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5.1 INTRODUCTION

One of the main advantages of robo-advisory is the ability to offer a large
number of investors automated and thus cost-efficient asset management
that can still be tailored to the client’s needs to a certain extent. The
easy scalability combined with high individuality (compared to the still-
dominant standard solutions for retail customers) is one of the great
strengths of robo-advisory solutions (Bankenverband 2017). To take full
advantage of these benefits, all the components of a robo-advisory platform
must work together as effectively as possible. This, in turn, places demands
on investment strategies that can be used in this context. It makes sense
to favor concepts that are both automated and rule based and which can
be easily parameterized to reflect individual client requirements. This is
the only way to derive full benefit from the scaling advantages offered by
robotics (Lam 2016).

When comparing robo-advisors with independently managed security
accounts or (conventional) professional investment advisors, the benefits
typicallymentioned include the following: low costs, focus on risks, technology
instead of emotions, and transparency. All four points can be attributed
to automation benefits: As in other industries, automation also leads to
a reduction in costs, as labor now represents the largest cost item in many
areas. Risks, in turn, can only be quantified and controlled by financial
mathematical models and calculations. This process is inherently linked to
the use of computers and thus predestined to be part of robo-advisory.

The consistent and systematic adherence to an investment approach
is significantly facilitated by a purely rule-based and thus technically
mappable approach. The typical errors in investor behavior can also be
greatly mitigated by the systematic use of smart, stringent approaches.
One of the frequently observed but avoidable investor mistakes is to
exit from a long-term successful systematic approach “at an inopportune
time”. An investment strategy that is understood and “supported” in its
decisions thus helps investors to stay “on board” even in difficult market
phases and to avoid logging in losses. Experience has shown that this
advantage of a strictly rule-based and transparent investment strategy is
often underestimated. If the investor has understood the basic rules of the
investment strategy, he will be able to understand the strategy’s behavior
(and is outcome) in different market phases and will therefore be able to
stick with the strategy even in difficult times, which in turn is important for
the success of the investment in the long term. All four of these advantages
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originate from a common source and can ultimately be traced back to
a largely automated use of algorithm-based investment decisions. Since
robo-advisory is based on highly automated software platforms, it would
be downright wasteful not to take advantage of the resulting benefits at
the heart of the investment strategy itself (Lam 2016). We will, therefore,
next take a closer look at this aspect.

5.2 WHAT STRATEGIES ARE SUITABLE FOR
ROBO-ADVISORY?

To capitalize on the benefits offered by the technology, investment strate-
gies are required that integrate seamlessly with existing technology and
have the same structural benefits. From this point of view, purely quanti-
tative strategies form part of a robo-advisory as the entire process can then
be designed “from a single source”. In principle, discretionary investment
strategies can also be successfully used in asset management. Discretionary
strategies, on the other hand, move between the following two poles, that
is, hybrids are also possible:

Individual
Every portfolio manager makes investment decisions solely for “his”
portfolios. This can mean that portfolio manager A increases the equity
allocation at a given point in time, for example while his colleague B
reduces it on the same day. From the company’s perspective, this approach
offers a considerable advantage: the diversification resulting from this
organizational structure reduces the likelihood that all portfolios will
perform poorly at the same time and lead to overall client dissatisfaction
with the risk of concentrated cash outflows. However, a certain herd
mentality of the formally independent fund managers cannot be ruled out
even with this form of organization, as it is well known that it feels more
comfortable to wander with the masses than to wander alone. Only purely
quantitative processes are immune to such emotional appraisal processes.

In-House Strategy
An investment committee sets guidelines for the currently supported
investment allocation, right up to uniform model portfolios, which must
be implemented by all in-house fund managers. Diverging performances
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of individual portfolios from the same company are thus avoided, but so
are the benefits of style diversification.

The short outline of the two approaches already shows that in the
context of a robo-advisory, only the second variant would be considered, if
at all: uniform model portfolios that serve to control individual securities
accounts by mapping them one-to-one. Although such an approach can
actually be implemented, it is considerably more expensive than a purely
quantitative solution, since the investment process used for controlling
would have to be set up in an entirely discretionary manner, with all the
associated disadvantages on the cost side. The cost advantages resulting
from a larger number of target portfolios per sample portfolio are already
being used today in asset management for smaller portfolios. The last step
toward automation is no longer being taken here. However, fund-linked
asset management with a small number of discretionarily managed funds
of funds, to which the client portfolios are then allocated based on risk
appetite, are already consistent with the solution outlined above. When
“porting” to a robo-advisor platform, only the front end to the client
would change: the investment advisor who makes the selection on behalf
of the client on the basis of a predefined list of criteria would be replaced
by the robo-platform. A further disadvantage of the discretionary solution
approach lies in the limited transparency: although the investment deci-
sions of the investment committee can be published, a uniform approach
across all times and personnel changes cannot realistically be guaranteed.
This circumstance will sooner or later have a negative impact on portfo-
lios with very long-term horizons, for example for retirement provision
purposes, since the investor’s reasons for deciding on a certain model
portfolio may have become obsolete over the years due to changes in the
discretionary process. The disadvantages of discretionary approaches in the
context of robo-advisory are that the degrees of transparency, continuity,
and cost-efficiency that can be achieved with quantitative approaches can
never be fully achieved. Quantitative approaches with transparent rules
show their strengths precisely here (Satchell 2003): once an algorithm
has been set up, it only requires comparatively inexpensive maintenance
at runtime, while the discretionary approach relies on the ongoing work
of a (cost-intensive) investment committee. As quantitative rules consist
of a fixed, always identical set of rules, they can be made transparent to
the investor to an arbitrary degree. Only copy protection, which is not
achievable by law, will set limits here in practice, but not the investment
strategy per se. An investment strategy that, for example, is decidedly
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aimed at seeking the same risk contributions per asset class at all times
will continue to do so even after 10 or 20 years, that is, the advantage in
terms of continuity, in addition to the transparency advantage, results in
a type of “accompanying advantage” over the discretionary approach. We
will therefore deal with purely quantitative approaches and identify those
particularly suitable for use as part of robo-advisory.

5.3 WHAT QUANTITATIVE APPROACHES DOES THE
ROBO-ADVISORY MODEL OFFER?

Robo-advisory services take advantage of automated processes—it is
important to pursue this idea consistently right down to the investment
strategy. However, not every rule-based approach is equally suitable
for use in a fully automated implementation. There are many technical
approaches that evaluate historical price patterns and draw conclusions
about the current market situation. A simple example would be the use of
moving averages to determine entry and exit times for any given market
(Brock et al. 1992). Such approaches can be very successful in practice.
However, they are not based on a strictly scientific basis, but on the
use of a (mathematically formulated) heuristic. In order to do this, the
so-called back tests are carried out, but their prognostic significance or
temporal stability is often not given. Here, too, “post-optimization” must
be carried out on an ongoing basis in the future, at the strategic level
rather than at the portfolio level. These strategies thus come close to
discretionary strategies, with all the advantages and disadvantages already
mentioned above, especially in terms of transparency and continuity.
In order to take full advantage of the aforementioned options that are
available in robo-advisory, the strategies used must therefore also have a
high degree of stability over time (Meucci 2009; Grinold and Kahn 2012).
Risk models satisfy this requirement, while return forecasting models have
to be revised regularly and they are also disadvantageous in terms of the
required transparency.

For this reason, we want to focus primarily on quantitative approaches
that make do with pure risk management and do not include return
forecasts in the optimization process.What strategies fall into this category?
First of all, these are all quasi-stationary strategies in which only a regular
rebalancing (practical adjustment frequencies range from weekly to annual)
is carried out according to a fixed rule. This fixed rule can be, for
example, an equal weighting or a weighting based on market capitalization.



76 T. RUEHL

Such strategies have been devised to be highly transparent and easy to
implement. The latter point, however, ensures that these strategies can also
be easily “replicated”, and thus they will always be subject to increased price
pressure. From the provider’s perspective, more sophisticated approaches
should not only be aimed at benefiting the investor. Thanks to the
automated platforms, however, such more sophisticated approaches can be
implemented with comparatively little additional cost. Added value for the
client can be achieved, for example, through the following objectives:

• Maximization of the diversification effect
• Equal distribution of risks to the investment instruments contained in
the portfolio

• Risk minimization
• Adherence to lower value limits
• Specification of a risk preference by choosing a target investment
period

5.3.1 Maximization of the Diversification Effect

The old stock market wisdom of not putting all your eggs in one basket
is often cited, but too often not consistently followed. To be clear: Many
baskets are also of little use if they are mounted on the same bike rack
and the whole bike tips over. It will be difficult to achieve a noticeable
stabilization of the portfolio through diversification effects with equities
from a single sector. A necessary but not yet sufficient prerequisite for
a well-diversified portfolio is, therefore, an investment universe that not
only consists of highly correlated components, but also makes targeted
use of those with low or even negative correlations. The more the com-
ponents differ, the greater is the chance that even in times of crisis
the portfolio can be effectively hedged through opposing developments.
Such a well-diversified investment universe is, therefore, also a necessary
prerequisite for the construction of risk-controlled portfolios on robo-
advisor platforms. However, this is only half the battle. The main audience
for robo-advisor platforms are private investors who are unlikely to have any
experience with investment mathematics. This is where the robo-advisor
platform can demonstrate its strengths, for example, by determining the
mixing ratio of the components for the available part of the investment
universe, where the diversification effect is greatest. This approach can be
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formulated mathematically and transformed into an optimization problem
(Choueifaty and Coignard 2008). All you have to do is maximize the
diversification ratio DR, which can be determined as follows:

max
wi

DR = max

∑N
i=1 wi · σi

σp

(5.1)

given the boundary conditions

N∑

i=1

wi = 1

and
wi ≥ 0 ∀ i = 1, . . . , N

with wi as weight of asset i within the portfolio, σi as volatility of asset i, σp

as portfolio volatility, andN as number of assets. Or, put in another way, the
diversification ratio can be expressed as portfolio risk without diversification
divided by portfolio risk with diversification. Hence, the weighted sum
of asset risk divided by the total portfolio risk equals the maximum
diversification ratio DR at its peak. In this type of portfolio optimization,
the ratio of the weighted individual risks of the asset classes (excluding
diversification) to the actual portfolio risk (i.e. including diversification) is
maximized. This process in the two-asset case can be illustrated as displayed
in Fig. 5.1. If the two axes are swapped and the diversification ratio is also
plotted, then the point you are looking for in the graph can be read directly
as the maximum (see Fig. 5.2). The advantage of a portfolio structured
in this way is that it has the highest risk-adjusted diversification effect of
all portfolios that can be built from the investment universe (Choueifaty
et al. 2013). Elements from the investment universe that diversify well
are highly rewarded, even if, in themselves, they might not have been
considered when using other portfolio structuring techniques (such as
variance minimization) due to their volatility, which may be somewhat
higher.
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Fig. 5.1 Diversification effect

Fig. 5.2 Diversification ratio shows maximum at 2.0
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5.3.2 Equal Distribution of Risks to the Investment Instruments
Contained in the Portfolio

The maximum diversification approach described above not only optimizes
the allocation weightings based on this target, but also implicitly selects
the investment instruments from the investment universe, that is, not all
available instruments are necessarily included in the portfolio. This can
frustrate some investors who have actively chosen a number of instruments
and are now disappointed not to find them all in their portfolio. In this case,
there is a way to ensure that all previously selected instruments are actually
included in the portfolio, while maintaining a balance between them in
terms of risk. This method therefore assigns the same risk contribution to
all instruments that are to be found in the portfolio. Portfolios built in this
way have become quite popular in recent years and are referred to as “risk
parity” portfolios. With risk parity, the portfolio is optimized in such a way
that all instruments have the same contribution to the total risk (Teiletche
et al. 2010).

PCT Ri = ACT Ri

σp

= 1
N

∀ i = 1, ..., N (5.2)

where N is number of assets, σp is portfolio volatility, ACT Ri is absolute
contribution to total risk of asset i, and PCT Ri is percentage contribution
to total risk of asset i. The advantage of a portfolio built in this way is that
it avoids structural cluster risks. The correlations between the asset classes
and thus their diversification potential are explicitly taken into account.
However, during major financial market crises, the effect can be observed
time and again that investors on a large scale close out risky positions across
markets and regions and withdraw liquidity from the market. As a result,
the correlations between these risky instruments rise abruptly during the
crisis (so-called diversification breakdown). In other words, where there
was protection by diversification at least on paper, when it is needed most
urgently, it is gone.

In order to anticipate this effect of the increasing correlations in
the crisis, a modified approach can therefore be chosen in advance, in
which uniform volatility contributions are allocated instead of uniform
risk contributions. This modification not only protects against unpleasant
surprises during market corrections, but also offers the advantage of easier
computation, as the portfolio weights can be calculated directly without
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having to carry out a (more time-consuming) optimization.

wi · σi ≡ wj · σj ∀ i, j ⇔ wi =
1
σi

∑N
j=1

1
σj

∀ i = 1, , ..., N

(5.3)

with N as number of assets, wi as weight of asset i, and σi as volatility
of asset i. The latter modification retains the advantage of taking into
account all preselected instruments from the investment universe. This also
simplifies the calculation compared to the conventional risk parity method
(as no optimization is required) and makes the portfolio less sensitive to a
“diversification breakdown” at times of crisis.

5.3.3 Risk Minimization

The two purely quantitative approaches described above ensure that either
the potential diversification effect is fully exploited for a given investment
universe or that the risks contained in the portfolio are distributed as evenly
as possible. For particularly risk-averse investors, however, it is advisable to
make portfolios available that minimize the overall portfolio risk (Clarke
et al. 2011):

min
wi

σ 2
p = min

N∑

i=1

N∑

j=1

wi · wj · σi,j

= min
wi

N∑

i=1

w2
i · σ 2

i

︸ ︷︷ ︸
single risk part

+
N∑

i=1

N∑

j=1
i �=j

wi · wj · σi,j

︸ ︷︷ ︸
diversification part

(5.4)

with boundary conditions
N∑

i=1

wi = 1

and
wi ≥ 0 ∀ i = 1, ..., N
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as well as N as number of assets, σ 2
p as portfolio variance, σi,j as covariance

of asset i and j, and wi as weight of asset i.
Portfolios built in this way (generally based on factor models) have

become popular in recent years due to their outperformance in equities. In
theory, however, this portfolio has a serious disadvantage: it is “below” the
capital market line, that is, the combination of a tangency portfolio and the
risk-free investment leads (theoretically!) to the same low risk with higher
expected returns. In practice, however, this disadvantage can be ignored:
as return forecasts are needed to build a tangency portfolio. However,
it is not possible to use historical data to come up with even short-term
forecasts with the same confidence as it is the case with pure risk indicators.
A tangency portfolio calculated using mean-variance optimization is, there-
fore, fraught with such uncertainty that the minimum variance portfolio,
figuratively speaking, still lies within the error bars. The disadvantages that
are relevant in practice are of a different kind: as with the portfolio with
the maximum diversification ratio, even the minimum variance portfolio
does not ensure that all previously selected instruments are included in
the portfolio. In addition, the minimum variance optimization in mixed
portfolios generally leads to a very high share of bonds, because it takes
into account their low volatility, but not their low continuous yield.

5.3.4 Methods Based on Return Forecasts

The methods presented so far are purely risk based, that is, the expected
return forecasts were deliberately omitted in order to circumvent the
associated forecasting error issues. Even if forecast-free strategies have
very advantageous characteristics despite the complete renunciation of
an assessment of the market movement and have already been able to
hold their own on the market (Clarke et al. 2013), it could, nevertheless,
be argued that this in a way throws the baby out with the bathwater,
because to avoid the problems associated with return forecasts, these
have been completely foregone. In the following, therefore, we show
a viable path to conventional portfolio optimization, in which a mean
variance optimization (MVO), according toMarkowitz, is performed using
expected returns (Markowitz 1952):

U = μp − λ · σ 2
p (5.5)
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where μp is expected portfolio return, σ 2
p is portfolio variance, and λ is the

risk aversion parameter.
The uncertainty under which the MVO is optimized takes into account

only the dispersion of market returns, reflecting portfolio volatility σ . The
return estimates for the individual portfolio components, which aggregate
the expected portfolio return μp, are, however, implicitly assumed to
be the exact mean of the distribution. This assumption, which is far
removed from practice, leads to some very undesirable effects in portfolios
optimized in this way: for example, in an MVO, highly correlated assets
are considered perfect substitutes and are played “against each other” due
to small differences in the return estimate, although the actual forecast
error may be of the same magnitude as the estimated return spread. In
other words, what at first glance looks like taking advantage of an arbitrage
opportunity may turn out to be merely reinforcing a forecasting error
ex post. Over time, comparatively small changes in the return estimates,
which in reality, are due to forecasting errors, can lead to allocation leaps
that ultimately rely on artifacts. These disadvantages of the MVO can be
mitigated by a suitable transformation of return estimators. The Black-
Litterman model (Litterman 2003) is, for example, very suitable for this
purpose. The Black-Litterman model supplements the pure MVO with a
process step in which the “raw” return estimators are modified as follows:

• Forecasts for highly correlated markets will be aligned based on
this information. This counteracts the MVO’s ability to treat highly
correlated assets as perfect substitutes from a risk perspective and to
“play them off” against each other in the event of diverging forecasts.

• Forecasts with higher confidence are given a greater consideration
than those with lower confidence. This approach is intuitive. Bor-
derline cases are pure MVO (all forecasts are highly reliable) and a
preselected anchor portfolio (e.g. the investor’s long-term benchmark
portfolio) in the event that no reliable forecasts are available. In turn,
the forecast-free approaches outlined above can be used as an anchor
portfolio, so that in the event of high forecasting uncertainty an
allocation that is advantageous from a pure risk perspective can be
targeted.
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The forecasting quality (confidence) can be determined by a sliding
measurement of the variance of the forecasting errors, implicitly assuming
a certain persistence in the quality of the estimates.

A fundamental disadvantage of forecast-based models, as mentioned at
the beginning, is that return forecast models are associated with increased
maintenance costs compared with pure risk models. However, this can
be limited by picking the right model. Based on our own experience,
the general regression neural network (GRNN), which is an extension
of the probabilistic neural network (PNN) for non-discrete allocations,
is very well suited, as it allows GRNNs to be used to approximate non-
linear correlations such as price forecasts based on economically relevant
variables. The GRNN is based on a very intuitive basic assumption: the
more similar the past explanatory variables are to the current constellation,
the more likely it is that the following price performance will closely
resemble past performance. Another advantage of the GRNN is that only
a single free parameter needs to be determined by optimization. This is the
size of the neighborhood in the weighted approximation. If the chosen
neighborhood parameter is infinitely large, on the one hand, an arithmetic
averaging overall historical events will result. If the chosen neighborhood
parameter, on the other hand, is infinitely small, the GRNN will simply
act as a nearest neighbor estimator. Realistic neighborhood settings will of
course lie between those two extremes.

The GRNN is ideally suited for adaptive forecasts, as each new input
vector (consisting of the currently measured relevant economic variables)
with the corresponding realized market return can be easily integrated into
the existing database, and thus can be immediately fed into the next return
estimate. This approach, therefore, has considerable advantages for robo-
advisory services discussed here. With conventional regression analysis—if
one wanted to use such an adaptive method—it would be necessary to
reestimate the regression coefficients on an ongoing basis or to redevelop
the regression function for every newly added data set completely from
scratch, which would be even more time consuming. A detailed description
of the procedure can be found, for example, in Specht (1991) and Rühl
(2001).
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5.4 DEALING WITH RISK TARGETS

5.4.1 Adherence to Lower Value Limits

The focus on and assessment of risks is rightly considered to be one
of the benefits of robo-advisory services. The strategies presented above
focus on the risk side: either by avoiding cluster risks, by maximizing the
diversification effect, or by minimizing the overall risk. The possibility of
automating a robo-advisor platformmakes it possible to agree an individual
lower value limit at the securities account level. Although lower value
limits in the sense of capital preservation are no longer possible for a
one-year time period due to the current interest rate environment, a
previously accepted loss in value of max. 10%, for example, still represents
a considerable limitation of the loss potential compared with an unsecured
investment.

The maximum loss on the paid-up capital borne by the investor must be
converted into an actual current maximum loss, which takes into account
the previous market performance, that is, a positive market performance
will increase the actual buffer available, while a negative market perfor-
mance will erode part of the buffer. The buffer actually available on the
basis of these two effects (initial buffer + market performance) then defines
the maximum still acceptable value at risk (V aRmax) of the portfolio. If the
actual value at risk (V aRact) threatens to exceed the remaining buffer, the
portfolio will have to become more defensive. The decision-making and
control process that must be carried out continuously (and automatically!)
in such a portfolio is as follows:

• As long as V aRakt ≤ V aRmax applies, the current allocation can
be retained or any safety measures can be resolved until V aRakt =
V aRmax again.

• If, however, as a result of a negative performance or an increase in
market risk with V aRakt > V aRmax, a more defensive allocation must
be selected until V aRakt ≤ V aRmax again. The VaR reduction can be
achieved either by adding liquidity or by choosing a more defensive
but still fully invested allocation.

However, this procedure has one distinct disadvantage: the lower the
available risk buffer, the higher is the probability that the portfolio will
have to be completely removed from all risky investments (the so-called
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cash lock). Especially with long investment periods, it can happen that
while the investment period, which is still available for value growth, can
no longer be used, the portfolio remains “logged in” to the maximum loss.
In other words, although it is technically feasible and even practicable at
a reasonable cost to protect the value of an individual securities account,
it raises the question of what to do in the case of a cash lock. In the case
of conventional securities accounts, where clients have access to advisors,
a solution can be found through dialogue. However, automated solutions
must be offered as part of robo-advisory services. In the case of a hedging
horizon of one year, a cash lock can, of course, be “paused” until a new
risk buffer is made available again at the beginning of a new calendar
year. If, however, a market reset occurs very early in the year that forces
the portfolio completely out of the market and the market subsequently
recovers, this usually leads to a high disappointment potential, as a negative
portfolio result is offset by a positive annual financial statement at a market
level. Other forms of risk management are available to avoid such potential
conflicts going forward. For a practical implementation of risk targets,
for example, an investment period to be chosen by the investor can be
specified, at the end of which the invested capital is preserved with a
sufficiently high degree of confidence. This takes advantage of the fact that
the risk increase will be sharper than linear in the shorter term, but weaker
in the long term (Danielsson and Zigrand 2006).

5.4.2 Specification of a Risk Preference by Choosing a Target
Investment Period

Instead of working with a maximum loss target, investors can alternatively
choose an investment horizon after which the invested capital is highly
likely to bemaintained at least nominally with a specified level of confidence
(e.g. 95% or 99%). Over this period, the expected return of the portfolio
“applies” and the expected value after this period is well above 0%. This type
of risk target means that the investor is not confronted with very technical
specifications such as the choice of a risk aversion parameter λ or a target
volatility σ and can focus on the essential: a savings target in the future.
Compared to a lower value limit for shorter periods, the advantage of this
approach is that it is immune to the cash lock risk.

The mathematical-technical implementation of this specification takes
place where it can be solved with comparatively little (additional) cost due
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to the existing infrastructure: on the robo-advisor platform. Even if short-
term return forecasts are extremely unreliable, estimates of excess returns
at the asset class level can be made, at least in the long term, with sufficient
confidence for the purpose intended here. In order to calculate the required
investment horizon for a certain allocation, one takes advantage of the
effect that the risk of an investment will increase with the square root of
time, that is, σ ∼ √

t, and it is thus stronger than linear in the short term,
but weaker in the long term.

If one makes a conservative assumption (neglecting the compound
interest effect) of a linear increase in the expected return over time,
you can determine the point of intersection for each selected allocation
and thus the investment period from which you can expect a capital
preservation. This can be done for any confidence level using the z-factor
of choice. If the investment strategies that can be mapped using the robo-
advisory platform are categorized based on their risk/return profiles, it
is possible to filter out from this strategy universe those that achieve the
sufficiently high confidence point before or at the end of the desired
investment horizon. Alternatively or additionally, in the case of mean-
variance-optimized strategies, those risk aversion parameters which satisfy
this condition can be determined.

5.5 RETURN TARGETS AND RISK-BEARING CAPACITY:
NEED FOR INFORMATION

In discussions with investors, it repeatedly becomes clear that the full impli-
cations of the low interest rate environment for the return expectations
of all asset classes are all too often insufficiently understood. As a result,
there are often unrealistically high expected returns on the one hand and
an inappropriate risk bearing capacity on the other. This dual distortion
of expectations results in a high potential for disappointment. Anyone
who pursues a 5% return target and believes they can do so risk-free in
today’s capital market environment will almost inevitably be disappointed.
It is therefore necessary to provide information about the fundamental
relationship between risk and return, which extends beyond regulatory
requirements. This also includes fundamental cause–effect relationships.
This basic understanding then helps in the selection of the investment
strategies or their risk characteristics that are suitable for one’s own
investment needs.
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Because risk premiums are paid relative to risk-free interest, this means
that if risk premiums remain the same, total return expectations must
decrease as the risk-free rate falls across all premium sources. This can
only be compensated by an increased risk premium. According to our own
experience, this is, however, not the case in the current environment. The
low interest rate environment, therefore, not only affects money market-
related forms of investment, but also lowers the realistic expected returns
across all asset classes. Unfortunately, this is only one side of the coin. Due
to the lower expected value, the return distribution as a whole shifts “to
the left”, that is, further into the negative range so that all percentiles in the
negative range are more likely to occur. In other words: while the expected
returns must be adjusted downward, the risk ratios have to be adjusted
upward. These two factors should not be lost on new robo-advisor clients,
who have made their last investment decision “some time ago”.

Actively managed investment strategies may, under favorable circum-
stances, generate up to one percentage point of additional return for each
percentage point of volatility, as a premium to withstand fluctuations. In
the following, we will assess a strategy with an expected return of 2.5% p.a.
and volatility of 3.0%. Even under this optimistic premise, the risk-bearing
capacity required to maintain a confidence level of 99% for a return target
of 2.5% p.a. is just under −4.5% on a one-year view. If a 95% confidence
is sufficient, the risk-bearing capacity drops to −2.4%, but it is statistically
exceeded every 20 years. For example, in the case of a ten-year government
bond, the period during which the risk falls to zero means that after
ten years, the bond is fully repaid. In the case of actively managed asset
management with open maturities, no such risk-free time in the future
can be identified, but as outlined above, one can statistically calculate the
time after which the paid-in capital is retained or available again with a
given confidence. This is done by taking advantage of the risk growing
weaker over time (with normally distributed returns proportional to a root
function of time) and then determining the time when the expected return
will most likely exceed the risk. In order to retain the invested capital with a
high probability and a return target of 2.5%, the investment horizon must
be extended well beyond one year. In the above example, if the probability
of loss over the course of a year is still around 20%, it will fall to just under
12% after two years and to around 3% after five years. After 7.8 years, the
loss probability will only be 1%. However, government bonds with this
residual maturity have a “guaranteed” negative yield. Figure 5.3 shows the
relationship between confidence levels (90%, 95%, and 99%) and minimum
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Fig. 5.3 Risk profile of a portfolio with 3% volatility and 2.5% expected return

investment duration for a defensive investment strategy (assumption: 3.0%
volatility and 2.5% expected return): The solid line intersects with zero
already after 2.4 years, that is, after this time the value at risk has dropped
to 0 at 90% confidence level. It will take the aforementioned 7.8 years for
the dotted line (99% confidence level) to intersect with 0.

To present these relationships to the (potential) investor at an early stage
will also be worthwhile in the long term from the provider’s point of view.
While this may “put off” a few prospective clients in the short term, in the
long term it will ensure a stable client relationship, as this was not entered
into under the premise of unrealistically optimistic assumptions.

5.6 REQUIREMENTS FOR THE INVESTMENT
UNIVERSE AND INSTRUMENTS

The requirements for the investment universe inevitably arise from the
points already discussed. The investment universe must allow for sufficient
diversification so that strategies focused on risk management can leverage
their strengths. In addition, preference should be given to markets that
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can be modeled with sufficient precision using the risk models used on the
platform. For volatility-based risk models, this means that market returns
need to be approximated as normally distributed, which can be assumed in
many liquid markets if the data frequency is not too high. Our own calcula-
tions have shown, for example, that in the current environment corporate
bonds can be described with sufficient accuracy using a parametric value-at-
risk, up to a confidence level of about 97%. However, in the case of higher
confidence levels, the risk is increasingly underestimated when assuming
normally distributed returns. In the case of a volatility-adequate mixture
of equities and government bonds, the risk can be adequately estimated
at the same data frequency with a confidence level of 99% with a (normal
distribution-based) parametric value-at-risk.

In principle, it is possible to use simple (plain vanilla) components as part
of a robo-advisory, which are then “refined” by using the relevant invest-
ment strategy. Although this means abandoning alpha at the component
level. However, this potential disadvantage is offset by the fact that passive
components are not exposed to the dangers of a manager change and can
thus be modeled with a greater degree of confidence. In order to avoid
inducing any further avoidable transactions such as rolling transactions
other than those induced by the investment strategy, exchange-traded
funds (ETFs) are preferable to derivatives despite slight cost disadvantages.

5.7 CUSTOMIZATION BY INVESTORS

Robo-advisory requires a certain prior understanding on the part of the
investor, but can use similar questions as conventional asset managers to
lead the investor to the best possible solution. The investor should be able
to select the following features of the portfolio or investment strategy:

• Investment universe: From the portfolio of available markets, the
investor must be able to choose the markets or ETFs to be included
(or excluded). To facilitate the selection process for less experienced
investors, it is appropriate to define standardized solutions, for exam-
ple German, Eurozone, European or world equities (or bonds).

If different strategy concepts are offered, this also applies analogously at
the strategy level. As a general rule: If forecast-based strategies are used,
they will generally operate on a narrower investment universe than the
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so-called forecast-free strategies. For this reason, the entire robo-platform
investment universe will not be available for every investment strategy. To
avoid overwhelming inexperienced investors, reasonable standard solutions
should also be offered here that reflect the risk categories “conservative”
to “aggressive”. This can either take the form of several portfolios graded
by risk (conservative, balanced, aggressive) or two basic portfolios at the
extreme ends of the risk spectrum (conservative and aggressive), which are
then combined to match the investor’s chosen risk profile. This takes us to
the next point.

• The risk appetite (see also “Risk targets over investment horizons”):
Very few investors are able to specify their risk aversion parameters λ

for a Markowitz-based optimization. A large proportion of the target
audience of a robo-advisory platform will find it difficult to name a
concrete target volatility.

Matters are complicated by the following effect, which can be observed
quite often: Depending on the current market environment, strategies
are often preferred that significantly overburden the investor’s actual risk-
bearing capacity in times of crisis. If such a risky strategy is in the immediate
vicinity of a new all-time high, its inherent risk is typically underestimated,
as “everything has always worked out fine”. If the historical drawdowns,
which can be recognized from the graphically visualized time series, are
then experienced in real time, they are perceived as muchmore threatening:
What if things do not work out fine this time? Often the investment is then
terminated in an untimely manner, and the resulting loss is realized.

It is, therefore, more effective if the investor either specifies the maxi-
mum loss amount or specifies the investment horizon according to which
at least the capital employed is highly likely to be obtained (or recovered).
With the help of these specifications, those strategies can then be presented
for further selection along with their risk characteristics that meet these
conditions with a high degree of confidence. Depending on the complexity
of the platform and the level of professionalism of the investor, a single
standardized solution can be offered at this point, which adheres to both
conditions.
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5.8 SUMMARY

Robo-advisory thrives on automation and quant models enable a high
degree of automation on the strategy side. While quant models can work
well in more conventional environments (this will remain the preferred
choice for institutional investors for the foreseeable future), robo-advisory
and quantitative investment strategies represent a very good structural fit.
The cost savings that robo-advisory offers compared to conventional asset
management can largely be passed on to the investor. This can deliver
added value, especially compared to the highly standardized solutions
for small investors that are otherwise customary on the market. Within
the now broad spectrum of quantitative strategies, however, a distinction
must be made: time-stable, low-maintenance models are preferable, which
implicitly amounts to a renunciation of return forecasts. Strategies from
the field of postmodern portfolio theory are optimal in this respect, which
focus specifically on risk budgeting and/or risk minimization.

The strength of the models described here lies, among other things,
in the control of portfolio risks not previously achieved by less affluent
investors, right up to the specification of maximum loss limits or the
specification of an investment horizon, according to which it is highly
probable that the invested capital will be available again at least nominally.
The models can also be set up in such a way that they are customizable by
the investor within the previously defined framework. The complexity at
the level of the selection process must accommodate the investor’s level of
experience. Less experienced investors should therefore continue to have
access to a manageable number of standardized solutions in the future.
While such standardized solutions are still often the state of play for all
investment groups, the approaches shown here can also appeal to more
demanding investors.
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