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Abstract. The traditional approach to managing complex computer
systems is to use a cadre of skilled IT professionals who use monitor-
ing tools in order to detect when problems arise. They are then able
to use their skills and experience to determine what actions should be
taken to solve the problems. This approach is no longer viable for highly
complex, networked computer information systems that have numerous
configuration knobs, and operate in environments that vary with time at
a very high rate. In this case, one cannot expect that design-time con-
figurations will make the system operate optimally at run-time. For that
reason, complex systems need to manage themselves using controllers
that make the systems self-configuring, self-optimizing, self-healing, and
self-protecting. This paper provides a formalism to describe self-managed
systems and discusses concrete examples that illustrate how these prop-
erties are enforced by controllers in a variety of domains including cloud
computing, fog/cloud computing, Internet datacenters, distributed soft-
ware systems, and secure database systems.

Keywords: Autonomic computing · Self-managed systems · Utility
functions

1 Introduction

The traditional approach to managing complex computer systems is to use a
cadre of skilled IT professionals who use monitoring tools in order to detect when
problems arise. They are then able to use their experience to determine what
actions should be taken to solve the problems. This approach is no longer viable
for networked computer systems composed of a very large number of intercon-
nected servers, have many software layers that may include services developed
by many different vendors, are composed of hundreds of thousands of lines of
code, and are user-facing. The complexity described above is compounded by
the fact that the workload intensity of these complex systems varies in rapid
and hard-to-predict ways.

For the above reasons, it is virtually impossible for human beings to change
the configuration settings of a complex computer system in near real-time in
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order to steer the system to an optimal or near optimal operating point that
meets user-established Quality of Service (QoS) goals. Recognizing this, IBM
introduced the concept of autonomic computing , as a sub-discipline of computer
science that deals with systems that are self-configuring, self-optimizing, self-
healing, and self-protecting [15]. Autonomic computing systems are also referred
to as self-managed systems.

Self-managed systems have stringent QoS requirements in terms of response
time, throughput, availability, energy consumption, and security. The values
of the metrics above depend on the current settings of the configuration
knobs. Additionally, there are tradeoffs between these metrics. For example,
the throughput of a database server is a function of its maximum number of
database connections. However, contention for processing and I/O resources
increases with the number of database connections. As a result, the average
response time increases with resource contention. As another example, a sys-
tem’s security increases as stronger encryption algorithms are used. However,
these stronger algorithms imply in added CPU processing time and increased
response time. As yet another example, current microprocessors allow for the
CPU clock frequency to be adjusted by software. Lower clock frequencies reduce
energy consumption but increase response time.

This paper is an extended version of the conference paper [21]. The rest
of this paper is organized as follows. Section 2 describes the fundamentals of
self-managed systems and provides a concrete example based on automatically
allocating CPU shares to virtual machines. Section 3 discusses how an autonomic
controller can be used to provide elasticity to cloud providers allowing them to
cope with workload surges by dynamically varying the number of servers offered
to users. Section 4 provides an example of how an autonomic controller can deal
with tradeoffs between security and response time by dynamically varying the
security policies of an Intrusion Detection and Prevention Systems (IDPS). The
next section discusses how an autonomic controller can dynamically control the
voltage and frequency of a CPU in order to meet performance requirements with
the least possible energy consumption. Section 6 provides a list of other examples
of self-managed systems. Finally, Sect. 7 discusses some concluding remarks.

2 Fundamentals of Self-managed Systems

This section discusses the basics of self-managed systems aka autonomic comput-
ing systems, a term coined by IBM [15] more than a decade ago. Additionally,
this section provides a simple example to illustrate the notation and formalism
presented here.

2.1 Self-managed Systems

The term autonomic computing was inspired by the central autonomic nervous
system, which unconsciously regulates bodily functions such as the heart and
respiratory rate, digestion, and others, based on high-level goals. For example,
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if you arrive at an airport late for your flight, you will run to the gate, more
adrenaline will be secreted into your bloodstream, your heart rate will acceler-
ate, and your lungs will breath at a higher rate; all of this without you being
conscious. But, you have a high-level goal that is driving all of it: catch your
flight.

Figure 1 illustrates the basic components of a self-managed system. The sys-
tem to be controlled is subject to a workload that consists of the sets of all inputs
to the system (e.g., requests, transactions, web requests, and service requests).
The output metrics of the system are associated with the QoS delivered by the
system when processing the inputs.

Fig. 1. Basic components of a self-managed system (From [21]).

Figure 1 also depicts a controller that monitors the system input, i.e., the
workload, its output metrics, and compares the measured output metrics with
high-level goals established by the system stakeholders. Examples of high-level
goals are: (a) 95% of web requests have a response time less than or equal to
0.8 s; (b) the average search engine throughput is at least 4,600 queries/sec; (c)
the availability of the e-mail portal is greater than or equal to 99.98%; and (d)
the percentage of phishing e-mails filtered by the e-mail portal is greater than
or equal to 90%. The controller reacts to deviations from the high-level goals
established by the stakeholders and automatically derives a plan to change the
system’s configuration by acting on low-level controls in a way that improves
the system’s QoS and makes it compliant, if the system resources permit, with
the high-level goals.
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Self-managed systems work along the following dimensions: (a) Self-
configuring : The system automatically decides how to best configure itself when
new components or services become available or when existing ones are decom-
missioned. (b) Self-optimizing : The system attempts to optimize the value of its
QoS metrics (e.g., minimizing response time, maximizing throughput and avail-
ability). (c) Self-healing : The system has to automatically recover from failures.
This requires that the root causes of failures be determined and that recov-
ery plans be devised to restore the system to an adequate operational state.
In addition, the system has to predict the occurrence of failures and prevent
their manifestation. (d) Self-protecting : The system has to be able to detect and
prevent security attacks, even zero-day attacks, i.e., attacks that target publicly
known but still unpatched vulnerabilities.

Optimizing a system for the four dimensions above may be challenging
because there are tradeoffs among them. For example, it may be necessary
to add several cryptographic-based defenses to improve a system’s security.
However, these defenses have a computational cost and increase the response
time and decrease the throughput [17]. As another example, one may increase
the reliability of a system, and therefore improve its self-healing capabilities, by
using redundant services with diverse implementations. However, this approach
tends to increase response time.

In addition, there usually are constraints in terms of cost and/or energy
consumption associated with this optimization problem, which has to be solved
in near real-time to cope with the rapid variations of the workload. This problem
is a multi-objective optimization problem [24]. In order to deal with the tradeoffs,
it is common to use utility functions for each metric of interest and then combine
them into a global utility function to be optimized.

2.2 Utility Functions

A utility function indicates how useful a system is with respect to a given metric.
Utility functions are normalized (in our case in the [0, 1] range) with 1 indicating
the highest level of usefulness and 0 the lowest. A utility is a dimensionless
quantity. For example, if the metric is response time, the utility function of the
response time decreases as the response time increases, and approaches 1 as
the response time decreases and approaches zero. As another example, a utility
function of availability increases as the availability increases.

We assume here that all utility functions are consistent , i.e., they increase or
decrease in the right direction according to the metric. So, a utility function that
increases as the response increases is not consistent. Figure 2 shows two examples
of utility functions in the shape of sigmoid functions. The top part of the figure
shows three different utility functions of execution time with different shape fac-
tors (α) but with the same service level goal (β = 65.0), which is the inflection
point of the curve. The bottom part of Fig. 2 shows three different availability
utility functions. The inflection point is the same for all of them, i.e., 0.99.

The controller of Fig. 1 typically awakes at regular time intervals, called con-
troller intervals of duration denoted as Δ. Then, the controller (a) verifies all the
monitoring data collected during the past controller interval(s), (b) analyzes how



Self-managed Computer Systems: Foundations and Example 21

the measured output metrics compare with the high-level goals, (c) generates,
if necessary, a plan to change the configuration controls to bring the system in
line with the high-level goals, and (d) executes the plan by sending commands
to the system. The plan is generated based on knowledge of models of the sys-
tem behavior, which will guide the generation of new configuration parameters
as explained in what follows. The paradigm described above is called MAPE-K,
which stands for Monitor, Analyze, Plan, and Execute based on Knowledge [15].
Figure 3 shows the details of the elements of an autonomic controller and the
MAPE-K loop.

2.3 Formal Definition of an Autonomic Controller

We formalize here the operation of an autonomic controller (just controller hereto-
fore). To that end we define the following notation.
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Fig. 2. Top: examples of utility functions for execution time. Bottom: examples of utility
functions for availability. All examples are sigmoid functions. (From [21]).
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– K: number of configuration knobs (low level controls in Fig. 1) the controller
is able to change.

– C(t) = (C1(t), · · · , CK(t)): vector of values of the K configuration knobs at
time t.

– C: set of all possible vectors C(t).
– W(t): workload intensity at time t. This is usually the workload intensity in

the last controller interval(s) but could also be the predicted workload for the
next controller interval.

– S(t) = (C(t),W(t)): system state at time t, which consists of the system con-
figuration and the workload at time t.

– m: number of output metrics monitored by the controller.
– Di: domain of metric i (i = 1, · · · ,m).
– xi(t) ∈ Di: value of metric i (i = 1, · · · ,m) at time t.
– gi(S(t)): function used to compute (i.e., estimate) the value of metric i when

the system is at state S(t). So, xi(t) = gi(S(t)) = gi((C(t),W(t)). The func-
tion gi() represents a model of the system being controlled. This function can
be obtained by solving an analytic model or can be learned from previous obser-
vations. In virtually all cases of interest, the functions gi() are non-linear.

– Ui(xi) ∈ [0, 1]: utility function for metric i. This is a function of the values of
metric i.

– Ug(x1, · · · , xm) = f(U1(x1), · · · , Um(xm)): global utility function, which is a
function of all individual utility functions.

Fig. 3. An autonomic controller and the MAPE-K loop. KB = Knowledge Base.

The functions Ui(), i = 1, · · · ,m and Ug() are the high-level goals and are
determined by the stakeholders.
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At any time instant t at which the controller wakes up, it selects values for the
configuration parameters that will be in place from time t to time t+Δ; when the
controller wakes up again at time t + Δ it makes another selection of parameters.

Because the global utility function is a function of the values of the met-
rics (i.e., Ug(x1, · · · , xm)) and because each value xi is a function gi(S(t)) =
gi((C(t),W(t)) of the system parameters, the controller needs to find a config-
uration vector C∗(t) that maximizes the global utility function. More precisely,

C∗(t) = argmax∀ C(t)∈C{f(U1(g1((C(t),W(t)))), · · · , Um(gm((C(t),W(t)))))}.
(1)

In many cases, we may want to add constraints such as a cost constraint:
Cost(C(t)) ≤ CostMax.

It should be noted that complex computer systems have a large number of
configuration knobs and the number of possible values of each is usually large.
Therefore, we have a combinatorial explosion in the cardinality of C, which is of
the order of

∏K
k=1 | Ck(t) |, where | Ck(t) | is the number of possible values of

configuration knob k.
Additionally, the solution of the optimization problem stated above has to be

obtained in near-real time. For this reason, we often resort to the use of combi-
natorial search techniques such as hill-climbing, beam-search, simulated anneal-
ing, and evolutionary computation to find a near-optimal solution in near real-
time [11].

Most designers of autonomic controllers use global utility functions as the func-
tion to be optimized. Another approach, presented in [12] uses the optimal multi-
dimensional utility vectors on a Pareto front identifying the scalarization weights
that makes each utility vector better than all other optimal utility vectors. Exact
solvers may be used if they are able to solve the optimization problem in a timely
manner so that it can be used for control purposes.

2.4 VM CPU Shares Mapping Example

In order to illustrate the formalism above consider the following scenario. A
physical machine runs K virtual machines (VM). Each virtual machine k (k =
1, · · · .K) is allocated a share Ck(t) of the physical CPU at time t, where
∑K

k=1 Ck(t) = 1. An example of CPU shares allocation can be found in VMware’s
vSphere 4.1 Resource Allocation Shares capability. So, the vector of values of the
K configuration knobs at time t isC(t). The workload intensity at time t isW(t) =
{W1(t), · · · ,WK(t)} where Wk(t), k = 1, · · · ,K is the average arrival rate of
requests to VM k at time t. Thus, the system state at time t is S(t) = (C(t),W(t)).
The example in this section illustrates a controller that dynamically changes at
each controller interval the CPU shares allocated to each VM in order to maxi-
mize a global utility function defined as a function of the utility function of each
of the K VMs (see below).
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Let the average CPU time of requests at VM k be denoted as Dk when VM
k is allocated 100% of the CPU. Thus, the average CPU time of requests at VM
k is Dk/Ck(t) when VM k is allocated a share Ck(t) of the CPU. Assuming for
simplicity that the workload is CPU bound, the average response time Rk(t) of
requests submitted to VM k is given by Eq. (2) using well-known queuing theory
results [22].

gk(S(t)) = Rk(t) =
Dk/Ck(t)

1 − Wk(t)Dk/Ck(t)
. (2)

Note that Dk/Ck(t) does not include any contention for the virtual CPU at
VM k while Rk(t) is the sum of Dk/Ck(t) with the contention for the use of the
virtual CPU at VM k. Assume that the utility function Uk(Rk(t)) assigned by the
stakeholders to VM k is the sigmoid function given by Eq. (3).

Uk(Rk(t)) =
1 + eαk.βk

eαk.βk

eαk(βk−Rk(t))

1 + eαk(βk−Rk(t))
(3)

where Rk(t) is given by Eq. (2). Note that Uk(Rk(t)) = 1 when Rk(t) = 0 and
limRk(t)→∞Uk(Rk(t)) = 0.

Equation (4) shows an example of a global utility function as a weighted aver-
age of the utility functions of all VMs. The weights wk are such that

∑K
k=1 wk = 1.

Ug(C(t),W(t)) =
K∑

k=1

wkUk(Rk(t)). (4)

The autonomic controller will then wake up at every Δ seconds and compute
an allocation of CPU shares to the K VMs that achieves an optimal (i.e., maxi-
mum) or near-optimal value of the global utility Ug(C(t),W(t)).

Figure 4 shows four consecutive time instants at which the controller wakes up.
There are two workloads in this case (solid blue and dashed red in the figure) indi-
cated by the average value of the arrival rate of request in each controller interval
of duration Δ. The bottom part of the figure shows how the allocation of CPU
shares to the two VMs varies due to the variation of the workload in the previous
interval. For example, at time t+Δ the controller assigns 70% of the CPU to VM1
and 30% to VM2. However, during the next controller interval, the workload sub-
mitted to VM2 surpasses that of VM1 and the allocation of CPU shares changes
to 25% to VM1 and 75% to VM2. During the subsequent controller interval, the
workload submitted to VM1 exceeds that of VM2 and the controller allocates 80%
of the CPU to VM1 and the remaining 20% to VM2.
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Fig. 4. Example of VM CPU allocation variation every Δ time units. There are two
different workloads (solid blue and dashed red). (Color figure online)

3 TamingWorkload Surges

Most user-facing systems such as Web sites, social network sites, and cloud
providers suffer from the phenomenon of workload surges (aka flash crowds), i.e.,
periods of relatively short duration during which the arrival rate (measured in
arriving requests per second) exceeds the system’s capacity (measured in the max-
imum number of requests per second that can be processed). The ratio between
the average arrival rate of requests and the system’s capacity is called traffic inten-
sity and is typically denoted by ρ in the queuing literature [22]. A queuing system
is in steady-state when ρ < 1.

The top of Fig. 5 illustrates an example of a workload intensity surge from
traces publicly made available by Google. As the figure illustrates, the surge occurs
in the interval between 600 s and 1,500 s, during which time the workload intensity
increased by a 4.5 factor: from an average of 0.2 req/sec to 0.9 req/sec. The peak
of the surge occurred at time equal to 1,200 s. The middle curve of Fig. 5 shows
that the response time increased from its pre-surge value of 10 s to a peak value
of 375 s, i.e., a 37.5-fold increase. Additionally, the peak response time caused by
the surge occurred at 1,600 s, i.e., 300 s after the peak of the surge occurred.

The bottom part of Fig. 5 shows various curves obtained by using an elasticity
controller that employs an analytic model to predict the response time of a multi-
server queue under surge conditions (i.e., when ρ > 1) [31]. This model establishes
a relationship between the maximum desirable response time, the traffic intensity,
and parameters that determine the geometry of the surge (the red curve in the
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Fig. 5. (a) Top – Example of a trapezoidal workload surge from Google’s cluster-usage
trace file, part-00282-of-00500.csv; workload surge period: 600–1,500 s; average arrival
rate before and after surge: 0.2 req/sec; maximum arrival rate during surge: 0.9 req/sec;
(b) Middle – System’s response time for the duration corresponding to the black high-
lighted box from the top figure; (c) Bottom – Red curve: approximated trapezoidal
workload; Green curve: total server capacity; Cyan curve: Estimated response time curve
based on the red curve; Blue curve: Response time with the controller averaged over 100
independent runs using the Google trace workload in part (a) above. See [31]. (Color
figure online)
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bottom figure is a trapezoidal approximation of the surge in the top figure). The
cyan curve is a predicted response time curve based on the trapezoidal approxi-
mation and is obtained from the analytic model.

The autonomic controller monitors the traffic intensity ρ at regular intervals
and detects when it exceeds 1. At this point it uses the analytic model to com-
pute the minimum number of servers needed to bring down the response time.
Every time the controller wakes up and notices that ρ > 1 it adjusts the number
of needed servers. The green step curve in the bottom of Fig. 5 shows that the sys-
tem capacity increased twice during the surge and that the response time (blue
curve at the bottom of Fig. 5) reached at most 50 s instead of 375 s without the
controller.

4 Autonomic Intrusion Detection Prevention Systems

As indicated in Sect. 2, the properties of self-managed systems include self-
optimizing and self-protecting . In this section, we present an example of a work [3]
that discusses the design, implementation, and use of an autonomic controller to
dynamically adjust the security policies of an Intrusion Detection Prevention Sys-
tem (IDPS).

There are two types of IDPSs: data-centric and syntax-centric. The former
type inspects the data coming from a backend database to a client and determines
if the security policies of the IDPS allow the requesting user to receive the data.
The latter, inspects the syntax of SQL requests and determines if the security poli-
cies of the IDPS allow the requesting user to submit that request to the backend
database. Because no single IDPS is able to cover all types of attacks, many sys-
tems use several data-centric and several syntax-centric IDPSs.

So, an incoming request will have to be processed by several syntax-centric
IDPSs of different types and an outgoing response will have to be handled by sev-
eral different data-centric IDPSs. While this process increases the security of a
system, it may severely degrade its performance.

For example, when a system is under a high workload, it might be acceptable to
modify the security policies to relax some of the security requirements temporar-
ily to meet increasing demands. Additionally, since in most situations, different
system stakeholders view priorities differently, the relaxation in security require-
ments should ideally be based on predefined stakeholder preferences and risks.

We designed an autonomic controller that dynamically changes the system
security policies in a way that maximizes a utility function that is the combi-
nation of two utility functions: one for performance and another for security [3].
The former is a function of the predicted response time and the latter is a func-
tion of the detection rate and false positive rate. Users are classified into roles
and security policies are associated with the different roles. A security policy for
a role r is defined as a vector ρr = (εr,1, · · · , εr,i, · · · , εr,M ) where εr,i = 0 if IDPS
i (i = 1, · · · ,M) is not used for requests of role r and equal to 1 otherwise.

Figure 6 illustrates the results of experiments conducted with the controller
in a TPC-W e-commerce site [19]. The x-axis for all graphs is time measured in
controller intervals (i.e., the time during which the controller sleeps).
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The graph in Fig. 6(a) illustrates the variation of the workload intensity mea-
sured in number of requests received by the system over time. As it can be seen, the
workload is very bursty and varies widely (between 50 req/sec and 140 req/sec).
The high workload peaks cause response time spikes that violate the Service Level
Agreements (SLA) of 1 s for access to the home page and 3 s for search requests
as illustrated in Fig. 6(b). Figure 6(c) shows three global utility curves. The top
curve is obtained when the controller is enabled and shows that the utility is kept
at around 0.8 despite the variations in the workload. The middle curve is obtained
when the controller is disabled and the security policy is pre-configured and does
not change dynamically; in this case the global utility is about 0.6. Finally, the
bottom curve is obtained when a full security policy (i.e., one in which all IDPSs
are enabled for all roles) is used. In this case, a very low global utility of around
0.48 is observed.

Thus, as Fig. 6 shows, the autonomic controller is able to maintain the global
utility at a level 67% higher than when all IDPSs are enabled by reducing the
security policies when the workload goes through periods of high intensity.

5 Autonomic Energy-Performance Control

Power consumption at modern data centers is now a significant component of
the total cost of ownership. Exact numbers are difficult to obtain because com-
panies such as Google, Microsoft, and Amazon do not reveal exactly how much
energy their data centers consume. However, some estimates reveal that Google
uses enough energy to continously power 200,000 homes [20].

Most modern CPUs provide Dynamic Voltage and Frequency Scaling (DVFS),
which allows the processor to operate at different levels of voltage and clock fre-
quency values. Because a processor’s dynamic power is proportional to the prod-
uct of the square of its voltage by its clock rate, it is possible to control the power
consumed by a processor by dynamically varying the clock frequency. However,
lower clock frequencies imply in worse performance and higher clock rates improve
the processor’s performance at the cost of higher power consumption. Therefore,
it would be ideal to dynamically vary a processor’s clock rate so that as the work-
load intensity increases, the clock rate is increased to meet response time SLAs.
And, as the workload intensity decreases the clock frequency should be decreased
to the lowest value that would maintain the desired SLA so as to conserve energy.

Many microprocessors allow for states in which a different voltage-frequency
pair is allowed. For example, the Intel Pentium M processor supports the following
six voltage-frequency pairs: (1.484 V, 1.6 GHz), (1.420 V, 1.4 GHz), (1.276 V,
1.2 GHz), (1.164 V, 1.0 GHz), (1.036 V, 800 MHz), and (0.956 V, 600 MHz) [14].
As indicated above, microprocessors with DVFS offer a discrete set of voltage-
frequency pairs.

We designed and experimented with an autonomic DVFS controller that
dynamically adjusts the voltage-frequency pair of the CPU to the lowest value
that meets a user-defined response time SLA [20].



Self-managed Computer Systems: Foundations and Example 29

Fig. 6. Experiment results (see [3]): (a) Top: Workload variation, (b) Middle:
Response time for Home and Search page requests without the controller, (c) Bottom:
Three global utility values: with the controller, for a fixed pre-configured policy, and for
a full security policy.
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Figure 7 illustrates an example of the variation of the average arrival rate (λ) of
requests over time. As it can be seen, the workload intensity varies widely between
0.01 tps and 0.61 tps.

Fig. 7. Average transaction arrival rate (in tps) vs. time intervals. (see [20]).

The DVFS autonomic controller is able to react to these variations as shown
in Fig. 8 that shows three different curves. The x-axis follows the same time inter-
vals as in Fig. 7 but the scale on that axis is labelled with the values of λ over the
interval. The solid blue curve shows the variation of the relative power consump-
tion that results from the variation of the voltage and CPU clock frequencies. We
define relative power consumption as the ratio between the power consumed by
the processor for a given pair of voltage and frequency values and the lowest power
consumed by the processor, which happens when the lowest voltage and frequen-
cies are used.

As can be seen, the shape of the relative power curve follows closely the vari-
ation of the workload intensity. Higher workload intensities require higher CPU
clock frequencies and voltage levels and therefore higher relative power consump-
tion. The dashed curve of Fig. 8 shows the variation of the average response time
over time. The first observation is that the average response time never exceeds its
SLA of 4 s. The response time, given that the I/O service demand is fixed through-
out the experiment, is a function of the arrival rate λ and the CPU clock frequency
during the time interval. This curve and the dotted line (i.e., the CPU residence
time) in the same figure clearly show how the autonomic DVFS controller does its
job.
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Fig. 8. Solid blue line: Relative power vs. time intervals; Dashed red line: Average
response time (in sec) vs. time intervals; Dotted green line: CPU residence time (in
sec) vs. time intervals; Time intervals are labelled with their arrival rate values (in tps).
See [20]. (Color figure online)

Other work on autonomic power-performance control can be found in [4,13,
16,26,33,34].

6 Other Examples of Self-managed Systems

Self-managed systems have been used in a wide variety of systems in addition to
the examples discussed above. This section provides several additional examples.

6.1 Autonomic Fog Computing

In [28,29], the authors discuss a controller for fog/cloud computing environments
that dynamically determines the portion of a transaction that should be pro-
cessed at a fog server vs. at a cloud server. The controller deals with tradeoffs
between local processing (less wide area network time but higher local congestion)
and remote processing (more wide area network traffic but use of more powerful
servers and therefore less remote congestion). The controller was validated with
data obtained from several IoT traces [30].
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6.2 Autonomic Resource Allocation in Cloud Computing

The authors in [2], discuss the design and evaluation of an autonomic controller
that dynamically allocates and re-allocates communicating virtual machines
(VM) in a hierarchical cloud datacenter. Communication latency varies if VMs
are colocated in the same server, same rack, same cluster, or same datacenter.
The controller employs user-specified information about communication strength
among requested VMs in order to determine a near-optimal allocation. Another
approach was described in [32] in which the authors present a novel, autonomic,
Adaptive Bin Packing (ABP) algorithm for autonomic resource allocation in the
cloud.

6.3 Autonomic Checkpointing

The authors in [5] show how one can dynamically control the checkpointing fre-
quency of processes in a distributed system so as to balance execution time and
availability tradeoffs. The more often a checkpoint is taken the less time a process
is available for useful computation. On the other hand, less frequent checkpoints
incur in more work to be redone in case of failures, which extends process execu-
tion time.

6.4 Autonomic Moving Target Defenses

The work in [8] presents analytic models of Moving Target Defense (MTD) sys-
tems with reconfiguration limits. MTDs are security mechanisms that periodically
reconfigure a system’s resources to reduce the time an attacker has to learn about
a system’s characteristics. When the reconfiguration rate is high, the system secu-
rity is improved at the expense of reduced performance and lower availability [37].
To control availability and performance, one can vary the maximum number of
resources that can be in the process of being reconfigured simultaneously. The
authors of [8] developed a controller that dynamically varies the maximum num-
ber of resources being reconfigured and the reconfiguration rate in order to max-
imize a utility function of performance, availability, and security.

6.5 Autonomic Distributed Software Systems

The Distributed Adaptation and REcovery (DARE) framework designed at
Mason [1] uses a distributed MAPE-K loop to dynamically adapt large decentral-
ized software systems in the presence of failures. The Self-Architecting Service-
Oriented Software SYstem (SASSY) project [18], also developed at Mason, allows
for the architecture of an SOA system to be automatically derived from a visual-
activity based specification of the application. The resulting architecture maxi-
mizes a user-specified utility function of execution time, availability, and security.
Additionally, run-time re-architecting takes place automatically when services fail
or the performance of existing services degrades. Other examples of autonomic
software adaptation can be found in [9,25,35,36,38].
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6.6 Autonomic Smart Manufacturing

In [23] the authors describe how autonomic computing can be used to dynam-
ically control the throughput and energy consumption of smart manufacturing
processes. They use a queuing network model of the manufacturing system to pre-
dict the throughput and energy consumption of a car production system.

6.7 Autonomic Multi-tiered Web Sites

The authors in [10] presented the detailed design of an autonomic load balancer
(LB) for multi-tiered Web sites. They assumed that customers can be categorized
into distinct classes (gold, silver, and bronze) according to their business value to
the site. The autonomic LB is able to dynamically change its request redirection
policy as well as its resource allocation policy, which determines the allocation
of servers to server clusters, in a way that maximizes a business-oriented utility
function.

6.8 Autonomic Datacenters

In [6,7], the authors presented a self-managed method to assign applications to
servers of a data center. As the workload intensity of the applications varies over
time, the number of servers allocated to them is dynamically changed by an
autonomic controller in order to maximize a utility function of the application’s
response time and throughput.

7 Concluding Remarks

Most modern information systems are very complex due to their scale and resource
heterogeneity, consist of layered software architectures, are subject to variable and
hard-to-predict workloads, and use services that may fail and have their perfor-
mance degraded at run-time. Thus, complex information systems typically oper-
ate in ways not foreseen at design time.

Additionally, these software systems have a large number of configuration
parameters. A few examples of parameters include: web server (e.g., HTTP keep
alive, connection timeout, logging location, resource indexing, maximum size of
the thread pool), application server (e.g., accept count, minimum and maximum
number of threads), database server (e.g., fill factor, maximum number of worker
threads, minimum amount of memory per query, working set size, number of user
connections), TCP (e.g., timeout, maximum receiver window size, maximum seg-
ment size).

Some parameters have a discrete set of values (e.g., maximum number of
worker threads, number of user connections) and others can have any real value
within a given interval (e.g., TCP timeout, DB page fill factor). In the latter case,
the parameter values in a continuous range have to be discretized in order for com-
binatorial search methods to be used. The authors in [27] discussed a method for
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evaluating the impact of software configuration parameters on a system’s perfor-
mance.

As discussed in this paper, it is next to impossible for human beings to contin-
uously track the changes in the environment in which a system operates in order
to make a timely determination of the best set of configuration parameters neces-
sary to move the system to an operating point that meets user expectations. For
that reason, complex systems have to be self-managed.

A useful framework to reason about self-managed systems is the Monitor
Analyze Plan and Execute based on Knowledge (MAPE-K) loop described by
IBM [15]. This loop is continuously executed by an autonomic controller that (1)
monitors a managed system’s inputs and outputs, (2) analyzes if the outputs have
violated user-defined Service Level Objectives usually specified in the form of util-
ity function, (3) plans adaptation actions that optimize the utility function, and
(4) executes the plan. All four steps are based on a knowledge repository of models
that can be used to predict future system states and corresponding values of the
utility function based on a set of actions to be taken by the controller.

Many adaptive systems determine how they should evolve based on their
recent past history. However, as indicated in [39], one can take a proactive adapta-
tion approach that uses adaptive forecasting methods in order to anticipate future
states of a system and determine the best actions based on predicted future states.
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