
A Graph Pattern Based Approach
for Automatic Decomposition of IoT

Aware Business Processes

Francisco Martins1,2 , Dulce Domingos1(B) , and Daniel Vitoriano1

1 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
2 University of the Azores, Ponta Delgada, Portugal

fmartins@acm.org, mddomingos@ciencias.ulisboa.pt,

daniel.vitoriano@reitoria.ulisboa.pt

Abstract. The context information that business process can get from
the Internet of Things (IoT) can be used as a competitive advantage
in terms of optimisation and agility. However, the exchange of messages
between central systems and IoT devices come with a price, battery con-
sumption, a scarcely resource of such devices. Despite the literature offers
many technical proposals to tackle this problem, we take an approach
driven by the process definition perspective. We propose to reduce the
number of exchanged messages by decentralising process execution, mov-
ing parts of the business processes to IoT devices, and taking advantage
of their computational capabilities. The first step for decentralisation is
decomposition, i.e., the division of processes into parts and identify those
that IoT devices can execute.

In this paper, we present an automatic decomposition solution for IoT
aware business processes, described using the Business Process Model
and Notation (BPMN). We start from a BPMN definition that follows
a centralised approach and apply our decomposition method to trans-
fer to the IoT devices the operations that can be performed there. We
use a graph based approach and transform a BPMN definition into a
directed graph. Thereafter, we identify cuts that define the parts to be
transferred to the IoT devices. This decomposition preserves the control
and the data dependencies of the original process, reduces the number
of exchanged messages as well as the central processing. The code that
IoT devices execute is automatically generated from the BPMN process
being decentralised.

Keywords: Internet of things · BPMN · Process decomposition

1 Introduction

Internet of things (IoT) aware business processes put together two technologies,
and has gained increased attention in the recent years.

Organisations use business processes to automate and optimise their opera-
tions by modelling them as flows of activities enriched with events, data flows,
and information about resources and participantes, among other perspectives.
Business processes are often defined with graphical notations, such as the Busi-
ness Process Model and Notation (OMG 2011).
c© Springer Nature Switzerland AG 2020
J. Filipe et al. (Eds.): ICEIS 2019, LNBIP 378, pp. 498–513, 2020.
https://doi.org/10.1007/978-3-030-40783-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40783-4_24&domain=pdf
http://orcid.org/0000-0002-2379-7257
http://orcid.org/0000-0002-5829-2742
https://doi.org/10.1007/978-3-030-40783-4_24


A Graph Pattern Based Approach for Automatic Decomposition 499

In addition, the IoT makes possible to interconnect everyday physical devices,
which can interact with each other and cooperate with their neighbours. These
devices are also accessible through the Internet, providing information and func-
tionalities on behalf of physical objects or things. Interconnected small devices
pose several challenges, such as energy consumption, the scarcest resource of the
IoT; scalability, due to the number of devices that can be quite high; reliability,
as network nodes are susceptible to a wide variety of failures; and security, since
devices have computational limitations, and, typically, their physical integrity
is difficult to assure (Atzori et al. 2010; Lee and Kim 2010; Moreno et al. 2014;
Rault et al. 2014; Zorzi et al. 2010).

Business processes can use the IoT to gain competitive advantage in terms
of optimisation and agility. Business processes may use the information the IoT
provides about what is actually happening in the real world to optimise their
execution, and react to new situations in real time (Yousfi et al. 2016). However,
in most cases, business processes interact with IoT devices following a request-
response or a publish-subscribe scheme to gather information and to trigger
actuators. These interaction schemes promote the exchange of messages between
IoT devices and the execution engine, which results in a high power consumption
profile from the IoT device.

An alternative approach is for business processes to use IoT devices as active
participants for executing parts of the business process logic (Haller et al. 2009),
taking advantage of their computational and communication capabilities. IoT
devices can be used to aggregate and filter data, as well as to make decisions
locally, executing local flows, without needing a centralised coordination. Follow-
ing this approach, it is possible to reduce the number of exchanged messages,
increasing battery lifespan, and to promote scalability, by moving parts of the exe-
cution of the process from the central engine to IoT devices. We point out that this
extra execution consumes power of the IoT device, but the energy consumption
of the migrated tasks is much smaller than that used on communication.

Despite the benefits of decentralisation, business processes are still defined
following a centralised approach. Our proposal automatically decomposes BPMN
business processes, identifying and moving to the IoT parts of the processes that
IoT devices can execute, assuring the reduction of the number of exchanged
messages, while maintaining data and control dependencies.

Our work is distinct from related work in four main aspects: business process
representation; decomposition technique; considered dependencies; and meeting
criteria. Some authors represent business processes as generic graphs (Xue et
al. 2018), while Nanda et al. (2004) use Web Services Business Process Exe-
cution Language (WS-BPEL) (OASIS 2007). Still considering the way these
proposals represent business processes, almost all of them only support block
structured processes. Xue et al. (2018) supports non-block structured processes,
but only deal with processes having regions with one entry point and one exit
point (SESE). Decomposition techniques use approaches mainly based on depen-
dency tables (Fdhila et al. 2009) or on generic graphs (Nanda et al. 2004; Xue
et al. 2018). While all proposals consider control dependencies, some of them



500 F. Martins et al.

disregard data dependencies (Nanda et al. 2004). Finally, we can find different
criteria for decomposition in the literature such as communication cost, delay
cost, or confidentiality (Fdhila et al. 2014; Goettelmann et al. 2013; Hoenisch et
al. 2016; Povoa et al. 2014).

These proposals cannot be straightforward applied to BPMN business pro-
cesses. The transformation of a BPMN business process definition to a generic
graph poses many challenges, such as the implicit concurrent behaviour intro-
duced by send tasks, and the identification of data dependencies. Furthermore,
BPMN business processes can be non-block structured with many entry and exit
points.

Our previous work proposes a pattern based approach to decompose IoT
aware BPMN business processes (Martins et al. 2019; Domingos et al. 2019).
We identify the common scenarios in this kind of processes, where is it possible
to reduce the number of exchanged messages between the central engine and
IoT devices. In addition, we define the transformation rules to move to the IoT
parts of the processes that IoT devices can execute, while maintaining control
and data dependencies.

The work we present in this paper goes a step further by adopting a more
generic approach based on graph concepts. We transform the BPMN definition
into a typed directed graph, where we identify cuts that are used to define the
parts that can be transferred to the IoT devices. This decomposition preserves
the control and the data dependencies of the original process, reduces the num-
ber of exchanged messages as well as the central processing. The code that IoT
devices execute is automatically generated from the BPMN process being decen-
tralised.

This paper is organised as follows: the next section discusses related work;
Sect. 3 presents the use case we resort to illustrate the proposed decomposition
procedure and the patterns we identified in our previous work. The decom-
position procedure is detailed in Sect. 4, and Sect. 5 overviews the developed
prototype. The last section concludes the paper and discusses future work.

2 Related Work

One of the early works on process decomposition is proposed within the Mentor
project (Wodtke et al. 1996). The authors define workflow models by using state
and activity diagrams and describe how a centralised model can be partitioned
and executed in a distributed setting, maintaining the original semantics and
taking into account control and data dependencies.

The growing use of the Web Services Business Process Execution Language
(WS-BPEL) (OASIS 2007) justified the development of decomposition proposals
of such processes. Nanda et al. (2004) transform a BPEL model into a program
dependence graph (PDG). Based on the PDG, they propose an algorithm to
create partitions by merging portable nodes with fixed nodes, taking into account
control and data dependencies. Each partition has exactly one fixed node and
zero or more portable nodes. However, this partitioning technique can only be
applied to block structured models.



A Graph Pattern Based Approach for Automatic Decomposition 501

Fdhila et al. (2009) propose a decomposition technique based on dependency
tables. They create a direct control dependency table and a direct data depen-
dency table taking into account control and data dependencies. From the depen-
dency tables, they generate transitive dependency tables with the transitive
dependencies between activities invoking the same service. This way, each sub-
process represents the control flow between activities invoking the same service.

In Domingos et al. (2015), the authors also use dependency tables to decom-
pose IoT aware business processes, considering control flow as well as data flow.
In addition, the activities that IoT devices can execute are identified automati-
cally, taking into account the capabilities of these devices.

A subsequent work by Fdhila et al. (2014) decompose processes based on the
collocation and separation constraints that designers can define between pairs of
activities. Partitions respect the constraints and optimise communication cost and
the Quality of Service (QoS) of services assigned to execute activities. Goettel-
mann et al. (2013) extend this work by adding security constraints to meet the
requirements of distributing the executions of some activities into the cloud.

To make use of the advantages offered by the cloud to execute fragments of
business processes, Duipmans et al. (2012) divide business processes into two
categories: those that run locally and those that can run in the cloud. With this
division, the authors intend to perform the most computationally intensive tasks
in the cloud, as long as their data is not confidential. The identification of these
tasks is performed manually. Povoa et al. (2014) propose a semi-automatic mech-
anism to determine the location of activities and their data based on confiden-
tiality policies, monetary costs, and performance metrics. Hoenisch et al. (2016)
optimise the distribution of activities taking into account some additional param-
eters such as the cost associated with delays in the execution of activities and
the unused, but paid, time of cloud resources.

Xue et al. (2018) create partial partitions using a graph based technique for
process partitioning. They define the business model through a typed direct graph
where edges are typed as control or data, to distinguish control from data depen-
dencies, and vertices are typed as fixed or portable. Based on the direct graph,
they identify SESE regions (Johnson et al. 1994) of the graph and generate a pro-
cess structure graph. After that, they apply a set of transformation rules to group
together portable vertices with a fixed vertex. Each group corresponds to a par-
titions. The main difference to previous work is that they support unstructured
business models (both control and data dependencies). However, this partition
technique disregard the specificities of IoT aware business processes.

Martins et al. (2019) propose a decomposition technique that identifies spe-
cific patterns within processes that can be delegated to IoT devices, maintaining
the control and the data flows of the original processes. Decomposition follows
specific rules according to the identified patterns. This work is further generalised
in Domingos et al. (2019), undermining, however, some control flow dependen-
cies.

In this paper we take a step further following a graph-based approach, while
assuring data and control dependencies.



502 F. Martins et al.

3 Use Case Based Decomposition Patterns

This section presents our use case and the patterns that we have identified to
reduce the number of communications (message flows) between the central pool
and IoT pools (Martins et al. 2019).

3.1 Use Case

We exemplify the application of our proposal through a simplified automatic irri-
gation system use case. The choice for this use case is justified by the acquired
experience in deploying an irrigation controlling system prototype in collab-
oration with the Lisbon city council. The system controls four electrovalves,
managing a total of 40 sprinklers, and is successfully running for almost two
years. Furthermore, by selecting a similar use case for illustrating our previous
approaches (see, for instance, Martins et al. 2019), it makes it easier to compare
them and to showcase our state-of-the-art advances.

This system automatically determines when to irrigate, based on the soil
moisture and on the rainfall. The water used for the irrigation comes from tanks,
whose water level is also controlled by the system. It is possible to check the water
level of the tanks and fill them whenever necessary.

The water level values are stored in a historical record file for future expenses
audit. In addition, the system periodically contacts IoT devices to gather rainfall
and soil moisture levels. If the levels are below given thresholds, it triggers the
irrigation process.

Figure 8 (in the appendix) illustrates the simplified BPMN model of our use
case. The two pools define the behaviour of the central system as well as the
behaviour of IoT devices (sensors and actuators).

The central pool defines the actions of the central system responsible for
executing the irrigation business processes. It contains two execution flows: the
top describes tank refilling; the other specifies the irrigation process itself.

The top execution flow is triggered manually (S1 start event) and starts by
requesting the tank’s water level (sendT1), sending a message to the IoT pool
(SM1). The sensor reads the tank’s water level (T11) and forwards this infor-
mation back to the irrigation process (sendT12). The Receive Water Level task
(receiveT2) blocks until a message arrives. Upon message arrival, it stores the
information and forwards it (sendT3) to the actuator (SM2) that triggers the
Refill Water Tank task (T17) to set the tank’s water level to the top. Mean-
while, the Save Refill Record task (T4) stores this occurrence by writing it to
the Historical Record data store (H1).

The bottom flow executes periodically (ST1), and starts by determining if
the rainfall and the soil moisture levels provided by the IoT device are within the
acceptable range. For this, it requests the rainfall value (sendT18) to the IoT
pool that starts the process (SM6), reads the rainfall (T21), and sends a mes-
sage with this information (sendT22) back to the irrigation process. Then, the
process checks this value (IF3) and terminates in case it has recently rained. Oth-
erwise, it gets the soil moisture by sending a request to the IoT pool (sendT5),



A Graph Pattern Based Approach for Automatic Decomposition 503

which starts process (SM3), reads the soil moisture value (T13), and sends it
(sendT14) back to the irrigation process.

Then, the process checks if it is necessary to start an irrigation cycle. For
that, the exclusive gateway Check Moisture Values (IF1) forces the process to
follow only one of its paths. If the moisture value is below the defined thresh-
old, it computes the irrigation time based on the moisture level received (T7)
and signals the actuators (sendT8) to start irrigating (T15). The purpose of
the irrigation intermediate timer event (ST2) is to wait for the irrigation time
before sending a signal (sendT9) to stop the actuator (T16). Finally, the pro-
cess records the soil moisture level (T10) into the historical record data store
(H2). The purpose of the converging gateway (IF2) is to forward the process to
task T10, regardless of the path taken by the process.

This process, despite using IoT devices, takes a centralised approach. In the
following sections, we use it to illustrate the various steps of our decomposition
procedure.

3.2 Decomposition Patterns

This section presents the patterns that we have identified as ineffective uses of
the computational capabilities of IoT devices in Martins et al. (2019). The main
concern on the identification of the patterns, and their respective transforma-
tions, is to reduce the number of communications between the central process
and to preserve the execution flow of the initial business process. This means
that the tasks still execute in the original order after the transformations.

(a) Centralised model. (b) Decentralised model.

Fig. 1. Pattern 1 example instance taken from the use case - adapted from (Martins
et al. 2019).



504 F. Martins et al.

The first pattern, illustrated in Fig. 1a, is identified by a receive task
(receiveT2) followed by a send task (sendT3) in the central pool that are,
respectively, preceded and followed by a send (sendT12) and a receive task or
start message event (SM2) belonging to the same IoT pool. This includes an
unnecessary communication between the two pools: the transformation elimi-
nates sendT3 and SM2. To enforce the original control flow, receiveT2 is
connected to T4 and sendT12 is connected to T17, as Fig. 1b illustrates.

The second pattern is exemplified in Fig. 2a. The central pool process starts
with a timer event (ST1) and is followed by a send task (sendT18) and a receive
task (receiveT19), both to and from the same IoT pool. By moving the timer
to the IoT pool, we eliminate one communication between sendT18 and SM6
(typically, IoT devices have timer operations), as Fig. 2b shows.

Figure 3a contains an excerpt of our use case that illustrates the third pat-
tern. Typically, IoT devices have sufficient computational capabilities to perform
logical and mathematical operations, so it is possible to transfer gateways to the
IoT network, as long as the data for making the decision is available. Also script
tasks that compute mathematical expressions can be moved to IoT devices as
it is the case for task 7. This pattern is characterised by a message flow from
the IoT pool to the central process (in this case, from sendT14 to receiveT6),
which, afterwards, branches (IF1 gateway) based on the received data. The goal
is to transfer as much tasks as possible to the IoT pool, while preserving control
and data flow dependencies. Figure 3b illustrates the application of this pattern
to our running example. The message flow from the IoT pool to the central pro-
cess is postponed as long as the central process has BPMN elements that can be
moved to the IoT pool. This set of BPMN elements includes exclusive gateways,
script tasks that only compute mathematical expressions, timer events, and send
tasks targeted at the IoT pool.

(a) Centralised model. (b) Decentralised model.

Fig. 2. Pattern 2 example instance taken from the use case - adapted from (Martins
et al. 2019).



A Graph Pattern Based Approach for Automatic Decomposition 505

In Domingos et al. (2019), we generalised the presented patterns making them
applicable to additional scenarios, but still relaxing control flow preservation.
The result is that the overall meaning of the process remains the same, but
some task that might happen in parallel in the original process may happen
before others after the transformation, and vice versa. In the work we present in
Sect. 4, the decomposed process maintains faithfully both the control flow and
the data flow of the original process.

4 Graph Based Decomposition Patterns

Unlike our previous proposals (Martins et al. 2019; Domingos et al. 2019), the
work we present here uses a graph based technique to identify which parts of
the process IoT devices can execute. Before detailing our technique, this section
starts by explaining the transformation from the BPMN business process model
to a typed directed graph.

4.1 Defining a BPMN Process as a Typed Directed Graph

The first step to decompose a business process is to represent it as a typed
directed graph, where vertices and edges are typed, meaning that we decorate
vertices and edges with additional information that is then used by our decom-
position algorithm.

Edges can be of two types: control or data. Sequence flows and message flows
are converted to control type edges. Data flow dependencies are derived using
def-use path dependencies (Ammann and Offutt 2016), where a def corresponds
to a write into a data object or a data store and a use represents an access. To
identity data dependencies we exclude send and receive tasks, since these tasks
are only used to handle the communication between pools.

Tasks, gateways, and events are converted to vertices. The ones that can
be executed in either pools (gateways, timers, end events, and script tasks that
only include mathematical operations) as well as send tasks and receive tasks
are typed as portable. The others are typed with the name of the pool that
represents the participant where they have to be executed.

We point out that the send and receive tasks are represented by fork and join
vertices, maintaining the semantics of the concurrent behaviour of the executions
flows.



506 F. Martins et al.

(a) Centralised model.

(b) Decentralised model.

Fig. 3. Pattern 3 example instance taken from the use case - adapted from (Martins
et al. 2019).



A Graph Pattern Based Approach for Automatic Decomposition 507

Fig. 4. The digraph of the execution flow that starts with S1. (Color figure online)

Figure 4 presents the typed directed graph that corresponds to the execution
flow that begins with start event S1. We use colours to distinguish the type
of vertices. Yellow nodes (S1 and T4) represent Central Pool vertices, blue
nodes (T11 and T17) represent IoT Pool vertices, and green nodes represent
portable vertices. Dashed and solid lines edges represent data and control types,
respectively.

4.2 Decomposition Graph-Based Patterns

To reduce the number of exchanged messages between the central pool and IoT
devices, we first identify the scenarios (designed as patterns) where it is possible
to reduce messages (from two (or more) to one or from three (or more) to two).

The first scenario occurs when: (1) the graph has a cut, i.e, a partition of the
graph into two disjoint subsets; (2) one of the cut sets includes one edge typed
as control and zero or more edges typed as data; and (3) one of the subsets
includes, at least, two message flows and all its nodes are typed as portable
or IoT Pool. The rationale behind this scenario is that we can decompose the
process, transferring the tasks in the subset satisfying (1), (2), and (3) to the
IoT pool. This way, the two or more message flows of the subset are reduced to
only one, the one that corresponds to the cut edge that links both subsets.

Figure 5 presents the typed directed graph of the execution flow that starts
with ST1 timer event. This graph has four cuts according to the conditions
defined for the first scenario. The control cut edge of each of these cuts is iden-
tified in pink. When a cut whose subset includes all the other, we select it as it
reduces the number of transformations.

To get the final decomposed BPMN process from the graph, fork nodes that
represent send tasks in the original process are replaced by diverging parallel
gateways, while join nodes that represent receive tasks are replaced by converging
parallel gateways. To link both partitions, we add a send task and a receive task
(or a message start event) with a message flow. If the cut set also includes data
typed edges, this message flow must include the corresponding values.



508 F. Martins et al.

Fig. 5. The digraph of the execution flow that starts with ST1.

Figure 6 presents the decomposed version of the process for the execution
flow that starts with ST1 timer event. In future work, we are going to identify
and remove the parallel gateways that neither synchronise two or more control
flows nor creates two or more parallel flows.

In the second scenario, it is possible to reduce from three (or more) messages
to two messages. This scenario occurs when: (1) the graph has a cut; (2) the
cut set includes two edges typed as control and zero or more edges typed as
data; and (3) one of the subsets includes, at least, three message flows and all its
nodes are typed as portable or as IoT Pool. The rationale behind this scenario is
that we can decompose the process, transferring all subset task to the IoT pool.
This way, the process is going to have only two message flows, the ones that
correspond to the edges that belong to the cut set, i.e. that link both subsets.

Figure 4 presents the typed directed graph for the execution flow that starts
with start event S1. This graph has one cut in the conditions defined for the
second scenario. The control edges that belongs to the cut subset are identified
in pink.

As we describe for the first scenario, to get the final decomposed BPMN
process from the graph, fork nodes that represent send tasks in the original pro-
cess are replaced by diverging parallel gateways, while join nodes that represent
receive tasks are replaced by converging parallel gateways. To link both parti-
tions, we add two send tasks and two receive tasks (or message start events)
with message flows. If the cut subset also includes edges typed as data, these
message flows must include the corresponding values.



A Graph Pattern Based Approach for Automatic Decomposition 509

Fig. 6. The decomposed version of the BPMN business process - the execution flow
that starts with ST1.

Figure 7 presents the decomposed process for the execution flow that starts
with S1 start event.

5 Prototype

We are in the process of conceiving a prototype that performs the decomposi-
tion procedure described in the previous section. Our previous prototype tool is
available at github (https://github.com/fcmartins/bpmn-decomposition.git).

The tool is being developed in Java and makes use of the following tools:

– jBPM (version 6.3.0);
– Eclipse Luna (version 4.4.2) with BPMN2 Modeller and SonarLint plug-ins;
– Graphviz.

The prototype builds on top of previous tools we developed that translate
BPMN into CALLAS (a high-level sensor programming language (Lopes and
Martins (2016))) and that automatically transform the BPMN model to commu-
nicate with the IoT network either using request-response or publish-subscribe
architectures (Domingos and Martins 2017a, 2017b).

jBPM implements the BPMN standard and is associated with the Luna ver-
sion of Eclipse. BPMN2 Modeller is a BPMN graphical visualisation plug-in
and SonarLint a plug-in for enforcing source code quality. Graphviz is a tool for
drawing graphs specified in the dot language.

In order to execute the prototype, we provide a BPMN file with the model
to be decomposed. This prototype also translates the IoT behaviour into Callas
bytecode to support the execution of all the BPMN model, as detailed in (Domin-
gos and Martins (2017b)).

https://github.com/fcmartins/bpmn-decomposition.git


510 F. Martins et al.

Fig. 7. The decomposed BPMN business process—the execution flow that starts
with S1.

6 Conclusions and Future Work

Business processes are increasingly using information made available by IoT
devices to provide timely responses according to their context. This is a challenge
for IoT devices as they are limited by battery lifespan.

The work we propose in this paper mitigates this problem taking an approach
from the business process perspective. The automatic decomposition technique
we developed takes advantage of the computational capabilities of IoT devices,
identifying the parts of process definitions that IoT devices can execute and
transfers them from the central systems. This way, we reduce the number of
exchanged messages, increasing the energy autonomy of these devices.

The evaluation of the completeness of our approach as well as its results is
not straightforward. As stated before, the results have to be checked manually,
being a very time-consuming task.

As for future work, we intend to formalise our approach in order to be able
to prove the results. In addition, we plan to evaluate this work by comparing it
with an heuristic based approach and using a larger set of processes generated
by our process generator tool.



A Graph Pattern Based Approach for Automatic Decomposition 511

Acknowledgements. This work is partially supported by FCT funding through
LASIGE Research Unit, ref. UID/CEC/00408/2018, and by project DoIT, ref.
PTDC/EEIESS/5863/2014.

Appendix

A Simplified Irrigation System BPMN Process

Fig. 8. BPMN model of an automatic irrigation system - a case study.



512 F. Martins et al.

References

Ammann, P., Offutt, J.: Introduction to Software Testing, 2nd edn. Cambridge Uni-
versity Press, New York (2016)

Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

Domingos, D., Martins, F.: Modelling iot behaviour within BPMN business processes.
Procedia Comput. Sci. 121, 1014–1022 (2017a)

Domingos, D., Martins, F.: Using BPMN to model internet of things behavior within
business process. IJISPM-Int. J. Inf. Syst. Project Manag. 5(4), 39–51 (2017b)

Domingos, D., Martins, F., Caiola, L.: Decentralising Internet of Things aware BPMN
business processes. In: Kanjo, E., Trossen, D. (eds.) S-CUBE 2014. LNICST, vol.
143, pp. 110–119. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17136-
4 12

Domingos, D., Respicio, A., Martins, F., and Melo, B.: Automatic decomposition of IoT
aware business processes - a pattern approach. Procedia Comput. Sci. 164, 313–320
(2019). CENTERIS 2019 - International Conference on ENTERprise Information
Systems

Duipmans, E.F., Pires, L.F., da Silva Santos, L.O.B.: Towards a BPM cloud archi-
tecture with data and activity distribution. In: Proceedings of the 2012 IEEE 16th
International Enterprise Distributed Object Computing Conference Workshops, pp.
165–171. IEEE (2012)

Fdhila, W., Dumas, M., Godart, C., Garćıa-Bañuelos, L.: Heuristics for composite web
service decentralization. Softw. Syst. Model. 13(2), 599–619 (2014)

Fdhila, W., Yildiz, U., Godart, C.: A flexible approach for automatic process decen-
tralization using dependency tables. In: Proceedings of the 2009 IEEE International
Conference on Web Services, (ICWS), pp. 847–855. IEEE (2009)

Goettelmann, E., Fdhila, W., Godart, C.: Partitioning and cloud deployment of com-
posite web services under security constraints. In: 2013 IEEE International Confer-
ence on Cloud Engineering (IC2E), pp. 193–200. IEEE (2013)

Haller, S., Karnouskos, S., Schroth, C.: The Internet of Things in an enterprise context.
In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS, vol. 5468, pp. 14–
28. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00985-3 2

Hoenisch, P., Schuller, D., Schulte, S., Hochreiner, C., Dustdar, S.: Optimization of
complex elastic processes. IEEE Trans. Serv. Comput. 9(5), 700–713 (2016)

Johnson, R., Pearson, D., Pingali, K.: The program structure tree: computing control
regions in linear time. SIGPLAN Not. 29(6), 171–185 (1994)

Lee, G.M., Kim, J.Y.: The Internet of Things problem statement. In: Proceedings of
the 2010 International Conference on Information and Communication Technology
Convergence (ICTC), pp. 517–518. IEEE (2010)

Lopes, L., Martins, F.: A safe-by-design programming language for wireless sensor
networks. J. Syst. Architect. 63, 16–32 (2016)

Martins, F., Domingos, D., Vitoriano, D.: Automatic decomposition of IoT aware busi-
ness processes with data and control flow distribution. In: Proceedings of the 21st
International Conference on Enterprise Information Systems, ICEIS 2019, Heraklion,
Crete, Greece, 3–5 May 2019, vol. 2, pp. 516–524 (2019). https://doi.org/10.5220/
0007766405160524

Moreno, M., Úbeda, B., Skarmeta, A.F., Zamora, M.A.: How can we tackle energy
efficiency in IoT based smart buildings? Sensors 14(6), 9582–9614 (2014)

https://doi.org/10.1007/978-3-319-17136-4_12
https://doi.org/10.1007/978-3-319-17136-4_12
https://doi.org/10.1007/978-3-642-00985-3_2
https://doi.org/10.5220/0007766405160524
https://doi.org/10.5220/0007766405160524


A Graph Pattern Based Approach for Automatic Decomposition 513

Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing execution of composite web ser-
vices. SIGPLAN Not. 39(10), 170–187 (2004)

OASIS: Web services business process execution language version 2.0 (2007). http://
docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

OMG: Business Process Model and Notation (BPMN), Version 2.0, January 2011.
http://www.omg.org/spec/BPMN/2.0

Povoa, L.V., de Souza, W.L., Pires, L.F., do Prado, A.F.: An approach to the decom-
position of business processes for execution in the cloud. In: Proceedings of the 2014
IEEE/ACS 11th International Conference on Computer Systems and Applications
(AICCSA), pp. 470–477. IEEE (2014)

Rault, T., Bouabdallah, A., Challal, Y.: Energy efficiency in wireless sensor networks:
a top-down survey. Comput. Netw. 67, 104–122 (2014)

Wodtke, D., Weißenfels, J., Weikum, G., Dittrich, A.K.: The mentor project: Steps
towards enterprise-wide workflow management. In: Proceedings of the Twelfth Inter-
national Conference on Data Engineering, pp. 556–565. IEEE (1996)

Xue, G., Liu, J., Wu, L., Yao, S.: A graph based technique of process partitioning. J.
Web Eng. 17(1&2), 121–140 (2018)

Yousfi, A., de Freitas, A., Dey, A.K., Saidi, R.: The use of ubiquitous computing for
business process improvement. IEEE Trans. Serv. Comput. 9(4), 621–632 (2016)

Zorzi, M., Gluhak, A., Lange, S., Bassi, A.: From today’s Intranet of Things to a
future Internet of Things: a wireless and mobility-relatedview. IEEE Wirel. Com-
mun. 17(6), 44–51 (2010)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0

	A Graph Pattern Based Approach for Automatic Decomposition of IoT Aware Business Processes
	1 Introduction
	2 Related Work
	3 Use Case Based Decomposition Patterns
	3.1 Use Case
	3.2 Decomposition Patterns

	4 Graph Based Decomposition Patterns
	4.1 Defining a BPMN Process as a Typed Directed Graph
	4.2 Decomposition Graph-Based Patterns

	5 Prototype
	6 Conclusions and Future Work
	References




