
A Hybrid Algorithm for the Unrelated
Parallel Machine Scheduling Problem

Marcelo Ferreira Rego1,2(B) and Marcone Jamilson Freitas Souza1

1 Programa de Pós-Graduação em Ciência da Computação,
Universidade Federal de Ouro Preto (UFOP),
Ouro Preto, Minas Gerais 35.400-000, Brazil

marcone@ufop.edu.br
2 Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM),

Diamantina 39.100-000, Brazil
marcelofr@ufvjm.edu.br

Abstract. This work proposes a hybrid algorithm for the unrelated par-
allel machine scheduling problem with sequence-dependent setup times,
aiming to minimize the makespan. The proposed algorithm, named
Enhanced Smart General Variable Neighborhood Search (e-SGVNS),
combines heuristic and exact optimization strategies to explore the solu-
tion space of the problem. The exact strategy works like a local search
and consists of applying a mathematical programming formulation based
on the time-dependent traveling salesman problem to obtain the opti-
mal solution to the sequencing problem on each machine. In turn, the
heuristic strategy explores neighborhoods based on swap and insertion
moves. The computational results, performed in benchmark instances
from literature, showed that e-SGVNS is competitive when compared to
state-of-the-art algorithms.

Keywords: Unrelated parallel machine scheduling · Makespan ·
VNS · Metaheuristic · Mixed integer linear programming

1 Introduction

The Unrelated Parallel Machine Scheduling Problem with Setup Times
(UPMSP-ST) consists of scheduling a set N of n independent jobs on a set
M of m unrelated parallel machines. Each job j ∈ N must be processed exactly
once by only one machine i ∈ M , and requires a processing time pij . Each
machine can process only one job at a time. In addition, job execution requires
a setup time Sijk, which depends on the machine i and the sequence in which
jobs j and k will be processed. The objective is to minimize the makespan.

The study of the UPMSP-ST is relevant due to its theoretical and prac-
tical importance. From a theoretical point of view, it attracts the interest of
researchers because it is NP-hard, since it is a generalization of the Parallel
Machine Scheduling Problem with Identical Machines [1]. In practical, it is found
in a large number of industries, such as the textile industry [2]. According to
c© Springer Nature Switzerland AG 2020
J. Filipe et al. (Eds.): ICEIS 2019, LNBIP 378, pp. 37–56, 2020.
https://doi.org/10.1007/978-3-030-40783-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40783-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-40783-4_3


38 M. F. Rego and M. J. F. Souza

Avalos-Rosales et al. [3], in a lot of situations where there are different produc-
tion capacities, the setup time of machine depends on the previous job to be
processed [4]. This situation is also found in the manufacture of chemical prod-
ucts, where the reactors must be cleaned between the handling of two mixtures;
however, the time required for cleaning depends on the jobs that were previously
completed [5].

In this work, a hybrid algorithm, named e-SGVNS, is proposed. It is an
improvement of the SGVNS algorithm from Rego and Souza [6]. It is based on
the General Variable Neighborhood Search – GVNS [7] and explores the solu-
tion space through five strategies: swap of jobs in the same machine; insertion
of job on the same machine; swap of jobs between machines; insertion of jobs on
different machines; and an application of a mathematical programming formula-
tion based on the time-dependent traveling salesman problem to get the optimal
solution to the sequencing problem on each machine. The first four strategies
are used as shaking mechanism, while the last three are applied as local search
through the Variable Neighborhood Descent. Unlike SGVNS, the proposed algo-
rithm limits the increase of perturbation level. In addition, it applies MILP to
all machines whose completion time is equal to makespan and not just to a
single machine that meets this condition. This algorithm has been shown to be
competitive when compared to state-of-the-art algorithms.

The remainder of this paper is organized as follows: Sect. 2 gives a brief
review of the literature. In Sect. 3, a mathematical programming formulation
for the problem is presented. In Sect. 4, the proposed algorithm is detailed. The
results are presented in Sect. 6, while in Sect. 7 the work is concluded.

2 Related Work

Santos et al. [8] implemented four different stochastic local search (SLS) meth-
ods for the UPMSP-ST. The algorithms explore six different neighborhoods. The
computational results show that the SLS algorithms produce good results, out-
performing the current best algorithms for the UPMSP-ST. They updated 901
best-known solutions from 1000 instances used for testing.

Arnaout [9] introduced and applied a Worm Optimization (WO) algorithm
for the UPMSP-ST. The WO algorithm is based on the behaviors of the worm,
which is a nematode with only 302 neurons. The WO algorithm was compared to
tabu search (TS), ant colony optimization (ACO), restrictive simulated anneal-
ing (RSA), genetic algorithm (GA), and ABC/HABC. The experiments showed
the superiority of WO, followed by HABC, ABC, RSA, GALA, ACO, and TS
last.

Arnaout et al. [10] proposed a two-stage Ant Colony Optimization algorithm
(ACOII) for the UPMSP-ST. This algorithm is an enhancement of the ACOI
algorithm that was introduced in [11]. An extensive set of experiments was per-
formed to verify the quality of the method. The results proved the superiority
of the ACOII in relation to the other algorithms with which it was compared.

Tran et al. [5] introduced a new mathematical formulation for the UPMSP-
ST. This formulation provides dual bounds that are more efficient to find the



A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem 39

optimum solution. The computational experiments showed that it is possible to
solve larger instances than it was possible to solve with other previously existing
formulations.

A variant of the Large Neighborhood Search metaheuristic, using Learning
Automata to adapt the probabilities of using removal and insertion heuristics
and methods, named LA-ALNS, is presented by Cota et al. [12] for the UPMSP-
ST. The algorithm was used to solve instances of up to 150 jobs and 10 machines.
The LA-ALNS was compared with three other algorithms and the results show
that the developed method performs best in 88% of the instances. In addition,
statistical tests indicated that LA-ALNS is better than the other algorithms
found in the literature.

The UPMSP-ST was also approached by Fanjul-Peyro and Ruiz [13]. Seven
algorithms were proposed: IG, NSP, VIR, IG+, NSP+, VIR+ and NVST-IG+.
The first three are the base algorithms. The following three are improved versions
of these latest algorithms. Finally, the last algorithm is a combination of the
best ideas from previous algorithms. These methods are mainly composed of a
solution initialization, a Variable Neighborhood Descent – VND method [7] and
a solution modification procedure. Tests were performed with 1400 instances
and it was showed that the results were statistically better than the algorithms
previously considered state-of-the-art, which were, [14,15].

A Genetic Algorithm was proposed by Vallada and Ruiz [16] for the UPMSP-
ST. The algorithm includes a fast local search and a new crossover operator.
Furthermore, the work also provides a mixed integer linear programming model
for the problem. After several statistical analyzes, the authors concluded that
their method provides better results for small instances and, especially, for large
instances, when compared with other methods of the literature at the time [17,18].

Rego and Souza [6] proposed the SGVNS algorithm for treating the UPMSP-
ST. It explores the solution space by three strategies of local search: insertion of
jobs in different machines, swap of jobs between machines and an application of a
mixed integer linear programming formulation to obtain optimum scheduling on
each machine. The SGVNS algorithm was tested in 810 instances and compared
to four other literature methods (ACOII, AIRP and LA-ALNS). SGVNS had
better performance when executed in small instances. The results of LA-ALNS
and ACOII were significantly better than the results of SGVNS algorithm. Even
so, SGVNS was superior in 5 groups of instances and able to find best results in
79 of the 810 instances.

3 Mathematical Formulation

This section provides a Mixed Integer Linear Programming (MILP) formulation
for the unrelated parallel machine scheduling problem with sequence-dependent
setup times with the objective of minimizing the makespan. This formulation
was proposed by Tran et al. [5].

In order to introduce this MILP, the parameters and decision variables are
defined and shown in Table 1.



40 M. F. Rego and M. J. F. Souza

The objective function is given by Eq. (1):

min Cmax, (1)

and the constraints are given by Eqs. (2)–(10):

∑

i∈M

∑

j∈N∪{0},
j �=k

Xijk = 1 ∀k ∈ N

(2)
∑

i∈M

∑

k∈N∪{0},
j �=k

Xijk = 1 ∀j ∈ N

(3)
∑

k∈N∪{0},
k �=j

Xijk =
∑

h∈N∪{0},
h�=j

Xihj ∀j ∈ N, ∀i ∈ M

(4)

Ck � Cj + Sijk + pik − V (1 − xijk) ∀j ∈ N ∪ {0},∀k ∈ N, j �= k,∀i ∈ M
(5)

∑

j∈N

Xi0j � 1 ∀i ∈ M

(6)

C0 = 0 (7)
∑

j∈N∪{0},
j �=k

∑

k∈N

(Sijk + pik)Xijk = Oi, ∀i ∈ M,

(8)

Oi � Cmax, ∀i ∈ M,
(9)

Xijk ∈ {0, 1} ∀j ∈ N ∪ {0},∀k ∈ N, j �= k,∀i ∈ M,
(10)

Cj ≥ 0 ∀j ∈ N
(11)

Oi ≥ 0 ∀i ∈ M
(12)

Cmax ≥ 0 (13)

Equation (1) defines the objective function of the problem, which is to mini-
mize the maximum completion time or makespan. Eqs. (2)–(10) define the con-
straints of the model. The constraint set (2) ensures that each job is assigned to
exactly one machine and has exactly one predecessor job. Constraints (3) define



A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem 41

Table 1. Parameters and decision variables of Tran et al. [5] model.

Name Description Type

V A very large constant Parameter

N Set of jobs

M Set of machines

pjk Processing time of job j on machine i

Sijk Setup time required for processing job k ∈ N immediately
after job j ∈ N on machine i ∈ M

Xijk Equal to 1, if job j immediately precedes job k on machine i
and 0, otherwise

Decision
variable

Cj Completion time of job j

Oi Completion time of last job in machine i

Cmax Maximum completion time

that every job has exactly one successor job. Each constraint (4) establishes that
if a job j is scheduled on a machine i, then a predecessor job h and a successor
job k must exist in the same machine. Constraints (5) ensure a right processing
order. Basically, if a job k is assigned to a machine i immediately after job j, that
is, if Xijk = 1, the completion time Ck of this job k) must be greater than or
equal to the completion time Cj of job j, added to setup time between jobs j and
k and the processing time pik of k on machine i. If Xijk = 0, then a sufficiently
high value V makes this constraint redundant. With constraint set (6) we define
at most one job is scheduled as the first job on each machine. Constraints (7)
establish that the completion time of the dummy job is zero. Constraints (8)
compute, for each machine, the time it finishes processing its last job. Con-
straints (9) define the maximum completion time. Constraints (10)–(13) define
the domain of the decision variables.

4 The Enhanced Smart GVNS Algorithm

The algorithm presented in this work, named e-SGVNS, is a is an improvement
of the SGVNS algorithm from Rego and Souza [6]. In turn, SGVNS is a variant
of the General Variable Neighborhood Search (GVNS) metaheuristic [7].

This metaheuristic performs systematic neighborhood exchanges to explore
the solution space of the problem. It uses the Variable Neighborhood Descent
procedure – VND [19], described in Sect. 4.4 as the local search procedure, and
it has a perturbation phase in order to not get stuck in local optima, which is
described in Sect. 4.2.

The perturbation phase of e-SGVNS depends of the perturbation level of
the algorithm. This level is always increased when a certain number of VND
applications occur without producing improvement in the current solution. The
e-SGVNS was implemented according to the Algorithm 1:



42 M. F. Rego and M. J. F. Souza

Algorithm 1. e-SGVNS.

input : stopping criterion, MaxP, MaxSameLevelP, N
1 s0 ← Initial Solution();
2 ItSameLevelP ← 1;
3 p ← 2;
4 s ← VND(s0, N );
5 while (stopping criterion was not satisfied) do
6 s′ ← Shaking(s, p);
7 s′′ ← VND(s′, N );
8 if (f(s′′) < f(s)) then
9 s ← s′′;

10 p ← 2;
11 ItSameLevelP ← 1;

12 end
13 else
14 ItSameLevelP ← ItSameLevelP + 1;
15 if (ItSameLevelP > MaxSameLevelP) then
16 p ← p + 1;
17 ItSameLevelP ← 1;
18 if p > MaxP then
19 p ← 2;
20 end

21 end

22 end

23 end
24 return s ;

Algorithm 1 has the following inputs: (1) the stopping criterion, which in
our case was the CPU timeout t, described in Sect. 5.2; (2) MaxP, maximum
level of perturbation; (3) MaxSameLevelP, the maximum number of iterations
without improvement in f(s) with the same perturbation level; (4) the set N of
neighborhoods. In line 1, the solution s is initialized from the solution obtained
by the procedure defined in Sect. 4.1. In line 6, a random neighbor s′ is generated
from a perturbation performed according to the procedure defined in Sect. 4.2.
The loop from lines 5–23 is repeated while the stopping criterion is not satisfied.
In line 7, a local search on s′ using the neighborhood structures described in
Sect. 4.3 is performed. It stops when it finds the first solution that is better than
s or when the whole neighborhood has been explored. The solution returned
by this local search is attributed to s′′ if its value is better than the current
solution. Otherwise, the procedure continues to exploit from a new neighborhood
structure.

4.1 Initial Solution

An initial solution to the problem is constructed according to Algorithm 2.



A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem 43

Algorithm 2. Initial Solution.

input : M, N
1 foreach k ∈ N do
2 Find the machine i and the position j for the job k that produces the lowest

cost for the objective function;
3 Insert job k in position j on machine i;

4 end

Algorithm 2 gets as input the sets M and N of machines and jobs, respec-
tively. At each iteration, it looks for position j on a machine i to insert the job k
into scheduling, it always chooses the position that gives the smallest increase in
the objective function according to Eq. (1). The previously described steps are
repeated for all jobs, so the procedure ends when all jobs are already allocated
on some machine.

4.2 Shaking

The shaking procedure is an important phase of a VNS-based algorithm. It is
applied to not limit the local search to the same region of the solution space of
the problem, and consequently explore other solutions. The shaking procedure
implemented increases progressively the level of perturbation in a solution when
it is stuck in a local optimum.

The shaking procedure consists of applying to the current solution p moves
chosen among the following: (1) change of execution order of two jobs on the
same machine; (2) change of execution order of two jobs belonging to different
machines; (3) insertion of a job from a machine into another position of the same
machine and (4) insertion of a job from one machine into a position of another
machine.

It works as follows: p independent moves are applied consecutively on the
current solution s, generating an intermediate solution s′. This solution s′ is,
then, refined by the VND local search method (line 7 of the Algorithm 1). The
level of perturbation p increases after a certain number of attempts to explore
the neighborhood without improvement in the current solution. This limit is
controlled by the variable Max. When p increases, then p random moves (chosen
from those mentioned above) are applied to the current solution. Whenever there
is an improvement in the current solution, the perturbation returns to its initial
level, p = 2.

The operation of each type of perturbation is detailed below:

Swap on the Same Machine. This operation consists in randomly choosing
two jobs j1 and j2 that are, respectively, in the positions x and y of a machine
i, and allocate j1 in the position y and j2 in the position x of the same
machine i.



44 M. F. Rego and M. J. F. Souza

Swap between Different Machines. This perturbation consists in randomly
choosing a job j1 that is in the position x on a machine i1 and another
job j2 that is in the position y of the machine i2. Then, job j1 is allocated to
machine i2 in position y, and job j2 is allocated to machine i1 in position x.

Insertion on the Same Machine. It starts with the random choice of a job j1
that is initially in the position x of the machine i. Then, a random choice of
another position y of the same machine is made. Finally, job j1 is removed
from position x and inserted into position y of machine i.

Insertion between Different Machines. It consists of a random choice of
a job j1 that is in the position x of the machine i1 and a random choice of
position y of the machine i2. Then, the job j1 is removed from machine i1
and inserted into position y of machine i2.

4.3 Neighborhoods

We used three neighborhood structures to explore the solution space of the
problem, and they are described below.

Before

i1 π x-1 πx πx+1

i2 σ y-1 σy σy+1

After

i′1 π x-1 πx+1

i′2 σ y-1 πx σy σy+1

Fig. 1. Insertion move between machines i1 and i2.

N1: Insertion between Machines. Let π and σ be two schedules, where
π = (π1, π2, . . . , πt) is performed on machine i1 and σ = (σ1, σ2, . . . , σr)
on machine i2. In these schedules, t and r represent the number of jobs on
machines i1 and i2, respectively. In this neighborhood, each job πx ∈ π is
removed from machine i1 and added to machine i2 at position y ∈ {1, · · · , r}.
The set of insertion moves of jobs of a machine i1 in every possible positions
of another machine i2 defines the neighborhood N1(π, σ), which is composed
by t × (r + 1) neighbors.
Figure 1 illustrates an insertion move of a job πx of a machine i1 in the posi-
tion y of the machine i2. The right side of this figure shows the result of
applying this move.



A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem 45

Before

i1 π x-1 πx π x+1

i2 σ y-1 σy σy+1

After

i′1 π x-1 σy π x+1

i′2 σ y-1 πx σy

Fig. 2. Swap move between machines i1 and i2.

N2: Swap Move between Machines. Let π and σ be two schedules as
described above. Let also be two jobs πx ∈ π and σy ∈ σ. The swap move
between machines consists in swapping these jobs between these schedules,
that is, to move the job πx to the position y of the machine i2 and the job σy

to the position x of the machine i1. The set of swap moves between machines
i1 and i2 defines the neighborhood N2(π, σ), formed by t × r neighbors.
Figure 2 illustrates the swap between two jobs πx and σy, which are initially
allocated to machines i1 and i2, respectively. After the swap move, the job
σy is allocated to machine i′1 and job πx to machine i′2.

N3: Scheduling by Mathematical Programming. In this local search, the
objective is to determine the best scheduling of the jobs in each machine by
applying a MILP formulation. For this, the time-dependent traveling sales-
man problem (TDTSP) formulation of Bigras et al. [20] was adapted, where
the distance between the cities i and j is represented by the sum of the pro-
cessing time of job i and the setup time between jobs i and j. In addition, a
dummy job 0 was added to allow the creation of a Hamiltonian cycle, where
0 represents the first and the last job.
So, the MILP formulation is solved for the sequencing problem in each
machine in which the completion time is equal to the makespan. If there
is an improvement in the current solution, the local search method returns
to the first neighborhood (N1). If there is no improvement in the current
machine and there is another machine whose completion time is equal to the
makespan, then the model is applied to this machine. If there is no improve-
ment by applying this formulation, then the exploration in this neighborhood
N3 is ended.
In order to introduce this MILP, the parameters and decision variables are
defined and shown in Table 2. The other parameters used by the model are
described in Table 1.

Then, the mathematical formulation used as local search strategy in each
machine i is given by Eqs. (14)–(18).



46 M. F. Rego and M. J. F. Souza

Table 2. Parameters and decision variables based on the Bigras et al. [20] model.

Name Description Type

Ni Set of jobs in machine i Parameter

δ Any subset of Ni

Yjk Equal to 1, if job k is processed directly after job j and
equal to 0, otherwise

Decision
variable

Ci
max Maximum completion time on machine i

Objective function:
min Ci

max, (14)

Subject to:
∑

j∈Ni∪{0},
j �=k

Yjk = 1 ∀k ∈ Ni

(15)
∑

k∈Ni∪{0},
j �=k

Yjk = 1 ∀j ∈ Ni

(16)
∑

j∈Ni∪{0}
j �=k

∑

k∈Ni

(Sijk + pik)Yjk = Ci
max (17)

∑

j∈δ

∑

k/∈δ

Yjk ≥ 1 ∀δ ⊂ Ni, δ �= ∅

(18)

Yjk ∈ {0, 1} ∀j ∈ {0} ∪ Ni, ∀k ∈ {0} ∪ Ni, j �= k
(19)

Ci
max ≥ 0 (20)

Equation (14) defines the objective function, which is to minimize the completion
time of the machine i. Equations (15)–(18) define the constraints for the sub-
model. Constraints (15) ensure that every job k has exactly one predecessor
job, and the predecessor job of the first job is the dummy job 0. Constraints (3)
ensure that each job k has a successor job, and the successor of the last job is the
dummy job 0. Constraints (17) compute the completion time on the machine i.
Constraints (18) ensure that there is no subcycle, therefore, any subset δ ∈ Ni of
jobs must have at least one link with another subset complementary to δ, that
is, Ni\δ. This strategy is similar to the subtour elimination constraints for the
traveling salesman problem, proposed by Bigras et al. [20]. Constraints (19) and
(20) define the domain of the decision variables.

The mathematical model has a constraint for each subset of jobs. Thus,
in cases where the scheduling problem has many subsets of jobs, the model will



A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem 47

demand a high computational cost. For this reason, the set of constraints (18) was
initially disregarded from the model. However, the relaxed model can produce
an invalid solution, that is, a solution containing one or more subcycles. If this
happens, a new set of constraints for each subcycle is added to the mathematical
model to be solved again. In this new set of constraints (18), the set δ is formed
by the group of jobs belonging to the subcycle. This process is repeated until a
valid solution is found.

For illustrating this situation, consider the matrix below that represents the
values of the decision variables for a problem of one machine with five jobs
(Table 3).

Table 3. Example of an invalid solution.

Y 0 1 2 3 4 5

0 0 0 0 0 0 1

1 0 0 1 0 0 0

2 0 1 0 0 0 0

3 1 0 0 0 0 0

4 0 0 0 1 0 0

5 0 0 0 0 1 0

Consider that if Yjk = 1 then job j immediately precedes job k, and that
the first job of the sequence is preceded by the dummy job 0. Then, we have
the following subcycles: δ1 = {5, 4, 3} and δ2 = {1, 2}. This solution is invalid
since there should be a single scheduling involving all jobs and not two as can
be observed. Figure 3 illustrated this situation:

Thus, a new constraint must be added for any solution that has a subcycle,
since this situation does not obey Eq. (18).

1

2

3

4 5

0

Fig. 3. Representation of an invalid solution.



48 M. F. Rego and M. J. F. Souza

4.4 Local Search

The local search of our algorithm is done by a VND procedure, that uses the
three neighborhood structures N1, N2 and N3 defined in Sect. 4.3. Its pseudo-
code is presented in Algorithm 3.

Algorithm 3. VND.

input : s, N
1 k ← 1;
2 while (k ≤ 3) do
3 s′′ ← BestNeighbor(s, Nk);
4 if (f(s′′) < f(s)) then
5 s ← s′′;
6 k ← 1;

7 end
8 else
9 k ← k + 1 ;

10 end

11 end
12 return s ;

Thus, the VND returns a local optimum in relation to all three neighborhoods
N1, N2 and N3.

5 Computational Experiments

The Smart GVNS algorithm was coded in C++ language and the tests were
performed on a microcomputer with the following configurations: Intel (R) Core
(TM) i7 processor with clock frequency 2.4 GHz, 8 GB of RAM and with a
64-bit Ubuntu operating system installed. The mathematical heuristic, used as
local search, was implemented using the Gurobi API [21] for the C++ language.

The proposed algorithm was tested in three sets of instances available by
Rabadi et al. [18]: Balanced, Process Domain, and Setup Domain. Each set is
formed by 18 groups of instances, and each group contains 15 instances, totaling
810 instances. In the first set, the processing time and the setup time are bal-
anced. In the second, the processing time is dominant in relation to the setup
time and in the third, the setup time is dominant in relation to the processing
time.

5.1 Parameter Tuning

The implementation of the e-SGVNS algorithm requires the calibration of two
parameters: MaxP and MaxSameLevelP, which are defined in Algorithm 1.



A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem 49

The Irace package [22] was used to tune the values of these parameters. Irace
is an algorithm implemented in R that implements an iterative procedure having
as main objective to find the most appropriate configurations for an optimization
algorithm, considering a set of instances of the problem.

We tested the following values for the two parameters of the e-SGVNS: MaxP
and MaxSameLevelP ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The best configurations
returned by Irace were MaxP = 5 and MaxSameLevelP = 12.

5.2 Stopping Criterion

As stopping criterion of the e-SGVNS algorithm and for a fair comparison, the
average execution time of ACOII by Arnaout et al. [10] was used. Their time was
divided by 2.0 because our computer is approximately 2.0 times faster1 than the
computer used in [10] according to PassMark [23]. Cota et al. [12] also used the
same stopping criterion to report the results of LA-ALNS algorithms (Table 4).

Table 4. Time limit for e-SGVNS Algorithm in minutes (the same of SGVNS).

Jobs Machines

8 10 12

80 2.78 2.78 2.86

100 4.97 5.13 5.13

120 6.88 7.09 7.09

The WO algorithm used a time limit different from others. Thus, it is com-
pared only with respect to its results and not to its efficiency.

6 Results

Tables 5, 6 and 7 compare the results of the proposed e-SGVNS algorithm with
those of ACOII reported by Arnout et al. [10], LA-ALNS reported by Cota
et al. [12], WO described by Arnaout [9] and SGVNS by Rego and Souza [6] in
relation to the average Relative Percent Deviation (RPD) in each group of 15
instances. For each instance l, the RPD is calculated by:

RPDl =
falg

l − f�
l

f�
l

× 100 (21)

where falg
l is the value of the objective function for the algorithm alg in relation

to the instance l, while f�
l represents the Lower Bound (LB) for the l-th instance

reported by Al-Salem [24].
1 https://www.cpubenchmark.net/compare/Intel-i7-870-vs-Intel-Pentium-4-3.

00GHz/832vs1074.

https://www.cpubenchmark.net/compare/Intel-i7-870-vs-Intel-Pentium-4-3.00GHz/832vs1074
https://www.cpubenchmark.net/compare/Intel-i7-870-vs-Intel-Pentium-4-3.00GHz/832vs1074


50 M. F. Rego and M. J. F. Souza

Table 5. Average RPD in Balanced instances.

m n ACOII LA-ALNS SGVNS WO e-SGVNS

2 80 1.24 1.8 1.49 1.41 1.21

100 1.08 1.51 1.33 1.35 0.94

120 0.92 1.36 1.16 1.06 0.79

4 80 3.97 3.54 4.53 3.83 3.29

100 3.54 2.96 4.22 3.4 2.91

120 3 2.75 3.73 3.1 2.41

6 80 7.09 5.64 7.27 5.89 5.88

100 5.58 4.25 6.27 4.86 4.57

120 4.52 3.73 5.84 4.52 3.87

8 80 7.41 5.59 8.04 6.0 6.41

100 8.11 5.85 8.62 6.67 7.0

120 5.7 4.35 6.74 5.24 4.9

10 80 8.14 6.79 9.26 6.96 7.72

100 8.15 5.54 8.38 6.35 6.58

120 6.99 4.01 8.05 6.13 5.88

12 80 11.97 – 13.82 10.39 11.07

100 12.18 – 13.71 11.18 11.47

120 7.6 – 9.03 6.82 7.02

Table 6. Average RPD in the Process Domain instances.

m n ACOII LA-ALNS SGVNS WO e-SGVNS

2 80 0.80 1.14 0.91 0.90 0.71

100 1.65 0.95 0.80 1.16 0.63

120 1.49 0.83 0.66 1.01 0.46

4 80 2.50 2.16 2.79 2.25 2.02

100 2.07 1.70 2.26 1.98 1.74

120 2.14 1.88 2.24 1.98 1.56

6 80 5.48 5.33 6.07 5.24 5.33

100 4.07 3.00 4.35 3.35 3.24

120 2.97 2.36 3.09 2.52 2.32

8 80 4.44 – 4.81 3.50 3.66

100 6.52 – 6.71 5.40 5.29

120 3.69 – 3.92 2.91 2.97

10 80 4.44 3.79 5.48 3.70 4.27

100 4.91 3.26 4.97 3.56 3.93

120 4.55 3.19 4.52 3.47 3.56

12 80 9.07 – 10.16 7.92 8.57

100 10.36 – 11.09 9.50 9.86

120 4.64 – 5.05 3.71 4.21



A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem 51

Table 7. Average RPD in the Setup Domain instances.

m n ACOII LA-ALNS SGVNS WO e-SGVNS

2 80 0.77 1.06 0.83 0.87 0.66

100 1.43 0.90 0.74 1.07 0.59

120 1.37 0.85 0.70 1.04 0.50

4 80 2.49 1.96 2.64 2.22 1.86

100 2.16 1.84 2.36 2.04 1.67

120 1.90 1.61 2.09 1.82 1.50

6 80 5.64 5.18 6.00 5.01 5.39

100 4.12 2.99 4.73 3.31 3.22

120 2.82 2.41 3.35 2.52 2.35

8 80 4.74 3.30 4.71 3.49 3.53

100 6.54 5.05 6.72 5.32 5.43

120 3.78 2.59 4.11 2.96 2.88

10 80 4.67 3.90 5.76 4.00 4.54

100 4.77 3.17 4.98 3.43 3.66

120 4.28 3.22 4.60 3.58 3.42

12 80 8.84 – 10.24 7.85 8.73

100 9.95 – 16.42 9.81 9.91

120 4.25 – 5.21 3.58 3.90

In these tables, the first and second columns represent the number of
machines and jobs, respectively. In the subsequent columns are the average RPD
for ACOII, LA-ALNS, SGVNS, WO and e-SGVNS algorithms, respectively.

According to Tables 5, 6 and 7, the LA-ALNS algorithm was superior in
20 groups of instances, while the WO algorithm was superior in 14 groups of
instances and the e-SGVNS algorithm was superior in 20 groups of instances. The
results from SGVNS and ACOII algorithms were outperformed in all instance
sets. Considering the presented results, it is possible to affirm that the LA-ALNS
algorithm obtained the best average results, even though it was not applied to
all the instances made available in [18].

The proposed algorithm presented a value for RPD less than 0 in instances
with two machines. If we consider instances with 4 machines, the RPD was
always less than 2, while for instances with up to 8 machines, the RPD was
always less than 3. For the other instances, the RPD was always less than 4.
These results indicate that the proposed method obtained a better performance
in instances with fewer machines, in which the solution space is smaller. In other
cases, the method has lower performance, given the high computational cost of
the mathematical heuristic, which is used as one of the local search operators.



52 M. F. Rego and M. J. F. Souza

6.1 Statistical Analysis

A hypothesis test was performed to verify if the differences between the results
presented by the algorithms are statistically significant. Therefore, the following
hypothesis test was used:

{
H0 : μ1 = μ2 = μ3 = μ4 = μ5

H1 : ∃i, j | μi �= μj

in which μ1, μ2 and μ3 are the average RPDs for ACOII, LA-ALNS, SGVNS,
WO and e-SGVNS, respectively.

An exploratory analysis of the data was performed in order to better under-
stand the data of the samples before the application of the statistical test.

ACOII LA−ALNS SGVNS e−SGVNS WO

2
4

6
8

Algorithms

R
PD

Fig. 4. Boxplot of the results.

Figure 4 shows the boxplot plot containing the sample distribution of the
RPD values for the collected samples:

Before performing the hypothesis test, it is necessary to decide between test
types, parametric or non-parametric. Generally, parametric tests are more pow-
erful; however, they require three assumptions:

1. Normality: every sample must originate from a population with normal dis-
tribution,



A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem 53

2. Independence: the samples shall be independent of each other,
3. Homoscedasticity: every sample must have a population of constant variance.

The Shapiro-Wilk normality test was applied to the samples and its results
are shown in Table 8:

Table 8. Shapiro-Wilk normality test.

Algorithm p-value

ACO II 0.04632

LA-ALNS 0.06239

SGVNS 0.09066

e-SGVNS 0.0737

WO 0.0365

Considering a significance level of 0.05, the results presented above indicate
that the samples of the ACOII and WO algorithms come from populations with
normal distribution, since the p-values presented are lower than the level of
significance. However, the test does not present evidence that the LA-ALNS,
SGVNS and e-SGVNS algorithm samples come from a normal population.

Therefore, it was decided to use the Pairwise Wilcoxon test, which calculates
pairwise comparisons between group levels with corrections for multiple testing.

The Pairwise Wilcoxon test for the samples of the average results of the
ICOII, LA-ALNS, SGVNS, WO and e-SGVNS algorithms are presented in
Table 9. In this comparison, we excluded instance sets in which Cota et al. [12]
did not report the results of LA-ALNS algorithm.

Table 9. Pairwise comparisons using Wilcoxon test in all algorithms.

ACOII e-SGVNS LA-ALNS SGVNS

e-SGVNS 1.70 × 10−7 – – –

LA-ALNS 6.70 × 10−6 1 – –

SGVNS 8.6 × 10−4 1.70 × 10−7 7.70 × 10−8 –

WO 5.90 × 10−6 0.2819 2.4 × 10−4 5.70 × 10−6

According to Table 9, the observed differences are statistically significant for
all algorithm pairs, except to (e-SGNVS, LA-ALNS) and (e-SGNVS, WO).

Table 10 displays the Pairwise Wilcoxon test considering the average RPD of
algorithms that were tested in all instances.

Considering that this p-value is much lower than 0.05, then the null hypoth-
esis of equality between the means is rejected and it is concluded that there is
evidence that at least two populations have different distribution functions.



54 M. F. Rego and M. J. F. Souza

Table 10. Pairwise comparisons using Wilcoxon test in all instances.

ACOII e-SGVNS SGVNS

e-SGVNS 1.00 × 10−9 – –

SGVNS 2.60 × 10−6 1.00 × 10−9 –

WO 2.10 × 10−8 1 1.60 × 10−8

As can be seen in Table 9, there is a statistically significant difference between
the e-SGVNS algorithm and the SGVNS, ACOII algorithms.

7 Conclusions

This work dealt with the unrelated parallel machine scheduling problem with
sequence-dependent setup times, aiming to minimize the makespan.

Since it is NP-hard, a hybrid heuristic algorithm was developed. The pro-
posed algorithm, named Enhanced Smart General Variable Neighborhood Search
(e-SGVNS), combines heuristic and exact optimization strategies to explore the
solution space of the problem. The exact strategy works as local search and
consists of applying a mathematical programming formulation based on the
time-dependent traveling salesman problem to get the optimal solution to the
sequencing problem on each machine. In turn, the heuristic strategy, in turn,
explores neighborhoods based on swap and insertion moves.

The e-SGVNS was tested in benchmark instances from literature and its
results were compared to four other literature methods (ACOII, LA-ALNS,
SGVNS and WO).

The statistical analysis of the average results produced by the algorithms
proved that e-SGVNS is statistically better than the SGVNS and ACOII algo-
rithms. On the other hand, there is no statistical evidence of significant difference
among the average results of the e-SGVNS, LA-ALNS and WO algorithms.

Overall, the e-SGVNS algorithm performed best on small instances, with
up to 4 machines and up to 120 jobs, regardless of instance type.

As future work, we intend to test other mathematical programming formula-
tions to perform the exact local search as, for instance, to apply a mixed integer
linear programming formulation that considers two machines instead of a single
one.

Acknowledgments. The authors gratefully thank Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior (CAPES) - Finance Code 001, Fundação de Amparo à
Pesquisa do Estado de Minas Gerais (FAPEMIG, grant PPM/CEX/FAPEMIG/676-
17), Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq, grant
307915/2016-6), Universidade Federal de Ouro Preto (UFOP) and Universidade Fed-
eral dos Vales do Jequitinhonha e Mucuri (UFVJM) for supporting this research. The
authors also thank the anonymous reviewers for their valuable comments.



A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem 55

References

1. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, vol. 40, pp. 85–103. Springer, Boston (1972).
https://doi.org/10.1007/978-1-4684-2001-2 9

2. Lopes, M.J.P., de Carvalho, J.V.: A branch-and-price algorithm for scheduling
parallel machines with sequence dependent setup times. Eur. J. Oper. Res. 176(3),
1508–1527 (2007)

3. Avalos-Rosales, O., Alvarez, A.M., Angel-Bello, F.: A reformulation for the prob-
lem of scheduling unrelated parallel machines with sequence and machine depen-
dent setup times. In: Proceedings of the 23rd International Conference on Auto-
mated Planning and Scheduling - ICAPS, Rome, Italy, pp. 278–283 (2013)

4. Lee, Y.H., Pinedo, M.: Scheduling jobs on parallel machines with sequence-
dependent setup times. Eur. J. Oper. Res. 100(3), 464–474 (1997)

5. Tran, T.T., Araujo, A., Beck, J.C.: Decomposition methods for the parallel machine
scheduling problem with setups. INFORMS J. Comput. 28(1), 83–95 (2016)

6. Rego., M.F., Souza, M.: Smart general variable neighborhood search with local
search based on mathematical programming for solving the unrelated parallel
machine scheduling problem. In: Proceedings of the 21st International Conference
on Enterprise Information Systems - Volume 1: ICEIS, INSTICC, pp. 287–295.
SciTePress (2019)

7. Mladenović, N., Dražić, M., Kovačevic-Vujčić, V., Čangalović, M.: General variable
neighborhood search for the continuous optimization. Eur. J. Oper. Res. 191(3),
753–770 (2008)

8. Santos, H.G., Toffolo, T.A., Silva, C.L., Vanden Berghe, G.: Analysis of stochastic
local search methods for the unrelated parallel machine scheduling problem. Int.
Trans. Oper. Res. 26(2), 707–724 (2019)

9. Arnaout, J.P.: A worm optimization algorithm to minimize the makespan on unre-
lated parallel machines with sequence-dependent setup times. Ann. Oper. Res.
285, 273–293 (2019)

10. Arnaout, J.P., Musa, R., Rabadi, G.: A two-stage ant colony optimization algo-
rithm to minimize the makespan on unrelated parallel machines - part II: enhance-
ments and experimentations. J. Intell. Manuf. 25(1), 43–53 (2014)

11. Arnaout, J.P., Rabadi, G., Musa, R.: A two-stage ant colony optimization algo-
rithm to minimize the makespan on unrelated parallel machines with sequence-
dependent setup times. J. Intell. Manuf. 21(6), 693–701 (2010)

12. Cota, L.P., Guimarães, F.G., de Oliveira, F.B., Souza, M.J.F.: An adaptive large
neighborhood search with learning automata for the unrelated parallel machine
scheduling problem. In: 2017 IEEE Congress on Evolutionary Computation (CEC),
pp. 185–192. IEEE (2017)

13. Fanjul-Peyro, L., Ruiz, R.: Iterated greedy local search methods for unrelated
parallel machine scheduling. Eur. J. Oper. Res. 207(1), 55–69 (2010)

14. Mokotoff, E., Jimeno, J.: Heuristics based on partial enumeration for the unrelated
parallel processor scheduling problem. Ann. Oper. Res. 117(1), 133–150 (2002)

15. Ghirardi, M., Potts, C.N.: Makespan minimization for scheduling unrelated parallel
machines: a recovering beam search approach. Eur. J. Oper. Res. 165(2), 457–467
(2005)

16. Vallada, E., Ruiz, R.: A genetic algorithm for the unrelated parallel machine
scheduling problem with sequence dependent setup times. Eur. J. Oper. Res.
211(3), 612–622 (2011)

https://doi.org/10.1007/978-1-4684-2001-2_9


56 M. F. Rego and M. J. F. Souza

17. Kurz, M., Askin, R.: Heuristic scheduling of parallel machines with sequence-
dependent set-up times. Int. J. Prod. Res. 39(16), 3747–3769 (2001)

18. Rabadi, G., Moraga, R.J., Al-Salem, A.: Heuristics for the unrelated parallel
machine scheduling problem with setup times. J. Intell. Manuf. 17(1), 85–97 (2006)

19. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

20. Bigras, L.P., Gamache, M., Savard, G.: The time-dependent traveling salesman
problem and single machine scheduling problems with sequence dependent setup
times. Discrete Optim. 5(4), 685–699 (2008)

21. LLC Gurobi Optimization: Gurobi optimizer reference manual (2018). http://
www.gurobi.com

22. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

23. PassMark: CPU benchmarks (2018). https://www.cpubenchmark.net/. Accessed
12 Feb 2018

24. Helal, M., Rabadi, G., Al-Salem, A.: A tabu search algorithm to minimize the
makespan for the unrelated parallel machines scheduling problem with setup times.
Int. J. Oper. Res. 3(3), 182–192 (2006)

http://www.gurobi.com
http://www.gurobi.com
https://www.cpubenchmark.net/

	A Hybrid Algorithm for the Unrelated Parallel Machine Scheduling Problem
	1 Introduction
	2 Related Work
	3 Mathematical Formulation
	4 The Enhanced Smart GVNS Algorithm
	4.1 Initial Solution
	4.2 Shaking
	4.3 Neighborhoods
	4.4 Local Search

	5 Computational Experiments
	5.1 Parameter Tuning
	5.2 Stopping Criterion

	6 Results
	6.1 Statistical Analysis

	7 Conclusions
	References




