+λ4 ≥ k+1 �⇒ λ2n2+λ4n4 ≥ kn2+n4, contradiction,
because (a1 + 1)e + a2n2 + n3 ≤ (k − 1)n2 + n4. Then s + e = (a1 + 1)e +
a2n2 + n3 = λ2n2: clearly this means that

∣∣D′′k
∣∣ ≤ 1.

Case (3.3) In this case D′′k = ∅ by (3.5.2 a).

In cases (3.4) and (3.5) we shall construct an injective map  : Dk −→ Ck for
each k. LetA2 = {2n2, n2+np, 2np, np+nq}, ord(n2+nq) ≥ 3, ord(2nq) ≥ 3,
p, q ∈ {3, 4}, p 
= q . First we show that (k−1)np+nq /∈ Dkh+e for each h ≤ k−1.
In fact assume that (k − 1)np + nq = s + e, with ord(s) ≤ k − 2 :
• If s = a1e+a2n2+apnp ∈ Dh and s+e = (k−1)np+nq , then a1+a2 ≥ 1

(otherwise e > nq ) and ap < a1+a2+ap ≤ k−2. It follows that a1e+a2n2+e =
(k − 1− a3)np + nq �⇒ a1e + a2n2 ∈ Da1+a2+1, impossible by (2.8).

• If s = a1e + apnp + nq ∈ Dh, a1 + ap + 1 ≤ k − 2, s + e = (k − 1)np +
nq �⇒ (a1 + 1)e + apnp = (k − 1)np,impossible since (a1 + 1)e + apnp <
(a1 + ap + 1)np ≤ (k − 2)np.

Then for each h : Dkh + e ⊆ {kn2, (k − 1)n2 + np, . . . , knp}. Recall also that
there exists at most one h0 such that σ = (h0 − 2)e + nq ∈ Dh0 (2.5.6).

For s ∈ Dk, let s + e = α2n2 + αpnp, α2 + αp ≥ k + 1, define a map

 : Dk −→ Ck,  (s) =
[
(k − αp)n2 + αpnp if αp < k
knp if αp ≥ k

 is injective. In fact let s1, s2 ∈ Dk , be such that

s1 + e = α2n2 + αpnp, s2 + e = λ2n2 + λpnp

(i) If αp, λp <k, then  (s1)= (s2) �⇒ (λp − αp)n2 = (λp − αp)np �⇒ λp=
αp. If, e.g., α2 < λ2, then s2 − s1 = (λ2 − α2)n2 + (λp − αp)np = (λ2 −
α2)n2 �⇒ ord(s2) > ord(s1), impossible.

(ii) If αp ≥ k, λp < k and  (s1) = knp =  (s2) = (k − λp)n2 + λpnp, λp < k,
then (k − λp)n2 = (k − λp)np, hence k = λp, against the assumption.

(iii) If αp, λp ≥ k,  (s1) = knp =  (s2), i.e. s1 + e = α2n2 + αpnp, αp ≥ k,
s2 + e = λ2n2 + λpnp, λp ≥ k. Note that s1 has mrp s1 = a1e + apnp + nq
(and the same holds for s2); otherwise s1 = a1e + a2n2 + apnp �⇒ (a1 +
1)e + a2n2 = α2n2 + (αp − ap)np and so a1e + a2n2 ∈ Da1+a2+1. Then
s1 + e = (a1 + 1)e+ apnp + nq = α2n2 + αpnp �⇒ a1e+ nq = σ ∈ Da1+2;
this element is unique, hence s1 = σ + (k − 2− a1)np = s2. ��
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The following example, as well as all the further ones are performed by using the
GAP package for numerical semigroups, see [5].

Example 4.5

Case (1) with np = n2 = 28. Let S =< 13, 28, 40, 99 >
A2 = {2n2, n2 + n3, n2 + n4, n3 + n4} D2 = {n4}, D3 = {n2 + n4, n3 + n4},
D4 = {2n2 + n4, n2 + n3 + n4}, Dk = ∅ for k ≥ 5. HR = [4, 7, 9, 9, 11,
13 →].

Case (2) with np = n2, nq = n4, nr = n3. Let S =< 19, 67, 81, 142 >
A2 = {2n2, n2 + n3, n3 + n4, 2n4} D6 = {2e + 3n4 = 464}, Dk = ∅ for
k 
= 6. HR = [4, 8, 12, 14, 16, 17, 19→]

Case (3.1) Let S =< 31, 64, 90, 96 > we have
A2 = {2n2, n2+n3, n2+n4, 2n3} D7 = {e+5n3},D8 = {e+n2+5n3},D9 =
{e + 2n2 + 5n3}, Dk = ∅ for k /∈ {7, 8, 9}.

Proposition 4.6 Let S = 〈n1 = e, np, nq , nr 〉. Let
∣∣A2
∣∣ = 4 and assume that S

verifies case (4) of (4.2); then HR is non-decreasing.

Proof In this caseA2 = {2np, 2nq, 2nr , np+nq}, ord(np+nr) ≥ 3. Let np < nq .
If s = a1e + apnp + aqnq + arnr is mrp , then apar = aqar = 0; therefore the
possible mrp of s ∈ S are either s = a1e + apnp + aqnq or s = a1e + arnr .

Write Dk = D′k ∪D′′k , where

[
D′k = {s = a1e + apnp + aqnq ∈ Dk}
D′′k = {s = a1e + arnr ∈ Dk}

Then Dk+ e ⊆ {λpnp+λqnq, | λp+λq ≥ k+1}∪ {λrnr }. Clearly, there exists at
most one element σ ∈ Dk such that σ + e = λrnr and this equality implies r < 4.

Note that s ∈ D′k and s+ e = λpnp+λqnq , since (a1+1)e+apnp+aqnq <
np+ (k− 1)nq and λp+λq ≥ k+ 1, we get λq ≤ k− 2. Moreover, if s, s′ ∈ D′k
are such that s+e = λpnp+λqnq , s′ +e = λ′pnp+λ′qnq , then λq 
= λ′q by (2.5.5).

Hence (◦) ∣∣D′k
∣∣ ≤
[
k − 1 if λrnr /∈ D′k + e
k if λrnr ∈ D′k + e (impossible if r = 4)

Now, s ∈ D′′k �⇒ s + e = λpnp + λqnq . We have to consider the three following
situations:

• A2 = {2n2, 2n3, 2n4, n2 + n4}, (p, q, r) = (2, 4, 3). ThenD′′k = {a1e+ a3n3 ∈
Dk} and so s ∈ D′′k �⇒ s + e = λ2n2 + λ4n4, where λ4 ≤ k − 2 (since n2 <

n3 < n4). ThenDk+e ⊆ {λpnp+λqnq, | λp+λq ≥ k+1, λq ≤ k−2}∪{λ3n3},∣∣Dk
∣∣ ≤ k.

• A2 = {2n2, 2n3, 2n4, n3 + n4}, (p, q, r) = (3, 4, 2). ThenD′′k = ∅ (2.8) and we
are done.

• A2 = {2n2, 2n3, 2n4, n2 + n3}, (p, q, r) = (2, 3, 4). By (◦), ∣∣D′k
∣∣ ≤ k − 1;

further s ∈ D′′k �⇒ s = a1e + a4n4 then s + e = λ2n2 + λ3n3.

To achieve the proof we prove that

∣∣{s ∈ D′′k | s + e = λ2n2 + λ3n3, with λ3 ≥ k − 1}∣∣ ≤ 2;
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since there exists at most one s ∈ Dk such that s+ e = λ3n3, it suffices to show that

∣∣{s ∈ D′′k | s + e = λ2n2 + λ3n3, with λ2 ≥ 1, λ3 ≥ k − 1}∣∣ ≤ 1 (∗)

This inequality is due to the following technical lemmas, in particular (4.8) and
(4.9.ii). ��
Lemma 4.7 Let S = 〈e, n2, n3, n4〉 as in (3.2), let A2 = {2n2, 2n3, 2n4, n2+n3}
and let

{
n2 + n4 = �e + pn3 : �+ p ≥ 3
n3 + n4 = me + qn2 : m+ q ≥ 3

(6)
Then pq = 0, (p, q) 
= (0, 0); further m < 3 �⇒ p = 0 and � < 3 �⇒ q = 0.

Proof In fact n2 + n3+ 2n4 = (�+m)e+ qn2+pn3 �⇒ 2n4 = (�+m)e+ (q −
1)n2 + (p − 1)n3. Since 2n4 ∈ A2, this implies pq = 0. ��
Lemma 4.8 Let S = 〈e, n2, n3, n4〉 as in (3.2), let A2 = {2n2, 2n3, 2n4, n2 + n3}
and assume that (6) of (4.7) holds withm ≥ 1 and letD′′k = {s = a1e+a4n4 ∈ Dk}.
Then inequality (∗) is true.

Proof Let a1 be the maximum value such that s = a1e + a4n4 ∈ D′′k , with λ2 ≥
1, λ3 ≥ k − 1 and for 1 ≤ i ≤ a1, let si = (a1 − i)e + (a4 + i)n4: we show that
si /∈ Dk . Hence the statement is clear. We divide the proof in 3 steps.

Step (1) Case m ≥ 2.

s + e+ in4 = λ2n2 + λ3n3 + in4 = λ2n2 + (λ3 − i)n3 + i(n3 + n4) = λ2n2 +
(λ3 − i)n3 + i(me + qn2) = ime + (λ2 + iq)n2 + (λ3 − i)n3 where im ≥ 2i ≥
i + 1 and (λ3 − i) > 0, since i ≤ a1 ≤ k − 2, λ3 ≥ k − 1. It follows that
si = [(a1+1)− (i+1)]e+ (a4+ i)n4 = (im− i−1)e+ (λ2+ iq)n2+ (λ3− i)n3.
Hence ord(si) ≥ im − i − 1 + λ2 + iq + λ3 − i ≥ λ2 + λ3 − 1 ≥ k, and so
si /∈ Dk .
Step (2) Case m = 1, i ≤ λ2.

When m = 1, by (4.7) we get q ≥ 2, p = 0, � ≥ 3, i� ≥ 3i > i + 1. Hence
s + e + in4 = λ2n2 + λ3n3 + in4 = (λ2 − i)n2 + λ3n3 + i(n2 + n4) = (λ2 −
i)n2 + λ3n3 + i�e. Then si = (λ2 − i)n2 + λ3n3 + (i� − i − 1)e and ord(si) ≥
λ2 − i + λ3 + i�− i − 1 ≥ k + 1, si /∈ Dk
Step (3) Case m = 1, λ2 < i.

s+e+ in4 = λ2n2 + λ3n3+ in4 = λ2(n2+n4)+(λ3+λ2− i)n3+(i−λ2)(n3+
n4) = λ2�e+(i−λ2)(e+qn2)+(λ3+λ2−i)n3 = (λ2�+i−λ2)e+(i−λ2)qn2+(λ3+
λ2−i)n3.Hence si = (λ2�−λ2−1)e+(i−λ2)qn2+(λ3+λ2−i)n3 �⇒ ord(si) ≥
λ2�−λ2−1+ (i−λ2)q+ (λ3+λ2− i) ≥ 3λ2−λ2−1+λ2− i+ (i−λ2)2+λ3 ≥
i − 1+ λ2 + λ3 ≥ k + 1. ��
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Lemma 4.9 Let S = 〈e, n2, n3, n4〉, let A2 = {2n2, 2n3, 2n4, n2 + n3}, and
assume that (6) of (4.7) holds with m = 0, i.e., n2+ n4 = �e, n3+ n4 = qn2 (� ≥
3, q ≥ 3) :
(i) Let s ∈ D′′k , s + e = λ2n2 + λ3n3. Then λ3 ≥ k − 1 �⇒ λ2 ≤ q.

(ii) Inequality (∗) : ∣∣{s ∈ D′′k | s+e= λ2n2 + λ3n3, with λ2 ≥ 1, λ3 ≥ k−1}∣∣ ≤ 1
is true.

Proof

(i) We get (q+1)n2 = �e+n3. If λ2 ≥ q+1, then s+e = (q+1)n2+(λ2−q−
1)n2+λ3n3 = �e+(λ2−q−1)n2+(λ3+1)n3 with � ≥ 3, λ2−q−1 ≥ 0. Then
ord(s) ≥ ord((�− 1)e+ (λ2− q − 1)n2+ (λ3+ 1)n3) ≥ 2+ λ3 + 1 ≥ k+ 2,
impossible.

(ii) Assume that s = a1e + a4n4, s
′ = b1e + b4n4 ∈ D′′k are such that s + e =

λ2n2 + λ3n3, λ2 ≥ 1, λ3 ≥ k − 1, s′ + e = λ′2n2 + λ′3n3, λ
′
2 ≥ 1, λ′3 ≥ k − 1.

Assume that λ3 > λ
′
3, then λ′2 > λ2 (2.5.6). We have b1e + b4n4 + (λ3 −

λ′3)n3 = a1e + a4n4 + (λ′2 − λ2)n2.

Denote by b = (λ′2 − λ2), g = (λ3 − λ′3), 1 ≤ b ≤ q − 1 and g ≥ 1. Then:

b1e + b4n4 + gn3 = a1e + a4n4 + bn2 (∗∗)

We consider several subcases and proceed as in the proof of Lemma 4.8.

(g = 1) We have b1e + b4n4 + gn3 = b1e + (b4 − 1)n4 + (n3 + n4) �⇒
b1e + (b4 − 1)n4 + (q − b)n2 = a1e + a4n4, which implies ord(s) ≥ k if
q − b ≥ 2, impossible.

If q−b = 1, then b4 > 1, otherwise b1e+(q−b)n2 ∈ Dk , impossible by (2.8).
Finally, q−b = 1, b4 ≥ 2 �⇒ b1e+(b4−1)n4+n2 = b1e+(b4−2)n4+�e =
a1e + a4n4 �⇒ ord(s) ≥ k − 3+ � ≥ k, impossible.

(2 ≤ g ≤ b4) b1e + (b4 − g)n4 + g(n3 + n4) = a1e + a4n4 + bn2 �⇒

b1e + (b4 − g)n4 + (gq − b)n2 = a1e + a4n4 = s.

Then ord(s) ≥ k − 1− g + gq − q = k + (q − 1)(g − 1)− 2 ≥ k, impossible.
(g > b4) Then g ≥ 2, since b4 ≥ 1 . Equality (∗∗) �⇒
b1e+b4n4+gn3 = b1e+b4(n4+n3)+(g−b4)n3 = b1e+b4qn2+(g−b4)n3 =
s + bn2 i.e. b1e + (b4q − b)n2 + (g − b4)n3 = s. Then ord(s) ≥ b1 + (b4q −
b) + (g − b4) = b1 + b4(q − 1) − b + g = b1 + b4 + b4(q − 2) − b + g ≥
b1+ b4+ b4(q − 2)− q + 1+ g = k− 1+ q − 2− q + 1+ g = k+ g− 2 ≥ k,
impossible. ��

Example 4.10 The semigroup S = 〈101, 102, 106, 302〉verifies case (4) of (4.2),
(4.6). A2 = {2n2, n2 + n3, 2n3, 2n4}, A21 = {2210, 2214}, Ah = ∅ for h ≥ 22.

|Di | = 1 for i = 8, 9, 11, 14, 17, 19, 20,Di = ∅ in the other cases.
|C1| = 3, |C2| = 4, |C3| = 5, |C4| = |C5| = 6, |Ck| ≤ k for each k ∈ [6, 22].
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HR = [4,8,13,19,25, 31, 37,41,45, 50, 54, 59, 64, 68, 73, 78, 82, 87, 91, 95, 98,
100, 101→].

5 Case D2 = {n3, n4}

In this section we shall prove that the Hilbert function HR is non decreasing when
the cardinality of D2 is maximal. We begin with an useful statement regarding this
case.

Proposition 5.1 Let S = 〈e, n2, n3, n4〉 as in (3.2) and let D2 = {n3, n4}.
(1) If s ∈ Dk, s = a1e + a2n2 + a3n3 + a4n4 mrp , then a1 = 0.
(2) Dk = Ck−1 \ {(k − 1)n2}, for each k ≥ 3,

∣∣D3
∣∣ = ∣∣A2

∣∣− 1.

Proof

(1) Given s = a1e + a2n2 + a3n3 + a4n4 ∈ Dk, mrp , we have a1 = 0: in fact
a3 + a4 ≥ 1 by (2.8) and so the assumptions n3, n4 ∈ D2 imply a1 = 0.

(2) If s ∈ Ck−1 \ {kn2}, then a3 + a4 > 0 hence ord(s + e) > k, i.e. s ∈ Dk .
If s ∈ Dk , then either s ∈ Ak−1 \ {kn2}, or s = e + s′. In the second case,
we get ord(s′) ≤ k − 3; in fact ord(s′) = k − 2 would imply that e + s′ is
a maximal representation of s, impossible as noted above. Hence s ∈ Ck−1.
Further (k − 1)n2 /∈ Dk for any k ≥ 2; in particular D3 ⊆ A2 \ {2n2}. The
equality D3 = A2 \ {2n2} follows immediately by the assumption D2 =
{n3, n4}, because s = bn2 + cn3 + dn4, b + c + d = 2 ∈ D2, c + d ≥
1 �⇒ ord(s + e) > 3. Since n3 ∈ D2 �⇒ 2n2 ∈ A2, by (2.5.2), (induced) we
also have |D3| = |A2| − 1. ��

Proposition 5.2 Let S = 〈e, n2, n3, n4〉 as in (3.2) and let D2 = {n3, n4}; then

(1) n3 + e = αn2, α ≥ 3, n4 + e = βn2 + γ n3, β + γ ≥ 3, α > β, γ ≥ 1.
(2) (α − β)n2 + n4 = (γ + 1)n3.
(3) (a) 2n3 ∈ A2 ⇐⇒ γ ≥ 2.

(b) 2n3 /∈ A2 �⇒ 2n3 = (α − β)n2 + n4, with α ≥ β + 2 ≥ 4, γ = 1.
(4) If a2n2 + a4n4 = a3n3, then a3 ≥ γ + 1 and

the equality holds ⇐⇒ either a2 = α−β, a4 = 1, or a2+a3 < α−β+1.

Proof

(3.a) If 2n3 ∈ A2 and γ = 1, by the equality (α− β)n2 + n4 = (γ + 1)n3 in (2),
we see that 2n3 ∈ A2 ⇐⇒ α − β = 1 and this would imply S is AAS, that
contradicts assumption (3.2). Then γ ≥ 2.

(3.b) If 2n3 /∈ A2, then γ = 1 by (a), α − β ≥ 2, by (2) and by assumption
(3.2) and so α ≥ 4.

(4) If a2n2 + a4n4 = a3n3, with a3 ≤ γ , then n4 + e = βn2 + a2n2 + a4n4 +
(γ − a3)n3 �⇒ a4 = 0, a2n2 = a3n3 and so a2 > a3; hence ord(n4 + e) ≥
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β+ a2+ γ − a3 > β+ γ , against the assumptions. If a3 = γ + 1, (2) implies
(α− β)n2+ n4 = a2n2+ a4n4 �⇒ (a4− 1)n4 = (α− β − a2)n2: if a4 = 0,
then (a2 − α + β)n2 = n4, impossible. If a4 > 1, since n2 < n4 we get
a4 − 1 < α − β − a2, i.e., ord(a2n2 + a4n4) < α − β + 1. ��

Proposition 5.3 Let S = 〈e, n2, n3, n4〉 as in (3.2). Assume D2 = {n3, n4}, with
n3 + e = αn2, n4 + e = βn2 + γ n3 and let s = a2n2 + a3n3 + a4n4 mrp .

(1) If s ∈ Dk+1, then

(a) 0 < a3 + (γ + 1)a4 < e/2.

(b) k ≤ e−1−a3(α−1)−a4(αγ +β−1) ≤
⎡

⎣
e − α if a3 > 0, a4 = 0
e − α − 2 if a4 > 0
e − 1 if a3 + a4 = 0

(2) (a) For each k ≤ e − 1 we have kn2 ∈ Ck .
(b) For each k ≤ e − α we have (k − 1)n2 + n3 ∈ Dk+1 ⊆ Ck .
(c) Dh 
= ∅ �⇒ h ≤ e − α + 1 and De−α+1 = {(e− α − 1)n2 + n3}.

(3) Let s ∈ Dk and let s′ = s + n2, s
′′ = s + n3.

(a) If any mrp s′ = b1e + b2n2 + b3n3 + b4n4 has b1 = 0 and α ≥ β + γ ,
then ord(s′) = k.

(b) If α ≥ β + γ there exists at most one element s ∈ Dk such that s′ =
s + n2 = pe + qn2.

(c) If α < β + γ and any mrp s′′ = b1e + b2n2 + b3n3 + b4n4, has b1 = 0,
then ord(s′′) = k.

(d) If α < β + γ there exist at most two elements σ1, σ2 ∈ Dk such that
σi + n3 = pie + qin2.

Proof

(1.a) Write a2 = k − a3 − a4, n3 = αn2 − e, n4 = βn2 + γ n3 − e =
βn2 + γ (αn2 − e) − e: by substituting in s = a2n2 + a3n3 + a4n4 we

get
(∗∗) s = [k + (α − 1)a3 + (αγ + β − 1)a4] n2− [a3 + (γ+1)a4] e

= [k + (α − 3)a3 + (αγ + β − 2γ − 3)a4] n2

+[a3 + (γ + 1)a4](2n2 − e)
Note that α − 3 ≥ 0, αγ + β − 2γ − 3 ≥ 0 and let a3 + (γ + 1)a4 =
pe + q, p ≥ 0, q < e; then [a3 + (γ + 1)a4](2n2 − e) =
= (pe + q)(2n2 − e) = [(p + 1)n2 − pe − q]e + [(p − 1)e + 2q]n2.

Now p > 0 would imply ord(s) > k, hence p = 0 and we
get [a3 + (γ + 1)a4](2n2 − e) = (n2 − q)e + (2q − e)n2; then
ord(s) = k �⇒ q < e/2.

(1.b) Let h = k+(α−1)a3+(αγ +β−1)a4 = e+r ≥ e. By the above equality
(∗∗) and by (1.a), we would get s = (e+r)n2−[a3+(γ+1)a4]e = rn2+
[n2− a3− (γ + 1)a4]e: clearly this would be a mrp of s and so s /∈ Dk+1
by (2.8), against the assumption. Hence h ≤ e − 1 and the first inequality
follows. The last inequalities are immediate since αγ + β − 1 ≥ α + 1.
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(2.a–b) Since S = 〈e, n2, αn2 − e, βn2 + γ n3 − e〉 we have GCD(e, n2) = 1,
hence

(∗∗∗) λn2 = μe �⇒ λ ≥ e.

We prove that s = a2n2 + a3n3 ∈ Ck , if a2 + a3 = k, a3 ≤ 1. Assume that
a2n2+ a3n3 = b1e+ b2n2+ b3n3+ b4n4, mrp with b1+ b2+ b3+ b4 >

a2 + a3; clearly, b2 ≤ a2 (since a3 ≤ 1) and so b1 > 0, otherwise
(a2 − b2)n2 + a3n3 = b3n3 + b4n4 implies a2 − b2 + a3 ≥ b3 + b4.
Now D2 = {n3, n4} �⇒ b3 = b4 = 0, a2n2 + a3n3 = b1e + b2n2,
b1 + b2 > a2 + a3. Now let (a2 − b2)n2 + a3n3 = b1e.

If a3 = 1, we have (a2 − b2 + α)n2 = (b1 + 1)e and by (∗∗∗),
a2 − b2 + α ≥ e, a2 ≥ e − α. Hence ord(a2n2 + n3) = a2 + 1 for each
a2 ≤ e− α − 1, therefore a2n2 + n3 ∈ Dk+1 ⊆ Ck (5.1).

If a3 = 0, then a2−b2 ≥ e �⇒ a2 ≥ e, by (∗∗∗) and so ord(kn2) = k,
for each k ≤ e − 1. Finally, if k < α, kn2 ∈ Ak ⊆ Ck . If α ≤ k ≤ e − 1,
then kn2 = (k − α)n2 + n3 + e ∈ Dkk−α+2 ⊆ Ck (2.3).

(2.c) Since Dh ⊆ Ch−1 \ {(h − 1)n2} (5.1), then Ch−1 \ {(h − 1)n2} 
= ∅ and
this claim is immediate by (1.b), with k = h− 1.

(3.a) Assume that s′ = b2n2 + b3n3 + b4n4 mrp with b2 + b3 + b4 ≥ k + 1.
First note that b2 = 0, otherwise ord(s) ≥ k. Hence

(a2+1)n2+a3n3+a4n4 = b3n3+b4n4, with b3+b4 ≥ a2+a3+a4+2.

If b4 ≥ a4, (a2 + 1)n2 + a3n3 = b3n3 + (b4 − a4)n4, then

(b3 + b4 − a4)n3 < (a2 + 1)n2 + a3n3 < (a2 + 1+ a3)n3

against the assumption ord(s′) > k. Hence b4 < a4, b3 > a3, (a2+1)n2+
(a4− b4)n4 = (b3− a3)n3, with a4 − b4 ≥ 1, b3 − a3 ≥ (a2+ 1)+ (a4 −
b4)+ 1

Let x = a2 + 1, y = a4 − b4, z = b3 − a3 then xn2 + yn4 = zn3,
z ≥ x + y + 2; since z ≥ γ + 1 by (5.2.4), we get xn2 + yn4 = (z − γ −
1)n3 + (α − β)n2 + n4, that implies (x − 1)n2 + (y − 1)n4 = (z − γ −
1)n3 + (α − β − 1)n2. In our assumptions ord((x − 1)n2 + (y − 1)n4) =
x+y−2 �⇒ x+y−2 ≥ z+α−β−γ −2, i.e., x+y ≥ z+α−β−γ .It
follows: a2 + 1 + a4 − b4 ≥ b3 − a3 + α − β − γ , a2 + a3 + a4 ≥
b3+b4+α−β−γ−1 ≥ a2+a3+a4+2+α−β−γ−1 �⇒ α ≤ β+γ−1.

(3.b) Suppose s ∈ Dk be such that ord(s′) ≥ k+1. Then, by (3.a), s′ = b1 e+
b2n2 + b3n3 + b4n4, with

∑
i bi ≥ k + 1 and b1 > 0, hence b3 = b4 = 0.

Further b2 = 0 otherwise ord(s) ≥ k. It follows s′ = b1e; then there exists
at most one element such that ord(s′) ≥ k + 1.

(3.c) As above, let s′′ = b2n2 + b3n3 + b4n4, mrp with b2 + b3 + b4 ≥ k + 1;
then, clearly b3 = 0, and so b2 ≥ a2, b4 > a4. Hence (a3 + 1)n3 =
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(b2 − a2)n2 + (b4 − a4)n4 with a3 ≥ γ ; by substituting we get

(a3 − γ )n3 + (α − β)n2 = (b2 − a2)n2 + (b4 − a4 − 1)n4

if (α − β) ≥ (b2 − a2), then (b4 − a4 − 1) < a3 − γ + α − β, and so
b2 + b4 < a2 + a3 + a4 against the assumption.
If (α−β) < (b2−a2), then ord(a3−γ )n3 = a3−γ ≥ b2−a2+b4−a4−
1− (α− β) > b2+ b4− a2− a4− 1− γ �⇒ a2+ a3+ a4 > b2+ b4− 1,
impossible.

(3.d) Let

{
s + n3 = p e + q n2

s′ + n3 = p′e + q ′n2
with p < p′, q > q ′. First note that α > q >

q ′: in fact q ≥ α �⇒ s + n3 = (p+ 1)e+ (q − α)n2 + n3 �⇒ (a2+ a3+
a4)n2 < a2n2+a3n3+a4n4 = (p+1)e+ (q−α)n2 < (p+1+q−α)n2
hence a2+a3+a4 < p+q+1−α, impossible since ord(s) = a2+a3+a4.
s′ + n3 = s+ n3+ (p′ −p)e− (q − q ′)n2 = (p′ −p− 1)e+ s + (α−

q + q ′)n2, α − q + q ′ = r ≥ 1:

s′ + n3 = s + (p′ − p − 1)e+ (α − q + q ′)n2

s′ + (q − q ′)n2 = s + (p′ − p)e

Then p′ − p = 1: in fact, p′ − p − 1 > 0 �⇒ ord(s′) = k − 1 �⇒ a3 =
0, a4 > 0, s′ = s − n4 + (p′ − p − 2)e + (α − q ′ + q + β)n2 + (γ −
1)n3 �⇒ ord(s′) > k, against the assumption s′ ∈ Dk . Since q−q ′ = α−r
we get:
s′ + (q − q ′)n2 = s + e = a2n2 + a4n4 + e = (a2 + β)n2 + γ n3 +

(a4−1)n4 �⇒ s′ + (α− r)n2 = (a2+β)n2+γ n3+ (a4−1)n4 �⇒ s′ =
(a2 + r)n2 + a4n4 − (α − β)n2 − n4 + γ n3 = s − n3 + rn2.

If r = 1, then α − q + q ′ = 1 �⇒ s′ = s − n3 + n2, q = α − 1, q ′ = 0. Since
p′ −p = 1, we see that there exists at most one pair (s, s′) which verifies the above
conditions. ��
Theorem 5.4 With Setting 2.1 and 3.2, assume thatD2 = {n3, n4}. ThenHR is non
decreasing.

Proof By (5.3.1.b), s ∈ Dk �⇒ k ≤ e− a3(α− 1)− a4(αγ + β − 1) < e− (a3 +
a4)(α − 1)
≤ e − α + 1 and the equality holds ⇐⇒ a − 3 = 1, a4 = 0, k = e − α + 1,Dk =
{(k − 2)n2 + n3}: in this last case HR is non decreasing by (2.4.3). Then assume
k ≤ e − α and let Dk = {s1, . . . , sp}.

Case α ≥ β + γ . If ord(si + n2) = k, then si + n2 ∈ Dk+1 ⊆ Ck (5.1); further
by (5.3.3.b) there exists at most one index i such that ord(si+n2) > k. By (5.3.2.a)
we know that kn2 ∈ Ck , since kn2 < si + n2 for each i, we deduce that in every
case |Dk | ≤ |Ck|.

Case α < β + γ : by (5.3.2.c-d) we deduce that {kn2, (k − 1)n2 + n3} ⊆
Ck \ (Dk + n3). Hence |Dk | ≤ |Ck| for each k. The claim follows by (2.4.1). ��
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6 The Hilbert Function Does Not Decrease at Level 3

We now prove, beside other facts, that the Hilbert function HR is non decreasing at
level 3. By the results of the preceding section, we can restrict to the cases S as in
(3.2), with |D2| ≤ 1, |A2| ≥ 5. We separate the three situations D2 = ∅, D2 =
{n3}, D2 = {n4}.
Proposition 6.1 If |A2| ≥ 5 and D2 = ∅, then |D3| ≤ 3, |C4| ≤ |A4| + 3, HR is
non decreasing at level 3.

Proof

• First note that 2n2 /∈ D3, n2 + n3 /∈ D3, by (2.8) and (3.4.1).
It is enough to show that |D3| ≤ 3: in factD2 = ∅ �⇒ |C4| = |D4

2 |+ |D4
3 | +|A4| ≤ |A4| + 3.

We consider separately the cases: n3 + e ∈ D3, n3 + e /∈ D3.
• n3 + e ∈ D3 �⇒ |D3| ≤ 3 and either D3 ⊆ {n3 + e, n4 + e, 2n4} or D3 ⊆
{n3 + e, n2 + n4, 2n4}, precisely

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n3 + 2e = αn2 α ≥ 4
2n3 /∈ D3

n3 + n4 /∈ D3 (n3 + n4 ∈ D3 �⇒ n3 + n4 + e = βn2,

impossible since n3 + 2e = αn2)

|D3 ∩ {n4 + e, n2 + n4}| ≤ 1

In fact, 2n3 /∈ D3, since if 2n3 ∈ D3, then 2n3 + e = α′n2 + n4, with α′ < α,
and so 2n3 + 2e = α′n2 + n4 + e = αn2 + n3 �⇒ n4 + e = (α − α′)n2 + n3
and so α − α′ = 1 because ord(n4 + e) = 2. But this implies S balanced.

Further, either n4+ e /∈ D3 or n2+n4 /∈ D3: if n4+ 2e = λ2n2+λ3n3 (λ2 <

α), n2 + n4 + e = βn3, then n2 − e = (β − λ3)n3 − λ2n2 �⇒ (λ2 + 1)n2 =
(β − λ3)n3 + e
�⇒ n3 + 2e = (α − λ2 − 1)n2 + (λ2 + 1)n2 = (α − λ2 − 1)n2 + (β −

λ3)n3 + e �⇒ e ∈< n2, n3 > therefore n3 + e ∈ D3 �⇒ |D3| ≤ 3: it follows
that |C4| ≤ |A4| + 3.

• n3+ e /∈ D3:D3 ⊆ {2n3, n2+n4, n3+n4, 2n4, n4+ e}. To prove the claim note
that:
⎡

⎢⎢⎢⎢⎢⎣

if n2 + n4 ∈ D3 then n2 + n4 + e = a3n3, a3 ≥ 4

if 2n3 ∈ D3 then

[
either 2n3 + e = b2n2, b2 ≥ 4
or 2n3 + e = b2n2 + n4, b2 ≥ 3

if n3 + n4 ∈ D3 then n3 + n4 + e = c2n2, c2 ≥ 4
if 2n4 ∈ D3 then 2n4 + e = d2n2 + d3n3, d2 + d3 ≥ 4

To show that |D3| ≤ 3, we divide the proof in four parts, with different results
depending on 2n3, n3 + n4 ∈ D3 or not.
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(a) If
(
2n3 /∈ D3, n3 + n4 /∈ D3

)
, then D3 ⊆ {n2 + n4, 2n4, n4 + e}.

(b) If
{

2n3, n3 + n4
} ⊆ D3, then ord(n3 + n4 + e) ≥ 5 and ord(2n4) ≥ 3, in

particular 2n4 /∈ D3.
In fact n3 + n4 + e = c2n2 �⇒ 2n3 + e = b2n2 + n4 �⇒ b2 < c2 and

n4 − n3 = (c2 − b2)n2 − n4, i.e., 2n4 = (c2 − b2)n2 + n3, then c2 − b2 ≥ 2
and so 2n4 /∈ A2, c2 ≥ b2 + 2 ≥ 5. Further n2 + n4 /∈ D3, otherwise

2n3 + 2e = (b2 − 1)n2 + n2 + n4 + e = (b2 − 1)n2 + a3n3, i.e. 2e =
(b2 − 1)n2 + (c3 − 2)n3, impossible. HenceD3 ⊆ {2n3, n3 + n4, n4 + e}.

(c) If
(
2n3 ∈ D3, n3 + n4 /∈ D3

)
, consider two subcases: either 2n3 + e = b2n2

or 2n3 + e = b2n2 + n4.

Let 2n3 + e = b2n2: then either 2n4 /∈ D3 or n2 + n4 /∈ D3.
In fact if n2 + n4 + e = a3n3, 2n4 + e = d2n2 + d3n3 �⇒ d2 < b2

(otherwise 2n4 = 2n3 + (d2 − b2)n2 + d3n3, impossible if ord(2n4) = 2).
Therefore n4 − n2 = d2n2 + (d3 − a3)n3 and so d3 < a3, n4 + (a3 − d3)n3 =
(d2+ 1)n2 �⇒ 2n3+ e = (d2+ 1)n2+ (b2− d2− 1)n2 = n4+ (a3− d3)n3+
(b2 − d2 − 1)n2, impossible in every case, since ord(n3 + e) = 2. Then either
D3 ⊆ {2n3, n4 + e, 2n4} or D3 ⊆ {2n3, n4 + e, n2 + n4}.

Let 2n3 + e = b2n2 + n4. In this case n2 + n4 /∈ D3. In fact n2 + n4 + e =
a3n3 = (a3−2)n3+2n3 = (a3−2)n3+b2n2+n4− e �⇒ 2e = (b2−1)n2+
(a3 − 2)n3, impossible. Then D3 ⊆ {2n3, n4 + e, 2n4}.

(d) If
(
2n3 /∈ D3, n3+n4 ∈ D3

)
, thenD3 ⊆ {n4+e, n2+n4, n3+n4, 2n4}. We get

|D3| ≤ 3 because either n2+n4 /∈ D3, or 2n4 /∈ D3. In fact {n3+n4, 2n4} ⊆
D3 �⇒ d2 < c2

(
since d2 ≥ c2 �⇒ 2n4+e = n3+n4+e+(d2−c2)n2+d3n3,

impossible
)
. Then n2 + n4 + e = a3n3, n3 + n4 + e = c2n2, 2n4 + e =

d2n2 + d3n3 �⇒

(d3 + 1)n3 = (c2 − d2)n2 + n4 = (c2 − d2 − 1)n2 + n2 + n4 =
= (c2 − d2 − 1)n2 + a3n3 − e

this implies d3 > a3, 2n4 + e = (d2 + 1)n2 + n4 + e + (d3 − a3)n3, clearly
impossible. ��

Proposition 6.2 If |A2| ≥ 5 and D2 = {n3}, n3+e = αn2, α ≥ 3, then |D3| ≤ 5
and |D3| = 5 implies |C3| ≥ 5; precisely

(1) 2n3 /∈ A2 ⇐⇒ 2n3 /∈ Ap.
(2) If s = a2n2 + a3n3 ∈ Dk , then s + e = (α + a2)n2 + (a3 − 1)n3 is mrp .
(3) If n3 + n4 ∈ D3, then n3 + n4 + e = αn2 + n4 is mrp , n2 + n4 ∈ A2,

2n2 + n4 ∈ C3.
(4) If n2+n4 ∈ D3, then n2+n4+e = βn3, β≥4, n4+e ∈ Dh3 , h ≥ 5,

n4+2e = (α − 1)n2+(β − 1)n3, mrp .
(5) If 2n4 ∈ D3, then n4 + e /∈ D3, n2 + n4 /∈ D3, |D3| ≤ 4 further

conditions α = 3 and |D4
3 | = 4 imply |A2| = 6.

(6) If 2n4 /∈ D3, {n2 + n4, n4 + e} ⊆ D3, then |D3| ≤ 5 and |D3| = 5 implies
{3n2, 2n2 + n3, n2 + 2n3, 3n3, 2n2 + n4} ⊆ C3, |C3| ≥ 5 ≥ |D3|;
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if α = 3, then: |D4
3 | ≤ 4, and |D4

3 | = 4 implies |A3| ≥ 4.
(7) If 2n4 /∈ D3, n2 + n4 /∈ D3, n4 + e ∈ D3, then |D3| ≤ 4;

further if α = 3, |D4
3 | = 4, then{

n4 + 2e = λn2 + (4−λ)n3, λ ≤ 2, {2n2 + n3, 2n2 + n4} ⊆ A3,

{n2 + 2n3, 3n3} ∩ A3 
= ∅, |A3| ≥ 3
(8) If {n4 + e, n2 + n4, 2n4} ∩D3 = ∅, then |D3| ≤ 3.

Proof By (2.8) and the assumption, D3 ⊆ {n4 + e, n2 + n3, 2n3, n3 + n4, n2 +
n4, 2n4}.
(1) If D2 = {n3} and 2n3 ∈ Ap \ A2, then 2n3 = a2n2 + a4n4, with a2 + a4 ≥

3, a2 < α, a4 ≤ 1. Then by the equality n3+αn2 = 2n3+e = e+a2n2+a4n4
we get n3 + (α − a2)n2 = e+ a4n4, impossible in every case (if a4 = 1, either
S is balanced or n4 ∈ D2).

(2) Assume s + e = λ2n2+λ3n3+λ4n4, with λ2 + λ3+λ4 > α + a2 + a3 − 1
and consider the equalities

s + e = a2n2 + a3n3 + e = λ2n2+λ3n3+λ4n4=(a2+α)n2+(a3 − 1)n3

Then λ3 < a3, otherwise a2n2 + e = λ2n2 + (λ3−a3)n3 + λ4n4, that would
imply a2 + 1 = ord(a2n2 + e) ≥ λ2 + λ3+λ4 − a3 > a2 + 1; hence

a2n2 + (a3 − λ3)n3 + e = (a2 + α)n2 + (a3 − λ3)n3 = λ2n2 + λ4n4.

The last equality clearly implies λ2 > a2 + α; hence a2n2 + a3n3 + e = (λ2 −
α)n2 + (λ3 + 1)n3 + e+ λ4n4, then a2 + a3 ≥ λ2 − α+ λ3 + λ4 + 1, against
the assumption.

(3) It follows easily since n4 /∈ D2, moreover the considered elements are induced.
(4) The first equality and the fact that ord(n4 + e) = 2 are clear since neither n2,

nor n4 belong toD2. Then n2 + n4 + 2e = (β − 1)n3 + n3 + e = (β − 1)n3 +
αn2 �⇒ n4 + 2e = (β − 1)n3 + (α − 1)n2 �⇒ n4 + e ∈ Dh3 , h ≥ 5, since
α ≥ 3, β ≥ 4 and this is mrp .

(5) 2n4 ∈ D3 �⇒ 2n4 + e = α′n2 + γ ′n3, with α′ + γ ′ ≥ 4; moreover α′ < α,
otherwise 2n4+e = n3+e+(α′−α)n2+γ ′n3, impossible by our assumptions.
Now we show that n4 + e /∈ D3 and so n2 + n4 /∈ D3 by (4). If n4 + 2e =
α′′n2 + γ ′′n3, with α′′ + γ ′′ ≥ 4, then α′′ < α by (3.2) and n4 /∈ D2; since
2n4 + e = α′n2 + γ ′n3, we get n4 − e = (α′ − α′′)n2 + (γ ′ − γ ′′)n3.We get
(α′ − α′′)(γ ′ − γ ′′) < 0, note that

• α′ − α′′ > 0 �⇒ n4 + (γ ′′ − γ ′)n3 = (α′ − α′′)n2 + e ≤ (α − 1)n2 + e <
αn2 = n3 + e, impossible.

• α′ − α′′ < 0 �⇒ n4 + (α′′ − α′)n2 = e + (γ ′ − γ ′′)n3 =
n3 + e + (γ ′ − γ ′′ − 1)n3 = αn2 + (γ ′ − γ ′′ − 1)n3; since α′′ − α′ < α
we would get n4 ∈ 〈n2, n3〉, impossible.
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In case α = 3, then |D4
3 | = 4⇐⇒ 2n4 ∈ D4

3 ⇐⇒ D4
3 = {n2 + n3, 2n3, n3 +

n4, 2n4}, moreover we get D4
3 ∪ {2n2} ⊆ A2, |A2| ≥ 5. Note that |A2| = 5

would imply n2 + n4 /∈ A2, impossible by (3), hence |A2| = 6.

(6) Assume n2+n4, n4+ e ∈ D3, 2n4 /∈ D3, with n2+n4+ e = βn3, n4+2e =
(α − 1)n2 + (β − 1)n3 (4-b). Clearly, 2n2, 2n4 /∈ D3 �⇒ |D3| ≤ 5.

Since n3 + n4 + e = αn2 + n4, 2n3 + e = αn2 + n3 are mrp , by (2-3)
and (2.5) we obtain {3n2, 2n2 + n3, n2 + 2n3, 3n3, 2n2 + n4} ⊆ C3. These five
induced elements are distinct: for this it is enough to note that 3n3 = 2n2 +
n4 �⇒ n2 + n4 + e = 2n2 + n4 + (β − 3)n3, impossible.

If α = 3, |D4
3 | = 4⇐⇒ D4

3 = {n2+n3, 2n3, n2+n4, n3+n4} ⇐⇒ n2+n4+
e = 4n3. SinceD3+e = {4n2, 3n2+n3, 4n3, 3n2+n4, 2n2+2n3(= n4+2e)} ⊆
C4 (all mrp ) we get {2n2+n3, 3n3, n2+2n3, 2n2+n4} ⊆ C3 \{D3

2+e} = A3,
therefore |A3| ≥ 3.

(7) By assumption we have D3 ⊆ {n2 + n3, 2n3, n3 + n4, n4 + e} and so |D4
3 | ≤|D3| ≤ 4.

In case α = 3, |D4
3 | = 4, then ord(n4 + 2e) = 4, n4 + 2e = λn2 + (4−

λ)n3, 0 ≤ λ ≤ α − 1 = 2 and so {n2 + 2n3, 3n3} ∩ A3 
= ∅; further, as
above one can prove that {2n2 + n3, 2n2 + n4} ⊆ A3, hence |A3| ≥ 3.

(8) is obvious. ��
Proposition 6.3 If |A2| ≥ 5 and D2 = {n3}, let n3 + e = αn2, α ≥ 3. Then

(1) HR is non decreasing at level 3.
(2) If α = 3, then |D4

3 | ≤ 4, |C4| ≤ |A4| + 4.
(3) If α ≥ 4, then |D4

3 | ≤ 1, |C4| ≤ |A4| + 2.

Proof Claim (1) follows directly by the above lemma 6.2, by using (1) and (3) of
(2.4): in fact either |D3| ≤ 4, or |D3| = 5, |C3| ≥ 5.

(2) and (3) are immediate by (6.2), since: C4 = A4 ∪D4
3 ∪D4

2 (2.3), |D4
2 | ≤ 1

and α = 3 �⇒ D4
2 = ∅. ��

Example 6.4 The semigroup S = 〈15, 16, 33, 101〉 verifies A2 = {2n2, n2 +
n3, 2n3, n2 + n4, n3 + n4}, |A2| = 5, D2 = {n3}, |D3| = 5; |D2| = 1, |C2| =
5, |D3| = |C3| = 5, |D4| = 4, |C4| = 6, |D5| = |C5| = 5, . . . , |D11| =
|C11| = 2 : Hilbert function =[4, 8, 8, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15→].
Proposition 6.5 If |A2| ≥ 5 and D2 = {n4}, then HR is non decreasing at level
3. More precisely:

(1) |D3| ≤ 5, |C4| ≤ |A4| + 4 and if |A2| = 5, then |D3| ≤ 4, |D4
3 | ≤ 3.

(2) If |D3| = 5, then |A2| = 6, |C3| ≥ 5, |A3| ≥ 4, |D4
3 | ≤ 4.

Proof Let n4 + e = βn2 + γ n3 (mrp ) with β + γ ≥ 3.

(1) n2 + n3 /∈ D3 by (3.4), D3 ⊆ A2 ∪ {n3 + e} \ {2n2, n2 + n3} ⊆
{n3 + e, 2n3, n2 + n4, n3 + n4, 2n4}. This proves that |D3| ≤ 5.
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The inequality |C4| ≤ |A4| + 4 will follow during the proof. Note that
(a) n3 + e ∈ D3�⇒ n3 + 2e = αn2, mrp , α ≥ 4, α > β, γ>0, 2n2∈A2,

β = 0 �⇒ 2n3 ∈ A2, β ≥ 1 �⇒ n2 + n3 ∈ A2

(b) 2n3 ∈ D3 �⇒ 2n3 + e = α′n2 + δn4, mrp , α′ + δ≥4, α′ ≥ 3, δ≤1.

Now consider the following subcases:

• {n3 + e, 2n3} ⊆ D3 :⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δγ = 1, α=α′+β ≥ 5, β≥ 2,
n4 + e=βn2 + n3, 2n2, n2 + n3, 2n3∈A2, n2 + n4∈D3

n3 + 2e = αn2, 3n2 ∈ A3

2n3 + e = (α − β)n2 + n4, 2n2 + n4 ∈ C3 \ (D2 + e) ⊆ A3

n2 + n4 + e = (β+1)n2+n3, 2n2 + n3 ∈ C3

n3 + n4 + e = βn2+2n3, n3+n4 ∈ A2 �⇒ n2 + 2n3 ∈ A3

2n4+e=βn2+n3+n4, n3+n4, 2n4∈A2�⇒n2+n3+n4∈A3

By (a) and (b) it follows that 2n3 + e = α′n2 + n4, δ = 1. Therefore
αn2 + n3 = 2n3 + 2e = α′n2 + n4 + e = (α′ + β)n2 + γ n3 and so
(α− α′ − β)n2 = (γ − 1)n3; since ord((γ − 1)n3) = γ − 1, from the mrp
of n4 + e we get α − α′ − β = γ − 1 = 0. Then β ≥ 2, α = α′ + β ≥ 5.
Hence {2n2, n2 + n3, n2 + n4, 2n3} ⊆ A2, n2 + n4 ∈ D3, since the first
3 elements are induced and 2n3 ∈ D3 �⇒ 2n3 ∈ A2 by the assumption
(3.2). Moreover they are distinct by (3.2) and so |A2| = 5 �⇒ |A2 ∩ {n3 +
n4, 2n4}| ≤ 1. Clearly n2+n4+ e = (β+1)n2+n3 is mrp , then 2n2+n3 ∈
C3 (induced element); further 2n2+n4 ∈ A3 since it is induced and different
from n4 + e. Also, |D4

3 | ≤ 4, since n3 + e /∈ D4
3 and |D4

3 | = 4 �⇒ β = 2
and so β + γ = 3, |D4

2 | = 0, |C4| ≤ |A4| + 4.We conclude that

(c) {n3 + e, 2n3} ⊆ D3 : �⇒ |D4
3 | ≤ 4, |C4| ≤ |A4| + 4

(d) |A2| = 5 �⇒ |D3| ≤ 4 and |D4
3 | ≤ 3.

If n3+n4 ∈ A2 one can easily see that the representation n3+n4+e = 2n3+
(α − α′)n2 is mrp and so we get the induced element n2 + 2n3 ∈ C3 ∩ A3.

Finally, if n3 + n4, 2n4 ∈ A2, then ord(n2 + n3 + n4) = 3. In fact
ord(n2 + n3 + n4) > 3 implies n2 + n3 + n4 = μe, impossible since the
equality 2n4 + e = (α − α′)n2 + n3 + n4 would imply ord(2n4) > 3.

• 2n3 /∈ D3, n3+e ∈ D3 :
D3 ⊆ {n3 + e} ∪ {n2 + n4, n3 + n4, 2n4}. We get |D4

3 | ≤ 3; in fact
2n3 ∈ A2 \D3 �⇒ n2 + n3 ∈ A2 and so , 2n2 ∈ A2,

|A2| = 5 �⇒ |D3| ≤ 3.

2n3 /∈ A2 �⇒ ord(2n3) ≥ 3, by (3.2) , hence γ = 1, by (a),
β ≥ 2, and so,
n3 + n4 ∈ D3, n3 + n4 + e = βn2 + 2n3 �⇒
n3 + n4 ∈ Dh≥5

3 .

• 2n3 ∈ D3, n3+e /∈ D3:
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then

[
either δ = 1, α′ < β, γ = 0, 2n4 /∈ A2, |D3| ≤ 3, |A2| = 5
or δ = 0, α′ > β, γ > 0, |A2| = 5 �⇒ |D3| ≤ 3

If δ = 1 �⇒ γ = 0; in fact 2n3 + 2e = α′n2 + n4 + e = (α′ + β)n2 +
γ n3 �⇒ γ ≤ 1; further γ = 1 �⇒ n3+ 2e = (α′ +β)n2 �⇒ n3+ e ∈ D3
(since n3 /∈ D3 �⇒ ord(n3 + e) = 2), against the assumption. Hence
n4 + e = βn2, 2n3 + e = α′n2 + n4; these equalities by substitution imply
2n3 = (α′ − β)n2 + 2n4, (α

′ − β) < 0, 2n4 /∈ A2
If δ = 0 �⇒ 2n3 + e = α′n2, n4 + e = βn2 + γ n3, γ > 0, α′ > β.

Then 2n2, n2 + n3, 2n3 ∈ A2 and so A2 = 5 �⇒ {n2 + n4, n3 + n4, 2n4} ∩
A2 ≤ 2 �⇒ |D3| ≤ 3. In any case |C4| ≤ |A4| + 4. This concludes the
proof of (1).

(2) Assume |D3| = 5, i.e. D3 = {n3 + e, 2n3, n2 + n4, n3 + n4, 2n4}, since
n2 + n3 /∈ D3. Then by (c) and (d) we see that |A2| = 6 and |D4

3 | ≤ 4.
Further these conditions imply {3n2, 2n2 + n4, n2 + 2n3, n2 + n3 + n4} ⊆ A3
and {3n2, 2n2 + n4, n2 + 2n3, n2 + n3 + n4 , 2n2 + n3} ⊆ C3.

Finally, by (2.4.1–3) and by (1) and (2) we see that HR is non decreasing at
level 3. ��

Example 6.6 The semigroup S = 〈15, 16, 50, 67〉 hasD2 = {n4}, |A2| = 6, |D3| =
5. Hilbert function: [4, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 15].

7 Conclusions

In this section we summarize all the proved results in the following theorem and we
prove that the Hilbert function is non decreasing if the multiplicity of R is ≤ 13.

Theorem 7.1 Let S be a numerical semigroup minimally generated by e, n2, n3, n4
and let R = k[[S]]. Then:

(1) The Hilbert function HR is non decreasing at level ≤ 3
(2) The Hilbert functionHR is non decreasing if the semigroup S verifies one of the

following cases

(a) |A2| ≤ 4 (4.1)
(b) |D2| = 2 (5.4)
(c) |A3| ≤ 2.
(d)
∣∣A3
∣∣+ ∣∣D3

2

∣∣ ≤ 3
(e) A4 = ∅

Proof By Remark 3.1 it is enough to restrict to Setting 3.2. Further, by (2.b) we can
assume |D2| ≤ 1; in particular, (2.c) is immediate from (2.b) and (2.d).

(1) is a corollary of Theorem (5.4) and Propositions (6.3), (6.5), (6.1).

(2.d–e ) Recall that C3 = A3 ∪D3
2 (2.3.1). If A4 = ∅, by (1) it is enough to show

that HR is non-decreasing at level ≥ 4. By (6.3), (6.5.1), (6.1), we have
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|C4| ≤ 4. Then in both cases apply (2.4.5): HR decreasing at level � ≥ 3
would imply |Ck| ≥ k + 1 for each 2 ≤ k ≤ �. ��

Let R′ = R/teR: the Hilbert function of R′ is

HR′ =
[
1 = ∣∣A0

∣∣, v − 1 = ∣∣A1
∣∣,
∣∣A2
∣∣, · · · , ∣∣Ad

∣∣ ]

where d = max{ord(σ ) | σ ∈ Ap(S)}, so that Ad+1 = ∅, see e.g., [16, Lemma
1.3]. The case e ≤ 13 is mostly a corollary of the above results:

Theorem 7.2 With Setting 2.1, let S be a numerical semigroup minimally generated
by e, n2, n3, n4 and let R = k[[S]]. If the multiplicity e of R is ≤ 13, then HR is
non-decreasing.

Proof We already know that for e ≤ 8 the functionHR is non-decreasing as proved
in [4, Corollary 3.14]. We classify the remaining cases according to the Hilbert
function of R′ = R/teR:

HR′ =
[
1, 3,
∣∣A2
∣∣, · · · , ∣∣Ad

∣∣]

where d is such that Ad+1 = ∅, ∑d2
∣∣Ak
∣∣ = e − 4, and according to the

admissibility theorem of Macaulay. By (7.1), it is enough to show thatHR doesn’t
decrease at level � ≥ 4, when |A2| ≥ 5, |A3| ≥ 3 and |D2| ≤ 1, under the
assumption (3.2).

We have |A3| ≤ e − 4 − ∣∣A2
∣∣ ≤ e − 9; then, if either e ≤ 11, or e = 12 and

|A2| = 6, we get |A3| ≤ 2 and apply Theorem (7.1.2.d). Now the remaining cases
are:

(1) e = 12, HR′ = [1, 3, 5, 3, 0], |D3
2 | = 1

(2) e = 13, HR′ = [1, 3, 5, 4, 0], |D3
2 | ≤ 1

(3) e = 13, HR′ = [1, 3, 6, 3, 0], |D3
2 | = 1

(4) e = 13, HR′ = [1, 3, 5, 3, 1, 0], |D3
2 | = 1

The claim in the first 3 ones is clear by (7.1.2.e).
In case (4), in most situations |C4| = |A4| + |D4

3 | + |D4
2 | ≤ 4 and it suffices to

use (2.4.5):

• if D2 = ∅, then |C4| ≤ |A4| + 3 = 4, by (6.1);
• if D2 = {n4}, then |D4

3 | ≤ 3 and |D4
2 | = 0, |C4| ≤ 1+ 3 = 4, by (6.5.1);

• if D2 = {n3}, n3 + e = αn2, with α ≥ 4, then |D4
3 | ≤ 3 and |D4

2 | = 0,
|C4| ≤ 1 + 3 = 4, by (6.3.3). It remains the case D2 = {n3}, with α = 3: by
(6.2) the unique possible “decreasing” situation is case (6.2.7), with

|D4
3 | = 4, n4 + 2e = λn2 + (4− λ)n3, 0 ≤ λ ≤ 2, |A3| = 3 (6)
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where either A3 = {2n2 + n3, 2n2 + n4, 3n3}, or A3 = {2n2+ n3, 2n2 + n4, n2 +
2n3}. Then it is clear that n2 + n3 + n4 /∈ A3, hence n2 + n3 + n4 = μe, μ ≥ 4,
since in this case {n2 + n3, n2 + n4, n3 + n4} ⊆ A2:

λ = 0 �⇒ (μ+ 2)e=n2 + n3 + n4 + 2e=n2 + 5n3 = n2 + 5(3n2 − e)
�⇒ (μ+ 7)13=16n2

λ = 1 �⇒ (μ+ 2)e=n2+n3+n4+2e=2n2+4n3=2n2+4(3n2 − e)
�⇒ (μ+ 6)13=14n2

similarly, λ = 2 �⇒ (μ + 5)13 = 12n2. For each value of λ we see that e = 13
must divide n2, impossible; this proves that case (6) cannot exist. HenceHR is non
decreasing also under the assumption (4). ��
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Lattice Ideals, Semigroups and Toric
Codes

Mesut Şahin

Abstract Let X be a complete n-dimensional simplicial toric variety over a finite
field with homogeneous coordinate ring S. In this survey, we review algebraic
methods for studying evaluation codes defined on subsets of the algebraic torus
TX. The key object is the vanishing ideal of the subset and its Hilbert function. We
also explore the nice correspondence between subgroups of the group TX and lattice
ideals as their vanishing ideals. We present recent results for obtaining a basis for
the lattice and for computing a minimal generating set of its ideal.

Keywords Toric code · Toric variety · Linear code · Lattice ideal · Affine
semigroup · Numerical semigroup

1 Introduction

Let K = Fq be a finite field with q elements. A complete simplicial toric variety
X of dimension n over K corresponds to a fan ! whose cones fill up the space R

n,
see the wonderful book [4] by Cox, Little and Schenk for the general theory of toric
varieties. Standard multiplication action of the algebraic torus TX ∼= (K∗)n on itself
extends to an action on X and orbits of this algebraic action correspond to cones in
!. One dimensional cones of !, generated by primitive lattice vectors v1, . . . , vr ∈
Z
n, are denoted by ρ1, . . . , ρr . We use [m] to denote the set {1, . . . ,m} for any

positive integerm ≥ 1 and xu to denote the Laurent monomial xu = xu1
1 . . . x
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a vector u ∈ Z
m. If φ is the matrix with rows v1, . . . , vr then we have the following

short exact sequence:

: 0 Z
n

φ
Z

r β A 0 ,

where A is isomorhic to the class group of X. Smooth X with an n-dimensional
cone σ ∈ ! has a torsion free class group by [4, Proposition 4.2.5]. So, we assume
that A ∼= Z

d , where d := r − n. Applying the contravariant functor Hom(−,K∗)
to P gives the following short exact sequence:

∗ : 1 G
i

(K∗)r π
(K∗)n 1 ,

where π : (t1, . . . , tr ) �→ (tu1, . . . , tun ), with u1, . . . ,un being the columns of φ.
Our algebraic object of interest is the polynomial ring

S = K[x1, . . . , xr ] =
⊕

α∈A
Sα

multigraded by A via deg(xj ) := βj := β(ej ), where ej is the standard basis
element of Zr for each j ∈ [r]. The irrelevant ideal of S is the monomial ideal B =
〈xσ̂ : σ ∈ !〉, where xσ̂ = "ρi /∈σ xi . The subgroup G ⊂ (K∗)r acts naturally on
K
r \V (B) and the resulting orbits [P ] := G ·P make into a variety isomorphic toX

by a fundamental result of Cox [3]. This is becauseG is reductive when A is torsion
free, and thus arguments of [3] applies even thought K is a finite field. Thus, any
representative of the orbit [P ] is said to be a “homogeneous coordinate” for a point
of X. Due to this relation, S is also known as the Cox ring of X. The multigraded
polynomials of S are supported in the semigroup Nβ generated by β1, . . . , βr , i.e.
dimK Sα = 0 when α /∈ Nβ. Since X is complete, dimK Sα is finite for all α ∈ Nβ.

Next, we recall linear codes obtained by evaluating homogeneous polynomials
on arbitrary subsets Y = {[P1], . . . , [PN ]} ofX. For a fix degree α ∈ Nβ, we define
the evaluation map

ev : Sα → F
N
q , F �→ (F (P1), . . . , F (PN)) . (1)

The image Cα,Y = evY (Sα) of this linear map is a subspace of the Fq -vector space
F
N
q and is called a generalized toric code. There are three basic parameters of a

linear code. The length N is the number of points in Y , the dimension k is the
usual dimension of Cα,Y as a vector space over Fq , and the minimum distance d =
d(Cα,Y ) is the minimum of weights of nonzero vectors in Cα,Y , where weight of a
vector is the number of nonzero components. For more details on error-correcting
linear codes, consult e.g. [11, 20].

Toric codes, which are the evaluation codes obtained from the torus Y = TX
were studied first by Hansen around 1998 and have been studied until now by many
others, see [12] for a nice geometric introduction to the topic. See also [9] for a more
recent geometric approach. They are used many times in literature for obtaining
examples of linear codes with the parameters better than existing ones, see [2].
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In this survey, we restrict ourselves to reviewing combinatorial commutative
algebraic methods for studying evaluation codes defined on subsets of the algebraic
torus TX. The key object is the vanishing ideal of the subset and its Hilbert function.
We also explore the nice correspondence between subgroups of the group TX and
lattice ideals as their vanishing ideals. We present recent results for obtaining a basis
for the lattice and for computing a minimal generating set of its ideal.

2 The Algebraic Approach

In this section, we review methods offered by combinatorial commutative algebra
for computing main parameters of codes obtained from subsets of a toric variety. The
essense of this approach is to compute or estimate parameters without constructing
the code using algebraic and geometric properties of the subset and of the toric
variety. We refer the reader to an excellent book [13] written by Miller and Sturmfels
for many aspects of commutative algebra related to combinatorics and geometry.
Before we go further, let us present two important examples of toric varieties we
use to illustrate the main results.

The first one is the class of weighted projective spaces closely related to the well
known class of numerical semigroups.

Example 2.1 Let β = [w1 · · ·wr ] be the matrix representing the map β in the
first exact sequence P, where w1, . . . , wr are relatively prime positive integers.
We grade the polynomial ring S = K[x1, . . . , xr ] by assigning deg(xi) = wi , for
i ∈ [r]. The semigroup Nβ is generated, not necessarily minimally, by w1, . . . , wr .
There are only finitely many positive integers not belonging to Nβ, known as the
gaps, and thus Nβ is a numerical semigroup. Let Lβ be the subgroup of Zr whose
elements are sent to zero under β. Since Zβ = Z is free, the lattice ideal

ILβ := 〈xu − xv : u, v ∈ N
r and βu = βv〉

is the toric ideal of the semigroup Nβ whose zero locus is the monomial curve:

V (ILβ ) = {(tw1, . . . , twr ) : t ∈ K}.
By the dual short exact sequenceP∗, the groupG = V (ILβ )∩(K∗)r is the zero locus
in (K∗)r of this monomial curve, and thus, G = {(tw1, . . . , twr ) : t ∈ K

∗}. The
irrelevant ideal is B = 〈x1, . . . , xr〉 with a zero set V (B) = (0, . . . , 0). So, points
of the weighted projective space X = P(w1, . . . , wr) are the following equivalence
classes:

[x1 : · · · : xr ] = {(tw1x1, . . . , t
wr xr) : t ∈ K

∗}, where (x1, . . . , xr ) 
= (0, . . . , 0).
The toric variety X = P(w1, . . . , wr) is smooth if and only if it is the usual

projective space Pr−1, i.e., w1 = · · · = wr = 1. ��
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Fig. 1 The fan for the Hirzebruch surface

Our second example is a smooth surface that will be running throughout.

Example 2.2 Let X = H2 be the Hirzebruch surface corresponding to a fan in R
2

generated by v1 = (1, 0), v2 = (0, 1), v3 = (−1, 2), and v4 = (0,−1) (Fig. 1).
So, H2 has the following exact sequence:

: 0 Z
2 φ

Z
4 β

Z
2 0 ,

where

φ =
[

1 0 −1 0
0 1 2 −1

]T
and β =

[
1 0 1 2
0 1 0 1

]
.

The ring S = K[x, y, z,w] is multigraded via

deg(x) = deg(z) = (1, 0), deg(y) = (0, 1) and deg(w) = (2, 1).

• The irrelevant ideal is B = 〈xy, yz, zw,wx〉 with the following zero set

V (B) = V (x, z) ∪ V (y,w).

• X = H2 = (K4 \ V (B))/G, where

G = {(x, y, z,w) ∈ (K∗)4 |xz−1 = yz2w−1 = 1} = {(x, y, x, x2y)|x, y ∈ K
∗}.
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• A point of X is an orbit such as the following one:

[1 : 1 : 0 : 0] := G · (1, 1, 0, 0) = {(x, y, 0, 0) | x, y ∈ K
∗}.

The key algebraic tool in the course of studying codes on toric varieties is the
multigraded Hilbert function.

Definition 2.3 Let I (Y ) be the multigraded vanishing ideal of Y ⊆ X, i.e. it
is the ideal generated by homogeneous polynomials vanishing on Y . Then, the
multigraded Hilbert function and series are defined respectively by

HY (α) = dimK Sα − dimK Iα(Y ) and HSY (t) =
∑

α∈A
HY (α)tα .

Since the kernel of the evaluation map is the subspace Iα(Y ) of Sα which
is spanned by the homogeneous polynomials vanishing at all the points of Y ,
dimension of the image is nothing but the value of the Hilbert function of Y at
α.

Proposition 2.4 The dimension of Cα,Y equalsHY (α). ��
So, it is desirable to investigate properties of the Hilbert function to understand

codes in question better. We use the partial ordering 5 below, where α 5 α′ if
α′ − α ∈ Nβ.

Theorem 2.5 ([17, Theorem 3.7]) The multigraded Hilbert functionHY of Y ⊆ X
has the following properties.

(i) If α − αi /∈ Nβ, for every degree αi of minimal generators of I (Y ), then
HY (α) = dimK Sα ,

(ii) If there is a non-zerodivisor in S/I (Y ) of degree βj , for each j ∈ [r], then it
is non-decreasing:HY (α) ≤ HY (α′) for all α 5 α′.

(iii) HY (α) ≤ |Y |, for all α ∈ Nβ.

��
Remark 2.6 The Hilbert function is non-decreasing especially for subsets Y ⊆ TX
since there exists a non-zerodivisor in S/I (Y ) of any degree α ∈ Nβ by [17, Lemma
3.6]. ��

The fan ! of X determines an important subsemigroup K of the semigroup Nβ,
containing some what more important degrees which we isolate here.

Definition 2.7 Let Nσ̂ be the semigroup generated by the subset {βj : ρj /∈ σ }
for a cone σ ∈ !. Then,

K =
⋂

σ∈!
Nσ̂ .
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Remark 2.8 (Algebraic Importance of K) If X is smooth, then by Remark 2.5 in
[10], there exists a non-zerodivisor in S/I (Y ) of degree α ∈ K. ��
Remark 2.9 (Geometric Importance of K) The class group Cl(X) is a group of Weil
divisors on X modulo linear equivalence. The isomorphism A ∼= Cl(X) allows us
to speak of degrees α ∈ A lying in Cl(X). Furthermore, a Cartier divisor D on
X is said to be semi-ample (or basepoint free as in [4]) if the corresponding line
bundle O(D) is generated by global sections. Since the property of being ample
(resp. semi-ample) is preserved under linear equivalence we may speak of ample
(resp. semi-ample) degrees α in A. Geometrically, Nβ corresponds to the subset of
Cl(X) containing the classes of effective Weil divisors on X and K corresponds to
the subset containing the classes of numerically effective line bundles on X. By [4,
Theorem 6.3.12], K is the set of semi-ample degrees in Nβ ⊆ A. ��
Remark 2.10 When X = P

n1 × · · · × P
nr , the degree of each of the variables

xj,0, xj,1, . . . , xj,nj is the standard basis vector ej , for each j ∈ [r]. In addition to
the properties above, Sidman and Van Tuyl showed in [18, Proposition 1.9] that the
Hilbert function stabilizes in the direction of ej , that is,HY (α+ej ) = HY (α+kej ),
for any positive integer k, if HY (α) = HY (α + ej ) for some j ∈ [r] and for some
α ∈ N

r . ��
There are infinitely many elements of Nβ yielding evaluation codes on the same

subset Y . Some of them have the same parameters. In the course of searching codes
with good parameters, one wants to avoid dealing with each of these “equivalent
codes” separately. Here is the precise definition of “equivalence” we need:

Definition 2.11 Let C1 andC2 be two subspaces of FNq . We say that the linear codes
C1 and C2 are “monomially equivalent” if there are non-zero scalars t1, . . . , tN ∈
F
∗
q and a permutation P of {1, . . . , N} such that (c1, . . . , cN ) ∈ C1 if and only if
(t1cP(1), . . . , tNcP(N)) ∈ C2. ��

The stabilization property of the Hilbert function is very important to detect
equivalent codes as the following reveals.

Proposition 2.12 If there is a non-zerodivisor in S/I (Y ) of degree α0 ∈ Nβ and
HY(α) = HY (α+α0) then the codes Cα,Y and Cα+α0,Y are monomially equivalent.
Therefore, there are only finitely many non-equivalent codes Cα,Y , in particular, for
subsets Y lying inside the torus TX. ��
Proof The proof of [17, Proposition 4.3] essentially works fine under the hypothesis
here. ��
Problem 2.13 LetX be a toric variety and HY (α) = HY (α+ βj ) for some j ∈ [r]
and α ∈ Nβ. Is it true that the Hilbert function stabilizes in the direction of βj? ��

It would be nice to eliminate trivial codes also. Due to the Singleton bound, the
minimum distance satisfies d ≤ N + 1 − k, where N = |Y | is the length and
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k = HY(α) is the dimension. A code is trivial if the dimension takes the maximum
possible value; namely k = N , as in this case d = 1. This motivates the following

Definition 2.14 The multigraded regularity of Y , denoted by reg(Y ), is the set of
degrees α ∈ Nβ for which HY(α) = |Y |, the length of Cα,Y . ��
Remark 2.15 The subset Y may be given implicitly as in Definition 3.1. In order to
construct a code of prescribed length, one needs to know the length |Y | beforehand.
The Hilbert function gives not only the dimension of the code but also the length
even before constructing the code, since for any α ∈ reg(Y ), we haveHY (α) = |Y |.
In order for this to work efficiently, we need to know at least one element from the
set reg(Y ). ��

In general, the set reg(Y ) is not determined by a number but we have good fortune
in some nice cases as we demonstrate next.

Proposition 2.16 ([17, Proposition 3.12]) Let X = P(w1, . . . , wr) be a weighted
projective space and Y be a subset such that S/I (Y ) has a non-zerodivisor of degree
1. Then, there is an integer aY satisfying

reg(Y ) = 1+ aY + N.

Moreover, aY equals the degree of the rational function corresponding to the Hilbert
series of S/I (Y ). This is valid, in particular, when Y ⊆ TX and w1 = 1. ��
Problem 2.17 Find the invariant aY for a given Y ⊆ TX for the weighted projective
space X = P(w1, . . . , wr) such that 1+ aY + N ⊆ reg(Y ). ��

In the particular case of the torus Y = TX, for X = P(w1, . . . , wr), we have the
following nice result relating aY with a famous invariant g(W) of the semigroupW
generated by w1, . . . , wr , where g(W) is the largest integer not belonging toW .

Corollary 2.18 ([5, Corollary 3.9]) If Y = TX and g(W) is the Frobeneous
number ofW , then

aY = (q − 2)[w1 + · · · +wr + g(W)] + g(W).

When reg(Y ) can not be determined exactly, it may be sufficient to give bounds
on it. A subset Y is a complete intersection if I (Y ) is generated by a regular
sequence of homogeneous polynomials F1, . . . , Fn ∈ S where n is the dimension
of X. The following lower bound is given in [17, Theorem 3.16].

Theorem 2.19 Let Y ⊆ X be a complete intersection of n hypersurfaces of degrees
α1, . . . ,αn in K. If there is a non-zerodivisor in S/I (Y ) of degree βj , for each
j ∈ [r], then,

α1 + · · · + αn + Nβ ⊆ reg(Y ).
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Another general bound for the set reg(Y ) following from [10, Proposition 2.10] is
given as

Theorem 2.20 Let X be smooth and Y ⊆ X. If the free modules Fi in a minimal
free resolution of I (Y ) are of the following form

Fi =
βi⊕

j=1

S[−αi,j ] then
⋂

i,j

(αi,j +K) ⊆ reg(Y ).

Thus, if Y is a complete intersection of n hypersurfaces of degrees α1, . . . ,αn in K,
the intersection becomes α1 + · · · + αn +K ⊆ α1 + · · · + αn +Nβ ⊆ reg(Y ). ��
Problem 2.21 Find a non-empty subset of reg(Y ) for an arbitrary Y ⊆ X and for
any toric variety X.

Having seen non-decreasing property of the dimension of the codes as the degree
increases, we may wonder about the behavior of the minimum distance. As we
discuss next, the minimum distance does not increase in any direction.

Proposition 2.22 If there is a non-zerodivisor in S/I (Y ) of degree βj , for each j ∈
[r], the minimum distance is non-increasing in the sense that d(Cα,Y ) ≥ d(Cα′,Y )
for all α 5 α′. ��
Proof Let F ∈ Sα be a polynomial with image ev(F ) = (F (P1), . . . , F (PN ))

having weight d = d(Cα,Y ). This means that F has exactly N − d roots among the
elements of Y and F /∈ I (Y ). If the polynomialGj is a non-zerodivisor in S/I (Y )
of degree βj , then GjF has at least N − d roots and GjF /∈ I (Y ). It follows
that ev(GjF ) = (Gj (P1)F (P1), . . . ,Gj (PN)F (PN)) lies in Cα+βj ,Y \ {0} and has
weight at most d . Thus, d ≥ d(Cα+βj ,Y ). As these are true for every j ∈ [r], the
claim follows. ��

As for the minimum distance, we have the following lower bound provided by
Soprunov and stated here using the language of this paper, see [19, Theorem 3.2].

Theorem 2.23 Let Y ⊆ TX be a reduced complete intersection of hypersurfaces of
degrees α1, . . . ,αn ∈ K and denote αY = α1 + · · · + αn − β1 − · · · − βr . If any
subset Z ⊂ Y of size m has HZ(α′) = m for some α′ ∈ Nβ with α + α′ 5 αY , then
d(Cα,Y ) ≥ m+ 1. ��
Proof We outline how this version follows from the original one by relating
notations of two papers. First, we introduce local coordinates for the points in the
torus TX by:

t1 = xu1, . . . , tn = xun . (2)

So, the coordinate ring K[TX] of TX can be identified with the ring of Laurent
polynomials K[t±1

1 , . . . , t±1
n ]. For any subset A ⊆ R

n, we denote by L(A) the
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vector space over K spanned by monomials tm = t
m1
1 · · · tmnn , where m1, . . . ,mn

are coordinates of m ∈ A ∩ Z
n.

Recall that every a = (a1, . . . , ar ) ∈ β−1(α) defines a rational polytope

Pa := {u ∈ R
n : 〈u, vj 〉 ≥ −aj , ∀j ∈ [r]}.

Note that different elements in β−1(α) will have the same polytope up to a lattice
translation. We denote by Pα the class of these polytopes and abuse notation using
Pα instead of one Pa expecting that the context will clarify which one is meant. This
leads to the vector space isomorphism tm → xφ(m)+a from L(Pa ∩ Z

n) to Sα , for
any a ∈ β−1(α).

One can prove that the assumptions (1)–(3) in [19] are satisfied since Y ⊆ TX
is a reduced complete intersection of hypersurfaces of degrees α1, . . . ,αn ∈ K,
see e.g. the proof of Proposition 4.2 in the first arxiv version of [17]. Let P =
Pα1 + · · · + Pαn be the Minkowski sum of polytopes corresponding to α1, . . . ,αn.
Then, SαY is isomorphic to L(P ◦ ∩ Z

n) for the interior P ◦ of P and αY = α1 +
· · ·+αn−β1−· · ·−βr . So, if α+α′ 5 αY , then forA = Pα and B = Pα′ , we have
A + B ⊆ Pα+α′ ⊆ P ◦. Finally, if any subset Z ⊂ Y of size m has HZ(α′) = m,
then the linear map evZ : Sα′ → K

m obtained by evaluation of polynomials in Sα′
at the points in Z is surjective, since Sα′/ ker(evZ) ∼= K

m. This means that the map
evZ : L(B) → K

m is surjective. Therefore, hypotheses of [19, Theorem 3.2] are
satisfied, completing the proof. ��

Complete intersections Y satisfying the extra condition that I (Z) ∩ Sα′ = 0 for
any subset Z ⊂ Y of size m = dimK Sα′ , have the following bigger lower bound
given again by Soprunov, see [19, Theorem 3.9].

Theorem 2.24 Let Y ⊆ TX be a reduced complete intersection of hypersurfaces of
degrees α1, . . . ,αn ∈ K and αY = α1+· · ·+αn−β1−· · ·−βr . If any subsetZ ⊂ Y
of size m = dimK Sα′ has HZ(α′) = m for some α′ ∈ Nβ with α + kα′ 5 αY , then
d(Cα,Y ) ≥ k(m− 1)+ 2. ��
Proof Relying on the notations of the previous proof, let us reveal why hypotheses
of [19, Theorem 3.9] follows from our assumptions. As before the assumptions
(1)–(3) are satisfied. If any subset Z ⊂ Y of size m has HZ(α′) = m, then
Sα′/ ker(evZ) ∼= K

m. If this happens form = dimK Sα′ , then ker(evZ) = 0 meaning
that the evaluation map is an isomorphism. This implies that the assumption (4) is
satisfied for the polytope Q = Pα′ . When α + kα′ 5 αY , we have the inclusion
A+ kQ = Pα + kPα′ ⊆ Pα+kα′ ⊆ P ◦, as required. ��

Problem 2.25 Find bounds on the minimum distance for an arbitrary Y ⊆ X and
for any toric variety X.
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3 Lattice Ideals and Subgroups of the Torus TX

The previous section motivates studying vanishing ideals of subsets Y of the torus as
in this case hypothesis about the existence of non-zerodivisors hold automatically.
So as to take full advantage of the algebraic approach offered by combinatorial
commutative algebra, it is a good idea to focus on subgroups of TX. In fact, in the
particular case of X = P(w1, . . . , wr) and Y = TX, the ideal I (Y ) has shown
to have a special form in [5]. Namely, it is a special lattice ideal related to the
defining ideal of the semigroup generated by the degrees βj := deg(xj ) = wj , for
j = 1, . . . , r . The main result of this section is from [16] and uncovers the relation
between lattice ideals and subgroups of TX.

A lattice L is a subgroup of Z
r . We can write a vector in Z

r as a difference
m = m+ − m−, of two vectors m+,m− ∈ N

r . If we let Fm = xm
+ − xm

−
, the

binomial ideal IL generated by these special binomials Fm arising from the lattice
L ⊂ Z

r is called the lattice ideal of L. In short, IL = 〈Fm |m ∈ L〉.
Recall that a point of the toric variety X is an orbit of a point P from the affine

space Kr and so is denoted by [P ] := G · P = [p1 : · · · : pr ]. We use [1] shortly to
mean the point [1 : · · · : 1].
Definition 3.1 Every matrixQ = [q1q2 · · ·qr ] ∈ Ms×r (Z) defines a subgroup

YQ = {[tq1 : · · · : tqr ]|t ∈ (K∗)s} ⊆ TX
of the torus TX, which we call the toric set parameterized byQ.

In [15], the vanishing ideals of these toric sets parameterised by monomials are
shown to be lattice ideals of dimension 1, when the toric variety is a projective space,
i.e., X = P(w1, . . . , wr) with w1 = · · · = wr = 1.

Definition 3.2 Given an s×r integer matrixB, letLB = Z
r∩kerB be the sublattice

of Zr determined by B. A lattice L is called homogeneous if L ⊆ Lβ , where β is
the matrix representing the second map in the first short exact sequence P. ��

The following fact given for the first time in [16, Proposition 2.3] justifies our
choice of terminology.

Proposition 3.3 L is homogeneous if and only if IL is homogeneous. ��
For a homogeneous ideal J of S, let

VX(J ) := {[P ] ∈ X : F(P) = 0, for all homogeneousF ∈ J }.
Summarizing some of the results of [16], we get the following nice relations:

Theorem 3.4 The following are equivalent:

(i) Y is a subgroup of TX,
(ii) Y ⊆ TX and I (Y ) is a radical lattice ideal of dimension r − n,

(iii) Y = YQ for a squareQ.
��
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Proof (i) �⇒ (ii) follows from Theorem 2.9 and Theorem 5.1 in [16].
(ii) �⇒ (iii): If I (Y ) = IL then VX(IL)∩TX = YQ for a squareQ, by Proposition
3.4 of [16]. Since Y ⊆ TX and Y = VX(I (Y )), the claim follows.
(iii) �⇒ (i) is clear.

��

The last result suggests that for studying subgroups of the torus TX it is sufficient to
focus on subgroups of the form YQ for a square matrixQ.

3.1 Degenerate Tori

In this section, we pay attention to subgroups YA of TX parameterized by diagonal
matrices A = diag(a1, . . . , ar).

Definition 3.5 The subset YA = {[ta1
1 : · · · : tarr ] : ti ∈ K

∗} of the torus TX is
called a degenerate torus. ��
If K∗ = 〈η〉, every ti ∈ K

∗ is of the form ti = ηsi , for some 0 ≤ si ≤ q − 2. Let
di = ord(ηai ) and D = diag(d1, . . . , dr ) be the matrix defining an automorphism
of Zr . Then, the ideal I (YA) is determined by D and β in this case.

Theorem 3.6 ([16, Theorem 4.5]) If Y = YA then I (Y ) = IL for L = D(LβD).
��

Evaluation codes on complete intersections have been studied before in literature,
e.g. [6–8]. Following these results, we study vanishing ideals of special subsets of
the torus TX and characterize when they are complete intersections using mixed
dominating matrices we define now.

Definition 3.7 If each column of a matrix has both a positive and a negative entry
we say that it is mixed. If it does not have a square mixed submatrix, then it is called
dominating. ��
Theorem 3.8 ([14, Theorem 3.9]) Let L ⊂ Z

r be a nonzero lattice with L∩N
r =

0. Then IL is complete intersection iff L has a basis m1, . . . ,mn such that the matrix
[m1 · · ·mn] is mixed dominating. In the affirmative case, we have

IL = 〈xm+1 − xm−1 , . . . , xm+n − xm−n 〉.

��
Using Theorem 3.8, we prove the following.

Proposition 3.9 ([16, Proposition 4.12]) I (YA) is a complete intersection iff so is
the toric ideal ILβD . A minimal generating system of binomials for I (YA) is obtained

from that of ILβD by replacing xi with xdii . ��
Corollary 3.10 ([16, Corollary 4.14]) We have the following:

(i) if Y = {[1]} then I (Y ) = ILβ ,
(ii) if Y = TX then I (Y ) = IL, for L = (q − 1)Lβ ,
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1

0

Fig. 2 The subsemigroup K

(iii) I (TX) is a complete intersection iff so is the toric ideal ILβ , which is
independent of q .

��
Using the matrix φ defined by the fan ! and the result presented in this section

one can easily check whether the vanishing ideal of TX is a complete intersection.

Example 3.11 Consider the Hirzebruch surface X = H�, whose fan gives the
following mixed dominating matrix

φ =
[

1 0 −1 0
0 1 � −1

]T
.

• So, IL = 〈x1 − x3, x2x3
� − x4〉 is a complete intersection.

• Thus, tori TX are all complete intersections for every q and �:

I (TX) = 〈x1
q−1 − x3

q−1, x2
q−1x3

�(q−1) − x4
q−1〉.

• So, α1 = (q− 1, 0) and α2 = (2q− 2, q− 1) are in K bounding the multigraded
regularity, see Fig. 2.

• Toric codes are trivial after degree α1 + α2 = (3q − 3, q − 1), see Fig. 3.
��

4 Vanishing Ideals of Subsgroups of TX

Studying evaluation codes defined on subgroups of the torus is reduced to an
investigation about parameterized subgroups YQ by the virtue of Theorem 3.4. In
this section we give algorithms for determining a generating set of the lattice ideal
I (YQ) and for computing directly |YQ|, see [1]. These generalize the corresponding
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1 2

1

0

Fig. 3 The semigroup Nβ

results of [15] for the case X = P
n of projective space, and those of [5] for the case

X = P(w1, . . . , wr) of weighted projective spaces and YQ = TX.
The first description of the vanishing ideal is via Elimination theory.

Theorem 4.1 ([1, Theorem 2.3]) Let R = S[y1, . . . , ys, z1, . . . , zd ,w] be an
extension of S = K[x1, . . . , xr ]. Then I (YQ) = J ∩ S, where

J = 〈{xjyqj−zβj
− − yqj+zβj

+}rj=1 ∪ {yq−1
i − 1}si=1, wyq1

−
zβ1

− · · · yqr−zβr
− − 1〉.

Theorem 4.1 gives rise to the following algorithm for computing the binomial
generators of I (YQ).

Algorithm 1 Computing the generators of vanishing ideal I (YQ)
Input The matrices Q ∈ Ms×r (Z), β ∈ Md×r (Z) and a prime power q.
Output The generators of I (YQ).

1: Write the ideal J of R using Theorem 4.1.
2: Find the Gröbner basis G of J using the lexicographic monomial ordering with
w > z1 > · · · > zd > y1 > · · · > ys > x1 > · · · > xr .

3: Find G ∩ S so that I (YQ) = 〈G ∩ S〉.

Example 4.2 Consider the Hirzebruch surface X = H2 over F11 and the toric set
parameterized by Q = [1 2 3 4], that is, YQ = {[t : t2 : t3 : t4]|t ∈ F

∗
11}. We

compute the generators of I (YQ) and obtain I (YQ) = 〈x5
1 − x5

3 , x
2
1x2 − x4〉, see [1]

for the code used. ��
Here is another description of the vanishing ideal relying on the underlying

lattice.

Theorem 4.3 ([1, Theorem 3.4]) Let πs : Z
n+s → Z

n be the projection map
sending (c1, . . . , cn, cn+1, . . . , cn+s ) to (c1, . . . , cn). Then, the ideal I (YQ) = IL,
for the lattice L = {φc : c ∈ πs (kerZ[Qφ|(q − 1)Is ])}. ��



298 M. Şahin

Theorem 4.3 leads to the following algorithm for computing a Z-basis of the
lattice L.

Algorithm 2 Computing the lattice L such that IL = I (YQ)
Input The matricesQ ∈ Ms×r (Z), φ ∈ Mr×n(Z) and a prime power q.
Output A basis of L.

1: Find the generators of the lattice kerZ[Qφ|(q − 1)Is ].
2: Find the matrixM whose columns are the first s coordinates of the generators found in the

previous step.
3: Compute the matrix φM whose columns are a Z-basis of the lattice L

Example 4.4 Let X = H2 over F11 and Q = [1 2 3 4]. Then, using this algorithm
we get the lattice L whose basis vectors appear as the columns of the matrix below:

ML =
[

2 1 0 −1
−5 0 5 0

]T
.

The lattice ideal IL is the saturation of the lattice basis ideal 〈x5
1 − x5

3 , x
2
1x2 − x4〉.

SinceML is mixed dominating, I (YQ) = IL is complete intersection meaning that
it is already saturated. Therefore, we get IL = 〈x5

1 − x5
3 , x

2
1x2 − x4〉. If we compute

Hilbert function of YQ at some degrees, we get the following table:

{1, 2, 3, 4, 5, 5, 5, 5}
{1, 2, 3, 4, 5, 5, 5, 5}
{1, 2, 3, 4, 5, 5, 5, 5}.

The table represents values of the Hilbert functionHYQ at elements α ∈ Nβ = N
2.

It should be thought of as the usual first quadrant as in Fig. 3: the left-bottom
value 1 corresponds to the origin. The others from the bottom to the top should
be regarded as HYQ(α) for α ∈ {(0, 1), (0, 2)}. Similarly, values 1, 2, 3 at the
bottom correspond to elements α ∈ {(0, 0), (1, 0), (2, 0)}. In order to understand
the cardinality |YQ| and the set reg(YQ), we need to know more about the behaviour
of the Hilbert function. As YQ lies in the torus TX, variables are non-zerodivisor, so
Hilbert function is non-decreasing in the direction of β1 = (1, 0) and β2 = (0, 1).
Apriori, we do not know if HYQ stabilizes after it repeats itself once. So, we
can not determine the rest of the table. In other words, it does not follow from
HYQ(4, 0) = 5 = HYQ(5, 0) that HYQ(a, 0) = 5 for all a > 5 as in the case of
X = P

n1 × · · · × P
nr . Since X = H2 is smooth and YQ is a complete intersection

of hypersurfaces of degrees α1 = (2, 1) and α2 = (5, 0), we can use either of the
results Theorem 2.19 or Theorem 2.20 to deduce that α1 + α2 = (7, 1) ∈ reg(YQ).
Therefore, |YQ| = HYQ(7, 1) = 5 and thus reg(YQ) = (4, 0)+ N

2.
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Similarly, we can not make sure apriori that the rows of the table repeat itself
forever. If we look at this example more closely, we realize the following, for every
b ∈ N:

S(0,b) = {xb2 }, S(1,b) = {x1x
b
2 , x1x

b
2 }, S(2,b) = {x2

1x
b
2 , x1x3x

b
2 , x

2
3x
b
2 , x

b−1
2 x4}

S(3,b) = {x3
1x
b
2 , x

2
1x3x

b
2 , x1x

2
3x
b
2 , x

3
3x
b
2 , x1x

b−1
2 x4, x3x

b−1
2 x4}.

Since x2
1x2 − x4 ∈ I (YQ), it follows that x2

1x
b
2 + I (YQ) = xb−1

2 x4 + I (YQ) in the
quotient ring S/I (YQ) and thus for every b ∈ N, we have

HYQ(0, b) = 1, HYQ(1, b) = 2, HYQ(2, b) = 3, HYQ(3, b) = 4.

Hence, the only non-equivalent and non-trivial codes are the generalized toric codes
Cα,YQ for the degrees α ∈ {(1, 0), (2, 0), (3, 0)}. ��

4.1 The Length of the Code Cα,YQ

In this section, we give an algorithm for computing the length of the code Cα,YQ

directly using the parameterization of YQ. It is clear that TX and YQ are groups
under the componentwise multiplication and that the map

ϕQ : (K∗)s → YQ, t → [tq1 : · · · : tqr ]

is a group epimorphism. It follows that YQ ∼= (K∗)s/ker(ϕQ) and thus,

|YQ| = |(K∗)s |/|ker(ϕQ)| = (q − 1)s/|ker(ϕQ)|.

Hence, computation of the length of the code Cα,YQ is reduced to determining the
number |ker(ϕQ)|.
Proposition 4.5 ([1, Proposition 5.1]) LetH = {1, . . . , q−1}×· · ·×{1, . . . , q−
1} ⊂ Z

s and η be a generator of K∗. If P = {h ∈ H |hQφ ≡ 0 mod q − 1}, then we
have ker(ϕQ) = {(ηh1, . . . , ηhs )|h = (h1, . . . , hs) ∈ P}. Therefore, |ker(ϕQ)| =
|P|. ��

We can compute k = |ker(ϕQ)| = |P| and thereby the length of the code easily
using the following:

Procedure 4.6 The following code in Macaulay2 computes length of Cα,YQ .

i2 : r=numRows Phi;s=numRows Q;n=numColumns Phi;
i3 : L=for i from 1 to q-1 list i;
i4 : L= set L;L=L^**(s);L=toList L;
i5 : k=0;
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i6 : scan(L,i-> if ((matrix{{i}}*Q*Phi)%(map((ZZ)^1,n,(i,j)>
(q-1))))==(matrix mutableMatrix(ZZ,1,n)) then k=k+1)
i7: length=((q-1)^s)/k

Example 4.7 We can calculate the length of the code corresponding to the Exam-
ple 4.4 directly using the Procedure 4.6 with the following input:

i1 : q=11;Phi=matrix{{1,0},{0,1},{-1,2},{0,-1}};
Q=matrix {{1,2,3,4}};

We finish with the following example to illustrate the advantage of computing
length beforehand in order to determine reg(YQ).

Example 4.8 We can calculate the cardinality |YQ| of a subset YQ ⊆ P(3, 4, 5, 6)
directly using the Procedure 4.6 with the following input:

i1 : q=11; Phi= syz matrix {3,4,5,6};
Q=matrix{{3,2,1,4},{1,2,3,4},{3,4,5,6}};

This reveals that |YQ| = 25. In order to determine reg(YQ), we compute the
vanishing ideal I (YQ) and the first 60 values of its Hilbert function:

2 8 2 5 7 3 5 10 5
o62 = ideal (x - x x , x - x x x , x x - x x , x - x )

2 1 3 3 1 2 4 2 3 1 4 1 4

i65 : apply(60,i-> hilbertFunction({i},IYQ))

o65 = {1, 0, 0, 1, 1, 1, 2, 1, 1, 3, 3, 2, 4, 3, 3, 6, 5, 4,
7, 6, 6, 9, 8, 7, 11, 10, 9, 13, 12, 11, 15, 14, 13, 17, 16,
15, 19, 18, 17, 20, 19, 19, 22, 21, 20, 22, 22, 22, 24, 23,
22, 24, 24, 24, 25, 24, 24, 25, 25, 25}.

Since the ideal is not a complete intersection we currently do not know anything
about the regularity set. As the length is found 25 beforehand, it is certain that

reg(YQ) = {d ∈ Nβ : HYQ(d) = 25}.

It is not clear if the Hilbert function stabilizes after these 60 values. Using its non-
decreasing behavior, we can say that HYQ(d) ≤ HYQ(d + wi), for wi ∈ {3, 4, 5, 6}
and for all d > 0. SinceHYQ(57) = 25, it follows thatHYQ(d) = 25, for all degrees
d = 60, 61, 62 and 63. Thus, HYQ(d) = 25 forever, giving a lower bound for the
regularity 57 + N ⊆ reg(YQ). Indeed, we have reg(YQ) \ (57 + N) = {54}. This
implies that for aYQ = 56 we do not have equality reg(YQ) = aYQ + 1 + N, as in
Proposition 2.16.
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Note that the degree of the following rational function representing the Hilbert
series is 56:

i66 : hilbertSeries IYQ

8 30 38 39 40 43 44 69 70 73 74
1- T - T + T - T - T + T + T + T + T - T - T

o66 = ------------------------------------------------------
6 5 4 3

(1 - T )(1 - T )(1 - T )(1 - T )

��
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Integral Domains
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Abstract We study the cardinality of the set Star(S) of star operations on a
numerical semigroup S; in particular, we study ways to estimate Star(S) and to
bound the number of nonsymmetric numerical semigroups such that |Star(S)| ≤ n.
We also study this problem in the setting of analytically irreducible, residually
rational rings whose integral closure is a fixed discrete valuation ring.
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1 Introduction

A star operation on an integral domainD is a particular closure operation on the set
of fractional ideals ofD; this notion was defined to generalize the divisorial closure
[4, 13] and has been further generalized to the notion of semistar operation [17].
Star operations have also been defined on cancellative semigroups in order to obtain
semigroup-theoretic analogues of some ring-theoretic (multiplicative) definitions
[11]. A classical result characterizes the Noetherian domainsD in which every ideal
is divisorial or, equivalently, which Noetherian domains admit only one star oper-
ation: this happens if and only if D is Gorenstein of dimension one [2]. Recently,
this result has been a starting point of a deeper investigation on the cardinality of
the set Star(D) of the star operations onD, obtaining a precise counting for h-local
Prüfer domains [7] (and, more generally, an algorithm to calculate their number
for semilocal Prüfer domains [23]), some pseudo-valuation domains [18, 26] and
some Noetherian one-dimensional domains [6, 8, 25]. In particular, for Noetherian
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domains, a rich source of examples are numerical semigroup rings, that is, rings
in the form K[[S]] := K[[Xs | s ∈ S]], where K is a field and S is a numerical
semigroup.

Inspired by this example, the study of star operations on numerical semigroups
(and, in particular, of their cardinality) was initiated in [21]. In particular, the main
problem that was tackled was the following: given a (fixed) integer n, how many
numerical semigroups have exactly n star operations? By estimating the cardinality
of Star(S), it was shown that this number is always finite, and that the same holds
for residually rational rings (see Sect. 10 for a precise statement). Subsequently, in
[27], better estimates on |Star(S)| allowed to give a much better bound the number
of semigroups with at most n star operations, while in [22] the set Star(S) was
described in a very precise way when the semigroup S has multiplicity 3.

In this paper, we give a unified treatment of the study of Star(S), surveying the
main results of [21, 22, 27] and [24] and deepening them. In particular, we give a
rather precise asymptotic expression for the number of semigroups of multiplicity 3
with less than n star operations (Theorem 6.4), an O(nε) bound for the semigroups
of prime multiplicity (Theorem 7.4), we list all nonsymmetric numerical semigroups
with 150 or less star operations (Table 4), and prove an explicit bound for residually
rational rings (Theorem 10.5).

The structure of the paper is as follows: Sects. 2 and 3 present basic material;
Sects. 4 and 5 present estimates already present in [21] and [27]; Sect. 6 deepens
the analysis of [22] on semigroups of multiplicity 3; Sect. 7 studies the case where
the multiplicity is prime (and bigger than 3); Sect. 8 introduces the concept of
linear families (one example of which was analyzed in [24]); Sect. 9 is devoted to
algorithms to calculate |Star(S)| and to determine all the nonsymmetric semigroups
with at most n star operations; Sect. 10 studies the domain case, and contains
analogues of the results of Sect. 4 for residually rational domains.

2 Notation

For all unreferenced results on numerical semigroups we refer the reader to [19].
A numerical semigroup is a set S ⊆ N that contains 0, is closed by addition and

such that N \ S is finite. If a1, . . . , an are coprime positive integers, the numerical
semigroup generated by a1, . . . , an is 〈a1, . . . , an〉 :=

{∑n
i=1 tiai | ti ∈ N

}
. The

notation S = {0, b1, . . . , bn,→} indicates that S is the set containing 0, b1, . . . , bn
and all integers bigger than bn.

To any numerical semigroup S are associated some natural numbers:

• the genus of S is g(S) := |N \ S|;
• the Frobenius number of S is F(S) := sup(N \ S);
• the multiplicity of S is m(S) := inf(S \ {0}).
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The Apéry set of S with respect to n ∈ S is the set Ap(S, n) := {x ∈ S | x − n /∈
S}. Without specifications, the Apéry set of S is the Apéry set with respect to the
multiplicity; we write Ap(S) := Ap(S,m(S)).

A hole of S is an integer x ∈ N \ S such that F(S) − x /∈ S. A semigroup S is
symmetric if it has no holes, while it is pseudosymmetric if g(S) is even and g(S)/2
is its only hole. Setting T (S) := {x ∈ N \ S | x + (S \ {0}) ⊆ S}, we also have that
S is symmetric if and only if T (S) = {F(S)} [19, Corollary 4.11].

An integral ideal of S is a nonempty subset I ⊆ S such that I +S ⊆ I , i.e., such
that i + s ∈ I for all i ∈ I , s ∈ S. A fractional ideal of S is a subset I ⊆ Z such
that d + I is an integral ideal for some d ∈ Z, or equivalently an I � Z such that
I + S ⊆ I . We shall use the term “ideal” as a shorthand for “fractional ideal”.

If {Iα}α∈A is a family of ideals, then its intersection (if nonempty) is an ideal,
while its union is an ideal if and only if there is a d ∈ Z such that d < i for all i in
the union. If I, J are ideals, the set (I − J ) := {x ∈ Z | x + J ⊆ I } is still an ideal
of S.

We denote by F(S) the set of fractional ideals of S, and by F0(S) the set of
fractional ideals contained between S and N; equivalently, F0(S) = {I ∈ F(S) |
0 = inf(I)}. For every ideal I , there is a unique d such that −d + I ∈ F0(S)

(namely, d = inf(I)).
If a, b are integers, we use (a, b) to indicate their greatest common divisor. If

f, g are functions of n, we use f = O(g) to mean that there is a constant C such
that f (n) ≤ C · g(n) for all n ≥ 0.

3 Star Operations

Definition 3.1 ([21, Definition 3.1]) Let S be a numerical semigroup. A star
operation on S is a map ∗ : F(S) −→ F(S), I �→ I∗, that satisfies the following
properties:

• ∗ is extensive: I ⊆ I∗ for every I ∈ F(S);
• ∗ is order-preserving: if I, J ∈ S and I ⊆ J , then I∗ ⊆ J ∗;
• ∗ is idempotent: (I∗)∗ = I∗ for every I ∈ F(S);
• ∗ fixes S, that is, S∗ = S;
• ∗ is translation-invariant: d+I∗ = (d+I)∗ for every I ∈ F(S) and every d ∈ Z.

We denote by Star(S) the set of star operations on S.

If I = I∗, we say that I is ∗-closed; we denote the set of ∗-closed ideals by F∗(S).
The set Star(S) can be endowed with a natural partial order: we say that ∗1 ≤ ∗2

if I∗1 ⊆ I∗2 for every ideal I , or equivalently if F∗2(S) ⊆ F∗1(S). Under this order,
Star(S) is a complete lattice: its minimum is the identity, while its maximum is the
v-operation (or divisorial closure) v : I �→ (S − (S − I)).

Since N is v-closed, any star operation restricts to a map ∗0 : F0(S) −→ F0(S);
furthermore, ∗0 uniquely determines ∗ (since every ideal can be translated into
F0(S)). We define G0(S) := F0(S) \ Fv(S), that is, G0(S) is the set of ideals I
of S such that 0 = inf I and I 
= Iv .
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Since F0(S) is finite, Star(S) is a finite set for all numerical semigroups S [21,
Proposition 3.2]. Furthermore, |Star(S)| = 1 if and only if v is the identity, which
happens if and only if S is symmetric [1, Proposition I.1.15].

4 Estimates Through the Genus

Our main interest in this paper will be the function #(n) that associates to every
integer n > 1 the number of numerical semigroups S such that 2 ≤ |Star(S)| ≤
n. More generally, if S is a set of numerical semigroups, we define #S(n) as the
number of semigroups S ∈ S such that 2 ≤ |Star(S)| ≤ n. We will mainly be
interested in the asymptotic growth and in asymptotic bounds of # and #S, for
some distinguished sets S of semigroups.

It is very difficult to determine precisely the number of star operations on
a numerical semigroup S, while it is easier to find estimates for |Star(S)|: for
this reason, we work with # instead of the function that counts the number of
semigroups with exactly n star operations. Most of the bounds proven in the paper
will be obtained in a two-step process:

1. find a function φ (depending on some of the invariants of S) such that |Star(S)| ≥
φ(S) for all S ∈ S;

2. estimate the number of S ∈ S satisfying φ(S) ≤ n.

In this way, we obtain an estimate on the number of semigroups S ∈ S satisfying
|Star(S)| ≤ n: indeed, if |Star(S)| ≤ n then we must also have φ(S) ≤ n.

The first important result is to prove that # is actually well-defined, that is, that
there are only a finite number of numerical semigroups satisfying 2 ≤ |Star(S)| ≤ n.
To do so, the first estimate involves the genus of S.

Theorem 4.1 ([27, Proposition 8.1]) Let S be a nonsymmetric numerical semi-
group. Then, |Star(S)| ≥ g(S)+ 1.

Sketch of Proof For every ideal I ∈ G0(S), we define ∗I as the largest star
operation ∗ such that I = I∗; equivalently, ∗I is the map such that

J ∗I = J v ∩ (I − (I − J ))

for every ideal J [21, Proposition 3.6]. Then, ∗I = ∗J if and only if I = J [21,
Theorem 3.8]. Since S is nonsymmetric, there is a τ ∈ T (S)\{F(S)} [19, Corollary
4.11]; let λ := min{τ, F (S)− τ }. If x ∈ N \S, letMx := {z ∈ N | x− z /∈ S}; then,
Mx is an ideal (which is not always divisorial). We associate to each x ∈ N \ S an
ideal Ix :

• if x < λ and λ− x /∈ S, then Ix := S ∪ {z ∈ N | z > x, z ∈ Mλ};
• if x < λ and λ− x ∈ S, then Ix := S ∪ {z ∈ N | z > g − (λ− x)};
• if x ≥ λ, then Ix :=Mx .
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Then, Ix 
= Iy if x 
= y. Each Ix is not divisorial: in the first case because
sup(N\S) = λ /∈ S and by [21, Lemma 4.7], in the second case because τ ∈ Ivx \Iv
(and by [21, Proposition 3.11]), in the third case by [21, Lemma 4.8]. Hence, they
generate g(S) different star operations, all different from the divisorial closure.
Thus, |Star(S)| ≥ g(S)+ 1. ��

We now translate this estimate to a bound on #.

Theorem 4.2 ([27, Section 8]) Preserve the notation above.

(a) #(n) <∞ for every n > 1.

(b) If ϕ :=
√

5+1
2 is the golden ratio, then

#(n) = O(ϕn) = O(exp(n logϕ)).

Proof By [32], the number of numerical semigroups of genus at most n is O(ϕn).
The claim follows from Theorem 4.1. ��

5 Estimates Through the Multiplicity

The proof of Theorem 4.1 involves star operations generated by a single ideal (called
principal star operations). In general, not all star operations have this form; to work
more generally we define, given$ ⊆ G0(S), the star operation induced by $ as

∗$ := inf{∗I | I ∈ $}.

Every star operation can be represented in this form [27, Section 3], but in general
we may have ∗$ = ∗% even if $ 
= %. To obtain better estimates, we want to
identify special subsets of G0(S) that induce pairwise different star operations. We
introduce the following definitions.

Definition 5.1 ([27, Definition 3.1]) The ∗-order on G0(S) is the partial order ≤∗
defined by I ≤∗ J if and only if ∗I ≥ ∗J ; equivalently, I ≤∗ J if I is ∗J -closed.

The fact that, for I, J ∈ G0(S), ∗I = ∗J if and only if I = J guarantees that the
∗-order is really a partial order (see [21, Corollary 3.9] or the proof of Theorem 4.1);
on the other hand, the same relation defined on the whole F(S) is only a preorder
(see the discussion after [27, Definition 3.1]).

Definition 5.2 Let (P,≤) be a partially ordered set. An antichain of P is a subset
of pairwise noncomparable elements.

Definition 5.3 Let a ∈ N \ S. Then, Qa is the set of ideals I ∈ G0(S) such that
a = sup(N \ I) and such that a ∈ Iv .
The set Qa is nonempty if and only ifMa is nondivisorial (in which caseMa ∈ Qa)
[27, Proposition 5.2].
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Proposition 5.4 ([27, Proposition 5.11]) Let a, b ∈ N \ S, and let $ ⊆ Qa , % ⊆
Qb be two nonempty sets of ideals that are antichains with respect to set inclusion.
If$ 
= %, then ∗$ 
= ∗%.

Given P ⊆ G0(S), we denote by ωi(P) the number of antichains of P with
respect to set inclusion.

Corollary 5.5 ([27, Corollary 5.12]) For every numerical semigroup S, we have

|Star(S)| ≥ 1+
∑

a∈N\S
(ωi(Qa)− 1).

Remark 5.6 In [27], the notation ω(P) was used for the number of antichain of P
with respect to the ∗-order, and ωi(P), with “i” standing for “inclusion”, was used
to distinguish the two quantities. In this paper we do not use directly the antichains
in the ∗-order, but we preserve the notation ωi(P) for the sake of consistency.

Corollary 5.5 allows a relatively quick estimate of Star(S) when S is a fixed
semigroup, since finding Qa and counting the antichains with respect to inclusion is
much quicker than determining and comparing star operations. From a theoretical
point of view, it can be used through the following construction.

Suppose a is a hole of S. Let J := S ∪ {x ∈ N | x > a}, and let Z(a) :=
{a − m + 1, . . . , a − 1} \ S. For every A ⊆ Z(a), the set IA := J ∪ A is an ideal
of S, and it belongs to Qa since g − a /∈ S [21, Lemma 4.7]. Furthermore, IA ⊆ IB
if and only if A ⊆ B; hence, the set of the IA (under the containment order) is
isomorphic to the power set of Z(a). The number of antichains of the power set of a
set with n elements is called the n-th Dedekind number, and we denote it by ω(n).
The sequence {ω(n)} grows extremely quickly (as an exponential of an exponential),
and for this reason it is known only up to n = 8 [12, 31].

A similar construction can be done if a < m(S) is not a hole, but there is a hole
b < a; in this case, we consider Z(a) = {1, . . . , a − 2}, and the best estimate is
obtained with a = m(S)−1. Using these constructions (and some variants), we can
prove the following.

Proposition 5.7 ([27, Propositions 5.19 and 5.21]) Let S be a nonsymmetric

numerical semigroup, and let ν(S) :=
⌈
m(S)−1

2

⌉
. Let a ∈ N \ S.

(a) If m(S) < a ≤ g/2 and g − a /∈ S then ωi(Qa) ≥ ω(ν(S)).
(b) If 2m(S) < a ≤ g/2 and g − a /∈ S then ωi(Qa) ≥ 2ω(ν(S)) − 2.
(c) If a < m(S) and g − a /∈ S then ωi(Qa) ≥ ω(a − 1).
(d) If a < m(S) and there is a hole b < a of S, then ωi(Qa) ≥ ω(a − 2).

In particular, |Star(S)| ≥ ω(ν(S)).
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As in Sect. 4, we can use the last estimate to obtain a bound on #.

Theorem 5.8 ([27, Theorem 8.4]) For every ε > 0,

#(n) = O
[

exp

((
2

log 2
+ ε
)

log(n) log log(n)

)]
.

Sketch of Proof Let Aε := 2
log 2 + ε. Using Proposition 5.7 and the estimates in

[12], we have that if |Star(S)| ≤ n then (for any ε′ > 0 and n ≥ n0(ε
′))

n ≥ ω(ν(S)) ≥ 2(
ν(S)

�ν(S)/2�) ≥ 22(1−ε′)ν(S)

when ν(S) is large. Writing it as a function of m(S), we get m(S) ≤ Aε log logn.
Let#μ(n) be the number of nonsymmetric numerical semigroups of multiplicity

μ with at most n star operations: then, using Theorem 4.1, #μ(n) is at most equal
to the number of numerical semigroups of multiplicity μ of genus ≤ n, which is at
most (n− 1)μ−1. It follows that

#(n) ≤
Aε log logn∑

μ=3

(n− 1)μ−1 ≤ nAε log log(n) ≤ exp(Aε log(n) log log(n)),

as claimed. ��

6 Multiplicity 3

In the last passage of the proof of Theorem 5.8, we needed to estimate the function
#μ(n) counting the nonsymmetric numerical semigroups of multiplicity μ with at
most n star operations. While a very crude bound was enough to obtain the theorem,
it is reasonable to ask for more precise estimates: in this section we analyze the case
of multiplicity 3, while in the next one we study the case where m(S) > 3 is prime.

The case of numerical semigroups of multiplicity 3 can be analyzed very
thoroughly, obtaining a complete solution to the problem of finding the set of star
operations on S.

Theorem 6.1 Let S := 〈3, 3α+1, 3β+2〉 be a numerical semigroup of multiplicity
3, where Ap(S) = {3, 3α + 1, 3β + 2}.
(a) [22, Theorem 7.4] (G0(S),≤∗) is order-isomorphic to the direct product

{1, . . . , 2α − β} × {1, . . . , 2β − α + 1}.
(b) [22, Corollary 6.5] Star(S) is order-isomorphic to the set of antichains of

(G0(S),≤∗).
(c) [22, Theorem 7.6] |Star(S)| =

(
α+ β + 1

2α−β
)
=
(
α+β + 1

2β −α+ 1

)
=
(

g(S)+ 1

F(S)− g(S)+ 2

)
.
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Using Proposition 5.4, we can also improve [22, Proposition 7.8].

Proposition 6.2 Let S be a nonsymmetric numerical semigroup. Then, the follow-
ing are equivalent:

(i) S is a pseudosymmetric semigroup of multiplicity 3;
(ii) (G0(S),≤∗) is linearly ordered;

(iii) Star(S) is linearly ordered.

Proof Ifm(S) = 3, the result is exactly [22, Proposition 7.8]. Suppose thusm(S) >
3; we need to show that (G0(S),≤∗) is not linearly ordered, and to do so it is enough
(by Proposition 5.4) to find two ideals J1, J2 in some Qa that are not comparable.
Let τ be a hole of S such that τ ≤ g/2 (it exists because S is not symmetric). We
distinguish several cases.

If τ ≥ 3, then by [21, Lemma 4.13] we can find a1, a2 ∈ ({τ −m+ 1, . . . , τ −
1} ∩ N) \ S; then, we set Ji := S ∪ {x ∈ N | x > τ } ∪ {ai}.

If τ < 3 and m(S) > 4, consider b := 4: then, the set {1, 2, 3} \ {3− τ } contains
two different elements, say x1 and x2, and we take Ji := S ∪ {x ∈ N | x >
3} ∪ {3− τ, xi} (they belong to Q3 by the proof of [27, Proposition 5.20]).

Suppose m(S) = 4 and τ ≤ 2. If τ = 1 then one between g := g(S) and g − 1
is even; call it e. Then, e/2 is a hole of S which is not bigger then g/2; in particular,
if e2 ≥ 3 we are in the case above. If e2 ≤ 2, then g ≤ 5, and so either g = 3 or
g = 5. In the latter case we would have g − 1 = 4 /∈ S, a contradiction; in the
former case, S = 〈4, 5, 6, 7〉, and by direct inspection G0(S) is not linearly ordered
(see [27, Example 5.21]).

If τ = 2, consider J1 := S ∪ {g − 2} and J2 := S ∪ (2 + S). Then, both are
elements of Qg, and g − 2 /∈ J2 (otherwise g − 2 − 2 = g − 4 = g − m ∈ S,
which is absurd); furthermore, J1 
= J2 since otherwise 2 = g − 2, i.e., g = 4, a
contradiction, and so they are noncomparable.

Therefore, if m(S) > 3 the ∗-order on G0(S) is not total, as claimed. ��
We now want to use Theorem 6.1 to calculate#3(n). The idea is to divide the set

of semigroups of multiplicity 3 in sets defined by the relation 2α−β = k (if α ≤ β)
or 2β − α + 1 = k (if α > β), and then estimate #S(n) for each of these families.

Lemma 6.3 Let k, n be integers, and define

pk,n(X) := X(X − 1) · · · (X − k + 1)

k! − n.

Then:

(a) pk,n has a unique zero xk,n that satisfies xk,n > k − 1;
(b) for all k, there is a n0(k) such that, for all n ≥ n0(k),

(k!n)1/k − 1 < xk,n < (k!n)1/k + k − 1.
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Proof

(a) Let p̃k,n(X) := pk,n(X + k − 1) = X(X+1)···(X+k−1)
k! − n: then, p̃k,n is a

polynomial whose coefficients are all positive, and thus p̃k,n is increasing for
X > 0, i.e., pk,n is increasing for X > k − 1. Furthermore, pk,n(k − 1) =
p̃n(0) = −n, and thus pk,n has a unique zero xk,n > k − 1.

(b) We have

pk,n((k!n)1/k + k − 1) = p̃k,n((k!n)1/k) > ((k!n)
1/k)k

k! − n = n− n = 0,

and thus xk,n < (k!n)1/k+k−1. On the other hand, write k!p̃k,n(X) =
k∑

t=0

λtX
t :

then, λk = 1 and λ0 = −k!n. We have

λt · ((k!n)1/k − k)t = λt
t∑

i=0

(
t

i

)
(−1)t−i(k!n)i/kk(t−i)/k.

Adding all these terms, we see that k!p̃k,n(X) is a sum of monomials (with fractional
exponent) in n. The maximal exponent is 1, which appears twice: for t = k = i and
for t = 0. The former is equal to k!n and the latter to −k!n, and so their sum is
zero. The next term is the one with exponent (k − 1)/k, and again we have two
monomials: for t = k and i = 1 and for t = k − 1 = i. Hence, the leading term of
k!p̃k,n((k!n)1/k − k), as a function of n, is

−
(
k

1

)
(k!n)(k−1)/k · k + λk−1(k!n)(k−1)/k = k!(k−1)/k(−k2 + λk−1)n

(k−1)/k.

We have λk−1 = 1+2+· · ·+k−1 = k(k−1)
2 ; hence, the sign of k!p̃n((k!n)1/k−k)

is equal to the sign of

−k2 + λk−1 = −k2 + k(k − 1)

2
= −k

2 + k
2

< 0.

Therefore, for large n we have xk,n > (k!n)1/k − k + (k − 1) = (k!n)1/k − 1, as
claimed. ��
Theorem 6.4 For every integer t > 1, we have

#3(n) = 2

3

(
t−1∑

k=1

(k!)1/k · n1/k

)
+O(n1/t log2 n).

Proof Given a numerical semigroup S = 〈3, 3α + 1, 3β + 2〉 of multiplicity 3, let
p(S) := α + β + 1 and q(S) := 2α − β. Then, p(S) + q(S) = 3α + 1; we have
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p(S) > q(S) for all nonsymmetric semigroups, and furthermore p(S) 
= 2q(S) for
all S, which means that p(S) < 2q(S) or p(S) > 2q(S).

Given an integer k ≥ 1, define the following sets: Sk is the set of numerical
semigroups with p(S) < 2q(S) and q(S) = k, while S−k is the set of semigroups
with p(S) > 2q(S) and p(S) − q(S) = k. Then, each nonsymmetric semigroup
belongs to exactly one Sk or S−k , and thus

#3(n) =
∑

k≥1

#Sk (n)+#S−k (n).

We claim that #Sk (n) = (k!)1/k · n1/k +O(1) for each k.
Indeed, #Sk (n) is equal to the number of integer solutions of the system

⎧
⎪⎪⎨

⎪⎪⎩

(
X
k

) ≤ n
X + k ≡ 1 mod 3

X ≥ 2k

In the notation of Lemma 6.3, the first equation is exactly pk,n(X) ≤ 0; hence, the
number of solutions is 1

3 (xk,n − 2k)+ ε for some |ε| ≤ 1 (depending on k and n).
For large n, using Lemma 6.3(b) this is equal to

1

3
k!1/kn1/k − 2

3
k +O(1) = 1

3
k!1/kn1/k +O(1)

for k fixed, as claimed. A completely analogous reasoning holds for S−k , since also(
X
X−k
) = pk,n(X).

Take any integer t and let S :=⋃k<t Sk ∪ S−k . Then,

#S(n) =
t−1∑

i=1

#Sk (n)+#S−k (n) =
t−1∑

i=1

(
2

3
k!1/kn1/k +O(1)

)

= 2

3

(
t−1∑

i=1

k!1/kn1/k

)
+O(t).

Let S′ be the complement of S in the set of all numerical semigroups of mul-
tiplicity 3, and consider #S′(n). Let Gr(n) be the number of binomial coefficients(
a
b

)
such that

(
a
b

) ≤ n, b ≥ t and a ≥ 2b; then, since a binomial coefficient arises
from at most one semigroup, we have

#S′(n) ≤ 2
∞∑

r=t
Gr(n). (1)
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If k > log2(n), then

(
2k

k

)
≥ 4log2(n)

√
4 log2(n)

≥ n2
√

4 log2(n)
> n

for large n. Thus, it is enough to consider the sum in (1) only for k going from t to
log2(n).

By Lemma 6.3, if
(
a
t

) ≥ n then a ≤ (k!n)1/k; hence,Gk(n) ≤ (k!n)1/k and

#S′(n) ≤ 2
log2(n)∑

k=t
(k!n)1/k ≤ 2n1/t

log2 n∑

k=t
(k!)1/k = O(n1/t log2 n).

since (k!)1/k ≤ k. The claim is proved. ��
Note that we cannot write #3 as the series

#3(n) = 2

3

∞∑

k=1

(k!)1/k · n1/k,

because at fixed n the terms have limit 1, and so the series does not converge. When
n is fixed, a good approximation for #3(n) is obtained stopping the series at k =
log2(n); an even better approximation can be obtained stopping it at k = 1

2 (log2 n+
log2 log2 n), since also for this value we have

(2k
k

)
> n.

7 Prime Multiplicity

The formula for |Star(S)| in the previous section was based on an explicit (and
very regular) description of G0(S). For semigroups of bigger multiplicity, both
listing all non-divisorial ideals and understanding the ∗-order becomes much more
complicated (see the examples in [24]), and so we need to rely on estimates. In this
section, we shall obtain good estimates for some particular classes of semigroups.

The main idea is to generalize the reasoning used to obtain the estimate
|Star(S)| ≥ ω(ν(S)) by considering not only the elements b ∈ {a − m(S) +
1, . . . , a − 1} \ S, but also the integers in the form b − km.

Theorem 7.1 Let S be a nonsymmetric numerical semigroup of multiplicitym, and
let a ∈ N \ S be a hole of S. Suppose that there are b1, b2 ∈ (a − m, a) ∩ N and
σ ∈ N such that:

• b1, b2 /∈ S;
• for c ∈ {a − b1, a − b2, |b1 − b2|}, the element ac ∈ Ap(S,m) congruent to c

modulo m satisfies ac ≥ σm.

Then, |Star(S)| ≥
(

2σ

σ

)
.
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Proof For 0 ≤ j, k < σ , let I (j, k) be the ideal

I (j, k) := S ∪ {x ∈ N | x > a} ∪ (b1 − jm+ S) ∪ (b2 − km+ S).

We first prove that max(N \ I (j, k)) = a. Clearly, every element larger than
a is in I (j, k). On the other hand, a /∈ S, while a ∈ b1 − jm + S is equivalent to
a−(b1−jm) ∈ S, and the latter is impossible since a−(b1−jm) = (a−b1)+jm <
σm; hence, a /∈ b1 − jm+ S, and in the same way a /∈ b2 − km+ S.

Furthermore, b1−jm−m /∈ I (j, k): the only possibility would be b1−jm−m ∈
b2 − km+ S, but his would imply

b1 − jm−m− (b2 − km) = b1 − b2 + (k − j − 1)m ∈ S,

which is impossible since b1 − b2 + (k − j − 1)m < σm. Hence, the Apéry set of
I (j, k) contains a, b1 − jm and b2 − km; in particular, these ideals all distinct.

Since a is a hole of S, all the I (j, k) belong to Qa , and by Proposition 5.4 every
nonempty antichain with respect to containment induces a different star operation
on S. Under the containment order, the set of the I (j, k) is isomorphic to the
direct product {1, . . . , σ } × {1, . . . , σ }; by [22, Lemma 7.5], the latter set has

(2σ
σ

)

antichains. The claim now follows from Corollary 5.5. ��
When instead of b1 and b2 we have z elements, say b1, . . . , bz, in (a−m, a)∩N

but out of S, the same reasoning (with the natural modifications to the hypothesis)
can be applied, considering the set containing the ideals in the form

I (j1, . . . , jz) := S ∪ {x ∈ N | x > a} ∪
z⋃

i=1

(bi − jim+ S),

which will be isomorphic to {1, . . . , σ }z. Numerically, this version gives a much
better bound on |Star(S)|, although there isn’t a simple formula to express it;
however, the version of the theorem with only b1 and b2 will suffice for our purpose.

Lemma 7.2 If a is a hole of a numerical semigroup S and a + m(S) /∈ S, then
a +m(S) is a hole of S.

Proof Immediate from the fact that F(S)− (a+m(S)) = (F (S)−a)−m(S) can’t
belong to S if F(S)− a /∈ S. ��
Lemma 7.3 Let S be a numerical semigroup with multiplicity m, and let a ∈
Ap(S,m). If (a,m)|(F (S),m), then

a ≥ F(S)+m
m− 1
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Proof Suppose first that (a,m) = 1: then, S′ := 〈m, a〉 is a numerical semigroup,
and F(S) ≤ F(S′). However, F(S′) = am− a −m = a(m− 1)− m; solving for
a we have our claim.

If (a,m) =: d > 1, we consider the semigroup S′ := S/d := {x/d | x ∈ S ∩
dN}: then, since d dividesm and F(S), we havem(S′) = m(S)/d , F(S′) = F(S)/d
and a/d ∈ S′. By the previous part of the proof,

a

d
≥ F(S

′)+m(S′)
m(S′)− 1

= F(S)+m(S)
d

d

m(S)+ d =
F(S)+m
m− d ≥ F(S)+m

m− 1
,

and the claim is proved. ��
Theorem 7.4 Let m > 3 be a prime number. Then, for every ε > 0,

#m(n) = O(logm−1 n) = O(nε).

Proof There are only finitely many numerical semigroups of multiplicity m satis-
fying F(S) < km, for every k ∈ N; hence, we can ignore them and only consider
(nonsymmetric) semigroups satisfying F(S) > m3.

Fix such a semigroup S, and let a be a hole of S satisfying a ≤ F(S)/2. Applying
Lemma 7.2, we see that, for any k ∈ N, the element a + km is either a hole of S
or belongs to S; let h be the largest of such holes that is also smaller or equal than
F(S)/2. By Lemma 7.3, and since m > 3, we must have h ≥ F(S)+m

m−1 − m ≥
F(S)−m2

m−1 . Note that, since F(S) > m3, we have h > m.
By [21, Lemma 4.13], since m < h ≤ F(S)/2, there are two elements b1, b2 ∈

(a − m,m) \ S; taking σ :=
⌊

1
m
F(S)+m
m−1

⌋
, we can apply Theorem 7.1, obtaining

|Star(S)| ≥ (2σ
σ

)
. Now

⌊
1

m

F(S)+m
m− 1

⌋
≥ 1

m

F(S)+m
m− 1

− 1 = F(S)

m(m− 1)
+ 1

m− 1
− 1 ≥ F(S)

m2

using F(S) > m3. Setting σ ′ :=
⌈
F(S)

m2

⌉
, for these semigroups we have

|Star(S)| ≥
(

2σ ′

σ ′

)
≥ 22σ ′−1

√
σ ′

≥ 2σ
′
.

If |Star(S)| ≤ n, this means that σ ′ ≤ log2 n, i.e.,

F(S)

m2 < log2 n �⇒ F(S) < m2 log2 n.
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Therefore,

#m(n) ≤ C+(m2 log2 n)
m−1 = C+m2(m−1)(log2 n)

m−1 = O(logm−1 n) = O(nε)

for every ε > 0. ��
Corollary 7.5 Let S be the set of all numerical semigroups whose multiplicity is a
prime number > 3. Then, for every ε > 0, we have

#S(n) = O(nε).

Proof By [27, Proposition 8.2], we need to consider only semigroups with multi-
plicity up to Aε log logn, where Aε := 2

log 2 + ε.
There are at most (m2)m−1 = m2(m−1) semigroups of multiplicity m with

F(S) < m3; hence, by the proof of the previous theorem we have

#m(n) ≤ m2(m−1) + 2

log 2
m2(m−1) logm−1 n ≤ 4

log 2
logm+2 n

for large n, since m2(m−1) ≤ (Aε log logn)2Aε log logn ≤ log3 n. Therefore,

#S(n) =
∑

m>3 prime

#m(n) =
Aε log logn∑

m=5
m prime

#m(n) ≤ (Aε log log n) · 4

log 2
(log n)Aε log log n,

which is O(nε). The claim is proved. ��
The proof above is based on the fact that if m(S) is prime then no generator of S

can be too small. The same happens if we consider only the elements of the Apéry
set that are coprime with m(S); however, in this case, we also need to find a large
hole. If F(S) is even, one easy solution is using F(S)/2.

Theorem 7.6 Let S be the set of numerical semigroups of multiplicity m ≥ 4 such
that 3 � m and F(S) ≡ 0 mod 2. Then, for every ε > 0,

#S(n) = O(nε).

Proof Let Sm be the set of numerical semigroup with (fixed) multiplicity m
satisfying F(S) ≡ 0 mod 2; for large n, by the proof of Theorem 5.8 we have
#Sm(n) = 0 if m > 2 log logn.

As in the previous proof, there are at most m2m semigroups S of multiplicity m
with F(S) ≤ 2m2.

Fix a semigroup S such that F(S) > 2m2, and let τ := F(S)/2: then, τ is a hole
of S and, since F(S) > 2m2, we have τ > m2. Consider the elements τ − 2 and
τ − 1.
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If τ1, τ2 /∈ S, then we can apply Theorem 7.1 with b1 = τ − 2, b2 = τ − 1 and

σ =
⌊
F(S)

m2

⌋
, applying Lemma 7.3 (since both (1,m) and (2,m) divide (m,F (S))).

If τ1, τ2 ∈ S, then τ +1 and τ +2 cannot belong to S (otherwise τ −1+ τ +1 =
2τ = F(S) ∈ S, a contradiction, and analogously for τ − 2). Hence, we can apply

Theorem 7.1 with b1 = τ −m+ 2, b2 = τ −m+ 1 and σ =
⌊
F(S)

m2

⌋
.

Suppose that τ − 2 ∈ S while τ − 1 /∈ S. As before, τ + 2 /∈ S, and we take
b1 := τ −m+ 2 and b2 := τ − 1. Then, b2 − b1 = m− 3, and so (m,m− 3) = 1

(since 3 � m). Using Lemma 7.3 we can apply Theorem 7.1 with σ =
⌊
F(S)

m2

⌋
.

Analogously, if τ − 2 /∈ S and τ − 1 ∈ S we use b1 := τ −m+ 1 and b2 := τ − 2.
In all cases, we have |Star(S)| ≥ (2σ

σ

) ≥ 2σ . Hence, for large n, is S ∈ Sm
satisfies |Star(S)| ≥ n we must have F(S) < m2 log2 n; as in the proof of
Theorem 7.4 it follows that

#Sm(n) ≤ m2m + 2

log 2
logm+2 n

for large n, and summing on m we have

#S(n) ≤ (2 log logn)4 log logn+1 + 2

log 2
(logn)Aε log logn = O(nε)

for every ε > 0. ��
Proposition 7.7 Let S be the set of numerical semigroups of multiplicity m ≥ 4
such that F ≡ 0 mod 6. Then, for every ε > 0,

#S(n) = O(nε).

Proof The proof is entirely analogous to the proof of Theorem 7.6. ��
An interesting point to note is that, if we are interested in an asymptotic bound

or expression for #(n), the families considered in Theorems 7.4 and 7.6 or in
Proposition 7.7 give a contribution of a lower order than#3 (for which Theorem 6.4
gives a linear term); hence, these families are irrelevant when considering (the
dominant term of) the asymptotic growth for #.

8 Linear Families

In the previous section, Theorem 7.1 has been applied on families where, while the
Frobenius number increases, also the generators (or at least some of them) increase;
this is then used to prove an exponential bound on |Star(S)|, which in turn gives a
bound of type O(nε) on #S. In general, however, it is possible to have a family of
semigroups where the Frobenius number increases, while some generators remain
fixed.
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Let S be a numerical semigroup and d > 1 be an integer dividing m(S). Let
{b1, . . . , bs} be integers such that bi ≥ d · (F (S) + m(S)) and such that each bi is
coprime with m(S). Then, T := 〈dS, b1, . . . , bs〉 is a numerical semigroup. We can
divide the Apéry set of T into two parts, dAp(S) and a set A := {a1, . . . , at } where
each ai is bigger than every element of dAp(S).

For every k ≥ 0, let now Tk := 〈dS,A + kd〉; then, Tk is still a numerical
semigroup, and Tk = dS∪ (A+kd+m(T )N). Considering the family {Tk}k≥0, this
means that one part of the semigroup remains fixed for every member of the family,
while another part gets smaller and smaller.

We call a family T := {Tk}k≥1 constructed in this way the linear family
constructed from S, d and {b1, . . . , bs}.

In particular, we have F(Tk) = F(T ) + kd; furthermore, if x ∈ N \ S and
x +m(S) ∈ dS, then F(T )− x ∈ T if and only if F(Tk)− x = F(T )+ kd − x ∈
Tk . Suppose now that T has only two holes, x and F(T ) − x, and suppose that
x + m(S) ∈ dS. Then, the only holes of Tk will be x and F(T ) + kd − x; in
particular, the method applied in the previous section using Theorem 7.1 can fail
badly, in the sense that the integer σ will be the same for all members of the family.
In particular, the bound on |Star(S)| does not increase with k.

Example 8.1 Start from S = 〈2, 3〉 and take d = 2. Then, d(F (S) + m(S)) = 6,
so we can take {b1, b2} = {9, 11}. Hence, T := 〈4, 6, 9, 11〉, while Tk := 〈4, 6, 9+
2k, 11+ 2k〉. The only holes of T are 2 and 7, so the holes of Tk are 2 and 7 + 2k.
For the hole a = 2, the only possible σ is 0, while for the hole a = 7 + 2k the set
{a−m+1, . . . , a−1} contains a unique element out of S, namely a−m+2 = 5+2k,
and thus Theorem 7.1 cannot even be applied to 7+ 2k.

The only estimate we have is thus Theorem 4.1, which gives |Star(Tk)| ≥ g(Tk)+
1 = k + 5 and corresponds to a bound #T(n) ≤ n− 4, where T := {Tk}k≥1.

For this particular family, [24, Proposition 5.8] gives the upper bound
|Star(Tk)| ≤ 65+ 30k, which in particular implies #T(n) ≥ 1

30n− 65
30 .

A calculation of |Star(Tk)| for low k suggests that the behavior of |Star(Tk)| is
linear in k; more precisely, that |Star(Tk)| = 51 + 20k, and thus that #T(n) =
1

20n− 31
20 = 1

20 (n− 31).

In general, there will be linear families for which |Star(Tk)| does not exhibit a
linear behavior: for example, if m(S) is odd and coprime with 3 (and so d must be
odd too) then F(Tk) will be alternatively even and odd, and so for at least one half
of the semigroups of the family we can apply Theorem 7.6; the same happens if T
has holes that are bigger than the elements of dAp(S).

On the other hand, if the behavior of |Star(Tk)| is linear (as it seems to happen
in the example), then the contribution of #T to # has the same asymptotic growth
as #3, contrary to what happens for the families of Sect. 7. In particular, the overall
contribution of these families will depend also on the precise value of the linear
bounds on #T, which seem difficult to calculate theoretically for all families.

In Table 1, we list the precise value of |Star(Tk)| for a few families obtained
with the above construction and for which the sequence {|Star(Tk)|} exhibits
(experimentally) a linear behavior.
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Table 1 Linear behavior of |Star(S)|
S d {b1, . . . , bs } Tk |Star(Tk)| Range checked

〈2, 3〉 2 {9, 11} 〈4, 6, 9 + 2k, 11+ 2k〉 51 + 20k 0 ≤ k ≤ 20

〈2, 5〉 2 {15, 21} 〈4, 10, 15 + 2k, 21+ 2k〉 1368 + 400k 0 ≤ k ≤ 15

〈2, 7〉 2 {21, 23} 〈4, 14, 21 + 2k, 23+ 2k〉 29,800 + 6800k 0 ≤ k ≤ 4

9 Algorithms and Explicit Data

A star operation ∗ is uniquely determined by its restriction ∗ : F0(S) −→ F0(S).
Since F0(S) is a finite set that can be computed explicitly, the set of star operations
(and, in particular, its cardinality) can be determined just by listing all maps from
F0(S) to itself and checking which ones satisfy the properties of a star operation.

An easier way to work algorithmically is to consider the set of closed ideals.
Indeed, a star operation ∗ is also uniquely determined by the set F∗0(S) := {I ∈
F0(S) | I = I∗}; furthermore, a set $ ⊆ F0(S) is equal to F∗0(S) for some ∗ if and
only if it satisfies the following conditions [21, Lemma 3.3]:

• S ∈ $;
• if I, J ∈ $, then I ∩ J ∈ $;
• if I ∈ $ and k ∈ I , then (−k + I) ∩ N ∈ $.

In particular, since every star operation is smaller than the divisorial closure,$must
also contain the set Fv0(S) = {I ∈ F0(S) | I = Iv}.

Hence, we can write F∗0(S) = Fv0(S) ∪ G∗0(S), where G∗0(S) := G0(S) ∩ F∗0(S).
By definition, G∗0(S)must be downward closed in the ∗-order: thus, we need only to
check the subsets of G0(S) that are downward closed, and these can be constructed
recursively (either directly or by constructing the antichains & of G0(S) and then
considering the sets &↓ := {J | J ≤∗ I for some I ∈ &}). Furthermore, for any
ideal I , the ideals I ∩ J (for J divisorial) and (−k + I) ∩ N (for k ∈ I ) are always
smaller than I in the ∗-order, and thus they do not need to be checked.

Therefore, we can write the following algorithm to calculate the cardinality of
Star(S).

1. Find all ideals in F0(S):

(a) find Ap(S) = {0 = a0, a1, . . . , am−1}, wherem = m(S) and ai ≡ i mod m;
(b) for each 1 ≤ i ≤ m− 1, let bi := �ai/m
;
(c) for each vector v := [c1, . . . , cm−1] such that 0 ≤ ci ≤ bi for all i, consider

the set I (v) := S ∪⋃i (ci +mN);
(d) if I (v) is an ideal, store it into F0(S).

2. Divide F0(S) into Fv0(S) and G0(S) by checking whether I = Iv or I 
= Iv for
all I ∈ F0(S).

3. Construct the ∗-order by checking if I ≤∗ J or J ≤∗ I for every pair (I, J ).
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4. For all downward closed subsets % of G0(S):

(a) consider$ := % ∪ Fv0(S);
(b) check if I ∩ J ∈ $ for all I, J ∈ %;
(c) if this condition holds,$ = F∗0(S) for some star operation ∗.

This algorithm has been implemented in GAP, using the functions of the package
numericalsgps [3, 29].

To calculate explicitly #(n) (for some n ≥ 2), we can use Theorem 4.1 and
Proposition 5.7 to limit the calculation to a finite number of semigroups, and the
estimates in Sects. 5–7 to greatly shrink the number of semigroups.

1. Find the maximalm such that ω
(⌈

m−1
2

⌉)
≤ n (call itM);

2. Form = 3, calculate how many binomial coefficients
(
a
b

)
satisfy a+b ≡ 1 mod 3

and
(
a
b

) ≤ n.
3. For 4 ≤ m ≤ M , find all numerical semigroups S of multiplicity m with g(S) ≤
n− 1.

4. For every such semigroup S:

(a) for every a ∈ N \ S, bound ωi(Qa) by using Proposition 5.7, Theorem 7.1 or
an explicit calculation;

(b) if their sum is strictly larger than n, by Corollary 5.5 we have |Star(S)| > n;
(c) if the sum is at most n, calculate explicitly |Star(S)|.

Remark 9.1

(a) The number of numerical semigroups of multiplicity m and genus up to n − 1
grows polynomially, andM grows very slowly with n (as a double logarithm of
n, by [27, Proposition 8.2]/Theorem 5.8 – for example, if n = 7000 we have
onlyM = 7).

(b) Those semigroups can be found efficiently by solving linear inequalities, using
the so-called Kunz polytope of S (see [10, 20]).

(c) Step 4 of the algorithm is very flexible, because it allows to use any kind of
estimate on |Star(S)| before calculating it explicitly. For example, it is possible
to use first Proposition 5.7 to obtain a quick estimate, and then, for those
semigroups whose estimate is below n, calculate explicitly all of the sets Qa
(which is slower, but gives a better bound). It can also be used with other
estimates, not necessarily depending on Qa .

Using this algorithm, I calculated #(n) and #m(n) for all n ≤ 150, and #m(n)
for m ∈ {3, 5, 7} and for all n ≤ 2000 (for m = 4 and m = 6, the fact that m is not
prime introduces linear families, which slow down considerably the calculation).
Tables 2 and 3 show these values, and Table 4 lists those semigroups form(S) > 3.
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Table 2 #(n) for n ≤ 150 n #(n) #3(n) #4(n) #5(n) #6(n) #7(n)

10 8 7 1 0 0 0

20 18 14 4 0 0 0

30 27 22 4 1 0 0

40 40 31 6 3 0 0

50 46 37 6 3 0 0

60 57 46 8 3 0 0

70 69 54 9 6 0 0

80 76 60 10 6 0 0

90 83 67 10 6 0 0

100 93 75 11 7 0 0

110 101 82 12 7 0 0

120 111 90 13 8 0 0

130 122 98 15 9 0 0

140 131 105 17 9 0 0

150 141 112 17 12 0 0

Table 3 #m(n) for
n ≤ 2000 and m ∈ {3, 5, 7} n #3(n) #5(n) #7(n)

100 75 7 0

200 148 13 0

300 220 16 0

400 290 21 0

500 361 21 0

600 431 22 0

700 500 22 0

800 570 22 0

900 639 24 0

1000 709 24 0

1100 776 25 0

1200 845 25 1

1300 914 25 1

1400 982 28 1

1500 1050 28 1

1600 1120 28 1

1700 1186 29 1

1800 1257 30 1

1900 1326 30 1

2000 1393 30 1
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Table 4 Numerical semigroups with few star operations (with |Star(S)| in parentheses)

m(S) = 4, |Star(S)| ≤ 150

• 〈4, 5, 7〉 (7)
• 〈4, 5, 6, 7〉 (14)
• 〈4, 5, 11〉 (14)
• 〈4, 7, 9〉 (15)
• 〈4, 9, 11〉 (31)
• 〈4, 6, 7, 9〉 (32)

• 〈4, 6, 9, 11〉 (51)
• 〈4, 7, 17〉 (57)
• 〈4, 11, 13〉 (63)
• 〈4, 6, 11, 13〉 (71)
• 〈4, 6, 13, 15〉 (91)
• 〈4, 7, 10, 13〉 (105)

• 〈4, 6, 15, 17〉 (111)
• 〈4, 13, 15〉 (127)
• 〈4, 7, 13〉 (129)
• 〈4, 6, 17, 19〉 (131)
• 〈4, 7, 9, 10〉 (131)

m(S) = 5, |Star(S)| ≤ 2000

• 〈5, 6, 7, 9〉 (21)
• 〈5, 6, 13〉 (31)
• 〈5, 6, 7〉 (32)
• 〈5, 7, 16〉 (63)
• 〈5, 7, 13〉 (65)
• 〈5, 6, 8〉 (68)
• 〈5, 8, 9, 11〉 (96)
• 〈5, 7, 8〉 (117)
• 〈5, 8, 19〉 (127)
• 〈5, 8, 11, 12〉 (141)

• 〈5, 7, 9〉 (147)
• 〈5, 6, 8, 9〉 (148)
• 〈5, 6, 7, 8, 9〉 (163)
• 〈5, 6, 14〉 (206)
• 〈5, 9, 22〉 (255)
• 〈5, 6, 19〉 (275)
• 〈5, 7, 9, 13〉 (340)
• 〈5, 9, 16〉 (351)
• 〈5, 7, 8, 11〉 (369)
• 〈5, 6, 9, 13〉 (387)

• 〈5, 9, 12, 13〉 (400)
• 〈5, 7, 11〉 (539)
• 〈5, 7, 8, 9, 11〉 (824)
• 〈5, 8, 11〉 (867)
• 〈5, 11, 28〉 (1023)
• 〈5, 6, 13, 14〉 (1331)
• 〈5, 8, 9〉 (1356)
• 〈5, 11, 12, 14〉 (1363)
• 〈5, 7, 23〉 (1685)
• 〈5, 8, 9, 12〉 (1726)

m(S) = 7, |Star(S)| ≤ 2000

• 〈7, 8, 9, 19〉 (1116)

10 The Ring Version

Suppose D is an integral domain with quotient field K . A star operation on D is a
map ∗ : F(D) −→ F(D) that is extensive, order-preserving, idempotent, satisfies
D = D∗ and such that x · I∗ = (xI)∗ for all x ∈ K and all I ∈ F(D) (where F(D)
is the set of fractional ideals of D, i.e., of the D-submodules I of the quotient field
K of D such that xI ⊆ D for some x 
= 0).

The concepts of principal star operations and of the ∗-order can be introduced
also for rings; however, in general, there is no set corresponding to F0(S) (and so
to G0(S)). Furthermore, we may have ∗I = ∗J even if I, J are nondivisorial and
I 
= xJ for all x.

In this section, we want to study star operations on a class of domains which is
close to numerical semigroups. In particular, we shall study domains R satisfying
the following conditions:

• R is Noetherian, one-dimensional and local;
• its integral closure V is a discrete valuation ring (DVR);
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• the conductor ideal (R : V ) is nonzero;
• the extension of residue fields R/mR ⊆ V/mV induced by the extension R ⊆ V

is an isomorphism.

Note that, in the previous conditions, we could have dropped “one-dimensional”
and “local”, since they follow from the fact that the integral closure is a DVR. An
equivalent characterization is that the domains we study are the one-dimensional
local Noetherian domains that are analytically irreducible and residually rational.

From now on, fix a discrete valuation ring V , and denote by R(V ) the domains
of this form whose integral closure is V ; R will be a domain in R(V ) and m its
maximal ideal. We shall use v to denote the normalized valuation relative to V :
then, the set v(R) := {v(r) | r ∈ R} is a numerical semigroup.

The questions we want to answer in this case are the same as in the numerical
semigroup case: is the number of rings in R(V )with exactly n star operations finite?
how many have less than n star operations? How to bound |Star(R)|, forR ∈ R(V )?
For n = 1, the answer is well-known: |Star(R)| = 1 if and only if R is Gorenstein,
which happens if and only if v(R) is symmetric, i.e., if and only if |Star(v(R))| = 1
[2, 14].

Define F0(R) := {I ∈ F(R) | R ⊆ I ⊆ V }: then, every fractional ideal I is
isomorphic to an element of F0(R) (just take x−1I , where x ∈ I satisfies v(x) =
min v(I)). However, unlike the semigroup case, this ideal is not unique: that is, if
y ∈ I is another element of minimal valuation, it may be that x−1I 
= y−1I . In
particular, we can have ∗x−1I = ∗y−1I even if x−1I 
= y−1I . However, if I and
J are in F0(S) and not divisorial, then ∗I = ∗J implies that v(I) = v(J ) [21,
Proposition 6.4]. We can thus prove an analogue to Theorem 4.1.

If S is a numerical semigroup, a canonical ideal of S is a fractional ideal	 such
that (	 − (	 − I)) = I for every fractional ideal I of S, or equivalently such
that ∗	(S) is the identity. Every canonical ideal is in the form a + K(S), where
K(S) := {t ∈ N | F(S) − t ∈ S} is sometimes called the standard canonical ideal
of S [9, Section 5]. Likewise, if D is an integral domain, a canonical ideal of D is
a fractional ideal 	 such that (	 : (	 : I)) = I for every fractional ideal I . If
R ∈ R(V ), then R admits canonical ideals [15, Theorem 15.7], and if 	 is one of
them then v(	) is a canonical ideal of v(R) [9, Satz 5].

Proposition 10.1 Let R ∈ R(V ), and suppose that R is not Gorenstein. Then,
|Star(R)| ≥ g(v(R))+ 1.

Proof Let S := v(R). Since R is not Gorenstein, S is not symmetric, and thus there
is a τ ∈ T (S) \ {F(S)}; let λ := min{τ, F (S) − τ }. For any positive a ∈ N, let
Ta := R∪{φ ∈ V | v(φ) > a}; then, Ta is a ring in R(V ) and v(Ta) = v(R)∪{x ∈
N | x > a}, so that F(v(Ta)) = a. For every a, let 	a be a canonical ideal of Ta
such that v(	a) = {t ∈ N | a − t ∈ v(Ta)} is the standard canonical ideal of v(Ta).

Let x ∈ N \ S. We distinguish three cases.
If x < λ and λ − x /∈ S, let Ix := R + {φ ∈ 	λ | v(φ) > x}. Then, Ix is an

R-module, and v(Ix) = v(R) ∪ {t ∈ v(	λ) | t > x}; in particular, λ /∈ v(Ix), and
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thus v(Ix) is not divisorial over S, which implies that Ix is not divisorial over R [1,
Lemma II.1.22].

If x < λ and λ − x ∈ S, let y := g(S) − λ + x = g(S) − (λ − x), and define
Ix := R ∪ {φ ∈ V | v(φ) > y}. Then, v(Ix) is not divisorial since it contains g(S)
but not g(S)− λ, and so Ix is not divisorial.

If x ≥ λ and x 
= g(S), let Ix := 	x : then, Ix is not divisorial since otherwise
Tx = (	x : 	x) would be divisorial, against the fact that v(Tx) contains g(S) but
not λ (if x = g, then 	x is not divisorial since otherwise S would be symmetric).

It is straightforward to see that v(Ix) 
= v(Iy) for x 
= y; hence, each one
generates a different star operation, and |Star(R)| ≥ g(v(R))+ 1. ��

We also note that Proposition 5.7 carries over to the domain case, and in
particular |Star(R)| ≥ ω(ν(v(R))). We now prove an analogue of Theorem 4.2,
but we have to add an important additional hypothesis.

Theorem 10.2 Let V be a DVR with finite residue field.

(a) Every R ∈ R(V ) has only finitely many star operations.
(b) For every n > 1, the set {R ∈ R(V ) | 2 ≤ |Star(R)| ≤ n} is finite.

Proof The first claim is a special case of [8, Theorem 2.5]. (It follows, for example,
from the fact that F0(R) is finite.)

For the second claim, we see that if 2 ≤ |Star(R)| ≤ n, then v(R) is not
symmetric and g(v(R)) ≤ n− 1; hence, there are only finitely many possible v(R).
Furthermore, since the residue field of V is finite, for any S there are only finitely
many R such that v(R) = S [21, Lemma 5.13(a)]; hence, there are only finitely
many R ∈ R(V ) with |Star(R)| ≤ n. The claim is proved. ��

In the previous theorem, the restriction to a finite residue field is not really
restricting, since otherwise Star(R) is very often infinite.

Proposition 10.3 Let R ∈ R(V ), and suppose that the residue field F of R is
infinite; suppose also that R is not Gorenstein. If m(v(R)) > 3, then Star(R) is
infinite.

Proof Let A := (m : m); then,A is a ring, and it is local since its integral closure is
V . Since R is not Gorenstein, dimF (A/m) > 2 [2, Theorem 6.3]. If dimF (A/m) ≥
4, then |Star(R)| = ∞ by [8, Corollary 2.8]. If dimF (A/m) = 3, then following [6]
let N be the maximal ideal of A and let B := (N : N); by [6, Theorem 2.15], if
Star(R) is finite then B = V and dimF (B/mB) = 3. By [16],

dimF (B/mB) = |v(B) \ v(mB)| = m(v(R))

since mB contains all elements of valuationm(v(R)) or more. Hence, ifm(v(R)) >
3 then Star(R) is infinite, as claimed. ��

We can also obtain an explicit version of Theorem 10.2.
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Lemma 10.4 Let F be a finite field of cardinality q , and let W be a vector space
over F of dimension n. Then,W has at most 2nqn(n−1)/2 vector subspaces.

Proof The number of vector subspaces of W of dimension k is the q-binomial
coefficient (or Gaussian binomial coefficient)

(
n

k

)

q

:= (q
n − 1)(qn−1 − 1) · · · (qn−t+1 − 1)

(qt − 1)(qt−1 − 1) · · · (q − 1)

(see e.g. [28, Proposition 1.3.18] or [5, Chapter 13, Proposition 2.1]). Using the
q-binomial theorem [28, Chapter 3, Exercise 45] with y = z = 1 we have

n∑

k=0

(
n

k

)

q

≤
n∑

k=0

qk(k−1)/2
(
n

k

)

q

=
n−1∏

k=0

(1+ qk) ≤ 2nqn(n−1)/2,

as claimed. ��
Theorem 10.5 There is a constant C such that, for all discrete valuation rings V
with residue field F of finite cardinality q and for all n,

#V (n) := |{R ∈ R(V ) | 2 ≤ |Star(R)| ≤ n}| ≤ C(4ϕ)nqn(2n−1)

where ϕ := 1+√5
2 is the golden ratio.

Proof If |Star(R)| ≤ n, then by Theorem 10.2 we have g(v(R)) ≤ n − 1, and
by [32] there are at most C′ϕn−1 semigroups with this property, for some constant
C′. If S is a numerical semigroup, then as in the proof of [21, Lemma 5.13(a)]
the R ∈ R(V ) such that v(R) = S correspond to certain F -vector subspaces of
V/m

F(S)+1
V ; since F(S) ≤ 2g(S), using Lemma 10.4 we see that each S gives at

most 22nqn(2n−1) rings. Hence,

#V (n) ≤ C′ϕn−1 · 22nqn(2n−1) = C(4ϕ)nqn(2n−1)

with C := C′/ϕ. ��
In this bound, the term ϕn can be substituted by a better bound, using (the

analogue of) Proposition 5.7; however, the main term is qn(2n−1), whose lowering
hinges on a more precise grasp of how many rings correspond to a given semigroup.

In general, the cardinality of Star(R) does not depend only on S = v(R) and on
the residue field of V , but also on the precise nature of R itself; as a consequence,
while it is possible to calculate explicitly |Star(R)| for a fixed R, in general there
will not be a general formula (valid for each R). Sometimes, however, knowing S
and the residue field is everything we need.
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Proposition 10.6 Let V be a DVR with residue field F , and let q := |F |. Let R ∈
R(V ). Then:

(a) [8, Theorem 3.8] if v(R) = 〈3, 4, 5〉, then |Star(R)| = 3;
(b) [8, Example 3.10] if v(R) = 〈3, 5, 7〉, then |Star(R)| = 4;
(c) [25, Proposition 3.4] if v(R) = 〈4, 5, 7〉, then |Star(R)| = 22q+3;
(d) [30, Corollary 4.1.2] if v(R) = 〈4, 5, 6, 7〉, then |Star(R)| = 22q+1+2q+1+2.

Remark 10.7

(a) If q = ∞, then the last two cases should be interpreted as saying that Star(R)
is infinite.

(b) The proofs given in [8, Example 3.10] and [30, Corollary 4.1.2] for v(R) =
〈3, 5, 7〉 and v(R) = 〈4, 5, 6, 7〉 (respectively) were given only in the case R =
K[[S]]. However, their proofs can be applied also to the general case.
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Torsion in Tensor Products over
One-Dimensional Domains

Neil Steinburg and Roger Wiegand

Abstract Over a one-dimensional Gorenstein local domain R, let E be the
endomorphism ring of the maximal of R, viewed as a subring of the integral closure
R. If there exist finitely generatedR-modulesM andN , neither of them free, whose
tensor product is torsion-free, we show that E must be local with the same residue
field as R.

1 Introduction

Finding interesting examples of non-zero, finitely generated modulesM,N over a
commutative Noetherian ring R, with M ⊗R N torsion-free (meaning that no non-
zero element ofM⊗R N is killed by a regular element of R) is a non-trivial task. Of
course there are boring examples: take one of the modules to be torsion-free and the
other to be projective. Or, if R is not local, take M = R/m and N = R/n, where
m and n are distinct maximal ideals. A slightly less boring example is obtained by
taking R = Q[[x, y]]/(xy) andM = N = R/(x).

Let R be a local domain, and let M and N be finitely generated modules,
neither one of them free. MustM ⊗R N always have non-zero torsion?
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Again, the answer is “no”, and here is the connection with numerical semigroups:

Let R = k[[t4, t5, t6]], M = (t4, t5), and N = (t4, t6). Then M ⊗R N is
torsion-free [5, 4.3].

In fact, the only known examples where the question above has a negative answer
are numerical semigroup rings. This leads to a (somewhat halfhearted, since it is
probably false) conjecture:

Conjecture 1 Suppose R is a one-dimensional local domain whose integral closure
R is finitely generated as an R-module. If there exist finitely generated modulesM
and N , neither of them free, with M ⊗R N torsion-free, then R is local, and the
inclusion R ⊆ R induces an isomorphism on residue fields.

2 Some Evidence

In this section we will prove the result stated in the abstract, which gives some
support (admittedly rather sketchy) for Conjecture 1.

Throughout, (R,m, k) is a one-dimensional Gorenstein local domain, with
maximal ideal m and residue field k = R/m. We let K denote the quotient field
of R. If I and J are non-zero R-submodules of K , we identify HomR(I, J ) with
the set {α ∈ K | αI ⊆ J }, via the isomorphism ϕ �→ 1

a
ϕ(a), where a is a fixed

but arbitrary nonzero element of I . In particular, we identify EndR m with the ring
E = {α ∈ K | αm ⊆ m}. Then R ⊆ E ⊆ R, where R is the integral closure of R in
K . The next lemma is due to Bass [2].

Lemma 1 Assume m is not a principal ideal. Then E/R is a simple R-module,
and E is minimally generated, as an R-module, by {1, y}, where y is an arbitrary
element of E \ R.

Proof Since m is indecomposable, there is no surjection m � R. (Such a surjection
would split, giving a decomposition m ∼= R ⊕ H , with H 
= 0, as m is not
principal; but clearly m is indecomposable, since R is a domain.) This gives the
second equality in the display

m∗ = HomR(m, R) = HomR(m,m) = E . (1)

Dualizing the short exact sequence

0 → m→ R→ k→ 0 ,
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and using the fact that k∗ = 0, we get an exact sequence

0 → R∗ → m∗ → Ext1R(k,R)→ 0 .

But Ext1R(k,R)
∼= k, as R is one-dimensional and Gorenstein. The identification

of EndR(m) with E is compatible with the identification of R∗ with R (via
multiplications), and thus the last short exact sequence shows that E/R ∼= k. The
next assertion is clear from simplicity of E/R and the fact that 1 is part of a minimal
generating set for E, as 1 /∈ m = mE. ��
Lemma 2 Let S be a subring of K containing R and finitely generated as an R-
module. LetM andN be finitely generated S-modules such thatM⊗R N is torsion-
free over R. Then the natural surjectionM ⊗R N � M ⊗S N is an isomorphism.

Proof We consult the following commutative diagram:

M ⊗R N
δ

α

K ⊗R (M ⊗R N)
∼=

β

(K ⊗R M) ⊗K (K ⊗R N)

γ

M ⊗S N
ε

K ⊗S (M ⊗S N)
∼=

(K ⊗S M) ⊗K (K ⊗S N) (2)

The map δ is injective becauseM ⊗R N is torsion-free. One checks (by clearing
denominators) that a subset of an S-module is linearly independent over S if and
only if it is linearly independent over R, and so its rank as an S-module equals
its rank as an R-module. Thus r := dimK(K ⊗R M) = dimK(K ⊗S M) and
s := dimK(K ⊗R N) = dimK(K ⊗S N). The surjective map γ is therefore an
isomorphism, since its domain and target both have the same K-dimension, namely
rs. From the diagram, we see that β must be an isomorphism too, and hence α is
injective. ��
Theorem 1 Let (R,m, k) be a Gorenstein local domain of dimension one, and let
E = EndR(m), viewed as a ring between R and its integral closure R. Assume
that there exist finitely generated modulesM and N , neither of them free, such that
M ⊗R N is torsion-free. Then E is local, and the inclusion R → E induces a
bijection on residue fields.

Proof If m is a principal ideal, then R is a discrete valuation ring, and R = E = R.
Therefore we assume from now on that m is not principal.

We begin with some reductions. We first get rid of free summands, by writing
M =M ′ ⊕Rm and N = N ′ ⊕Rn, where bothM ′ and N ′ are non-zero, and neither
has a non-zero free direct summand. Notice thatM ′ ⊗R N ′, being a direct summand
ofM ⊗R N , is torsion-free. ReplacingM byM ′ and N by N ′, we may assume that
neitherM nor N has a non-zero free direct summand.

Next, we have a reduction that goes back to Auslander’s 1961 paper [1]. Let
�X denote the torsion submodule of a module X, and put ⊥X = X/(�X). By [3,
Lemma 2.2], (⊥M)⊗R (⊥M) is torsion-free. Moreover, both ⊥M and ⊥N are non-
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zero, since otherwiseM ⊗R N would be a non-zero torsion module. We claim that
⊥M has no non-zero free summand. For, suppose there is a surjection ⊥M � R.
Composing this with the natural surjection M � ⊥M , we get a surjection M �
R, and hence M ∼= R ⊕ L, a contradiction. Similarly, ⊥N has no non-zero free
summand. ReplacingM and N by their reductions modulo torsion, we may assume
that bothM and N are non-zero torsion-free R-modules, and that neitherM nor N
has a non-zero free direct summand.

As in [2], we note that every homomorphismM → R has its image in m, and
so M∗ = HomR(M,m), which has a natural E-module structure extending the R-
module structure. Therefore M∗∗ is also an E-module. Since R is Gorenstein and
M is torsion-free (= maximal Cohen-Macaulay), the natural map M → M∗∗ is
an isomorphism, and hence M itself has an E-module structure compatible with
the original R-module structure. By symmetry, N too has a compatible E-module
structure. Lemma 2 shows that the natural surjection M ⊗R N � M ⊗E N is an
isomorphism and, in particular,M ⊗E N is torsion-free.

Suppose, by way of contradiction, that E is not local, and put A = E/mE. This
is a two-dimensional k-algebra, and it is not local and hence must be isomorphic to
k×k. Let e be the idempotent ofA supported on first coordinate. Then neither e nor
1 − e is a unit of A. Let M = M/mM and N = N/mN . We claim that eM 
= 0.
For suppose eM = 0. Lift e to an element ẽ ∈ E. Then ẽM ⊆ mM . Moreover,
ẽM+(1− ẽ)M+mM = M , and hence (1− ẽ)M = M by Nakayama’s Lemma. The
Determinant Trick yields an element a ∈ (1− ẽ)E such that (1+a)M = 0. ButM is
faithful as an R-module and hence as an E-module (clear denominators). Therefore
1 + a = 0, and hence −1 ∈ (1 − ẽ)E. But then −1 ∈ (1 − e)A, contradicting
the fact that 1 − e is not a unit. This proves the claim and shows that eM 
= 0. By
symmetry, (1−e)N 
= 0, and hence eM⊗k(1−e)N 
= 0. However, the isomorphism

α :M⊗RN
∼=−→ M⊗EN induces an isomorphismM⊗kN

∼=−→ M⊗AN , carrying
the non-zero module eM ⊗k (1− e)N onto eM ⊗A (1− e)N = 0, a contradiction.
This completes the proof that E is local.

Let n be the maximal ideal of E, and put � = E/n. Suppose dimk � > 1. The
inclusion mE ↪→ n induces a surjection E/mE � E/n = �. Since, by Lemma 1,
dimk(E/mE) = 2, this surjection must be an isomorphism, and hence n = mE =
m. Observe that the isomorphism α : M⊗RN → M⊗E N induces an isomorphism

M ⊗k N
∼=−→ M ⊗� N . (3)

Put u = dim� M and v = dim� N . Then dim�(M ⊗� N) = uv, and hence
dimk(M⊗� N) = 2uv. On the other hand, dimk(M⊗k N) = (dimk M)(dimk N) =
(2u)(2v) = 4uv. The isomorphism in (3) forces 4uv = 2uv, and hence either u = 0
or v = 0, contradicting Nakayama’s Lemma. This shows that dimk � = 1, and the
proof is complete. ��

One might hope, at least for a Gorenstein ring (R,m, k) with finite integral
closure R, that E being local with residue field k would force R to be local with
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residue field k. Of course, Theorem 1 would then answer Conjecture 1 affirmatively.
The next example dashes this hope.

Let k be a field and D = k[X](X)∪(X−1). Then D is a principal ideal domain
with 2 maximal ideals. LetA = k[T ]/(T 2), B = k[X]/(X2)×k[X]/(X−1)2,
and define i : A ↪→ B by i(a + bt) = (a + bx, a + b(x − 1)) where a, b ∈
k, and decapitalization of the indeterminates indicates passage to cosets. Let
π : D � B be the composition of the natural projection D � D/(X2(X −
1)2) and the isomorphism D/(X2(X − 1)2)

∼=−→ B provided by the Chinese
Remainder Theorem. Define R to be the pullback of i and π :

R D

π

A
i

B (4)

By [6, Proposition 3.1], (R,m, k) is a local one-dimensional domain, R =
D, and R is finitely generated as an R-module. Furthermore, letting f be the
conductor, we haveA ∼= R/f andB ∼= D/f. Since the length ofR/f, namely 4,
is twice the length of R/f, [2, Corollary 6.5] guarantees that R is Gorenstein.
One checks that E := EndR(m) is local, with residue field k, but R is not
local.

This example cannot be promoted to a counterexample to Conjecture 1. To see
this, first observe that B is generated by two elements as an A-module. It follows
that R = D is two-generated as an R-module. Therefore R has multiplicity two
[4, Theorem 2.1], and hence every ideal of the completion R̂ is two-generated. It
follows that R̂ is a hypersurface and therefore, by the main theorem of [5], the tensor
product of any two non-free finitely generated R-modules has non-zero torsion.
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Almost Symmetric Numerical
Semigroups with Odd Generators

Francesco Strazzanti and Kei-ichi Watanabe

Abstract We study almost symmetric semigroups generated by odd integers. If the
embedding dimension is four, we characterize when a symmetric semigroup that
is not complete intersection or a pseudo-symmetric semigroup is generated by odd
integers. Moreover, we give a way to construct all the almost symmetric semigroups
with embedding dimension four and type three generated by odd elements. In this
case we also prove that all the pseudo-Frobenius numbers are multiple of one of
them and this gives many consequences on the semigroup and its defining ideal.

Keywords Symmetric numerical semigroups · Pseudo-symmetric numerical
semigroups · Almost symmetric numerical semigroups · Pseudo-Frobenius
numbers · RF-matrices

1 Introduction

Numerical semigroups have been extensively studied in the last decades for
several reasons, since they appears in many areas of mathematics like commutative
algebra, algebraic geometry, number theory, factorization theory, combinatorics or
coding theory. For instance, the connection with commutative algebra has greatly
influenced the theory of numerical semigroups and it is not a coincidence that many
invariants of numerical semigroups have the same name of well-known invariants in
commutative algebra. One of the main results that constructed a bridge between
these two areas is the celebrated theorem proved by Kunz [16] that establishes
the equivalence between Gorenstein rings and symmetric numerical semigroups.
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More precisely, if R is a one-dimensional analytically irreducible and residually
rational noetherian local ring, then it is Gorenstein if and only if the associated
value-semigroup (that is a numerical semigroup) is symmetric.

An important notion related to the symmetry of a numerical semigroup is
given by the pseudo-symmetric property. The rings that correspond to the pseudo-
symmetric semigroups are called Kunz rings by many authors and there is an
extensive literature about them. See for instance the monograph [2] that also
provides a dictionary between commutative algebra and numerical semigroup
theory.

In 1997 Barucci and Fröberg [1] introduced the notion of almost symmetric
numerical semigroup that generalizes both symmetric and pseudo-symmetric ones.
Similarly, in the same paper they introduced almost Gorenstein ring as the cor-
respondent notion in commutative algebra; of course, it generalizes Gorenstein
and Kunz rings. The last definition is given in the one-dimensional analytically
unramified local case, but recently it was extended in the one-dimensional and
higher dimensional local case as well as in the graded context, see [9, 10].

On the other hand almost symmetric semigroups have been studied by many
authors from several points of view. They are also one of the main tools used in
[20] to construct one-dimensional Gorenstein local rings with decreasing Hilbert
functions in some level, giving an answer to a commutative algebra problem known
as Rossi Problem. There are also many generalizations of the almost symmetric
semigroups in literature, see [5, 6, 14].

The purpose of this paper is to study the almost symmetric semigroups generated
by odd integers, in particular when the embedding dimension is four. In this case,
independently of the parity of the generators, Moscariello [17] proved that the type
of the semigroup is at most three confirming a conjecture of T. Numata. This means
that we can divide the almost symmetric semigroups with embedding dimension
four in three classes: symmetric, pseudo-symmetric and having type three.

If S = 〈n1, . . . , ne〉 is a numerical semigroup, we say that k[S] := k[ts | s ∈
S] is the numerical semigroup ring associated to S, where k is a field and t is an
indeterminate. It is possible to present this ring as a quotient of a polynomial ring
k[S] ∼= k[x1, . . . , xe]/IS and IS is called the defining ideal of S. We set deg(xi) = ni
for every i = 1, . . . , e, thus IS is homogeneous.

Assume now that S has embedding dimension four. In the case of symmetric and
pseudo-symmetric numerical semigroups the defining ideal is known by Bresinsky
[4] and Komeda [15]. The type three case has been recently studied in [8, 13], where
the defining ideal is found using the notion of RF-matrix, introduced in [17].

We focus on the case where all the generators of S are odd. In particular, if
S is symmetric but not complete intersection we characterize when this happens
in terms of some numbers related to the defining ideal of S. Moreover, in the
pseudo-symmetric case we connect this property to the rows of a suitable RF-
matrix associated to S. If S is almost symmetric with type three, we prove that
the set of the pseudo-Frobenius numbers of S is PF(S) = {f, 2f, 3f } for some
integer f . This lead to the description of the generators of both S and IS as
well as the minimal free resolution of k[x1, . . . , x4]/IS in terms of the numbers
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αi = min{α | αni ∈ 〈n1, . . . , n̂i , . . . , n4〉} for i = 1, . . . , 4, where n1, n2, n3 and
n4 are the minimal generators of S. This allows us to construct all such semigroups
and gives examples of numerical semigroups in which PF(S) has this particular
shape, which have been studied in [11].

The structure of the paper is the following. In Sect. 2 we fix the notation and recall
some useful definitions and results. In Sect. 3 we characterize when the generators
of a symmetric numerical semigroup with embedding dimension four are all odd. In
Sect. 4 we do the same in the pseudo-symmetric case. In the last section we consider
the case of almost symmetric semigroups with embedding dimension four and type
three. Here we prove Theorem 3 which gives the pseudo-Frobenius numbers and that
allows to get Corollary 1, where the generators of S and IS as well as the minimal
free resolution of k[x1, . . . , x4]/IS are described. Moreover, in Theorem 4 we give
a way to construct all the almost symmetric semigroups with embedding dimension
four and type three.

Several computations of the paper are performed by using the GAP system [21]
and, in particular, the NumericalSgps package [7].

2 Basic Concepts

We denote by N the set of the natural numbers including 0. A numerical semigroup
S is an additive submonoid of N such that N\S is finite. Every numerical
semigroup has a finite system of generators, i.e. there exist some positive integers
n1, n2, . . . , ns such that S = 〈n1, n2, . . . , ns〉 := {∑si=1 aini | ai ∈ N for i =
1, . . . , s}. Moreover, there exists a unique minimal system of generators n1, . . . , ne
of S and the number e is called embedding dimension of S. The finiteness of N\S
is equivalent to gcd(n1, . . . , ne) = 1. If S = 〈n1, . . . , ne〉, we denote by αi the
minimum integer such that αini = ∑j 
=i ajnj for some non-negative integers
a1, . . . , ae.

The maximum of Z\S is known as the Frobenius number of S and we denote
it by F(S). We say that an integer f ∈ Z\S is a pseudo-Frobenius number of S if
f + s ∈ S for every s ∈ S\{0}. We denote the set of the pseudo-Frobenius numbers
by PF(S) and we refer to its cardinality t (S) as the type of S. Clearly F(S) is always
a pseudo-Frobenius number, thus t (S) ≥ 1.

Consider the injective map ϕ : S → Z\S defined by ϕ(s) = F(S) − s. If ϕ is
a bijection we say that S is symmetric, whereas if the image of ϕ is equal to Z\S
except for F(S)/2 we say that S is pseudo-symmetric. It is not difficult to see that
S is symmetric if and only if it has type 1 and it is pseudo-symmetric if and only if
PF(S) = {F(S)/2,F(S)}. Moreover, setting g(S) = |N \ S|, S is symmetric (resp.
pseudo-symmetric) if and only if 2g(S) = F(S) + 1 (resp. 2g(S) = F(S) + 2).
We say that S is almost symmetric if and only if 2g(S) = F(S) + t (S). There
exists a useful characterization of the almost symmetric property due to H. Nari [18,
Theorem 2.4]: if PF(S) = {f1 < f2 < · · · < ft = F(S)}, a numerical semigroup is
almost symmetric if and only if fi + ft−i = F(S) for every i = 1, . . . , t − 1.
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If f ∈ PF(S), then f + ni ∈ S for every i and, thus, there exist λi1, . . . , λie ∈ N

such that f + ni = ∑ej=1 λij nj . Since f /∈ S, λii has to be equal to zero. For
every i, j = 1, . . . , e, set aii = −1 and aij = λij if i 
= j . Following [17] we say
that the matrix RF(f ) = (aij ) is a row-factorization matrix of f , briefly RF-matrix.
Note that there could be several RF-matrices of f and that f = ∑ej=1 aij nj for
every i. For instance, consider the numerical semigroup S = 〈8, 10, 11, 13〉 that has
embedding dimension four and is symmetric, because PF(S) = {25}. The following
are both RF-matrices of F(S) = 25:

⎛
⎜⎜⎝

−1 0 3 0
3 −1 1 0
2 2 −1 0
1 3 0 −1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1 2 0 1
0 −1 2 1
0 1 −1 2
2 0 2 −1

⎞
⎟⎟⎠ .

3 Symmetric Semigroups

We start by studying the symmetric numerical semigroups with embedding dimen-
sion four. If the semigroup is not complete intersection, there is a theorem proved by
Bresinsky [4] that gives much information on the semigroup and its defining ideal.
We state it following [3, Theorem 3]. By convention, if j is an integer not included
between 1 and 4, we set aj = ai and bj = bi with j ≡ i (mod 4) and 1 ≤ i ≤ 4.

Theorem 1 Let S be a numerical semigroup with 4 minimal generators. Then, S is
symmetric and not complete intersection if and only if there are integers ai and bi
with i ∈ {1, . . . , 4}, such that 0 < ai < αi+1 and 0 < bi < αi+2 for all i,

α1 = a1 + b1, α2 = a2 + b2, α3 = a3 + b3, α4 = a4 + b4 (1)

and

n1 = α2α3a4 + a2b3b4, n2 = α3α4a1 + a3b4b1,

n3 = α1α4a2 + a4b1b2, n4 = α1α2a3 + a1b2b3.
(2)

In this case IS = (f1, f2, f3, f4, f5), where

f1 = xα1
1 − xb3

3 x
a4
4 , f2 = xα2

2 − xa1
1 x

b4
4 , f3 = xα3

3 − xb1
1 x

a2
2 ,

f4 = xα4
4 − xb2

2 x
a3
3 , f5 = xa1

1 x
a3
3 − xa2

2 x
a4
4 .

In this section we denote by ai and bi the integers that appear in the previous
theorem.
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Theorem 2 Let S be a symmetric numerical semigroup minimally generated by
n1, . . . , n4 and assume that S is not complete intersection. The following conditions
are equivalent:

1. Every ni is odd.
2. One of the following holds:

a. All the αi ’s and the ai’s are odd;
b. There is exactly one index i0 for which αi0 is even. Moreover, ai0 and ai0−1

are odd, while the other ai’s are even;
c. All the αi ’s are even and all the ai’s are odd.

Proof Using the equalities (1) and (2) it is easy to see that the conditions a, b and c
imply that all the generators are odd.

Conversely, assume first that all the αi ’s are odd and suppose by contradiction
that a1 is even. Since n2 is odd, a3 and b4 are odd by (2). Therefore, a4 = α4 − b4
and b3 = α3 − a3 are even. Then n1 should be even by (2). A contradiction!

Assume now that there is at least one αi even. Without loss of generality, we can
assume that α1 is even. Since n3 and n4 are odd, the equalities in (2) imply that a4,
b1, b2, a1 and b3 are odd.

Assume first that a2 is even. Then, the first equality in (2) implies that α2 and α3
are odd, so a3 = α3−b3 is even. Moreover, since n2 is odd, α4 is odd by (2). Hence,
we are in the case b.

Assume now that a2 is odd. Then, α2 = a2 + b2 is even and it follows from the
first equality in (2) that a2 and b4 are odd. In particular, α4 = a4 + b4 is even and,
again by (2), a3 is odd. Finally, we get that α3 = a3 + b3 is even and, then, we are
in the case c. ��
Example 1 We note that all the cases of the previous theorem can occur. All the
following semigroups are symmetric but not complete intersections.

(a) Let S = 〈13, 17, 23, 19〉. In this case

f1 = x5
1 − x2

3x4, f2 = x3
2 − x1x

2
4 , f3 = x3

3 − x4
1x2,

f4 = x3
4 − x2

2x3, f5 = x1x3 − x2x4,

in particular α1 = 5, α2 = α3 = α4 = 3 and a1 = a2 = a3 = a4 = 1.
(b) Let S = 〈13, 17, 33, 25〉. We have

f1 = x7
1 − x2

3x4, f2 = x3
2 − x2

1x4, f3 = x3
3 − x5

1x
2
2 ,

f4 = x2
4 − x2x3, f5 = x2

1x3 − x2
2x4,

therefore α1 = 7 and α2 = α3 = 3 and α4 = 2. Moreover, a1 = a2 = 2 and
a3 = a4 = 1.
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(c) Let S = 〈5, 7, 11, 9〉. Then

f1 = x4
1 − x3x4, f2 = x2

2 − x1x3, f3 = x2
3 − x3

1x2,

f4 = x2
4 − x2x4, f5 = x1x3 − x2x4

and, thus, α1 = 4, α2 = α3 = α4 = 2 and a1 = a2 = a3 = a4 = 1.

Example 2 Unfortunately, in Theorem 2 it is not possible to characterize the parity
of the generators by the parity of the αi ’s, in fact we cannot eliminate the conditions
on the ai’s in a, b and c, as the following examples show. All the listed semigroups
are symmetric, but not complete intersections.

(a) Consider the semigroup S = 〈90, 91, 97, 93〉. Then

f1 = x13
1 − x12

3 x
2
4 , f2 = x3

2 − x2
1x4, f3 = x13

3 − x13
1 x2,

f4 = x3
4 − x2

2x3, f5 = x2
1x3 − x2x

2
4 ,

and all the αi are odd, but there is an even generator. In fact, a1 and a4 are even.
(b) Let S = 〈22, 23, 29, 57〉. We have

f1 = x5
1 − x3

3x4, f2 = x2
2 − x1x

4
4 , f3 = x5

3 − x4
1x2,

f4 = x5
4 − x2x

2
3 , f5 = x1x

2
3 − x2x4.

In this case α1 = α3 = α4 = 5 and α2 is even. However a generator is even,
since a4 is odd.

(c) Let S = 〈5, 14, 22, 18〉. We have

f1 = x8
1 − x3x4, f2 = x2

2 − x2
1x4, f3 = x2

3 − x6
1x2,

f4 = x2
4 − x2x3, f5 = x2

1x3 − x2x4,

in particular all the αi ’s are even, but three generators of S are even. Note that
a1 is even.

4 Pseudo-Symmetric Semigroups

Let S = 〈n1, n2, n3〉 be a non-symmetric numerical semigroup. In [12] it is proved
that the defining ideal of S is generated by the maximal minors of the matrix

⎛

⎝
xα1 x

β
2 x

γ

3

xα
′

1 x
β ′
2 x

γ ′
3

⎞

⎠ (3)
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for some positive integers α, β, γ, α′, β ′, γ ′. Moreover, by Nari et al. [19, Corollary
3.3], S is pseudo-symmetric if and only if α = β = γ = 1 or α′ = β ′ = γ ′ = 1.
Without loss of generality we assume that α′ = β ′ = γ ′ = 1. In [19, (2.1.1) pag.
69] it is proved that n1 = (β+ 1)γ + 1, n2 = (γ + 1)α+ 1 and n3 = (α+ 1)β+ 1.
Hence, it follows easily that n1, n2 and n3 are odd if and only if either α, β, γ are
odd or α, β, γ are even.

Now let S = 〈n1, n2, n3, n4〉 be a pseudo-symmetric 4-generated numerical
semigroup. By Herzog and Watanabe [13, Theorem 4.3] F(S)/2 has a unique RF-
matrix and, for a suitable relabeling of the generators of S, we have

RF(F(S)/2) =

⎛
⎜⎜⎝

−1 α2 − 1 0 0
0 −1 α3 − 1 0

α1 − 1 0 −1 α4 − 1
α1 − 1 a 0 −1

⎞
⎟⎟⎠ (4)

for some non-negative integer a.
Given f ∈ PF(S) and RF(f ) = (aij ), we say that the i-th row is even (resp. odd)

if
∑4
j=1 aij is even (resp. odd).

Proposition 1 Assume that S = 〈n1, . . . , n4〉 is pseudo-symmetric and has embed-
ding dimension 4. Then, every ni is odd if and only if one of the following conditions
hold:

1. F(S)/2 is odd and every row of RF(F(S)/2) is odd;
2. F(S)/2 is even and every row of RF(F(S)/2) is even.

Proof We can assume that the matrix (4) is the RF-matrix of f := F(S)/2.
Suppose first that every ni is odd and f is odd. By the first row of (4), f =

−n1 + (α2 − 1)n2 and (α2 − 1) has to be even, i.e. the first row is odd. The same
argument works for the second row. The third row (and similarly the last one) f =
(α1 − 1)n1 − n3 + (α4 − 1)n4 yields immediately that α1 − 1 and α4 − 1 have the
same parity and, thus, the row is odd. If f is even we can use the same argument.

Assume now that Condition 1 holds. By the first two rows it follows that α2 − 1,
α3− 1 are even and, then, n1 and n2 are odd. Using the last row we have α1− 1+ a
even, thus (α1 − 1)n1 + an2 is even and n4 has to be odd. In the same way the third
row implies that also n3 is odd.

Finally, assume that Condition 2 holds. By the first row we get that α2 − 1 is
odd and then n1 and n2 have the same parity. By the second one follows that also
n3 has the same parity of n1 and n2. If they are even, the last row implies that f =
(α1 − 1)n1 + an2 − n4 and, since f is even, also n4 is even. This is a contradiction
because gcd(n1, n2, n3, n4) = 1, therefore, n1, n2 and n3 are odd. Moreover, in the
last row we have α1 − 1+ a odd and, then, n4 is odd. ��
Remark 1 Let S = 〈n1, . . . , n4〉 be pseudo-symmetric and assume that F(S)/2 and
every ni are odd. The previous proposition implies that α2 and α3 are odd. Moreover,
α1 and α4 have the same parity, but we cannot determine if they are even or odd. In
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fact, if S = 〈15, 17, 35, 43〉 we have PF(S) = {53, 106} and

RF(53) =

⎛
⎜⎜⎝

−1 4 0 0
0 −1 2 0
3 0 −1 1
3 3 0 −1

⎞
⎟⎟⎠ ,

whereas if T = 〈57, 61, 123, 163〉, then PF(T ) = {431, 862} and

RF(431) =

⎛
⎜⎜⎝

−1 8 0 0
0 −1 4 0
4 0 −1 2
4 6 0 −1

⎞
⎟⎟⎠ .

5 Almost Symmetric Semigroups with Type Three

Moscariello [17] proved that an almost symmetric numerical semigroup with
embedding dimension four has type at most three. Therefore, to complete the picture
we need to study the almost symmetric semigroups with type three. We start with an
easy lemma that is probably known, but we include it for the reader’s convenience.

Lemma 1 Let S = 〈n1, . . . , nr 〉 and assume that α1 = n2. Then S = 〈n1, n2〉.
Proof If T = 〈n1, n2〉, then T is symmetric and F(T ) = n1n2−n1−n2. Suppose by
contradiction that n3 /∈ T . Since T is symmetric, F(T )− n3 ∈ T , i.e. F(T )− n3 =
an1 + bn2 for some non-negative integers a and b. Therefore (n2 − a − 1)n1 =
(b + 1)n2 + n3 and, then, α1 ≤ n2 − a − 1 gives a contradiction. ��
Theorem 3 Let S = 〈n1, n2, n3, n4〉 be an almost symmetric numerical semigroup
with type three and assume that all the generators are odd. Then, its pseudo-
Frobenius numbers are PF(S) = {f, 2f, 3f } for some integer f and, by a suitable
change of order of n1, n2, n3, n4, there exists an RF-matrix of f and 2f of the
following type:

⎛
⎜⎜⎝

−1 α2 − 1 0 0
0 −1 α3 − 1 0
0 0 −1 α4 − 1

α1 − 1 0 0 −1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1 α2 − 2 α3 − 1 0
0 −1 α3 − 2 α4 − 1

α1 − 1 0 −1 α4 − 2
α1 − 2 α2 − 1 0 −1

⎞
⎟⎟⎠ .

Proof According to [8, Theorems 3.6 and 4.8], we distinguish four cases that in
[8] are called UF1, UF2, nUF1 and nUF2. We will prove that only the last one is
possible under our hypothesis. Let f and f ′ be the two pseudo-Frobenius numbers
of S different from its Frobenius number.
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Case UF1 In this case, by a suitable change of order of n1, n2, n3, n4, there exist
RF-matrices of f and f ′ of the following type

⎛

⎜⎜⎝

−1 α2 − 1 0 0
α1 − 1 −1 0 0
α1 − 2 0 −1 1

0 α2 − 2 1 −1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−1 0 0 α4 − 1
0 −1 1 α4 − 2

b41 − 1 b32 −1 0
b41 b32 − 1 0 −1

⎞

⎟⎟⎠

respectively and either α2 = 2 or α4 = 2.
If α2 = 2, the first two lines of the first matrix give n2 = f + n1 and f + n2 =

(α1 − 1)n1. Hence, 2f = (α1 − 2)n1 and, since n1 is odd, α1 has to be even;
consequently f = (α1/2− 1)n1 ∈ S gives a contradiction.

Assume now that α4 = 2. The second matrix implies that n3 = n2 + f ′ and
f ′ + n3 = (b41 − 1)n1 + b32n2. Then,

2n3 = n3 + (f ′ + n3)− f ′ = (n2 + f ′)+ ((b41 − 1)n1 + b32n2)− f ′
= (b41 − 1)n1 + (b32 + 1)n2.

(5)

Moreover, subtracting the first and the second rows of RF(f ), we get α1n1 =
α2n2. The previous lemma implies that α1 < n2 and, then, gcd(n1, n2) = d > 1.
Since d is odd, in light of the equality (5) also n3 is a multiple of d . Furthermore,
α4 = 2 means that 2n4 = ∑3

j=1 α4j nj and, thus, also n4 is a multiple of d; a
contradiction.

Case UF2 By a suitable change of order of n1, n2, n3, n4, there exist RF-matrices
of f and f ′ of the following type:

⎛

⎜⎜⎝

−1 α2 − 1 0 0
a21 −1 α3 − 2 0

a21 − 1 0 −1 1
0 α2 − 2 α3 − 1 −1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−1 0 0 α4 − 1
0 −1 α3 − 1 α4 − 2

a21 + b41 0 −1 0
b41 α2 − 1 0 −1

⎞

⎟⎟⎠ .

respectively and either α2 = 2 or α4 = 2.
Assume first that α2 = 2. By subtracting the first and the last row in the first

matrix we get

n2 + n4 = n1 + (α3 − 1)n3.

This implies that α3 is even. Therefore, by adding the first two rows of the first
matrix we have

2f = (a21 − 1)n1 + (α3 − 2)n3
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and a21 − 1 has to be even. It follows that f is in the semigroup, that is a
contradiction.

Assume now that α4 = 2. In this case f ′ = n4 − n1 is even, then f = (α2 −
1)n2−n1 is odd and, thus, α2− 1 is even. By adding the first and the last row of the
second matrix we get

2f ′ = (b41 − 1)n1 + (α2 − 1)n2.

Again b41 − 1 has to be even and, then, f ′ is in the semigroup.

Case nUF1 By a suitable change of order of n1, n2, n3, n4, there exist RF-matrices
of f and f ′ of the following type:

⎛

⎜⎜⎝

−1 0 0 α4 − 1
0 −1 1 α4 − 2
0 α2 − 1 −1 0
1 α2 − 2 0 −1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−1 1 α3 − 2 0
α1 − 1 −1 0 0
α1 − 2 0 −1 1

0 0 α3 − 1 −1

⎞

⎟⎟⎠

respectively. Subtracting the first two rows of the first matrix we get n1+n3 = n2+
n4, whereas subtracting the second and the third row we get α2n2 = 2n3+(α4−2)n4
and, then, α2 and α4 have the same parity. In the same way, by subtracting the first
two rows of the second matrix, we get that α1 and α3 have the same parity. By
adding the first and the third row of the first matrix and using n1+n3 = n2+n4 we
have

2f = −n1 + (α2 − 1)n2 − n3 + (α4 − 1)n4 = (α2 − 2)n2 + (α4 − 2)n4.

Since f is not in the semigroup, this implies that α2 and α4 are odd and, thus, f is
odd by the first row.

If we do the same in the second matrix (with the second and the last row) we
conclude that also f ′ is odd, that is a contradiction because f + f ′ equals the
Frobenius number that is odd.

Case nUF2 By a suitable change of order of n1, n2, n3, n4, there exist RF-matrices
of f and f ′ of the following type:

⎛

⎜⎜⎝

−1 α2 − 1 0 0
0 −1 α3 − 1 0
0 0 −1 α4 − 1

α1 − 1 0 0 −1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−1 α2 − 2 α3 − 1 0
0 −1 α3 − 2 α4 − 1

α1 − 1 0 −1 α4 − 2
α1 − 2 α2 − 1 0 −1

⎞

⎟⎟⎠

respectively. Since the sum of the first two rows of the first matrix is equal to the
first row of the second matrix, it follows that f ′ = 2f . Hence, it is enough to recall
that F(S) = f + f ′ = 3f by Nari’s Theorem [18, Theorem 2.4]. ��
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Remark 2 Let S = 〈n1, n2, n3, n4〉 be almost symmetric with type three and assume
that all the generators are odd. By Theorem 3 the Frobenius number is equal to 3f
and it is odd, so f is odd. Moreover, by a suitable change of order of n1, n2, n3, n4,
we have f = (α2−1)n2−n1 = (α3−1)n3−n2 = (α4−1)n4−n3 = (α1−1)n1−n4.
Therefore, α1, α2, α3 and α4 are odd.

Example 3 There are almost symmetric 4-generated semigroups with type three
whose pseudo-Frobenius numbers have the structure of Theorem 3, even though
some generators are even. For instance, if S = 〈4, 7, 10, 13〉, then PF(S) = {3, 6, 9}.
Moreover, also this semigroup is in the case nUF2, since

RF(3) =

⎛

⎜⎜⎝

−1 1 0 0
0 −1 1 0
0 0 −1 1
4 0 0 −1

⎞

⎟⎟⎠ and RF(6) =

⎛

⎜⎜⎝

−1 0 1 0
0 −1 0 1
4 0 −1 0
3 1 0 −1

⎞

⎟⎟⎠

Note that α2 = α3 = α4 = 2 is even in this example.

By Theorem 3 in every row of RF(f ) there is exactly one positive entry.
Therefore, we immediately get the following corollary by Eto [8, Section 5.5] or
[13, Lemma 5.4].

Corollary 1 Let S = 〈n1, . . . , n4〉 be almost symmetric with type three and assume
that ni is odd for every i = 1, . . . , 4. Then

n1 = (α2 − 1)(α3 − 1)α4 + α2, n2 = (α3 − 1)(α4 − 1)α1 + α3,

n3 = (α4 − 1)(α1 − 1)α2 + α4, n4 = (α1 − 1)(α2 − 1)α3 + α1,

where α1, . . . , α4 are odd and the defining ideal of S is IS = (xα1
1 − xα2−1

2 x4, x
α2
2 −

x
α3−1
3 x1, x

α3
3 − xα4−1

4 x2, xα4
4 − xα1−1

1 x3, x
α1−1
1 x2 − xα3−1

3 x4, x1x
α4−1
4 − xα2−1

2 x3).

Moreover, setting A = k[x1, x2, x3, x4], the minimal free resolution of A/IS is

0 −→ A3 ϕ3−→ A8 ϕ2−→ A6 ϕ1−→ A −→ 0

where ϕ1 is the obvious one and

ϕ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x
α3−1
3 x2 0 0 0 0 x

α4−1
4 x3

x
α1−1
1 x4 0 0 x

α4−1
4 x3 0 0

0 0 x
α1−1
1 x4 x

α2−1
2 x1 0 0

0 0 x
α3−1
3 x2 0 0 x

α2−1
2 x1

−xα2−1
2 −x1 x

α4−1
4 x3 0 0 0 0

0 0 0 0 −xα3−1
3 −x2 x

α1−1
1 x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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tϕ3 =
⎛
⎜⎝

0 x3 0 x1 0 −x4 0 −x2

x
α4−1
4 0 x

α2−1
2 0 −xα1−1

1 0 −xα3−1
3 0

−x3 −xα4−1
4 −x1 −xα2−1

2 x4 x
α1−1
1 x2 x

α3−1
3

⎞
⎟⎠ .

Example 4 Putting (α1, α2, α3, α4) = (5, 3, 3, 3) in Corollary 1, we get the
semigroup S = 〈15, 23, 27, 29〉. The set of its pseudo-Frobenius numbers is
PF(S) = {31, 62, 93} and, then, S is almost symmetric with type three. According
to Theorem 3 we have

RF(31) =

⎛

⎜⎜⎝

−1 2 0 0
0 −1 2 0
0 0 −1 2
4 0 0 −1

⎞

⎟⎟⎠ and RF(62) =

⎛

⎜⎜⎝

−1 1 2 0
0 −1 1 2
4 0 −1 1
3 2 0 −1

⎞

⎟⎟⎠ .

Obviously, this is the example with “smallest” generators.

Theorem 4 Assume that α1, α2, α3, α4 are odd integers greater than 1 and let n1,
n2, n3, n4 be as in Corollary 1. If gcd(n1, n2, n3, n4) = 1, then S = 〈n1, n2, n3, n4〉
is an almost symmetric semigroup generated by odd integers and it has type three.
Moreover, all the 4-generated almost symmetric semigroups with type 3 and odd
generators arise in this way.

Proof Bearing in mind Corollary 1, it is easy to see that the ideal IS contains

J = (xα1
1 − xα2−1

2 x4, x
α2
2 − xα3−1

3 x1, x
α3
3 − xα4−1

4 x2, x
α4
4 − xα1−1

1 x3,

x
α1−1
1 x2 − xα3−1

3 x4, x1x
α4−1
4 − xα2−1

2 x3).

Let A = k[x1, x2, x3, x4]. Since gcd(n1, n2, n3, n4) = 1, the k-vector space
A/(IS + (x1)) has dimension dimk A/(IS + (x1)) = dimk k[S]/(tn1) = n1.
Moreover,

J + (x1) = (xα2−1
2 x4, x

α2
2 , x

α3
3 − xα4−1

4 x2, x
α4
4 , x

α3−1
3 x4, x

α2−1
2 x3) (6)

and it is not difficult to see that dimk A/(J + (x1)) = n1. It follows that A/(IS +
(x1)) = A/(J + (x1)) and this implies IS = J , see the last part of the proof of [13,
Theorem 4.4].

We note that the socle of A/(IS + (x1)), defined as

Soc(A/(IS + (x1))) = {y ∈ A/(IS + (x1)) | yx2 = yx3 = yx4 = 0},

is generated by y1 = x
α2−1
2 , y2 = x

α2−2
2 x

α3−1
3 , y3 = x

α2−2
2 x

α3−2
3 x

α4−1
4 =

x
α2−3
2 x

2α3−2
3 . Therefore, the type of the ring A/(IS + (x1)) and, then, of S is three.
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Moreover, the pseudo-Frobenius numbers of S are fi = deg yi − n1 for i = 1, 2, 3
and

F(S) = f3 = (α2 − 3)n2 + (2α3 − 2)n3 − n1 =
= (α2 − 1)n2 − n1 + (α2 − 2)n2 + (α3 − 1)n3 − n1 = f1 + f2,

since xα2
2 − xα3−1

3 x1 ∈ IS . This implies that S is almost symmetric with type three
and, of course, it has embedding dimension four. The last statement of the theorem
follows from Corollary 1. ��
Example 5 Let n be a positive integer and set α2 = α3 = α4 = 3, α1 = 3+ 2n. By
Theorem 4 the semigroup

Sn = 〈15, 15+ 2n+2, 15+ 2n+2 + 2n+1, 15+ 2n+2 + 2n+1 + 2n〉.

is an almost symmetric semigroup with type three generated by four odd minimal
generators. Moreover, using Theorem 3 it is easy to see that PF(Sn) = {15 +
2n+3, 2(15+ 2n+3), 3(15+ 2n+3)}.
Remark 3 Table 1 shows the number of almost symmetric semigroups that are min-
imally generated by 3 or 4 odd generators less than 100, 150 and 200 respectively.
These numbers are obtained using the GAP system [21] and, in particular, the
NumericalSgps package [7]. In the table e denotes the embedding dimension of
S, t denotes its type and c.i. stands for complete intersection.

It is not known if there is a bound for the type of an almost symmetric numerical
semigroup with more than 4 generators in terms of the number of its generators.
However, some computations suggest that in the case of 5 generators the type is at
most 5. In Table 2 we show the number of almost symmetric semigroups generated
by five odd integers.

Example 6 The type of an almost symmetric semigroup may be greater than its
embedding dimension, even though all the generators are odd. For instance, the 7-
generated semigroup S = 〈29, 33, 61, 65, 73, 81, 85〉 is almost symmetric and its
type is 12, in fact PF(S) = {69, 77, 89, 93, 97, 101, 105, 109, 113, 125, 133, 202}.

Table 1 Number of almost symmetric semigroups with odd generators

Embedding dimension and type Gen. ≤ 100 Gen. ≤ 150 Gen. ≤ 200

e = 3 and t = 1 2302 7978 18, 751

e = 3 and t = 2 139 290 503

e = 4 and c.i. 596 4583 16,895

e = 4, t = 1 not c.i. 1927 7129 17,524

e = 4 and t = 2 595 1647 3481

e = 4 and t = 3 9 24 45



348 F. Strazzanti and K.-i. Watanabe

Table 2 Number of almost symmetric semigroups with odd generators

Embedding dimension and type Gen. ≤ 100 Gen. ≤ 150 Gen. ≤ 200

e = 5 and c.i. 0 135 1199

e = 5, t = 1 not c.i. 3451 19,060 60,711

e = 5 and t = 2 1254 4592 11,489

e = 5 and t = 3 988 3582 8306

e = 5 and t = 4 359 970 1881

e = 5 and t = 5 2 4 6
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Poincaré Series on Good Semigroup
Ideals

Laura Tozzo

Abstract The Poincaré series of a ring associated to a plane curve was defined
by Campillo, Delgado, and Gusein-Zade. This series, defined through the value
semigroup of the curve, encodes the topological information of the curve. In this
paper we extend the definition of Poincaré series to the class of good semigroup
ideals, to which value semigroups of curves belong. Using this definition we
generalize a result of Pol: under suitable assumptions, given good semigroup ideals
E and K , with K canonical, the Poincaré series of K − E is symmetric to the
Poincaré series of E.

Keywords Poincaré series · Good semigroups · Symmetry

1 Introduction

Plane algebroid curves are determined by their value semigroups up to equivalence
in the sense of Zariski, as shown by Waldi [14, 15]. Value semigroups are important
invariants of curves also with regard to duality properties. Kunz [9] was the first to
show that the Gorensteinness of an analytically irreducible and residually rational
local ring corresponds to a symmetry of its numerical value semigroup. Waldi [14]
gave a definition of symmetry for more branches, and showed that plane (hence
Gorenstein) curves with two branches have symmetric value semigroups. Later
Delgado [5] proved the analogue of Kunz’ result for general algebroid curves: they
are Gorenstein if and only if their value semigroup is symmetric. Campillo, Delgado
and Kiyek [2] extended Delgado’s result to analytically reduced and residually
rational local rings with infinite residue field. D’Anna [4] then used the definition of
symmetry given by Delgado to define a canonical semigroup ideal K0, and showed
that a fractional ideal K of R such that R ⊆ K ⊆ R is canonical if and only if its
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value semigroup coincides with K0. Recently Pol [12] studied the value semigroup
ideal of the dual of a fractional ideal over Gorenstein algebroid curves. In [8]
the author together with Korell and Schulze gave a new definition of a canonical
semigroup ideal K (see Definition 6) and extended D’Anna’s and Pol’s results to
the larger class of admissible rings (see Definition 10). Moreover, one of the main
results of [8] shows that Cohen–Macaulay duality (where the dual of a fractional
ideal is obtained by applying the functor Hom(−,K), with K a canonical ideal) and
semigroup duality are compatible under taking values, if the ring is admissible. An
admissible ring is in particular semilocal, and its value semigroup, as first observed
by Barucci, D’Anna and Fröberg [1], satisfies particular axioms which define the
class of good semigroups.

In this paper we analyze further the duality properties of good semigroups by
showing symmetry properties of their Poincaré series. As a consequence of the
more general result given by Stanley in [13], Gorenstein semigroup rings have
symmetric Hilbert series. This is also equivalent to the value semigroup associated
to the semigroup ring being symmetric. Adapting the concept of Hilbert series to
value semigroups leads to the concept of Poincaré series. A definition of Poincaré
series for a plane curve singularity was given by Campillo, Delgado and Gusein-
Zade in [3], where they showed that it coincides with the Alexander polynomial, a
complete topological invariant of the singularity. Moyano-Fernandez in [10], using
a definition inspired by the above, analyzed the connection between univariate and
multivariate Poincaré series of curve singularities and later on, together with Tenorio
and Torres [11], they showed that the Poincaré series associated to generalized
Weierstrass semigroups can be used to retrieve entirely the semigroup, hence
highlighting the potential of Poincaré series. Later Pol [12] considered a symmetry
problem on Gorenstein reduced curves. She proved that the Poincaré series of the
Cohen–Macaulay dual of a fractional ideal E is symmetric to the Poincaré series of
E, therefore extending the symmetry known for Gorenstein curves to their fractional
ideals. Pol’s result strongly uses the fact that it is always possible to define a filtration
on value semigroups (see Definition 3), as done first in [2]. To deal with this filtration
an important tool is the distance d(E\F) between two good semigroup ideals
E ⊆ F (see Definition 4). Using the notion of distance and the duality on good
semigroups given in [8], we are able to generalize Pol’s result to good semigroup
ideals. We prove that, given good semigroup ideals E andK , withK canonical, the
Poincaré series of K − E is symmetric to the Poincaré series of E under suitable
assumptions. In particular, the symmetry is true (without additional assumptions)
whenever E is the value semigroup of a fractional ideal E of an admissible ring R.

2 Preliminaries

In this section we recall definitions and known results that will be needed in the rest
of the paper.
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Let S ⊆ S be a partially ordered cancellative commutative monoid, where S is a
partially ordered monoid, isomorphic to N

s with its natural partial order. Then the
group of differencesDS of S is isomorphic to Z

s . In the following we always fix an
isomorphismDS ∼= Z

s , in order to talk about indexes i ∈ {1, . . . , s}.

2.1 Good Semigroups and Their Ideals

The following where first defined in [6] and [4].

Definition 1 Let E ⊆ Z
s . We define properties:

(E0) There exists an α ∈ Z
s such that α + N

s ⊆ E.
(E1) If α, β ∈ E, then min{α, β} := (min{αi, βi})i∈I ∈ E.
(E2) For any α, β ∈ E and j ∈ I with αj = βj there exists an ε ∈ E such that

εj > αj = βj and εi ≥ min{αi, βi} for all i ∈ I \{j }with equality if αi 
= βi .
Definition 2 We call S a good semigroup if properties (E0), (E1) and (E2) hold for
E = S.

A semigroup ideal of a good semigroup S is a subset ∅ 
= E ⊆ DS such that
E + S ⊆ E and α + E ⊆ S for some α ∈ S.

If E satisfies (E1), we denote by μE := minE its minimum.
If E satisfies (E1) and (E2), then we call E a good semigroup ideal of S. Note

that any semigroup ideal of a good semigroup S automatically satisfies (E0).
If E and F are semigroup ideals of a good semigroup S, we define

E − F := {α ∈ DS | α + F ⊆ E},

and we call

CE := E − S = {α ∈ DS | α + S ⊆ E}

the conductor ideal of E. If E is a semigroup ideal of S satisfying (E1), then we
call γ E := μCE the conductor of E. We abbreviate γ := γ S and τ := γ − 1, where
1 = (1, . . . , 1) ∈ N

s .

Let S be a good semigroup. The set of good semigroup ideals of S is denoted by
GS .

Remark 1 Let S be a good semigroup. For any E,F ∈ GS and α ∈ DS the
following hold:

(a) α + E ∈ GS .
(b) (α + E)− F = α + (E − F) and E − (α + F) = −α + (E − F).
(c) E − S = E.
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Definition 3 Let S be a good semigroup. For any E ∈ GS , we define a decreasing
filtration E• on E by semigroup ideals

Eα := {β ∈ E | β ≥ α}

for any α ∈ DS .

Remark 2 Let S be a good semigroup. For a semigroup ideal E ∈ GS we have
E = EμE and, by definition of conductor, CE = γ E + S = EγE .

2.2 Distance of Semigroup Ideals

Definition 4 Let E ⊆ DS . Elements α, β ∈ E with α < β are called consecutive
in E if α < δ < β implies δ 
∈ E for any δ ∈ DS . For α, β ∈ E, a chain

α = α(0) < · · · < α(n) = β (1)

of points α(i) ∈ E is said to be saturated of length n if α(i) and α(i+1) are consecutive
in E for all i ∈ {0, . . . , n− 1}. If E satisfies

(E4) For fixed α, β ∈ E, any two saturated chains (1) in E have the same length n.

then we call dE(α, β) := n the distance of α and β in E.

Due to [4, Proposition 2.3], any E ∈ GS satisfies property (E4).

Definition 5 Let S be a good semigroup, and let E ⊆ F be two semigroup ideals
of S satisfying property (E4). Then we call

d(F\E) := dF (μF , γ E)− dE(μE, γ E)

the distance between E and F .

The following was proved in [4, Proposition 2.7]:

Lemma 1 If E ⊆ F ⊆ G are semigroup ideals of a good semigroup S satisfying
property (E4), then

d(G\E) = d(G\F)+ d(F\E).

Moreover, as proved by the author in [8, Proposition 4.2.6], distance can be used
to check equality:

Proposition 1 Let S be a good semigroup, and let E,F ∈ GS with E ⊆ F . Then
E = F if and only if d(F\E) = 0.
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2.3 Canonical Semigroup Ideals

The following definition is [8, Definition 5.11 in published version]:

Definition 6 Let S be a good semigroup. A canonical idealK is a good semigroup
ideal of S such that K ⊆ E implies K = E for any E with γ k = γ E .

Let α ∈ DS , E ⊆ DS .

• $Ei (α) = {β ∈ E | βi = αi and βj > αj for all j 
= i};
• $

E

i (α) = {β ∈ E | βi = αi and βj ≥ αj for all j 
= i};
• $E(α) = ∪i∈{1,...,s}$Ei (α);
• $

E
(α) = ∪i∈{1,...,s}$Ei (α).

We denote by ei the i-th vector of the canonical basis ofDS . Then$
E

i (α) = $Ei (α+
ei − 1).

Using [8, Proposition 5.18 in published version] and [4, Proposition 3.2] yields:

Proposition 2 Let S be a good semigroup. Then K is a canonical ideal if and only
if K = α +K0 for some α ∈ DS , where

K0 = {α ∈ DS | $S(τ − α) = ∅}
is a good semigroup ideal of S called normalized canonical ideal of S. In particular,
K0 is the only canonical semigroup ideal with γK0 = γ .

Lemma 2 Let S be a good semigroup. If E ∈ GS , then

(a) K0 − E = {α ∈ DS | $E(τ − α) = ∅} ∈ GS;
(b) γK0−E = γ − μE;
(c) μK0−E = γ − γ E .

Proof For part (a) see [4, Computation 3.3] and [8, Lemma 5.16 in published
version]. Part (b) is proven in [8, Lemma 4.11 published version]. Part (c) follows
by Korell et al. [8, Theorem 5.14 in published version]. In fact, μK0−E = γ −
γK0−(K0−E) = γ − γ E . ��

In the following, when we talk about the canonical semigroup ideal, we refer to
K0. To make notation easier, we will writeK instead ofK0. Notice that by Remark 1
and Proposition 2 all the results hold as well for any K canonical, up to translation
by a suitable α.

Definition 7 Let S be a good semigroup. Let E ∈ GS and K the canonical
semigroup ideal. Then the dual of E is K − E.

Remark 3 Let S be a good semigroup, and E ∈ GS . For all α ∈ DS we have
E −DαS = Dγ−αS . In fact, Remark 1 implies:

E −DαS = E − (α +DS) = −α + (E −DS) = −α + γ +DS = Dγ−αS .

This is in particular true for E = K .
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The following theorem (see [8, Theorem 5.14 in published version]) shows that
every good semigroup ideal coincides with its double dual (see Definition 7):

Theorem 1 Let S be a good semigroup, E ∈ GS , and let K be the canonical
semigroup ideal. Then K − (K − E) = E.

2.4 Value Semigroups

We now give a few definitions regarding rings, in order to make clear the connection
between their value semigroups and good semigroups.

In the following, R is a commutative ring with 1, and QR its total ring of
fractions. We always assume fractional ideals of R to be regular, i.e. to contain
at least a regular element.

Definition 8 A valuation ring ofQR is a subring V � QR such that the setQR\V
is multiplicatively closed.

If R ⊆ V , we call V a valuation ring over R. We denote by VR the set of all
valuation rings ofQR over R.

A valuation ring V of Q with unique regular maximal ideal mV is called a
discrete valuation ring if mV is the only regular prime ideal of V (see [7, Ch. I,
(2.16) Def.]).

A discrete valuation ofQR is a map ν : QR � Z ∪ {∞} satisfying

ν(xy) = ν(x)+ ν(y), ν(x + y) ≥ min{ν(x), ν(y)}

for any x, y ∈ QR . We refer to ν(x) ∈ Z∪{∞} as the value of x ∈ QR with respect
to ν.

The following theorem is [7, Ch. II, (2.11) Thm.], and characterizes valuation
rings over one-dimensional semilocal Cohen–Macaulay rings.

Theorem 2 Let R be a one-dimensional semilocal Cohen–Macaulay ring. The set
VR is finite and non-empty, and it contains discrete valuation rings only.

Thanks to this theorem, we can give the following definition:

Definition 9 Let R be a one-dimensional semilocal Cohen–Macaulay ring, and let
VR be the set of (discrete) valuation rings ofQR over R with valuations

ν = νR := (νV )V∈VR
: QR → (Z ∪ {∞})VR .

To each fractional ideal E of R we associate its value semigroup ideal

�E := ν({x ∈ E | x is regular}) ⊆ Z
VR .

If E = R, then the monoid �R is called the value semigroup of R.
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The following additional definitions are needed to make the value semigroup of
a ring into a good semigroup.

Definition 10 Let R be a one-dimensional semilocal Cohen–Macaulay ring. Let R̂
denote its completion at the Jacobson radical and R its integral closure in its total
ring of fractionsQR .

(a) R is analytically reduced if R̂ is reduced or, equivalently, R̂m is reduced for all
maximal ideals m of R.

(b) R is residually rational if R/n = R/n ∩ R for all maximal ideals n of R.
(c) R has large residue fields if |R/m| ≥ |VRm | for all maximal ideals m of R.
(d) R is admissible if it is analytically reduced and residually rational with large

residue fields.

The following was proven in [8, Corollary 3.14 in published version].

Proposition 3 If R is admissible, then its value semigroup �R is a good semigroup,
and �E is a good semigroup ideal for any fractional ideal E of R.

Let R be an admissible ring, and let E be a fractional ideal of R. For any α ∈ DS
denote

Eα := {x ∈ E | ν(x) ≥ α}.

There is a clear link between filtrations of fractional ideals and filtrations of good
semigroup ideals (see [8, Lemma 3.8 in published version]):

Lemma 3 Let R be an admissible ring, and let E be a fractional ideal of R. Then
Eα is a (regular) fractional ideal of R and (�E)α = �Eα for all α ∈ DS .

The following was proven first by D’Anna [4, Proposition 2.2 in published
version] and then extended in [8, Proposition 4.18 in published version].

Proposition 4 Let R be an admissible ring, and let E,F be two fractional ideals of
R with E ⊆ F. Then

�R(F/E) = d(�F\�E),

where �R(F/E) denotes the length of the quotient F/E as R-module.

Finally, consider the Cohen–Macaulay dual of a fractional ideal E, i. e.
Hom(E,K) ∼= K : E with K a canonical ideal. The following theorem (see [8,
Theorem 5.27 in published version]) shows that the value semigroup ideal of the
Cohen–Macaulay dual is the same as the dual of the value semigroup ideal (see
Definition 7):

Theorem 3 Let R be an admissible ring with canonical ideal K. Then

(a) �K:F = �K − �F for any fractional ideal F and
(b) d(�K − �E\�K − �F) = d(�F\�E) for any fractional ideals E,F with E ⊆ F.
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3 Distance and Duality

We now prove some technical results used in the coming section.

Lemma 4 Let S be a good semigroup, E ∈ GS , and α ∈ DS . Then
d(Eα\Eα+ei ) ≤ 1.

Proof We have the following:

d(Eα\Eα+ei ) = dEα (μ
Eα , γ E

α+ei
)− dEα+ei (μ

Eα+ei
, γ E

α+ei
)

= dEα (μE
α

, γ E
α+ei
)− dEα (μE

α+ei
, γ E

α+ei
)

(2)

where the first equality is the definition of distance, and the second equality holds
because a saturated chain between μE

α+ei and γ E
α+ei in Eα+ei is also saturated

in Eα . Now observe that μE
α

and μE
α+ei are always comparable. In fact, by

minimality of μE
α

it has to be μE
α = min{μEα ,μEα+ei } ≤ μEα+ei . So (2) becomes

d(Eα\Eα+ei ) = dEα (μE
α

, μE
α+ei
).

Now let μE
α = α(0) < · · · < α(m) = μEα+ei be a saturated chain in E. Suppose

m ≥ 2. By minimality of μE
α+ei , we have that α(k) ∈ $Ei (α) for all k < m.

Consider α(0), α(1) ∈ E. They have α(0)i = α(1)i = αi and there exists a j 
= i such

that α(0)j < α
(1)
j ≤ α(m)j = μEα+ei

j . We can apply property (E2) to α(0), α(1) ∈ E
and obtain a β ∈ E with βi > αi and βj = min{α(0)j , α(1)j } = α(0)j . In particular,

β ∈ Eα+ei . Thus, by minimality of μE
α+ei , it has to be min{β,μEα+ei } = μEα+ei .

Then μE
α+ei
j = min{βj , μEα+ei

j } = min{α(0)j , μE
α+ei
j } = α(0)j < μE

α+ei
j . This is a

contradiction. Hence the claim. ��
Lemma 5 Let S be a good semigroup, and let E ∈ GS . Then d(Eα\Eα+ei ) = 1 if

and only if $
E

i (α) 
= ∅.

Proof Observe that by definition Eα = Eα+ei ∪$Ei (α) and Eα+ei ∩$Ei (α) = ∅.
By Proposition 1, d(Eα\Eα+ei ) = 0 if and only if Eα = Eα+ei , i.e. if and only if

$
E

i (α) = ∅. So the claim follows by Lemma 4. ��
The following proposition characterizes the distance in terms of$-sets.

Proposition 5 Let S be a good semigroup, E ∈ GS , and α, β ∈ DS with α ≤ β.
Then Eβ ⊆ Eα.

Let α = α(0) < α(1) < · · · < α(n) = β be a saturated chain in DS , with
α(j+1) = α(j) + ei(j) for any j ∈ {0, . . . , n− 1}. We have:

d(Eα\Eβ) = |{j ∈ {0, . . . , n− 1} | $Ei(j)(α(j)) 
= ∅}|,

where | − | denotes the cardinality.
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Proof Using the additivity of the distance (see Lemma 1), our assumptions and
Lemma 5 we get the following equalities:

d(Eα\Eβ) =
n−1∑

j=0

d(Eα
(j)\Eα(j+1)

) =
n−1∑

j=0

d(Eα
(j)\Eα(j)+ei(j) )

=|{j ∈ {0, . . . , n− 1} | $Ei(j)(α(j)) 
= ∅}|.

As a corollary, we obtain a way to compute the distance between two semigroup
ideals.

Corollary 1 Let S be a good semigroup. Let E ⊆ F ∈ GS , and let μF = α(0) <
α(1) < · · · < α(m) = μE < · · · < α(n) = γ E be a saturated chain in DS . In
particular, α(j+1) = α(j) + ei(j) for any j ∈ {0, . . . , n− 1}. Then

d(F\E) =|{j ∈ {0, . . . , n− 1} | $Fi(j)(α(j)) 
= ∅}|
− |{j ∈ {m, . . . , n− 1} | $Ei(j)(α(j)) 
= ∅}|

Proof By additivity of the distance (see Lemma 1) we have:

d(F\E) = d(F\CE)− d(E\CE) = d(Fμ
F \FγE )− d(Eμ

E\EγE ).

The claim follows by Proposition 5. ��
The following two lemmas are necessary to prove Proposition 6.

Lemma 6 Let S be a good semigroup, and let E ∈ GS . Let K be the canonical

ideal of S. If$
K−E
i (τ − α) 
= ∅ then$Ei (α) = ∅.

Proof Let τ − β ∈ $K−Ei (τ − α). Then

τi − βi =τi − αi,
τj − βj ≥τj − αj for all j 
= i,

and $E(β) = ∅ by Lemma 2(a). As βi = αi and βj ≤ αj , it follows $Ei (α) ⊆
$Ei (β) = ∅. ��
Lemma 7 Let S be a good semigroup, E ∈ GS , and α, β ∈ DS with α ≤ β. Let K
be the canonical ideal of S. Then:

d(Eα\Eβ) ≤ d(DαS \DβS )− d((K − E)γ−β \ (K − E)γ−α).
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Proof Let

α = α(0) < α(1) < · · · < α(n) = β

be a saturated chain in DS , with α(j+1) = α(j) + ei(j) for any j ∈ {0, . . . , n − 1}.
Let us denote J = {0, . . . , n− 1}.

Set β(j) = γ − α(n−j). Then

γ − β = β(0) < β(1) < · · · < β(n) = γ − α

is a saturated chain in DS , and

β(j+1) = γ − α(n−(j+1)) = γ − (α(n−j)) − ei(n−(j+1))) = β(j) + ei(n−(j+1)).

By Proposition 5 we have d(Eα\Eβ) = |{j ∈ J | $Ei(j)(α(j)) 
= ∅}|. Recall that
E = K − (K − E) by Proposition 1. Therefore we can apply Lemma 6 and obtain

d(Eα\Eβ) = |{j ∈ J | $Ei(j)(α(j)) 
= ∅}|
≤ |{j ∈ J | $K−Ei(j) (τ − α(j)) = ∅}|
= |{j ∈ J | $K−Ei(j) (γ − α(j) − 1) = ∅}|
= |{j ∈ J | $K−Ei(j) (β

(n−j) − 1) = ∅}|
= |{j ∈ J | $K−Ei(j) (β

(n−(j+1))) = ∅}|
= n− |{j ∈ J | $K−Ei(j) (β

(n−(j+1))) 
= ∅}|
= n− |{j ∈ J | $K−Ei(n−(j+1))(β

(j)) 
= ∅}|
= n− d((K − E)γ−β \ (K − E)γ−α)
= d(DαS \DβS )− d((K − E)γ−β \ (K − E)γ−α).

(3)

Proposition 6 Let S be a good semigroup, E ∈ GS , and α, β ∈ DS with α ≤ β.
Let K be the canonical ideal of S. Then the following are equivalent:

(i) d(Eα\Eβ) = d(DαS \DβS )− d((K − E)γ−β \ (K − E)γ−α).
(ii) For all δ ∈ DS such that α ≤ δ ≤ β and for every i ∈ {1, . . . , s} such that

δ + ei ≤ β,

$
E

i (δ) 
= ∅ ⇐⇒ $K−Ei (τ − δ) = ∅.
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(iii) For all δ ∈ DS such that α ≤ δ ≤ β and for every i ∈ {1, . . . , s} such that
δ − ei ≥ α,

$
K−E
i (τ − δ) 
= ∅ ⇐⇒ $Ei (δ) = ∅.

Proof Let

α = α(0) < α(1) < · · · < α(n) = β

and

γ − β = β(0) < β(1) < · · · < β(n) = γ − α

be as in Lemma 7. Let us denote again J = {0, . . . , n− 1}. Then, from the proof of
Lemma 7 (see (3)) we have

d(Eα\Eβ) = d(DαS \DβS )− d((K − E)γ−β \ (K − E)γ−α)

if and only if

|{j ∈ J | $Ei(j)(α(j)) 
= ∅} = |{j ∈ J | $K−Ei(j) (τ − α(j)) = ∅}.

Since the first set is contained in the second by Lemma 6, we obtain

{j ∈ J | $Ei(j)(α(j)) 
= ∅} = {j ∈ J | $K−Ei(j) (τ − α(j)) = ∅}

In particular

$
E

i(j)(α
(j)) 
= ∅ ⇐⇒ $K−Ei(j) (τ − α(j)) = ∅.

Now let δ ∈ DS be such that α ≤ δ ≤ β and for every i ∈ {1, . . . , s}, δ + ei ≤ β.
Then it is always possible to find a saturated chain inDS between α and β such that
δ = α(j) and i = i(j). Thus

$
E

i (δ) 
= ∅ ⇐⇒ $K−Ei (τ − δ) = ∅.

Finally, observing that E = K − (K − E) by Proposition 1, this is also equivalent
to

$
K−E
i (τ − δ) 
= ∅ ⇐⇒ $Ei (δ) = ∅.

if δ − ei ≥ α (i.e. (τ − δ)+ ei ≤ τ − α). ��
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The next corollary gives the necessary equivalent conditions for the main
Theorem 4.

Corollary 2 Let S be a good semigroup,E ∈ GS , and α ∈ DS with μE ≤ α ≤ γ E .
Let K be the canonical ideal of S. Then the following are equivalent:

(i) d(Dμ
E

S \E) = d((K − E)\Dγ−μES ).

(ii) d(E\EγE) = d(Dμ
E

S \DγES )− d((K − E)\(K − E)γ−μE).
(iii) For every i ∈ {1, . . . , s} such that α + ei ≤ γ E ,

$
E

i (α) 
= ∅ ⇐⇒ $K−Ei (τ − α) = ∅.
(iv) For every i ∈ {1, . . . , s} such that α − ei ≥ μE ,

$
K−E
i (τ − α) 
= ∅ ⇐⇒ $Ei (α) = ∅.

Proof First of all observe that by additivity (see Lemma 1)

d(Dμ
E

S \E) = d(Dμ
E

S \DγES )− d(E\DγES ).

AsDγ−μ
E

S = (K−E)γ−μE andEγ
E = DγES , (i) is equivalent to (ii). Now observe

that by Lemma 2(c) and Remark 3, (ii) is the same as

d(Eμ
E\EγE ) = d(Dμ

E

S \DγES )− d((K − E)γ−γ E\(K − E)γ−μE ).
The claim follows then trivially from Proposition 6 with α = μE and β = γ E . ��
Remark 4 Let R be an admissible ring and E a fractional ideal of R. Set S = �R
and E = �E. Then Remark 3 and Proposition 3 imply Corollary 2(i).

4 Symmetry of the Poincaré Series

We now come to the main results of this paper. Let us first define the main objects
of study, i.e. the Poincaré series.

For every J ⊆ {1, . . . , s}, we denote eJ =∑j∈J ej .
The following definition was given in [12]:

Definition 11 Let R be an admissible ring, and let E be a fractional ideal of R. We
define

�E(α) := �(Eα/Eα+1), LE(t) :=
∑

α∈DS
�E(α)t

α,

where t = (t1, . . . , ts ), and tα = tα1
1 · · · tαss .
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The Poincaré series of E is

PE(t) := LE(t)
s∏

i=1

(ti − 1).

We give an analogous definition for good semigroup ideals:

Definition 12 Let S be a good semigroup, and let E ∈ GS . We define

dE(α) := d(Eα\Eα+1), LE(t) :=
∑

α∈DS
dE(α)tα.

The Poincaré series of E is

PE(t) := LE(t)
s∏

i=1

(ti − 1).

Remark 5 Let R be an admissible ring, and let E be a fractional ideal of R. Then
Lemma 3 and Proposition 4 yield L�E(t) = LE(t), and in particular P�E(t) = PE(t).

The Poincaré series can be written in a more compact fashion.

Lemma 8 Let S be a good semigroup, and let E ∈ GS . We define

cE(α) :=
∑

J⊆{1,...,s}
(−1)|J c| dE(α − eJ )

where J c denotes the complement of J in {1, . . . , s}. Then the Poincaré series can
be written as

PE(t) =
∑

α∈DS
cE(α)tα.

Proof Observe that

s∏

i=1

(ti−1) =t1 · · · ts+(−1)1
∑

i1<···<is−1

ti1 · · · tis−1+ · · · +(−1)s−1
s∑

i=1

ti+(−1)s

=
∑

J⊆{1,...,s}
(−1)|J c|teJ .
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Hence

PE(t) =
∑

α∈DS
dE(α)tα

s∏

i=1

(ti − 1) =
∑

α∈DS
dE(α)tα

∑

J⊆{1,...,s}
(−1)|J c|teJ

=
∑

α∈DS

∑

J⊆{1,...,s}
(−1)|J c| dE(α)tα+eJ =

=
∑

α∈DS

∑

J⊆{1,...,s}
(−1)|J c| dE(α − eJ )tα =

∑

α∈DS
cE(α)tα.

The next lemma is necessary to prove Proposition 7.

Lemma 9 Let S be a good semigroup, E ∈ GS , and β ∈ DS . If βi + 1 < μEi or
βi > γ

E
i , then dE(β) = dE(β + ei ).

Proof Let β = β(0) < β(1) = β + ei < · · · < β(s) = β + 1 < β(s+1) = β + ei + 1
be a saturated chain in DS , where β(j+1) = β(j) + ej for all j ∈ {1, . . . , s} \ {i}.
Then by definition of dE(β) and by additivity of the distance (see Lemma 1) we
have

dE(β) = dE(Eβ\Eβ+1) =
s−1∑

j=0

dE(Eβ
(j)\Eβ(j+1)

).

On the other hand we have

dE(β + ei ) = dE(E
β+ei\Eβ+ei+1) =

s∑

j=1

dE(E
β(j)\Eβ(j+1)

).

Therefore

dE(β + ei )− dE(β) = dE(Eβ
(s)\Eβ(s+1)

)− dE(Eβ
(0)\Eβ(1))

= dE(Eβ+1\Eβ+ei+1)− dE(Eβ\Eβ+ei ).

By Lemma 5 we know that

dE(Eβ\Eβ+ei ) = 1 ⇐⇒ $
E

i (β) 
= ∅.

and

dE(E
β+1\Eβ+ei+1) = 1 ⇐⇒ $

E

i (β + 1) 
= ∅.
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If βi + 1 < μEi , then also βi < μEi , and therefore $
E

i (β) = $
E

i (β + 1) = ∅.
This yields dE(β + ei )− dE(β) = 0. On the other hand, when βi > γEi , then also

βi + 1 > γEi and $
E

i (β) 
= ∅, $
E

i (β + 1) 
= ∅. This implies dE(Eβ\Eβ+ei ) =
dE(Eβ+1\Eβ+ei+1) = 1, and thus once again dE(β + ei )− dE(β) = 0. ��

We can now prove that the Poincaré series of a good semigroup ideal is in fact a
polynomial.

Proposition 7 Let S be a good semigroup, and let E ∈ GS . Then PE(t) is a
polynomial.

Proof The goal is to prove that cE(α) 
= 0 only if μE ≤ α ≤ γ E . Suppose there
exists an i such that αi < μEi . Consider J ⊆ {1, . . . , s}. It is not restrictive to
consider i 
∈ J (otherwise we can consider J \ {i}). Notice that if α − eJ∪{i} = β,
then α − eJ = β + ei . Since αi < μEi , then μEi > (α − eJ )i = (β + ei )i = βi + 1.
So by Lemma 9, we have

dE(α − eJ∪{i}) = dE(α − eJ ).

The same is true similarly if i is such that αi > γEi . Therefore when α 
∈ {β | μE ≤
β ≤ γ E}, for each J ⊆ {1, . . . , s} there exists a J ′ ⊂ {1, . . . , s} (either J ∪ {i} or
J \ {i}) such that

dE(α − eJ ′) = dE(α − eJ )

and |J | = |J ′| ± 1. Hence these terms annihilate each other in the sum

∑

J⊆{1,...,s}
(−1)|J c| dE(α − eJ ),

so that cE(α) = 0 for all α 
∈ {ζ | μE ≤ ζ ≤ γ E}.
Thus PE(t) is a polynomial. ��
Finally, we are ready to prove our main theorem.

Theorem 4 Let S ⊆ N
s be a good semigroup, γ its conductor, and let E ∈ GS .

Let K be the canonical ideal of S. If one of the equivalent conditions of Corollary 2
holds, then the Poincaré polynomials of E and K − E are symmetric:

PK−E(t) = (−1)s+1tγ PE

(
1

t

)
.
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Proof By Lemma 8, PK−E(t) =∑α∈DS cK−E(α)tα , while

(−1)s+1tγ PE

(
1

t

)
=(−1)s+1tγ

∑

β∈DS
cE(β)t−β

=
∑

β∈DS
(−1)s+1cE(β)tγ−β

=
∑

α∈DS
(−1)s+1cE(γ − α)tα.

Therefore the claim is equivalent to

cK−E(α) = (−1)s+1cE(γ − α).
If α 
∈ {ζ | μE ≤ γ − ζ ≤ γ E} = {ζ | γ − γ E ≤ ζ ≤ γ − μE} then cK−E(α) =
cE(γ −α) = 0 by proof of Proposition 7. So we can assume γ −γ E ≤ α ≤ γ −μE .

Now let α = γ − β. Then μE ≤ β ≤ γ E . As the equivalent conditions of
Corollary 2 are satisfied, for any δ such that μE ≤ δ ≤ γ E with δ + ei ≤ γ E ,

$
E

i (δ) 
= ∅ if and only if $K−Ei (τ − δ) = ∅. In particular, for any δ with μE ≤
β − 1 ≤ δ ≤ β ≤ γ E , $

E

i (δ) 
= ∅ if and only if $K−Ei (τ − δ) = ∅. Hence by

Proposition 6, d(Eβ−1\Eβ) = d(Dβ−1
S \DβS ) − d((K − E)γ−β\(K − E)γ−β+1).

Now recalling that α = γ − β we have d(Eγ−α−1\Eγ−α) = d(Dγ−α−1
S \Dγ−αS )−

d((K − E)α\(K − E)α+1). As d(Dγ−α−1
S \Dγ−αS ) = dDS (γ − α − 1, γ − α) = s,

this translates to

dK−E(α) = s − dE(γ − α − 1),

for any γ − γ E ≤ α ≤ γ − μE with α + 1 ≤ γ − μE . Then

cK−E(α) =
∑

J⊆{1,...,s}
(−1)|J c| dK−E(α − eJ )

=(−1)s
∑

J⊆{1,...,s}
(−1)|J |(s − dE(γ−α−1+eJ ))

=(−1)ss
∑

J⊆{1,...,s}
(−1)|J | + (−1)s+1

∑

J⊆{1,...,s}
(−1)|J | dE(γ−α−1+eJ )

=(−1)ss
s∑

i=0

(−1)i
(
s

i

)
+ (−1)s+1

∑

J⊆{1,...,s}
(−1)s+|J c| dE(γ−α−eJ c )

=(−1)s(1− 1)s + (−1)s+1cE(γ − α)
=(−1)s+1cE(γ − α).

Hence the claim. ��
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As a corollary, we obtain a generalization of Pol’s result [12, Proposition 2.25].

Corollary 3 Let R be an admissible ring, E a fractional ideal of R and K a
canonical ideal of R such that R ⊆ K ⊆ R. Set E = �E andK = �K. Then:

PK−E(t) = (−1)s+1tγ PE

(
1

t

)
.

Proof It follows immediately from Remarks 4 and 5, and Theorem 4. ��
Remark 6 Remark 4 shows that the equivalent conditions of Corollary 2 are true in
the value semigroup case. It remains the question whether they are always satisfied.
If not, they could represent a step forward in characterizing the class of value
semigroups inside the bigger class of good semigroups.
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A Short Proof of Bresinski’s Theorem on
Gorenstein Semigroup Rings Generated
by Four Elements

Kei-Ichi Watanabe

Abstract Let H = 〈n1, . . . , n4〉 be a numerical semigroup generated by four
elements, which is symmetric and let k[H ] be the semigroup ring of H over a
field k. H. Bresinski proved in Bresinsky (Manuscripta Math 17:205–219, 1975)
that the defining ideal of k[H ] is minimally generated by three or five elements.
We give a new short proof of Bresinski’s Theorem using the structure theorem of
Buchsbaum and Eisenbud on the minimal free resolution of Gorenstein rings of
embedding codimension 3.

Keywords Gorenstein rings · Symmetric semigroups · Minimal free resolutions

1 Basic Concepts

Let H = 〈n1, . . . , n4〉 be a numerical semigroup generated by four elements. We
denote

F(H) = max{n ∈ Z | n 
∈ H }

the Frobenius number of H and N = ∑4
i=1 ni . We call H symmetric if for every

n ∈ Z, n ∈ H if and only if F(H) − n 
∈ H . Let k[H ] be the semigroup ring
of H over a field k and S = k[x1, . . . , x4] be the polynomial ring over k in the
indeterminates x1, . . . , x4. It is known by Kunz [4] that H is symmetric if and only
k[H ] is Gorenstein. Let π : S → k[H ] be the surjective k-algebra homomorphism
with π(xi) = tni for i = 1, . . . , n. We consider S as a graded ring putting deg(xi) =
ni so that π preserves the degree. We denote by IH the kernel of π . If we assign to
each xi the degree ni , then with respect to this grading, IH is a homogeneous ideal,
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generated by binomials. We denote by μ(IH ) the minimal number of generators of
IH . A binomial φ =∏ei=1 x

αi
i −
∏e
i=1 x

βi
i belongs to IH if and only if

∑e
i=1 αini =∑e

i=1 βini . A semigroupH is called a complete intersection if IH is generated by a
regular sequence. This condition is equivalent to say that μ(IH ) = 3.

We define αi to be the minimal positive integer such that

αini =
4∑

j=1,j 
=i
αij nj . (1)

Thus fi = xαii −
∏4
j=1,j 
=i x

αij
j (i = 1, 2, 3, 4) is a minimal generator of IH .

The purpose of this note is to give a short proof of Bresinski’s Theorem;

Theorem 1.1 ([2]) Assume that H is symmetric generated by four elements. If
k[H ] is not a complete intersection, then μ(IH ) = 5. ��

For the proof we let

F• = [ 0 → F3 → F2
d2→ F1

d1→ F0 = k[H ] → 0 ]

be the graded minimal free resolution of k[H ] over S. Note that “H is symmetric”
is equivalent to say “k[H ] is a Gorenstein ring”. We denote r = μ(IH ) = rankF1,
φ1, . . . φr be free basis of F1 and we put fi = d1(φi) ∈ IH so that f1, . . . , fr are
minimal generators of IH . We always assume that each fi is a binomial.

Let us summarize known results about F•.

Theorem 1.2 ([3, 5])

(1) Since k[H ] is Gorenstein with a-invariant a(k[H ]) = F(H), F3 ∼=
S(− F(H) − N) and F• is self-dual in the sense that there is an isomorphism
HomS(F•, F3) ∼= F•.

(2) r is an odd number.
(3) LetM = (mij ) be the r by r matrix corresponding d2 : F2 → F1. Then we can

choose the bases of F2 and F1 so thatM is a skew-symmetric matrix.
(4) Let {e1, . . . , er } be the free basis of F2 so that d2(ei) = ∑rj=1mijφj . Then if

M(i) denotes the (r − 1) × (r − 1) matrix obtained by deleting i-th row and
i-th column of M , then fi is obtained as the Pfaffian of M(i) and deg(ei) =
F(H)+N − deg(fi). Namely, Det(M(i)) = f 2

i .

Note that if the i-th row ofM is (mi1, . . . ,mir ), then we have

(∗)
r∑

i=1

mijfj = 0.
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2 The Proof

Now we will give a proof of Theorem 1.1 using Theorem 1.2.
Renumbering the minimal generators {f1, . . . , fr } of IH , we can assume fp =

x
αp
p − qp, where qp is a monomial of {x1, . . . , x4} \ {xp} (p = 1, . . . , 4). (We will

show in Remark 2.3 that if some minimal generator of IH is of the form x
αp
p − xαqq

then H is a complete intersection. Thus we can assume that fi = −fj (1 ≤ j <
j ≤ 4) does not occur. ) Hence, for p ≥ 5, fp is of the form

(∗∗) fp = xai xbj − xckxdl (a, b, c, d > 0) (p ≥ 5)

for some permutation {xi, xj , xk, xl} of {x1, x2, x3, x4}.
Now we will show that r = 5. So, we assume r ≥ 7 and get a contradiction. The

next lemma will be the key of our proof.

Lemma 2.1 If s, t ≥ 5 and s 
= t , then ms,t = 0. ��
Proof Assume ms,t 
= 0 with deg(ms,t ) = h ∈ H+. Then we will have

deg es = F(H)+N − deg(fs) = h+ deg(ft )

or

F(H)+N = h+ degfs + degft .

Since s, t ≥ 5, fs, ft are of the form (**) and we can take the expression

h+ deg fs =
4∑

i=1

aini

so that 3 ai’s among 4 are positive. If some aj = 0, then we can choose expression
of degft so that the coefficient of nj is positive.

That means F(H)+N = h+ degfs + degft ≥H N , where we denote a ≥H b
if a − b ∈ H . Then we get F(H) ∈ H , a contradiction ! ��
Corollary 2.2 r ≤ 7. ��
Proof Assume r ≥ 9. We know that f1 is the Pfaffian of the matrixM(1). Then by
Lemma 2.1, we can see Det(M(1)) = 0 because ms,t = 0 if s, t ≥ 5, ��
Remark 2.3 Assume IH has a minimal generator of the form x

αp
p − xαqq . Then we

can assume fp for p ≥ 4 is of the form (**). Then above argument shows that
ms,t = 0 for s, t ≥ 4. Now, if r = 7, then Det(M(1)) = 0 since it contains a 4 × 4
0 matrix in it. Thus to show r ≤ 5 we can assume there is no minimal generator of
IH of type x

αp
p − xαqq . ��
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Proof (Proof of Theorem 1.1) Let us continue the proof of the Theorem 1.1. We
assume r = 7 and deduce a contradiction.

We must have f1 = x
α1
1 − q1 as the Pfaffian of M(1). Now we know by

Lemma 2.1 that if s, t ≥ 5, ms,t = 0. Let N(1) be 3 × 3 matrix which is 2–4
rows and 5–7 columns of M . Then we must have Det(N(1)) = ±(xα1

1 − q1). That
means, for every s, 2 ≤ s ≤ 4, there should exists t with 5 ≤ t ≤ 7 such thatms,t is
a power of x1. Namely, there should be at least three components that are a power
of x1.

Since the same should be true for x2, . . . , x4, there should be 3 × 4 = 12
components in 1–4 rows and 5–7 columns. Namely we get

Claim Every (s, t) component of M with 1 ≤ s ≤ 4 and 5 ≤ t ≤ 7 is a power of
some xi and consequently 
= 0. ��

On the other hand, assume, say, f1 = xα1
1 − xb2xc3 with b, c > 0 and also ft =

xa1x
d
4 − xb

′
2 x

c′
3 for some a, b′, c′, d > 0 and 5 ≤ t ≤ 7. Thenm1,t should be 0, since

otherwise

F(H)+N = h+ degf1 + deg ft = h+ an1 + b′n2 + c′n3 + dn4 ≥H N,

which will lead to F(H) ∈ H . A contradiction! Hence Claim 2 will lead to a
contradiction.

Hence we get a contradiction from r = 7 and hence μ(IH ) = 5 if H is not a
complete intersection. ��
Remark 2.4 If r = 5, we can show that IH has no minimal generator of the form
x
αp
p − xαqq . Indeed, assume that f1 = xa1 − xb2 , f2 = xc3 − q3, f3 = xd4 − q4 for

some monomials q3, q4 and f4, f5 are of the form (**). The above argument shows
m4,5 = m5,4 = 0 and Det(M(1)) = (xa1−xb2 )2. That means,mi,j are some power of
x1 or x2 for (i, j) = (2, 4), (2, 5), (3, 4), (3, 5). Then it is easy to see it is impossible
to get a power of x3 in Det(M(2)), which contradicts Det(M(2)) = (xc3 − q3)

2. ��
Corollary 2.5 If IH has an element of type x

αp
p − xαqq as a minimal generator, then

H is a complete intersection. ��
Remark 2.6 If r = 5, we can deduce the form of M by our argument. For a
monomialm of {x1, . . . , x4}, let

supp(m) = {xi |xi divides m}.

We show that, if we put fi = x
αi
i − qi (i = 1, . . . , 4) and f5 = q5 − q6, then

we can show that supp(qi) (i = 1, . . . , 6) are all different and supp(qi) consists of
2 variables. Also, if fi = x

αi
i − qi, fj = x

αj
j − qj with supp(qi) ∪ supp(qj ) =

{x1, . . . , x4}, we show that mi,j = 0 = mj,i and these are the only 0 of M except
diagonals. Once we have proved these facts, we have exactly 16 = 52−5−4 non-0
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entries ofM and they are powers of some xi , hence we can deduce the matrix

⎛
⎜⎜⎜⎜⎜⎝

0 −xα43
3 0 −xα32

2 −xα24
4

x
α43
3 0 x

α14
4 0 −xα31

1
0 −xα14

4 0 −xα21
1 −xα42

2
x
α32
2 0 x

α21
1 0 −xα13

3
x
α24
4 x

α31
1 x

α42
2 x

α13
3 0

⎞
⎟⎟⎟⎟⎟⎠

in Theorem 4 of [1].
Since Det(M(1)) = (xα1

1 − q1)
2, there should be at least a power of x1 in rows

2, 3, 4, 5. Since Det(M(i)) = (xαii − qi)2 for i = 2, 3, 4, mi5 is a power of some
xk, k 
= i and a power of every xk (1 ≤ k ≤ 4) should appear as some m5i . Also we
have

(∗ ∗ ∗)
4∑

1=1

mi5fi = 0.

If, say, supp(q1) has 3 variables, then we will havem15 = 0, since then we will have
degf1 + deg f5 ≥H N . Then we must have m51 = 0, contradicting observation
above. Thus we know that every qi contains exactly 2 variables.

From (***) we know that if m15 = xpj , then q1 is of the form q1 = xsj q ′1, where
we must have αj = p + s. Thus changing the order of variables, if necessary, we
may assume f1 = xα1

1 − xα13
3 x

α14
4 andm51 = xp4 . Then we have p+ α14 = α4 since

m54x
α4
4 must cancel with xp4 x

α13
3 x

α14
4 and we must have m54 = xα13

3 . Then xα13
3 q4

must cancel with m53x
α3
3 . Thus we have

q1 = xα13
3 x

α14
4 , q2 = xα21

a x
α24
4 , q3 = xα31

1 x
α32
2 , q4 = xα42

2 x
α43
3

and m51 = xα24
4 ,m52 = xα31

1 ,m53 = xα42
2 ,m54 = xα13

3 with α1 = α24 + α21, α2 =
α32 + α42, α3 = α13 + α43, α4 = α24 + α14. We notice that m13 = m24 = 0 since
degf1 + degf3, deg f2 + degf4 ≥H N and we can fill in the other parts of M by
mi5 = m5i and

∑
mijfj = 0. ��
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